US005897622A

United States Patent [

Blinn et al.

5,897,622
Apr. 27, 1999

Patent Number:
Date of Patent:

(1]
(45]

[54] ELECTRONIC SHOPPING AND
MERCHANDISING SYSTEM
[75] Inventors: Arnold Blinn, Bellevue, Wash.;
Michael Ari Cohen, San Francisco,
Calif.; Michael Lorton; Gregory J.
Stein, both of Redmond, Wash.
[73] Assignee: Microsoft Corporation, Redmond,
Wash.
[21] Appl. No.: 08/732,012
[22] Filed: Oct. 16, 1996
[51] Imt. CLC ... GO6F 17/60; GOG6F 13/00;
GO6F 15/16
[52] US. Cl ... 705/26; 705/27; 707/3,
707/104; 707/501; 707/513
[58] Field of Searchccocconeue. 705/26, 27, 30,
705/35, 39; 707/1, 2, 3, 4, 5, 6, 10, 100,
102, 103, 104, 501, 509, 513; 395/200.31,
200.33, 200.47, 200.49
[56] References Cited
U.S. PATENT DOCUMENTS
5,708,825 1/1998 Sotomayor 395/762
5,754,772 5/1998 Leaf 395/200.33
5,761,656 6/1998 Ben-Shacharc.ccccveecvneuennene 707/4
5,802,518 9/1998 Karaev et al. 707/9

OTHER PUBLICATIONS

Andraka; “Put Your Database on the Web”;, Data Based
Advisor; v14 n6; p. 12(3); Jun. 1996; Dialog: File 275,
Acc#01941476.

Vaughan—Nichols; “Unleashing Databases on the Web—
True Wealth and Power Belong to Those Who Control
Information Access”; NetGuide, 1996; n307; p. 111; Jul. 1,
1996; Dialog: File 647, Acc#01097465.

Olympia; “Cold Fusion 1.5; Autobahn”; DBMS; v9 n8; p.
33(4); Jul. 1996; Dialog: File 275, Acc#01955956.

eShop Technology overview, Internet address: http://www.e-
shop.com/corp/technology.html. This reference was copied
from the Internet and printed in or about May 1996; the
pages are dated Jan. 1, 1996.

eShop In The News—Recent Press Release, Internet
address: http://www.eshop.com/corp/press.html. This refer-
ence was copied from the Internet and printed in or about
May 1996; the pages are dated Jan. 1, 1996. Dates are listed
for press releases of Nov. 7, 1995, Dec. 7, 1995 and Jan. 23,
1996.

eShop™ Technology Merchant Manual, Feb. 21, 1996. This
document contains proprietary material subject to M.P.E.P. §
724.

Primary Examiner—Stephen R. Tkacs
Attorney, Agent, or Firm—.ee & Hayes, PLLC

[57] ABSTRACT

The present invention provides a merchant system for online
shopping and merchandising. The merchant system archi-
tecture provides great flexibility for a merchant to adapt the
merchant system to their existing business practices, pro-
motions and databases. The merchant system includes a
dynamic page generator, a configurable order processing
module and a database module capable of retrieving data
from the database without regard to its schema. The present
invention enables merchants to create electronic orders
which are easily adaptable for different sales situations. The
order processing module includes multiple configurable
stages to process a merchant’s electronic orders. The mer-
chant system is capable of generating pages dynamically
using templates having embedded directives. The database
module and the dynamic page generator allow merchants to
modify their databases and page displays without having to
reengineer the merchant system.

64 Claims, 18 Drawing Sheets

127
DATABASE
UERY QUERY
Q DATA
127
DATABASE
MODULE
QUERY ACCESS ACCESS QUERY
NAME OBJECT OBJECT NAME
126 125 129
— TEMPLATE | DYNAMIC REQUEST ORDER
STROCTURES PAGE PROCESSING
GENERATOR SROER MODULE
URL HTML
122123
BROWSER

Petitioners' Exhibit 1038, Page 1

5,897,622

Sheet 1 of 18

Apr. 27, 1999

U.S. Patent

SUHAYHS
MYOMLAN

SVDHA SV1 OOSIONVYA NVS | ODHId NVS SATIDNY SO1

JALNdKOD \ “Q \I\

ATIHON

601
ALITIALYS g

/

! e QQ\/ LNHITO

==| NOLLOENNOD

=
— NYOMLAN

B==
AVMALVD

e e e - — — e . e — — —— —

|

! 7
/ s
\\
'C SHOMLAN
{oaomzzou
Loy SHOMIAN

.

|

|

|

|

I

I

[

|

I

I

[
| Z0/
_ HSId SINTT J\ 7
[

|

|

|

|

I

|

[

|

|

I

|

I

!

B[=) cor ol

Y12/

|¥aAgEas 0 L __ AVIdSID

Petitioners' Exhibit 1038, Page 2

5,897,622

Sheet 2 of 18

Apr. 27, 1999

U.S. Patent

c Il

3¥01S ¥3ISmous
Z2AN £EIN 3HL INVHO¥IN
, Y JOVNYN
. N£z/
. INM3dId
. ¥30¥0
HIOVNYA Xyl -
NOILOV HXS - 301S
ANIONI / JHL
\gz/ SININOdWop| L83T¥0 | | o) | 39vNWN
7~ |_31ngON ONISSID08d ¥30¥0
62/
MOLV¥INIO
IINAON - S34NLONYLS 39vd
3jsSvaviva ANLH JINVNAQ
A o e g
22/ 92/ 7/ 3ISVHOUNd
NILSAS LINVHONIW »Z/ NV dOHS
N
ot ¥ISMOYS
¥INNSNOD
<
3sSvaviva ZZ/
N2/

Petitioners' Exhibit 1038, Page 3

U.S. Patent Apr. 27, 1999 Sheet 3 of 18 5,897,622

725~
DYNAMIC PAGE GENERATOR

126 740~ 122,725 <

HTML PAGE N
STRUCTURES PROCESSOR BROWSER

/42\ I

QUERY
MODULE

!

/‘27\ l

DATABASE
MODULE

£16. 34

Petitioners' Exhibit 1038, Page 4

U.S. Patent Apr. 27, 1999 Sheet 4 of 18 5,897,622

125~
DYNAMIC PAGE GENERATOR
146
N ___
| MEMORY "i
| |
|
AN 22N 122,123,
' DISK MEMORY| ' _ PAGE -
| | CACHE | |CACHE | = ~ | PROCESSOR BROWSER
] |
| |
______ y /42\ ,
’44X t
AGN R QUERY
| TEMPLATE 1| MODULE
| PARSER |
—-op -
|
126~ | 127N
DATABASE
HTML
STRUCTURES MODULE

£16. 36

Petitioners' Exhibit 1038, Page 5

U.S. Patent Apr. 27, 1999 Sheet 5 of 18 5,897,622

150 ~

7229~ [fetchrows products "get—products”]

/54T~ [eachrow product]

758 T~ Product [value product.sku] is [value product.name]

756 -~ [/eachrow]

760 762
/{0\
(PROG) s 172

— (FETCHROWS, "product’, "get—products”,())

— "\n" <~/

— (EACHROW, "product’, PROG)

f/iﬂ
174 I'_ e _.< ______________ _i
— "\nProduct’ =— /55 782

| y~
| }— (VALUE, (ATTR, "product’, "sku’)) |
| |
: — IS’ =——/55 :
| //54 |
| +— (VALUE, (ATTR, "product’, "name")) |
| |
| . ., l
e e .

— » n"

\ \
778

F6. 4

Petitioners' Exhibit 1038, Page g

U.S. Patent

LZF\\

HTML
STRUCTURES

Apr. 27,1999 Sheet 6 of 18

727 ~

5,897,622

DATABASE

QUERY

727 ~

A

QUERY
DATA

DATABASE

MODULE

QUERY
NAME

725 ~

A

Y

ACCESS

OBJECT

TEMPLATE

DYNAMIC
PAGE

GENERATOR

u
122,723 ~

RL

HTML

BROWSER

£/6.

J

Petitioners' Exhi

bit 1038, Page 7

U.S. Paten

t Apr. 27, 1999

200 ~

Sheet 7 of 18

202 —

204 T~__ <table>

204 —

<tr>

[~ [fetchrows product "get-product’]

[<tr><th>Item<th>Price>
206 T~ [eachrow product]

2/0-~__ <td>[value product.sku]

272

208 -7~ [/eachrow]

[~ <td>[money product.list_price]

5,897,622

220 ~
Product_table
SKU List_price
GLOVE 1225
HAT 1680
232
Sku String / 230
List_price Number /
/254
GLOVE 1225
/-2.)’6'
HAT 1680
240 ~
Item Price
GLOVE $12.25
HAT $16.80

£16.6

Petitioners' Exhibit 1038, Page g

U.S. Patent Apr. 27, 1999 Sheet 8 of 18 5,897,622

250\
_ 252
Revised_product_table y
SKU List_price Description
GLOVE 1225 Nice leather gloves
HAT 1680 Woolly hat w/pom—pom
Sku String 260
List_price Number
Description String ,/ 262 L
GLOVE 1225 Nice leather gloves
HAT 1680 Woolly hat w/pom-pom
270\
[fetchrows product "get—product’]
<table>
274 <tr><th>Item<th>Price> <th>Description\
|~ [eachrow product] 272
<tr>

278~ <td>[value product.sku]
280~ <td>[money product.list_price] g,

<td>[value product.description]—
276~ [/eachrow]

284 ~

Item Price Description

GLOVE [|$12.25(|Nice leather gloves

HAT $16.80 | [Woolly hat w/pom—pom

r6.7

Petitioners' Exhibit 1038, Page g

U.S. Patent Apr. 27, 1999 Sheet 9 of 18 5,897,622

ZZ/\\

DATABASE

A

QUERY
QUERY DATA

127\\ Y

DATABASE
MODULE

A

QUERY ACCESS
NAME OBJECT

129\\ Y

ORDER
PROCESSING
MODULE

PURCHASE
ORDER

Y

F16.8

Petitioners' Exhibit 1038, Page 1

U.S. Patent Apr. 27, 1999 Sheet 10 of 18 5,897,622

Joz
Name John Doe / 300
CC_Number 4111 1111 1111 1111 /
/304
SKU GLOVE
.:’/5\
\v' J74
SKU String / 370
List_price Number /
/J'IZ
GLOVE 1225
Jo2
Name John Doe / 320
CC_Number 4111 1111 1111 1111 /
/—JZZ
SKU GLOVE
product_SKU GLOVE
product_List_price 1225

f16.9

Petitioners' Exhibit 1038, Page 11

U.S. Patent Apr. 27, 1999 Sheet 11 of 18 5,897,622

126
HTML
STRUCTURES
TEMPLATE
125, 129~
DYNAMIC REQUEST _| ORDER
PAGE PROCESSING
GENERATOR [=—o=mrr MODULE
URL HTML
122,123~
BROWSER

F16.70

Petitioners' Exhibit 1038, Page 12

U.S. Patent Apr. 27, 1999 Sheet 12 of 18 5,897,622

FAO~,

F42

[~ [fetchproduct product GLOVE]
F44

~~—— Current price is: [money product.iadjust_currentprice]
<p>

F#6 T~ Normal price is: [money product.product_List_price]

54
} v\\ o7 /1.50
SKU GLOVE -
60 /M
356 SKU GLOVE L/
§_, product_SKU GLOVE
~-_product_List_price 1225
372 /’7 4
SKU GLOVE =
570 product_SKU GLOVE

product_List_price 1225
~—iadjust_currentprice 1102

JE0

Current price is: $11.02

Normal price is: $12.25

f16.77

Petitioners' Exhibit 1038, Page 13

5,897,622

Sheet 13 of 18

Apr. 27, 1999

U.S. Patent

¢/ IS

¥ISMOYE
/ Nrzr vz
IWLH 78N
\
IINAON 43040 4OLVYINIO
_ S3IUNLONYLS
ONISSID0¥d 3oVd |
- JIVIdAIL TWLH
43040 IINVYNAQ
1S3n03d —
b sz] NP 92/
JNVN 193r80 193r80 INVYN
N3N0 SS300V SS390V ANIND
3INAON
| 3svaviva |
N-sz/
viva
A43N0 AN3ND
‘
ISVaviva
N2/

Petitioners' Exhibit 1038, Page 14

U.S. Patent Apr. 27, 1999 Sheet 14 of 18 5,897,622

400\
4{0‘?\\[fetchitems orderitems order.items]
#0¢4~—[eachrow orderitems] 470
405 T~[fetchrows crossinfo cross orderitems.sku]
#/Z3[if crossinfo.count>0] 478 479
#74_The item is a [value orderitems.sku] but try a [value crossinfo.related].
#7291 [else] 477
#/6~—The item is a [value orderitems.sku] and has no related products.
2 (/i
#76~~[/eachrow]
422
Name John Doe / 220
CC_Number 4111 1111 1111 1111 /
/‘424
425] SKU GLOVE
4 _70\\' product_SKU GLOVE
™ product_List_price 1225
» /-425
SKU HAT
jj‘j‘_ product_SKU HAT
"™~ product_List_price 1680
SKU String 442 440
product_SKU String 4 W
product_List_price Number
AL
™~ GLOVE GLOVE 1225
] HaT HAT 1680

£16. 754

Petitioners' Exhibit 1038, Page 15

U.S. Patent Apr. 27, 1999 Sheet 15 of 18 5,897,622
450 ~
Cross_table
SKU RELATED
HAT SCARF
462
SKU String / 460
Related String /
466
SKU String / 264
Related String /
/458
HAT SCARF
472 470
—This item is a GLOVE and has no related products. /

A

474

- This item is a HAT but try a SCARF.

F16. 138

Petitioners' Exhibit 1038, Page 1

5,897,622

Sheet 16 of 18

Apr. 27, 1999

U.S. Patent

¥/ 9L

3svaviva
N-yz/
37NAONW
3svaviva
N7/
103rao0 INVYN 103r4a0 JNVN
SS300V A¥3INOD SS3I00V A¥3N0O
1
1S3n03y
ONISS3D0¥d 39vd ~3 VAL TNLH
¥3Q¥0 53090 JINVYNAQ
62/ F <oy 92/
39Vd
¥3030 ANLH N
‘ r Y |7 —"=7"77=
™|
YIOVNVA _
vIva NOILOY | ¥3ISMOYS
1034103y |
N-gz/ _ N\ Xt
||||||||||||||||| J
Nz

Petitioners' Exhibit 1038, Page 17

U.S. Patent

Apr. 27, 1999

Sheet 17 of 18

5,897,622

- S00

502 ~
S04
506
508~

-order = load_order (shopper_id)
-add arguments to order

N\~ OPM.plan(order)
~if order.error then
DPG generate (error_template, order.error)

570 else - .
[~ issue_redirect (basket.html)
572~
"-save_order (order)
922
526 Name John Doe /
CC_Number 4111 1111 1111 1111
— Billto_zip 92101
24
SKU GLOVE L/
/—.544
Name John Doe
CC_Number 4111 1111 1111 1111 | 55¢
556 1 —shipping_total 0
553“\— _tax_total 77
™~ _total_total 1179
540 SKU GLOVE
546~ _product_SKU GLOVE 542
545N\— —product_List_price 1225 |/
5_505\— —iadjust_currentprice 1102
\—_oadjust_adjustedprice 1102

F1G. 7154

Petitioners' Exhibit 1038, Page 18

U.S. Patent Apr. 27, 1999 Sheet 18 of 18 5,897,622

.570\
572\\[fetchitems orderitems order.items]
?7#—[eachrow orderitems] 580
% ‘9“\[fetchrows crossinfo cross orderitems.sku]
P2 [if crossinfo.count>0]
;Z;‘\The item is a [value orderitems.sku] but try a [value crossinfo.related].
T~[else] 557
556~ 7

~~The item is a [value orderitems.sku] and has no related products.

7/

576 ——[/eachrow] 589 555)
The shopper lives in the [value order.billto_zip] code.

/-6'06'
Name John Doe /505
CC_Number 4111 1111 1111 1111
Billto_zip 92101
604
600 SKU GLOVE |/
502__ product_SKU GLOVE
>~ product_List_price 1225
/5/0
SKU String
product_SKU String
product_List_price Number
672
GLOVE GLOVE 1225 |/
622

J 620

-This item is a GLOVE and has no related products. / _/
/, The shopper lives in the 92101 zip code.

£16. 756

624

Petitioners' Exhibit 1038, Page 19

5,897,622

1

ELECTRONIC SHOPPING AND
MERCHANDISING SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a shopping and merchan-
dising system and, more specifically, to a shopping and
merchandising system for online networks, such as the
World Wide Web portion of the Internet.

2. Description of the Related Technology

The World Wide Web (Web) is part of a global computer
network known as the Internet. Scientists and academicians
initially developed and used the Internet to share informa-
tion and collaborate. The Web functions as an object based
multimedia system. It allows for the creation, storage and
delivery of multimedia objects. Recently, on-line service
providers, such as Microsoft Network, CompuServe,
Prodigy and America Online, have linked to the Web. This
enables their customers to access a variety of products and
services available from independent content providers and
other Web users. For example, a typical customer can access
electronic mail, news services, travel services and online
stores and malls on the Web.

The global penetration of the Internet provides merchants
with the capability to merchandise their products to sub-
stantial shopping audiences using an online merchant sys-
tem. Online merchant systems enable merchants to cre-
atively display and describe their products to shoppers using
Web pages. Merchants can layout and display Web pages
having content, such as text, pictures, sound and video,
using HyperText Markup Language (HTML). Web
shoppers, in turn, access a merchant’s Web page using a
browser, such as Microsoft Explorer or Netscape Navigator,
installed on a client connected to the Web through an online
service provider, such as the Microsoft Network or America
OnLine. The browser interprets the HTML to format and
display the merchant’s page for the shopper. The online
merchant system likewise enables shoppers to browse
through a merchant’s store to identify products of interest, to
obtain specific product information and to electronically
purchase products after reviewing product information.

To promote their products, merchants often discount their
products or have sales. Merchants can use a wide variety of
discounting schemes to promote their products. For
example, a merchant may offer volume discounts, such as
buy two and get one free, or membership discounts where,
for example frequent shoppers and AAA members get 10%
off, or cross-sell incentives offering, for example, 50% off
socks with a shoe purchase. Existing online merchant
systems, such as Netscape Merchant System, support only
date-based sale pricing, such as 20% off all shirts during the
month of May. To enter the online shopping market, mer-
chants desire an online merchant system that allows for a
significantly wider variety of product discounting and sales
schemes.

Similarly, existing online merchant systems, such as
eShop 1.0, implement a generic purchase transaction model
to capture the most common variations of a purchasing
transaction. To complete a purchase transaction, a merchant
sums up the prices of items, deducts applicable discounts,
adds sales tax, receives payment and delivers the purchased
items to the shopper. Although these basic steps are the same
for many merchants, electronic commerce in a global envi-
ronment imposes many variations to this basic model. For
example, merchants generally have to include a shipping
and handling fee for their online shoppers. Merchants may

10

20

25

w
<

40

45

2

likewise have to include special taxes or fees, such as value
added taxes or use fees, applicable only in certain countries
or economic unions. In addition, merchants may issue their
online customers private label credit or charge cards. Cus-
tomer payment using these private label cards requires
authorization through private networks, instead of commer-
cial banking networks. Thus, it becomes apparent that to
enter the online shopping market, merchants require an
online merchant system that provides for substantial varia-
tions in the purchase transaction model.

Lastly, merchants typically store product data, such as
product descriptions, prices and pictures, in relational data-
bases. Online merchant systems, therefore, have to interface
with merchant databases to access and display product
information. Databases require a consistent structure,
termed a schema, to organize and manage the information.
In a relational database, the schema is a collection of tables.
For each table, there is generally one schema to which it
belongs. In an implementation of a relational database, a
relation corresponds to a table having rows, where each row
corresponds to a tuple, and columns, where each column
corresponds to an attribute. From a practical standpoint,
rows represent records of related data and columns identify
individual data elements. A table defining a retailer’s prod-
uct line may, for example, have product names, product
numbers (e.g., SKUs) and prices. Each row of this table
holds data for a single product and each column holds a
single attribute, such as a product name. The order in which
the rows and columns appear in a table has no significance.
In a relational database, one can add a new column to a table
without having to modify older applications that access
other columns in the table. Relational databases thus provide
flexibility to accommodate changing needs. Once the
schema is designed, a tool, known as a database manage-
ment system (DBMS), is used to build the database and to
operate on data within the database. The DBMS stores,
retrieves and modifies data associated with the database and,
to the extent possible, protects data from corruption and
unauthorized access. Because each merchant organizes its
product information differently, there is a large installed base
of databases having a wide variety of database schemas for
product information.

Available online merchant systems, such as eShop 1.0 and
Netscape Merchant System, require merchants to organize
their product information according to a predefined database
schema. Hence, to use such systems, a merchant must either
convert its existing databases to this predefined schema or
the merchant must create a new database having the pre-
defined schema. For many merchants, conversion of their
existing databases is not feasible. For example, the merchant
may have several hundred thousand product entries located
in different remote databases accessed by legacy
applications, such as a point of sale system or an inventory
control system, specifically designed to interact with these
different databases. If the merchant converted these data-
bases to the predefined schemas, their legacy applications
would no longer function properly. To protect their invest-
ment in legacy applications, merchants may have to copy
their product data into a redundant database having the
predefined schema. Otherwise, merchants may have to incur
substantial costs to rewrite their legacy applications to
support the predefined schema of the online merchant sys-
tem. For these reasons, it is not cost-effective for a merchant
to use applications requiring a predefined schema for exist-
ing relational databases. To enter the online shopping
market, merchants require an online merchant system that
will cooperatively function with existing database systems
having a wide variety of schemas.

Petitioners' Exhibit 1038, Page 2

5,897,622

3
SUMMARY OF THE INVENTION

The present invention enables merchants to enter the
online shopping market by providing a system and archi-
tecture to obtain and perform a large set of processing
operations and computations on a rich set of dynamically
generated information from a wide variety of data sources.
In contrast to the rigid display formats and fixed database
schemas of existing merchant systems, the present invention
provides a dynamic page generator that permits the display
of dynamically generated data in any format or presentation
desired by the merchant. The present invention provides this
flexibility through the use of display templates and a data-
base schema independent query mechanism. In this manner,
a merchant changes the display formats by modifying a
template instead of revising the system modules producing
the display formats. Similarly, a merchant handles database
modifications by modifying the queries stored in the data-
base instead of modifying the system modules performing
the database queries.

In addition, the present invention enables a merchant to
effectively promote their products. In contrast to existing
merchant systems that separate display operations from
processing operations, the present invention provides the
capability to generate product information pages dynami-
cally during order processing. Thus, a shopper using the
present invention can view special promotion information
during order processing operations. Similarly, the present
invention uses the same calculations to display product
information and to process an order, so a shopper is guar-
anteed consistency and reliability in the information used to
make purchasing decisions. Moreover, the present invention
provides a configurable order processing module that
enables merchants to add components to the merchant
system they need to address the particular requirements of

their purchase transactions, such as special value added ,

taxes or use fees.

Lastly, the present invention enables merchants to protect
their investments in existing databases by providing a data-
base schema independent query mechanism. The present
invention provides for the storage of database queries in the
database to isolate applications that access the database from
differences in schemas and data sublanguages. Similarly,
because of the database schema independence, the order
processing module of the present invention does not require
modification for each change to the database.

One aspect of the present invention includes a merchant
system comprising a dynamic page generator to compose a
page for display by processing a template having a database
request for page data, and a database module, in communi-
cation with a database and with the dynamic page generator,
to retrieve page data from the database and to communicate
the page data to the dynamic page generator, wherein the
retrieved page data corresponds to the database request and
wherein the database module retrieves the data in a manner
that is independent of any database schema.

Another aspect of the present invention includes a mer-
chant system comprising an order processing module, a
plurality of components associated with the order processing
module so as to create and process an order, wherein a
component makes a request for order data, and a database
module, in communication with a database and with the
order processing module, to retrieve order data from the
database and to communicate the order data to the order
processing module, wherein the retrieved order data corre-
sponds to the request and wherein the database module
retrieves the data in a manner that is independent of any
database schema.

20

25

40

45

55

4

Yet another aspect of the present invention includes a
merchant system comprising an order processing module
having a plurality of components configured to create and
process an order, and a dynamic page generator, in commu-
nication with the order processing module, to compose a
page for display by processing a template having a request
for information from the order.

Lastly, another aspect of the present invention includes a
merchant system comprising an order processing module
having a plurality of components configured to create and
process an order, wherein a component makes a request for
order data, a dynamic page generator, in communication
with the order processing module, to compose a page for
display by processing a template having a request for
information from the order and a database request for page
data, and a database module, in communication with a
database and with the order processing module and with the
dynamic page generator, to retrieve order data from the
database and to communicate the order data to the order
processing module and to retrieve page data from the
database and to communicate the page data to the dynamic
page generator, wherein the retrieved order data corresponds
to the component request, the retrieved page data corre-
sponds to the database request and the database module
retrieves the order and page data in a manner that is
independent of any database schema.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram illustrating an example of an
online network for practicing the present invention.

FIG. 2 is a block diagram illustrating the merchant system
of the present invention.

FIG. 3a is a block diagram illustrating the structure of a
preferred embodiment of the dynamic page generator of
FIG. 2.

FIG. 3b is a block diagram illustrating the structure of
another preferred embodiment of the dynamic page genera-
tor of FIG. 2.

FIG. 4 illustrates the correspondence between -a syntax
tree and a template used by the dynamic page generator of
FIG. 3.

FIG. 5 illustrates the data flow for the database module
and the dynamic page generator shown in FIG. 2.

FIG. 6 shows a portion of a template, a product table and
an access object which illustrate an example of the data flow
of FIG. 5 used to produce a HTML table for display.

FIG. 7 shows a revised portion of a template, a revised
product table and an access object which illustrate an
example of the data flow of FIG. 5 used to produce a HTML
table for display.

FIG. 8 illustrates the data flow for the database module
and the order processing module shown in FIG. 2.

FIG. 9 shows an order, an access object and an annotated
order which illustrate an example of the data flow of FIG. 8.

FIG. 10 illustrates the data flow for the dynamic page
generator and the order processing module of FIG. 2.

FIG. 11 shows a template portion, an order, a first anno-
tated order, a second annotated order and a page portion
displayed on a consumer browser which illustrate an
example of the data flow of FIG. 10.

FIG. 12 illustrates the data flow for the dynamic page
generator, the order processing module and the database
module of FIG. 2.

FIG. 13a shows a template portion, an order and an access
object which illustrate an example of the data flow of FIG.
12.

Petitioners' Exhibit 1038, Page 21

5,897,622

5

FIG. 13b shows a cross sell table, an access object having
no data, an access object having one data row and a page
portion which illustrate the data flow of FIG. 12.

FIG. 14 illustrates the architecture of the merchant system
of FIG. 2.

FIG. 15a shows pseudo code for an action, an order and
an annotated order which illustrate the data flow of FIG. 14.

FIG. 15b shows a template portion, an order, an access
object and a page portion which illustrate the data flow of
FIG. 14.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

For convenience, the description comprises the following
sections:

I. Merchant System Overview

II. Templates, Directives and Actions

III. The Dynamic Page Generator

IV. The Order Processing Module

V. The Database Module

VI. Merchant System Data Flows and Architecture

The following detailed description of the preferred
embodiments presents a description of certain specific
embodiments to assist in understanding the claims.
However, one may practice the present invention in a
multitude of different embodiments as defined and covered
by the claims.

I. Merchant System Overview

FIG. 1 is an example of an online network for practicing
the present invention. In particular, a client 100 communi-
cates with a server 102 by means of a network 104, such as
the World Wide Web portion of the Internet. The server 102
may include a gateway to a Wide Area Network (WAN) 106
having a plurality of Local Area Networks (LANs) 108. A
browser 101, residing on the client 100, displays a store
home page 103 retrieved from the World Wide Web on a
viewing device 105. A user can view this page by entering,
or selecting a link to, a Universal Resource Locator (URL),
such as “www.store.com”, in a browser program, such as
Microsoft Explorer or Netscape Navigator, executing on the
user’s computer. Note that an online merchant system may
reside in a server or in a combination of servers comprising
the WAN 106. Similarly, the client 100 may access the
network 104 through a wireless connection, such as the
infrared link 107 or the satellite dish 109.

Focusing now on the network 104, the presently preferred
network is the Internet. The structure of the Internet is well
known to those of ordinary skill in the art and includes a
network backbone with networks branching from the back-
bone. These branches, in turn, have networks branching
from them, and so on. For a more detailed description of the
structure and operation of the Internet, please refer to “The
Internet Complete Reference,” by Harley Hahn and Rick
Stout, published by McGraw-Hill, 1994. However, one may
practice the present invention on a wide variety of commu-
nication networks. For example, the network 104 can
include interactive television networks, telephone networks,
wireless data transmission systems, two-way cable systems,
customized computer networks, interactive kiosk networks
and automatic teller machine networks.

In addition, the network 104 includes online service
providers, such as Microsoft Network, America OnLine,
Prodigy and CompuServe. In a preferred embodiment, the
online service provider is a computer system which provides

10

20

25

30

40

45

6

Internet access to a client 100. Customers pay monthly
access fees to the online service providers for help services
and access to the Internet through local telephone connec-
tions. Of course, the online service providers are optional,
and in some cases, the clients 100 may have direct access to
the Internet 104. For example, the client 100 may be
connected to a local area network 108 which in turn is
directly connected to the Internet 104.

Focusing now on the client 100, the client is a general
purpose computer. In a preferred embodiment, the client 100
is a conventional personal computer equipped with an
operating system supporting Internet communication
protocols, such as Microsoft Windows 95 and Microsoft
Windows NT, a browser, such as Microsoft Explorer or
Netscape Navigator, to access the Merchant System and a
conventional modem for access to the Internet 104. In other
embodiments, the client 100 could, for example, be a
computer workstation, a local area network of computers, an
interactive television, an interactive kiosk, a personal digital
assistant, an interactive wireless communications device or
the like which can interact with the network. While the
operating systems may differ in such systems, they will
continue to provide the appropriate communications proto-
cols needed to establish communication links with the
network 104.

Referring now to FIG. 2, a merchant system 120 com-
municates with a database 121, a consumer browser 122, a
merchant browser 123, and a network 124. In a preferred
embodiment, the database 121 comprises data stored locally
in one or more storage devices, such as a magnetic disk drive
or an optical disk drive. In another preferred embodiment,
the database 121 comprises data distributed across a LAN
108 (FIG. 1) or a WAN 106 (FIG. 1). The database 121 may
include query data, product information, order information,
shopper information, store information, receipts and cus-
tomer feedback data. A shopper uses a consumer browser
122, such as Microsoft Explorer or Netscape Navigator,
communicating with a network 124, such as the World Wide
Web portion of the Internet, to access a merchant’s online
store using the merchant system 120. Similarly, a merchant
uses a merchant browser 123, such as Microsoft Explorer or
Netscape Navigator, communicating with the merchant sys-
tem 120 directly or through a network 124 to manage its
online store. There are, of course, typically, a multiplicity of
the browsers 122, 123 operating on the network 124 at any
time.

The merchant system 120 includes a dynamic page gen-
erator 125, HTML structures 126, a database module 127, an
action manager 128, and an order processing module 129
having an order engine 130, an order pipeline 131, and
components 132 for various purposes, such as calculating
sales tax and shipping/handling fees. The dynamic page
generator 125 uses HTML structures 126 and communicates
with the database module 127 to access data from the
database 121 to format and display on the consumer browser
122 and the merchant browser 123. The order processing
module 129 communicates with the dynamic page generator
125 and the database module 127 to create Web pages
having product information for display on a consumer
browser 122. Similarly, the order processing module 129
communicates with the action manager 128 and the database
module 127 as needed to execute purchasing transactions for
the merchant’s online store. Lastly, the order processing
module 129 includes components 132, that is, a plurality of
application programs to enhance and administer the mer-
chant system 120. For example, the components 132 can
include applications to interface with commercial banking

Petitioners' Exhibit 1038, Page 22

5,897,622

7

systems, to calculate shipping/handling, to determine appli-
cable taxes and to post payments to various bank accounts.
The data communication internal to the merchant system
120 is shown in FIG. 14.

II. Templates, Directives and Actions

The following section discusses how the merchant system
120 uses templates, directives and actions to dynamically
respond to customer requests. Templates, which include
directives and actions, are located in the HTML structures
126. In response to browser requests, the dynamic page
generator 125 composes HTML pages dynamically from
templates stored in the HTML structures 126. In a preferred
embodiment, the shopper invokes the dynamic page gen-
erator 125 by selecting a URL having the form:

“http://server_name/environment.security/pgen/store__name/shop-
per_id/template.htm1;argl=value 1;arg2=value2 . ..”.

The merchant system 120 interprets the URL by analyzing
its constituents to identify a template and its arguments.
Thus, the “http://” portion of the URL specifies use of the
HyperText Transfer Protocol (HTTP) for communication
across the Internet. The “server__name” portion of the URL
specifies the name of the server having the router to the
merchant’s store. The “environment” portion of the URL
describes the version of the merchant system used. For
example, “prd” denotes a production version and “dev”
denotes a development version of the merchant system 120.
The “security” portion of the URL indicates whether the
connection to the server is secure or insecure. Secure con-
nections are specified with “s” and insecure with “i”. The
“pgen” portion invokes the dynamic page generator 125.
The “store__name” portion indicates the name of the store,
in addition to the directories where the template files reside.
The “shopper_id” portion specifies the unique shopper
identifier. Lastly, the “template.htm1” portion is the name of
the HTML template to use to generate a page in response to
the shopper’s request and the “argl=valuel; arg2=value2 . .
.” portion provides arguments for use by the dynamic page
generator 125. Note that the specific URL format described
above is for explanatory purposes only. Thus, other URL
formats and locator techniques are included in the present
invention.

A template defines the appearance of a page, such as the
store home page 103 (FIG. 1), a product page or a customer
information page. A portion of an example template is
shown as 200 in FIG. 6. Templates include HTML and
directives, which are keywords to the dynamic page gen-
erator 125 specifying how to build a page for display, such
as what data to insert into the page and what queries to run
against the database to obtain data for display on the page.
A template may also include a wide variety of content, such
as ActiveX controls, Visual Basic Scripts, forms, images,
video and sound.

In a preferred embodiment, the merchant system 120
includes several predefined templates in the HTML struc-
tures 126. For example, a welcome.html page serves as a
logon page for consumers. Similarly, a register.html page
provides a form for a new consumer to enter registration
information. An update.html page likewise provides a form
for consumers to update their registration information. In
addition, a mailn.html page presents an entrance to the store
similar to a store lobby. The main.html page may include an
index to store departments as well as links to important store
information. Moreover, a dept.html page presents a list of
store departments and a product.html page presents product
information, such as an image and textual description.
Lastly, a find.htrnl page, typically accessible from a navi-
gation bar, provides a product search capability.

20

25

40

45

8

To support consumer purchases, the merchant system 120
includes a basket.html page having an interface that allows
shoppers to manipulate items in their shopping baskets, the
online equivalent of a shopping cart or handheld basket.
Similarly, an orderfrm.html page provides an order form
display for shoppers to select shipping methods and to
provide delivery instructions for the order. A purchase.html
page presents the order total and provides a form for entry
of credit card payment information. To confirm purchases, a
confirmed.html page presents a message confirming comple-
tion of the purchase transaction. Similarly, a receipt.html
page presents a summary of the order in the form of an
online checkout receipt. In addition, a detail.html page
presents a detailed line item receipt for items ordered. Lastly,
a receipts.html page presents receipts from all orders placed
by a particular shopper.

Directives may include value references for evaluation
during page generation. A value reference provides for
evaluation of an expression, such as a string or function
name, to a value prior to use in a page. For example, if the
value reference is a number, say the cost of a product, it
evaluates to the numerical value of the number. If the value
reference is quoted text, such as “Glove”, it likewise evalu-
ates to the text within the quotes, or Glove. Similarly, if the
value reference is a known function, say a function to
calculate sales tax, the function evaluates to the value
resulting from execution of the function. Note that argu-
ments to functions are themselves value references and may
be a constant, a parameter, a variable or even another
function. Thus, value references are useful for performing
mathematical calculations, retrieving data from database
query results, storing and retrieving temporary variables,
retrieving arguments and variables passed to a template and
accessing shopper or order information.

Directives in a HTML template are set off by square
brackets and may include value references as arguments.
Thus, directives take the form [directive args], where direc-
tive is the name of the directive and args are arguments for
the directive. For examples of directives, see the fetchrows
202, eachrow 206, value 210 and money 212 directives of
FIG. 6. Using value references, the dynamic page generator
125 evaluates arguments of a directive before running the
directive. Thus, value references may be used as variables
for a directive. Directives affect the dynamic page generator
125 in three ways. First, a directive may generate text, such
as HTML, formatted text and the contents of another file, for
inclusion into the page. Second, the directive may perform
a conditional test, similar to the standard if-then-else state-
ment in many computer programming languages, for the
inclusion or exclusion of text. Lastly, the directive may
produce new value references for later use in page genera-
tion.

The merchant system 120 includes several types of direc-
tives. For example, value display directives generate text for
inclusion on a HTML page. Typically, value display direc-
tives serve to format and display values, such as currency,
dates, time and text. See directives 210, 212 in FIG. 6, for
instance. Similarly, as noted above, conditional directives
may include or exclude text in a page depending on the truth
of a conditional statement. In addition, navigational direc-
tives result in selectable links or regions in a Web page that
can take a shopper to another generated page or template.
The merchant system 120 also includes database access
directives. A database access directive typically selects and
executes a database query to obtain query results having
desired information. The dynamic page generator 125 then
manipulates the query results to format and display the

Petitioners' Exhibit 1038, Page 23

5,897,622

9

desired information. See directive 202 in FIG. 6, for
instance. Similarly, order, product and receipt directives
retrieve orders, receipts, product or shopper data for use in
displaying order information. Lastly, convenience directives
produce new value references for later use and generally
facilitate page design and development. For example, con-
venience directives can include files in real-time, set
variables, affect the status of a checkbox and provide com-
ments to a template that are removed during page genera-
tion. Detailed information on the syntax of all directives
supported by the merchant system 120 is found in the
Microsoft Merchant Server Documentation, hereby incor-
porated by reference.

To perform various system operations, the merchant sys-
tem 120 uses actions. For example, actions can add an item
to an order form, clear an order from, initiate a purchase or
insert and delete data from the database. An action is a
routine to perform specific functions. Actions have return
values that control the display of results to a shopper.
Similarly, actions take arguments that control their behavior.
Some actions generate errors when they receive incorrect
arguments while other actions process and validate the
arguments they receive. Many action arguments have default
values to use when no values are specified. After execution
of an action and its resulting system operation, the action
may cause display of a HTML page having information,
such as confirmation information or error information result-
ing from execution of the action, or the action may redirect
the shopper to a new HTML page. Actions are called when
a shopper clicks on a URL, generated by a directive, having
the form:

“http://server_name/environment.security/xt/store__name/shop-
per_id/module.action; argl=valuel; arg2=value2 .. .”.

The action manager 128 interprets the URL by analyzing its
constituents to extract the action and its arguments for
execution. Thus, the “http://” portion of the URL specifies
use of HTTP for communication across the Internet. The
“server__name” portion of the URL specifies the name of the
server having the router to the merchant’s electronic store.
The “environment” portion of the URL describes the version
of the merchant system used. For example, “prd” denotes a
production version of the merchant system 120. The “secu-
rity” portion of the URL indicates whether the connection to
the server is secure or insecure. Secure connections are
specified with “s” and insecure with “i”. The “xt” portion
specifies the action manager 128. The “store__name” portion
indicates the name of the store, in addition to the directories
where the template files reside. The “shopper__id” portion
specifies the unique shopper identifier. Lastly, the “mod-
ule.action” portion identifies the action to execute and the
“argl=valuel; arg2=value2 . . .” portion provides arguments
and values for use by the action manager 128 to execute the
action.

In a preferred embodiment, the merchant system 120
includes several types of actions. For example, shopper
actions control all aspects of shopper registration and log-
ging into a store. Administration actions accessible by the
system administrator provide for management of the mer-
chant system 120. Database actions enable the merchant to
create pages to access the database to insert, delete and
update database information. Lastly, purchasing actions pro-
vide for the creation and execution of a shopper’s order. A
detailed explanation of the invocation and processing of
purchasing actions is provided in a commonly owned and
concurrently filed application having the title “System and
Method for Processing Electronic Order Forms™, Ser. No.

20

25

w
<

40

45

10
08/732,205 hereby incorporated by reference. Detailed
information on the syntax of shopper, administration and
database actions supported by the merchant system 120 is
found in the Microsoft Merchant Server Documentation.

III. The Dynamic Page Generator

During a shopping session, the consumer browser 122
sends requests embedded in URL addresses to the merchant
system 120. The merchant system 120 responds to these
embedded requests with HTML documents. The HTML
documents may contain registration information, product
offerings, promotional advertisements, orders and receipts.
The page generator 125 composes the HTML documents
sent to the consumer browser 122. The merchant system 120
provides a set of HTML pages dynamically generated from
queries to a database 121 having store information, such as
inventory data, advertising copy, product images, pricing,
customer information and promotions.

FIG. 3a illustrates the structure of the dynamic page
generator 125. In a preferred embodiment, the dynamic page
generator 125 includes a page processor 140 and a query
module 142. The page processor 140 retrieves and parses a
template from the HTML structures 126 to form a HTML
page for display on the browser 122, 123. In parsing the
HTML template, the page processor 140 communicates with
the query module 142 as needed to extract and format
information from the database 121 to display on the browser
122, 123. Generally, the template provides a query name to
the query module 142. In a preferred embodiment, the query
module 142 passes this query name to the database module
127. The database module 127 uses the query name to
retrieve the query from the database 121 and then passes the
query to the database 121 for execution. In a preferred
embodiment, the database 121 is a relational database that
processes queries in the SQL data sublanguage. The data-
base 121 in turn executes the query and returns the query
results to the database module 127 to produce an access
object having the query results. The database module 127
returns the access object having the query results to the
query module 142. The page processor 140 obtains the
access object from the query module 142 and processes the
access object to extract and format the query data to prepare
HTML for display on the browser 122, 123.

Referring now to FIG. 3b, in another preferred
embodiment, the dynamic page generator 125 includes a
page processor 140, a query module 142 and a template
parser 144. As before, the dynamic page generator builds a
HTML page for display on a browser 122, 123 using
templates. Similarly, the page processor 140 communicates
with the query module 142 as needed to obtain, extract and
format information from the database 121 for display on the
browser 122, 123. However, in this preferred embodiment,
the template parser 144 obtains a template from the HTML
structures 126, parses this template to create a syntax tree
and delivers the resulting syntax tree to the page processor
140 to create HTML for display on the browser 122, 123. As
is well known in the art, a syntax tree is a common
representation used in the construction of parsers and com-
pilers to simplify the process of transforming an input file
into a desired output. Thus, a syntax tree is an internal
representation of the original input file. For more informa-
tion on syntax trees, please refer to “Compilers principles,
techniques and tools”, by Alfred V. Aho, ISBN 0-201-
10038-6.

FIG. 4 illustrates a template portion 150 and a syntax tree
170 corresponding the template portion 150. To create the
syntax tree 170, the template parser 144 parses the template
portion 150 as follows. The template parser 144 converts the

Petitioners' Exhibit 1038, Page 24

5,897,622

1

directive [fetchrows products “get-products™] 152 into a
fetchrows branch 172 having a list “(FETCHROWS,
“product”, “get-products”, ())” for use by the page proces-
sor 140 (FIG. 3b). The page processor 140 interprets the first
item in the list of the fetchrows branch 172 as an instruction
to perform and the remaining items in the list as parameters
of the instruction. The template parser 144 next creates
branch 176 for the carriage return at the end of the fetchrows
directive 152 line in the template portion 150. The characters
“\n” correspond to a carriage return in the C Programming
Language. Similarly, the template parser 144 creates an
eachrow branch 174 in the syntax tree 170 for the directive
[eachrow product] 154. The directive [eachrow product] 154
initiates a loop to iterate through the rows of the “product”
object. The directive [/eachrow] 156 denotes the end of the
loop. Thus, the template parser 144 creates a sub-tree 180
under the eachrow branch 174 having branches correspond-
ing to template instructions within the loop. Note that a
parameter of an instruction in a list may itself be another list
which, in turn, is processed to its actual value for use as the
parameter. In some cases, the parameter may be evaluated
multiple times. Referring back to the template portion 150,
the loop includes a line 158 in the template portion 150
having directives [value product.sku] 160 and [value
product.name] 162 to evaluate value references for “prod-
uct.sku” and “product.name”. Note that the template parser
144 creates a sku value branch 182 for the directive [value
product.sku] 160 and a name value branch 184 for the
directive [value product.name] 162 in the sub-tree 180. The
template parser 144 likewise creates branches 186, 188, 190
in the sub-tree 180 corresponding to the HTML portions of
line 158 and the carriage returns “\n”. Lastly, the template
parser 144 creates branche 178 in the syntax tree 170 with
the character “\n” to indicate carriage return at the end of the
line having the directive [/eachrow] 156.

In yet another preferred embodiment illustrated in FIG. 4,
the dynamic page generator 125 includes a page processor
140, a query module 142, a template parser 144 and a
memory 146. As noted previously, the dynamic page gen-
erator builds a HTML page for display on a browser 122,
123 using templates. As discussed above, the template parser
144 obtains a template from the HTML structures 126,
parses this template to create a syntax tree and stores the
resulting syntax tree in the memory 146. The memory 146
may include a memory cache 148, such as the dynamic
random access memory (DRAM) or static random access
memory (SRAM), and may include a disk cache 149, such
as magnetic floppy disk storage and magnetic or optical hard
disk storage, for storing syntax trees produced by the tem-
plate parser 144. When a template is needed, the page
processor 140 requests the template’s syntax tree from the
memory 146. If the requested syntax tree is present in the
memory cache 148 or the disk cache 149, the memory 146
returns the requested syntax tree to the page processor 140.
Otherwise, the memory 146 requests the syntax tree from the
template parser 144.

The memory 146 provides for the efficient generation of
HTML pages from templates by eliminating the need to
parse the same template multiple times. For example, with-
out the memory 146, if a shopper requests information on
multiple products, the template parser 144 would have to
create a syntax tree for the product.html template. Moreover,
the dynamic page generator 125 can operate using a memory
146 having a memory cache 148 as well as a memory 146
having a disk cache 149 or even a memory having both a
memory cache 148 and a disk cache 149. Note also that the
addition of a memory cache 148 reduces retrieval time for

20

25

40

45

12

the syntax tree as compared to a disk cache 149 operating
alone due to the faster access of semiconductor memory.
Lastly, the page processor 140 communicates with the query
module 142 as needed to obtain, extract and format infor-
mation from the database 121 for display on the browser
122, 123.

IV. The Order Processing Module

This section describes the order processing module 129
shown in FIGS. 2 and 14. In the preferred embodiment of
FIG. 1, an order processing module 129 creates and pro-
cesses an order. The order includes at least one order
blackboard and one or more item blackboards. Preferably,
each blackboard is an associative array having a key and a
value for each key-value pair. A key is a string which
uniquely identifies its associated value. To locate a particular
value, a blackboard is searched for the proper key and
returns the value associated with the key. In a preferred
embodiment, the format of the order key-value pairs is
“order.key” and the format of the item key-value pairs is
“item.key”. For example, the key for an item’s SKU is
referenced as “item.sku”, where “item” identifies the item
blackboard and “sku” identifies the sku key-value pair. The
key-value pairs in the order blackboard contain order
properties, such as the order date, the consumer’s name, the
consumer’s address, the desired shipping address, the billing
information, the order subtotal, the taxes, and the order total.
Key-value pairs in item blackboards have information about
each item. For example, the key-value pairs in an item
blackboard may have item information such as the item’s
stock keeping unit (sku), an item description, the item color,
the item size, the item price and the quantity of items.
Preferably, an item blackboard exists for each item.
Moreover, the key-value pairs in one item blackboard can
differ from the key-value pairs in another item blackboard.

With reference to FIG. 2, the order processing module 129
includes an order engine 130 and an order pipeline 131
having multiple stages to process an order. Each stage has
one or more components which process the key-value pairs
in the order. The order engine 130 determines which com-
ponents in the order pipeline 131 process the order. Each
component in the order pipeline 131 reads from or writes to
its assigned key-value pairs. Upon receiving an order, a
component searches for its assigned key-value pairs and
adds its own key-value pairs as needed to process the order.
Thus, each component only modifies its assigned key-value
pairs. This allows a merchant to add new key-value pairs
without having to also modify the software instructions in
other existing order processing components. Similarly, mer-
chants may customize the merchant system 120 for different
sales situations by merely modifying an existing component,
replacing an existing component with a new component, or
adding a new component. A detailed explanation of the order
processing module 129 is provided in a commonly owned
and concurrently filed application having the title “System
and Method for Processing Electronic Order Forms”, Ser.
No. 08/732,205, previously incorporated by reference.

V. The Database Module

This section describes the database module 127 shown in
FIGS. 2 and 14. The database module 127 provides an
interface and a method for accessing data in existing data-
bases 121 having a wide variety of schemas. In the merchant
system 120, database queries are stored in the database 121
to isolate applications that access the database, such as the
dynamic page generator 125 and the order processing mod-
ule 129, from differences in schemas and data sublanguages,
such as SQL. By storing queries as database data, changes
to the database and differences in database query languages

Petitioners' Exhibit 1038, Page 25

5,897,622

13

are transparent to applications using the database. Thus, a
merchant does not have to modify its applications every time
the merchant modifies the database.

The database module 127 references a specific query
stored in the database 121 by a query name. Upon receipt of
the query name, the database module 127 retrieves the
specific query corresponding to the query name and returns
this query to the database 121 for execution. Upon execution
of the specific query, the database 121 returns the query
results to the database module 127 to form an access object
having the query results. The database module 127 then
delivers the access object to the application for further
processing.

In this manner, applications such as the dynamic page
generator 125 and the order processing module 129 can
retrieve information from a large installed base of databases
121 having a wide variety of schemas without regard to its
schema. A detailed explanation of the method and interface
for accessing data without regard to the database schema and
the database module 127 is provided in a commonly owned
and concurrently filed application having the title “Database
Schema Independence™, Ser. No. 08/732,013 hereby incor-
porated by reference.

VI. Merchant System Data Flows and Architecture

FIG. 5 illustrates the data flow for the database module
127 and the dynamic page generator 125. In particular, when
a shopper or merchant selects a button or link in a page, the
browser 122, 123 returns a URL to the merchant system 120.
As discussed above, a URL with a reference to “pgen”
invokes the dynamic page generator 125. The dynamic page
generator 125 extracts a template name, “template.html”,
from the URL and retrieves the template.html file from the
HTML structures 126. When the template requires data from
the database 121, the dynamic page generator 125 passes a
query name to the database module 127. The database
module 127 uses the query name to retrieve the query from
the database 121 and then passes the query to the database
121 for execution. The database 121 in turn executes the
query and returns the query results to the database module
127 to produce an access object having the query results.
The database module 127 returns the access object having
the query results to the dynamic page generator 125. The
dynamic page generator 125 then processes the access object
to extract and format the desired query results in HTML for
display on the browser 122, 123.

For example, a template portion 200 includes the HTML
and directives shown in FIG. 6. The directive [fetchrows
product “get-product”] 202 instructs the dynamic page gen-
erator 125 to retrieve and execute the query named “get-
product” on the database 121. In a preferred embodiment,
the “get-product” query is the SQL query “SELECT *
FROM Product__table” and the database 121 is a relational
database having product information in a Product__table
220. The dynamic page generator 125 passes the name
“get-product” to the database module 127 which retrieves
the SQL query “SELECT * FROM Product_table” and
passes it to the database 121 for execution. The database 121
returns the “get-product” query results to the database
module 127 to incorporate into an access object 230 with a
temporary name “product” for other directives in the tem-
plate to reference. The product access object 230 includes a
descriptor 232, a first row 234 and a second row 236. The
HTML commands 204 instruct the browser 122, 123 to
create and display a table having columns titled “Item” and
“Price”. The directive [eachrow product] 206 instructs the
dynamic page generator 125 to initiate a loop to iterate
through the rows of the product access object 230, one row

20

25

w
<

40

45

14

at a time. The directive [/eachrow] 208 denotes the end of an
iteration of the loop. Thus, the directive [value product.sku]
210 evaluates the product.sku value reference and places the
value into the current page. Similarly, the directive [money
product.list_price] 212 evaluates the product.list_price
value reference, formats it as currency and places the
formatted value into the current page for display. For
example, for the first row 234 of the product access object
230, the directive [value product.sku] 210 evaluates to
“GLOVE” and the directive [money product.list price] 212
evaluates to “$12.25”. At the completion of the [eachrow
product] 206 directive, the dynamic page generator 125
passes a HTML file portion to the browser 122, 123 to
format and display a table 240.

FIG. 7 illustrates the flexibility of the database module
127 and dynamic page generator 125 interaction. For
example, suppose a merchant modifies the Product_ table
220 (FIG. 6) to form a Revised_ product_table 250. Note
that the Revised_ product_table 250 has the same informa-
tion as the Product__table 220 (FIG. 6), but now includes an
additional Description column 252. Using the template
portion 200 (FIG. 6), the directive [fetchrows product “get-
product”] 202 (FIG. 6) produces a product access object 260
from the Revised__product__table 250. Although the product
access object 260 includes a column 262 with data corre-
sponding to the Description column 252, the template por-
tion 200 does not reference this column 262 for display.
Referring back to FIG. 6, HTML commands 204 and the
directives [eachrow product] 206, [value product.sku] 210,
[money product.list price] 212 and [/eachrow] 208 operat-
ing on the product access object 260 (FIG. 7) produce a
HTML file portion to display table 240 on a browser 122,
123. Thus, the addition of a Description Column 252 to the
Product_ table 220 has no effect on the table 240 displayed
on the browser 122, 123.

Referring back to FIG. 7, to include the information in the
Description column 252 of the Revised__product__table 250,
the template portion 200 (FIG. 6) is modified to form a
revised template portion 270. Items in boldface type in the
revised template portion 270 indicate modifications to the
template portion 200 (FIG. 6) to display information from
the Description column 252. As noted above, the product
access object 260 already includes the information from the
Description column 252. HTML command 272 instructs the
browser to create and display a table having columns titled
“Item”, “Price” and “Description”. As before, the directive
[eachrow product] 274 instructs the dynamic page generator
125 to initiate a loop to iterate through the rows of the
product access object 270, one row at a time and the
directive [/eachrow] 276 denotes the end of an iteration of
the loop. The directives [value product.sku] 278 and [money
product.list_price] 280 evaluate their respective value
references, format the values as needed and place them into
the current page. Now, the directive [value
product.description] 282 evaluates the product.description
value reference to place information from the Description
column 252 into the current page. At the completion of the
[eachrow product] 274 directive, the dynamic page genera-
tor 125 passes a HTML file portion to the browser 122, 123
to format and display a table 284 having the Description
column 252 information.

FIG. 8 illustrates the data flow for the database module
127 and the order processing module 129. The order pro-
cessing module 129 of the merchant system 120 is config-
urable. As noted previously, merchants may customize the
order processing module 129 by modifying, replacing or
adding components 132 to the order pipeline 131 as needed

Petitioners' Exhibit 1038, Page 2g

5,897,622

15

to address their specific needs. Many of these components
132 access the database 121 for specific product informa-
tion. In a manner similar to the dynamic page generator 125,
the order processing module 129 provides a query name to
the database module 127. The database module 127 uses the
query name to retrieve the query from the database 121 and
then passes the query to the database 121 for execution. The
database 121 in turn executes the query and returns the query
results to the database module 127 to produce an access
object having the query results. The database module 127
returns the access object having the query results to the order
processing module 129, which then processes the access
object to extract and process desired query results to ulti-
mately produce a purchase order. Note that the order pro-
cessing module 129 is capable of providing purchase orders
in a wide variety of formats, such as electronic mail, printed
copy, electronic data interchange (EDI format as defined by
ANSI X.12-850), a flat text file, a fax and a database table
entry. Subsequently, the merchant fulfills the purchase order
by obtaining payment from the shopper and delivering to the
shopper the items paid for.

For example, if a shopper desires information on a
product, the shopper selects the product using the consumer
browser 122. The consumer browser 122 sends the product
URL to the merchant system 120 where the order processing
module 129 obtains and writes the product information in an
order 300 as shown in FIG. 9. The order 300 includes an
order blackboard 302 and an item blackboard 304. Note that
the order blackboard 302 includes generic shopper
information, such as the shopper’s name and credit card
number. To obtain product data, the order engine 130
invokes the product information stage of the order pipeline
131.

In a preferred embodiment, the product information
default component of the components 132 (FIG. 2) accesses
the key-value pair in the item blackboard 304 to create and
execute the “one product” query. Thus, the product infor-
mation default component retrieves the key, SKU, and the
value, GLOVE, from the item blackboard 304 and passes
this key-value pair and the query name “one-product” to the
database module 127. The database module 127 retrieves
SQL text corresponding to “one-product” and uses the
key-value pair in the SQL text to form the SQL Query
“SELECT * FROM Product_table WHERE SKU=
‘GLOVE™’. The database module 127 then passes this query
to the database 121 having a Product_ table 220 (FIG. 6).
The database 121 executes the SQL query and returns the
query results to the database module 127.

The database module 127 in turn forms an access object
310 including a row 312 having the query results and a
descriptor 314 having the column names and corresponding
data types from the Product__table 220 (FIG. 6). Afterwards,
the database module 127 returns the access object 310 to the
product information default component of the order process-
ing module 129. The product information default component
extracts product information from the row 312 (i.e., the
name of the item, GLOVE, and its list price, 1225) and the
column names 316 from the descriptor 314 (i.e., SKU and
List_price). Lastly, the product information default compo-
nent creates an annotated order 320 by adding the extracted
information to the item blackboard 322. To do so, the
product information default component first catenates the
column names to the string “product ” and then forms
key-value pairs, such as the product_ SKU—GLOVE pair,
for each column name and data value. Finally, the product
information default component stores the key-value pairs
formed in the item blackboard 322. Because the order

10

15

20

25

30

40

45

50

55

60

65

16

processing module 129 accesses product information
through a name corresponding to a SQL query stored in the
database 121, differences in database schemas and data
sublanguages do not affect the operation of the order pro-
cessing module 129.

FIG. 10 illustrates the data flow for the dynamic page
generator 125 and the order processing module 129. For
example, to view detailed information about an item, a
shopper may select the image of an item, an item from a
menu or an item from a list of items in a table in the browser
122. In a preferred embodiment, each image of an item
includes a hyperlink specifying the item’s URL. The
browser 122 transmits the URL to the dynamic page gen-
erator 125. The dynamic page generator 125 in turn retrieves
the product.html template from the HTML structures 126 to
create a product HTML page for display on the shopper’s
browser 122. The template directs the dynamic page gen-
erator 125 to create an order for the selected item and to
invoke the order processing module 129 to process the order
for the selected item. In this manner, the dynamic page
generator 125 makes a request for the order processing
module 129 to process an order. Within the order processing
module 129, the order engine 130 invokes the product
information stage of the order pipeline 131 to perform a
query that retrieves product information from the database
121 and then invokes the item price adjust stage of the order
pipeline 131 to determine the regular and current prices of
an item. The item price adjust stage includes a ItemPromo
component, further described in a commonly owned and
concurrently filed application having the title “Electronic
Promotion System For An Electronic Merchant System”,
Ser. No. 08/732,195, hereby incorporated by reference.
Upon completion of these stages, the order processing
module 129 transfers the order back to the dynamic page
generator 125. The dynamic page generator 125 combines
the product information in the order with the product.html
template to create a HTML page for display on the shopper’s
browser 122.

For example, a template portion 340 includes the HTML
and directives shown in FIG. 11. The directive [fetchproduct
product GLOVE] 342 instructs the page processor 140 of the
dynamic page generator 125 to build an order 350 having an
item blackboard 352 and to call the order processing module
129. The item blackboard 352 includes a SKU key-value
pair 354 to denote the SKU that it represents. Upon creation
of the order 350, the page processor 140 passes it to the order
processing module 129. As discussed in FIG. 9, the order
engine 130 invokes the product information stage of the
order pipeline 131 to obtain the price of the product corre-
sponding to the SKU in the item blackboard 352. As before,
the product information default component uses the key-
value pair 354 to form and execute a query on the database
121 resulting in the access object 310 (FIG. 9). Similarly, the
product information default component extracts the product
information from the access object 310 (FIG. 9) and stores
the resulting key-value pairs 356 in the item blackboard 360
of a first annotated order 362. Now, the order engine 130
invokes the item price adjust stage of the order pipeline 131
to make any needed item price adjustments in the first
annotated order 362. Because the ItemPromo component of
the components 132 (FIG. 2) has been configured to apply
10% off of all items, it stores the “iadjust_currentprice”
key-value pair on the item blackboard 372 of a second
annotated order 374 to apply the 10% off promotion. When
the ItemPromo component has completed posting the
adjusted product price to the item blackboard 372, the order
processing module 129 then returns the second annotated
order 374 to the dynamic page generator 125.

Petitioners' Exhibit 1038, Page 27

5,897,622

17

The directive [money product.iadjust_currentprice] 344
instructs the page processor 140 to evaluate the value
reference product.iadjust_currentprice and format the
resulting value in a currency format on the shopper’s
browser. To do so, the page processor 140 obtains the value
of the “iadjust__currentprice” key-value pair, 1102, from the
item blackboard 372. The money directive instructs the page
processor 140 to format the 1102 value as currency in the
HTML sent to the browser 122 for display. Similarly, the
directive [money product.product_ List price] instructs the
page processor 140 to obtain the value of the “product
List_ price” key-value pair, 1225, from the item blackboard
275 and to format the 1225 value as currency in the HTML
sent to the browser 122 for display. Upon completion of the
money directive 346, the page processor 140 sends the
HTML resulting from these directives to the consumer
browser 122 for display of the resulting page portion 380.

FIG. 12 illustrates the data flow for the dynamic page
generator 125, the database module 127 and the order
processing module 129. For example, when a shopper uses
a shopping basket, the browser 122 transmits the URL to the
dynamic page generator 125 requesting a page for the
shopping basket. The dynamic page generator 125 in turn
retrieves the basket.html from the HTML structures 126 to
create a HTML page for display on the shopper’s browser
122. This template directs the order processing module 129
to provide an order for the selected item. The order pro-
cessing module 129 accesses the database module 127 to
obtain product information to prepare the order. Upon
completion, the order processing module 129 transfers the
order to the dynamic page generator 125. The dynamic page
generator 125 uses the order with the basket.html template
to compose a HTML page for display on the shopper’s
browser 122. In parsing the template file, the dynamic page
generator 125 often needs to acquire additional product
information from the database 121 using the database mod-
ule. As previously described, the database module 127
accesses database queries by name and provides access
objects having query results to the requesting application,
such as the dynamic page generator 125 or the order
processing module 129.

For example, FIG. 13a illustrates a template portion 400
from the basket.html template. As noted above, the shopper
invokes the basket.html template by selecting a shopping
basket button on the consumer browser 122. In response, the
consumer browser 122 creates and transmits a URL to the
merchant system 120 instructing the dynamic page generator
125 to retrieve and execute the basket.html template. Sup-
pose the shopping basket includes the hat and glove shown
in the Product__table 220 (FIG. 6). The directive [fetchitems
orderitems order.items] 402 instructs the dynamic page
generator 125 to retrieve and store data for all of the items
in an order in a variable orderitems to provide for reference
by subsequent directives in the template portion 400. To
execute the directive, the dynamic page generator 125 first
evaluates the value reference order.items. To determine the
value of orderitems, the dynamic page generator 125
invokes the order processing module 129 to obtain the order
420 corresponding to a shopping basket having a glove and
a hat. The order 420 includes an order blackboard 422
having generic shopper information, such as the shopper’s
name and credit card number, an item blackboard 424 for the
glove and an item blackboard 426 for the hat.

As described previously, the product information stage of
the order pipeline 131 causes the product information
default component to access product information from the
database table Product_table 220 (FIG. 6) using the “one

20

25

40

45

18

product” SQL query, “SELECT * FROM Product_ table
WHERE SKU=‘GLOVE™’. As before, the database 121
returns the query results to the database module 127 to create
and return an access object having the query results to the
product information default component of the order process-
ing module 129. The product information default component
then extracts the product information from the access object
and posts a key-value pair for the SKU 428 and for the
List_price 430 in the glove item blackboard 424. In a
similar manner, key-value pairs for the SKU 432 and List__
price 434 are posted in the hat item blackboard 426.

Upon completion of the product information stage of the
order pipeline 131, the order processing module 129 returns
the order 420 to the dynamic page generator 125. In a
presently preferred embodiment, the dynamic page genera-
tor 125 evaluates the value reference orderitems and
executes the fetchitems directive 402 by directly extracting
values from the item blackboards 424, 426 of the order 420.
However, for illustrative purposes, an access object 440 is
used to describe the how the dynamic page generator 125
completes the remaining directives in template portion 400.
The access object 440 corresponds to the order 420, and thus
the variable orderitems, and includes a glove row 444 having
glove information and a hat row 446 having hat information.

Referring back to the template portion 400, the directive
[eachrow orderitems] 404 initiates a loop and instructs the
dynamic page generator to iterate through the rows of
orderitems 440 while the directive [/eachrow] 406 termi-
nates the loop. The next directive [fetchrows crossinfo cross
orderitems.sku] 408 instructs the dynamic page generator
125 to execute the query named “cross” using the argument
orderitems.sku 410 and to place the query results in the
variable crossinfo. The query “cross” corresponds to the
SQL query “SELECT * FROM Cross_table WHERE
SKU=:1". Note that the “:1” in the “cross” query serves as
a placeholder for the value of the argument orderitems.sku
410 during each iteration of the eachrow loop. For example,
for the first row 444 of access object 440, orderitems.sku
evaluates to “GLOVE”, so the first SQL query executed is
“SELECT * FROM Cross_table WHERE SKU=
‘GLOVE”’. Referring now to FIG. 13b, the Cross_ table
450 includes a single row having a cross sell product of a
SCARF for a HAT. Thus, the first SQL query on the
Cross__table 450 returns a first access object 460 having a
descriptor 462, but no data as there are no entries in the
Cross__table 450 corresponding to the SKU GLOVE. The
first access object 460 corresponds to the variable crossinfo
for the first interation of the eachrow loop.

The directive [if crossinfo.count>0] 412 implements a
standard if-then-else statement. The dynamic page generator
125 evaluates the value reference crossinfo.count, where
crossinfo.count evaluates to the number of rows in crossinfo,
to perform the conditional test to determine if the value of
crossinfo.count is greater than zero. If so, the dynamic page
generator 125 performs the next line 414 in the template
portion 400. Otherwise, the dynamic page generator 125
executes the else line 416. Thus, for the first iteration of the
eachrow loop, the value of crossinfo.count is zero because
the first access object 460 has no rows and the dynamic page
generator 125 executes the else line 416. The else line 416
includes a directive [value orderitems.sku] 417. As noted
above, orderitems.sku evaluates to GLOVE, so the dynamic
page generator 125 sends HTML to the browser 122 where
the first line 472 of a page portion 470 is displayed.

Similarly, for the second row 446 of access object 440,
orderitems.sku evaluates to “HAT” and the second SQL
query executes is “SELECT * FROM Cross__table WHERE

Petitioners' Exhibit 1038, Page 28

5,897,622

19

SKU=‘HAT"”. Thus, the second SQL query on the Cross__
table 450 returns a second access object 464 (FIG. 13b)
having a descriptor 466 and a data row 468. Here, the second
access object 464 corresponds to the variable crossinfo and
crossinfo.count evaluates to one because the second access
object 464 has one data row 468. Since one is greater than
zero, the dynamic page generator 125 executes the next line
414, which has a directive [value orderitems.sku] 418 and a
directive [value crossinfo.related] 419. Here, orderitems.sku
evaluates to HAT. As the second access object 464 corre-
sponds to crossinfo for this iteration, crossinfo.related evalu-
ates to the value in the Related, or second column, in the data
row 468, or SCARF. Thus, the dynamic page generator 125
sends HTML to the browser 122 to display a second line 474
of the page portion 470.

FIG. 14 illustrates the architecture and data flow for the
merchant system 120. In a preferred embodiment, a shopper
selects a button, link or image having a link in a page using
a browser 122. By selecting the link, the browser 122 returns
a URL to the merchant system 120. As described above, a
URL with a reference to “pgen” invokes the dynamic page
generator 125. The dynamic page generator 125 in turn
retrieves a template, “template.html”, from the HTML struc-
tures 126 and begins to compose a page for display on the
browser 122. If the template requires data from the database
121, the dynamic page generator 125 passes a query name
to the database module 127, which returns an access object
having the query results. Similarly, if the template requires
order information from the order processing module 129, the
dynamic page generator 125 retrieves an order from the
order processing module 129 and extracts the desired order
information for display. Lastly, the dynamic page generator
125 assimilates all of the information needed by the template
to produce a HTML page for transfer to the browser 122 for
display.

In a similar manner, a URL with a reference to “xt”
invokes the action manager 128. The action manager 128
executes the action specified by the “module.action” portion
of the URL. To do so, the action manager 128 evaluates any
arguments provided by the URL and passes them to the
action. Actions may communicate directly with the database
module 127 to write data, such as orders, shopper
information, product information and other information
needed to run and manage the merchant system 120, into the
database 121. Actions also communicate with the order
processing module 129 as needed to process an order. An
action may retrieve an order from the database 121 and then
pass the order to the order processing module 129 for
annotation. During the annotation of the order, the order
processing module 129 interacts with the database module
127 as needed to retrieve product information for the key-
value pairs in the blackboards comprising the order. The
annotated order is subsequently delivered to the dynamic
page generator 125 to extract information from the order
needed in a template to prepare a page for display on a
consumer browser 122. In some circumstances, the action
manager 128 sends the browser 122, 123 a redirect instruc-
tion causing the display of a selected page. This occurs
because a reloading of the page from which the shopper
initiated the action will invoke the action again, which may
be undesirable for certain actions.

For example, FIG. 154 illustrates a sample pseudo code
portion 500 for the order.plan action. In a preferred
embodiment, the consumer browser 122, in response to a
shopper selecting the proper button, link or image having a
link on a page, prepares and sends the URL “http://sample/
prd.i/xt/test__store/shopperid/order.plan; billto_ zip=92101"

15

20

25

40

45

20

to the merchant system 120. The merchant system 120
evaluates the URL to determine that a shopper identified as
“shopperid” desires the “test_store” running on the
“sample” server to invoke “xt”, the action manager 128, to
execute the order.plan action using the argument “billto__
zip=92101”. Thus, the action manager 128 invokes the
order.plan action and begins to execute the pseudo code
portion 500. The assignment statement 502 instructs the
action manager 128 to extract the shopper identifier from the
URL, “shopperid”, to pass as a parameter to the “load _
order” function. The “load_order” function retrieves an
order 300 (FIG. 9) from the database 121 corresponding to
the shopper having a shopper identifier “shopperid” and
places the order 300 (FIG. 9) in a variable order for future
reference in the pseudo code portion 500. Note that the order
300 (FIG. 9) includes an order blackboard 302 (FIG. 9) and
an item blackboard 304 (FIG. 9). The add statement 504
instructs the action manager 128 to post the arguments
received from the URL to the order blackboard 302 (FIG. 9)
as a key-value pair. As noted above, the URL has provided
the argument “billto_ zip=92101". Thus, the action manager
128 posts the URL argument as a key-value pair to the order
blackboard 302 (FIG. 2) resulting in the revised order 520.
Note that the revised order 520 includes a revised order
blackboard 522 having the Billto_ zip key-value pair 526
and an unchanged item blackboard 524.

Referring back to the pseudo code portion 500, the OPM
instruction 506 invokes the order processing module 129 to
execute the OPM.plan function. The OPM.plan function
receives the revised order 520 as the order parameter and
causes the order engine 130 to invoke the pertinent stages of
the order pipeline 131 to process the revised order 520. For
example, suppose the pertinent stages of the order pipeline
131 are the product information stage, the item price adjust
stage, the order price adjust stage, the shipping stage, the tax
stage and the order total stage. As discussed previously, the
product information default component of the product infor-
mation stage retrieves the key-value pair, SKU—GLOVE,
from the item blackboard 304 (FIG. 9) and passes a query
name to the database module 127 to create and execute the
SQL Query “SELECT * FROM Product_ table WHERE
SKU=‘GLOVE”’ on the database 121. Upon execution of
the SQL query, the database module 127 returns an access
object 310 (FIG. 9) having product information in the row
312 and the column names 316 in the descriptor 314. The
product information default component extracts the SKU
key from the column names 316 and its associated value
GLOVE from the row 312 to form the SKU key-value pair
540 in the annotated item blackboard 542 of the annotated
order 544. Note that the product information default com-
ponent catenates SKU to the string “__product__* to form the
key “__product SKU”.

In a presently preferred embodiment, the leading “_°
portion of “_ Product_” indicates that this key value pair is
temporary and will not be saved with the order. The
“product_” portion of “__product_” indicates the stage that
posted the key value pair, or the product information stage.
Similarly, the product information default component
extracts the remaining product information from the access
object 310 (FIG. 9) and posts the List_price key value pair
546. In a similar fashion, the item price adjust stage invokes
a promotion component to post the promotion key-value pair
548 and the order price adjust stage invokes a component to
post the adjusted price key-value pair 550. In addition, the
shipping stage invokes the default component to post a
shipping key-value pair in the annotated order blackboard
554. Likewise, the tax stage invokes an optional 7% tax

>

Petitioners' Exhibit 1038, Page 29

5,897,622

21

component to post the tax key-value pair 556 and the order
total stage invokes a component to sum the values and post
the total key-value pair 558 to the annotated order black-
board 554. The OPM.plan function terminates without an
error.

Referring back to the pseudo code portion 500, the if
statement 508 instructs the action manager 128 to evaluate
the condition order.error. As the OPM.plan function termi-
nated without an error, the order.error condition is false, so
the action manager 128 proceeds to the redirect statement
510 of the else branch. The redirect statement 510 instructs
the action manager 128 to send a redirect instruction to the
browser to invoke the dynamic page generator 125 to
execute the basket.html template. Lastly, the action manager
128 performs the “save_ order(order)” instruction, saving all
key-value pairs, except those beginning with an underscore.
The resulting saved order looks like the revised order 520.

FIG. 15b illustrates a template portion 570 from the
basket.html template. Suppose the shopping basket includes
the glove shown in the Product_table 220 (FIG. 6). The
directive [fetchitems orderitems order.items] 572 instructs
the dynamic page generator 125 to retrieve and store data for
all of the items in an order in a variable orderitems to provide
for reference by subsequent directives in the template por-
tion 570. To execute the directive, the dynamic page gen-
erator 125 first evaluates the value reference order.items. To
determine the value of order.items, the dynamic page gen-
erator 125 invokes the order processing module 129 to
obtain the order 520 (FIG. 154) corresponding to a shopping
basket having a glove. The order 520 includes an order
blackboard 522 (FIG. 154) having generic shopper
information, such as the shopper’s name and credit card
number, and an item blackboard 524 (FIG. 15a4) for the
glove.

As described previously, the product information stage of
the order pipeline 131 causes the product information
default component to access product information from the
database table Product_table 220 (FIG. 6) using the “one
product” SQL query, “SELECT * FROM Product_ table
WHERE SKU=‘GLOVE™’. As before, the database 121
returns the query results to the database module 127 to create
and return an access object having the query results to the
product information default component of the order process-
ing module 129. The product information default component
then extracts the product information from the access object
and posts a key-value pair for the SKU 600 and for the
List_price 602 in the modified item blackboard 604 of the
modified order 606.

Upon completion of the product information stage of the
order pipeline 131, the order processing module 129 returns
the modified order 606 to the dynamic page generator 125.
In a presently preferred embodiment, the dynamic page
generator 125 evaluates the value reference order.items and
executes the fetchitems directive 572 by directly extracting
values from the modified item blackboard 604 of the modi-
fied order 606. However, for illustrative purposes, an access
object 610 is used to describe the how the dynamic page
generator 125 completes the remaining directives in tem-
plate portion 570. The access object 610 corresponds to the
modified order 606, and thus the variable orderitems, and
includes a glove row 612 having glove information.

Referring back to the template portion 570, the directive
[eachrow orderitems] 574 initiates a loop and instructs the
dynamic page generator to iterate through the rows of
orderitems access object 610 while the directive [/eachrow]
576 terminates the loop. The next directive [fetchrows
crossinfo cross orderitems.sku] 578 instructs the dynamic

5

20

25

40

45

22

page generator 125 to execute the query named “cross”
using the argument orderitems.sku 580 and to place the
query results in the variable crossinfo. The query “cross”
corresponds to the SQL query “SELECT * FROM Cross__
table WHERE SKU=:1". Note that the “:1” in the “cross”
query serves as a placeholder for the value of the argument
orderitems.sku 580 during each iteration of the eachrow
loop. For example, for the row 612 of access object 610,
orderitems.sku evaluates to “GLOVE”, so the SQL query
executed is “SELECT * FROM Cross_table WHERE
SKU=‘GLOVE".

Referring now to FIG. 135, the Cross__table 450 includes
a single row having a cross sell product of a SCARF for a
HAT. Thus, the first SQL query on the Cross table 450
returns a first access object 460 having a descriptor 462, but
no data as there are no entries in the Cross_table 450
corresponding to the SKU GLOVE. The first access object
460 corresponds to the variable crossinfo for the first intera-
tion of the eachrow loop. The directive [if crossinfo.count
>0] 582 implements a standard if-then-else statement. The
dynamic page generator 125 evaluates the value reference
crossinfo.count, where crossinfo.count evaluates to the num-
ber of rows in crossinfo, to perform the conditional test to
determine if the value of crossinfo.count is greater than zero.
If so, the dynamic page generator 125 performs the next line
584 in the template portion 570. Otherwise, the dynamic
page generator 125 executes the else line 586.

Thus, for the first iteration of the eachrow loop, the value
of crossinfo.count is zero because the first access object 460
has no rows and the dynamic page generator 125 executes
the else line 586. The else line 586 includes a directive
[value orderitems.sku] 587. As noted above, orderitems.sku
evaluates to GLOVE, so the dynamic page generator 125
sends HTML to the browser 122 where the first line 622 of
a page portion 620 is displayed. As the access object 610 has
only a single row, the loop terminates and the dynamic page
generator 125 proceeds to the final line 588. The directive
[value orderbillto_ zip] 589 instructs the dynamic page
generator 125 to evaluate the value of order.billto_ zip. To
do so, the dynamic page generator 125 extracts the value
“92101” using the key “billto_ zip” directly from the order
blackboard 608 of the modified order 606. Lastly, the
dynamic page generator 125 incorporates the “92101” value
into the HTML sent to the browser 122, 123 to display the
second line 624 of the page portion 620.

The present invention advantageously overcomes several
limitations of existing technologies and alternatives. Exist-
ing merchant systems, such as eShop 1.0 and Netscape
Merchant System, display only a limited subset of informa-
tion from their product databases in rigid display formats. If
a merchant desires to change the display format, the mer-
chant has to revise the system modules producing the
display formats. In contrast to these systems, the present
invention permits the display of data retrieved from a wide
variety of database sources having a wide variety of sche-
mas. Likewise, the present invention permits the display of
data in any format or presentation desired by the merchant.
The present invention provides this flexibility through the
use of display templates and a database schema independent
query mechanism. In this manner, a merchant handles a
database schema modification by changing the database
queries stored in the database instead of modifying the
system modules that perform database queries. Thus, a
merchant can modify its database schema without affecting
the performance of the merchant system. Similarly, a mer-
chant can change the display format by modifying the
template, rather than the system modules producing the

Petitioners' Exhibit 1038, Page 3(

5,897,622

23

display formats. Moreover, dynamic page generation is not
limited to online merchant systems and the creation of
HTML pages using directives. The dynamic page generator
of the present invention is useful for any applications that
create documents for visual display or electronic transmittal
or storage incorporating information from one or more data
sources. Thus, the present invention is applicable to mail
merge operations for the preparation of form letters, the
creation and publication of billing statements and purchase
orders and the dynamic construction of electronic mail.

Similarly, because of the database schema independence,
the order processing module of the present invention does
not require modification for each change to the database
schema. In contrast to existing merchant systems that
require a fixed, predefined database schema, database
schema knowledge in the present invention is embedded in
the data queries stored in the database. Thus, the components
of the order processing module do not require modification
to process an order if the merchant modifies or restructures
the product information in the database. Moreover, the
present invention is applicable to electronic transaction
processing systems, such as batch processing of billing
statements, subscriptions and telephonic order systems.

In addition, existing merchant systems separate display
operations from order processing operations. For example,
eShop 1.0 and Netscape Merchant System do not permit
price adjustments during order processing. Thus, a shopper
using these merchant systems is not able to view information
regarding sales taxes, shipping or other associated costs with
the order. These merchant systems severely restricted a
merchant’s ability to promote their products to shoppers. In
contrast to these restrictive designs, the present invention
provides the capability to generate product information
pages dynamically during order processing. Thus, a shopper
using the present invention may view tax, shipping, handling
and special merchant promotion information during order
processing. Moreover, the calculations used to display prod-
uct information are the same as the calculations used to
process the order in the present invention. Thus, the present
invention guarantees a shopper consistency and reliability in
the information used to make purchasing decisions. In this
context, the present invention has applicability to customer
service operations regarding billings. Thus, customer ser-
vice representatives at phone centers can use the present
invention to compute and display customer billing informa-
tion in real time as needed to assist their customers.
Similarly, merchants can use the present invention in their
point of sale systems, such as electronic cash registers, to
obtain and process customer information.

Lastly, the present invention provides the ability to obtain
a rich set of dynamically generated information from a wide
variety of data sources. The present invention also provides
the capability to perform a large set of processing operations
and computations on the information prior to displaying the
information. In contrast to existing systems, the present
invention eliminates the restrictions of fixed, predefined
database schemas, fixed order processing steps and compu-
tations and relatively inflexible display mechanisms. The
utility of this combination of features is widely applicable to
interactive transaction processing applications.

Those skilled in the art may practice the principles of the
present invention in other specific forms without departing
from its spirit or essential characteristics. Accordingly, the
disclosed embodiments of the invention are merely illustra-
tive and do not serve to limit the scope of the invention set
forth in the following claims.

5

20

25

65

24

What is claimed is:

1. A merchant system, comprising:

a dynamic page generator to compose a page for display
by processing a template having a database request for
page data, wherein the database request is a query
name; and

a database module, in communication with a database and
with the dynamic page generator, to retrieve page data
from the database and to communicate the page data to
the dynamic page generator, wherein the retrieved page
data corresponds to a query stored in the database,
wherein said query corresponds to said query name,
and wherein the database module retrieves the data in
a manner that is independent of any database schema.

2. The merchant system of claim 1, wherein the database
is defined by a single schema.

3. The merchant system of claim 1, wherein the database
is defined by a plurality of schemas.

4. The merchant system of claim 1, wherein the query is
a SQL query.

5. The merchant system of claim 1, wherein the database
module returns an access object having the page data to the
dynamic page generator.

6. The merchant system of claim 1, wherein the template
includes HTML and directives.

7. The merchant system of claim 6, wherein the directive
is a keyword specifying how to build the page for display.

8. The merchant system of claim 1, further comprising
HTML structures in communication with the dynamic page
generator.

9. The merchant system of claim 8, wherein the HTML
structures include a plurality of templates.

10. The merchant system of claim 8, wherein the HTML
structures include a plurality of HTML pages.

11. The merchant system of claim 8, further comprising a
browser in communication with the dynamic page generator.

12. The merchant system of claim 11, wherein the browser
sends a URL to the dynamic page generator indicating the
template to display.

13. The merchant system of claim 11, wherein the
dynamic page generator sends to the browser HTML result-
ing from the processing of the template.

14. The merchant system of claim 1, further comprising a
browser in communication with the dynamic page generator.

15. The merchant system of claim 14, wherein the
browser sends a URL to the dynamic page generator indi-
cating the template to display.

16. The merchant system of claim 15, wherein the
dynamic page generator sends to the browser HTML result-
ing from the processing of the template.

17. A merchant system, comprising:

an order processing module, which makes a request for
order data using a query name; and

a database module, in communication with a database and
with the order processing module, to retrieve the order
data from the database and to communicate the order
data to the order processing module, wherein the
retrieved order data corresponds to a query stored in the
database, wherein said query corresponds to said query
name, and wherein the database module retrieves the
data in a manner that is independent of any database
schema.

18. The merchant system of claim 17, wherein the data-

base is defined by a single schema.

19. The merchant system of claim 17, wherein the data-
base is defined by a plurality of schemas.

20. The merchant system of claim 17, wherein the guery
is a SQL query.

Petitioners' Exhibit 1038, Page 31

5,897,622

25

21. The merchant system of claim 17, wherein the data-
base module returns an access object having the order data
to the order processing module.

22. The merchant system of claim 17, wherein the order
processing module comprises,

an order pipeline having multiple stages, wherein each
stage includes a plurality of components configured to
process the order, and

an order engine to determine which stages of the order
pipeline to execute in order to process the order.

23. The merchant system of claim 22, wherein the
sequence of execution of the stages in the order pipeline is
configurable.

24. The merchant system of claim 22, wherein the com-
ponents within each stage are configurable.

25. The merchant system of claim 17, wherein the order
comprises an order blackboard having key-value pairs.

26. The merchant system of claim 25, wherein the order
further comprises an item blackboard having key-value
pairs.

27. The merchant system of claim 26, wherein the com-
ponent posts a portion of the order data retrieved from the
database to the item blackboard in a key-value pair.

28. The merchant system of claim 25, wherein the com-
ponent posts a portion of the order data retrieved from the
database to the order blackboard in a key-value pair.

29. A merchant system, comprising:

an order processing module having a plurality of compo-
nents configured to create and process an order,
wherein a component makes a component request for
order data;

a dynamic page generator, in communication with the
order processing module, to compose a page for display
by processing a template having a request for informa-
tion from the order and a database request for page
data, wherein the request for page data is a query name;
and

a database module, incommunication with a database and
with the order processing module and with the dynamic
page generator, to retrieve order data from the database
and to communicate the order data to the order pro-
cessing module and to retrieve page data from the
database and to communicate the page data to the
dynamic page generator, wherein the retrieved order
data corresponds to a query stored in the database,
wherein said query corresponds to said query name,
and the database module retrieves the order and page
data in a manner that is independent of any database
schema.

30. The merchant system of claim 29, wherein the tem-

plate includes HTML and directives.

31. The merchant system of claim 30, wherein the direc-
tive is a keyword specifying how to build the page for
display.

32. The merchant system of claim 29, further comprising
HTML structures in communication with the dynamic page
generator.

33. The merchant system of claim 32, wherein the HTML
structures include a plurality of templates.

34. The merchant system of claim 32, wherein the HTML
structures include a plurality of HTML pages.

35. The merchant system of claim 32, further comprising
a browser in communication with the dynamic page gen-
crator.

36. The merchant system of claim 35, wherein the
browser sends a URL to the dynamic page generator indi-
cating the template to display.

10

15

20

25

40

45

26

37. The merchant system of claim 35, wherein the
dynamic page generator sends to the browser HTML result-
ing from the processing of the template.

38. The merchant system of claim 29, further comprising
a browser in communication with the dynamic page gen-
crator.

39. The merchant system of claim 38, wherein the
browser sends a URL to the dynamic page generator indi-
cating the template to display.

40. The merchant system of claim 38, wherein the
dynamic page generator sends to the browser HTML result-
ing from the processing of the template.

41. The merchant system of claim 38, further comprising
an action manager in communication with the browser, the
order processing unit and the database module.

42. The merchant system of claim 41, wherein the
browser sends a URL to the action manager indicating an
action to perform.

43. The merchant system of claim 41, wherein the action
manager redirects the browser to display a selected page.

44. The merchant system of claim 41, wherein the action
manager retrieves data from the database.

45. The merchant system of claim 41, wherein the action
manager saves data to the database.

46. The merchant system of claim 41, wherein the action
manager creates a new order having an order blackboard and
posts a key-value pair to the order blackboard.

47. The merchant system of claim 41, wherein the action
manager retrieves the order having an order blackboard from
the database module and posts a key-value pair to the order
blackboard.

48. The merchant system of claim 41, wherein the action
manager retrieves the order having an item blackboard from
the database module and posts a key-value pair to the item
blackboard.

49. The merchant system of claim 29, wherein the order
processing module comprises,

an order pipeline having multiple stages, wherein each

stage includes a plurality of components configured to
process the order, and

an order engine to determine which stages of the order

pipeline to execute in order to process the order.

50. The merchant system of claim 49, wherein the
sequence of execution of the stages in the order pipeline is
configurable.

51. The merchant system of claim 49, wherein the com-
ponents within each stage are configurable.

52. The merchant system of claim 29, wherein the order
comprises an order blackboard having key-value pairs.

53. The merchant system of claim 52, wherein the order
further comprises an item blackboard having key-value
pairs.

54. The merchant system of claim 53, wherein the com-
ponent posts a portion of the data retrieved from the database
to the item blackboard in a key-value pair.

55. The merchant system of claim 52, wherein the
dynamic page generator extracts the information from the
order using a key from a key-value pair.

56. The merchant system of claim 52, wherein the com-
ponent posts a portion of the data retrieved from the database
to the order blackboard in a key-value pair.

57. The merchant system of claim 29, wherein the data-
base is defined by a single schema.

58. The merchant system of claim 29, wherein the data-
base is defined by a plurality of schemas.

59. The merchant system of claim 29, wherein the query
is a SQL query.

Petitioners' Exhibit 1038, Page 32

5,897,622

27 28
60. The merchant system of claim 29, wherein the com- 63. The merchant system of claim 29, wherein the data-
ponent request is a component query name. base module returns an access object having the page data to

the dynamic page generator.
64. The merchant system of claim 29, wherein the data-
5 base module returns an access object having the order data
to the dynamic page generator.

61. The merchant system of claim 60, wherein the data-
base module uses the component query name to retrieve a
corresponding SQL query.

62. The merchant system of claim 29, wherein the com-
ponent request is stored in the database. ® ok K Ek

Petitioners' Exhibit 1038, Page 33

