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nterprocess Communication

introduction

Since network programming involves the interaction of two or more processes, we must
look carefully at the different methods that are available for different processes to com-
municate with each other. In traditional single process programming, different modules
within the single process can communicate with each other using global variables, func-
tion calls, and the arguments and results passed back and forth between functions and
their callers. But, when dealing with separate processes, each executing within its own
address space, there are more details to consider. When time-shared, multiprogramming
operating systems were developed over 20 years ago, one design goal was to assure cer-
tain that separate processes wouldn’t interfere with each other. For two processes to
communicate with each other, they must both agree to it, and the operating system must
provide some facilities for the Interprocess Communication (IPC).

While some form of IPC is required for network programming, the use of IPC is by
110 means restricted to processes executing on different systems, communicating through
a network of some form. Indeed, there are many instances where IPC can and should be
qutd between processes on a single computer system. We can diagram two processes
ustng IPC on a single computer system as shown in Figure 3.1.

87
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88 Interprocess Communication Chapter 3

user user
process process
kernel

Figure 3.1 IPC between two processes on a single system.

This figure shows the information between the two processes going through the kernel;
although this is typical, it is not a requirement for IPC.

To expand this to processes on different systems, using some form of networking
between the two systems, we have the picture shown in Figure 3.2.
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Figure 3.2 IPC between two processes on different systems.

In this chapter we consider several different methods of IPC.

pipes

FIFOs (named pipes)
message queues
semaphores

shared memory

Before going into the IPC sections, we first describe file and record locking, an integral
and necessary part of many multiple process systems.

3.2 File and Record Locking
There are occasions when multiple processes want to share some resource. It is essential

that some form of mutual exclusion be provided so that only one process at a time can
access the resource.
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Section 3.2 File and Record Locking 89

Consider the following scenario, which comes from the line printer daemon exam-
ples that we consider in more detail in Chapter 13. The process that places a job on the
print queue (to be printed at a later time by another process) has to assign a unique
sequence number to each print job. We cannot use the process ID as the sequence num-
ber, as it is possible for a print job to exist long enough for a given process ID to be
reused. The technique used by the Unix print spoolers is to have a file for each printer
that contains the next sequence number to be used. The file is just a single line contain-
ing the sequence number in ASCIL Each process that needs to assign a sequence number
goes through three steps:

e it reads the sequence number file,
e it uses the number,
e it increments the number and writes it back.

The problem is that in the time it takes a single process to execute these three steps,
another process can perform the same three steps. Chaos can result. What is needed is
for a process to be able to set a lock to say that no other process can access the file until
the first process is done. Here is a simple program that does these three steps. The func-
tions my lock and my_unlock are called to lock the file at the beginning, and unlock
the file when the process is done with the sequence number.

#define SEQFILE "segno" /* filename */
#define MAXBUFF 100
main ()
{
int fd, i, n, pid, segno;
char buff [MAXBUFF + 1],

pid = getpid();
if ( (fd = open{(SEQFILE, 2)) < 0)
err_sys("can’t open %s", SEQFILE) ;

for (i = 0; i < 20; i++) {
my lock(£d); /* lock the file */
lseek (fd, OL, 0); /* rewind before read */
if ( (n = read(fd, buff, MAXBUFF)) <= 0)
err_sys("read error");
buff{n} = "\0’"; /* null terminate for sscanf */
if ( (n = sscanf (buff, "%d\n", &seqno)) != 1)

err_sys ("sscanf error");
printf ("pid = %d, seq# = $d\n", pid, seqno);

seqnot+; /* increment the sequence number */

sprintf (buff, "%03d\n", seqno);

n = strlen(buff);

lseek (£d, 0L, 0); /* rewind before write */
if (write(fd, buff, n) != n)
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20 Interprocess Communication Chapter 3

err sys{"write error");

my_unlock (f£d) ; /* unlock the file */

To show the results when locking is not used, the following functions provide no
locking at all.

/k
* Locking routines that do nothing.
*/

my lock(fd)
int fd;
{
return;

}

my_unlock (£d)
int £d;
{

return;

}

If the sequence number is initialized to one, and a single copy of the program is run,
we get the following output:

pid = 118, seqg# = 1
pid = 118, seq# = 2
pid = 118, seq# = 3
pid = 118, seqf = 4
pid = 118, seqg# = 5
pid = 118, seq# = 6
pid = 118, seqg# = 7
pid = 118, seg# = 8
pid = 118, seq# = 9
pid = 118, seq# = 10
pid = 118, seq# = 11
pid = 118, seg# = 12
pid = 118, seq# = 13
pid = 118, seqf = 14
pid = 118, segf = 15
pid = 118, seqg# = 16
pid = 118, seq# = 17
pid = 118, seq# = 18
pid = 118, seg# = 19
pid = 118, seg# = 20

iVenture Ex. 1014 Page 7 of 94



Section 3.2 File and Record Locking 91
When the sequence number is again initialized to one, and the program (whose name is
a.out) is run twice, using the shell command

a.out & a.out &

we get the following output:

pid = 186, seq# = 1 pid = 186, seq# = 10
pid = 186, seqg# = 11
pid = 187, seq# = 1
pid = 187, seq# = 2 pid = 187, seq# = 6
pid = 187, seq# = 3 pid = 187, seq# = 7
pid = 187, seq# = 4 pid = 187, seq# = 8
pid = 187, seq# = 5 pid = 187, seq# = 9
pid = 187, seq# = 6 pid = 187, seq# = 10
pid = 187, seqg# = 7
pid = 187, seqg# = 8 pid = 186, seg# = 12
pid = 187, seg# = 9 pid = 186, seg# = 13
pid = 187, seq# = 10 pid = 186, seq# = 14
pid = 186, seq# = 15
pid = 186, seq# = 2 pid = 186, seq# = 16
pid = 186, seqg# = 3 pid = 186, seg# = 17
pid = 186, seqg# = 4 pid = 186, seg# = 18
pid = 186, seqgf = 5 pid = 186, seqf# = 19
pid = 186, seq# = 20
pid = 187, seq# = 5
pid = 187, seqg# = 11
pid = 186, seq# = 6 pid = 187, seqg# = 12
pid = 186, seg# = 7 pid = 187, seq# = 13
pid = 186, seqg# = 8 pid = 187, seqg# = 14
pid = 186, seq# = 9

(The output has been put into two columns and spaces inserted between the consecutive
lines of output for a single process to make the output more readable.) This is not what
we want. The first process (PID 186) reads the file and prints its value (1). Before this
value gets incremented and written back to the file, the second process (PID 187) reads
the file and uses the CPU while it updates the sequence number all the way to 10. Only
then does the first process run again, and it resets the sequence number back to two.
What has happened is that the operating system has switched between the two processes
somewhere in the middle of the three steps outlined earlier. Note that each process reads,
increments, and writes the sequence number file exactly 20 times (there are exactly 40
lines of output), but the sequence number keeps getting incremented then reset to some
earlier value by the other process.

What we need is some way to allow a process to “‘lock out’’ other processes from
accessing the sequence number file while the three steps are being performed.
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92 Interprocess Communication Chapter 3
Advisory Locking versus Mandatory Locking

Advisory locking means that the operating system maintains a correct knowledge of
which files have been locked by which processes, but it does not prevent some procesg
from writing to a file that is locked by another process. A process can ignore an advisory
lock and write to a file that is locked, if the process has adequate permissions. Advisory
locks are fine for what are called cooperating processes. The programming of daemong
used by network programming is an example of cooperative processes—the programs
that access a shared resource, such as the sequence number file, are all under control of
the system administrator. In our example, as long as the actual file containing the
sequence number is not writable by any process, some random process cannot write to
the file while it is locked. The other type of file locking, mandatory locking, is provided
by some systems. Mandatory locks mean that the operating system checks every read
and write request to verify that the operation does not interfere with a lock held by a
process.

System V Release 2 provides advisory locking, as does 4.3BSD, while System V
Release 3 provides both advisory and mandatory locking. By default, System V
Release 3 provides advisory locking. To enable mandatory locking for a particular file,
we must turn the group-execute bit off and turn the set-group-ID bit on for the file. Note
that it makes no sense to have the set-user-ID bit on for a file without having the user-
execute bit on also, and similarly for the set-group-ID bit and the group-execute bit.
Therefore the mandatory locking option was added to System V Release 3 in this way,
without affecting any existing user software. New system calls were not required. The
1s command on System V Release 3 was enhanced to look for this special combination
of bits and note that the file is marked for mandatory locking.

File Locking versus Record Locking

File locking locks an entire file, while record locking allows a process to lock a specified
portion of a file. The definition of a record for Unix record locking is given by specify-
ing a starting byte offset in the file and the number of bytes from that position. The term
record locking is derived from other operating systems that enforce a record structure on
disk files. A better term for the Unix feature is range locking since the Unix kernel does
not support the concept of ‘‘records.”” It is a range of the file that is locked. Whether
this range has any resemblance to a record is up to the application.
The System V Lockf function has the calling sequence

#include <unistd.h>

int lockf(int fd, int function, long size) ;

where function has one of the following values:
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F_ULOCK  Unlock a previously locked region
F_LOCK Lock a region (blocking)

F_TLOCK  Testand lock a region (nonblocking)
F TEST Test a region to see if it is locked

The lockf function uses the current file offset (which the process can set using the
1seek system call) and the size argument to define the ‘‘record.”” The record starts at
the current offset and extends forward for a positive size, or extends backwards for a
negative size. If the size is zero, the record affected extends from the current offset
through the largest file offset (the end of file). Doing an 1seek to the beginning of the
file followed by a 1ock £ with a size of zero locks the entire file.

The lockf function provides both the ability to set a lock and to test if a lock is set.
When the function is F_TLOCK and the region is already locked by another process, the
calling process is put to sleep until the region is available. This is termed blocking. The
F_TLOCK operation, however, is termed a nonblocking call—if the region is not avail-
able, 1ockf returns immediately with a value of —1 and errno set to either EAGATN or
EACCES.T Also, the F_TEST operation allows a process to test if a lock is set, without
setting a lock. Note that to do a nonblocking lock, we must use the F_TLOCK operation.
If we write

if (lockf (f4d, F_TEST, size) == 0) {
rc = lockf (fd, F LOCK, size);

}

there is a chance that some other process can issue a lock £ call between the F TEST
and the F_TLOCK, which causes the F_LOCK to block. The F_TLOCK provides the abil-
ity to do the test and set in a single operation, which is needed.

An example of a nonblocking lock is if a daemon is started and it wants to assure
that only a single copy of it is running. When the daemon starts, it executes a non-
blocking lock on a specified file. If the lock succeeds, then the daemon is the only copy
running, but if it fails the daemon can exit, since it knows that a copy is already running.
We will see an example of this exact scenario in the 4.3BSD line printer spooler in Sec-
tion 13.2.

System V Release 2 Advisory Locking

The original System V Release 2 did not provide any type of file or record locking. But
the enhanced version of System V Release 2 provided advisory file and record locking.

T System V Release 2 and System V Release 3 both return EACCES. The System V Release 3
Manual warns that ‘‘portable application programs should expect and test for either value.”’
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94 Interprocess Communication Chapter 3

With System V Release 3, mandatory file and record locking are provided. Our locking
functions are

/*
* Locking routines for System V.
*/
#include <unistd.h>
my_lock (£d)
int fd;
{
lseek (fd, OL, 0); /* rewind before lockf */
if (lockf(fd, F_LOCK, OL) == ~-1) /* 0L -> lock entire file */

err_sys("can’t F_LOCK");
}

my_ unlock (£d)
int £d;
{
lseek (£d, 0L, 0);
if (lockf(fd, F_ULOCK, 0OL) == -1)
err_sys("can’t F_ULOCK");

}

System V record locking is really provided by the fcnt 1 system call. The lockf func-
tion is provided by the standard C library as an interface to the fcnt 1 system call.

4.3BSD Advisory Locking
We continue our sequence number example using the advisory file locking provided by
4.3BSD. The flock system call is provided to lock and unlock a file.
#include <sys/file.h>
int flock (int fd, int operation) ;
fd is a file descriptor of an open file, and operation is built from the following constants:

LOCK_SH  Shared lock

LOCK_EX  Exclusive lock

LOCK_UN  Unlock

LOCK_NB  Don’t block when locking
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More than one shared lock can be applied to a file at any time, but a file cannot have both
a shared lock and an exclusive lock, or multiple exclusive locks at any time. The permis-
sible locking operations are

LOCK_SH Shared lock (blocking)
LOCK_EX Exclusive lock (blocking)
LOCK_SH | LOCK _NB  Shared lock (nonblocking)
LOCK_EX | LOCK NB  Exclusive lock (nonblocking)
LOCK_UN Unlock

If the lock was successful, zero is returned by £1ock, otherwise —1 is returned. If the
lock fails because the file is already locked and a nonblocking lock was requested
(LOCK_NB), the global errno is set to ENOULDBLOCK. This lets us code our locking
functions as follows:
/*

* Locking routines for 4.3BSD.

*/

#include <sys/file.h>

my_lock (£d)
int fd;
{
if (flock(fd, LOCK EX) == -1)
err_sys("can’t LOCK_EX");
}

my unlock (f£d)
int fd;

{ 1

if (flock(fd, LOCK _UN) == ~-1)

err sys("can’t LOCK UN"); !

We can now use these locking functions and run our program under System V or
4.3BSD. Executing the shell command

a.out & a.out &

yields the output

i
r
I
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96 Interprocess Communication Chapter 3

pid = 308, seq# = 1 pid = 308, seq# = 22
pid = 308, seq# = 23
pid = 307, seg# = 2 pid = 308, seqg# = 24
pid = 307, seq# = 3 pid = 308, seqg# = 25
pid = 307, seq# = 4 pid = 308, seq# = 26
pid = 307, seg# = 5 pid = 308, seqg# = 27
pid = 307, seqt# = 6
pid = 307, seq# = 7 pid = 307, seg¥ = 28
pid = 307, seg# = 8 pid = 307, seqg# = 29
pid = 307, seq# = 9 pid = 307, seq# = 30
pid = 307, seg# = 10
pid = 307, seq# = 11 pid = 308, seq# = 31
pid = 307, seq# = 12 pid = 308, seq# = 32 !
pid = 307, seqf = 13 pid = 308, seq# = 33 |
pid = 307, seqgq# = 14 pid = 308, seq# = 34

pid = 307, seg# = 15
pid = 307, seqg# = 35

pid = 308, seq# = 16 pid = 307, seg# = 36
pid = 308, seg# = 17 pid = 307, seq# = 37
pid = 308, seq# = 18

pid = 308, seg# = 19 pid = 308, seq# = 38
pid = 308, seq# = 20 pid = 308, seg# = 39
pid = 308, seqg# = 21 pid = 308, seq# = 40

(Again we have inserted blank lines at the points when the process ID changes and made
the output multicolumn.) This is the way this example should work—the sequence num-
ber increments up to 40 in order.

Other Unix Locking Techniques

There are three features of the Unix filesystem implementation that can be exploited to
provide a type of locking. These techniques create and use an ancillary file as an indica-
tor that the process has the shared resource locked. If the ancillary file exists, the
resource is locked by some other process, otherwise the calling process must create the
ancillary file to lock the resource. The three techniques that we show in this section use
the following features:

The 1ink system call fails if the name of the new link to the file already exists.

2. The creat system call fails if the file already exists and if the caller does not
have write permission for the file.

3. Newer versions of Unix, including both 4.3BSD and System V, support options
to the open system call that cause it to fail if the file already exists.

The first two techniques are applicable to all versions of Unix, and have been used since
Version 7 (or earlier).
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Section 3.2 File and Record Locking 97

A first idea is to create the ancillary file and use it as an indicator that a process has a
lock on some other file. This won’t work, however, since the creat system call does
not fail if the file already exists. If the file does exist, creat truncates the file to zero
length.

Another idea is to test if the ancillary file exists, and if not, create the file.

if ( (fd = open(file, 0)) < 0)
fd = creat (file, 0644);

This won’t work either, as it takes two separate system calls to test if a file exists (open),
and then create the file if it does not exist (creat). In the time between the two system
calls some other process can do the same test and then creat the same file. When the
process that was interrupted runs again, it issues the creat system call, but no error
occurs even though the file already exists.

Our first correct implementation uses the fact that the 1ink system call fails if the
g name of the new link to the file already exists.

int link (char *existingpath, char *newpath) i

This system call takes an existing file and creates another directory link to that file.
(Recall that a Unix file can have any number of links (i.e., names) that refer to the same
file.) Unlike the creat system call, if the new pathname specified by the 1ink already
exists, an error is returned and the global errno is set to EEXIST. Our technique is to
create a unique temporary file, whose name is based on the process ID of the process.
Once this file is created, we try to form another 1ink to it, under the “‘well-known”’
name of the ancillary lock file. If the 1ink succeeds, then the process has the lock, and o
the lock file is pointed to by two directory entries—the temporary filename based on the
process ID and the well-known name of the lock file. The temporary filename can now
be removed, leaving only a single link to the file. Using this technique for our lock func-
tions, we have

/*
* Locking routines using the link() system call.
*/
#define LOCKFILE "seqno.lock"”
#include <sys/errno.h>
extern int errno;
my_lock (£d)
int fd;
{
int tempfd;
char tempfile[30];

sprintf (tempfile, "LCK%d", getpid());

/%
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98 Interprocess Communication Chapter 2

* Create a temporary file, then close it.

* If the temporary file already exists, the creat () will
* just truncate it to 0-length.

*/

if ( (tempfd = creat (tempfile, 0444)) < Q)
err_sys("can’t creat temp file");
close (tempfd) ;

/%
* Now try to rename the temporary file to the lock file.

* This will fail if the lock file already exists (i.e., if
* some other process already has a lock).

*/
while (link (tempfile, LOCKFILE) < 0) {
if (errno != EEXIST)
err_sys("link error");
sleep(l);

}
if (unlink(tempfile) < 0)
err_sys("unlink error for tempfile");

my_unlock (fd)
int fd;
{
if (unlink (LOCKFILE) < 0)
err_sys("unlink error for LOCKFILE") ;

The second technique uses the fact that the creat system call returns an error if the
file exists and write permission is denied. In describing this system call in Section 2.3,
we stated that it truncates an existing file to zero-length if it already exists. This is nor-
mally true, but if the file access permissions don’t allow writing to the file for the process
calling creat, it fails and errno is set to EACCES. There is one caveat to this
technique—this error is not returned if the process has superuser permissions, since the
superuser can write to any file. Qur technique is to create a temporary lock file with all
write permissions disabled, and if the creat succeeds, the calling process knows it hag
the lock, and the sequence number file can be safely modified. The unlock operation
removes the temporary lock file, since the unlink system call succeeds if the caller has
write permission in the directory. The caller does not need either read or write permis-
sion for the file being unlinked. Our code for this technique is

/*
* Locking routines using a creat () system call with all
* permissions turned off.

*/
#include <sys/errno.h>
extern int errno;
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#define LOCKFILE "segno.lock"
#define TEMPLOCK "temp.lock”

my_lock (fd)
int £d;
{
int tempfd;

/~k

* Try to create a temporary file, with all write :
* permissions turned off. If the temporary file already !
* exists, the creat() will fail. |
ny i

while ( (tempfd = creat (TEMPLOCK, 0)) < 0) {
1f (errno != EACCES
err sys("creat error");
sleep(1l);
}
close (tempfd) ;
}

my_ unlock (fd)
int £d;
{

if (unlink (TEMPLOCK) < 0)
err sys("unlink error for tempfile");

The third technique uses the option flags for the open system call that are provided
by most recent versions of Unix—both 4.3BSD and System V, for example, provide it.
The <fcntl.h> header file defines the option flags for the open system call. If both
O_CREAT and O_EXCL are specified, the open fails if the file already exists, otherwise
the file is created. The POSIX standard [IEEE 1988] specifically states that the test for
the existence of the file and the creation of the file if it doesn’t exist, must be atomic with
regard to other processes trying to do the same thing.

Our code for this technique is

/*
* Locking routines using a open () system call with both
* O_CREAT and O EXCL specified.

*/
#include <fentl.h>

#include <sys/errno.h>
extern int errno;

#define LOCKFILE "segno.lock"
#define PERMS 0666

my lock (fd)
int £d;
{
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int tempfd;

* Try to create the lock file, using open() with both
* O _CREAT (create file if it doesn’t exist) and O _EXCL
* (error if create and file already exists).

* Tf this fails, some other process has the lock.

*/
while ( (tempfd = open (LOCKFILE, OWRDWRIOACREZ-\TIO__EXCL, PERMS)) < 0)
if (errno != EEXIST)
err_sys("open error for lock file");
sleep(l);

}
close (tempfd);

}

myﬁunlock(fd)
int fd;
{
if (unlink (LOCKFILE) < 0)
err_sys("unlink error for lock file™);

There are a few points to consider about these three techniques.

1. The first two techniques work under any version of Unix.

9. These techniques take longer to execute than actual file locking system calls, as
multiple system calls (such as creat, close, link, and unlink) are
required, and several filesystem operations are required.

3. An ancillary lock file is required, in addition to the file containing the resource
that is shared. In our example, we need both the sequence number file and the
ancillary lock file. Since the lock file must be created each time it is needed, a
single file cannot be used.

4. Ancillary files such as a lock file might be left around after a system crash and
some technique must be devised to handle this (i.e., remove old lock files).

5. The 1ink system call in the first technique cannot create a link between files on
different logical filesystems, so the temporary file cannot normally be placed in
the /tmp filesystem. (Many largex Unix systems place the /tmp directory in its
own filesystem.)

6. The second technique does not work if the processes competing for the resource
run with superuser privileges.

7. When the ancillary lock is owned by another process, the process wanting the
lock doesn’t know when to check again. In our examples we wait for one
second. The ideal condition is for the process wanting the lock to be notified
when the lock is available.
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Section 3.3 A Simple Client-Server Example 101

8. The process that obtains the lock can terminate, intentionally or unintentionally,
without releasing the lock.

Cases 4 and 8 require some technique for another process to determine when an existing ;
Jock is not in use. A common solution is to assume a timeout period based on the appli- [
cation (a few minutes, perhaps) and remove locks that are older than this. The last- \}
access time or last-modify time in the stat structure for the lock file can be used to
determine how long a lock has been around. Since this technique fails if the resource is '
really in use for longer than the timeout period, an enhancement to this is to store the pro-
cess ID of the process that has the lock in the lock file. This way, the k111 system call,
with a signal argument of zero can be used to determine if the process is still in existence.
(We’ll see a similar example in Section 13.2-—the 4.3BSDline printer spooler stores the
process ID of the current server in a file so that it can kill it at a Jater time, if neces-
sary.)

Given the potential problems with these older techniques, true record locking or file
locking should be used when available.

We’ll return to this file locking example in Section 3.10 when we present another
solution using semaphores.

A Simple Client-Server Example

The client—server example shown in Figure 3.3 is used throughout this chapter for illus-
tration of the various methods of IPC.

The client reads a filename from the standard input and writes it to the IPC channel.
The server reads this filename from the IPC channel and tries to open the file for reading.
If the server can open the file, it responds by reading the file and writing it to the IPC
channel, otherwise the server responds with an ASCII error message stating that it can’t
open the file. The client then reads from the IPC channel, writing what it receives to the
standard output. If the file can’t be read by the server, the client reads an error message
from the IPC channel. Otherwise the client reads the contents of the file.

stdin filename
filename =~ ——— s k- -l
client server
file contents
file contents = gt S
stdout O eITor Message

Or error message

Figure 3.3 Client—server example.

The two dashed lines in Figure 3.3, between the client and server, correspond to some
form of IPC,
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Pipes
Pipes are provided with all flavors of Unix. A pipe provides a one-way flow of data. A
pipe is created by the pipe system call.

int pipe (int *filedes) ;

Two file descriptors are returned—filedes/0] which is open for reading, and filedes[]]
which is open for writing. Pipes are of little use within a single process, but here is a
simple example that shows how they are created and used.

main ()

{
int pipefd(2], n;
char buff£[100];

if (pipe (pipefd) < 0)
err_sys("pipe error");

printf("read fd = %d, write fd = %d\n", pipefd[0], pipefd([1]);
if (write(pipefd{1l], "hello world\n", 12) != 12)
err _sys{"write error");

if ( (n = read(pipefd[0], buff, sizeof(buff))) <= 0)
err_sys("read erroxr");

write(l, buff, n); /* fd 1 = stdout */

exit (0);
}

The output of this program is

hello world
read fd = 3, write fd = 4

Note that the ““hello world”’ string is printed on the standard output before the output of
the print f. The reason for this is because the print £ output is buffered by the stan-
dard /O library, and since its output does not fill a standard 1/0 buffer (typically 512 or
1024 bytes), the buffer is not output until the process terminates. The write function,
however, is not buffered at all.

A diagram of what a pipe looks like in a single process is shown in Figure 3.4. A
pipe has a finite size, always at least 4096 bytes. The rules for reading and writing a
pipe—when there is either no data in the pipe, or when the pipe is full—are provided in
the next section on FIFOs.
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user process

read fd
write fd

kernel

pipe
— flow of data —

Figure 3.4 Pipe in a single process.
Pipes are typically used to communicate between two different processes in the fol-

lowing way. First, a process creates a pipe and then forks to create a copy of itself, as
shown in Figure 3.5.

parent process child process

read fd
write fd

read fd

write fd

kernel

pipe
— flow of data —

Figure 3.5 Pipe in a single process, immediately after fork.

Next the parent process closes the read end of the pipe and the child process closes the
write end of the pipe. This provides a one-way flow of data between the two processes as
shown in Figure 3.6.

|
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parent process child process

read fd

write fd

kernel

— flow of data —

Figure 3.6 Pipe between two processes.

‘When a user enters a command such as
who | sort | lpr

to a Unix shell, the shell does the steps shown above to create three processes with two
pipes between them. (who is a program that outputs the login names, terminal names,
and login times of all users on the system. The sort program orders this list by login
names, and 1pr is a 4.3BSD program that sends the result to the line printer.) We show

this pipeline in Figure 3.7.

who process sort process lpr process
write fd write fd
read fd read fd
kemel
— How of data — — llow of data —

Figure 3.7 Pipes between three processes in a shell pipeline.

Note that all the pipes shown so far have all been unidirectional, providing a one-
way flow of data only. When a two-way flow of data is desired, we must create two
pipes and use one for each direction. The actual steps are

e create pipe 1, create pipe 2,
o fork,
e parent closes read end of pipe 1,
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& parent closes write end of pipe 2,
e child closes write end of pipe 1,
e child closes read end of pipe 2.

This generates the picture shown in Figure 3.8.

parent process child process

write 2 fd
read 1 fd

write 1 fd
read 2 fd

kernel

pipe 1
— flow of data —»

« flow of data «

Figure 3.8 Two pipes to provide a bidirectional flow of data.

Let’s now implement the client-—server example described in the previous section
using pipes. The main function creates the pipe and forks. The client then runs in the
parent process and the server runs in the child process.

main ()
{
int childpid, pipel[2], pipe2[2];

if (pipe(pipel) < 0 || pipe (pipe2) < 0)
err_sys("can’'t create pipes");

if ( (childpid = fork()) < 0) {
err_sys("can’t fork");

} else if (childpid > 0) { /* parent */
close (pipel[01);
close (pipe2[1]);

client (pipe2[0], pipel(l]);

while (wait((int *) 0) != childpid) /* wait for child */

close (pipel[1]1);

close(pipe2[0]);
exit (0);
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} else { /* child */
close (pipel(11):
close (pipe2(0});

server (pipel (0], pipe2(l]);
close (pipel{0])/
close (pipe2(1]1);

exit (0);
}

[
The client function is
#include <stdio.h>

#define MAXBUFF 1024

client (readfd, writefd)

int readfd;

int writefd;

{
char buff [MAXBUFF];
int n;
/*

* Read the filename from standard input,
*x write it to the IPC descriptor.
*/

if (fgets(buff, MAXBUFF, stdin) == NULL)
err_sys("client: filename read error");

n = strlen(buff);

if (puffin-1] == ‘\n’)

n--; /* ignore newline from fgets() */
if (write(writefd, puff, n) '=n)

err_sys("client: filename write error")i;
/%

% Read the data from the 1PC descriptor and write
* to standard output.
*®/

while ( (n = read (readfd, buff, MAXBUFF)) > 0)
if (write(l, buff, n) !=mn) /* £4 1 = stdout */
errﬂsys("client: data write error");
if (n < 0)
err_sys("client: data read error");

e
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The server function is

#include <stdio.h>
#define MAXBUFF 1024

server (readfd, writefd)

int readfd;
int writefd;
{
char buff [MAXBUFF] ;
char errmesg{256], *sys_err_str();
int n, fd;
extern int errno;
/*
* Read the filename from the IPC descriptor.
*/
if ( (n = read(readfd, buff, MAXBUFF)) <= 0)
err_sys("server: filename read error");
buff[n] = "\0’; /* null terminate filename */
if ( (fd = open(buff, 0)) < 0) {
/*
* Error. Format an error message and send it back
* to the client.
*/
sprintf (errmesg, ": can’t open, %s\n", sys_err_str());
strcat (buff, errmesg);
n = strlen(buff);
if (write(writefd, buff, n) != n)
err_sys("server: errmesg write error");
} else {

/*
* Read the data from the file and write to
* the IPC descriptor.

*/
while ( (n = read(fd, buff, MAXBUFF)) > 0)
if (write (writefd, buff, n) != n)
err_sys{"server: data write error");
if (n < 0)

err sys("server: read error");

}

The function sys_err str returns a pointer o an error message string that it builds,
based on the system’s errno value. This function, and other error handling functions
that are used throughout the book, are listed in the *‘Standard Error Routines’’ section of
Appendix A.
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The standard I/O library provides a function that creates a pipe and initiates another
process that either reads from the pipe or writes to the pipe.

#include <stdio.h>

FILE *popen (char *command, char *type);

command is a shell command line. Ii is invoked by the Boume shell, so the PATH
environment variable is used to locate the command. A pipe is created between the call-
ing process and the specified command. The value returned by popen is a standard I/Q
FILE pointer that is used for either input or output, depending on the character string
type. Tf the value of fype is r the calling process reads the standard output of the
command. If the type is w the calling process writes to the standard input of the com-
mand. If the popen call fails, a value of NULL is returned. The function

#include <stdio.h>

int pclose (FILE *stream) ;

closes an I/O stream that was created by popen, returning the exit status of the
command, or —1 if the stream was not created by popen.

We can provide another solution to our client—server example using the popen
function and the Unix cat program.

#include <stdio.h>
#define MAXLINE 1024
main ()
{
int n;
char line[MAXLINE], command[MAXLINE + 10];
FILE *fp;
/%
* Read the filename from standard input.
*/
if (fgets(line, MAXLINE, stdin) == NULL)

err_sys("filename read error");

/k
* Use popen to create a pipe and execute the command.

*/

sprintf (command, "cat %s", line);
if ( (fp = popen (command, "r")) == NULL)
err sys("popen error"});

/*
* Read the data from the FILE pointer and write
* to standard output.

iVenture Ex. 1014 Page 25 of 94




Section 3.4 Pipes 109

*/
while ((fgets(line, MAXLINE, fp)) != NULL) {
n = strlen(line);
if (write(l, line, n) != n)

err sys("data write error");

}

if (ferror (fp))
err_sys("fgets error");

pclose (fp) ;
exit (0);

Another use of popen is to determine the current working directory of a process.
Recall that the chdir system call changes the current working directory for a process,
but there is not an equivalent system call to obtain its current value. System V provides a
getcwd function to do this. 4.3BSD provides a similar, but not identical function,
getwd.

The following program obtains the current working directory and prints it, using the
Unix pwd command.

#include <stdio.h>
#define MAXLINE 255
main ()
{
FILE *fp;
char line [MAXLINE] ;
if ( (fp = popen ("/bin/pwd", "r")) == NULL)

err sys("popen error");

1f (fgets(line, MAXLINE, fp) == NULL)
err sys("fgets error");

printf ("%s", line); /* pwd inserts the newline */
pclose (fp) ;
exit (0);

The biggest disadvantage with pipes is that they can only be used between processes
that have a parent process in common. This is because a pipe is passed from one process
to another by the fork system call, and the fact that all open files are shared between the
parent and child after a fork. There is no way for two totally unrelated processes to
Create a pipe between them and use it for IPC.
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FIFOs

FIFO stands for First In, First Out. A Unix FIFO is similar to a pipe. It is a one-way
flow of data, with the first byte written to it being the first byte read from it. Unlike
pipes, however, a FIFO has a name associated with it, allowing unrelated processes to
access a single FIFO. Indeed, FIFOs are also called named pipes. FIFOs are in
System V but not 4.3BSD. FIFOs came with System III Unix, but have never been well
documented, and are therefore ignored by most programmers. FIFOs are used by the
System V line printer system, as we see in Section 13.4.

A FIFO is created by the mknod system call. This call is normally reserved to the
superuser to create new device entries, but any user can create a FIFO.

int mknod (char *pathname, int mode, int dev);

The pathname is a normal Unix pathname, and this is the name of the FIFO. The mode
argument specifies the file mode access mode (read and write permissions for owner,
group, and world) and is logically or’ed with the S_IFIFO flag from <sys/stat.h>
to specify that a FIFO is being created. The dev value is ignored for a FIFO. A FIFO
can also be created by the mknod command, as in

/etc/mknod name P

Once a FIFO is created, it must be opened for reading or writing, using either the open
system call, or one of the standard 1/O open functions—fopen, or freopen. Note that
it takes three system calls to create a FIFO and open it for reading and writing (mknod,
open, and open) while the single pipe system call does the same thing.

The O _NDELAY flag for a file, which is set either on the call to open or by calling
fentl after the file has been opened, sets the “‘no delay’’ flag for either a pipe or a
FIFO. (Since a pipe is opened as part of the pipe system call, the only way to set this
flag for a pipe is with the fcntl system call.) The effect of this flag is shown in Fig-
ure 3.9.

The reason the first two rows in Figure 3.9 have the restriction for read-only or
write-only is that if a FIFO is opened by a process for both reading and writing, there
can’t be any waiting for a reader or writer.

A pipe or FIFO follows these rules for reading and writing:

e A read requesting less data than is in the pipe or FIFO returns only the requested
amount of data. The remainder is left for subsequent reads.

o If a process asks to read more data than is currently available in the pipe FIFO,
only the data available is returned. The process must be prepared to handle a
return value from read that is less than the requested amount.

o If there is no data in the pipe or FIFO, and if no processes have it open for writ-
ing, a read returns zero, signifying the end of file. If the reader has specified
O_NDELAY, it cannot tell if a return value of zero means there is no data currently
available or if there are no writers left.
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Condition

Normal

FIFOs 111

O_NDELAY set

open FIFO, read-only with
no process having the FIFO

wait until a process opens
the FIFO for writing

return immediately, no
error

open for writing

return an error immediately,
errno set to ENXIO

open FIRO, write-only with
no process having the FIFO
open for reading

wait until a process opens
the FIFO for reading

wait until there is data in return immediately, return
the pipe or FIFO, or until value of zero

no processes have it open
for writing; return a value
of zero if no processes have
it open for writing,
otherwise return the count
of data

read pipe or FIFO, no data

wait until space is return immediately, return
available, then write data value of zero

write, pipe or FIFO is full

Figure 3.9 Effect of O_NDELAY flag on pipes and FIFOs.

e If aprocess writes less than the capacity of a pipe (which is at least 4096 bytes)
the write is guaranteed to be atomic. This means that if two processes each
write to a pipe or FIFO at about the same time, either all the data from the first
process is written, followed by all the data from the second process, or vice versa.
The system does not mix the data from the two processes—i.e., part of the data
from one process, followed by part of the data from the other process. If, how-
ever, the write specifies more data than the pipe can hold, there is no guarantee :
that the write operation is atomic. N

o If a process writes to a pipe or FIFO, but there are no processes in existence
that have it open for reading, the SIGPIPE signal is generated, and the write
returns zero with errno set to EPIPE. If the process has not called signal to
handle the STGPIPE notification, the default action is to terminate the process.
The only way the write returns is if the process either ignores the SIGPIPE
signal, or if it handles the signal and returns from its signal handler.

Consider a daemon that uses a FIFO to receive client requests (such as the System A"
print spooler). The daemon opens the FIFO for read-only and its typical state is waiting

T Neither the System V Release 2 nor the System V Release 3 manuals note that this signal is
generated for both pipes and FIFOs—they mention only pipes. As stated at the beginning of this
section, FIFOs are the forgotten (and undocumented) child of IPC.
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in a read system call for a client request. Client processes are started and they open the
FIFO for writing, write their request, and exit. What happens is the read returns zerg
(end of file) to the daemon every time a client process terminates, if no other clients have
the FIFO open for writing. The daemon has to then open the FIFO again (for read-only)
and it waits here until a client process opens the FIFO for writing. To avoid this, a use-
ful technique is for the daemon to open the FIFO two times—once for reading and once
for writing. The file descriptor returned for reading is used to read the client requests,
and the file descriptor for writing is never used. By having the FIFO always open for
writing (as long as the daemon process exists) the reads do not return an EOF, but wait
for the next client request.

We can write our simple client—server example using FIFOs. The client function
and the server function don’t change-—their use of read and write doesn’t change
between pipes and FIFOs. The main function does change.

#include
#include
#include
extern int

#define FIFOL
#define FIFO2

<sys/types.h>
<sys/stat.h>
<sys/errno.h>
errno;

"/tmp/fifo.1"
"/tmp/fifo.2"

#define PERMS 0666
main ()
{
int childpid, readfd, writefd;
if ( (mknod(FIFO1, S_IFIFO | PERMS, 0) < 0) && (errno != EEXIST))
err_sys ("can’t create fifo 1: %s", FIFOLl);
if ( (mknod(FIFOZ, S_IFIFO | PERMS, 0) < 0) && (errno != EEXIST)) {

unlink (FIFO1) ;
err_sys("can’t create fifo 2: %s", FIFO2);
}

if ( (childpid = fork()) < 0) {
err_sys("can’t fork");

} else if (childpid > 0) { /* parent */
if ( (writefd = open(FIFOl, 1)) < 0)
err_sys("parent: can’t open write fifo");

if ( (readfd = open(FIFO2, 0)) < 0)
err sys("parent: can’t open read fifo");

client (readfd, writefd);

while (wait ((int *) 0) != childpid) /* wait for child */

;

close (readfd) ;
close (writefd) ;

if (unlink(FIFOl) < 0)
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err'sys("parent: can’t unlink gs", FIFOL);
if (unlink(FIFO2) < 0)

err_sys("parent: can’t unlink %s", FIFO2) 7
exit (0);

} else { /* child */
if ( (readfd = open(FIFOl, 0))y < O)
err~sys("child: can’t open read fifo");
if ( (writefd = open (FIFOZ, 1)) < 0)
err_sys("child: can’t open write fifo")i

server (readfd, writefd);

close (readfd) ;
close (writefd);
exit (0) 7

}
}
We first call mknod to create the FIFOs, realizing that they might already exist. After
the £ork both processes must open each of the two FIFOs as desired. The parent pro-
cess removes the FIFOs with the unlink system call, after waiting for the child to ter-
minate.
The order of the open calls is important, and avoids a deadlock condition. When
the parent opens FIFO1 for writing, it waits until the child opens it for reading. If the
first call to open in the child were for FIFO2 instead of FIFO1, then the child would
wait for the parent to open FTFO2 for writing. Each process would be waiting for the
other, and neither would proceed. This is called a deadlock. The solution is either to
code the calls to open as shown, or t0 specify the O _NDELAY option to open.
When we used pipes to implement this example, the client and server had to origi-
nate from the same process, since pipes cannot be shared between unrelated processes.
With FIFOs, however, we do not have this restriction. Nevertheless, we used the same
program structure for the FIFO example above as we used for the pipe example. We
now rewrite the FIFO example, splitting it into two separate programs-—one for the
client and one for the server.

#include wfifo.h"
Wain ()
{
int readfd, writefd;
/*
* Open the FIFOs. We assume the server has already created them.
*/
if ( (writefd = open(FIFOl, 1)) < 0)

) err sys("client: can’t open write fifo: %s", FIFO1);
if ( (readfd = open(FIF0O2, 0)) < 0)
err sys("client: can’t open read fifo: %s", FIFO2)/
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client (readfd, writefd);

close (readfd) ;
close(writefd);

/*
* Delete the FIFOs, now that we’re finished.
*/

if (unlink (FIFO1) < 0)

err sys("client: can’t unlink %s", FIFOl);
if (unlink (FIFO2) < 0)

err_sys("client: can’t unlink %s", FIFO2);

exit (0);

The server main function is

#include "fifo.h"

main ()

{
int readfd, writefd;

/%
* Create the FIFOs, then open them - one for reading and one
* for writing.

*/

if ( (mknod(FIFOl, S_IFIFO | PERMS, 0) < 0) && (errno != EEXIST))
err_sys("can’t create fifo: %s", FIFOl);

if ( (mknod(FIFO2, S IFIFO | PERMS, 0) < 0) && (errno != EEXIST)) {

unlink (FIFO1);
err_sys("can’t create fifo: %s", FIFO02);

if ( (readfd = open(FIFOl, 0)) < 0)

err_sys("server: can’t open read fifo: %s", FIFO1);
if ( (writefd = open(FIF02, 1)) < 0)

err_sys("server: can’t open write fifo: %s", FIFO2);

server (readfd, writefd);

close (readfd) ;
close (writefd);

exit (0);
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To run this program we first start the server process in the background
server &

and then run the client in the foreground (since the client reads from the standard input
and writes to the standard output):

client

Alternatively, we could just start the client program by hand, and have it invoke the
server program. If the two programs are on the same computer system (as they must be
if a FIFO is being used for IPC), the client can fork and exec the server process. We
will see examples later when the client process invokes the required server process auto-
matically. Indeed, when we invoke a client program, we should not need to worry about
starting the server process that the client needs—this should be done automatically by
the client.

Streams and Messages

The examples shown so far, for pipes and FIFOs, have used the stream 1/O model, which
is natural for Unix. There are no record boundaries—reads and writes do not examine
the data at all. A process reading 100 bytes from a pipe, for example, cannot tell if the
process that wrote the data into the pipe did a single write of 100 bytes, five writes of 20 i
bytes, or two writes of 50 bytes. It could also happen that one process writes 55 bytes
into the pipe, followed by another process writing 45 bytes. The data is a stream of bytes
with no interpretation done by the system. If any interpretation is desired, the writing
process and the reading process must agree to it and do it themselves.

There are times, however, when a process wants to impose some structure on the
data being transferred. This can happen when the data consists of variable-length mes-
sages and it is required that the reader know where the message boundaries are so that it
knows when a single message has been read. Many Unix processes that need to impose a
message structure on top of a stream based IPC facility do it using the newline character
to separate each message. The writing process appends a newline to each message and
the reading process reads from the IPC channel, one line at a time. In Chapter 13 we will
see that both the 4.3BSD line printer spooler and the System V line printer spooler use
this method of delineating messages on an IPC stream.

The standard I/O library can also be used to read or write a pipe or FIFO. Since the
only way to open a pipe is with the pipe system call, which returns a file descriptor, the
standard I/O function fdopen must be used to associate an open file descriptor with a
standard 1/O stream. Since a FIFO has a name, it can be opened using the standard I/O
fopen function.
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More structured messages can also be built, and this is what the Unix message queue
form of IPC does. We can also add more structure to either a pipe or FIFO. We define a
message in our mesg . h header file as

/ *

* Definition of "our" message.
*

* You may have to change the 4096 to a smaller value, if message queues
* on your system were configured with "msgmax" less than 4096.

*/
#define MAXMESGDATA (4096-16)
/* we don’t want sizeof (Mesg) > 4096 */
#define MESGHDRSIZE (sizeof (Mesg) - MAXMESGDATA)

/* length of mesg_len and mesg_type */

typedef struct {

int mesg_ len; /* f#bytes in mesg data, can be 0 or > 0 */
long mesg_type; /* message type, must be > 0 */
char mesg_data[MAXMESGDATA];

} Mesg;

Each message has a rype which we define as a long integer whose value must be greater
than zero. We ignore the type field for now, but return to it in Section 3.9 when we
describe message queues. We also specify a length for each message, and allow the
length to be zero. If we use the stream format for messages, with newlines separating
each message, the length is implied by the newline character at the end of each message.
What we are doing with the Mesqg definition is to precede each message with its length,
instead of using newlines to separate the messages. The only advantage this has over the
newline separation is if binary messages are being exchanged—with the length preced-
ing the message the actual content of the message does not have to be scanned to find the
end. We define two functions to send and receive messages.

#include "mesg.h"

* Send a message by writing on a file descriptor.
* The mesg_len, mesg_type and mesg data fields must be filled
* in by the caller.

*/
mesg_send(fd, mesgptr)
int £d;
Mesg *mesgptr;
{
int n;
/%

* Write the message header and the optional data.
* First calculate the length of the length field, plus the
* type field, plus the optional data.
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*/
n = MESGHDRSIZE + mesgptr->mesg len; ;

if (write(fd, (char *) mesgptr, n) != n)
err sys("message write error");

* Receive a message by reading on a file descriptor.
* Fill in the mesg len, mesg_type and mesg_data fields, and return
* mesg_len as the return value also.

*/ I

int

nesg_recv (fd, mesgptr)
int £d;

Mesg *mesgptr;

{

int n;

Read the message header first. This tells us how much
data follows the message for the next read.

An end-of~file on the file descriptor causes us to
return 0. Hence, we force the assumption on the caller
that a 0-length message means EOF.

* % % 3k k% A

if ( (n = read(fd, (char *) mesgptr, MESGHDRSIZE)) == 0)
return (0) ; /* end of file */

else if (n != MESGHDRSIZE)
err_sys("message header read error");

/*
* Read the actual data, if there is any.

*/

if ( (n = mesgptr->mesg_len) > 0)
if (read(fd, mesgptr->mesg_data, n) != n)
err_sys("data read error");
return (n) ;

We now change the client and server functions to use the mesg_send and
Mesg recv functions.

X%“Clude <stdio.h>
include "mesg.h"
Mesg mesg;

cls .
inient(lPCreadfd, ipcwritefd)
ipereadfd;
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int

}

#include

| extern 1

Mesg

server (i
int
int

{

ipewritefd;
int n;

/7\'
* Read the filename from standard input, write it as
* a message to the IPC descriptor.

*/

if (fgets(mesg.mesg_data, MAXMESGDATA, stdin) == NULL)
err_sys("filename read error");

n = strien (mesg.mesg_data);
if (mesg.mesgﬂdata[n—l] == '\n’)
n--; /% ignore newline from fgets () */
mesg.mesg_len = n;
mesg.mesg_type = 1L;
mesg”send(ipcwritefd, &mesg) ;

/*
* Receive the message from the 1PC descriptor and write
% the data to the standard output .
*/
while ( (n = mesg_recv(ipcreadfd, smesg)) > 0)
if (write(l, mesg.mesg_data, n) ‘= n)
err_sys("data write error");
if (n < 0)

err sys("data read error");

<stdio.h>

#include "mesg.h"

nt errno;
mesg;

pcreadfd, ipcwritefd)
ipcreadfd;
ipcwritefd;

int n, filefd;
char errmesg[256], *sys_err_str();

*
* Read the filename message from the IPC descriptor.

*/

mesg.mesg_type = 1Ln;

if ( (n = mesg';ecv(ipcreadfd, smesg)) <= 0)
err sys("server: filename read error");
mesg.mesg_dataln] = "\O’; /* null terminate filename */
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if ( (filefd = open (mesg.mesg_data, 0)) < 0) {
/%
* Error. Format an error message and send it back
* to the client. i
*/

sprintf (errmesg, ": can’t open, %s\n", sys_err_str());
strcat(mesg.mesg_data, errmesqg) ;

mesg.mesg _len = strlen(mesg.mesg data) ;
mesg_send(ipcwritefd, smesg);

} else {
/*
* Read the data from the file and send a message to
* the IPC descriptor.
*/
while ( (n = read(filefd, mesg.mesg data, MAXMESGDATA)) > 0) {
mesg.mesg len = n;
mesg_send(ipcwritefd, &mesqg) ;
}
close(filefd) ;
if (n < 0) |
err sys("server: read error");
} i
/*
* Send a message with a length of 0 to signify the end.
*/

mesg.mesg_len = 0;
mesg_send (ipcwritefd, smesg);

The main functions that call the client and server functions don’t change at
all. We can use either the pipe version or the FIFO version.

Name Spaces

Pipes do not have names but FIFOs have a Unix pathname to identify them. As we move
to other forms of IPC in the following sections, additional naming conventions are used.
The set of possible names for a given type of IPC is called its name space. The name
space is important because for all forms of IPC other than plain pipes, the name is how
the client and server ‘‘connect’’ to exchange messages. All forms of IPC that we cover
in this chapter are restricted to use on a single computer system. When we describe
methods for IPC between processes on different systems, the choice of names from the
available name space becomes important.
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Figure 3.10 summarizes the naming conventions used by the different forms of IPC,
The last column specifies how a process accesses a particular form of IPC.

E IPC type Name space Identification
pipe (no name) file descriptor
FIFO pathname file descriptor
message queue key_ tkey identifier
shared memory key_t key identifier
semaphore key_t key identifier
socket—Unix domain pathname file descriptor
socket—other domains | (domain dependent) | file descriptor

Figure 3.10 Name spaces for IPC.

key t Keys

The function ftok is provided by the System V standard C library to convert a path-
name and project identifier into a System V IPC key. These System V IPC keys are used
to identify message queues, shared memory, and semaphores, all of which are described
in the following sections:

#include <sys/types.h>
#include <sys/ipc.h>

key_t ftok(char *pathname, char proj);

The file <sys/types.h> defines the key_t datatype, which is typically a 32-bit
integer.

An IPC application should have the server and clients all agree on a single pathname
that has some meaning to the application. It could be the pathname of the server daemon,
the pathname of a common data file used by the server, or some other pathname on the
system. If the client and server only need a single IPC channel between them, a proj of
one, say, can be used. If multiple IPC channels are needed, say one from the client to the
server and another from the server to the client, then one channel can use a proj of one,
and the other a proj of two, for example. Once the pathname and proj are agreed on by
the client and server, then both can call the £t ok function to convert these into the same
IPC key.

If the pathname does not exist, or is not accessible to the calling process, ftok
returns —1. Be aware that the file whose pathname is used to generate the key must not
be a file that is created and deleted by the server during its existence, since each time it is
created it can assume a new i-node number which can change the key returned by ftok
to the next caller.

T For some reason this function is found in the System V manual under stdipc(3C), instead of its
real name.
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Note that the proj argament to £t ok is an 8-bit character, not a pointer to a charac-
ter string.

The normal implementation of the ftok function is as follows. It combines the
8-bit proj value, along with the numeric i-node number of the disk file corresponding to
the specified pathname, along with the minor device number of the filesystem on which
the disk file resides. The combination of these three values produces a 32-bit key. By
using the i-node number of the file within the filesystem that it resides on, along with the
minor device number of that filesystem (which corresponds to the disk partition of a sin-
gle disk controller), this function attempts to generate a unique key value. To guarantee
a unique key for every possible pathname on a system, we need to combine the 32-bit
i-node number, the 8-bit major device number, and the 8-bit minor device number. The
algorithm chosen by ftok is a compromise, since there is a nonzero (but small) chance
that two different pathnames can generate the same key value. But few real i-node num-
bers are larger than 16 bits and to have two different pathnames generate the same key,
both files must have the same i-node number and the same minor device number, but
have different major device numbers.

38 SystemVIPC

The three types of IPC

e message queues
e semaphores
e shared memory

are collectively referred to as ‘‘System V IPC.”” They share many similarities in the sys-
tem calls that access them, and in the information that the kernel maintains on them. A
summary of their system calls is shown in Figure 3.11.

Message Shared

queue

Semaphore

memory

include file

L

<sys/msg.h>

<sys/sem.h>

<gys/shm.h>

system call to create or open msgget semget shmget

system call for control operations msgctl semctl shmetl

system calls for IPC operations msgsnd semop shmat
msgrcv shmdt

Figure 3.11 Summary of System V IPC system calls.

The kernel maintains a structure of information for each IPC channel, similar to the infor-
mation it maintains for files.

struct ipc_perm {
ushort uid;
ushort gid;
ushort cuid;

/* owner’s user id */
/* owner’'s group id */
/* creator’s user id */
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ushort c¢gid; /* creator’s group id */

ushort mode; /* access modes */

ushort seq; /* slot usage sequence number */
key t key; /* key */

}i

This structure, and other manifest constants for the System V IPC system calls, are
defined in <sys/ipc.h>. The three ctl system calls are used to access this structure
and modify it.

The three get system calls that create or open an IPC channel, all take a key value,
whose type is key_t, and return an integer identifier. The sequence of steps is shown in
Figure 3.12.

msgget () . R

* k d

chha;r p’iz]tﬁ Frok () ey t key semget () int i
c proj shmget ()

Figure 3.12 Generating IPC ids using ftok.

All three of the get system calls also take a flag argument that specifies the low-order
9 bits of the mode for the IPC channel, and whether a new IPC channel is being created,
or if an existing one is being referenced. The rules for whether a new IPC channel is
created or whether an existing one is referenced are

o Specifying a key of TPC_PRIVATE guarantees that a unique IPC channel is
created. There are no combinations of pathname and proj that cause ftok to
generate a key value of IPC_PRIVATE. a

e Setting the TPC_CREAT bit of the flag word creates a new entry for the specified
key, if it does not already exist. If an existing entry is found, that entry is
returned.

e Setting both the IPC_CREAT and IPC_EXCI, bits of the flag word creates a new
entry for the specified key, only if the entry does not already exist. If an existing
entry is found, an error occurs, since the IPC channel already exists.

Note that the TPC_EXCL bit does not guarantee the caller exclusive access to the
IPC channel. Its only function is to guarantee that a new IPC channel is created,
or else an error is returned. Even if we create a new IPC channel by specifying
both IPC_CREAT and IPC_EXCL, other users can also access that channel, if
they have adequate permission as specified by the low-order 9 bits of the
channel’s mode word.

e Setting the TPC_EXCL bit, without setting the IPC_CREAT bit, has no meaning.
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The actual logic flow for opening an IPC channel is shown in Figure 3.13.

123

OK
create new entry
start here return ID
no
es yes error return,
key == 1PC_PRIVATE? | system tables full 7 | Y% o
Y - 4 errno = ENOSPC
no yes
. no no €ITOr Teturn.
does key already exist ? IPC CREAT set ? F——= >
Y Y - errno = ENOENT
yes
are both IPC_CREAT yes €rror return,
and TPC_EXCLset ? errno = EEXIST
no
is the access no error return,
permission OK ? errno = EACCES
yes
OK
return ID

Figure 3.13 Logic for opening or creating an IPC channel.

Another way of looking at Figure 3.13 is shown in Figure 3.14.

Sflag argument

key does not exist

key already exists

no special flags
IPC_CREAT
IPC_CREAT |

IPC_EXCL

€rror, errno = ENOENT
OK, creates new entry
OK, creates new entry

OK
OK

€ITor, errnoc =

EEXIST

Figure 3.14 Logic for creating or opening an IPC channel.

One thing to note is that for the middle line of Figure 3.14, the IPC_CREAT flag without
IPC_EXCL, we do not get an indication whether a new entry has been created or if we

are referencing an existing entry.
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Whenever a new IPC channel is created, using one of the get system calls with the
IPC_CREAT flag, the low-order 9 bits of the flag argument initialize the mode word in
the ipc perm structure. Additionally the cuid and cgid fields are set to the effective
user ID and effective group ID of the calling process, respectively. The two fields uid
and gid in the ipc_perm structure are also set to the effective user ID and effective
group ID of the calling process. These latter two IDs are called the ‘‘owner’’ IDs, while
the cuid and cgid are called the ‘‘creator”” IDs. The creator IDs never change, while
a process can change the owner IDs, by calling the ctl system call for the IPC
mechanism—msgctl, semctl, or shmctl. These three ct1 system calls also allow
a process to change the low-order 9 bits of the mode word for the TPC channel.

Two levels of checking are done whenever an IPC channel is accessed by any pro-
cess.

1. Whenever a process accesses an existing IPC channel with one of the get sys-
tem calls, an initial check is made that the caller’s flug argument does not specify
any access bits that are not in the mode word. For example, a server process can
set the mode word for its input message queue so that the group-read and
world-read permission bits are off. Any process that tries to specify a flag argu-
ment that includes these bits gets an error return from the msgget system call.
But this test that’s done by the get system calls is of little use. It implies that
the caller knows which permission category it falls into—owner, group, or
world. If the creator specifically turns off certain permission bits, and if the
caller specifies these bits, the error is detected by the get system call. Any pro-
cess, however, can totally bypass this check by just specifying a flag argument of
zero if it knows that the IPC channel already exists.

2. Every IPC operation does a permission test for the process using the operation.
For example, every time a process tries to put a message onto a message queue
with the msgsnd system call, tests similar to those done for filesystem access
are performed.

e The superuser is always granted access.

o If the effective user ID equals either the uid value or the cuid value for the
IPC channel, and if the appropriate access bit is on in the mode word for the
IPC channel, permission is granted. By ‘‘appropriate access bit”> we mean the
read-bit must be set if the caller wants to do a read operation on the IPC chan-
nel (receiving a message from a message queue, for example), or the write-bit
must be set for a write operation.

e If the effective group ID equals either the gid value or the cgid value for
the IPC channel, and if the appropriate access bit is on in the mode word for
the IPC channel, permission is granted.

e If none of the above tests are “‘true,”’ the appropriate world access bit must be
on in the mode word for the IPC channel, for permission to be allowed.
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The ipc_perm structure also contains a variable named seq, which is a slot usage
sequence number. This is a counter that is maintained by the kernel for every potential
IPC channel in the system. Every time an IPC channel is closed, the kernel increments
the slot number, cycling it back to zero when it overflows.

This counter is needed for the following reasons. First consider the file descriptors
maintained by the kernel for open files. They are small integers, but only have meaning
within a single process—they are process specific numbers. If we try to read from file
descriptor 4, say, in a process, this only works if the process has a file open on this
descriptor. It has no effect whatsoever with a file that might be open on file descriptor 4
in some other unrelated process. IPC channels, however, are systemwide and not process
specific. We obtain an IPC identifier (similar to a file descriptor) from one of the get
system calls—msgget, semget, and shmget. These identifiers are also integers, but
their meaning applies to all processes. If two unrelated processes, a client and server for
example, use a single message queue, the message queue identifier returned by the
msgget system call is the same integer value in both processes. This means that a devi-
ous process could try to read a message using different small integer identifiers, hoping to
find one that is currently in use that allows world read access. If the potential values for
these identifiers were small integers (like file descriptors) then the probability of finding a
valid identifier would be about 1 in 50.

To avoid this potential problem, the designers of the System V IPC facilities decided
to increase the possible range of identifier values to include all integers, not just small
integers. This is implemented by incrementing the identifier value that is returned to the
calling process, by the number of IPC table entries, each time a table entry is reused. For
example, if the system is configured for a maximum of 50 message queues, then the first
time the first message queue table entry in the kernel is used, the identifier returned to the
process is zero. After this message queue is removed and the first table entry is reused,
the identifier returned is 50. The next time the identifier is 100, and so on. Since seq is
an unsigned short integer (see the ipc_perm structure shown earlier in this section) it
cycles after the table entry has been used 65,535 times. An an example of this pattern,
the following program prints the first 10 identifier values returned by msgget.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#define KEY ((key t) 98765L)

#define PERMS 0666

main ()
{

int i, msqid;
for (1 = 0; 1 < 10; i++) {
if ( (msgid = msgget(KEY, PERMS | IPC CREAT)) < 0)

err_sys("can't create message queue");

printf ("msqgid = %d\n", msgid);
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if (msgctl(msqid, IPC_RMID, (struct msqgid ds *) 0) < 0)
err sys("can’t remove message queue");

}

Its output is

msqgid = 0

msqgid = 50
msqgid = 100
msqgid = 150
msgid = 200
msqgid = 250
msgid = 300
msqgid = 350
msqgid = 400
msqid = 450

Message Queues

Some form of message passing between processes is now part of many modern operating
systems. Some operating systems restrict the passing of messages such that a process can
only send a message to another specific process. System V has no such restriction. In
the System V implementation of messages, all messages are stored in the kernel, and
have an associated message queue identifier. It is this identifier, which we call an msgid,
that identifies a particular queue of messages. Processes read and write messages to arbi-
trary queues. There is no requirement that any process be waiting for a message to arrive
on a queue before some other process is allowed to write a message to that queue. This is
in contrast to both pipes and FIFOs, where it made no sense to have a writer process
unless a reader process also exists. It is possible for a process to write some messages to
a queue, then exit, and have the messages read by another process at a later time.
Every message on a queue has the following attributes:

e long integer type;
® length of the data portion of the message (can be zero);
® data (if the length is greater than zero).

For every message queue in the system, the kernel maintains the following structure of
information:

#include <sys/types.h>
#include <sys/ipc.h> /* defines the ipc_perm structure */

struct msqgid ds {

struct ipc_perm msg perm; /* operation permission struct */
struct msg *msg_first; /* ptr to first message on g */
struct msg *msg_last; /* ptr to last message on g */
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ushort msg_cbytes;
ushort msg_gnum;
ushort msg_gbytes;
ushort msg_lspid;
ushort msg_lrpid;
time_t msg_stime;
time_t msg_rtime;
time t msg_ctime;

I

The ipc_perm structure was described in Section 3.8 and contains the access permis-
sions for this particular message queue. The msg structures are the internal data struc-
ture used by the kernel to maintain the linked list of messages on a particular queue.

We can picture a particular message queue in the kernel as a linked list of messages,
as shown in Figure 3.15. Assume that three messages are on a queue, with lengths of 1
byte, 2 bytes, and 3 bytes, and that the messages were written in that order. Also assume
that these three messages were written with types of 100, 200, and 300, respectively.

/*
/*
/*
/*
/*
/*
/*
/*
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current # bytes on g */
current # of messages on q */
max # of bytes allowed on q */
pid of last msgsnd */

pid of last msgrcv */

time of last msgsnd */

time of last msgrcv */

time of last msgctl

(that changed the above) */

msg_ctime

Figure 3.15 Message queue structures in kernel.

A new message queue is created, or an existing message queue is accessed with the

msgget system call

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgget (key t key, int msgflag) ;

The msgflag value is a combination of the constants shown in Figure 3.16.

:
i
|
i
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Numeric Symbolic Description
0400 MSG_R Read by owner
0200 MSG_W Write by owner
0040 MSG_R >> 3 | Read by group
0020 MSG W >> 3 | Write by group
0004 MSG R >> 6 | Read by world

6

0002 MSG W >> Write by world
IPC_CREAT | (See Section 3.8)
IPC_EXCL (See Section 3.8)

Figure 3.16 msgflag values for msgget system call.

The value returned by msgget is the message queue identifier, msqid, or —1 if an error

occurred.
Once a message queue is opened with msgget, we put a message on the queue

using the msgsnd system call.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgsnd(int msqid, struct msgbuf *ptr, int length, int flag);

The ptr argument is a pointer to a structure with the following template. (This template
is defined in <sys/msg.h>.)
struct msgbuf {
long mtype; /* message type, must be > 0 */
char mtext[1]; /* message data */
}i

The name mtext is a misnomer—the data portion of the message is not restricted to text.
Any form of data is allowed, binary data or text. The message type must be greater than
zero, since a message type of zero is used as a special indicator to the msgrcv system
call, which we describe later. By template we mean that the pt r argument must point to
a long integer that contains the message type, followed by the message itself (if the
length of the message is greater than zero bytes). The kernel does not interpret the con-
tents of the message at all. If some cooperating processes wanted to exchange messages
consisting of a short integer followed by an 8-byte character array, they can define their
own structure:

typedef struct my msgbuf {

long mtype; /* message type */
short mshort; /* start of message data */
char mchar[81;

} Message;
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The length argument to msgsnd specifies the length of the message in bytes. This is
the length of the user-defined data that follows the long integer message type. The length
can be zero.

The flag argument can be specified as either IPC_NOWAIT or as zero. The
IPC_NOWAIT value allows the system call to return immediately if there is no room on
the message queue for the new message. This condition can occur if either there are too
many messages on the specified queue, or if there are too many messages systemwide. If
there is no room for the message, and if T PC_NOWAIT is specified, msgsnd returns —1
and errno is set to EAGAIN. If the system call is successful, msgsnd returns zero.

A message is read from a message queue using the msgrcv system call.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgrcv (int msqid, struct msgbuf *prr, int length, long msgtype,
int flag) ;

The pir argument is like the one for msgsnd, and specifies where the received message
is stored. len specifies the size of the data portion of the structure pointed to by psr. This
is the maximum amount of data that is returned by the system call. If the
MSG_NOERROR bit in the flag argument is set, this specifies that if the actual data portion
of the received message is greater than length, just truncate the data portion and return
without an error. Not specifying the MS G_NOERROR flag causes an error return if length
is not large enough to receive the entire message.
The long integer msgtype argument specifies which message on the queue is desired.

e If msgtype is zero, the first message on the queue is returned. Since each message
queue is maintained as a first-in, first-out list, a msgtype of zero specifies that the
oldest message on the queue is to be returned. ]

o If msgtype is greater than zero, the first message with a type equal to msgtype is
returned.

e If msgtype is less than zero, the first message with the lowest type that is less than _
or equal to the absolute value of msgtype is returned. !

Consider the message queue example shown in Figure 3.15, which has three messages:
the first message has a type of 100 and a length of 1, the next has a type of 200 and a
length of 2, and the last message has a type of 300 and a length of 3. Figure 3.17 shows
the message returned for different values of msgtype.

The flag argument specifies what to do if a message of the requested type is not on
the queue. If the IPC_NOWAIT bit is set, the msgrcv system call returns immediately
if a message is not available. In this case the system call returns a —1 with errno set to
ENOMSG. Otherwise, the caller is suspended until one of the following occurs: |

i
|
1
|
|
i
i
|
|
i
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msgtype | Type of message returned
0L 100
100L 100
200L 200
300L 300
-100L 100
-200L 100
-300L 100

Figure 3.17 Messages returned by msgrcv for different values of msgtype.

e amessage of the requested type is available,
e the message queue is removed from the system,
e the process receives a signal that is caught.

Additionally, the MSG_NOERROR bit of the flag argument can be set, as mentioned
above.

On successful return, msgrcv returns the number of bytes of data in the received
message. This does not include the long integer message size that is also returned
through the p#r argument.

The msgctl system call provides a variety of control operations on a message
queue.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

int msgctl (int msqid, int cmd, struct msqgid ds *buff) ;

Our only use will be a crmd of IPC_RMID to remove a message queue from the system.

We now show the code for our client-server example, using two message queues.
One queue is for messages from the client to the server, and the other queue is for mes-
sages in the other direction. Our header file msgq.h is

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <sys/errno.h>
extern int errno;

#define MKEY1 1234L
#fdefine MKEY2 2345L

#define PERMS 0666
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The main function for the server is

#include "msgq.h"

main ()

: int readid, writeid;
/'k
* Create the message queues, if required.
*/

if ( (readid = msgget (MKEYl, PERMS | IPC_CREAT)) < 0)
err_sys("server: can’t get message queue 1");
if ( (writeid = msgget (MKEY2, PERMS | IPC_CREAT)) < 0)
err sys("server: can’t get message queue 2");

server (readid, writeid);

exit (0);

The main function for the client is

#include "msgqg.h"

main ()
{

int readid, writeid;

/*
* Open the message queues. The server must have
* already created them.

*/

if ( (writeid = msgget (MKEY1, 0)) < 0)

err sys{("client: can’t msgget message queue 1");
if ( (readid = msgget (MKEY2, 0)) < 0)

err_sys("client: can’t msgget message queue 2");

client (readid, writeid);

/*
* Now we can delete the message queues.
x/

if (msgctl(readid, IPC_RMID, (struct msqid ds *) 0) < 0)
err sys("client: can’t RMID message queue 1");

if (msgetl(writeid, IPC_RMID, (struct msgid_ds *) 0) < 0)
err sys("client: can’t RMID message queue 2");

exit (0);

iVenture Ex. 1014 Page 48 of 94



132 Interprocess Communication Chapter 3

Both of these program use the client and server functions that were shown in
Section 3.6. These two functions in turn call the following mesg_ send and
nmesg_recv functions that use message quUeues.

#include "mesg.h"

* Send a message using the System V message queues.
* The mesg len, mesg_type and mesg data fields must be filled

* in by the caller.

*/
mesg_send (id, mesgptr)
int id; /* really an msqid from msgget () */
4 Mesg *mesgptr;
{
! /x
* Send the message - the type followed by the optional data.
*/

if (msgsnd(id, (char *) & (mesgptr->mesg_type) ,
mesgptr->mesg_len, 0) != 0)

err_sys("msgsnd error");

* Receive a message from a System V message queue.

* The caller must fill in the mesg_type field with the desired type.
* Return the number of bytes in the data portion of the message.

* A O-length data message implies end-of-file.

*/
i
: int
mesg_recv(id, mesgptr)
int id; /* really an msqid from msgget () */
Mesg *mesgptr;
{
int n;
/ *
* Read the first message on the queue of the specified type.
*/

n = msgrcv(id, (char *) & (mesgptr->mesg_type), MAXMESGDATA,
mesgptr->mesg_type, 0);
if ( (mesgptr—->mesg_len = n) < 0)
err_dump ("msSgrcv error");

return(n); /* n will be 0 at end of file */
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Multiplexing Messages

The purpose of having a type associated with each message is to allow multiple processes
to multiplex messages onto a single queue. Consider our simple example of a server pro-
cess and a single client process. With either pipes or FIFOs, two IPC channels are
required to exchange data in both directions, since these types of IPC are unidirectional.
With a message queue, a single queue can be used, having the type of each message sig-
nify if the message is from the client to the server, or vice versa.

Consider the next complication, a server with multiple clients. Here we can use 2
type of 1, say, to indicate a message from any client to the server. If the client passes its
process ID as part of the message, the server can send its messages to the client
processes, using the client’s process ID as the message type. Each client process Speci-
fies the msgrype argument to msgrcv as its process ID. Figure 3.18 shows how a single
message queue can be used to multiplex these messages between multiple processes.

client 1 client 2 client 3

pid = 123 pid =456 pid =789

type = 1 type = 123 type = 1 type =789
type=1 type = 456
pommmmm——mm eSS o oSS oSS A
! message queue I
Lo e e 4

server .
|

Figure 3.18 Multiplexing messages between three clients and one server.

Another feature provided by the type attribute of messages if the ability of the
receiver to read the messages in an order other than first-in, first-out. With pipes and
FIFOs, the data must be read in the order in which it was written. With message queues
we can read the messages in any order that is consistent with the values we associate with
the message types. We can, in essence, assign priorities to the messages by associating a
priority to a type, or range of types. Furthermore, we can call msgrcv with the
IPC_NOWAIT flag to read any messages of a given type from the queue, but return
immediately if there are no messages of the specified type.
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Now we can redo the client—server example using a single message queue. These
programs use the convention that messages with a type of 1 are from the client to the
server, and messages with a type of 2 are from the server to the client. The server pro-
gram is

#include <stdio.h>
#include "mesqg.h"
#include "msgqg.h"
Mesg nesqg;
main ()
{
int id;
/k
* Create the message queue, if required.
x/
if ( (id = msgget (MKEY1l, PERMS | IPC _CREAT)) < 0)

err sys("server: can’t get message queue 1");
server (id);

exit (0);

server (id)

int id;
{
int n, filefd;
char errmesg[256], *sys_err str();
/*
* Read the filename message from the IPC descriptor.
*x/
mesg.mesg_type = 1L; /* receive messages of this type */

if ( (n = mesg_recv(id, &mesg)) <= 0)
err_sys("server: filename read error");

mesg.mesg_data(n] = '\0"; /* null terminate filename */
mesg.mesg type = 2L; /* send messages of this type */
if ( (filefd = open(mesg.mesg data, 0)) < 0) {

/~k

* Error. Format an error message and send it back
* to the client.

*/

sprintf (errmesg, ": can’t open, %$s\n", sys_err str());
strcat (mesg.mesg_data, errmesg);

mesg.mesg_len = strlen(mesg.mesg_data);

mesg_send(id, &mesg);
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} else {
/*
* Read the data from the file and send a message to
* the IPC descriptor.
*/
while ( (n = read (filefd, mesg.mesg data, MAXMESGDATA)) > 0) {

mesg.mesqg_len = n;
mesg_send(id, &mesgq);
}
close(filefd);

if (n < 0)
err sys("server: read error");
}
/%
* Send a message with a length of 0 to signify the end.
*/

mesg.mesg_len = 0;
mesg_send (id, &mesq) ;

—-—

The client program is

#include <stdio.h>
#include "mesg.h"
#include "msgg.h"
Mesg mesg;
main ()
{

int id;

/*

* Open the single message queue. The server must have
* already created it.

*/

if ( (id = msgget (MKEY1, 0)) < 0)
err_sys("client: can’t msgget message queue 1");

client (iq);

/* ’
* Now we can delete the message queue. |
*/

if (msgetl(id, IPC RMID, (struct msqid_ds *) 0) < 0) |
€rr sys("client: can’t RMID message queue 1"); §

|
|
exit (0); {
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}

client (id)
int id;
{

int n;

/*
* Read the filename from standard input, write it as
* a message to the IPC descriptor.
*/

if (fgets (mesg.mesg_data, MAXMESGDATA, stdin) == NULL)
err_sys("filename read error");

n = strlen(mesg.mesg_data);

if (mesg.mesg data[n-1] == "\n’

n--; /* ignore the newline from fgets() */
mesg.mesg_data[n] = \0’; /* overwrite newline at end */
mesg.mesg_len = n;
mesg.mesg_type = 1L; /* send messages of this type */

mesg_send(id, &mesg);

/*
* Receive the message from the IPC descriptor and write
* the data to the standard output.

*/
mesg.mesg_type = 2L; /* receive messages of this type */
while( (n = mesg_recv(id, &mesg)) > 0)
if (write(l, mesg.mesg data, n) != n)
err sys("data write error");
if (n < 0)

err_sys("data read error™};

Both of these programs use the mesg_send and mesg_recv functions that were
shown earlier in this section for the example that used two message queues.

Message Queue Limits

There are certain system limits on message queues. Some of these can be changed by a
system administrator, by configuring a new kernel. Figure 3.19 shows the values for five
different versions of Unix. T

T Note that three of these systems specify a per-queue maximum of 16,384 bytes when they only
allow a systemwide maximum of 8,192 bytes. This doesn’t make sense. Also, these three systems
allow more total message queues (50) than messages (40), meaning we can’t have one message per
queue outstanding, at any point in time.
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Parameter AT&T VAX  DEC VAX AT&T

name Sys V Rel 2 Ultrix Unix PC Xenix 286  Xenix 386 Description

msgmax 8,192 8,192 8,192 8,192 8,192 max # of bytes per i
message

msgmnb 16,384 16,384 16,384 8,192 8,192 max # of bytes on any
one message queue

msgmni 50 50 50 10 10 max # of message
queues, systemwide

msgtqgl 40 40 40 60 60 max # of messages,
systemwide

8,192 8,192 8,192 8,192 8,192 max # of bytes of ;‘

messages, systemwide

Figure 3.19 Typical limits for message queues.

The intent is to show some typical values, to aid in planning for portability. For example,
if we write an application that uses messages that are 20,000 bytes long, it will not be
portable. The magic number 8192 bytes for a maximum message size is similar to the
magic number of 4096 bytes for a maximum write to a pipe of FIFO.

3.10 Semaphores

Semaphores are a synchronization primitive. As a form of IPC, they are not used for
exchanging large amounts of data, as are pipes, FIFOs, and message queues, but are
intended to let multiple processes synchronize their operations. Our main use of sema-
phores is to synchronize the access to shared memory segments, which we discuss in the
next section. This section provides a general overview of the semaphore system calls.
Consider a semaphore as an integer valued variable that is a resource counter. The
value of the variable at any point in time is the number of resource units available. If we i
have one resource, say a file that is shared, then the valid semaphore values are zero and ‘
one.
Since our use of semaphores is to provide resource synchronization between dif-
ferent processes, the actual semaphore value must be stored in the kernel. We show this
in Figure 3.20.
To obtain a resource that is controlled by a semaphore, a process needs to test its
current value, and if the current value is greater than zero, decrement the value by one. If
the current value is zero, the process must wait until the value is greater than zero (i.e.,
wait for some other process to release the resource). To release a resource that is con-
trolled by a semaphore, a process increments the semaphore value. If some other process
has been waiting for the semaphore value to become greater than zero, that other process
€an now obtain the semaphore. We can show this in pseudocode as

i
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process A process B

semaphore:

kernel

Figure 3.20 Semaphore value stored in kernel.

for (; ;) {
if (semaphore value > 0) {
semaphore value--;
break;

}

/* we’ve obtained the semaphore */

The pitfall in this implementation of semaphores is that the test of the semaphore’s
current value, followed by the decrement of that value, is not an atomic operation. It
must not be possible for one process to do the test and then be interrupted by another pro-
cess that does the same test and then decrements the value. The System V implementa-
tion of semaphores is done in the kernel, where it is possible to guarantee that a group of
operations on a semaphore is done atomically, with respect to other processes.

What we have described as a semaphore is a single binary semaphore—a semaphore
with a single value that can be either zero or one. The System V implementation expands
this in two directions.

1. A semaphore is not a single value but a set of nonnegative integer values. The
number of nonnegative integer values in the set can be from one to some system
defined maximum.

2. Each value in the set is not restricted to zero and one. Instead each value in the
set can assume any nonnegative value, up to a system defined maximum value.

For every set of semaphores in the system, the kernel maintains the following struc-
ture of information.

#include <sys/types.h>
#include <sys/ipc.h> /* defines the ipc perm structure */

struct semid ds {
struct ipc_perm sem perm; /* operation permission struct */
struct sem *sem _base; /* ptr to first semaphore in set */
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ushort sem_nsems; /* # of semaphores in set */
time t sem_otime; /* time of last semop */
time t sem ctime; /* time of last change */

}i

The ipc_ perm structure was described in Section 3.8 and contains the access permis-
sions for this particular semaphore. The sem structure is the internal data structure used
by the kernel to maintain the set of values for a given semaphore. Every member of a
semaphore set is described by the following structure:

struct sem {
ushort semval; /* semaphore value, nonnegative */
short sempid; /* pid of last operation */
ushort semncnt; /* # awaiting semval > cval */
ushort semzecnt; /* # awaiting semval = 0 */

}i

In addition to maintaining the actual set of values for a semaphore, the kernel also main-
tains three other pieces of information for each value in the set—the process ID of the
process that did the last operation on the value, a count of the number of processes wait-
ing for the value to increase, and a count of the number of processes waiting for the value
to become zero.

We can picture a particular semaphore in the kernel as being a semid_ds structure
that points to an array of sem structures. If the semaphore has two members in its set,
we would have the picture shown in Figure 3.21.

struct semid_ds

semid ———= semval |[0]

sem_perm sempid |[0]
structure

semncnt  [[0]

semzent  {{0]

sem_base kernel
— semval [[1]
sem nsems
— sempid |{1}]
sem otime
- semncnt  {{1) |
sem ctime f
— semzcnt  {[1] :
L o o e J |

Figure 3.21 Kemel data structures for a semaphore set.

In Figure 3.21, the variable sem_nsems has a value of two and we have denoted each

member of the set with the subscripts [0] and [11].
A semaphore is created, or an existing semaphore is accessed with the semget sys-

tem call.
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semget (key t key, int nsems, int semflag) ;

The value returned by semget is the semaphore identifier, semid, or ~1 if an error
occurred.

The nsems argument specifies the number of semaphores in the set. If we are not
creating a new semaphore set, but only accessing an existing set (i.e., we did not specify
the IPC_CREAT flag for the semflag argument), we can specify this argument as zero,
We cannot change the number of semaphores in a set once it is created.

The semflag value is a combination of the constants shown in Figure 3.22.

Numeric Symbolic Description
0400 SEM_R Read by owner
0200 SEM_A Alter by owner
0040 SEM R >> 3 | Read by group
0020 SEM A >> 3 | Alter by group
0004 SEM R >> 6 | Readby world
0002 SEM_A >> 6 | Alter by world

IPC_CREAT (See Section 3.8)
IPC_EXCL (See Section 3.8)

Figure 3.22 semflag values for semget system call.

Once a semaphore set is opened with semget, operations are performed on one or
more of the semaphore values in the set using the semop system call.
#include <sys/types.h>

#include <sys/ipc.h>
#include <sys/sem.h>

int semop (int semid, struct sembuf **opsptr, unsigned int nops) ;
The pointer opsptr points to an array of the following structures:

struct sembuf {
ushort sem num; /* semaphore # */
short sem_op; /* semaphore operation */
short sem flg; /* operation flags */

}i

The number of elements in the array of sembuf structures pointed to by opsptr is
specified by the nops argument. Each element in this array specifies an operation for one
particular semaphore value in the set. The particular semaphore value is specified by the
sem_num value, which is zero for the first element, one for the second, and so on, up to
nsems—I, where nsems is the number of semaphore values in the set (the second argu-
ment in the call to semget when the semaphore set was created).
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}

The return value from semop is zero if all is OK, or -1 if an error occurred. T
There are a multitude of options available to the semop system call. We can
specify, for example, the T PC_NOWAIT flag for the sem_f1g value associated with an

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

int semctl (int semid, int Semnum, int cmd, union semun arg) ;

union semun {

int val; /* used for SETVAL only */

struct semid ds *buff; /* used for IPC_STAT and IPC_SET x/
ushort *array; /* used for IPC_GETALL g IPC_SETALL +*/
arg;

We’ll
the GE

—_—
T Both the System V Release 2 manual page for semop(2) and Bach [1986] say that the return
Value is the value of the [ast semaphore that was operated on, before it was changed. This is an
error. The System V Release 3 manual page correctly states that the return value from a successful
call is zero.

Section 3.10 Semaphores 141

If sem op is positive, the value of sem_val is added to the semaphore’s i
current value., This corresponds to the release of resources that a semaphore con-
trols.

If sem_op is zero, the caller wants to wait until the semaphore’s value becomes
zero.

If sem op is negative, the caller wants to wait until the semaphore’s valye i
becomes greater than or equal to the absolute value of sem_op. This
corresponds to the allocation of resources.

use a cmd of TPC_RMID to remove a semaphore from the system. We’J) also use ;
TVAL and SETVAL commands, to fetch and set a specific sémaphore value. These : f

The GETVAL command returns the semaphore’s value as the value of the system call.
The SETVAL command sets the semaphore’s value to arg.val.

iVenture Ex. 1014 Page 58 of 94



142 Interprocess Communication Chapter 3
File Locking with Semaphores

Since semaphores can be thought of as a synchronization facility, we can return to the file
locking examples from Section 3.2 and provide yet another implementation, using sema-
phores.

We create a binary semaphore—a single semaphore value that is either zero or one.
To lock the semaphore we call semop to do two operations atomically. First, wait for
the semaphore value to become zero (a sem_op value of zero), then increment the value
to one. This is an example where multiple semaphore operations must be done atomi-
cally by the kernel. If it took two system calls to do this—one to test the value and wait
for it to become zero, and another to increment the value—the operation would not
work.

To unlock the resource, we call semop to decrement the semaphore value. Since
we have the lock on the resource, we know that the semaphore value is one before the
call, so the call cannot wait. We explicitly set sem_flgto IPC_NOWAIT o that if this
“‘impossible condition’” does happen, an error return occurs and the process aborts.

You might wonder why we don’t initialize the semaphore value to one and use it as a
resource counter, as we described earlier. Then, to allocate the resource we wait for its
value to become greater than zero, and decrement it. The release of the resource would
be done by incrementing the semaphore value. The reason we use the semaphore in our
““backwards’’ fashion has to do with an initialization problem with System V sema-
phores. It is hard to initialize a semaphore to a value other than zero, as we soon see.

/*
* Locking routines using semaphores.
*/
#include <sys/types.h>
#include <gys/ipc.h>
#include <sys/sem.h>

#define SEMKEY 123456L /* key value for semget() */
#define PERMS 0666

static struct sembuf op_lock[2] = {
o, 0, O, /% wait for sem#0 to become 0 */
0, 1, 0 /* then increment sem#0 by 1 */
}i
static struct sembuf op_unlock[1l] = {
0, -1, IPC NOWAIT /* decrement sem#0 by 1 (sets it to 0) */
bi
int semid = ~1; /* semaphore id */
my_lock (£d)
int £d;

{
if (semid < 0) {
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if ( (semid = semget (SEMKEY, 1, IPC_CREAT | PERMS)) < 0)
err_sys("semget error");
}
if (semop (semid, &op_lock[0], 2) < 0)
err_sys("semop lock error");

}

my_unlock (£3)
int fd;
{
if (semop (semid, &op_unlock[0], 1) < 0)
err sys ("semop unlock error");

There is a slight problem with this implementation—if the process aborts for some
reason while it has the lock, the semaphore value is left at one. Any other process that
tries to obtain the lock waits forever when it does the locking semop that first waits for
the value to become zero. There are some ways around this.

® A process that has a lock can set up signal handlers to catch all possible signals,
and remove the lock before terminating. The only problem with this is that there
are some signals that a process can’t catch, such as SIGKILL.

® The my_ lock function can become more sophisticated. It can specify the
IPC_NOWAIT flag on the first operation in the op_lock array. If the semop ;
returns an error with errno equal to EAGATN, the process can call the semct 1 :
system call and look at the sem_ctime value for the semaphore. If some long
amount of time has passed since the last change to the semaphore (a few minutes,
perhaps) the process can assume that the lock has been abandoned by some other
process and can go ahead and remove the lock. The problem with this solution is 1
that it takes an additional system call every time the resource is locked, and we |
have to guess what amount of time implies that the lock has been left around. [

@ The third solution is to tell the kernel when we obtain the lock that if this process
terminates before releasing the lock, release it for the process.

This third solution is provided by the System V implementation of semaphores. Every
Sémaphore value in the system can optionally have another value associated with jt. This
other value is maintained by the kernel and is called the semaphore adjustment value.
The rules for this adjustment value are simple.

1. When a semaphore value is initialized, whether created by semget, or
specifically set by semctls SETVAL or SETALI, commands, the adjustment
value for that particular semaphore value is set to zero. Similarly, when a sema-
phore is deleted, any adjustment values associated with it are also deleted.

I
N
i
N
i
i
!
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2. For every semop operation that specifies the SEM_UNDO flag, if the semaphore
value goes up, the adjustment value goes down by the same amount. If the
semaphore value goes down, the adjustment value goes up by the same amount.

3. When a process exits, the kernel automatically applies any adjustment values
for that process.

Note that to take advantage of this feature, we must specify the SEM_UNDO flag for the
corresponding operation. Also, we have to specify the SEM_UNDO flag consistently, that
is, for both the allocation and deallocation, so that the corresponding adjustment value
mirrors the semaphore’s value.

We can change our file locking example to use this feature.

/*

* Locking routines using semaphores.

* Use the SEM _UNDO feature to have the kernel adjust the
* semaphore value on premature exit.

*/
#include <gys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>

#define SEMKEY 123456L /* key value for semget () */
#define PERMS 0666

static struct sembuf op_lock[Z] = {
0, 0, 0, /* wait for sem#0 to become 0 */
0, 1, SEM UNDO /* then increment sem#0 by 1 */

}i

static struct sembuf op_unlock[1l] = {
0, -1, (IPC_NOWAIT | SEM UNDO)
/* decrement sem#0 by 1 (sets it to 0) */

}i

int semid = -1; /* semaphore id */
my_lock (£d)
int f£d;

{
if (semid < 0) {
if ( (semid = semget (SEMKEY, 1, IPC_CREAT | PERMS)) < 0)
err_sys("semget error”);
}
if (semop (semid, &op_lock[0], 2) < 0)
err_sys("semop lock erroxr");

}

my unlock (£d)
int fd;
{
if (semop (semid, &op_unlock[0], 1) < 0)
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err_sys ("semop unlock error");

There is still a problem with this implementation, the semaphore is never removed
from the system. The main function that calls our locking functions should call the
semctl system call with a command argument of IPC_RMID before exiting, if it is the
last process using the semaphore. Note that the undo feature that we described earlier
only assures that the actual semaphore value gets adjusted as required if the process exits
prematurely. It does not remove a semaphore that is not used by any active processes.

Simpler Semaphore Operations

The semaphore facility provided by System V is not simple to understand or use. There
are some fundamental problems with its implementation.

o The creation of a semaphore with semget is independent of its initialization
using semctl1. This can easily lead to race conditions if we are not careful. As
we saw in the file locking section of this chapter, when it takes two system calls to
do what is logically a single operation, problems arise.

e Unless a semaphore is explicitly removed, it exists within the system, using sys-
tem resources, until the system is rebooted. It is a remote condition where a
semaphore that is not being used by any processes can be of any real use.

To get around these problems, the following functions provide an easier interface to the
semaphore system calls. These functions handle the potential race conditions and also
remove semaphores when they are no longer used (most of the time—see the comments ‘
in the code). We use these functions in the next section, to synchronize the access to k
shared memory. The technique used by these functions is to create a semaphore set made
up of three members, |

e The first member is the actual semaphore value that the user initializes, incre-
ments, and decrements. Functions are provided to increment and decrement by
one, or by some other integer value.

e The second member of the set is used as a counter of the number of processes
currently using the semaphore. This is so that the semaphore can be deleted when
no more processes use it. Instead of being an actual counter of the number of
processes, this member is initialized to a large value (10,000) and decremented
every time a new process opens it, and incremented every time a process closes it.
By always keeping the value of this member greater than zero, we don’t have to
worry about any operation on it blocking.

e The third member of the set is a lock variable for the semaphore. This is required
to protect from race conditions when the semaphore is being initialized and
closed. This lock variable is a binary semaphore that we handle in the same way
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as the lock variable in the example shown previously in this section. Note that the
lock variable is not needed when the value of the semaphore is being incremented
or decremented. The kernel’s semop system call handles this just fine. The
problems arise in the creation, initialization, and closing of the semaphore.

/*
*

*

*

* id = sem_create(key, initval); # create with initial value or open
* id = sem open (key); # open (must already exist)
* sem wait (id); # wait = P = down by 1
* sem signal (id); # signal = V = up by 1
* sem_op (id, amount); # wait if (amount < 0
* # signal if (amount > 0)
* sem_close(id); # close
* sem_rm(id); # remove (delete)
*
* We create and use a 3-member set for the requested semaphore.
* The first member, [0], is the actual semaphore value, and the second
* member, [1], is a counter used to know when all processes have finished
* with the semaphore. The counter is initialized to a large number,
* decremented on every create or open and incremented on every close.
* This way we can use the "adjust” feature provided by System V so that
* any process that exit’s without calling sem close() is accounted
* for. It doesn’t help us if the last process does this (as we have
* no way of getting control to remove the semaphore) but it will
* work if any process other than the last does an exit (intentional
* or unintentional).
* The third member, [2], of the semaphore set is used as a lock variable
* to avoid any race conditions in the sem create() and sem close()
* functions.
*/
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <errno.h>
extern int errno;
#define BIGCOUNT 10000 /* initial value of process counter */
/*
* Define the semaphore operation arrays for the semop() calls.
*/
static struct sembuf op_lock[2] = {

Provide an simpler and easier to understand interface to the System V
semaphore system calls. There are 7 routines available to the user:

2, 0, 0, /* wait for [2] (lock) to equal 0 */
2, 1, SEM _UNDO /* then increment [2] to 1 - this locks it */
/* UNDO to release the lock if processes exits
before explicitly unlocking */
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static struct sembuf op_endcreatel[2] = {
1, -1, SEM UNDO, /* decrement [1] (proc counter) with undo on exit */
/* UNDO to adjust proc counter if process exits
before explicitly calling sem_close () */
2, -1, SEM UNDO /* then decrement [2] (lock) back to 0 */

}i

static struct sembuf op_open[l] = {
1, -1, SEM _UNDO /* decrement [1] (proc counter) with undo on exit */

}i

static struct sembuf op_close[3] = {
2, 0, 0, /* wait for [2] (lock) to equal 0 */
2, 1, SEM UNDO, /* then increment [2] to 1 - this locks it */
1, 1, SEM UNDO /* then increment [1] (proc counter) */

}i

static struct sembuf op_unlock[1l] = {
2, -1, SEM UNDO /* decrement [2] (lock) back to 0 */

bi

static struct sembuf op_op[l] = {
0, 99, SEM_UNDO /* decrement or increment [0] with undo on exit */
/* the 99 is set to the actual amount to add
or subtract (positive or negative) */

Y

/********************k)\—****‘k**)\'*****************7\'*****************************
* Create a semaphore with a specified initial value.
* If the semaphore already exists, we don’t initialize it (of course).
* We return the semaphore ID if all OK, else -1.
*/
int
sem_create(key, initval)
key t key;

int initval; /* used if we create the semaphore */
{
register int id, semval;
union semun {
int val;
struct semid_ds *buf; "’
ushort *array;

} semctl_arg;

if (key == IPC_PRIVATE)

return(-1); /* not intended for private semaphores */
else if (key == (key_t) -1)

return(-1); /* probably an ftok() error by caller */

again:

if ( (id = semget (key, 3, 0666 | IPC_CREAT)) < 0)
return(-1); /* permission problem or tables full */
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|
i
{
1

When the semaphore is created, we know that the value of all
3 members is 0.

Get a lock on the semaphore by waiting for [2] to equal 0,
then increment it.

There is a race condition here. There is a possibility that
between the semget () above and the semop() below, another
process can call our sem_close() function which can remove
the semaphore if that process is the last one using it.
Therefore, we handle the error condition of an invalid
semaphore ID specially below, and if it does happen, we just
go back and create it again.

/

L S A S S

if (semop(id, &op_lock(0], 2) < 0) {
1f (errno == EINVAL)
goto again;
err_sys("can’t lock");

}

/*
* Get the value of the process counter. If it equals 0,
* then no one has initialized the semaphore yet.
*/
if ( (semval = semctl(id, 1, GETVAL, 0)) < 0)
err_sys("can’t GETVAL") ;
if (semval == 0) {
/*
* We could initialize by doing a SETALL, but that
* would clear the adjust value that we set when we
* locked the semaphore above. Instead, we’ll do 2
: * system calls to initialize [0] and [1].
*/
semctl arg.val = initval;
if (semctl(id, 0, SETVAL, semctl_arg) < 0)
err_sys("can SETVAL[0]");
semctl_arg.val = BIGCOUNT;
if (semctl(id, 1, SETVAL, semctl arg) < 0)
err sys("can SETVAL{1]");
}
/%
* Decrement the process counter and then release the lock.
*/
if (semop(id, &op_endcreate[0], 2) < 0)
err_sys("can’t end create");
return(id) ;
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}

/******7\'*****‘k******‘k************‘k*‘k********'k‘k*******v\—************‘k****k*****

* Open a semaphore that must already exist.

* This function should be used, instead of sem_create(), if the caller
* knows that the semaphore must already exist. For example a client

* from a client-server pair would use this, if its the server’s

* responsibility to create the semaphore.

* We return the semaphore ID if all OK, else -1.

*/

int

sem_open (key)
key_t  key;
{

register int id;
if (key == IPC_PRIVATE)

return(-1); /* not intended for private semaphores */
else if (key == (key_t) -~1)

return(~1); /* probably an ftok() error by caller */

if ( (id = semget(key, 3, 0)) < 0)
return(-1); /* doesn’t exist, or tables full */

/%
* Decrement the process counter. We don’t need a lock
*. to do this.

*/

if (semop(id, &op_open[0], 1) < 0)
err_sys("can’t open");

return (id) ;

/‘k****k‘k**k*k*‘k**************k******‘k********************‘k********‘k*‘k‘k********

* Remove a semaphore.

This call is intended to be called by a server, for example,

when it is being shut down, as we do an IPC_RMID on the semaphore,
regardless whether other processes may be using it or not.

Most other processes should use sem_close() below.

*Ok k¥

sem_rm(id)
int id;
{
if (semctl(id, 0, IPC_RMID, 0) < 0)
err_sys("can’t IPC_RMID");

JHHRK KA Kk kK h kA h kAR A A KA Ak Ak kA k ok ok h kA A KK R A KRR KRk K AR AR Kk k ko h ok k& ok ok k ko ok ok ke ok ok ok

* Close a semaphore.
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* Unlike the remove function above, this function is for a process
* to call before it exits, when it is done with the semaphore.

* We "decrement" the counter of processes using the semaphore, and
* if this was the last one, we can remove the semaphore.

*/

sem_close (id)

int id;

{
register int semval;
/%
* The following semop() first gets a lock on the semaphore,
* then increments [1] - the process counter.
*/

if (semop(id, &op_close([0], 3) < 0)
err_sys("can’t semop”);

/*
* Now that we have a lock, read the value of the process
* counter to see if this is the last reference to the
* semaphore.
* There is a race condition here - see the comments in
* sem_create().
*/
if ( (semval = semctl(id, 1, GETVAL, 0)) < 0)

err_sys("can’t GETVAL");

if {(semval > BIGCOUNT)
err_dump ("sem[1] > BIGCOUNT");
else if (semval == BIGCOUNT)
sem_rm(id) ;
else
if (semop(id, &op_unlock{0], 1) < 0)
err_sys("can’t unlock"); /* unlock */

/kkk***k***********k*********************************k*********************
* Wait until a semaphore’s value is greater than 0, then decrement

* it by 1 and return.

* Dijkstra’s P operation. Tanenbaum’s DOWN operation.

*/
sem_wait(id)
int id;

{

sem_op (id, -1);

/************************kk*k********************************k****k******k*

* Increment a semaphore by 1.
* Dijkstra’s V operation. Tanenbaum’s UP operation.
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*/

sem_signal (id)
int id;
{

sem_op(id, 1);

/k‘k‘k*‘k*‘k***k**********’k******k***‘k***‘k***********k**k***‘k********‘k*************‘k‘k

* General semaphore operation. Increment or decrement by a user—-specified
* amount (positive or negative; amount can’t be zero).

*/
sem_op (id, value)
int id;
int value;
{
if ( (op_op[0].sem op = value) == 0)

err_sys("can’t have value == 0");

if (semop(id, &op_op[0], 1) < 0)
err_sys("sem _op error");

File Locking with Semaphores (Again)

We can use these simpler semaphore functions in our locking example. Here we have
changed the main function from the version that was used in all the previous locking
examples, so that here we call sem create and sem close outside the main loop.

/*
* Locking example using the simpler semaphore operations.
*/

#include <sys/types.h>

#define SEQFILE "seqno"

#define SEMKEY ((key_t) 23456L)

#define MAXBUFF 100

main ()

{

int fd, i, n, pid, segno, semid;
char buff [MAXBUFF] ;

pid = getpid();

if ( (fd = open(SEQFILE, 2)) < 0)
err_sys("can’t open %s", SEQFILE);

if ( (semid = sem_create(SEMKEY, 1)) < 0)
err_sys("can’t open semaphore);

for (i = 0; i < 20; i++) {
sem_wait (semid); /* get the lock */
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lseek (£d, OL, 0); /* rewind before read */
if ( (n = read(fd, buff, MAXBUFF)) <= 0)

err_sys("read error");
buffin] = "\0"; /* null terminate for sscanf */

if ( (n = sscanf (buff, "%d\n", &seqno)) != 1)
err sys("sscanf error");
printf("pid = %d, seqf = %d\n", pid, seqno);

seqnott;

sprintf (buff, "%$03d\n", seqno);
n = strlen(buff);
lseek (fd, OL, 0); /* rewind before write */
if (write(fd, buff, n) != n)
err_sys("write error");

sem_signal (semid) ; /* release the lock */

}

sem_close (semid) ;

Semaphore Limits

As with message queues, there are certain system limits with semaphores, some of which
can be changed by reconfiguring the kernel. These are shown in Figure 3.23.

Parameter AT&T VAX DECVAX  AT&T . . .
name Sys V Rel 2 Ultrix Unix PC Xenix 286  Xenix 386 Description

semmni 10 10 10 10 10 max # of unique semaphore sets,
systemwide

semmns 60 60 60 40 40 max # of semaphores,
systemwide

semms 1l 25 25 25 10 10 max # of semaphores per
semaphore set

semopn 10 10 10 5 5 max # of operations per semop
call

semmnu 30 30 30 20 20 max # of undo structures,
systemwide

semume 10 10 10 5 5 max # of undo entries per undo
structure

sSemvinx 32,767 32,767 32,767 32,766 32,766 max value of any semaphore

semaem 16,384 16,384 16,384 16,384 16,384 max value of any semaphore’s
adjust-on-exit value

Figure 3.23 Typical limits for semaphores.
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3,11 Shared Memory

Consider the normal steps involved in the client-server file copying program that we
have been using for the example throughout this chapter.

® The server reads from the input file. Typically the data is read by the kernel into |
one of its internal block buffers and copied from there to the server’s buffer (the 1
second argument to the read system call). It should be noted that most Unix Sys-
tems detect sequential reading, as is done by the server, and try to keep one block
ahead of the read requests. This helps reduce the clock time required to copy a
file, but the data for every read is still copied by the kernel from its block buffer
to the caller’s buffer.

e The server writes this data in a message, using one of the techniques described in
this chapter—a pipe, FIFO or message queue. Any of these three forms of IPC
require the data to be copied from the user’s buffer into the kernel.

e The client reads the data from the IPC channel, again requiring the data be copied
from the kernel’s IPC buffer to the client’s buffer.

e Finally the data is copied from the client’s buffer, the second argument to the
write system call, to the output file. This might involve just copying the data
into a kernel buffer and returning, with the kernel doing the actual write operation
to the device at some later time.

A total of four copies of the data are required. Additionally, these four copies are done i
between the kernel and a user process—an intercontext copy. While most Unix imple- ‘
mentations try to speed up these copies as much as possible, they can still be expensive. f;;
Figure 3.24 depicts this data movement between the two processes.

server

client

FIFO, pipe
or message

kernel

I

|

Figure 3.24 Typical movement of data between client and server. !
;

The problem with these forms of IPC—pipes, FIFOs, and message queues—is that for
two processes to exchange information, the information has to go through the kernel.
Shared memory provides a way around this by letting two or more processes share a
Memory segment. There is, of course, a problem involved in multiple processes sharing
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phores for the synchronization.

The steps for the client—server example now become

e The server gets access to a shared memory segment using a semaphore.

e The server reads from the input file into the shared memory segment. The address
to read into, the second argument to the read system call, points into shared

memory.

e When the read is complete the server notifies the client, again using a semaphore.

e The client writes the data from the shared memory segment to the output file.

This is depicted in Figure 3.25.

a piece of memory: the processes have to coordinate the use of the memory among
themselves. (Sharing a common piece of memory is similar to sharing a disk file, such ag
the sequence number file used in all the file locking examples.) If one process is reading
into some shared memory, for example, other processes must wait for the read to finish
before processing the data. Fortunately this is an easy problem to solve, using sema-

oo A
client %: shared memory @

Chapter 3

:

kernel’s block buffers, as mentioned earlier.

1 information:

#include <sys/types.h>
#include <sys/ipc.h>

struct shmid_ds |

struct ipc perm shm_perm;
int shm_segsz;
struct XXX shm_ YYY;
ushort shm_lpid;
ushort shm_cpid;
ushort shm nattch;
ushort shm cnattch;

kernel

Figure 3.25 Movement of data between client and server using shared memory.

In this figure the data is only copied twice—from the input file into shared memory and
from shared memory to the output file. Both of these copies probably involve the

- For every shared memory segment, the kernel maintains the following structure of

/*

defines the ipc perm structure */

operation permission struct */
segment size */ .
implementation dependent info */
pid of last operation */

creator pid */

current # attached */

in-core # attached */
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time t shm atime; /* last attach time */
time t shm_dtime; /* last detach time */
time t shm _ctime; /* last change time */

}:

The ipc_perm structure was described in Section 3.8 and contains the access permis-
sions for the shared memory segment, Unlike message queues and semaphores, we can t

used in the structure above to note this fact.
A shared memory segment is created, or an existing one is accessed with the
shmget system call.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmget(key_t key, int size, int shmflag) ;

The value returned by shmget is the shared memory identifier, shmid, or —1 if an error
occurs. The size argument specifies the size of the segment, in bytes. The Shmflag argu-
ment is a combination of the constants shown in Figure 3.26.

Description

|

Read by owner
Write by owner

SHM W

SHM R >> 3 | Read by group

SHM_W >> 3 | Write by group

SHM R >> 6 | Read by world |
SHM W >> 6 | Write by world ‘ irh
IPC_CREAT | (See Section 3.8) o
IPC_EXCL (See Section 3.8) |

Figure 3.26 shmflag values for shmget system call.

Note that the shmget call creates or opens a shared memory segment, but does not
provide access to the segment for the calling process. We must attach the shared
Mmemory segment by calling the shmat system call.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

char *shmat (int shmid, char *shmaddr, int shmflag) ;

This system call returns the starting address of the shared memory segment. The rules
for determining this address are as follows:

® If the shmaddr argument is zero, the system selects the address for the caller, !
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o If the shmaddr argument is nonzero, the returned address depends whether the
caller specifies the SHM RND value for the shmflag argument:

o If the SHM_RND value is not specified, the shared memory segment is attacheq
at the address specified by the shmaddr argument.

o If the SHM RND value is specified, the shared memory segment is attached at
the address specified by the shmaddr argument, rounded down by the constant
SHMLBA (LBA stands for ‘‘lower boundary address’”’).

For all practical purposes, the only portable calls to shmat specify the shmaddr of zero,
and let the kernel select the address.

By default, the shared memory segment is attached for both reading and writing by
the calling process. The SHM RDONLY value can also be specified for the shmflag argu-
ment, specifying ‘‘read-only’’ access.

When a process is finished with a shared memory segment, it detaches the segment
by calling the shmdt system call.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shndt (char *shmaddr) ;

This call does not delete the shared memory segment. To remove a shared memory seg-
ment, the shmct1 system call is used.

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmctl (int shmid, int cmd, struct shmid ds *buf) ;

A cmd of IPC_RMID removes a shared memory segment from the system. ‘
We can now redo our client—server example using shared memory and the simpler
semaphore operations developed in the previous section. This code uses a single shared -
memory segment and two binary semaphores—one named clisem and one named
servsem. The server waits until it has control of servsem and then reads from the file
directly into the shared memory segment. When the client gets control of its semaphore,
it writes from the shared memory to the standard output. The server creates the shared
memory segment and the two semaphores, with c1isem initialized to one, to allow the
client to start things off by reading a filename into the shared memory segment. The two
semaphores then alternate between zero and one (when one semaphore value is zero the
other value is one, and vice versa) as control of the shared memory toggles between the -
two processes.
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Our header file shm.h is

#include "mesg.h"
od i )
#define NBUFF 4 /* number of buffers in shared memory */
/* (for multiple buffer version) */
at !
1t k #define SHMKEY ((key_t) 7890) /* base value for shmem key */
#define SEMKEY1 ((key t) 7891) /* client semaphore key */
3 fdefine SEMKEY2 ((key_t) 7892) /* server semaphore key */
y #define PERMS 0666
- The file mesg.h is the same file shown earlier that defined the Mesg structure. (We’ll |
discuss the NBUFF variable later in this section.) I
it Here is the server program. 1
b i
#include <stdio.h> '
#include <sys/types.h> ;
#include <sys/ipc.h> |
#include <sys/shm.h> i
#include "shm.h"
. int shmid, clisem, servsem; /* shared memory and semaphore IDs */ :
Mesg *mesgptr; /* ptr to message structure, which is ?
in the shared memory segment */ {
main () {
{
/*

* Create the shared memory segment, if required,
* then attach it.
*/

if ( (shmid = shmget (SHMKEY, sizeof (Mesqg), PERMS | IPC_CREAT)) < 0)
err_sys("server: can’t get shared memory") ; i

if ( (mesgptr = (Mesg *) shmat (shmid, (char %) 0, 0)) == (Mesg *) -1) !
err_sys("server: can’t attach shared memoxry™") ;

/*
* Create two semaphores. The client semaphore starts out at 1
* since the client process starts things going.

*/

if ( (clisem = sem_create (SEMKEY1l, 1)) < Q)
err_sys{"server: can’t create client semaphore") ;

if ( (servsem = sem_create (SEMKEY2, 0)) < 0)
err_sys("server: can’t create server semaphore") ;

server () ;
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/*
* Detach the shared memory segment and close the semaphores.
* The client is the last one to use the shared memory, so
* it’1l remove it when it’s done.

*/

if (shmdt (mesgptr) < 0)
err sys("server: can’t detach shared memory");

sem_close(clisem);
sem_close (servsem) ;

exit (0);
}
server ()
{
int n, filefd;
char errmesg[256], *sys err str();
/*
* Wait for the client to write the filename into shared memory.
*/
sem_wait (servsem); /* we’ll wait here for client to start things */
mesgptr->mesyg_datal[mesgptr->mesg len] = "\0’;

/* null terminate filename */

if ( (filefd = open (mesgptr->mesg_data, 0)) < 0) {
/*
* Error. Format an error message and send it back
* to the client.
*/

sprintf (errmesg, ": can’t open, %s\n", sys_erxr_str());
strcat (mesgptr->mesg_data, errmesg);
mesgptr->mesg_len = strlen(mesgptr->mesg data);

sem_signal (clisem) ; /* send to client */

sem_wailt (servsem) ; /* wait for client to process */
} else {

/%

* Read the data from the file right into shared memory.

* The -1 in the number-of-bytes-to-read is because some

* Unices have a bug if you try and read into the final byte
* of a shared memory segment.

*/

while ( (n = read(filefd, mesgptr->mesg_data,
MAXMESGDATA-1)) > 0) {
mesgptr->mesg_len = n;
sem_signal (clisem); /* send to client */
sem_wait (servsem) ; /* wait for client to process */
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}
close(filefd);
if (n < 0)
err sys("server: read error");

/*
* Send a message with a length of 0 to signify the end.
*/

mesgptr->mesg len = 0;
sem_signal (clisem);

Note that unlike the earlier versions of this program, the shared memory version
defines a pointer to a Mesg structure (the mesgpt r variable), not a structure itself. The
actual structure is allocated by the system in the shared memory segment.

Here is the client program.

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "shm.h"
int shmid, clisem, servsem; /* shared memory and semaphore IDs */
Mesg *mesgptr; /* ptr to message structure, which is
in the shared memory segment */
main ()
{
/*

* Get the shared memory segment and attach it.
* The server must have already created it.

Wy ;

if ( (shmid = shmget (SHMKEY, sizeof (Mesg), 0)) < 0)
err_sys("client: can’t get shared memory segment™);

i1f ( (mesgptr = (Mesg *) shmat (shmid, (char *) 0, 0)) == (Mesg *) -1)
err_sys("client: can’t attach shared memory segment");

A
* Open the two semaphores. The server must have
* created them already.

*/

if { (clisem = sem_open (SEMKEY1)) < 0)
err_sys("client: can’t open client semaphore");
if ( (servsem = sem_open (SEMKEY2)) < 0)
err_sys("client: can’t open server semaphore");

client () ;
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/*
* Detach and remove the shared memory segment and
* close the semaphores.

*/

if (shmdt (mesgptr) < 0)
err_sys("client: can’t detach shared memory");
if (shmctl (shmid, IPC_RMID, (struct shmid_ds *) 0) < 0)
err _sys("client: can’t remove shared memory");

sem_close(clisem); /* will remove the semaphore */
sem_close (servsem); /* will remove the semaphore */
exit (0);
}
client ()
{
int n;
/*
* Read the filename from standard input, write it to shared memory,
*/
sem_wait (clisem) ; /* get control of shared memory */
if (fgets (mesgptr->mesg data, MAXMESGDATA, stdin) == NULL)

err_sys(”filename read error™);

n = strlen(mesgptr->mesg data);

if (mesgptr->mesg data[n-1] == "\n’)
n--; /* ignore newline from fgets() */
mesgptr->mesg_len = n;
sem_signal {(servsem) ; /* wake up server */
/*
* Wait for the server to place something in shared memory.
*/
sem_wait (clisem); /* wait for server to process */
while( (n = mesgptr->mesg len) > 0) {
if (write(l, mesgptr->mesg data, n) != n)
err_sys{("data write erroxr");
sem_signal (servsem); /* wake up server */
sem_wait (clisem); /* wait for server to process */
}
if (n < 0)

err_sys("data read error");
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The two processes wait for access to the shared memory by waiting for a
semaphore’s value to become greater than zero. This is the most efficient way to wait for
the resource, since it is the kernel that does all semaphore operations and the kernel puts
a process to sleep when it has to wait for a semaphore. While the process is asleep, the
kernel can allocate the CPU to other processes that are ready to run. Some books show
what is called busy-waiting when a process needs to wait for an event. The process
doesn’t go to sleep, it just keeps trying to obtain the resource, over and over again, until it
gets it. For example, we could add another variable to the Mesg structure and use this as
a flag to indicate which process has control of the shared memory segment. If the flag

were zero, perhaps, the client is using it, while if it were one the server could use it.
Instead of executing

sem signal (clisem);
sem_wait (servesm) ;

in the server loop, it could execute

mesgptr->mesg flag = 0; /* signal client */
while (mesgptr->mesg flag == 0)
; /* wait for client to process */

if mesg_ flag were the busy—wait flag in the Mesqg structure. The corresponding code
in the client loop becomes

mesgptr->mesqg flag = 1; /* signal server */
while (mesgptr->mesg flag == 1)
; /* wait for server to process */

While this approach works, semaphores should always be used for this type of synchroni-
zation. A busy—wait loop is a waste of CPU resources.

Multiple Buffers

In a typical program that processes some data we find a loop of the form

while ( (n = read(fdin, buff, BUFFSIZE)) > 0) |
/* process the data */
write (fdout, buff, n);

}

Many programs that process a text file, for example, read a line of input, process that
line, and write a line of output. For text files, the calls to read and write are normally
replaced with calls to the standard I/O functions fgets and fputs.

If we look at a process that reads data and then writes it out we have the time line
shown in Figure 3.27. We have labeled the time line with numbers on the left, designat-
ing some arbitrary units of time.
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0 —p— start read
|

|
5 read returns
7 start write
1
!
i
|
14 write returns
16 start read
|

1
21 read returns
23 start write

|
|
i

30 $ write returns

time

Figure 3.27 Time line for single-process read—write example.

Time increases downward. We have assumed that a read operation takes 5 units of time,
a write takes 7 units of time, and the processing time between the read and write con-
sumes 2 units of time.

If we divide the processing into two processes, as we’ve done with the client-server
example in this chapter, we have the time line shown in Figure 3.28.

Server Client
0 —— start read
i
)
5 —— read returns .
7 signal client — start write —— 7
t
i
i
i
write returns —— 14
16 —— start read «  signal server 16
i
1
21 —— read returns .
23 signal client — start write —— 23
)
i
1
write returns T 30
time time

Figure 3.28 Time line for two processes doing read-write example.
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This time line assumes that there is a single shared memory segment for the client and
server processes. We assume here that the time to process the data in the buffer, along
with the signaling of the other process takes 2 units of time. The impoi'tant thing to note
is that dividing the reading and writing into two processes does not affect the total
amount of time required to do the operation. We have not gained any speed advantage.

There are many fine points that we are ignoring in these time lines. For example,
Unix systems detect sequential reading of a file and do asynchronous read ahead of the
next disk block for the reading process. This can improve the actual amount of time,
called “‘clock time,”” that it takes to perform this type of operation. We are also ignoring
the effect of other processes on our reading and writing processes, and the effects of the
operating system’s scheduling algorithms. Our goal is to describe the concept of double
buffering and see how it affects the clock time for a typical process.

Unix I/O is termed synchronous. A read or write system call does not return to
the calling process until the operation is complete and the requested data has been copied
by the kernel, either into the buffer for a read, or from the buffer for a write. The
data might only be copied to or from a buffer in the kernel. There is no guarantee for
typical disk I/O that the data is really read from the disk or written to the disk. Indeed,
the read ahead mechanism mentioned above often causes the kernel to already have the
data in one of its buffers. A similar operation on writes, termed write behind, allows
the kernel to write the data to the disk at some later time.

Some operating systems provide asynchronous 1/0. This allows a process to execute
a system call to start an I/O operation and have the system call return immediately after
the operation is started or queued. Another system call is required to wait for the opera-
tion to complete (or return immediately if the operation is already finished). The advan-
tage of asynchronous I/O is that a process can overlap its execution with its I/O, or it can
overlap I/O between different devices. While this typically doesn’t have a great effect on
a process that is reading from a disk file and writing to another disk file, asynchronous
I/O can provide significant performance improvements for other types of I/O driven
programs—a program that dumps a disk to a magnetic tape, a program that displays an
image on an image display. Even though Unix does not provide asynchronous I/O we
can gain the same performance improvements by splitting our processing into multiple
processes and have them share more than one buffer.

Now consider the example from above, but with the client and server using two buff-
ers. This is shown in Figure 3.29. The server first reads into buffer 1, then signals the
client that buffer 1 is ready for processing. The server then starts reading into buffer 2,
while the client is writing buffer 1. Note that we can’t go any faster than the slowest
operation, which in our example is the write. Once the server has completed the first two
reads, it has to wait the additional 2 units of time that is the time difference between the
write (7) and the read (5). The total clock time, however, will be almost halved for the
double buffer case, compared to the single buffered case, for our hypothetical example.
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Server Client
0 —— start read into buffer 1

|
|
5 :I: read returns, signal client —>
7
j
I

start read into buffer 2 start write of buffer 1 7
I
|
12 —}— read returns, signal client — |
I
< write returns, signal server 14
16 —— start read into buffer 1 start write of buffer 2 16
: i
21 —}— read returns, signal client — :
. <« write returns, signal server 23
25 —{— start read into buffer 2 start write of buffer 1 25
! !
! 1
30 —|— read returns, signal client — i
j
<« write returns, signal server «\r 32
time time

Figure 3.29 Time line for two processes doing read—write example, using two buffers.

We now show the client-server example using multiple buffers. The code was writ-
ten for NBUFF buffers, not just for two buffers. Typically it is wise, when converting a
single resource program to a 2-resource program, to develop an N-resource solution
instead. The extra effort required to develop a solution to the N-resource case is often
worth it, as many times generalizing a problem makes the solution ‘‘cleaner.”” By this
we mean the solution is often more general and avoids magic numbers and special case
handling.

The server program is

#include <stdio.h>
#include <gys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "shm.h"
int clisem, servsem; /* semaphore IDs */
int shnid [NBUFF] ; /* shared memory IDs */
Mesg *mesgptr [NBUFF] ; /* ptr to message structures, which are
in the shared memory segment */
main ()
{
register int i;
/*

* Get the shared memory segments and attach them.

iVenture Ex. 1014 Page 81 of 94



Section 3.11 Shared Memory 165

*/

for (1 = 0; i < NBUFF; i++) ({
if ( (shmid[i] = shmget (SHMKEY + i, sizeof (Mesq),
PERMS | IPC_CREAT)) < 0)
err sys("server: can’t get shared memory $d", 1i);
if ( (mesgptr[i] = (Mesg *) shmat (shmid[i], (char *) 0, 0))
== (Mesg *) -1)
err_sys("server: can’t attach shared memory %d", i);

}

/%
* Create the two semaphores.

*/

if ( (clisem = sem create(SEMKEY1, 1)) < 0)
err_sys("server: can’t create client semaphore”);
if ( (servsem = sem create (SEMKEY2, 0)) < 0)
err sys("server: can’t create server semaphore");

server ();

/%
* Detach the shared memory segments and close the semaphores.
* We let the client remove the shared memory segments,

* since it’11l be the last one to use them.

*/

for (i = 0; 1 < NBUFF; i++) {
if (shmdt (mesgptr{i]) < 0)
err_sys("server: can’t detach shared memory %d", i);

sem_close(clisem);
sem_close (servsem) ;

exit (0);
}
server ()
{
register int i, n, filefd;
char errmesg(256], *sys err_str();
!
/% |
* Wait for the client to write the filename into shared memory,
* then try to open the file.
*/

sem_wait (servsem) ;
mesgptr[0]->mesg_data[mesgptr[0]->mesg len] = '\0’;
/* null terminate filename *x/
if ( (filefd = open (mesgptr[0]->mesg_data, 0)) < 0) {
/*

!
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* Brror. Format an error message and send it back
* to the client.

*/

sprintf (errmesg, ": can’t open, %s\n", sys_err_str());
strcat (mesgptr[0]->mesg _data, errmesq);
mesgptr [0} ->mesg_len = strlen(mesgptr[0]->mesg data);
sem_signal (clisem) ; /* wake up client */

sem walt (servsem); /* wait for client to process */
mesgptr{l]->mesg_len = 0;
sem_signal (clisem) ; /* wake up client */

} else {

~

EE S S

Initialize the server semaphore to the number

of buffers. We know its value is 0 now, since

it was initialized to 0, and the client has done a
sem_signal ()}, followed by our sem_wait () above.

What we do is increment the semaphore value

once for every buffer (i.e., the number of resources
that we have) .

for (i = 0; i < NBUFF; i++)
sem_signal (servsem) ;

/*
* Read the data from the file right into shared memory.
* The -1 in the number~of-bytes-to-read is because some
* Unices have a bug if you try and read into the final byte
* of a shared memory segment.

*/

for (; ;) |
for (i = 0; 1 < NBUFF; i++) {
sem_wailt (servsem) ;
n = read(filefd, mesgptr[i]->mesg_data,
MAXMESGDATA-1) ;
if (n < 0)
err_sys("server: read error");
mesgptr(i]l->mesg_len = n;
sem_signal (clisem) ;
if (n == 0)
goto alldone;

alldone:
/* we’ve already written the O-length final buffer */

close(filefd);
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The client program is
#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include "shm.h"
int clisem, servsem; /* semaphore IDs */
int shmid [NBUFF] ; /* shared memory IDs */
Mesg *mesgptr [NBUFF]; /* ptr to message structures, which are
in the shared memory segment */
main ()
{
register int iz
/*

* Get the shared memory segments and attach them.
* We don’t specify IPC_CREAT, assuming the server creates them.

*/

for (i = 0; i < NBUFF; i++) |
if ( (shmid[i] = shmget (SHMKEY + i, sizeof (Mesg), 0)) < 0)
err sys("client: can’t get shared memory %d", iy;
if ( (mesgptr([i] = (Mesg *) shmat (shmid{i], (char *) 0, 0))
== (Mesg *) -1)
err_sys("client: can’t attach shared memory %d", 1i);

/*
* Open the two semaphores.

*/

if ( (clisem = sem_open(SEMKEYl)) < 0)
err_sys("client: can’t open client semaphore");
if ( (servsem = sem_open (SEMKEY2)) < 0)
err_sys("client: can’t open server semaphore) ;

client () ;

/*
* Detach and remove the shared memory segments and
* close the semaphores.

*/

for (i = 0; i < NBUFF; i++) {
if (shmdt (mesgptr[i]) < 0)
err_sys("client: can’t detach shared memory %d", i)
if (shmctl(shmid[i], IPC _RMID, (struct shmid _ds *) 0) < 0)
err sys("client: can’t remove shared memory gd", i);
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sem_close (clisem);
sem close (servsem);

exit (0);
1
client ()
{
int i, n;
/*
* Read the filename from standard input, write it to shared memory,
*/
semgwait(clisem); /* wait for server to initialize */
if (fgets (mesgptr[0]->mesg_data, MAXMESGDATA, stdin) == NULL)

err sys("filename read error");

n = strlen(mesgptr[0]->mesg_data);
if (mesgptr[0]->mesg_data[n-1] == ‘\n’)
n--; /* ignore newline from fgets () */
mesgptr[0]->mesg_len = n;
sem_signal (servsem) ; /* wake up server */

for (7 ;i ) |
for (i = 0; i < NBUFF; i++) {
sem_wait(clisem);

if ( (n = mesgptr[i]->mesg len) <= 0)
goto alldone;
if (write(l, mesgptr[i]->mesg data, n) != n)

err_sys("data write error");
sem_signal(servsem);

alldone:
if (n < 0)
err_sys("data read error");

One change that could be made is to allocate a single shared memory segment whose
size is NBUFF * sizeof (Mesg), instead of NBUFF segments.

Shared Memory Limits

As with message queues and semaphores, there are certain system limits on shared
memory. Typical values are shown in Figure 3.30. Some of these can be changed by 2
system administrator, by configuring a new kernel. Compared to the other forms of PC
described in this chapter (pipes, FIFOs, message queues, and semaphores), there is a
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greater potential for writing nonportable code when using shared memory, so portability
must be kept in mind.

Parameter AT&T VAX  DEC VAX AT&T Xenix 386 Descrinti
name Sys VRel 2 Ultrix Unix PC scription
shmmax 131,072 131,072 65,536 4,194,304  maximum size in bytes of a
shared memory segment
shmmin 1 1 1 1  minimum size in bytes of a
shared memory segment |
shmmni 100 100 100 25  max # of shared memory
segments, systemwide L
shmseg 6 6 6 6 - max # of shared memory |
segments attached per process 1
shmbrk 8,192 32,768 8,192 0 (see text)

Figure 3.30 Typical limits for shared memory.

The shmbrk value needs some additional explanation. Referring to Figure 2.2, shared
memory is normally allocated by the system above the heap. If shared memory starts too
close to the heap, we won’t be able to obtain additional memory dynamically, using
either the malloc function in the standard C library or the brk or sbrk system calls. {
The shmbrk value specifies the number of bytes between the end of the heap (when the ;
first shared memory segment is allocated) and the start of the first shared memory seg-
ment. If a process wants to increase the distance between the top of the heap and the first
shared memory segment (to allow for future calls to malloc after the shared memory |
has been created), it can call mal1loc before creating the first shared memory segment. |

3.12 Sockets and TLI

Sockets are a form of IPC provided by 4.3BSD that provide communication between
! processes on a single system and between processes on different systems. One type of
socket—the Unix domain socket—is used for IPC between processes on a single system.
Pipes are implemented in 4.3BSD using a Unix domain socket.

Describing the system calls that pertain to sockets requires additional understanding
of the communication protocols that are available to the socket, so we defer our descrip-
tion of sockets until Chapter 6.
| TLI stands for transport layer interface and is a form of IPC provided with
System V Release 3.0. As a form of IPC, TLI is similar to Berkeley sockets in that it
provides communication between processes on the same system or on different systems.
We defer our discussion of TLI until Chapter 7.

il
|
I
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Summary

IPC has traditionally been a messy area in Unix. Various solutions have been imple-
mented, none of which are perfect. We first covered record locking and file locking,
since the sharing of a single file between multiple processes is a common occurrence,
We then examined numerous IPC techniques—pipes, FIFOs, message queues, sema-
phores, and shared memory—and will cover two more in Chapters 6 and 7. You must
evaluate your needs for both IPC and portability, and choose the best technique available.

In Chapter 17 we’ll examine some typical performance values for the various IPC
techniques.

We’ll encounter IPC in many of the examples later in the text. For example, IPC,
record locking, and network programming will all come together in our discussion of the
4.3BSD line printer spooler in Chapter 13.

Exercises

3.1 Implement one of the filesystem based locking techniques from Section 3.2, say the tech-
nique that uses the 1ink system call, and compare the amount of time required for this,
versus actual file locking.

3.2 Under System V Release 3.2 or later, write a program that uses record locking. Use the pro-
gram to verify that advisory locking is only advisory. Then modify the file’s access bits to
enable mandatory record locking and use the program to verify that the locking is now man-
datory.

3.3 Why is a signal generated for the writer of a pipe or FIFO when the other end disappears, and
not for the reader of a pipe or FIFO when its writer disappears?

3.4  Use the multiple buffer technique in Section 3.11 to write a program that copies between two
different devices—a disk file and a tape drive, for example. First measure the operation
when only a single buffer is used, then measure the operation for different values of NBUFF,
say 2, 3, and 4. Compare the results. Where do you think most of the overhead is when mul-
tiple buffers are used?

3.5 What happens with the client-server example using message queues, if the file to be copied
is a binary file? What happens to the version that uses the popen function if the file is a
binary file?

3.6 For the multiple buffer, shared memory example in Section 3.11, draw a time line showing
which process (client or server) is using which buffer, along with the values of the two sema-
phores. Assume NBUFF is 3.
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/* assure it’s null terminated */

/%
* We got the "localhostname.localdomainmame" string frog
* kernel. Save the pointer to the "locdomainmame part the

* then assure it’s lower case.

*/
if ( (locdomptr = index(locdomname, ’.’)) == NULL) ({
locdomerror = 1; /* humm, no period */
return(0) ; /* return not valid */

}

for (ptr = ++locdomptr; *ptr; ptr++)
if (isupper (*ptr))
*ptr = tolower (*ptr);

/*
* We know the host names are identical, and the entry in the fijle wa
* "hostname.". So now we compare the client’s domain with the 1Ocals
* domain, and if equal, all is OK.
*/

return (stremp (Locdomptr, clihostname + hostlen + 1) == 0);

/* returns 1 if equal, 0 otherwise *y

}

In the checkhost function we call the gethostname system call. This system cal]
returns a pointer to the name of the current host. This name is usually set when the sys-
tem is booted, using the hostname program under 4.3BSD. It may be either a simple
name such as orange, or a domain-qualified name such as orange. foo.edu. Refer
to Chapter 18 of Comer [1988] for additional information on the domain name system.

Kerberos

Project Athena was started at M.LT. in 1983 and its goal was to create an educational
computing environment built around high-performance graphic workstations, high-speed
networking, and servers of various types. The operating system for the project is based
on 4.3BSD. A discussion of the project appears in seven papers published in the Confer-
ence Proceedings of the 1988 USENIX Winter Conference. The first of these papers,
Treese [1988], provides an overview.

The authentication system used by Athena is called Kerberos.T It is a trusted third-
party authentication service. It is worth an overview here since it is based on 4.3BSD
and it provides an interesting comparison to the techniques discussed in the previous

T In Greek mythology, Kerberos is the name of the 3-headed watch dog that guards the entrance to
Hades (the underground abode of the dead).
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section of this chapter. This overview is based on the paper by Steiner, Neuman, and 1

Schiller [1988].
Kerberos assumes that the workstations are not trustworthy and requires you, the ‘

client, to identify yourself every time a service is requested. For example, every time

you want to send a file to a print server, you have to identify yourself to that server. Any

system could implement a strict security mechanism such as this, by requiring you to

enter a password of some form every time you request a network service. The techniques

used by Kerberos, however, are unobtrusive. Kerberos follows these guidelines:

e You only have to identify yourself once, at the beginning of a workstation session.
This involves entering your login name and password, and is automatically built
in to the standard Unix login program.

e Passwords are never sent across the network in cleartext. They are always
encrypted. Additionally, passwords are never stored on a workstation or server in
cleartext.

® Every user has a password and every service has a password.

e The only entity that knows all passwords is the authentication server. This
authentication server operates under considerable physical security.

Figure 9.2 shows all the pieces that are involved. |

Kerberos
Ticket Granting
Server (TGS)

(5) (9 (11)

Kerberos
database

Workstation

Kerberos
Authentication
Server

Figure 9.2 Kerberos authentication scheme.

The numbered steps, 1 to 11, in Figure 9.2 do the following:

L. You, the user, walk up to a workstation and login. You enter your login name in
response to the normal Unix 1ogin: prompt.

2. As part of the login sequence, and before you’re prompted for your password, a mes-
sage is sent across the network to the Kerberos authentication server. This message
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contains your login name along with the name of one particular Kerberos server: the
Kerberos ticket-granting server (TGS).

message = { login-name, TGS-name }

Since this message only contains two names, it need not be encrypted. Names are no
considered secret since everyone has to know other names to communicate, You
need to know other login names to send mail. You have to know the names of the
different network services, to use a particular service. We’ll sce as we Progregg
through the steps that follow that names are the only entities exchanged in cleartey :
between the workstation and Kerberos. Everything else is encrypted. ‘

The authentication server looks up your login name and the service name (TGS) iy, !
the Kerberos database, and obtains an encryption key for each. The encryption keyg
used by Kerberos are one-way encrypted passwords, similar to what is stored in the
password field entry of the normal Unix password file.

The authentication server forms a response to send back to the login program on the
workstation. This response contains a ficket that grants you access to the requesteq
server (the TGS). The concept of a ticket and what makes up a ticket is central to the
Kerberos system. Tickets are always sent across the network encrypted—they are
never sent in cleartext. The ticket is a 4-tuple containing

ticket = { login-name, TGS-name, WS-net-address, TGS-session-key }

(At the end of this section we’ll describe how a ticket also contains a time stamp and
an expiration date, in addition to the fields shown above.) The WS-net-address is the
Internet address of the workstation. The TGS-session-key is a random number gen- |
erated by the authentication server. The authentication server then encrypts this
ticket using the encryption key of the TGS server (which it obtained in step 3). This
produces what is called a sealed ticket. A message is then formed consisting of the
sealed ticket and the T'GS-session-key

message = { TGS-session-key, sealed-ticket }

This message is then encrypted using your encryption key—your encrypted pass
word, which is contained in the Kerberos database. Note that the TGS session key
appears twice in the message: once within the ticket and again as part of the message -
itself.

The 1ogin program receives the encrypted message and only then prompts you for
your password. This cleartext password that you enter is first processed through the

standard Unix one-way encryption algorithm and the result, what we’ve called the
user’s encryption key, is used to decrypt the message (TGS session key and sealed
ticket) that was received. Your cleartext password is then erased from memory. All
that the workstation has now is a sealed ticket that has been encrypted using the TGS
encryption key along with a TGS session key. This sealed ticket is incomprehensible
to the workstation since it was encrypted using the TGS encryption key, that is
known only to the TGS and Kerberos. The TGS session key is comprehensible to the
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workstation, but it is just some random bit string that the authentication server
created. i

At this point the workstation software saves a copy of the sealed ticket and the TGS ses-
sion key. Every workstation contains similar information: a sealed ticket for the ticket-
granting service along with the corresponding random TGS session key. Even though all
the sealed tickets are encrypted using the same encryption key (that of the ticket-granting
server), since each ticket contains the name of the user the ticket was granted to, the
workstation address, along with a different random TGS session key, each is different.

Now consider the scenario when you request some network service. You might
want to read your mail from the mail server, print a file on a print server, or access a file
from a file server. We’ll call the requested server the end-server, to differentiate it from
the Kerberos ticket-granting server and the Kerberos authentication server described
above. Every service request of this form requires first obtaining a ticket for the particu-
lar service. To obtain the ticket, the workstation software has to contact the Kerberos
ticket-granting server. The following steps, however, are fransparent to you when you
access the service. This was a goal of Kerberos.

6. The workstation builds a message to be sent to the ticket-granting service. This
message is a 3-tuple, consisting of

message = { sealed-ticket, sealed-authenticator, end-server-name }

The authenticator is created by the workstation software, and is a 3-tuple consisting
of

authenticator = { login-name, WS-net-address, current-time }

To seal the authenticator, the workstation encrypts it using the TGS session key that
it obtained in step 5. This message is sent to the ticket-granting service. Note that
the first two elements of the message are encrypied (sealed) and the Jast element isa
name that need not be encrypted.

7. The ticket-granting service receives the message and first decrypts the sealed ticket
using its TGS encryption key. Recall that this ticket was originally sealed by the
Kerberos authentication server in step 4 using this same key. From the unencrypted i
ticket the TGS obtains the TGS session key. It uses this session key to decrypt the S
sealed-authenticator. There are multiple items for the TGS to check for validity:
the login name in both the ticket and the authenticator, and the TGS server name in
the ticket. It also compares the network address in the ticket, the authenticator, and
in the received message, and all must be equal. Finally, it compares the current time ‘
in the authenticator to make certain the message is recent. This requires that all the ‘
workstations and servers maintain their clocks within some prescribed tolerance.
(We describe some techniques for clock synchronization on an internet in Chap-
ter 10.) The TGS now looks up the end-server-name from the message in the
Kerberos database, and obtains the encryption key for the specified service.

i

|
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10.

11.

Tickets and authenticators are the key points to understand in the implementation of
Kerberos. Let’s review some of the central points to this scheme and some of the details
that we’ve ignored.

e In

other than the first ticket, are obtained from the TGS. The first ticket is special: itisa
ticket for the TGS and is obtained from the Kerberos authentication server.

® The tickets held by a workstation are not comprehensible to the workstation. They are
encrypted using the key of the server for whom the ticket is to be used for.

Security Chape, N

The TGS forms a new random session key and then creates a new ticket base,

d o
. . n
the requested end service name and the new session key. :

ticket = { login-name, end-server-name, WS-net-address, new-session-key }

This ticket format contains the same fields as the one we showed in step 4 carliey,
We have just labelled the session key with the qualifier “‘new’’ to differentiate it
from the TGS session key that was created by the Kerberos authentication Servige,
This ticket is sealed using the encryption key for the requested end server. The TG
forms a message and sends it to the workstation.

message = { new-session-key, sealed-ticket }

This message is then sealed using the TGS session key that the workstation knows
and sent to the workstation.

The workstation receives this sealed message and decrypts it using the TGS sessiop
key that it knows. From this message it again receives a sealed ticket that it cannot
decrypt. This sealed ticket is what it has to send to the end server. It also obtaing
the new session key that it uses in the next step.

The workstation builds an authenticator
authenticator = { login-name, WS-net-address, current-time )

and seals it using the new session key. Finally, the workstation is able to send a
message to the end-server. This message is of the same format as the message i
sent to the TGS.

message = { sealed-ticket, sealed-authenticator, end-server-name )

This message isn’t encrypted, since both the ticket and authenticator within the mes-
sage are sealed, and the name of the end server isn’t a secret.

The end-server receives this message and first decrypts the sealed-ticket using its
encryption key, which only it and Kerberos know. It then uses the new session key
contained in the ticket to decrypt the authenticator and does the same validation pro-
cess that we described in step 7.

order for the workstation to use any end-server, a ticket is required. All tickets,
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e Every ticket is associated with a session key that is assigned every time a ticket is allo-
cated.

® Tickets are reusable. We didn’t mention this above, but once a ticket has been allo-
cated to a workstation for a particular service, that ticket can be reused. Every ticket
has a lifetime, typically eight hours. After a ticket has expired, you have to identify
yourself to Kerberos again, entering your login name and password. To accomplish
this expiration of tickets, each ticket also contains the time the ticket was issued and
the amount of time the ticket is valid for.

e Unlike the ticket, which can be reused, a new authenticator is required every time the
client initiates a new connection with a server. The authenticator carries a time stamp
within it, and the authenticator expires a few minutes after it is issued. This is why we
mentioned that all the workstations and servers have to maintain synchronized clocks.
The preciseness of this synchronization and the size of the network determines the
maximum reasonable lifetime for an authenticator.

® A server should maintain a history of previous client requests for which the time
stamp in the authenticator is still valid (i.e., a history of all requests within the past few
minutes). This way a server can reject duplicate requests that could arise from a stolen
ticket and authenticator.

® Since both the ticket and authenticator contain the network address of the client,
another workstation can’t use stolen copies of these without changing their system to

lowing before the authenticator expires: steal the ticket and authenticator, assure that
the original copies of the ticket and authenticator don’t arrive at the specified end-
server, and modify its network address to look like the original client.

® Once a server has validated a client’s request for service, that client and server share 2
private encryption key (the session key that is part of the ticket for that client and
server) that no one else besides Kerberos knows. If desired, the client and server can
encrypt all their session data using this key, or they can choose not to encrypt the ses-
sion data at all. Kerberos provides the private key, but it is the application’s choice
Wwhether to use it or not for all the session data.

® During a workstation session, a list of
{ server-name, sealed-ticket, session-key }

3-tuples is constructed by the workstation on behalf of the user. The first entry will be
for the ticket-granting server, and the others for each end-server contacted by the
workstation on your behalf. Someone else cannot legitimately login to the workstation
and use entries from this list (should they find this list in memory), since your name
(the client to whom the tickets were issued) is contained in the sealed ticket. Also,
when you log out from a workstation, this list of 3-tuples is destroyed.

_~
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® Once a server has validated a client, an option exists for the client to validate the
server. This handles the problem of an intruder impersonating as a server. The clien
in this case requires that the server send back a message consisting of the time stam
from the client’s authenticator, with one added to the time stamp value. This Message
is encrypted using the session key that was passed from the client to the server, fr the
server is bogus, it won’t know the real server’s encryption key, so it won’t be ab]e to
obtain the session key from the sealed ticket or the time stamp from the sealed authe.
ticator.

We described Kerberos as a trusted third-party authentication scheme. The adjectiy,
““third-party’’ is because Kerberos is a third party to the client and end-server. Trust is
inherent throughout the system: You trust Kerberos, if it correctly provides your encryp.
tion key. The server trusts you, the client, if you pass the server a ticket that was sealed
using the server’s encryption key. As with most contemporary computer security
schemes, an intruder that successfully obtains a legitimate user’s login name and pass-
word can impersonate that user.

Summary

In this chapter we’ve covered two types of security that can be provided in a network
environment. We’ll encounter the techniques used by 4.3BSD in most of the remaining
chapters of this text. We’ll also refer to Figure 9.1 as we discuss each of the servers
shown in this figure. These techniques aren’t foolproof, but they are in widespread use.
Next, we provided an overview of the Kerberos system. Kerberos provides addi-
tional security, compared to 4.3BSD. It is the type of security system that will probably
be used in post—4.3BSD systems.
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