e [e

Data Modeling
Handbook

A BEST-PRACTICE APPROACH T0
BUILDING QUALITY DATA MODELS

Michael C. Reingruber and William W. Gregory

iVenture Ex. 1012 Page 1 of 50

The Data Modeling
Handbook

A Best-Practice Approach to
Building Quality Data Models

Michael Reingruber
William W. Gregory

A Wiley—-QED Publication
John Wiley & Sons, Inc.

New York ® Chichester ® Brisbane ® Toronto ® Singapore

iVenture Ex. 1012 Page 2 of 50

Publisher: Katherine Schowalter

Editor: Rich O’Hanley

Managing Editor: Maureen B. Drexel

Text Design & Composition: Publishers’ Design and Production Services, Inc.

Designations used by companies to distinguish their products are often
claimed as trademarks. In all instances where John Wiley & Sons, Inc. is
aware of a claim, the product names appear in initial capital or all capital
letters. Readers, however, should contact the appropriate companies for more
complete information regarding trademarks and registration.

This text is printed on acid-free paper.
Copyright © 1994 by John Wiley & Sons, Inc.
All rights reserved. Published simultaneously in Canada.

This publication is designed to provide accurate and authoritative informa-
tion in regard to this subject matter covered. It is sold with the understand-
ing that the publisher is not engaged in rendering legal, accounting, or other
professional service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by
section 107 or 108 of the 1976 United States Copyright Act without the
permission of the copyright owner is unlawful. Requests for permission or
further information should be addressed to the Permissions Department,
John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data:

Reingruber, Michael C.
The data modeling handbook: a best-practice approach to building
quality data models / Michael C. Reingruber, William W. Gregory.
p- cm.
“A Wiley-QED publication.”
Includes Index
ISBN 0-471-05290-6 (cloth)
1. Database design 2. Data structures (Computer science)
1. Gregory, William W.
QA76.9.D26R45 1994

005. 74—dc20 94-12669
CIP

Printed in the United States of America
10 9 8

iVenture Ex. 1012 Page 3 of 50

Attribute Rules

4.1 ATTRIBUTE CHECKLIST ITEMS

The Attribute Checklist presents the set of characteristics a data model-
ing team should gather and record about each attribute to ensure that a
complete set of requirements is represented in the data model. Our check-
list directly supports the completeness aspect of data model quality.

The list presented here has been made without regard to the limita-
tions or capabilities of any single CASE tool. Rather, it represents those
things that we find are essential data requirements, and are necessary
to begin database design.

¥ Name

Every attribute shall be given a name that uniquely identifies it. See
Attribute Name Rule later in this chapter for further explanation.

@ Description

Every entity shall have a description that permits it to be correctly
interpreted by anyone reviewing the model. The description should be
created at the time the attribute is identified and named, and should
follow the guidelines established under the Attribute Description Rule
found later in this chapter.

a8

iVenture Ex. 1012 Page 4 of 50

i_

I - Tt 11 Y TY P e e ey

e M . & kG A L

ATTRIBUTE RULES 89

¥ Type

An attribute must be categorized as one of two types, either a key at-
tribute or a non-key attribute, This characteristic refers to an attribute’s

actual use in the model, rather than its potential to serve as a key
attribute.

Key attributes serve as primary keys in the entity in which they
originate (are first defined), and as either primary or foreign
(nonprimary) keys in any entity to which they migrate in support of
entity relationships, A primary key is an attribute whose values
can be used to uniquely identify occurrences of an entity. Foreign
key values are not necessarily unique within the entity. We will
discuss primary and foreign keys under the Key Role characteristic
alittle later. Primary keys are implemented with a unique index to
a data structure.

Non-key attributes contain the bulk of the information in a data
model, Unlike key attributes, their values do not have to be unique
across all occurrences of the entity they have been assigned to
through the data meodeling process. A non-key attribute can appear
in only one entity in the data model. Attributes that are identified
as candidate keys (either singularly or in combination with other
attributes) but are not selected to serve as primary keys should be
classified as non-key attributes. Certain non-key attributes may be
selected as access paths during database design, and are often re-
ferred to as selection attributes or secondary keys. Despite the lat-
ter term, these are generally implemented in data structures using
non-unique indices (Finkelstein, 1989).

o Edit Rules

Each attribute should be described with one of the edit rules shown in
Table 4.1. Rdit rules were first documented by Clive Finkelstein, and he
Provides an excellent description of their use in Information Engineer-
ng: Strategic Systems Development (1992). An edit rule defines (1
Whether a value is required for the attribute upon creation of an in-
Stance of the entity in which it appears, and (2) whether the value, once
Provided, can be updated for that instance of the entity. Edit rules are
an essential descriptive characteristic for database and application de-
Sign, For example, attributes that are ‘add now’ (see the table below)

need to be implemented as NOT NULL columns in an SQL CRE-

iVenture Ex. 1012 Page 5 of 50

90 DATA MODELING RULES

Table 4.1. Edit Rules (from Finkelstein, 1989)
Edit Rule Definition
Add now, modify allowed A value for the attribute must be provided at the

time a new instance of the entity is created. The
value of the attribute may be changed one or
more times after it is created.

Add now, modify not allowed A value for the attribute must be provided at the
time a new instance of the entity is created. The
value of the attribute cannot be changed once it
is created.

Add later, modify allowed A value for the attribute may or may not be
inserted at the time a new instance of the entity is
created. The value of the attribute may be
changed one or more times after it is created.

Add later, modify not allowed A value for the attribute may or may not be
inserted at the time a new instance of the entity is
created. The value of the attribute cannot be
changed once it is created.

ATE TABLE statement, or the equivalent in other database definition
languages.

Primary keys always have a value of “add now, modify not allowed.”
The edit rule for a primary key migrated to another entity as a non-
primary foreign key will depend on the nature of the relationship with
the parent entity. An optional relationship to the child entity would
translate to “add later,” while a mandatory relationship would trans-
late to “add now.”

“d Domain

Every attribute must eventually be assigned a domain of permitted
values. Domains need not be determined immediately upon identifica-
tion of an attribute, but certainly will need to be established before the
model can be considered completely stable.

Attribute domains consist of at least one, and possibly two elements:

A general domain, also known as a data type, which describes the

manner in which the values are represented. Commonly used gen-
eral domains include alphanumeric, real numbers, integer only,

iVenture Ex. 1012 Page 6 of 50

ATTRIBUTE RULES 91

Boolean, and other standard information processing domains. A
general domain must be defined for each attribute. The selected
general domain should be the one that represents values of the
attribute in a meaningful manner to the user. For example, a
person’s name could be represented using a hexadecimal coding
scheme in place of alphabetic characters, but its utility for users of
the data would be severely diminished. The objectives of defining a
general domain for each attribute are to select the domain with
greatest utility for users, and the one that can be readily translated
into data types available in potential or target database manage-
ment systems. Data models increasingly contain complex data
types, such as those required to support sound, digital video, or
photographs. See Modeling Complex Data Types in Chapter 9 for
further discussion of complex data domains.

General domains may be bounded with high and low range limits.
The decision to identify a range of values within a general domain
should be done in consultation with the users, and only after careful
consideration of both current and future potential values.

A specific domain, also known as an enumerated domain, pre-
scribes a specific set of values that are valid and permitted for the
attribute. For example, the attribute property type in a model for a
real estate firm might have the values “townhouse, single family
detached, duplex, apartment, . ..” We sometimes refer to these as
“static values,” since the values in an enumerated domain tend to
be relatively stable over time.

@ Abbreviation(s)

If any abbreviations are used in the attribute name (often required due
to limitations of CASE tool in use) or in the attribute description, then
itis important to document the abbreviation and a full definition of it as
part of the overall description of the attribute. Use of abbreviations
should be consistent with any conventions established within the data
management community of your organization.

¥ Acronym(s)

We do not recommend using acronyms as a substitute for a full at-
tribute name, although their use may be a practical response to limita-
tions imposed by CASE tools. Acronyms suffer from a couple of common
Problems—they may not be known or understood by parties outside the

iVenture Ex. 1012 Page 7 of 50

92 DATA MODELING RULES

business area being modeled, or even by all parties within the area; and
acronyms are often not unique. As with abbreviations, if you use acro-
nyms be sure to document them as part of the description.

¥ Key Use

This rule applies only to primary keys. A primary key that is migrated
to another entity will serve in one of two possible roles in the child
entity: primary key or foreign (nonprimary) key. The key use depends of
course on whether the attribute is required to uniquely determine an
instance of the entity into which it is migrated. Note that there are
specific rules governing the migration of keys, and these are spelled out
in detail in this chapter.

4 Source

This defines whether the attribute is derived or primitive. A derived
attribute is one whose value is generated from one or more other at-
tributes in the model according to a specified formula. A primitive at-
tribute is one whose value is not derived within the scope of the model.
A primitive attribute may in fact be derived outside of the scope of the
model, but its derivation is not performed within the enterprise. For
example, suppose Company A acquires products from Company B. Com-
pany A records a product price on a purchase request. It is not con-
cerned about how that price is determined by Company B; it simply
needs to know how much to pay. If we are building a data model for
Company A, the attribute is defined as being primitive. However, sup-
pose Company B actually computes the product price according to a
tiered pricing structure based on the size of the order. If we are building
the data model for Company B, the product price is derived (from order
size, base product price, and price-quantity discount).

¥ Derivation Formula(s)*

If the attribute source is determined to be derived, then the modeling
team, with participation of informed business experts, must establish
the formula by which it will be derived. It is extremely important that
this is documented, to ensure that eventual users have confidence in
the quality of data generated. Derivation formulas can be relatively
simple, such as total sales tax = total price x sales tax rate, or they can be

* Applies only to derived attributes.

iVenture Ex. 1012 Page 8 of 50

ATTRIBUTE RULES 93

more complex, with adjustments to the formula based on values or con-
ditions associated with the attribute. The formula should explicitly iden-
tify any other attribute(s) required to generate a value for the derived
attribute. We will revisit derived attributes in greater detail later in
this chapter.

@ Derivation/Attribute Dependency Links*

Derived attributes are almost always dependent on at least one other
attribute in the model. This dependency has been referred to as a deriva-
tion dependency (McClure, 1993). You should maintain documentation of
such links as an aid to understanding the derived attribute, and as input
to eventual information system planning, design and development.

¥ Requirements Traceability

This is information pertaining to the cause or purpose of the enterprise’s
interest in the attribute. The requirement may have one of several
sources, depending on the nature of the data modeling activity (e.g., re-
verse engineering, strategic information systems planning, etc.) Trace-
ability may be attained through (1) reference to the source of the need
(e.g., citation of a statement, clause, paragraph, or section of a regulation,
policy or plan; or, reference to a physical data structure element, pro-
gram variable, or human interface component in the case of current sys-
tems analysis sources); and, (2) mapping to another metadata object
created and managed as part of the system lifecycle, such as a planning
statement (e.g., critical success factor, goal, objective) or a physical sys-
tem or system design element (e.g., file, data element, table, program
element), In other words, you need to document where the entity came
from, and where it is going to be used.

o Ownership Authority

You should maintain a record of individuals, functions, or organiza-
tions that have authority over each attribute for the following purposes:

Stewards have authority for defining and approving metadata. In-
dividuals participating in the development of a data model are defin-
ing, and at least preliminarily, approving metadata. Attribute names,

.
* Applies only to derived attributes.

iVenturé Ex. 1012 Page 9 of 50

94 DATA MODELING RULES

descriptions, enumerated values and other characteristics fall under
the authority of stewards. Your data administration organization
should have policies and procedures for metadata control.

Custodians create and use data. These are the individuals or orga-
nizations that have been granted authority within the enterprise,
usually through policies and procedures, to perform business op-
erations or processes that result in creation of data. Although ac-
cess authority is granted through many different means, it will be
important to understand and plan who within the enterprise has
authority to create, read, update, and delete data. The planning of
data manipulation will become increasingly important as more and
more organizations move toward the distributed, shared data envi-
ronments inherent to client/server architectures.

4.2 DERIVED ATTRIBUTES

Derived and calculated attributes must be represented in the
data model, along with their dependencies to the base attributes
used in the derivation or calculation.

Discussion

We begin the discussion of this rule with definitions of some key terms.
Like many of the terms used in the information resource management
discipline, these have become overloaded through years of use. We are
not suggesting that our definitions become the standard; we provide
them simply to clarify discussion of the rule.

A derived attribute is one that is created by accumulating values of
multiple instances of one or more other data attributes and, optionally,
performing some additional computation on those values in order to
create a value for the subject derived attribute (Inmon, 1989). Thus, it
represents an aggregation or summarization of existing information,
and introduces a derivation dependency within the model (between the
derived attribute and the other attribute(s) from which it is derived). A
derivation dependency exists between a derived attribute and the base
attribute(s) from which it is derived (McClure, 1993). Figure 4.1 pre-
sents an example of a derived attribute and its dependencies.

A calculated attribute describes some characteristic about a single
instance of the entity, and is generally calculated from another single
instance of a related attribute. In the simplified example in Figure 4.2,
the attribute task duration is a calculated attribute, created by subtract-
ing the completion date from the start date. As with derived attributes,

iVenture Ex. 1012 Page 10 of 50

Relationship Rules

5.1 RELATIONSHIP CHECKLIST

The Relationship Checklist presents the set of characteristics a data
modeling team should gather and record about relationships to ensure
that a complete set of requirements is represented in the data model.
Our checklist directly supports the completeness aspect of data model
quality.

As with the entity and attribute checklists, the list presented here
has been made without regard to the limitations or capabilities of any
single CASE tool.

o} Name* '

This is the name of the relationship that meets naming conventions or
standards. Some modeling techniques ordain the use of two relationship
names, supposedly enabling the reader to understand the interaction of
two entities much better than if only one name is used. Relationship
names are actually verbs, not nouns, and therefore imply that one of the
entities takes action or maintains a certain state relative to the other
(and vice versa, of course).

Do not waste your time or risk the wrath of your business expert
participants laboring through the creation of relationship names. Rela-

* Optional

174

y

iVenture Ex. 1012 Page 11 of 50

RELATIONSHIP RULES 175

tionship names generally add very little, if any, clarity to the model
(even when done “properly”), tend to be repetitious, are tedious to de-
fine and maintain, and do not aid database design in any way. There is
nothing more painful than watching a data modeler facilitate a group of
users through a relationship naming exercise. And most analysts and
business experts, judging by the models we have seen, do not do a very
good job of relationship naming. The old stand-bys “has” and “owns”
and “has an interest in” show up everywhere. Once you reach several
hundred entities in your model, the prospect of naming relationships
becomes rather dreadful. Our recommendation is that you spend your
valuable time on some of the truly important aspects of the modeling
process. CASE tool vendors have gotten the message, and most either
no longer require relationship names or allow the modeler the option to
not depict them on the data model diagrams. Unfortunately, several
widely used CASE products still impose a requirement that you provide
a name before adding the relationship to the model, even though you
choose not to display them.

“ Description*

The description presents the analyst an opportunity to record addi-
tional details about a relationship. This information does not duplicate
other elements of the relationship; it is simply intended to add addi-
tional documentary detail to the model. In most cases, information pro-
vided in the relationship description will be available through other
objects in the meta-model.

o Key(s)

Every relationship must be supported by the migration of a primary
key (whether single attribute or multiple attributes). This is the basic
precept of referential integrity, and is one of the foundations of rela-
tional data modeling. It is extremely important that the relationship be
supported by the migration of the entire primary key to the child entity,
and that the entire migrated key serve as either a component of the
primary key or as a foreign key reference. Migrating composite keys
should never be split between primary and nonprimary foreign key use
in the child entity. We have outlined rules to this effect in our discus-
sion of primary keys.

* Optional

iVenture Ex. 1012 Page 12 of 50

176 DATA MODELING RULES

o Type [Required by some methodologies]

Certain methodologies categorize relationships according to the role that
the migrating keys will play in the child entity. For example, the IDEF1X
modeling notation designates relationships as either identifying, non-
identifying, or category. In an identifying relationship, the primary key(s)
of the parent is migrated to serve as part of a compound primary key in
the child. A nonidentifying relationship results in the migration of the
parent entity’s primary key as a nonprimary foreign key in the child.
Finally, category relationships exist between supertypes and subtypes,
with the primary key of the supertype ‘migrating’ intact to each subtype.

This property actually provides redundant information, since we
know the role that the migrated keys are playing (primary or nonprimary)
in the “downstream” or child entity. We have found the designation of
relationship type to add very little value. In the case of IDEF1X, which
we discussed above, we suspect that it emerged as part of that technique’s
phased approach to modeling, where key structures are not defined until
the second phase. If you use a CASE tool such as Texas Instruments’
IEF™ or LogicWorks’ ERwin™, you may be required to designate a rela-
tionship type. Consult your CASE tool requirements.

o Cardinality/Optionality

This is also referred to as Degree/Nature or simply Cardinality. The
degrees and natures of a relationship are the soul of business modeling.
They allow for the precise depiction of business rules. By examining
alternative degrees and natures at each end of a relationship, the mod-
eling team can examine alternative business strategies and policies
using the model as a visualization technique. We strongly urge you to
read Chapter 4 of An Introduction to Information Engineering by Clive
Finkelstein (1989) for a description of the role relationship degrees and
natures can play in examining business rules and strategies.

The rules surrounding allowable combinations and depiction of re-
lationship degrees and natures will vary, in some cases substantially,
depending on the modeling notation you have selected. We suggest that
you explore several methods before deciding which you are most com-
fortable with. Your data management policies may dictate use of a spe-
cific notation, but continue to look around. While we have chosen to use
the most popular notation for this book, there are some interesting
alternatives out there. Of particular interest are Clive Finkelstein’s use
of “optional-tending-toward-mandatory” and the IDEF1X standard’s
use of degrees with specific values (i.e., instead of “mandatory many,”

iVenture Ex. 1012 Page 13 of 50

RELATIONSHIP RULES 177

youmight specify “mandatory 3 to 5,” depending on your business rules)
(Finkelstein, 1989; FIPS, 1992).

o] Deletion Integrity Rules

There are three fundamental types of relational integrity—add, up-
date, and delete. Add and update integrity rules are explicitly defined
through the relationship cardinality. However, delete rules must be
defined separately. There are three alternatives for establishing delete
integrity—cascade, disassociate, or disallow. You will find our rule per-
taining to delete integrity in Chapter 9.

o Relationship Quantity Statistics

Prior to moving to data structure design, you will want to gather some
statistics to understand the quantitative aspects of relationships. While
other statistics may be gathered, the most critical information for data-
base design, specifically for transaction access path analysis, is the entity
ratio for each relationship (min, max, and average). Figure 5.1 illus-
trates this concept. Current systems analysis should assist you in deter-
mining ratios, but participation of business experts will be necessary to
confirm the numbers, and to assess any new requirements not found in
current systems (whether automated or nonautomated).

o Discriminator

An attribute should be established as the discriminator for each supertype-
subtype relationship. The discriminator attribute is used to record which

PRODUCT | O-<] PRODUCT 5 11 oRDER
GROUP PRODUCT ORDER

100.000

320

290,000

Number of Entity ratios calculated
entity instances. using number of entity
instances.
—
Figure 5.1 Average entity ratios for a set of relationships.

iVenture Ex. 1012 Page 14 of 50

178 DATA MODELING RULES

subtype(s) are applicable for a particular instance of the supertype. See
Chapter 6 for further discussion of discriminators.

5.2 BALANCED ONE-T0-ONE RELATIONSHIPS
Eliminate balanced one-to-one relationships from the model.

Discussion

A balanced one-to-one relationship has the same cardinality/ optionality
combination at both ends of the relationship.

The introduction of balanced one-to-one relationships introduces
some problems to a data model.

e A mandatory one-to-one relationship indicates that the two entities
are so closely related that one cannot exist without the presence of
the other. This type of close tie generally indicates that the two
things represented by the separate entities are actually character-
istics of the same thing. Let’s assume for a moment that we have
two entities as depicted in Figure 5.3.

Recall the definition of functional dependence from Date (1986):

Given a relation R, attribute Y of R is functionally depen-
dent on attribute X of R if and only if each X-value in R has

A H H B

Mandatory one-to-one

C ho——o D

Optional one-to-one

Figure 5.2 Balanced one-to-one relationships.

iVenture Ex. 1012 Page 15 of 50

RELATIONSHIP RULES 179

A H B
key a (PK) key b (PK)
key b (FK) key a (FK)
attribute a1 attribute b1
attribute a2 attribute b2
Figure 5.3 Mandatory one-to-one.

associated with it precisely one Y-value in R (at any one
time). Attributes X and Y may be composite.

Now back to our model. Attribute key a is functionally dependent on
key b (in entity B, each attribute key b value has associated with it
precisely one key a value at any one time). Likewise, attribute key b
is functionally dependent on key a (in entity A, each attribute key a
‘ value has associated with it precisely one key b value at any one
i time). That’s interesting. We have introduced a case where the non-
key attributes of both entity A and entity B are functionally depen-
dent on both the primary key of A and the primary key of B. For
each key a value in A, attribute b1 and attribute b2 in entity B have
associated with it precisely one value. Likewise, for each key b value
in entity B, attribute al and attribute a2 in entity A have associated
with it precisely one value. The decomposition of A and B into two
' entities is therefore arbitrary. All four attributes are functionally
dependent on key a or key b (both are candidate keys), and should be
placed in a single entity. Selection of a candidate key as primary
key for the new entity should be worked out with the business ex-
perts. The same logic holds for balanced optional one-to-one rela-
tionships. In the case of an optional relationship, the resolution
may include the creation of subtype entities to manage optional
attributes in the new entity (created through resolution of the bal-
anced relationship).

We have demonstrated this situation assuming that the enti-
ties had different primary key attributes, the migration of keys was
performed in order to maintain referential integrity, and the keys
were migrated as nonprimary foreign keys. Suppose now that they

iVenture Ex. 1012 Page 16 of 50

180 DATA MODELING RULES

were migrated as primary keys. Well, we would have two entities
with the same primary key attributes, which violates one of our
fundamental rules about primary keys (see Chapter 4 for further
discussion of primary key rules).

Balanced one-to-one relationships prevent the modeling team from
establishing the data dependency path.

Balanced one-to-one relationships introduce unnecessary redun-
dancy into the model, and therefore raise the risk of introducing
inconsistency.

They may mask the actual logic that the modeling team was striv-
ing for, or lead to confusion over relationships and business rules.

The definition of the separate entities may come about during the

course of modeling for some very understandable reasons:

They were created by separate modeling teams, followed by an at-
tempt to integrate the results.

In the case of the optional one-to-one relationships, it is possible the
modeling team was attempting to show that certain attributes are
optional at the time of creation of an instance of the entity.

By using the optional one-to-one relationship, the team may have
been trying to indicate that the entities are mutually exclusive sub-
sets of the same logical concept (a situation best handled with a
subtype structure).

The entities were identified in conjunction with functional or pro-
cess analysis, and have been artificially separated because they are
used to perform different functions or are involved in different pro-
cesses.

The attributes in the separate entities are owned by or controlled by
different organizations.

These are just a few of the motivations that a modeling team may

use to argue the case for employing one-to-one relationships. However,
in all cases the separation of attributes is arbitrary, and therefore not
repeatable consistently across the model. Remember that in order to
maintain a model that can be used across an enterprise, the model must
be built using techniques that lead to repeatable results. With balanced
one-to-one relationships, there is no basis for dividing the attributes
between the entities in a consistent fashion.

If you run across balanced one-to-one relationships, attempt to merge

the participating entities into a single entity, orinto a supertype/subtype

iVenture Ex. 1012 Page 17 of 50

RELATIONSHIP RULES 181

structure in the case of the optional one-to-optional one relationship. The
examples provided in the next section illustrate resolution scenarios.

Example

For our example, assume we have a small business that is modeling the
management of its sales force. The company has defined a series of
territories, and currently has a sales representative assigned to each.
The company wants to track its sales by territory, since it has spent a
great deal of time studying regional demographics and wishes to track
buying habits accordingly. The sales manager, however, needs to track
individual performance of each of her sales representatives. The model
fragment shown in Figure 5.4 emerged from the modeling sessions (we
have shown key attributes only).

It is clear that the modeling team has captured the current business
climate from an organizational and functional perspective. In addition to
the technical problems that the one-to-one relationship introduces, it also
represents an artificially constrained business environment as well. The
near-term solution to the modeling problem posed by the relationship might
be to create a single SALESPERSON entity. However, the team should
also look forward to the future sales strategies and policies of the company.
How will sales territory be defined in the future? Will territories always be
defined in terms of salespeople, or will they take on demographic or geo-
graphic connotations? Is it possible that a SALESPERSON could cover
more than one territory? Could we have two salespersons covering a sales
territory? Do we want to track different salespersons’ performance in the
same territory as they are reassigned? These are conceptual questions that
the presence of a one-to-one relationship should prompt.

SALES SALES
PERSON n “ TERRITORY

employee id (PK) territory code (PK)
territory code (FK) employee id (FK)
Figure 5.4 Invalid one-to-one relationship.

iVenture Ex. 1012 Page 18 of 50

182 DATA MODELING RULES

5.3 MANDATORY-ONE-TO-OPTIONAL-ONE
RELATIONSHIPS

Carefully examine mandatory-one-to-optional-one relationships
in the model.

Discussion

Technically, a mandatory-one-to-optional-one relationship is beset with
the same problems that plague relationships discussed in the Balanced
One-to-One Relationships rule.

The difference between the cardinality set shown here and those
shown in our other rule is that we can define the data dependency chain
between entities F and E as pictured above. An instance of entity F
must clearly be created at the same time or earlier than an instance of
entity E. In other words, we can have F without E, but not E without F.
As aresult, we have found that this cardinality set is a warning flag for
conceptual quality problems, and have chosen to address it separately.

Guidelines for Resolving Optional-One-to-Mandatory-One Rela-
tionships

¢ Consider whether entity E represents a subtype of F. Does entity E
actually represent one of many categories of F, but is the only one
with additional attribute requirements? Many methodologies dis-
courage the depiction of subtype entities that have no attributes
other than the inherited primary key, since these may be more
effectively handled by defining, and documenting as part of the
model, a domain of values for the discriminator attribute. There is
a danger in using the mandatory-one-to-optional-many cardinality
to accommodate such a situation, since the domain of other sub-
types may be lost if not correctly documented. Is there an attribute
in F whose value triggers a requirement for populating E? If so, this

Figure 5.5 Unbalanced one-to-one relationship.

iVenture Ex. 1012 Page 19 of 50

RELATIONSHIP RULES 183

attribute serves as a discriminator, and indicates that a generaliza-
tion hierarchy structure is appropriate. See Chapter 6 for further
discussion of generalization hierarchies.

* Determine if E has been modeled to accommodate a time delay
between the creation of F, with its primary key and non-key at-
tribute set, and the creation of instances of the attributes in E. This
situation does not require the identification of a separate entity to
handle what might be referred to as “add later” attributes.

* Determine if E has been modeled to accommodate an expected diffi-
culty in actually obtaining the information represented by the at-
tributes of E. If the users expect to gather values for only a small
percentage of some of F’s attributes, they may have been tem ptedto
move them to E. The logical model should not reflect such consider-
ations, although recording such expectations will certainly aid the
database design team.

® Has the cardinality for one or both of the entities been improperly
defined? Check the key structure to see if only one of the two enti-
ties has a migrated attribute; that might indicate that the cardinal-
ity was incorrectly recorded,

* Review any applicable business rules to ensure that the model is
conceptually correct.

Examples

The example we have selected (Figure 5.6) comes from a human resources
department model, and is perhaps one of the most extreme examples of a
timing difference influencing model development. The objective of the
model was to separate current and former employees, since these are
obviously subject to different sets of rules and different information needs.
Unfortunately, the model fragment that resulted is incorrect. The model-
ing team has separated FORMER EMPLOYEE from EMPLOYEE based
on the assumption that employee termination date is optional, However,
it is not optional. Every employee will eventually be terminated for one
reason or another (retirement, death, resignation, involuntary termina-
tion). The issue is one of timing. Therefore, the attribute employee termi-
nation date is not optional in EMPLOYEE it will eventually apply to all
employees. The modeling team has been overly influenced by the often
substantial difference in the time an instance of EMPLOYEE is created
and the time a value for employee termination date will be added. That
timing difference does not make employee termination date an optional
attribute. Remember that we are building a logical data model. Decisions
about how best to implement this will have to be made, just not now,

|
]

iVenture Ex. 1012 Page 20 of 50

184 DATA MODELING RULES

FORMER
EMPLOYEE H——OH cupLovee

employee id (PK) employee id (PK)
employee name employee lermination date
employee hire date

Figure 5.6 Unresolved relationship.

Our resolution is depicted in Figure 5.7. Note that employee termi-
nation date is now originating in EMPLOYEE.

A second resolution is depicted in Figure 5.8. This resolution in-
creases the flexibility of the model. We have added an employee status
discriminator to identify employees who are currently employed, have
retired, have been fired, or have some other status with the company.
Note that employee hire date and employee termination date become
“hire” and “terminated” status values in employee status, combined with
corresponding employee status effective date values. There are obviously
many alternative solutions, and the correct one for your organization
lies in your business policies and the needs of your business experts.

Our second example involves information that the users expect will
be difficult to obtain. The users maintain data on airports around the
country for a regional airline. They gather information from a wide
variety of sources, but have had considerable difficulty in the past ob-
taining data on runway surfaces at small airports. The airline’s pilots
need access to this information in occasional emergencies, when they
must land at unfamiliar airports. As a result, they have modeled RUN-
WAY SURFACE information separate from RUNWAY information.

EMPLOYEE

employee id (PK)
employee name
employee hire dale
employee termination date

Figure 5.7 Resolved optional relationship problem.

iVenture Ex. 1012 Page 21 of 50

RELATIONSHIP RULES 185

EMPLOYEE [ks
sTaTus Pt] EMPLOYEE
employee id (PK) employee id (PK)
employee stalus (PK) employee name

employee status effective date

Figure 5.8 A second resolution strategy.

Unfortunately, this suggests that some runways do not have sur-
faces. It would be logical to assume that every runway has a surface of
some kind. Once this kind of arbitrary division is introduced, it tends to
cause additional problems. Notice runway surface condition has crept
out to RUNWAY SURFACE, although this information is not necessar-
ily dependent on knowing the exact type of surface. The model has been
corrected in Figure 5.10.

5.4 OPTIONAL-ONE-TO-MANY RELATIONSHIPS

Resolve relationships where the Pparent entity is optionally re-
lated to the child entity as depicted in Figure 5.11.

Discussion

The existence of relationships of the type shown in Figure 5.11 are gener-
ally indicative of incomplete modeling. They present some interesting
technical problems, which we will discuss momentarily, and they tend to

—

AIRPORT RUNWAY
14 1
AIRPORT | < runway [M——OH surrace
airport id (PK) airport id (PK) airport id (PK)
airporl name runway number (PK) runway number (PK)
runway length runway surface type
runway width runway surface condition
runway lighting indicator
———
Figure 5.9 Unresolved relationship.

iVenture Ex. 1012 Page 22 of 50

186 DATA MODELING RULES

| AIRPORT
RUNWAY

AIRPORT j

/

airport id (PK} airport id (PK)

airport name runway number (PK)
runway length
runway width
runway lighting indicator
runway surface type
runway surface condition

Figure 5.10 One possible resolution to Figure 5.9.

obscure important business logic. Resolve these by whatever means is
appropriate to ensure that the relationship from the child entity (in this
case both B and D) to the parent entity (A and C) is mandatory. This will
improve the depiction of business logic, increase the stability of the model,
and aid in the creation of sound data structures.

One might argue that there is nothing wrong with the relationships
you see in Figure 5.11. Were we to add keys, we would migrate the
primary keys of entities A and C (the parents) to entities B and D (the
children), respectively, as nonprimary foreign keys. There would be a
problem if we attempted to migrate those keys as primary keys in B and
D, however. Recall that one rule of primary keys is that they are never
optional. Since our relationships indicate that B and D are optionally

Figure 5.11 Optional-one-to-many.

iVenture Ex. 1012 Page 23 of 50

RELATIONSHIP RULES 187

C Ho——o9q D

Refined to

D C
—od P C li—o<d
¢ Subtype Subtype D
Most common resolution pattern Least common resolution pattern
for optional parent relationship. for optional parent relationship.
Figure 5.12 Optional parent resolution strategies.

related to A and C, respectively, migration as primary keys is out of the
question. The keys for A and C could be migrated as foreign keys. How-
ever, remember that our optional attribute rule stipulates that we want
to ensure that any attribute, including foreign keys, placed in an entity
should be mandatory for all instances of that entity. Ignoring the possi-
bility that the relationship was misrepresented and was meant to be a
many-to-many, there are two resolution strategies that are used to re-
solve this type of relationship (Figure 5.12).

The selected resolution strategy will depend, of course, on the busi-
ness rules applicable to the individual situation. Note that the resolution
strategy on the left is by far the most common, but both are possible
results. In either case, we recognize a distinguishing characteristic about
C or D that reflects the business rule for a mandatory relationship.

Example

FOr' our example, we will revisit an example we used earlier to describe
Optional attributes. MATERIAL TYPE represents a standard stock item
eld in a company warehouse. Some of the materials held are considered

iVenture Ex. 1012 Page 24 of 50

188 DATA MODELING RULES

HAZARDOUS

MATERIAL
MATERIAL HO—O— ™ ype

RATING

hazardous material rating (PK) material type stock number (PK)
hazmat rating description material type name
hazmat response level material stock description

hazardous material rating (FK)

Optional foreign key,
migrated from HAZARDOUS
MATERIAL RATING entity.

Figure 5.13 Unresolved optional relationship to parent entity.

hazardous (flammable, corrosive, poisonous), and the company has es-
tablished a hazardous material rating and response procedure to ensure
proper handling and rapid response to incidents invelving the materials.

Only certain types of material are considered hazardous, with the
result that an optional relationship nature exists to the parent entity
HAZARDOUS MATERIAL RATING. The business rules and informa-
tion requirements pertaining to management of hazardous waste only
apply to those types of material deemed hazardous. In order to refine
the model to precisely depict the business rules, and to position the
design team to develop a better database design, the HAZARDOUS
MATERIAL entity has been created in Figure 5.14, This resolution
strategy follows the general pattern discussed above.

5.5 MANY-TO-MANY (NONSPECIFIC) RELATIONSHIPS

Resolve many-to-many relationships early in the modeling cycle.

Discussion

A many-to-many association, also known as a nonspecific relationship,
cannot be implemented in any practical manner in a data structure.
While this should be reason enough to resolve it, there is an added
incentive to do so early in the data modeling effort. In fact, we recom-

iVenture Ex. 1012 Page 25 of 50

RELATIONSHIP RULES 189

Hazardous material discriminator

attribute added to MATERIAL TYPE MATERIAL
to control subtype entity HAZARDOUS TYPE
MATERIAL.

material type stock number (PK)
material type name

—— material stock description
hazardous material type code

FAKARDOUS HAZARDOUS
MAERIS MATERIAL
RATING
hazardous material rating (PK) material type stock number (PK)
hazmat rating description hazardous material rating (FK)

hazmat response level

Attribute hazardous material rating
is now a mandatory foreign key In
HAZARDOUS MATERIAL entity.

Figure 5.14 Resolved optional relationship to parent entity.

mend that you resolve a many-to-many relationship into an associative
entity as soon as the relationship degree and nature have been deter-
mined. Why the rush? For several reasons:

The associative entity may imply additional rules or business logic
that would have been overlooked if the many-to-many had not been
resolved. In particular, we have found that subtype hierarchies tend
to emerge from associative entities as business rules are precisely
defined, and that these are overlooked in models where many-to-
many relationships are not resolved early in the analysis. If you
want to build models that fully capture the business rules of the
enterprise, then resolve nonspecific relationships early. Also, we
have found that a large portion of management control data re-
quirements, usually in the form of derived data attributes, occur in
associative entities. Refer to our discussion on derived attributes in
Chapter 4. These might be overlooked, or at least underanalyzed, if
nonspecific relationships are not resolved.

iVenture Ex. 1012 Page 26 of 50

190 DATA MODELING RULES

¢ Many-to-many relationships make the determination of data de-
pendencies difficult, limiting your ability to identify logically com-
plete subsets of the model. Recall our discussion on data dependency
analysis in Chapter 2, and how it serves as an efficient, reliable,
and repeatable method for dividing large data models into cohesive
subsets. If you have many-to-many relationships in your model, you
will have difficulty determining data dependency paths (associative
entities form a large proportion of the end-points necessary to begin
data dependency analysis).

¢ Your model will remain unstable until the many-to-many relation-
ship is resolved. It will not be normalized, and your documentation
of the model will not be complete.

The sole exception to the early resolution strategy isif you are work-
ing with executives or senior staff members, and you neither want or
need to include detail in your model. However, be aware of the fact that
if you are modeling management level information, many of the derived
data attributes of interest to that group reside in associative entities.

Resolve many-to-many relationships by creating an associative en-
tity that maintains the degrees and natures of the original relationship
as shown in Figure 5.15.

ENTITY)ENTITY
A B
key A (PK) key B (PK)

ENTITY | ENTITY ENTITY
A U A-B B
key A (PK) key A (PK) key B (PK)
key B (PK)
Figure 5.15 Strategy for resolving many-to-many relationships.

iVenture Ex. 1012 Page 27 of 50

RELATIONSHIP RULES 191

The associative entity formed as a result of this action (ENTITY A-
B) will have as its primary key the combined migrated primary keys of
the original two entities (ENTITY A and ENTITY B). Note that the
relationship degrees and natures from the associative to the other two
entities are always mandatory-one. Like any other modeling construct,
there are occasions when the key structure for an associative entity can
become more complex. However, this strategy will serve as a good start-
ing point for further modeling around the associative entity.

Example

Assume we are modeling a university registrar’s function. Our model
has been developed to the point shown in Figure 5.16. The business
experts express some concern when they view the model. “How will I be
able to tell which student has enrolled in which course, and what the
roster of students is for each course? The model doesn’t allow me to do
that, does it?” And now a new data requirement emerges as well. The
business experts in the registrar’s office are concerned about transcripts
(grades) as well as enrollment. “Where does the attribute for a student’s
grade in the course belong in our model?” Well, the model fragment in
Figure 5.16 simply doesn’t do the job any more.

We resolve the many-to-many relationship using an associative en-
tity (see Figure 5.17).

Now the modeling team sees the relationship more clearly, and
guess what? That’s right, they begin to form additional questions about
the business rules, ones that were not apparent before. For example,

STUDENT -O—O— COURSE

%7

student id (PK) course number (PK)
student name course title
course description

Data requirement: student’s grade in a course.

Figure 5.16 Unresolved many-to-many relationship.

iVenture Ex. 1012 Page 28 of 50

192 DATA MODELING RULES

STUDENT HH——O—< %%JUD:SNET >-O—HH COURSE

student id (PK) student id (PK) course number (PK)
student name course number (PK) course title
student course result course description

Figure 5.17 Resolved many-to-many relationship.

one member of the team raises the issue about students who take a
course more than once, in order to improve their grade in a required
prerequisite. The current key structure does not support this require-
ment. And what about students who enroll but withdraw without a
grade penalty, but who are still required to pay part or all of the tuition?
And does the registrar need to be able to determine a student’s status in
relation to the course (i.e., enrolled, completed, withdrew, etc.)? Are
dates important to the student course relationship? As you can see, the
modeling team can now focus on the student-course relationship, and
extend the model by continuing to ask about business rules. We prob-
ably would have overlooked some or maybe all of the questions if we had
not resolved the many-to-many relationship. Most modeling teams fo-
cus on entities and attributes, not relationships, when trying to define
new data requirements. Therefore, resolve nonspecific relationships
early in your modeling cycle, and use the associative entity as a spring-
board for further analysis.

5.6 CIRCULAR REFERENCES

Circular references are not permitted.

Description

A circular reference introduces a cyclical relationship into the data model,
and should be avoided at all costs. Circular relationships cause problems
in the migration of keys, and they prevent the modeler from establishing
proper data dependency sequences (Finkelstein, 1989).

Existence of a cyclical relationship indicates that one or more of the
following conditions has occurred.

»

iVenture Ex. 1012 Page 29 of 50

RELATIONSHIP RULES 193

¢ The modeling team has not clearly or correctly captured the busi-
ness logic. The team should reevaluate this portion of the model,
examining related business rules and policies to determine the cor-
rect requirements.

* The cardinality of one or more of the relationships has been acci-
dentally reversed either during the modeling session or during en-
try to the CASE tool.

® The cardinality for one end of a relationship has been incorrectly
recorded. For instance, a many-to-many relationship was recorded
as a one-to-many.

Example

Our example comes from a strategic data model created for XYZ Manu-
facturing Corporation, and addresses the first causal condition described
above. Note that we have elected to show only key attributes in this
example. XYZ (an ORGANIZATION) offers each of its products and ser-
vices (OFFERING) in many MARKETS around the world. In each mar-
ket, it competes against many other ORGANIZATIONS, each of which
has many OFFERINGS of its own. The model seems to support the logic
of these statements, but there is clearly something amiss. The circular
nature of our logic leads to additional questions.

OFFERING [Hf——(<] MARKET

offering id (PK) market id (PK)
organization id (FK) offering id (FK)
ORGANIZATION
organization id (PK)
market id (FK)

Figure 5.18 Unresolved circular reference.

iVenture Ex. 1012 Page 30 of 50

194 DATA MODELING RULES

MARKET
OFFERING

OFFERING

}O—ﬂ- MARKET

offering id (PK} markel id (PK)

offering id (PK)

markel id (PK)

ORGANIZATION ORGANIZATION O é ORGANIZATION
OFFERING ; c H MARKET

offering id (PK) organization id (PK) organization id (PK)
organization id (PK) market id (PK)
Figure 5.19 Resolution of circular reference.

Now let’s examine some refinements to the model. First, we'll re-
verse our logical progression through the model. Each ORGAN IZATION
operates in many MARKETS (by virtue of having many OFFERINGs in
many MARKETS, as we discussed earlier). And each MARKET has
many OFFERINGS (e.g., competing products and services). Finally,
depending on how we have defined OFFERING, the same OFFERING
may be marketed by many ORGANIZATIONS. The result is a refined
model that completes the logic that was captured in the first attempt.

5.7 TRIADS
Eliminate triads from the data model.

Description

A triad is a redundant relationship consisting of two dependency paths
between the same two entities (FIPS, 1992). One of the paths consists of a
direct relationship between the entities, while the other involves relation-
ships to entities other than our two subject entities (see Figure 5.20).
Triads emerge during the normal course of modeling, as teams attempt to
precisely represent business policies that overlap or are contradictory.

Triads should be eliminated from the data model because they in-
troduce redundant information, which may eventually lead to problems
with database consistency.

iVenture Ex. 1012 Page 31 of 50

RELATIONSHIP RULES 195

>-O—1H

Figure 5.20 General structure of a triad.

If a triad has been created by the team, then simply resolving it in
the data model may not be adequate. The existence of a triad may
indicate that contradictory policies exist. Before correcting the model,
examine the business statements that were used as a basis for that
portion of the model, and review session notes to determine the ratio-
nale for constructing both dependency paths.

Example

In our example, we have a model fragment that records data require-
ments and rules pertaining to the monitoring of security alarms. The
security firm has established a set of alarm classes (perhaps according
to the nature of the installation under surveillance), and has a policy
regarding response time for each class. A set of alarm codes exist within
each class that provide instructions on how to respond. Finally, indi-
vidual alarms are monitored, and the firm’s performance against each
alarm is measured. The firm has established a performance objective
relating to beating the response time maximum. The latter objective
may have caused the modeling team to create a relationship between
ATLARM CLASS and ALARM, to ensure that each alarm can be traced
to the alarm class to which it belongs. However, the classification policy
led to the construction of the ALARM CLASS-ALARM CODE-ALARM
dependency path. The model fragment is a triad construct.

According to one of Armstrong’s axioms (Date, 1986) on functional
dependencies:

If A>Band B - C, then A - C.

You may recognize this as the “transitivity rule.” In the case of our
example, we have the following dependencies:

iVenture Ex. 1012 Page 32 of 50

196 DATA MODELING RULES

ALARM Tl
” . -
CLASS Relationship
« causing the
alarm class id (PK) triad.

alarm class dsscription
alarm class response time maximum

ALARM
cope [tH———0O< Alarm

alarm code (PK) alarm number (PK)

alarm class id (FK)
alarm code response instructions

alarm code (FK)

alarm class id (FK)

alarm initiation date/time
alarm response date/time
alarm resolulion date/lime

Figure 5.21

Model fragment containing a triad.

alarm number — alarm code
alarm code — alarm class

Therefore, the dependency alarm number — alarm class is “logi-
cally implied” (Korth and Silberschartz, 1986), and need not be desig-
nated with a separate relationship.

Based on this analysis, the resolution of our example triad is rela-
tively straightforward. Note that there is a transitive dependency be-
tween ALARM CLASS and ALARM through ALARM CODE. Therefore,

ALARM ALARM

class [O9 Cooe Oq Aunrm
alarm class 1d (PK) alarm code (PK) alarm number (PK)
alarm class descriplion alarm class id (FK) alarm code (FK)
alarm class response time maximum alarm code response instructions alarm initiation date/time

alarm response date/time
alarm resolution date/time

Figure 5.22

Model fragment corrected to eliminate triad.

iVenture Ex. 1012 Page 33 of 50

RELATIONSHIP RULES 197

ALARM can be readily traced to its ALARM CLASS according to the
ALARM CODE to which it is assigned. If ALARM CLASS to ALARM
CODE were many-to-many, we would have a very different situation.
You can confirm this by examining the key structures in the model. The
corrected model fragment is shown below. Note the change in the key
structure for ALARM.

5.8 MORE THAN ONE RELATIONSHIP BETWEEN TWO
ENTITIES

No two entities should have more than one relationship between
them.

Discussion

We have encountered several experienced modelers who insist that mul-
tiple relationships add important and necessary information to the model.
Fortunately, most data modelers have already arrived at the conclusion
that multiple relationships between the same two entities actually intro-
duce confusion into a model, rather than adding clarity. In fact, many, if
not most, CASE tools prevent the user from making this kind of mistake.

In case there are still some diehards out there, we present some
arguments in favor of this rule.

s Use of multiple relationships introduces the potential for conflicting
cardinalities. A requirement for differing cardinalities suggests that
there are logical subsets of the two entities (subtypes) that are gov-
erned by distinct sets of rules. The model needs to be refined and the
hidden logic flushed out. Our first example addresses this condition.

* Multiple relationships tend to represent process logic, rather than
data requirements and actual relationship rules. Our second ex-
ample illustrates this case.

* Use of multiple relationships can also obscure or confuse other as-
pects of the data logic, since their use gives the appearance of com-
prehensive analysis. The opposite is true, as we can see by both
examples.

* Modeling teams may attempt to document the different reasons
that two entities may be related. Use of multiple relationships to
accomplish this is a case of using the wrong tool for the job. We
suggest documenting such information in the Relationship Descrip-
tion, or through use of a Reason Entity if an associative entity is
involved. Our third example illustrates this type of situation.

j

iVenture Ex. 1012 Page 34 of 50

198 DATA MODELING RULES

Examples

Conflicting Cardinalities In this example we see how easy it is for
conflicting cardinalities to invade a data model if multiple relationships
are permitted. In our hypothetical organization, two separate data mod-
eling exercises have been underway. The first involves the division level
staff, who created a strategic model for their enterprise. This effort was
followed up by a priority project in the Personnel Management Subject
Area (identified and scoped during the strategic project). The division
staff has clear strategies in mind with regard to personnel, productiv-
ity, and workforce management. These are driven by their business
objectives. The modeling team for the Personnel Management area has
a different set of strategies, as we can see in the model. Their reality
differs from the perspective of the division staff, resulting in conflicting
business rules.

If we let this conflict continue without resolution, the organization
ends up with two problems. First, the requirements for information
systems development will be unclear. Even if these entities are used in
separate systems, an EIS for the division staff and a personnel manage-
ment system, there is every likelihood that they will draw data from
shared databases. But we will have introduced contradictory rules into
the enterprise data architecture, and at some point will encounter prob-
lems summarizing or sharing information. Second, and perhaps more
important, the model indicates a potentially serious gap in communica-
tion between division management and one of their key operational
areas. Remember, the model is a representation of the actual enter-
prise. Our example model indicates contradictory strategies and poli-
cies exist. The business is going in separate directions.

While our example may be somewhat trivial, the reader should be
able to gain a sense of the serious problems that can arise for an organi-
zation due to the cumulative effects of many contradictory rules or poli-
cies. The modeling team has a tremendous opportunity to help bring
the enterprise into alignment by bringing the two groups together to
discuss the different views, and to come to a mutual understanding on
the business rules and strategies.

Our resolved model, shown in Figure 5.24, reflects the kinds of
changes that modeling teams often encounter when attempting to re-
solve cardinality conflicts for multiple relationships (either before they
get into the model, or after). In this case, the model manager brought
the two groups together, with the result that the division staff reiter-
ated its desire to have at least one person assigned to each job at all
times. Since the personnel department could not ensure that an em-
ployee would be available to step into the job, a new strategy was devel-

iVenture Ex. 1012 Page 35 of 50

RELATIONSHIP RULES 199

In order to maintain production levels, the
Division Manager's strategy 18 to have every
Job filled with at least one individual. He also

wants at least one replacement person identified
to backfill if required.

The Division Manager's strategy is
to have everyone productively
employed at ail times.

EMPLOYEE

employee number (PK)
social security number
employee name
employee hire date

/

As part of its outplacement
service, the Personnel Dept

job code (PK)
job description

X

The Personnel Dept is charged

JOoB
ASSIGNMENT

job code (PK) with filling open jobs. They have had
deals with many employees employee number (PK) trouble finding qualified candidates
who do not have current job job start date for certain jobs,
assignments. job end date
Figure 5.23 Multiple conflicting relationships.
JOB | 1l
PERSON O sssionment P Tl 208
person id (PK) job code (PK) Job code (PK)
social security number person id (PK) Job description
persen name Job start date
job end dale
EMPLOYEE CONTRACTOR
person id (PK) person id (PK)
employee hire date contractor availabilily dare
Figure 5.24 One possible resolution of cardinality conflict.

iVenture Ex

. 1012 Page 36 of 50

200 DATA MODELING RULES

oped to identify and retain contractors who could remain on call to
fulfill the assignment. Thus, every job had at least one person assigned
to cover it. The personnel department also convinced the division staff
that having every employee assigned to a job was not practical. This
was especially true since one of their plants was closing down, and they
had several employees going through their outplacement program.

Again, this is only one potential solution, and it is highly dependent
on the definition of JOB, EMPLOYEE, and other components of the
model. The key message here is that violating good practices of data
modeling leads not only to information systems problems, but to missed
opportunities to resolve underlying business conflicts.

Process Logic in the Data Model In this example, a fuel supply firm
maintains supplies of different FUEL GRADEs at several small
ATRPORTS in a large metropolitan area. The modeling team charged
with helping the firm build a fuel management system has created the
model depicted below. Based on input from the firm’s managers, the
team determined that several things occur with fuel at an airport—it is
received, stored, and eventually dispensed. The model, they believe, ac-
curately portrays this situation. They have added three relationships
between AIRPORT and FUEL GRADE to portray the dynamics between
airports and fuel. The key word here is “dynamics.” A data model is a
static view of the enterprise. The modeling team has done a very effective
job of identifying the events that occur during the maintenance cycle at
an airport. Thus, the model portrayed below includes information that
should be recorded in the dynamic model of the fuel management system.
From a data modeling perspective, it is important to understand that
there exists a relationship between FUEL GRADE and AIRPORT. One
characteristic of that relationship is that several events and processes
occur involving both an airport and fuel. Further exploration of this model
should lead you to question other aspects of its construction as well.

Recsives/ Is received by

Stores/ Is stored at FUEL

AIRPORT
Dispenses/ Is dispansed by GRADE

Figure 5.25 Multiple relationships representing process logic.

iVenture Ex. 1012 Page 37 of 50

RELATIONSHIP RULES 201

AIRPORT 4—?

airport code (PK)
airport name AIRPORT AIRPORT
FUEL ———0€ FUEL
SUPPLY TRANSFER
fuel grade (PK) fuel grade (PK)
airport code (PK) airport code (PK)
FUEL airport fuel quantity fuel transfer date/time (PK)
GRADE transfer type
transfer quantity

fuel grade (PK)

Figure 5.26 One possible resolution of multiple relationships.

In our hypothetical resolution, we have removed the process logic
from the model, and returned it to its static state. This s, of course, only
one possible solution.

Documenting Roles and Reasons Our final example examines the
popular use of multiple relationships to document reasons or roles that
entities play in relation to each other. Figure 5.26 documents a model
fragment created by an airport management team. The team wanted to
capture the business rules surrounding ownership, operation, and in-
spection of the airport by various interested business parties.

Look closely at the model in Figure 5.27. What does it really say
about the relationship between ATRPORT and BUSINESS PARTY? It
says that there must be at least one BUSINESS PARTY identified as an

BUSINESS
Al RT
IRPO PARTY
airport code (PK) business party id (PK)
airport name business party name
Figure 5.27 Multiple relationships for multiple reasons.

iVenture Ex. 1012 Page 38 of 50

202 DATA MODELING RULES

owner, and at least one identified as an operator for each AIRPORT. This
set of relationships is further complicated by the fact that each is a many-
to-many cardinality. In order to resolve this complex mix in an elegant
fashion, the modeling team developed the solution shown in Figure 5.28.
The team created AIRPORT BUSINESS PARTY to resolve the many-to-
many cardinality between AIRPORT and BUSINESS PARTY (see Many-
to-Many Relationships rule). In order to accommodate the multiple roles
that a BUSINESS PARTY could have in relation to an AIRPORT, which
were represented by the three relationships in our original example, the
team created the entity AIRPORT BUSINESS PARTY ROLE, which
defines a set of values pertaining to an AIRPORT BUSINESS PARTY,
and whether that role is required or not required for an AIRPORT. The
primary key of AIRPORT BUSINESS PARTY ROLE migrates to AIR-
PORT BUSINESS PARTY and is used as a primary key in that entity in
combination with airport code and business party id. This key structure
(in AIRPORT BUSINESS PARTY ROLE) allows an individual BUSI-

airport business party role airport business party role requirement
owner required
operator required
facilities maintenance not required
AIRPORT
BUSINESS
PARTY
ROLE

airport business party role (PK)
airport business party role requirement

AIRPORT
AIRPORT < BusINESS P-O—1H B%i'Rfos
PARTY
airport code (PK) business party id (PK) business party id (PK)
airport name airport code (PK) business party name
airport business party role (PK)
Figure 5.28 One possible resolution of muttiple role problem.

iVenture Ex. 1012 Page 39 of 50

RELATIONSHIP RULES 203

NESS PARTY to perform more than one role in relation to an AIRPORT.
The team included an attribute airport business party role requirement in
ATRPORT BUSINESS PARTY ROLE in order to establish a business
rule that an AIRPORT must be associated with a BUSINESS PARTY
that assumes the role of “owner,” and one that assumes the role of “opera-
tor.” Therefore, when a new AIRPORT instance is created, we would
expect at least one (although maybe more than one) instance of AIR-
PORT BUSINESS PARTY to be created with an airport business party
role value equal to “owner” and one equal to “operator.” The roles of
“owner” and “operator” are required (as indicated in Figure 5.27 and the
relationship cardinalities in Figure 5.28) for each AIRPORT.

5.9 PARALLEL ASSOCIATIVE ENTITIES

Parallel associative entities should not be permitted.

Description

As we discussed in the last rule, multiple relationships between two
entities introduce some problems into the model. The same problems
exist when “parallel” associative entities are introduced. Recall that an
associative entity is created to resolve a many-to-many relationship be-
tween two entities. Parallel associative entities may creep into a model
when more than one modeling team is working in the same subject area
of the model, particularly when the teams have little or no intercommu-
nication. The easiest way to identify this situation is from the identical
key structures that exist. Parallel associative entities introduce the fol-
lowing problems into a data model:

« Redundaney. Each of the associative entities will carry the same
set of inherited primary keys, and have the tendency to duplicate
‘ non-key information as well.
‘ e Potential for introducing contradictory business rules, or for
hiding conflicts in business rules that may exist in different parts of
an enterprise. Remember that the data model is a key tool for iden-
tifying and resolving those conflicts to ensure consistent access to
standard data products.
e Potential for introducing consistency problems into a database
designed from the model.

The resolution of parallel associative entities is relatively straight-
forward—consolidate the associatives into a single associative entity.
Follow the consolidation with a thorough examination of attribute edit

iVenture Ex. 1012 Page 40 of 50

204 DATA MODELING RULES

rules and ownership authorities, to ensure that adequate requirements
information is recorded to manage data integrity and security.

Example

The example depicts a series of relationships existing for a firm that sells a
host of products in its line of clothing outlets. The model shown below
resulted from three separate data modeling efforts—a marketing team
that decides which products will be sold at each outlet according to local
demographics (OUTLET PRODUCT MIX), an inventory team that must
plan product orders and order inventory aceordingly (OUTLET PROD-
UCTINVENTORY), and a financial management team that needs to track
the sales and cost performance of various products at different outlets
(OUTLET PRODUCT COST). When the models were consolidated, the
model management team recognized three parallel associative entities.

PRODUCT M} {H ourLer
product id (PK) = == outlet no. (PK)
OUTLET OUTLET OUTLET

PRODUCT PRODUCT PRODUCT

INVENTORY MIX COSsT
outlet no. (PK) outlet no. (PK) outlet no. (PK)
product id (PK) product id (PK) product id (PK)
period id (PK) period id (PK) period id (PK)

total units on hand
product reorder point

total product cost
total product sales

TIME
PERIOD

period id (PK)

Figure 5.29 Unresolved parallel associative entities.

iVenture Ex. 1012 Page 41 of 50

RELATIONSHIP RULES 205

Note the potential for problems in this version of the model. First,
the marketing team’s decision to sell products at an outlet determines
whether there will be any inventory or costs associated with the prod-
uct at that outlet. Creation of instances of either OUTLET PRODUCT
INVENTORY or OUTLET PRODUCT COST without a corresponding
instance of OUTLET PRODUCT MIX is possible in the current model,
but would be incorrect, Second, all three associative entities have the
same key structure, This indicates, of course, that the non-key attributes
of any of the three associative entities are actually functionally depen-
dent on the primary key of all three associative entities. The model car-
ries a clear normalization problem as a result. Finally, looking ahead to
design and implementation, the creation of tables or other data struc-
tures to accommodate three entities with identical key structures in this
case introduces unnecessary overhead into the system.

A recommended resolution to the multiple associative entity prob-
lem is depicted in Figure 5.30.

It is important to recognize that none of the departments has lost
any information needed to perform its functions. The model is now cor-
rectly normalized (according to our assumptions), and can be imple-
mented in one or more information systems,

TIME
PRODUCT OUTLET PERIOD
product id (PK) outlet no. (PK) period id (PK)
PRODUCT

OUTLET

outlet no, (PK)

product id (PK) - Marketing department decides which

period id (PK) products to place in each outlet,

1m——+ Finance dept. tracks cost & sales results.
total product sales v

total units on hand .l Inventory management department
product reorder point tracks quantities and reorders products,

Figure 5.30 Resolved paralle! associative entities.

e
iVenture Ex. 1012 Page 42 of 50

206 DATA MODELING RULES

5.10 RECURSIVE RELATIONSHIPS

Rule Resolve recursive relationships.

Discussion

A recursive relationship is one in which an occurrence of an entity is
related to one or more other occurrences of the same entity. These are
usually depicted with a relationship like that shown in Figure 5.31 in
our example.

Example

Figure 5.31 depicts a recursive relationship from one instance of PER-
SON to another. A recursive relationship is often modeled this way
initially.

Alternatively, we may first recognize recursive associations as rela-
tionships that exist among subtypes of the same supertype entity, as
illustrated in Figure 5.32. The relationship between SUPERVISOR and
EMPLOYEE implies a relationship between two occurrences of the PER-
SON entity, since each occurrence of EMPLOYEE and SUPERVISOR
requires the existence of a corresponding occurrence of PERSON. From a
business perspective, supervisors and employees have a personal rela-
tionship (or in some cases, an impersonal relationship!). Note in particu-
lar the key structure of EMPLOYEE. We have migrated the person id
primary key from SUPERVISOR as a nonprimary foreign key in EM-
PLOYEE. That does not violate our rule that a subtype must have the
same primary key as its parent, so we could leave the model as it cur-
rently stands, and probably not encounter any major problems.

PERSON

Figure 5.31 A typical recursive relationship notation.

iVenture Ex. 1012 Page 43 of 50

RELATIONSHIP RULES 207

PERSON

person id {PK)
social security number
person name

EMPLOYEE > HH suPervISOR

person id (PK) person id (PK)

person id (FK) {supervisor]
Figure 5.32 Relationships among subtypes of the same supertype.

But what if we have numerous subtypes of PERSON, each with rela-
tionships to the other? Our keys could be become increasingly difficult to
handle. Or what if we have a matrix organization, where an employee
could have several supervisors, or we wish to track an employee’s super-
visory history? Figure 5.33 shows our example modified to depict an asso-
ciative entity between EMPLOYEE and SUPERVISOR.

This works if subtypes have been identified, and there are not too
many of them. Recursive relationships come in all shapes and sizes,
and the attempts to resolve them are often inconsistent even within the
same model.

In order to deal with both simple and complex variations of recur-
sive relationships quickly and consistently, we need a general scheme
for resolving them. We have found Finkelstein’s method to be very ef-
fective, and actually quite elegant (1989). Finkelstein establishes one of
his business normal forms—fifth business normal form (5BNF) to be
exact—to deal with recursive relationships. He defines 5BNF as:

An entity is in fifth business normal form if its dependencies on
occurrences of the same entity or entity type have been moved
into a STRUCTURE entity.

L

iVenture Ex. 1012 Page 44 of 50

208 DATA MODELING RULES

PERSON

person id (PK}
social securily number
person nama

EMPLOYEE SUPERVISOR

person id (PK) person d (PK)

EMPLOYEE
SUPERVISOR
RELATIONSHII

person id (PK)

person id (PK)

Figure 5.33 Associative entity between two subtypes.

A structure entity is a special type of attributive entity wherein two
instances of the parent primary key are migrated to the child, rather
than one. Additional keys are added if necessary to distinguish between
multiple relationships between the same two occurrences. Figure 5.34
illustrates the general form of a structure entity primary key. Note that
the presence of two instances of the person id primary key in PERSON
STRUCTURE allows us to establish a relationship between two occur-
rences of PERSON. In fact, every occurrence in PERSON can be related
to every other occurrence of PERSON through the PERSON STRUC-
TURE entity.

The structure entity is generally only used at the supertype level of
a generalization-specialization hierarchy. There are several variations
of the structure entity that can be used to handle special circumstances.
We strongly recommend you read Finkelstein’s discussions on struc-
ture entities (1989, 1992).

iVenture Ex. 1012 Page 45 of 50

RELATIONSHIP RULES 209

PERSON
PERSON H—O<sraycTure

person id (PK) person id (PK)
person id (PK)

Two primary keys migrated to
establish relationship between
two instances of the same
entity.

Figure 5.34 Migration of structure entity primary keys.

REFERENCES

Date, C. J. An Introduction to Database Systems, Volume I. Reading,
MA: Addison-Wesley, 1986.

Finkelstein, Clive. An Introduction to Information Engineering: From
Strategic Planning to Information Systems. Sydney: Addison-Wesley,
1989.

Finkelstein, Clive. Information Engineering: Strategic Systems Devel-
opment. Sydney: Addison-Wesley, 1992.

FIPS PUB XXX, Integration Definition for Information Modeling IDEF1X,
September 1992.

Korth, Henry F. and Silberschatz, Abraham. Database System Con-
cepts. New York: McGraw-Hill, 1986.

iVenture Ex. 1012 Page 46 of 50

306 DATA MODELING RULES

person id (PK) | identifier name (PK) | person identifier value
001 social security no 216-92-4553

001 employee id 2257

002 passport number 03897-09-09

It | 1 PERSON ‘

PERSON I DENTIFIER BP-O—F [DENTIFIER
person id (PK) person id (PK) identifier name (PK)
name identifier name (PK)
date of birth person identifier value

Figure 9.20 Multiple identifiers for a PERSON—Possible resolution,

additional occurrence without impact to the model. This model fragment
may not communicate to business users as well as the previous model,
but it certainly will be easier to maintain. All relationships that may be
introduced to the subtypes in the previous model—a DRIVER drives a
CAR, an EMPLOYEE works for an ORGANIZATION—will be main-
tained as optional relationships from PERSON. The person identifier
value attribute maintains the value of each identifier as applies to an
individual.

9.7 MODELING LOCATION
Discussion

There are almost as many ways to model location as there are data
modelers. It is a concept that seems so simple on the surface, yet leads
to many different personal opinions. The problem with LOCATION is
that there are so many possible location objects, and then there are
many permutations of these objects. For example, a location could con-
tain x and y coordinates, room number, apartment number, PO Box,

iVenture Ex. 1012 Page 47 of 50

BEST PRACTICES 307

street address, city, state, country, bed number, or a number of other
possibilities. To complicate matters, the number of valid combinations
of these objects is seemingly infinite. The following methods are pre-
sented to promote discussion.

Examples

The first method of modeling location is straightforward. A LOCATION
is described with an artificial key, location id, and then a number of
non-key attributes including street address, city, state, zip code, and
country. PERSON LOCATION REASON describes the connection be-
tween PERSON and LOCATION. Is it a mailing address, billing ad-
dress, home address, or work address? This allows us to distinguish
among addresses. Figure 9.21 describes this method.

This is a rather simplistic attempt at modeling a LOCATION. It
assumes all LOCATION occurrences have a street address, city, state,
zip code, and country. Post office boxes, building numbers, room num-
bers are ignored in this model. Foreign locations and nonpostal schemes
are ignored.

PERSON
tocaTioN HH——O<¢ Locarion POt PERSON

location id (PK) Y location id (PK) person name (PK)
street address T~ person name (PK)
city person location reason (PK)
state
zip code . -
country N
PERSON
LOCATION
REASON
person location reason (PK)
Figure 9.21 Location—Questionable method.

iVenture Ex. 1012 Page 48 of 50

‘pPoyIaWw BUQ—UONEd0T

226 2unbiy

spoo diz
(Md) pt uonieooy

aNOZ
IVLSOd

sweu Ao
(Md) p! uoneoao]

aweu ajels

(Md) pr uoneso)

ALID

JLvis

9)euIpI00D A
S]BUIPIOOD X
(1d) p uoneoo|

NOILYO01039

sselppe 19a1s
{(Md) p1 uoljeoo

SSs3yaay
133d1S

(uoneo0| paocualaal) (Md) P! UOIEDO|

(1d) Pt uoneco|

(%) odA) uoneag |
(3d) pi uoneoo|

FHNLONYLS
NOILYDO1

>-O—

(Md) sweu uosiad

NOSH3d

NOILVOOT

(Md) eweu uosiad
(Md) pi uonesol

H—0-<4

NOILYOO1
NOSH3d

(Md) ad4) uoneoo)

3dAl

>-O—HH Nowwvoon

= . -

=R e =

iVenture Ex. 1012 Page 49 of 50

BEST PRACTICES 309

As a second example, Figure 9.22 describes a method of modeling LO-
CATION that is straightforward and flexible. As a new location object is
discovered, it is simply added as a subtype. In the example below, we have
CITY, STATE, STREET ADDRESS, ZIP subtypes. LOCATION TYPE con-
tains the valid values for the subtypes. LOCATION STRUCTURE shows
the hierarchical relationship between locations—cities within states, street
addresses within cities. If we wish to discover where a PERSON lives, we
simply extract it from the PERSON LOCATION entity.

This is a structure that is easy to implement and flexible. Post office
boxes, room numbers, building numbers and other mechanisms for iden-
tifying locations can simply be placed in the generalization structure.
Nonpostal schemes for identifying locations are included as subtypes,
such as GEOLOCATION.

In Figure 9.23, a more abstract method is utilized. A LOCATION is
a coordinating mechanism. It contains no attributes other than an arti-
ficial key. Tt is associated with other entities in the data model to deter-
mine their location. A POSITIONING OBJECT identifies categories of
locations such as a street, state, longitude, latitude, zip code, and so on.
It is used to identify a COORDINATE. A COORDINATE is a symbol
representing a place. It helps humans find where a specific place is. For
example, it may be 2000 15th Street or Germany or 113 degrees longi-
tude. Thus, 2 LOCATION can have many COORDINATES and a CO-
ORDINATE can have many LOCATIONS. NAVIGATION is a
framework for interpreting a COORDINATE. Instances of NAVIGA-
TION could be postal, grid, and the like. NAVIGATION identifies the
different systems for identifying locations. Every POSITIONING OB-
JECT is supported by one or more methods of NAVIGATION. A NAVI-
GATION POSITIONING OBJECT entity allows many NAVIGATIONs
to be associated with many OBJECTs.

9.8 MODELING BUSINESS (OR LEGAL) PARTY
Discussion

A business party is a generalization problem that is very often faced by
the data modeler. It oceurs when a business rule requires the participa-
tion of two seemingly unrelated entities. For example, a customer may
be either a person or an organization. A legal party may be either a
person or an organization. The enterprise maintains information about
all of these entities and the data modeler is faced with a dilemma. How
can they represent the similarities between the two entity types, while
still maintaining their independence?

iVenture Ex. 1012 Page 50 of 50

