~ Ben Forta with Keith Lauver,
Paul Fonte, Robert M. Juncker,
‘Ronan Mandel, and Dylan Bromby

AP Development
~with WIVIL and

"WMIScript

THE

AUTHORITATIVE SOLUTION

Master the concepts

WAP 1.2, WML (Wireless Markup
Language), WMLScript, Servers and
Gateways, Devices and Device

Emulators, and more

Build the applications

Create a currency convertor, an
online user directory, a personal
scheduler, and a phone-based
e-commerce application using
WML, WMLScript, and a variety

of back-end technologies
(including ASP, ColdFusion, and JSP)

Facebook's Exhibit No. 1073
Page 1

Facebook's Exhibit No. 1073
Page 2

.

Foreword

The Internet is changing the way we shop, entertain ourselves, and communicate. As the
Internet evolves, multiple distinct media are emerging—the PC, the TV, and now the mobile
phone. Phone.com was instrumental in this evolution by originating the concept of the
browser-enabled phone and co-founding the WAP Forum with Ericsson, Nokia, and Motorola
in 1997. We continue this tradition of innovation with our dedicated support of the developer
community. ‘

WAP presents a major new market opportunity for the Internet community. The number of
mobile phones is forecast to exceed 1.4 Billion by 2003. The characteristics of the mobile
phone—its portability, “always on” nature, and its location-sensitivity—present a-unique appli-
cation opportunity.

WAP is more than a protocol or a markup language; it is a new “mobile-centric” Internet appli-
cation platform. As such, there has been a lack of comprehensive developer-oriented material
to guide Internet developers through the process of becoming great mobile-centric application
designers—not only the basics, but also a true real-world guide to creating great applications.

Whether you are an Internet or intranet developer, WAP Development with WML and
WMLScript will serve as an invaluable tool in your exploration of the mobile Internet. This
book was written by some of the leading experts in WAP tools and application development,
with input from our own experts here at Phone.com. Its real-world approach and hands-on for-
mat will greatly benefit anyone interested in developing for this exciting mobile Internet mar-
ketplace.

Ben Linder
Vice President, Phone.com
developer.phone.com

Facebook's Exhibit No. 1073
Page 3

* WAP Development with
WML and WMLScript

Ben Forta

with

Keith D. Lauver

Paul Fonte |
Ro.bert M. Juncker

Amy O’Leary

Ronan Mandel
Dylan Bromby
SAMS

A Division of Macmillan USA
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Facebook's Exhibit No. 1073
Page 4

WAP Development with WML and
WMLScript

Copyright © 2000 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored in a
retrieval system, or transmitted by any means, electronic, mechanical, photo-
copying, recording, or otherwise, without written permission fron the pub-
lisher. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book, the publisher and authors assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of
the information contained herein.

International Standard Book Number: 0-672-31946-2
Library of Congress Catalog Card Number; 00-104240
Printed in the United States of America

First Printing: September 2000

03 02 01 00 4 3 2 1

Trademarks

All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as
possible, but no warranty or fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book or from the use of the CD or
programs accompanying it. '

Facebook's Exhibit No. 1073
Page 5

AssOCIATE PUBLISHER
Michael Stephens

AcqQuisiTioONs EDITOR
Angela Kozlowski

DEVELOPMENT EDITORS

Gus A. Miklos
Mark Renfrow

MANAGING EDITOR
Matt Purcell

PROJECT EDITOR
Christina Smith

Copy EpiTor
Michael Dietsch

INDEXER
Greg Pearson

PROOFREADER
Candice Hightower

TecHNICAL EDITORS

Andi Hindle
Aubrey Harden

Team COORDINATOR
Pamalee Nelson

MEepia DEVELOPER
1.G. Moore

INTERIOR DESIGNER
Gary Adair

CoveR DESIGNER
Aren Howell

GRAPHIC ART CONVERSION
TECHNICIAN
Oliver Jackson

PrRODUCTION
Ayanna Lacey
Stacey DeRome-Richwine

Contents at a Glance

PART 1

PART Il
4

5
6
7

Parr HI
8
9
10
11
12
13
14

PART IV
15
16
17
18

Introduction 1

Getting Started
Understanding WAP 9
Introducing WML 19
Writing for WAP in WML 43

Creating WAP Applications
Card Navigation 65
Managing Output 95

Using Images 127

Working with User Input 141

Advanced WAP Development
Email Integration 197

Using WMLScript 213

Using Timers 239

Receiving Notifications 257
Securing Applications 279
Writing for HTML and WML 313
Best Practices 333

sample Applications
Currency Converter 363
User Directory 379
Scheduling 405
E-Commerce 429

Facebook's Exhibit No. 1073
Page 6

PART V

Q m @=m T 0o m3 >

Appendixes
Wireless Markup Language Reference 467

WMLScript Library Reference 499

Using Device Emulators 521

Writing WML in Popular Development Tools 531
Writing WML in Popular Development Languages
Local Icons 551

CD-ROM Contents 555

Index 559

543

Facebook's Exhibit No. 1073
Page 7

Table of Contents

introduction 1

ParT I Getting Started
1 Understanding WAP 9

Understanding Servers and GAlEWAYScooeiesninenmmimsnineneste 11
TWAP DEVICES vveveerereeresraririresrisesesssstsiniesamsmsasascsreessassnansasasinssniessssasnnens 13
WAP and WML oooiiieecrevie e e sssn st 16
SUIILTIATY 110 vveseesnesersessesesemssses s es s s sssam bbb b 18

2 Introducing WML 19

WWHAL IS WIMLT oo eeie s sresressee e s se s b sas s e s 20
IWML'S OFIZINS «vovocevirmmseriresdiniseise et s s e 20
WML’S FUNCHOMALILY 1. veveeemeretinene st 21
Similarity to HTML and XML ..o 21

Getting Started with WML ..o 22

Configuring YOur Web SEIVET ...t 23
MIME Types for WML, WMLS, and HDML.....oooeriveiinnns 24
Adding the MIME Types to Various SCIVETSocummimseriinesees 24

Phones and EmULALOIS. ...oevevrrercrreinrias s 27
PHOTIES w.vevsserrerseireeestssseeeseessoseeesssssssarnsssesbtaemores s s st san s st e s b aes 27
EITIULALOTS 1 ovevvevveeeeereriereeereesssseeseestsansorasabasbssacanaesanssbss s n st a bbb 29

Understanding WML USAgEoocuriommiimimiinmssns s 30
IVIODAIE USELS 1vervreereiasserssseeseseisesnreesaranearsse s st st s 30

TWIMIL OVELVIEW .veveerveisiaressesesieseessoaesssantosassen s sassane st ebsmass st 36
COMOEPLS wrovvesseeesmsressreemsre s ess e 36
SYDEAK RUIES «rvveeesivinriassessseeeimiss s 37
Programming Considerations ... 38
WML COMPONEINLS «...vvevoereinesriscesessmanserssise s s 40

SUIIALY ©o v eeeveeceesasssmenssesss s e s 41

3 Writing for WAP in WML 43

Creating Your FIrst Card ..o 44
Using Basic Text FOIMAtting. ..ot 47
Using Basic Paragraph FOIMAtng «..cooooorvieemcesimsnissineens 48

Building Decks 0f Cards.....o e 49
WHY USE DECKS c.vvvvrrvmmeseisscrseiss e 51
DEEESES 1vvoveveevereaessssonns e s sess s 53

Using Basic NavIgation ... s 53
Creating LANKS ..o s 53
USINZ ACHOMS ovvvirveeieirmscesinissas s e s 55
USING TEMPLALES v.vvrvrveeremsieies e e 57

SUIITIALY 1v. v eeereememsssenses e s b bbb 61

Facebook's Exhibit No. 1073

Page 8

vi

i WAP DeveLopmenT witH WML anp WMLSCRipT

Part Il Creating WAP Applications
4 Card Navigation 65

USING URLS ettt sttt s e sve et cae v ners st vt sante s 66
Tags Used in Navigation: <a>, <anchor>, and <go>ccccouveriveeinnn. 72
The <a> BIEMentcccooiciviiieniiiieniic s e srese e s 72
The <anchor> EIBMENL ..ccccoviiiniie vt 73
The <go> BIEMENtoooovieiee e 74
Using Phone Buttons and Function Keys........ccoccevivieeireeriinenneeinens 75
SO KEYS oottt 75
USING ACHONS 1.eevieiie ettt ettt ettt 78
The postfield BIEMent...ccoeiiriiiiiiiiiieis vt aer oo ses s 30
Setting the method Attribute t0 POSt ..cvcvecveriveriiierieiee s 82
The setvar Blement ..o 83
Creating Soft Keys with the do Element......ccccoeieiviiiininnnicnininne 84
Creating Intrinsic Events with the onevent Element 88
Card and Deck Task Overridesccoooorvoiieiiniiiiie e 89
Navigational HiStOIyccccoviriiriiccnieiinnnenerinaveserce e e 91
SUITUTIATY Lt vevteieenieeteie ettt stees e e er e b e ra s et ebsesbe e enseneeresseesesnnesnorees 94

5 Managing Qutput 95

Basic Card OUIPUL.......ccoiiiviieiei ettt ev s e e 96
Card SELUP .evveie it et s e 96
Paragraphs of TeXt.....cvviiiiieciimiiieeiene e 98
Formatting OPtionsccccooiiiiiiiiiinrc e 100
Referencing Variables ... e 104

LAY OUL vttt ettt b sttt et sr v e 108
Handling Wrapping and Alignment e 108
Line Breaks ..ot ene e ar s 111
TABLES (oot v eren 113
Preformatted TeXt ..ot 119

RENAEIING .eovvriiereeiseciercnren et av e 121
Special CharaCtersoiivviiieiieciirecriariee st es e eveere e staesaeenne 121
InternationaliZationcocooeviiieiniieie et saeieen e 124

SUIMIMIATY c.vv ettt et st e b escesbe e abssbe s eesesresnsessensesnensrassans 126

6 Using Images 127

Using Images and ICONS ...c..ovvevircieinrirniinssie s ereecie s snsnieneneens 128

IMage RESIICHONS .oovieieiiiieieiet e, 133

Using 1ocalsre IMAgEsococivvcvieins e 135

Using Images Efficientlycccococriviieiiiniiinncncnnencc e, 137
Using a Splash Screen ... 137
Limited ANIMAtion....cc..corivviriimieniinr s rereresin s 138
Reusing Images with Cache ..o, 138

Facebook's Exhibit No. 1073

Page 9

L0HNE TMAZES wovereirriierecens s 138
MULtPATt MESSAZES ..vvversevsnrermesscrtssmssssssiass s 138
SUITMIIALY .. o1 oo e s s s e e sa b st 139
7 Working with User Input 141
USING VATIADIES ..vvveeiriinieri it 142
Naming WML Variables ... 142
SUDSTILUIEION eveerieveierierireemreeerssirin s e s sre et s as bbb eaes 148
MADIPULAION weevvoevrerrisserssrssers s 154
Free-form Input With <1nput> i 159
Basic AUTIDULES ..ooviiveiviecrereseisieiesressrrssess et et s et 161
Formatted Input with <input fOrmat=> ... 168
Restricted Input with <S€1eCT> .ot 176
<select> Tag AUTIDULES ...civiircneniiie e 178
option and optgroup BIEMENTS ..c.c.oimiiiniiciiscisnensenee 182
Under-implemented Input BERAVIOT ... 187
Extenided AtTIDULES . ..ocveireveeerinirinesersnnreces s 187
Layout With <fLeldSet> .o 188
Delivering Data to APPHCAIONSc.ovvviniminisinnisi e 189
URL CONSITUCHION ©..vicveeieiveeeesieinesasssisesaseeissssestesbasssnnss st s 189
USING the <GO> LAG evvriurrsceeremsioiirisrsss sttt s 191
Sending Data with <postField> i 192
SUITHIATY 1. eeerereeeeems s bssas e s s s 194

Part IIl Advanced WAP Development
8 Email Integration 197

Email and WAP ..ottt 198
Obtaining Email SETVICESovmrmrermimsieiimnmissssssressns s 199
PROTIC.COMIL vt evrenevsvessiersesreenssrbeatinbeera s e e s e sre st s an s aa st et 200

Integrating Email into Your AppLiCationscvievvevssmminmmssissmsrnesenees 201
Generating Email with WAP ..o 202
Receiving Email with WAPcoiiiii e 208

SUIIATY ..o ecvevvereserseeseensseses st esear e sb bbb bbb 211

9 Using WMLScript 213

WMLScript Versus JAVaSCIiPL «ovvvcirsmiii i 215
WMLScript Syntax and COnVENtONSivviesrieier s 219
WIMLSCIIPE OPETATOLS ...oiviereesrieerenisissnss s 222
USING OPETALOTS .vvvvnieusrisisscssasees vttt 223

Using WMLSCIipt FUNCHONS Lovvevmiisieriimimsrmsinini s 224
LOCAL FUNCHIONS w.ovvivvievesevesecosenriiressnreiansnesesssornesnssssssaissns s ssbon s 224
External FUNCHONS 1uvevvvereeereevreeeereenessrrenneetesssrres st sins s s e siens 225
Library FUNCHONS ..cvivesieserssesriesesseissaimnnns e 225

vil

Facebook's Exhibit No. 1073

Page 10

viii

10

11

12

| WAP DeveLoPMENT WITH WIVIL AND WMLSCRIPT

Using WMLSCript LIDIariescccccocinireinntieccenennieeconsonseereniens 226
Validating User INPUL........coevcevirivinieiiicnreiieie v ovas 227
Validating an Email Address oo veveviinieiies e, 228

Sample APPHCALIONScooviveriirieeeeicev et e e 230
Animation with WMLSCIIP «coveivviviieeieeniiercrecee e 230
CUITENCY CONVETIET 1. vevevieiiveieseceserereetesverestsrssssssississisiosseenernenes 232

SUMITIATY L.ttt et ettt ee et e ettt eaereseens 237

Using Timers 239

The Timer BICIMENE ...c..o.iooverirtiininieerinrerir st ere s, 240
The <timer> Tag SYRIAX ..o, 243

Defining a TImMer’s ACHON ...ovevoivveriviriereriieerine ettt 244
A Basic Timer Action with the <card> TAg ...ccceveeeveervierriennnen, 244
Expanded Timer Actions with the <onevent>Tagc..ccceuee... 245

Practical Examples of TIMeISc.covviviveveirvininreninsinneieerercsesnsionns 251

SUIIINATY .ot ie e iveesestees e ere et ereeb e testesesreeressets cseasneseneerenensaseseaes 256

Receiving Notifications 257

Understanding Basic NoOtificationscceoiveeveieeeieseievcsvnecsens 258
ALEILS 1ottt 259
Cache OPErations.......oocrvvieeruererrereeetereeeseeeeesessssseseeeesete e eeeens e 260
COontENE MESSAZESvveerriirernieninreieriresienseeteteserensevsss e essssenssns 261
Multi-part MESSAEESccvrverieirriirinerereeriresiee st et evsrers e 261
Push Versus Pull Notificationsccovvveveinieeiveensieeeiseceesnns 262

The WAP Forum Push Access Protocolcocevecerieiiineecncecrnnan, 264

The Phone.com Notification Protocolccccecvvierivecienoveviveverenan, 266
Using Phone.com’s Send Notification Toolc..c.cccvevvevriierenn. 267
SECULILY .oetieiieiici ettt ettt ettt et s et 270
NOtFICAtion APIS ... s e 271

SUILITIALY 1eovvrtrscrsrtenssne st 277

Securing Applications 279

SECUTILY BASICS 1.vvveviiiiiceniiieiiiei ettt 280
Security BaSICS ..ovvviviieiiiiiiin s st 280
Threat MOdEls .i.coviieeriiie e 282

WAP Security ATChILECIUICceivvvereiiirctieriesrceeeie et 283
Request Path ... 284
WTLS and SSL ..ottt 285
Security CertifiCatescovvveverrrrrnvenrirr s 288

Sess10n MAanagemMentcc.ccevvcreiurineriariniieeeseretireeereserssseresiensssss e snas 290
Client AWthentiCation........cccvveeiisiervinrerernin s e enenes e erens 290
Persisting SesSion ... 299

Facebook's Exhibit No. 1073

Page 11

CONTENTS

WML for Secure AppliCationsocioviieriniiieiencn i, 306
RESLHCHNE ACCESS wvveocvevmemeieiiiiiii sttt 307
CLEANINE UP vt e esesiisseiesssn s s s 309

SUDMIIALY 1o vveveeveeeereeserees sesesossesesses s ees st bbb bbb 311

13 Writing for HTML and WML 313

Why Two Languages?........iceurieereciesermieieierinscis s 314

How to Write for Both Languages ..o 318
Phone COnSIderationsc.ccccrrrerieiriniisiemiinninisisrtenisiis e 318
PC Browser Considerations.........cccooerviiiriirii s 319

Database-Driven AppliCAtionscoeviereirninii e 320
Introduction to Employee DIireCloryoovvvviveenioiimniiinnes 320
HTML Entry POINE ..ot e e 321
Phone Entry POINt c.c.ovcviiciiieniiiraiie e 323
HTML-Specific Features ... ovreeimibii 326
Phone-specific Functionality ..o 329
Application ConclUSIONS ...ooveirvercvrmiiiinirisii e 331

Oher LANZUAZES c..evrveerevevciiieririeseiiere sttt 331

SUITUIIATY 11 es e e e bbb e 332

14 Best Practices 333

Design PhiloSOPIIEScovviviiimrinierisisinicecsiesn e 334
Working with Limited Bandwidth......ocooociiiin 334
Working with Limited Screen Size ... 336
Working with Different DeviCes ... 339

Creating a Usable WAP Application ..o 344
Backward Navigation ..o 344
IMEDU TEBITIS ovvviveinriirieriereceeenni it eb b en e 346
Limiting Required INputoocoviviiemiiiiiine e 347
Building Data Entry Wizards ... 348

Differences in WML Implementations ..o 349
Major DIfferences ..o 349
MINOT DIFFEIENCES «.ovivviiiieot et e 357

Differentiating Based on USER_AGENToovinrenirninmeeininies 358
Working with the HTTP_ACCEPT Header ... 358
Working with the USER_AGENT Header ... 358

SUIIMIIATY &1 evesevesovevens s s s ens s bbb 359

Part IV Sample Applications

15 Currency Converter 363

Currency Converter Design Model........o.ooooiin 365
Setting Up the WAP Header ... 365

Facebook's Exhibit No. 1073
Page 12

1 WAP DeVELOPMENT WITH WML AND WIMILSCRIPT

The Home Card......ccocvvinieiiiiininicniiiiiciiiie oo 366
Setting Up the Soft Keys .coooecieiiriririiecieciiiiccrre e 366
The User TNEITACE ..vvvvivvericeririrene it e e 368

Passing and Storing Rate Informationc.ccminiininn, 368

Displaying the Exchange Results ..., 369

Processing with WIMLSCIIPE....ccvivrveneireenierirer s 371
Getting the Exchange Ratecccvviviviininvecnieneinienciinsnic 371
StriNgG CONVEISIONS. cvecrerererirrenrireerieseesenosissesoreesessessesesseresseresienens 372
Setting the Result........cccvvminere e 372
SUPPOIt Or COOKIES....c. cverierirrieriiiie et eir e e e s 374

Complete Code LISHNZS .vvvvverrereiriernieeteenievisrestoveereere e 374
HOME L WML ooeviieiiceicr ettt b 374
PrOCESS . WILS c.eeeeureiererienreasaereesernesseessaesaraseessssssanssasssnssnnsessnsssnens 376

SUMIMALY 10t cvireerinriercrseeiesireeraeeeresierssuesess s esssssessssesssseersss s sreren s 377

16 User Directory 379

User Directory Design Model........ccocnniniinicniininniiie 380

Application WalKthroUghcccocvrierveviennnieniencnncern e 381
Changing the WAP Header—home.asp........o.occocvaioincrinciecnne 381
Dynamic Access—staff-detail.asp oo, 387
Executing a Phone Call-—call.aspcccoeriviemimininicoininieninenn 389
Sending Email—email . asp.....ccccoeiiririiieiniiiie oo 391

Complete Code LISNES ...oovevivivisiieniiee i 395
POME . BSP vvvreverrrerieesivresireesireesirecessseorerbesssnaessssesenssssrnnensressssonsesssses 395
EMALL.BSP weiiieiieiieisireeeiteee ettt e e e et s e e etb e e e b e et b e etae s e te e et e enb et an 397
CALLLASD cerriererieereeeirrnirereireeineessattesatiasiesaessressbeesensnesetassssarseassees 398
S AT T LAST . ASP et iiiereiiiieeiieiesecirre e s rtbretaererseaeebaeeeeestenceantr e e e beenee 399
STATTF -dBTALL . ESP ceviriiiieeerie ittt e ear e sban e saae s 400
STATT LASP eveeriiiiiereiirreeveereessirreraeerrreeeeessreressetbreesanraraeessnsantasraannes 401
EMALL-ACTLOM.BSP crvivvrieereirereeriirereriisrreeersiareessireeraesareessreessiraaess 402

SUININALY 1.vvrievrevrensirieesiressssesesseesessssessesassessaessasssrasorsssessnesressesssesnnens 403

17 Scheduling 405

Scheduling Application Design Model.....c.ccovviverrerininiviercnierinenniene 406

Application Walkthrough ..ic.cveceeiiciiiescencre e 408
Adding an APPOINIMENTccooiiiiirieereirer it 411
Writing Appointment Data to the Database Using ColdFusion412
Viewing APPOINLINENLS ..corvivveriirierininreeenrineeeeercnceriennienrersemmeens 416
Displaying Appointment Data..........ccocvvviinioieienieiincce e, 417

Complete Code LiStINES .covovivircrnrrieniin vt e 421
MBLN WML 1ottt sttt an ettt ettt e ee b esbe e it et e 421
BAU L CTM 1ottt ettt ettt et e s et e s ke eeeab e s eaeesinesaee s 423
SCHBAULE . CTMuitiiiiiiiiiiiiie ettt ecee e st s 424

SUMMATY ©evveviviririnreti et s 423

Facebook's Exhibit No. 1073

Page 13

Xi

CONTENTS

18 E-Commerce 429

E-Commerce Application OVEIVIEW ...cvvevvermrieniniiorncimni s 430
E-Commerce Application Walkthrough ... 430
Keeping Track of the Data ... 430
Preparing the Header, Data Source, and Session ID..........coooeneee 432
Creating a Login That Tracks the User ... 434
Dynamically Generating Product Catalogs ... 435
Showing and Storing Dynamic Product Information 441
Creating a “Checkout” Procedure ..o 445
Complete Code LASHNES «v.vvovvrrevericreeeriiiiiimsieiisi s 451
LOGLN . ISP terirsrermrerererssercererisssiinitiserssresesssasas st omsbsnres s annissetes 451
TMALN L ISP +ereeerereseresrnsarsesssssissserartresssasssiss tosasasaesisssismsssssssssssinssersnees 453
OPABPPIOAUCT - ISP +reveeeeririiinist st iiras s eb e st b 456
AAAEOCANT . ISP vererarersarseerensueeeesirseeiresanssssessne e rencisesisissbas st aanases 458
GNECKOUT . TSP rrvrererressriseierenretesisesnisinsssiesssbssasrnsssses st stsanssesssss 459
FANLSNORABI . ISP vveiterrrererseremsierens st s er i ca b et sees 461
SUINALY «1evovevvcereeesenensessasessassssessss s sss b s s s 462

ParT V Appendixes
A Wireless Markup Language Reference 467

Wireless Markup Language Reference.. ... 468
B TS OO PO OO OUP TP P PR TOSPUPS TP PSPPI 468
CACCESS™ vrererrrereeessearariesssissierteiessesnesessttobosber et satanbs b st er s sasraranas 469
CANMGCIOTS +eveeriessereesnsesserseessassansessisaensesbe sttt as b staesbsseb bt esra e sabcntbenises 469
ST ST U T OO U PO TP PR PP PPPUT P STPPOR 470
CDAGD wrvvreereireivesirteisrasteeessostea e st e b ekt b 471
Do TR U OO OO U U OO P PP UP PP PP PPIPPRTPRPIOR: 471
COAIA® vvveveetsssseeasesessestissesorsss sassaasse e se e emscesaseesannn s abaaabe e s canre e st 471
CCAEGND wovrerresseeeeeesaetsreeisesisreesransresaseasss s iaesat e be e b a e ebe e bt 472
e[TR T TN T R SO OO PO U P U PRSP PP PSPPI PPSSPPIITITSS 473
BT +oorroerreesees e teenesessetsnsssaeennsae st es s e bt ae sh e e e et b ab e ek bbb 475
CEXIED teurreerseeerssesnesissessesatassnesaeshceesassetsesbseabesans e ssan e e e s 475
CFABLASEED oo ieeeeereeeeeseib e eesbe e s ae e e et a bbb 475
SO evuevesiareesesietets s ot 476
CIBAU rvrveiereeeesseasssssseseeeassssosssassssaaasseesabensssbssnnes s snnastnnnn s eeeninseaias 477
O T T TTU U U U U TS PO P PSP Y PR PSP PP PRSPPI 478
CAMED seeeireerserseiesasebebtas e ee e e e en e b 478
CELNPULD 1ovrreererenciree et iisrs e st bbb s 480
CLANKD treeeeereerersesasseeassessbessanreeasbesanbeetoes s it e e b s e e sttt 481
SIMEBEED +evveereeeenesseeanseeeseasessessasns ssees e e nar e e e e eabeshssaabe b s e et 482
CNOOP™ «vevveveviviesesessss et seianencasiasas et es s re bbb 483
CONBYEMTD cevtererreeeerreesiueeessessssesasseeessbeesionssennsaissaaests s sttt te e bnansesten 483

Facebook's Exhibit No. 1073
Page 14

Xii

WAP DEVELOPMENT wiTH WML ano WMLScRiPT

COPTYGLOUPD weiiiiiiiiiiniieee e r et sete et e e s et eeesestesetee s e e ee s 484
SOPTLONT ittt sttt et e 485
D ettt et et ee s 486
SPOSTTIELU> oiiviiviiiiiies et 487
SPIEV> Lottt ettt e e e te e ettt e e e et ee e et a e e 487
SPECEIVE Lottt ettt et s e e on 488
SPETIESN> ittt e e 489
SPESEE> (oot 489
SSBLECT™ i e e 490
SSBNUZ it ettt et 491
SBELVAPD Lottt 491
SSMALI> Lo e et 492
SOPAWN 1eiiiiiiies it iitetrreteee et et eeeseseeas e reeestaesee e rntessieennseseesoas 492
SEEPONT™ cirriiiiii et ettt et e e e e 493
SEADLE> ot oot 493
SEA> e e e eeeee e 494
SEEMPLATE™ ittt 495
SENPOW> o e e e 496
SEIMEI™ Lottt sttt ettt s et et et e e eesesonsas 496
CE et 497
U ettt ettt ettt e e e stn 498
WML oottt ettt et e e et 498

B WMLScript Library Reference 499

Lang LADIALY woovevieieieicie et e 500
ADOMT e e 500
ADS it et 500
CharACTErSeT ittt 501
EXIT o e e 501
FLOAT ot e s 501
ISFLOAT ittt 502
ISTINT o e e e e e 502
MIAX 1tetiinreiemnmrteinttts st s et e e bt a st e ne et ns e e ee s neee e et e eaaeens 502
MAXTNT e 502
LD e et e ree e e 503
MANINT ottt et et e e e e sttt 503
PArSEFLOAT ieriiiiiiiierie ettt 503
PATSEINT e 503
PANUOM Lottt et s et e et s o n 504
SEBEU tutirieitiiit st ettt ettt e et e 504

FLoat LIDIaryoccoioomiiieiioec e 504
CRLL e e et e 504
FLOOI ittt e, SO

Facebook's Exhibit No. 1073

Page 15

xiii

CONTENTS |

LI e ioirr ettt et st ar et e ekt ea bt e e b et rar et en 505
MAXFLOAT 1eeevriieetieieeerreeeeteeeetinsetiesteesebteetrsesaree s ennnessamnessssontnsssinnneres 505
MLIAFLOAT tevreierriisreeenrreneeesesireeaerssssressessasesnsemtesensnsenmenessesouasssssnses 505
POW 1.vveeirveiesresseessseeesserensessssesseenesbesinsestessasassesusessnstessbessensssisassranansas 505
POUND < .oeiieiteetcte et eerteteeereebesssesesestsasseebasesessassansseenbesestersnsmsensaonies 506
BUTE tovevereiseesreesserssestsssessesteesesseers et en e eeemeeaeee e eheenessae s sasera s e s 506
String LADTATY oovieiieirieicccceiirinien ittt st e 506
CNAPAT oot eeeeeiee et eeassre s et e b et e eabessasesseaassaa s s ee s seessaaeenesiraesrns 506
COMPATE 1ererreerriarveensserasenssreeesseesses e easasonsenissoneesansassisssessssansseinsienes 506
ELEMENTAT Lrreiirieeeieirieerirearieeesrreenreestresssuessresanirstssonressnssnscasnbnsessnes 507
ELEMENTS eceriiiueeeieiraesesrreeiseceensenssesarseassnerassesseimecesssssossssnnsesnneeiosas 507
FANA ttvreenrereererierereeseeensoreeeeseesseomseseseseseninsesensenesinsesessssesenneerenss IO]
TOPMAT cvvvveieeirirrrereesiesireresestieeeitteaessrretssenteeeeneannsaeseraresasssbnteessnsnes 508
INSEIEATL cvierei ettt erterereere e e sbe et teeatesaresaree st as s e nbnssanneere 509
LSEMPTY crrevereretenerereesemesesescnssensases e esesssaesnienessersescnnensnenennens JOD
LENGTN ovteiiierreeriereseeneserteseissnestenaressesetraessesbnessasessesesissassrassiaseeaes 510
PEMOVEAT Leiiiivriiirreeiiereesirrrreteeiees e asineseontsstressssnesesssssaessonrnsaeises 510
PORLACE weveerveeeteerireneestesseenseseess e enscae et et saeteteteeane s canesetenaeeananenns 510
FEPLACEAT .vviiieiceiesirierereseessieeniemeersri st s et sre bbb sabe s sab e re s bee e anes 510
STUUEBEZE 1oveierrerareenrseseesesesaessetareonseanienersessiiorsesaessassssssoranianannsasrones 511
SUDSTIING woorviiiteeeereeeiee et et et et er e e eeame et et e e e cin e sbesianaseas 511
TOSTILNG tovvviererreeerinreerreeerereeirenaeeribeseeretesteesaabressenseisesiannsssnveserts 511
EPLM vtieveeeree it es e s esreceraessnesseesseersesneeabeeeanteh e shrees s s s b eheea s e e b s 511
URL LADLALY eeevveeieeeteeenere vt s s ems e sa s 512
B5CAPCSEIING erverreirrereeeie et ettt st bbb a e b 512
GEEBASE .vvivrreireerrveiornsivereirerseesasarrarsaesseesaeeseensreenrnesebs e saseatbsenaeeanie 512
GOTFFAGMENT ..o eeeeiere e eeeeaeeses e es s ceieienb e st e et ebesase e sesrnessaetesre e 512
GETHOST 1reirrerreeireeitreercsree e es s et s b sas e b s ere s e 512
GOt P AT AMETEIS cvretievreeeireerieeesvesiiaessseeabreesbbecssbesaesnbsentarsaessianssenses 513
GOEPATDN o vieie ettt ettt et sttt et 513
GEEPOPT 1eiitirieiireerreeeetr e et s e e sabe s sts e anas st ee st s s b e ae e e e 513
GEEQUETY covvtiiiiieeeitieeiereesrieessrnessreeeoseesienessnnecbiosssinntssbesanessonnnssasein 513
GETRETE B cooiiieceeeie et eite s bt es et et ee st e asbestae et e st esiesae st e beaeas 514
JETSCNEME 1evvietierreirreirieeesrieeerenienat st srtesbeeresatssbesnssen s erasenscnesnrenees 514
ESVALIA triiviviririeeeeirrieierteesereesrrestnes bt eeraneesaeeesinessonnnetssnsssnssiuenessrrers 514
L0AASTEIANG eiiiiieeeiiiee e e eiie s erteere e e s rreeaaessraerscessnsnrsernesnenseanassnness 515
PESOLVE irrrvtieieiitirreeieseerieeesasiertecetnaeesarbeeessabtes st sesarantssrnceesnnnee e e nes 515
UNESCAPESTIANG trreieriiirireieirrienreirreriersecorierereosneenrnesstisss s stsestsestnne 515
WMLBPOWSEP LIDIAIY ..cooviireii ettt s 516
GEECUPPENTCANT thvviirreieriere et eecieee e et 516
GEEVAD vviirriereiorteevrt e arseste s e eeee e enieases st saesaas canvesbesase st snsean et e 516
D0 wneeeeeeeter e et e ettt b et ea et et Rkt eh e b ae et e e e bbb e 516

Facebook's Exhibit No. 1073
Page 16

Xiv

WAP DeveLopMENT wiTH WML ano WIVILScCRIPT

NEWCONTEXT +ooeveiresiireieeereeeeeeireaeseessaeassnsteeassnnaessaresenanrenearasssiessens 517
D@V vvitverereerneeereesesessasersanseossnansessurssssssaesiaesssessessrsesuessnsennenasssreisaisns 517
PETIESN evereeerrnrersirieeesserssresssissrseesisssssorssssrsssnsessesosesssnierssansnnsssssess 517
SETEVAR oot ieeeeeeisisiteeeineeesestesaseeesseeateasabaeeasaeereaesbsserabeebacebbaesnnasnns 517
0ial0gs Library ... 518
ALETT 1eveerrreeeriorrererisssreesisissrerssssesssssssresiersnsersassasessstessaisnesessnsessssans 518
CONTAPM 1ot ieitie e ceieieceie s st e s ettes ssbbscbes cbbecaaassebaesabessabrasanesnssessaesans 518
PROMPE teevrrerraerrneoreersnesissisresssessinsimsssrsrsntsssessesssessssisiessassnesasssissnsnns 518
Debug LIDIArY .coccvicriiniiioiniiicinicses s s 519
CLOSEBFILE oiiiiiiiiiiieiirriiestiresieeeieceraesssaneeas s sttt e saasesabessrranneessrsananenns 519
OPENFLLE ctivirerveiersrereeinearrensareesseassessensesersesssessreseonnessenessessmesssssessnns 519
PPANTLN tiiirieiirieiineinireesierenressreeoiereseesssstonsssssanssssassssessersssssassassas 520
CONS0LE LIDIAIY .oeoeciiiiirieiriniiiisneinseiie s st eann s 520
PILNT tivreiverririerreneireesreeseestrsrerrrassesnessensesnessesssorsectensestonsensessensenes 520
PILNTLN torerseierirersessserieesaeserssessasiaesssssessarsessesseseseresssessessansonsessonssnes 520

C Using Device Emulators 521

Understanding EMUlatorscccecvevereieieimiiiin e 522
Ericsson WapIDE SDK Browser ..o 523
NOKIa WAP TOOIKIL .veovieerreerereerieninienesesssesmscrneississssinnesioionsninons 526
Phone.com’s UP.SIMUIALOT ...c...cieviivieieierieiecreeee s esesinesrseniesacinaas 529
D Writing WML in Popular Development Tools 531
AJODE GOLIVE . cciviiriiiineinrerinsiiseesienesressenssssessscssesiossecasssissassessessosesans 532
Allaire HomeSite (and ColdFusion Studio)cccevvvervvenrvereenionsiini 533
Inetis DOtWAP ...oovveeiiieeceeeceee e rreere e 536
Macromedia DICAmMWEAVETcveeereerirrecerererereerersereniseerissassnisessirsons 539
WAPTop EasyPad WAPLOTc.covereemeeiiiii e 540
E Writing WML in Popular Development Languages 543
Allaire COIAFUSION ...voviceiieniiineiereeriniessesesnsessssessreseneessossecscsnsssens 546
MICTOSOt ASP .oiviiieviecreie it 547
PEIL.. oottt a et et 548
PHP ..ottt et sabs bbb s s 548
Sun JSP (Java Server PAgES) ...occccevevcencniininnininiinn o, 549

F Locallcons 551

G CD-ROM Contents 555

Device BIMUIALOIS ..vvivviererireniieeieisrieieeesisieesieessossnessresnnsssssmsessessessoass 556
Ericsson WapIDE SDK Browser.......cveevevieiiniinccninnenciicnnn 556
NOKia WAP TOOLKILcveov vttt ier s et ee s e neens 556
Phone.com UP.SDK........coccoviiriiinniie et nnesieinenes 556

Facebook's Exhibit No. 1073

Page 17

VAP SETVELS 1ovvvvetrerereeveersisinrasineseseessineseisrinmemssseseeessoniusanisasisssssseesses 557
Editors and Layout TOOLSccooiirmimemiiiiinsseseccssins 557
Allaire HomeSite (and ColdFusion Studio) ..., 557
TOEHS DOEWAP ..o eeeeeiiirecirreireesaessense s saberseassssse st sb s iab s sesns e 557
Macromedia DICATNWEAVET ...civeeveeereerieriiireirienersnsis s ssesssnnans 557
WAPDEIAW vvovevveeveeeesiseassensssasseseesesesmsesresastassasesntasesssssscssssssesesanes 557
WAPTop EasyPad WAPLOTcvriiiiimrnmeisiisnseniniss s 557
Index 559

CONTENTS |

Facebook's Exhibit No. 1073

Page 18

About the Authors
Lead Author

Ben Forta is Allaire Corporation’s Product Evangelist for the ColdFusion product line. He has
over fifteen years of experience in the computer industry in product development, support,
training, and product marketing. Ben is the author of the best-selling ColdFusion Web
Application Construction Kit (now in its third edition), and its sequel Advanced ColdFusion 4
Development (both published by Que), as well as books on Windows 2000 development, JSP,
Allaire HomesSite, and Allaire Spectra. A member of WAP Forum, and frequent lecturer and
columnist on Internet technologies, Ben is finding himself spending more and more time on
WAP and wireless application development. Born in London, England, and educated in
London, New York, and Los Angeles, Ben now lives in Oak Park, Michigan with his wife
Marcy and their five children. Ben welcomes your email at ben@forta.com, and invites you to
visit his Web site at http://www.forta.com.

Contributing Authors

Keith D. Lauver began fifteen years ago at the company that is now known as
Gearworks.com. A recipient of the prestigious Cook Scholarship, Keith attended St. Paul’s
School and later Carleton College, where he majored in Economics. During his time in high
school, Keith wrote many custom database applications, and while at college, he developed the
company’s first commercial database application product. These endeavors would become the
foundation for Gearworks.com’s focus on data-driven business-to-business solutions. Since
1995, Gearworks.com has grown steadily into a full-service provider of Web and wireless solu-
tions for national and multinational corporations. In 1999 as CEO of Gearworks.com, he
refined the company’s offerings to focus on mobile application development, leveraging the
new emerging devices and standards enabled in part by WAP. Keith’s experience includes sys-
tem architecture, strategic and technical consulting, project management, and development
engineering.

e S

Facebook's Exhibit No. 1073
Page 19

Paul Fonte is a Principal Software Engineer with Media Station Inc., located in Ann Arbor,
Michigan. He has been architecting, designing, and implementing commercial software sys-
tems for over 10 years. Paul received engineering degrees from both Purdue University and the
University of Michigan. He built his first wireless Web application back in 1997 using

HDML 2.0 for OnTime. With Media Station, he now contributes to the SelectPlay product—

a broadband home Internet application that delivers CD-ROMs to home Windows desktops on
demand. Paul welcomes your email correspondence at paul@fonte.com.

Robert M. Juncker’s (Gearworks.com) history with technology‘ dates back to 1990 when he
first captured the title, ““State Programming Champion of New Jersey.” Shortly after, Rob con-
ducted advanced application development for wireless alarm systems. During his time at
Carleton College where he majored in computer science, Rob entered the ficld of speech
recognition, consulting with companies like IBM and Lernout & Hauspie. At ViA Inc., Rob
was the Software Director for Speech and Language Technologies, where he built a software
development warehouse and implemented the first voice-to-voice language translator designed
for a truly mobile operation. With over 10 years of computing experience and a deep
knowledge of wireless products, including wireless LAN development and PDA application
development, Rob has had unique exposure to new technologies building on C/C++, PL/SQL,
" Delphi, Visual Basic, Codewarrior, HIML, ASP, DCOM, ActiveX, OLE, and ColdFusmn At
~'Gearworks.com, Rob is VP, Technology leading the technical teams, in developmg innovative
wireless solutions that leverage WAP and integrate with existing platforms such as Allaire
Spectra and ColdFusion.

Ronan Mandel has been the lead developer support engineer at Phone.com for the past two
- years. Prior to that, he worked in the JavaSoftware Division of Sun Microsystems from 1995
until 1999. He has been working with internet technologies since 1990 and holds a degrec in
Geophysics from the University of California at Santa Cruz.

Dylan Bromby is Director of Wireless Product Development for Go2 Systems, Inc. in Irvine,
California. Prior to joining Go2, Dylan worked in the advanced technology group of
Autobytel.com where he created new consumer Web applications and assisted the exploration
of new business models and market opportunities with partners such as Intel Corporation. In
addition to working many hours at Go2, Dylan has been a speaker on topics such as e-
commerce, Internet start-ups, and WAP on behalf of institutions such as the Umversrcy of
Southern California Marshall School of Business and University of California, Irvine Graduate
School of Management. You can visit Go2 at http://www.go2online.com on the Internet,
HDML and WML-capable mobile phones, or RIM pagers. You are welcome to contact Dylan
at his permanent email address at dylan@bromby.com.

Facebook's Exhibit No. 1073
Page 20

Dedication
Tb Nancy, Johnny, Danny, and Mark—the proof that heaven is where the heart is.
—Paul Fonte
To Diana, for all the love throdgh the years.

~—Rdn

Acknowledgments

First of all I"d like to thank my co-authors Keith Lauver, Paul Fonte, Dylan Bromby,

Rob Juncker, Amy O’Leary, and Ron Mandel, for their outstanding contributions. And 9f1 addi-
tional special thank you to Amy for all that extra last minute work. Thanks to Andi Hindle and
Aub Harden for a superb technical editing job. Thanks to Neil Cormia and Kathy Simpson of .
Phone.com for lots of support and help. Thanks to all the developers and organizations who
gave us‘permission to include their software on the accompanying CD-ROM, thereby increas-
ing the value of this book for all. And finally, thanks once again to everyone at Macmillan,
especially Gus Miklos for a superb development job, and.J. G. Moore for tirelessly scouring.
the electronic universe for the software to be included. A very special thank you to my
Acquisitions Editor, Angela Kozlowski, who makes it close to impossible to work with other
AE’s by constantly setting standards that no one else can ever hope to attain.

—Ben Forta

Special thanks to Rocky DeVries, Rob Davis, Jared Parish, Sarah Shomler, Jeb Sawyer, Dave
Morehouse, Mike Bollinger, Jeremy Raadt, Andrew Kass, Dave Anderson, Jim Larsen, and
Pete Kobs at Allaire. Extra special thanks to everybody at the Contented Cow in
Northfield, MN. .

—Gearworks.com

Keith Lauver

Robert M. Juﬁcker

Facebook's Exhibit No. 1073
Page 21

First, I would like to thank my family—Nancy, Johnny, Danny, and Mark—for helping me
write, each in her or his own special way. I must also thank my great friends at Media Station;
I’m privileged to be part of such a great team. Next, I would like to thank Anik Ganguly who
started me writing wireless applications with a wild idea one summer weekend. Of course, I
need to thank Ben Forta for inviting me into another great writing project. Finally, I would like
to thank all of my other co-authors, Angela Kozlowski, Gus Miklos, Michael Dietsch, and all
the other fabulous folks at Sams.

—Paul Fonte

I’d like to recognize and thank the thousands of dedicated people around the world who take
time out of their personal and professional lives to participate in the WAP Forum and further
the collective WAP efforts on so many fronts. Thanks to Ben for the opportunity to get
involved with this project. And to Ben and Angela both, I thank you for your patience. I would
also like to thank the incredible people at Go2. We all came from such diverse backgrounds
and expertise to make something great. Thank you to my parents for always encouraging and
challenging me to work hard and put people above everything else. Thank you to my mother
and father-in-law who have been great sources of encouragement and love and taken care of
‘my wife when work has taken me away from home. And the biggest thank you of all, I owe to
my beautiful wife Ann. I've learned from you, grown with you, and been through easy and

- challenging times with you. Thank you for your sacrifices and for encouraging me to become
who I am.

—Dylan Bromby

-1 would like to thank my co-authors for helping me through this effort. At Phone.com my
deepest gratitude goes out to several folks, (including but not limited to) Paul Smethers, Jolie
Bories, Don Schuerholz, Darren Sloan, J acky Mann, Kathy Simpson, Alistair France, and Ben
Linder. Most of all I would like to thank Diana, for all of her love and encouragement.

—Ronan Mandel

B — . —

Facebook's Exhibit No. 1073
Page 22

Tell Us What You Think!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

As an Associate Publisher for Sams Publishing, I welcome your comments. You can fax, email,
ot write me directly to let me know what you did or didn’t like about this book—as well as
what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book,
and that due to the high volume of mail I receive, I might not be able to reply to every mes-
sage.

When you write, please be sure to include this book’s title and author as well as your name
and phone or fax number. I will carefully review your comments and share them with the
authors and editors who worked on the book.

Fax: 317-581-4770

Email: networking_sams@macmillanusa.com

Mail: Michael Stephens
Associate Publisher
Sams Publishing

201 West 103rd Street
Indianapolis, IN 46290 USA

Facebook's Exhibit No. 1073
Page 23

Introduction
Why We Wrote This Book

_Bvery once in a while a technology comes along that simply captures the imagination. The
desktop computer was definitely one of these, as were the introductions of HTTP, the World
Wide Web, and the recent explosive growth in wireless communication. And although each of
these is exciting by itself, when the three are merged the possibilities are nothing short of

grxjnd-boggling.

Wireless data communication is not a new idea. For years now we’ve been hearing that wire-
ss communication has finally come of age, only to be disappointed over and over again. And
yet this time we believe what we are hearing. This time wireless computing is becoming a
ality and in ways no one could have imagined.

WAP is the Wireless Application Protocol, a communications protocol (based on HTTP)
designed specifically for wireless communication and managed by the WAP Forum. WAP is
the transport used to communicate between devices (phones initially, but other devices eventu-
aﬂly) and servers. WAP is very technical, but the reason that WAP will succeed where all others
ave failed is anything but so. WAP will succeed because it is being supported by almost every
ajor hardware, software, device, data carrier, and telecom vendor. And with that kind of mus-
¢le behind a common goal, anything is possible.

AP is exciting, and that excitement is shared by developers, the press, the financial commu-
nity, and end users alike. But thus far obtaining all the information needed to leverage this new
d exciting technology has been rather difficult. A shortage of documentation, unclear guide-
lines, inadequate real-world advice, and hard-to-find tools have all contributed to complicating
the getting-started process. And that’s where this book fits in.

Who Should Use This Book

his book was written for developers who want to leverage what promises to be one of the
ost important protocols and standards ever developed.

you are an HTML developer and want to learn how to port your sites to WAP, this book is

X you. If you are a Web application developer (writing in ASP, ColdFusion, Java, JSP, Perl,
T other server-side language) and want to learn how to generate content for wircless devices,
is book is also for you. And if you just want to learn more about WAP and related technolo-
les, this book is for you too.

itten by developers for developers, and with input from WAP Forum members (including
ne.com and Allaire), this book teaches you everything you need to know to take advantage

Facebook's Exhibit No. 1073
Page 24

WAP DeveLopment witH WML AND WMLSCRIPT

of WAP and all it has to offer. From WAP fundamentals to the details and nuances of the WML
language, from using scripting with WMLScript to securing applications, from using alerts to
writing for both HTML and WML, from fine-tuning graphics to best practices and user inter-
face guidelines, you’ll find more useful content in this volume than anywhere else. And all in -
an informative and highly code-centric style that makes learning a breeze.

How to Use This Book

This book is designed to be used in two ways. For starters, work through the book systemati-
cally, beginning with the very first chapter and continuing from there. More-experienced devel-
opers will find that the extensive indexes and cross references make this book an invaluable .
reference tool.

This book is divided into five primary parts:

Part 1: Getting Started

This part covers the basics of WAP development and includes thrée chapters: - 1

Chapter 1, “Understanding WAP,” introduces the basis of WAP and the compo‘ner};ts that make
it work. ‘

Chapter 2, “Introducing WML ” introduces the Wireless Markup Language and explanis some
of the basics do’s and don’ts of this language.

This is continued in Chapter 3, “Writing for WAP in WML,” which walks you through creating
your first WML card using basic language elements.

Part ll: Creating WAP Applications

This part covers important application development fundamentals and includes four chapters:
Chapter 4, “Card Navigation,” teaches the use of actions-and key assignments. -
Chapter 5, “Managing Output,” covers card setup and layout, and text formatting functions.

Images must be used very carefully in WAP, and Chapter 6, “Using Images,” explains how to
use images and local icons in detail.

Chapter 7, “Working with User Input,” teaches how to collect data from users, including work-
ing with variables containing user input.

Part lll: Advanced WAP Development

With the basics covered, this part teaches advanced WAP topics, and includes seven chapters:

Facebook's Exhibit No. 1073
Page 25

INTRODUCTION

‘pter 8, “Email Integration,” teaches the use of provider mail services to both send and

ive email from devices. .

cript is a scripting language that can be used to extend your WML code, and Chapter 9,
ing WMLScript,” introduces this language. : :

pter 10, “Using Timers,” teaches the use of timers for greater program control and automa-

lapter 11, “Receiving Notifications,” covers the differences between push and pull and the
se of notifications.

Security is.an important part of application:development, and Chapter 12, “Securing
Apphcatlons,” teaches application security in detail.

Chapter 13, “Writing for HTML and WML,” explains how to port code from HTML to WML
‘and how to write code for both platforms at once.

;T his theme is continued in Chapter 14, ‘f_Best Practices,” which Qetails some of the hard-
Jearned important do’s and don’ts of WAP development.

Part IV: Sample Applications

“This next part walks through four complete applications to help you jump-start your own
-development:

Chapter 15, “Currency Converter,” is an example of a client-side application using both WML
.and WMLScript.

Chapter 16, “User Directory,” is a complete database-driven directory application wrltten in
Microsoft ASP.

Chapter 17, “Scheduling,” is a time-management and scheduling application written in Allaire
ColdFusion.

Chapter 18, “E-Commerce,” is a sample electronic commerce application written in JSP (with
mirror copies in ASP and ColdFusion on the CD-ROM).

Part V: Appendixes

This final part contains seven useful appendixes:

Appendix A, “Wireless Markup Language Reference,” is a complete alphabetical list of all
WML tags with syntax, examples, and usage notes for each.

Appendix B, “WMLScript Library Reference,” is a complete list of available WMLScript
libraries and their functions, and even includes coverage of Nokia and Phone.com extension
libraries.

Facebook's Exhibit No. 1073
Page 26

WAP DeVELOPMENT WiTH WML Anp WMLSCRIPT

Appendix C, “Using Device Emulators,” covers the use of the three major emulators (from
Ericsson, Nokia, and Phone.com).

Appendix D, “Writing WML in Popular Development Tools,” explains how popular'devclop-
ment environments can be used to write WML.

Appendix E, “Writing WML in Popular Development Languages,” teaches how to write WAP
applications in Allaire ColdFusion, Microsoft ASP, Perl, Java, JSP, and PHP.

Appendix F, “Local Icons,” is a complete alphabetical reference of the local icons supported by
some devices.

Appendix G, “CD-ROM Contents,” lists the programs and files included on the accompanying
CD-ROM. :

So, turn the page, start reading, and welcome to the wonderful world of WAP and wireless
application development.

Special Conventions Used in the Book

The people at Sams and Macmillan USA have spent many years developing and publishing
computer books designed for ease of use and containing the most up-to-date information avail-
able. With that experience, we’ve learned what features help you the most. Look for these fea-
tures throughout this book to make it easier to read and understand and to belp enhance your
learning experience.

+ Screen messages, code listings, and command samples appear in monospace type.

« Uniform Resource Locators (URLs) used to identify pages on the Web and values for
HTML attributes also appear in monospace type.

« Terms that are defined in the text appear in italics. Italics are sometimes used for empha-
sis, too. '

« In code lines, placeholders for variables are indicated by using italic monospace type.

+ Console or keyboard input appears in bold type.

Supplemental Information

Throughout the book, you will see cross references to other chapters, sections, and Web sites
to help you broaden your knowledge of the topic. Source code listings that appear on the CD-
ROM that accompanies this book will be noted. In addition, you will see other helpful notes
and supplemental information as follows:

Facebook's Exhibit No. 1073
Page 27

INTRODUCTION

‘Code Continuation Character

There are many source code listings in this book. Because of space limitations, some of the
code lines had to be wrapped (continued on the next line). In actual use, however, you would
enter this code as one extended line without a line break. To indicate such lines, a special code
continuation character (=) has been used. When you see this character at the beginning of a
line, it means that line should be added, as one line, to the line that precedes it.

Facebook's Exhibit No. 1073
Page 28

Facebook's Exhibit No. 1073
Page 29

Getting Started

IN THIS PART

1 Understanding WAP 9
2 Introducing WML 19
3 Writing for WAP in WML 43

Before you can start writing your own WAP
applications, you must understand some impor-
tant basic concepts and terms. In this part you’ll
learn what WAP is, how it relates to WML, and
how to get started with this exciting new tech-
nology.

Facebook's Exhibit No. 1073
Page 30

Facebook's Exhibit No. 1073
Page 31

Facebook's Exhibit No. 1073
Page 32

10

Getting Started

PART |

WAP stands for Wireless Application Protocol, the de facto standard for wireless computing
managed by a consortium of vendors called the WAP Forum. WAP does for wireless devices
what HTTP does for Web browsers—it allows them to become clients in an Internet-based
client/server world.

So ‘what exactly is WAP? WAP is a protocol, a data transport mechanism. In many ways it is
similar to HTTP (the protocol that the Web uses for data transport), and WAP was also built on
top of established standards, such as IP, URLs, and XML. But WAP was designed from the
ground up for wireless computing, and was built to accommodate the unique and fundamental
limitations of wireless computing: / '

 Devices with limited processing power and memory

Limited battery life and power

Small displays

« Limited data input and user interaction capabilities
¢ Limited bandwidth and connection speeds

» Frequent unstable (lost or poor) connections

The job of the WAP Forum is to maﬁége the evolving standards, while ensuring the highest
degree of interoperability. :

i

WAP is actually not a single protocol; rather, it is a collection of protocols and standards that

make up a complete lightweight protocol stack (see Table 1.1) along with special markup and

scripting languages (as you’ll see later in this chapter), which together define a complete solu-
tion.

Facebook's Exhibit No. 1073
Page 33

Understanding WAP
CHAPTER 1

I

TasLe 1.1 WAP Protocol Stack

Abbreviation NameDescription
WAE Wireless Application Environment

Application layer, includes the micro-browser on the device, WML
(the Wireless Markup Language), WMLScript (a client- side scripting
language), telephony services, and a set of formats for commonly
used data (such as images, phone books, and calendars).

WSP Wireless Session Protocol

Session layer, provides HTTP 1.1. functionality, with basic session
state management, and a facility for reliable and unreliable data push
and pull.

WTP Wireless Transaction Protocol

Transaction layer, provides transport services (one way and two way),
and related technologies.

WTLS Wireless Transport Layer Security

Security layer, provides data security and privacy, authentication, as
well as protection against denial-of-service attacks.

WDP Wireless Datagram Protocol

General transport layer.

WAP is exciting, but for the most part, unless you are writing WAP servers or creating WAP
devices, the WAP protocol itself will not be of much interest to you.

Understanding Servers and Gateways

AP devices connect to servers to retrieve and send information in much the same way as

eb browsers connect to HTTP servers. In fact, WAP devices can connect to both WAP and
TTP servers (a behavior designed to eliminate as many barriers to WAP adoption and accep-
ce as possible).

ou want to serve WAP content you can install a WAP server. This is a piece of software,

ch like an HTTP server (and indeed, the two can usually run on the same machine). As seen
Higure 1.1, the WAP device makes a request from the WAP server which returns the

uested data to the device for processing.

Facebook's Exhibit No. 1073
Page 34

12

Getting Started

ParT |

WAP Device

FiGURE 1.1

—
1. User
requests
WAP
content

e

4. WAP
device receives
and displays data

WAP devices request and receive data from WAP servers.

2. Request is sent to
WAP server for
processing

WAP Server
3. WAP server sends
requests data back to
device

So if devices talk WAP (and not HTTP) how can they request data from HTTP servers? The
answer is that a WAP gateway sits in between the WAP device and HTTP server and acts as an .
interpreter between them (as seen in Figure 1.2). The WAP gateway handles all data forward-
ing and filtering or conversion so that what the device gets back is just WAP, not HTTP at all.

WAP Device

FIGURE 1.2

1. User
requests
content
from HTTP
server

———

<

6. WAP
device receives
and displays data

2. Requested is routed to
WAP gateway

which forwards the
request as an HTTP
request :

WAP Gateway

3. Request.is sent to
HTTP server for
processing

—_—

< HTTP Server

4. HTTP: server returns
requested data

5. WAP gateway

converts received HTTP
data to WAP and then
forwards it to the device
that requested it '

WAP devices can request and receive data from HTTP servers via WAP gateways.

More often than not, to write WAP applications you’ll not need a WAP server or gateway. In
fact, you’ll probably not need anything more than your current HTTP server. The next chapter,
“Introducing WML,” covers configuring your Web server so that it serves WAP content.

Facebook's Exhibit No. 1073
Page 35

Understanding WAP 13

CHAPTER 1

WAP Devices

WAP clients are devices—for now phones, but in the future other wireless devices too. These
devices all have two common characteristics: |

» An integrated browser, called a micro-browser

« A mechanism for user input; which can range from a couple of buttons on simple models
to entire banks of buttons with roll bars and touch screens on higher-end (and future)
models '

As you can imagine, with each device being different, the capabilities and features on each dif-
fers too. WAP is designed to be very device independent; the code you write for one device
should work on all devices. But there is a big difference between working and working as
intended. Differentbdevices implement different features in different ways, and that makes for a
very inconsistent development environment. As such, WAP developers must test the code they
write on as many devices as possible.

Table 1.2 lists some of the more commonly available devices, and their primary features. Of
course, new devices are being developed all the time, so don’t read this list as a definitive list
of what’s available—it’s not.

Facebook's Exhibit No. 1073
Page 36

14

Getting Started

PART |

TABLE 1.2 Some Popular WAP Devices

Device Notes

Alcatel OneTouch Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Europe.

Casio C303CA Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Denso C202DE Good text formatting and alignment, and sup-

Denso TouchPoint
Friccson R280
Ericcson R320s

Ericcson R380

Hitachi C201H and C302H

Mitsubishi T250 and MobileAccess

Motorola 11000 plus

Motorola Timeport

ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP .
WAP browser. Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP-
WAP browser. Available in the U.S.

Features a five-line display, basic organizer func-
tionality, and good text formatting and alignment.
Small screen size.

Features a wide pressure-sensitive screen under
the keypad, and good text formatting and align-
ment. Also includes a complete organizer based
on the Psion 5 running EPOC 32.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Quad mode phone. Good text formatting and
alignment, and supports local icon use. T9 text-

- input software. Features the Phone.com UP WAP

browser. Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Very small form factor. Good text formatting and
alignment, and supports local icon use. Features
the Phone.com UP WAP browser. Available in
U.S.

Facebook's Exhibit No. 1073
Page 37

Understanding WAP

15

CHAPTER 1

Device

Notes

Motorola Timeport L7389

NeoPoint 1000

Nokia 6185

Nokia 7110

Qualcomm QCP-1960 and QCP-2760

Samsung Duette and SCH 3500

Samsung SGH-800

Sanyo D301SA and TSO1

Sanyo SCP-4000

Toshiba C301T and TTO1

Very small form factor. Good text formatting and
alignment, and supports local icon use. Features
the Phone.com UP WAP browser. Available in

Europe.
Large screen with 11-line display. Good text for-

matting and alignment, and supports local icon
use. Features the Phone.com UP WAP browser.

- Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in U.S.

Features a roll bar for menu selection, predictive
text input, and a large high-contrast screen.
Limited text formatting and alignment. Uses
Nokia's own WAP browser.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Europe.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Backlit display and large directional control.
Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in the U.S.

Good text formatting and alignment, and sup-
ports local icon use. Features the Phone.com UP
WAP browser. Available in Japan.

Obviously, owning every device out there is extremely difficult (if not impossible, as many
devices are only available in specific countries). Testing your code on every single available
device is a great idea; it’s also a terribly impractical one.

{

Facebook's Exhibit No. 1073

Page 38

16

Getting Started

ParT |

One partial workaround is the use of device emulators (like the one shown in Figute 1.3), soft-
ware programs that simulate WAP devices on your computer. Some of these even support the
use of skins (replaceable screens with dlfferent interfaces) so that multiple devices can be
tested with a single emulator.

Ficure 1.3
Device emulators are ideal for testing WML code.

WAP and WML

WAP is a protocol, just like HTTP (and most developers will spend as much time worrying
about WAP as they do HTTP—in other words, not much at all). The truth is, WAP is pretty
boring: It’s a protocol, it works, and it facﬂltates data transfer.

Just as Web developers spend most of thelr time writing HTML, most of the action in WAP
development is not at the WAP level; it’s at the. markup language used to create WAP applica-
tions. As WAP devices have special user interface requirements and restrictions, the use of -
HTML is not an option. For example,

* WAP devices don’t have pointing devices, so mouse-like interfaces are impossible.

+ WAP devices do not have full keyboards; they usually have simple phone keypads along
with some extra keys.

Facebook's Exhibit No. 1073
Page 39

Understanding WAP
CHAPTER 1

17

o WAP device screens are small. They can’t support frames complex tables, large graph-
ics, and sophlstlcated color and font control.

« WAP devices have no real multimedia, sound, or video support.
Knowing all these limitations and restrictions, could you even consider writing applications in

HTML? Obviously wireless devices have special needs, and so a special markup language was
created for WAP—WML, the Wireless Markup Language.

As an XML-based language loosely derived from HTML, WML is tag based and uses familiar
tag pairs and attributes for all language features. WML uses many of HTML’’s tags (<p>,
<table>, and to name a few), but'WML is not as extensive as HTML, and many of the
tags that are included behave differently and have different attributes.

As WML is tag based and based on HTML, it is easy to learn and use (although it is far
stricter in syntax and usage than is HTML). WML features support for

» Cards (WAP pages) and decks of cards (sets of WAP pages in a single file) contalnlng
formatted text (covered in Chapter 3, “Writing for WAP in WML,” and Chapter 4, “Card
Navigation™)

« Tmages (in special formats, as will be discussed in Chapter 6, “Using Images”)
o Data entry (discussed in Chapter 7, “Working with User Input”)
» WML is covered extensively in this book, starting with Chapfer 2, "Introducing WML,"”
and Chapter 3, “Writing for WAP in WML.”

WML is complemented by a client-side scripting language called WMLScript (just like HTML
is complemented by client-side JavaScript). WMLScript is far simpler in scope than JavaScript,
but it does provide basic programmability that you can use to perform basic text and data
manipulation.

» WMLScript is covered in Chapter 9, “Using WMLScript.”

To help understand all the pieces in the WAP puzzle and what they mean, Table 1.3 compares
WAP technology and features with their familiar Web counterparts.

TasLE 1.3 Comparing WAP to the Web

Feature Web WAP
Transport HTTP WAP
Markup HTML WML
Scripting JavaScript WMLScript

Facebook's Exhibit No. 1073
Page 40

T

18

Getting Started

PART |

MNote

Summary

WAP is the de facto standard for wireless computing. Made up of data transport and supporting
protocols, along with specialized markup and scripting languages, WAP is a complete solution
for wireless development. In the next chapter you’ll learn about WML, and what you need to
start writing code. '

Facebook's Exhibit No. 1073
Page 41

Facebook's Exhibit No. 1073
Page 42

20

Getting Started

ParT |

This chapter introduces Wireless Markup Language (WML) by discussing its origins, function-
ality, and similarity to other common programming languages you may already know. This
chapter also helps you get started developing your own WML code by showing you how to
configure your Web server for WML content and how to view that content with several com-
mon:devices and device emulators. Finally, we’ll show you how to determine what kinds of
applications are relevant to the special capabilities of WML, while covering basic development
concepts, such as syntax and WML’s particular card and deck structure.

What Is WML?

Wireless Markup Language (WML) is a markup language used for describing the structure;‘())f
documents to be delivered to wireless devices. WML is to wireless browsers as HTML is to a
browser on a desktop computer. WML was created to address the display, bandwidth, and
memory limitations of mobile and wireless devices, such as cellular phones and wireless hand-
held computers. Because it was designed to run on a variety of devices, WML assumes very
little about the device running the application and provides much less control over output for-.
mats than you might be used to with HIML. ‘

WML's Origins

In the early 1990s, Unwired Planet created HDML (Handheld Device Markup Language) to
serve as the development standard for wireless applications. By June 1997, Unwired Planet had
changed its name to Phone.com and, along with Nokia, Motorola, and Ericsson, launched the
WAP Forum—a nonprofit organization dedicated to the development and proliferation of a sin-
gle standard protocol for wireless applications. Using Phone.com’s HDML as the basis for its
own standard markup language, the forum created and distributed WML—a language different
from, but in many respects similar to, HDML. The WAP Forum and detailed spemﬁcatlons for
WML can be found on the Web at http://www.wapforum.org/. :

Although WML will certainly look familiar to Web developers accustomed to HTML, the two
languages are really more like cousins than brothers. SGML (Standardized Generalized
Markup Language) can really be thought of as the father of both HIML and XML (Extensible
Markup Language). HTML is designed to handle a lot of objects, pictures, and other multime-
dia, which makes it too bulky for the bandwidth limitations of current mobile devices; there-
fore, HTML was rejected as the basis for WML, which needs a simple architecture that

Facebook's Exhibit No. 1073
Page 43

Introducing WML

21

CHAPTER 2

structures data to aid the parsing of a document. That need, and the desire for a language that
would survive the demands and fluctuations of turbulent standardization discussions, was the
reason that WML was based on XML. By using XML as a base, WML was designed to be a
lightweight protocol that would meet bandwidth limitations of existing mobile devices.

WML's Functionality
WML supports six key areas:

Text presentation and layout—Although specific devices and WML browsers vary in
their output of WML code (very much like output differences between Netscape
Navigator and Internet Explorer), line breaks, text formatting, and alignment are all sup-
ported by WML. ' ’

Images—Although WAP-compliant devices are not required to support images, WML
supports the Wireless Bitmap (WBMP) image format and image alignment on the screen.
Wireless Bitmap is a graphic format created by the WAP Forum which is optimized for
mobiledevices.

» For more on using images in WML, see Chapter 6, “Using Images.”

User input—WML supports choice lists, multilevel choice lists, text entry, and task con-
trols.

Card and deck organization—User interactions are divided into cards, and navigation
occurs between cards. Decks are related sets of cards which constitute a single file, like a
single HTML file. In HTML, viewing one page is akin to viewing one card in WML.
However, instead of each HTML page constituting one HTML file, multiple WML cards
constitute one WML deck, which is then saved as a single file.

- Navigation—WAP supports the standard Internet URL naming scheme and anchored

links, allowing navigation between cards in a deck, between decks, or between other
resources on the network.

State and context management—To maximize network resources, WAP allows for vari-
ables to be passed between WML files. Instead of sending a complete string, variables
can be sent and substituted at runtime. The user agent can cache both variables and
WML files, minimizing cache hits and server requests. It is also possible to pass vari-
ables between different cards in the same deck; this is an impértant way to minimize net-
work usage.

Similarity to HTML and XML

If you are already familiar with HTML, SGML, or XML, you should recognize WML syntax,
which is based on XML but is more formally defined than a general XML application.

Facebook's Exhibit No. 1073

Page 44

22

Getting Started

PART |

If you are accustomed to developing in HTML, several key differences in WML will take some
getting used to. Most fundamentally, the target screen for your application is severely limited
and yet variable. Current WAP-compliant devices have display screens that range from sub-
VGA graphics to text-only displays with four lines and a maximum of 32 characters per line.
Second, the multiplicity of devices running these applications makes it hard for developers to
know exactly how their application will appear to any given user. WML developers are not
dealing simply with two browsers, as HTML developers typically do, but with dozens and
dozens of devices—each with a unique screen and interface. WML also introduces new kinds
of functionality on the browser side. WML already provides for several complex actions that
would traditionally be coded into your application with a scripting language. '

Finally, WML is less forgiving than HTML in several ways: Most obviously, it does not com-
pensate for incorrectly nested tags or uppercase usage.

Getting Started with WML

To begin writing WML, all you really need is a simple text editor such as Microsoft Notepad..
However, a developer toolkit will get you up to speed more quickly and provide better famil- .;
iarity with the WAP environment. While these toolkits don’t help you actually write WML,
they do provide tools to view the WML you’ve written in a specific WAP-browser compatible
environment. Nokia, Motorola, Ericsson, and Phone.com all offer free developer toolkits to test
their browser and device functionality, which require a quick registration at each of their Web

sites.

Developer toolkits do not provide shortcuts for writing WML; however, some WML editors are
beginning to appear on the market—either as extensions to existing HTML editors (such as
Allaire’s HomeSite), or as independent WML-editing products, some of which are available on
the Internet as freeware. Using these products are'not required but may be helpful to you.

» For more information on developer toolkits and their uses, see Appendix D, “Writing
WML in Popular Development Tools.”

When you register with Phone.com’s Developer Program, you can download the UP.SDK from
its Web site. The UP.SDXK is a free kit that allows Web developers to create HDML and WML
applications. The SDK includes the UP.Simulator that simulates the performance of

Facebook's Exhibit No. 1073
Page 45

Introducing WML

CHAPTER 2

UP.Browser-enabled devices. When enrolled at the Nokia WAP Developer Forum, you can
download the Nokia WAP Developer Toolkit, which comes with references on general WAP
issues, as well as the WML and WMLScript command syntax. It also calls for JRE (Java
Runtime Environment) v.1.2.2 or higher, which is available for free download as well.

The Nokia WAP SDK 2 includes a light WAP server, which enables you to read WML decks
off your local drive or any HTTP server. Also included is an emulator for the Nokia 7110
phone. The emulator reproduces not only the visual appearance of the 7110, but also the
bugs—useful for developers wanting to avoid them.

To download the Ericsson Service Development Kit, you need to register at Ericsson’s
Developer’s Zone. Ericsson’s WapIDE SDK consists of three main components: a WAP
browser, an application designer, and a server toolset. Motorola’s platform is called Mobile
Internet eXchange, or MIX for short. Its Mobile Application Development Kit is intended to
provide an integrated development environment for both voice and data applications.

Using one of these SDKs is typically the quickest way to familiarize yourself with the develop-
ment challenges of the WAP environment and to develop successful wireless applications.
However, toolkits can be intended for creating applications for WAP devices in general, not
any one mobile device in particular. The applications you create with developer kit might not
look anything like the output on an actual WML browser in a mobile phone. To be absolutely
certain that the outputs fit with your intentions, you need to test the applications on an actual
WAP device, such as a mobile phone or an emulator (to be discussed later in this chapter).

Configuring Your Web Server

The easiest way to serve WML contents is to use an HTTP server. Unless your WAP site is
listed on a portal maintained by a mobile network provider, users will need to, type the URL of
your site on theit device manually—a complicated task with only a phone’s buttons to interface
with. Although www is the de facto standard hostname for HTTP servers, wap seems to be
emerging as a comparable standard for servers containing WAP applications.

However, simply throwing your WAP applications up on a standard HTTP server will not
allow users to view content on their phones. The server must “tell” the WML browser that it is
about to receive a WML page and not an HTML page or some other kind of content. This
communication is done using MIME extensions that must be added to your server for WML
browsers to correctly read your content.

23

Facebook's Exhibit No. 1073

Page 46

24

Getting Started

ParT |

MIME Types for WML, WMLS, and HDML

MIME stands for Multipurpose Internet Mail Extension, which is a piece of header information
that was originally used in email to allow for proper formatting of non-ASCII messages over
the Internet. There are many predefined MIME types in common use, such as JPG graphics
files and HTML files. In addition to email programs, Web browsers also support a variety of
MIME types. This permits the browser to display or output files in formats other than HTML.

MIME types common to Internet servers include

o “text/html” for HTML files

* “image/jpg” for JPG files

» “image/gif” for GIF files
Because these file types are so common, most Web servers are already configured to send the
correct MIME types. WAP, however, requires its own MIME types to recognize various file
content. Because WAP is still emerging for widespread use, you will most likely have to con-

figure your own server to run WAP applications. By adding these MIME types to your server,
different devices will be able to properly interpret and therefore display WAP content.

WAP Version 1.1 requires the five MIME types shown in Table 2.1 to serve WML,
WMLScript, and Wireless Bitmap images. '

TaBLE 2.1 File Types and Corresponding MIME Types

File

Extension Content Type . MIME Type

wml © WML source code text/vnd.wap.wml

wmls WMLScript source code text/vnd.wap.wnlscript

wbmp Wireless Bitmaps : image/vnd,wap.wbm;;

wmlc Complied WML application/vnd.wap.wnlc
wmlsc Complied WMLScript ' application/vnd.wap.wnlscriptc

Adding the MIME Types to Various Servers

In the following sections, we will detail how to add MIME types to the Apache HTTP Server,
the Microsoft TIS Server v4.0, the Microsoft IIS Server v3.0 and below, and Microsoft Personal
Web Server v4.0. For any additional servers, refer to your server’s documentation.

Facebook's Exhibit No. 1073
Page 47

Introducing WML

CHAPTER 2

The Apache HTTP Server
For versions of Apache older that 1.3.4, you should do the following:

1. Edit the srm.conf file.

2. Find the AddTypé section and add the following piece to the file:

MIME Types for WAP

AddType text/vnd.wap.wml .wml

AddType text/vnd.wap.wmlscript .wmls

AddType image/vnd.wap.wbmp .wmbp

AddType application/vnd.wap.wmlc .wmlc
AddType application/vnd.wap.wmlscriptc .wmlsc

3. Save the file and restart the Apache HTTPd.

Apache recommends that new MIME types be added using the AddType directive rather than
changing the mime . types file, however, it is not a requirement and some administrators may
prefer to change the mime.types file directly.

If you are using Apache 1.3.4, the contents of the three server configuration files, you can
make these changes within a single file named httpd.conf.

The Microsoft IIS Server
"To add MIME types to the MS IIS Server, follow the steps listed here:
1. On the server console, open the Management console or Internet Service Manager Tool.

2. On the Management console you can define the MIME types to be valid for the entire
server or valid only for separate directories.

3. To add a new MIME type to a specific directory, right-click the desired directory and
select Properties.

4. Select the HTTP headers tab.
5. Click the File Types button near the lower-right corner.
6. Select New Type and the following field values: -
Associated Extension: .wml
Content Type (MIME): téxt/vnd .wap .wml
7. Click the OK button.
8. Repeat steps 6 through 7 for each additional MIME type.

9. Reboot your system if instructed to do so.

25

Facebook's Exhibit No. 1073

Page 48

26

Getting Started

PART |

Microsoft Personal Web Server v4.0
To add MIME types to the MS Personal Web Server v. 4.0, follow the steps listed here:

1.
2.
3.
4,
5.

Use the MetaEdit tool in the Microsoft IIS Resource Kit.

Launch MetaEdit.

Open /MIMEMAP under /LM.

Select MimeMap.

Using the pop-up dialog box, add any of the following values to the MimeMap list:

wml,text/vnd,wap.wml
wmls,text/vnd.wép.wmlscript
wbmp,image/vnd.wap.ﬁbmp .wmbp
wmlc,application/vnd.wap.wmlc
wmlsc,application/vnd.wap.wnlscriptc
hdml, text/x-hdml

6. Click the OK button.

7. Reboot your system if instructed to do so.

1IS v3.0 or Below, or Personal Web Server v1.0
To configure the MIME type for HDML and WML files in the Windows Registry, do the fol-
lowing:

1. Run the regedit utility (REGEDIT.EXE).

2. Open the registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\
wInetInfo\Parameters\MimeMap

Facebook's Exhibit No. 1073
Page 49

Introducing WML

B 27
e CHAPTER 2

3. Add new String Values with the following names:

text/vnd.wap.wnl,wnl,,5
text/vnd.wap.wnlscript,wmls,,5
image/vnd.wap.wbmp,wnbp, ,5
application/vnd.wap.wmlc,wnlc,,5

application/vnd.wap.wmlscriptc,wnlsc,,5

text/x-hdml,hdml,,5

4. Reboot your system.

Phones and Emulators

When it comes time to test your applications, you can use either a phone or an emulator that
simulates the phone’s behavior on your computer.

If your applications are intended for public use, you will want to test your applications on as
many WAP devices (or their emulators) as you can. Just as a Web developer should test HTML
documents on various browsers and computers, you should test WML documents on as many
devices and browsers as possible. Because of the variety of manufacturers, the differences
between the output on two WML browsers will be much greater than the differences between

the output for two HTML browsers.

Phones

Phone output displays vary depending on their physical capabilities and the browser they are
running. As shown in Figures 2.1 through 2.5, many phones have different screens and distinct

user interfaces.

Facebook's Exhibit No. 1073
Page 50

Getting Started
PART |

28

FIGURE 2.1
Common WAP phone.

FIGURE 2.2
Generic phone.

FIGURE 2.3
Mitsubishi phone.

Facebook's Exhibit No. 1073
Page 51

Introducing WML
CHAPTER 2

_ SAMSUNG

FIGURE 2.4

Samsung phone.

FIGURE 2.5
Motorola phone.

» For more about the features and differences between various devices and micro-
browsers, see Appendix C, “Using Device Emulators.”

Emulators

Emulators are designed to imitate the specific behavior and functionality of mobile devices.
Emulators can be used simply to browse WAP sites with your desktop computer and can be
especially. useful when network coverage is unreliable or if the devices are too expensive for
your personal testing use. Some emulators are provided by device manufacturers, and very
closely (and in some cases exactly) replicate the behavior of a phone. Other types of emulators
that are not provided by device manufacturers can show you what your WML code looks like
on your computer, but not in relation to any particular phone or device.

Facebook's Exhibit No. 1073
Page 52

30

Getting Started

PART |

{_ & e

Understanding WML Usage

End users of your WML code have several needs that are unique to wireless application devel-
opment. To develop truly usable applications in WML, an understanding of how these applica-
tions are used in the real world is essential.

To develop a great application, you should keep in mind several fundamental things. First and
foremost, a great mobile application will be highly usable. Because of the display and interface
limitations on most phones and PDAs, users have a more difficult time determining the context
of the application and their options. Clarity and brevity are critical in writing text and titles for
WML applications to ensure ease-of-use. Furthermore, your application should require mini-
mal text entry for the user. On many phones with as few as 15 buttons, text entry is highly
tedious and anything you can do to minimize that burden for your user is beneficial.

CAUTION

Mobile Users

The Wireless Application Protocol was designed to service needs of mobile users that were not
served by previous attempts at mobile computing. These users rieed specific information that is
easily accessible with a multifunctional device that meets most of their needs. When you
examine mobile devices that have been on the U.S. market for the last five years (including
laptops, rugged computers, or wearable computers), they all present problems to everyday
users, consumers, and mobile office workers that are solved by WAP and WAP-compliant
devices.

What problems with the old devices make WAP-compliant devices so appealing?

Facebook's Exhibit No. 1073
Page 53

Introducing WML
CHAPTER 2

31

e Size and bulk—The older devices are bulky and designed to fulfill a few tasks you would
normally do sitting at a desk.

e Power supply—A powerful and large device such as a laptop can race through a battery;
therefore, heavy battery packs are necessary.

e Durability—Because of the size of the device, they are prone to fall and get bumped or
damaged in transit.

WAP-compliant devices have been designed to alleviate these issues for users to whom they
present a barrier. The devices (most typically phones or PDAs) are small and lightweight,
require a reasonable power supply, and are sufficiently rugged to handle the environmental
demands mobile usage requires. Because WML uses low bandwidth and power, it is ideally
suited to deliver mobile applications to users. With that in mind, how can you design your
applications to not only meet but exceed your users’ needs?

Imagining Your User |
Depending on what kind of application you are building, your users and their needs will vary.
The best mobile applications serve users’ needs based on their priorities—not the developer’s.
How can you find out what those priorities are? While big companies might be able to conduct
focus groups and do research to discover these priorities, individuals developing WAP applica-
tions on their own have two courses. One, gain experience as a user and use a phone or emula-
tor to surf existing WARP sites, discovering what works and what doesn’t from the user’s
perspective. Two, use your jmagination to create a rounded picture of your users to identify
their needs and create a truly relevant mobile application.

For example, instead of developing your coffee-shop locator application for “generic con-
sumer,” develop it with several potential users in mind:

“Mr. Rich Bean”—He commutes to work, has a mobile phone for his business and uses
it to check his stock quotes. He’s got an expensive corporate phone with all the features.
He never turns his phone off, except on weekends.

“Sue Burban”—A mother of two who juggles her family’s schedule in their SUV, Sue
has an inexpensive phone and has it on only while she’s shuttling her kids back and forth
in the car. Because she’s always on the go, Sue likes to use drive-thru services as much
as possible.

“Phil DeMugg”—A college student whose parents gave him a medium-class phone. He’s
mostly interested in going to the local coffee shop between classes to study and meet up
with friends. Phil doesn’t have a car and stays near campus most of the time.

By keeping specific user needs in mind, the coffee-shop locator can be built around their
needs. Maybe for Sue, you can build in a search or sorting component for coffee shops that
have drive-thru windows. Maybe Rich would like to know which coffee shops have special

Facebook's Exhibit No. 1073
Page 54

32

Getting Started

PART |

offers on his route to work. Perhaps Phil would want to know at which campus coffee shop his
friends are hanging out or where he can get the cheapest grande mocha.

With more realistic and specific user profiles, you can develop your applications around the
kinds of lifestyles and routines your users have, making your applications much more usable.

Relevant Applications . :

WML answers most of the usability questions of previous mobile-computing solutions, but
WAP makes some assumptions to answer them. Small screen sizes solve: several problems, but
present a new one: limited displays for your application. Relevant WML applications solve this
by succinctly providing critical data through superior navigation and sorting. Alternatively,
applications that provide lots of content for browsing will prove tedious for the end user and
taxing for the phone’s bandwidth, rendering the application all but useless.

In another example, WML’s limited offline memory presents a challenge to creating ‘a relevant
application. For the majority of existing applications, we assume thatbyou will always have
access to the digital cellular network. In Europe and parts of Asia, this assumptibn is entirely -
valid. In the United States, some suburban areas and most rural areas lack coverage at present
and, therefore, constant connectivity cannot be assumed. Applications in the United States,
therefore, must be targeted geographically to be relevant and designed to handle”instances'
where the user will be cut off from the network during usage. This may mean that your appli-
cations will need to provide a mechanism for reentering the application at the point at which it
was cut off. '

To address this issue when developing WML applications, it is important to consider the con-
text as well as the usage of the application. For example, an application requiring constant con-
nectivity in Montana would be problematic because of the offline data storage limitations
WML presents in poor coverage areas. However, equipping a company’s entire sales force with
a sales-tracking application and mobile intranet for a company in Minneapolis or New York
would be a much better target application as guaranteed data rates, and connectivity will most
certainly exist. Although this problem is expected to be alleviated over time as network cover-
age increases, you must currently work around it when deploying an application for public
usage.

Facebook's Exhibit No. 1073
Page 55

Introducing WML |

tions to ask yourself:

+ Does the user need real-time access to important data?

» Can a small amount of data be t‘ransmitted to serve the users’ needs?

« Is the user going to have excellent cellular data coverage?

Each question seeks to fit the application into an important mobile model.

“golden nugget” because of network bandwidth limitations.

sion must also contain device requirements.

Device Functionality

whereas most others support only four to five lines of vertical text.

Facebook's Exhibit No. 1073
Page 56

CHAPTER 2

What makes an application a good target for a mobile application? There are four basic ques-

« Can the data be presented in an intuitive way onto a device that has screen limitations?

The basis of the Wireless Processing Model in Figure 2.6 is that there is a specific user who
needs to access specific information.cThat information will be manipulated so it can be deliv-
ered on a small device with limited interface and small screen size. The key to delivering a rel-
evant mobile application is delivering “golden nuggets” of information. What is “golden”
depends entirely on the user and context. If a user is looking for a single fact or statistic in an
article, it is always better to streamline the transmission and receipts by delivering only that

After data is processed, the data is then sent to the user. In this particular model the transmis-

Although it’s possible that future mobile devices will be designed with better displays and
interfaces, most phones currently on the market have limited interfaces. For example, the
NeoPoint 1000 has an extraordinarily robust screen compared to other existing WAP phones. It
boasts 11 lines of vertical text with 16 characters across the screen in its minimum-sized font,

33

34 Getting Started

PART |

information | Process

FIGURE 2.6 :
The Wireless Processing Model.

Although the NeoPoint has a generous display, it offers a keypad that is still rather awkward:to
use. For example, to type the letter / you would have to push the “5” button on the keypad
three times. Additionally, most phones offer only two buttons to navigate menus. One normally
functions as a Select button, which leaves one button to interact with on menus. The NeoPoint
is a good example of the specific limitations of devices and the lack of output control that
WML gives you; all other devices on the market have specific limitations and features that
must be dealt with.

Limited data entry is one of the reasons your applications must have an easy-to-use and intu-
itive interface. Data entry is tedious, and for that reason you must try to limit the amount of
data entry required in your applications.

CauTION

Any data entry task converted into a choice list or dynamic entry is a better course for your
application. For example, Figures 2.7 and 2.8 show two different strategies for answering the
question “What is your favorite fruit?”

The style in Figure 2.7 uses manual data entry, whereas Figure 2.8 shows a drop-down menu
to solve the problem. In this case, our favorite fruit is an apple. In a test we conducted using
manual data entry, it took on average about 15 seconds (and nine button presses) to enter the

Facebook's Exhibit No. 1073
Page 57

Introducing WML
CHAPTER 2

35

needed data. Remember, that test was conducted with individuals highly accustomed to the
data-entry format of WAP phones. For new users it will certainly take longer and cause greater
frustration. Using the style shown in Figure 2.8, we needed only two button presses, taking
about three seconds total, to answer the question.

FIGURE 2.7
Data entry styles—manual data entry.

FiIGURE 2.8
Data entry styles—dynamic data entry.

Facebook's Exhibit No. 1073
Page 58

36

Getting Started

PART |

WML can be extraordinarily powerful when you are writing applications that connect people.
Let’s examine how WML can help transform the typically frustrating experience of contacting
a customer-service call center into an easy and quick experience. How many of us can tell -
stories of being lost in a touch-tone jungle? Well, that’s because 80% of the information we
consciously remember is perceived visually. That’s just one reason audio phone trees are so
frustrating. WML not only has a visual screen but the power to dial your phone for you, allow-
ing for some interesting possibilities to-arise. Imagine if you could punch the call center up on
your WAP phone using WML and then ,Visuall'y view the menu choices. When you reach the
end of the menu choices, your phone would dial the customer service representative and allow
any information you entered on your WML screen to 1nstant1y appear on the customer service
rep’s computer screen to better serve you and save everyone’s time!

WAP devices are powerful multifunction devices. The call-center example demonstrates one
way these features can be exploited to enhance your applications. The key to developing strong
applications is to identify the application’s goals and, at the same time, negotiate the device’s
limitations. Assuming these concepts are well understood, WML is a powerful and easy lan-
guage that will allow you to easily deploy applications in a mobile environment. "

WML Overview

In the next section, we discuss the concepts behind WML and the syntax rules governing
WML, and we introduce the most umque aspect of WML—its “card” and “deck” navigational
structure.

Concepts

Since WML uses an XML vocabulary, it would be useful to understand some basic principles

of XML (Extensible Markup Language), a tag-based system used for defining, validating, and
sharing document formats. Although they are very similar, WML differs from XML in the fol-
lowing ways:

re

» WML’s white-space handling rules are not as elaborate as XMLs.
» WML relies on well-formed expressions.

» WML has a built-in method for handing international characters.

Facebook's Exhibit No. 1073
Page 59

Introducing WML
CHAPTER 2

37

~ If you are already familiar with the requirements of XML, you might find some portions of the
section below repetitive. However, you may want to read through it anyway as the section cov-
ers issues specific to WML which are not generically part of XML.

Syntax Rules

WML is like a strict grammar teacher. You will be punished 1f you do not strictly adhere to the
rules set before you. In the next section, we will show you how to be successful in meeting
WML’s demands to build a working WML application.

Character Sets

WAP, as a protocol, has already found international acceptance. As such, certain international
characters are supported, and characters such as tildes (~) and ampersands (&) need to be visi-
ble to users. » . _

By default, WML pages use the ISO-10646 character set. In fact, if we were being syntacti-
cally perfect in writing our WML code, we would always state this specifically by including in
~the XML definition at the start of every deck:

<?xml version=*1.0" encoding="iso-10646“?>

“The ISO-10646 character set is the computer industry’s fancy name for the Unicode character
set. This should give you all the basic international characters, but if you need to support a dif-
ferent ISO standard character set, you can adjust this header.

Much like HTML, WML has some reserved characters. For example to print a > in HTML,
you would actually escape-code the character and put > in the HTML code. This holds true
for WAP as well. In WML, certain character references are widely supported. These are shown
in Table 2.2. : .

TaBLE 2.2 Reserved Characters in WML

Character WML Abbreviation
“ "

& &

¢ &apos

< &It

> >

Space

Facebook's Exhibit No. 1073
Page 60

38

Getting Started

PART |

Additional characters are also supported through standard escape coding. For example, the
word café would be written as café, where decimal character 233 in the ISO-10646 char-
acter set is the letter é.

For additional information, we recommend you take a look at the Character Entity Reference
Chart available online at the World Wide Web Consortium’s Web site at
http://www.w3.org/International/0-charset.html.

White Space

As mentioned earlier, WML differs from SGML quite significantly when it comes to handling
white space. In general, if a user were to transmit SGML, all the irrelevant characters would be
removed. This is not the case with WML. WML in most incarnations will transmit all the char-

acters in the WML file and then rely on the client device (be it a WAP browser, Web browser,
or another application) to display the information in the proper manner, removing irrelevant
white spaces; otherwise, line breaks, tab characters, and regular spaces get passed to the appli-
cation.

Programming Considerations

As we mentioned earlier, WML is syntactically oriented and relies on well-formed code. This
means that as developers, we need to be concerned with our spacing of characters when we
write in WML For example, in WML, you must space value pairs with a space, but you can-
not use white space between an attribute, the equals sign, and the attributes value.

<access
domain="dsn"
path="wapdir"
>

The previous example is well-formed. The following example, however, would generate errors
because of the spaces surrounding the = symbols.
<access

domain = “dsn"
path = "wapdir"

Facebook's Exhibit No. 1073
Page 61

Introducing WML

— CHAPTER 2

Likewise, we cannot run the attributes elements together as below:

<access
domain="dsn"path="wapdir"

>
This code would create an error.

WML does make special considerations for the quote characters. Under HTML, the standard
evolved ad hoc to correct common errors made by programmers. For example, under Internet
Explorer 5.0, the commands

<table width="100%">
and
<table width='100%"'>

have the same effect. This programming standard has held true for WML as well. In general, it
is preferred to use this syntax:

<p align="right">
But, it is acceptable to use this syntax:
*<p align='right'>

‘Remember that WML is particular about white space, but at the same time, it is important to
adhere to standard coding conventions. For example:

<p>
E-mail $emName

Subject: <input type="text" name="subject"/>

Message: <input type="text" name="message"/>
</p>

This code adheres to standard coding conventions of indenting various nested levels. In this
case, we see the paragraph’s contents are indented further. In WML, it is important that each
tag has a match and the nesting order is appropriate. In HTML, we could get by with syntax
like this:

 <I>Hello World</I>

- However in WML, strict adherence to nesting levels is required and closing the bold tag before
the italics tag would generate an error. Therefore, the only way these commands could work is

through the syntax:

<i>Hello World</i>

39

Facebook's Exhibit No. 1073

Page 62

40 _H_Gettlng Started , E

PART |

Case Sensitivity

WML is like a grammar test. Any punctuation, any misspellings, and any case-sensitive mis-
takes will cause the compile to fail. This is particularly true when you consider start and end
tags. In HTML, a valid tag match might include <BODY> and </body>. However, in WML,
 and would indicate two different start and end tags.

Variables follow the same logic regarding case sensitivity.

Variable1
variable1
VARIABLE1

All the previous examples are different variables in WML, and each could have a discrete
value assigned to it.

Required Prologue

The WAP server and WML compilers need to have a manner by which they can reference the
XML specification. To do this, XML requires a prologue that defines the XML version and.a
pointer to the XML definition or language being used. Most of the examples we refer to for the
remainder of this book will use the standard prologue:

<7xml version="1.0"7>
<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
"http://www.wapforum.org/DTD/wmli2.dtd">

In general, a WAP device will never see this prologue, as the server and compiler are the only
two devices that care about the definition of the XML format.

For the sake of brevity, the prologue will be left out of our code examples in this book with the
exceptions of the upcoming deck examples. '

WML Components

When developing for the Web, each HTML file constitutes one HTML page. Developing in
WML is slightly different. Because each page or screen is very small, it does not make as
much sense for each page to constitute a separate file. WML pﬁges~content viewed on sepa-
rate screens—are called cards and those cards are all placed within a deck of related pages
which constitute one single file.

Decks

When HTML is transmitted to a Web browser, we consider it to be an Internet document. A
deck is the simplest wireless document. It consists of the same basic elements you would
expect to see in an HTML document: prologue, WML tags <wm1>, header tags <head>, and a
few other tags unique to WML. Each deck has a series of cards in it. Therefore, the goal of

Facebook's Exhibit No. 1073
Page 63

Introducing WML

CHAPTER 2

WML due to wireless limitations is to keep decks small, and occasionally have a few decks in
a single WML application.

Cards

Inside each deck are one or more cards. The cards are the drivers of the application. Each card
defines how a particular screen looks, how that screen functions, and what steps are taken
when the card is navigated. As such, a card can never be empty and must contain at least one
element. The information inside the elements derive either content or navigation instructions.

summary

This chapter introduced Wireless Markup Language (WML) by discussing its origins, func-
tionality, and similarity to HTML and XML. Next, the chapter discussed how to configure
your Web server to serve WML content and how to view that content with several common
devices and device emulators. Finally, we showed you how to determine what kinds of applica-
tions are relevant to the special capabilities of WML, while covering basic development con-
cepts, such as syntax and the basics of WML’s particular card and deck structure.

41

Facebook's Exhibit No. 1073

Page 64

Facebook's Exhibit No. 1073
Page 65

314

Advanced WAP Development

ParT Il

Providing one URL for the users of your application is one thing, but actually being able g
deliver appropriate content for a variety of devices from that same URL is another issue al]
together. The holy grail of Web development is indeed the ability to “write once, display ap
where,” and while to some extent this may be a fantasy, some guidelines can help you get
closer.to that goal.

Just as there are several browsers out there that render HTML in different ways, not all W,
browsers render the same WML content in the same way. This chapter will not tell you ho
deliver content to every client out there, but it will lay the framework that will allow you to
deliver content in a meaningful way to just about any device.

There are many books available that will provide you with all the guidelines, sample code,
suggestions that you could ever imagine for developing HTML applications. If that’s what
you're interested in, you should go get another book. The focus of this chapter will not be
to write good or compelling HTML, but instead how you can build your site and/or data st
tures so that you can readily deliver both HTML and WML from the same data store.

The principle that must be involved is the same as that of CSS, DHTML, DOM, or XML,
depending on what you are most familiar with. It boils down to the process of abstracting th
presentation layer from the data. There are many HTML browsers out there with varying lev
of support for CSS in different formats. It will be some time before you can rely on all Web
browsers to understand XML/XSL, so until that happens, you will have to live with the fact
that everyone is going to have a different level of capability when they reach your site. How
you serve them all? What do you serve them? Is it all relevant? You must ask yourself these
questions to build a successful site.

Why Two Languages?

First of all you must ask yourself, “Why bother writing WML at all? Can’t I just use HTML
and a translator?” The answer is yes you can, but if you want to build a real-world, compelli
application, any translator is not going to get you far enough.

Consider, for example, Amazon.com. Figure 13.1 shows what its Web site looks like in Inte
Explorer.

Facebook's Exhibit No. 1073
Page 66

Writing for HTML and WML

CHAPTER 13

GURe 13.1

azon.com as viewed through Internet Explorer. There’s lots of useful information here that a user can get to quickly

simply.

gure 13.2 shows what the Amazon.com site looks like when it comes through an
ML/WML Translator. Figure 13.3 shows a version written specifically for WML.

GURE 13.2
om an end-user perspective, it is very difficult to understand what you’re looking at, let alone how to get to the fea-
res of the Amazon.com site.

315

m——

Facebook's Exhibit No. 1073

Page 67

316

ParT I

FiGure 13.3
This is the Amagzon.com site that is written explicitly for phones with a WAP browser in them. Notice how the first thin
that the user sees is the most frequently used feature of Amazon.corm— Books.

Ok, so now we see that HTML translated to WML does not always go quite as well as you
might expect. Although it will get you something, the results can be far from optimal. Other
sites that do not rely on image maps or that have links defined in an order on the page that is
also meaningful may translate better. Also, if a user has experience with your HTML site, he
will be better able to navigate through it via translation. Take, for example, Yahoo.com (see
Figure 13.4). If I already know that I expect to find a Sports link on the site, and I am persis-
tent, I can find it.

FIGURE 13.4

Navigating through Yahoo.com.

I'm not trying to pick on Yahoo here, almost any site is going to perform this way through an
HTML translator. The first thing that the device picked up on in the first phone display is the
Search box at the top of Yahoo’s page. If I skip this form, I start getting the anchors at the top

Facebook's Exhibit No. 1073
Page 68

317 }
i)

Writing for HTML and WML \
‘” CHAPTER 13 | _

¢ page as seen in the next display. If I know what the HTML Yahoo site looks like, I can
ersistent and choose More to get another page of links, as you can see in the third display,
4 then choose stock quotes page (last display), and I even left out a few cards for simplic-
y’s sake.

o, found the information that I was looking for, but how often am I going to be willing to
ut up with this? In the wireless version of Yahoo, the Sports link is presented on the first

¢, and my sports choices are immediately available. Two clicks and I'm in.

Ficure 13.5
Since Sports was option 9 on the main Yahoo! page, I had to scro
sented with a meaningful menu to choose from.

1 down to find it. When I select option 9, I am pre-

Clearly, Yahoo! has done some considerable work here to build a powerful wireless site that
works as a companion to its HTML site. When I access the content from my phone, I don’t get
the banner ads, I don’t get the extraneous links, and I get direct access to the content that I

want to see the most.

The preceding examples were all done through an HTML/WML Translator that was running at
a WAP gateway, not at the origin server. It is certainly possible to build a more intelligent
translator, and anything that lives at your Web site (rather than at an outside gateway) is going
to provide you with a greater level of control. However, this should address the issue of why

you should bother writing WML in the first place.

Users who access the Internet from their personal compulers by and large are dialing into an
ISP and are using somewhere between a 8.8k and a 56k modem. This represents a two- to Six-
fold increase over the 9600kbps and 14.4kbps speed that HTML browsers had when they
became available to the general public in 1994 and 1995. Five years later, we're still using
HTTP (1.1 instead of 1.0) and we’re still using HTML, GIF, and J PG. When I'm delivering
graphical content to a Web browser, I’m still going to use a compressed, optimized format
instead of something like a TIFF. The same principle will hold for the wireless environment.

—]

Facebook's Exhibit No. 1073
Page 69

318 Advanced WAP Development

ParT 111

As bandwidth and device capability increase, today’s innovations are not going to be thy,,
away. They will be improved up on and extended.

To this end, the WAP Forum is working very closely with the W3C in the definition of
XHTML, also known as HTMLS5.0. The specification for WML 2.0 will likely be part of
XHTML Specifications. However, remember that we are still talking about the future, ap
want an application today. Even after the standards are set and the WAP browsers are byj
product cycle for getting new software into phones is something like 12 to 18 months, Sq ¢
if the browsers existed today, it would be another year until the phones hit the market. T}
one of the reasons why the new WAP phones today support the WAP 1.1 specifications, w
were first proposed a year ago; the 1.2 specifications have since been approved. 'k

How to Write for Both Languages

Hopefully, you are convinced that even if you have an existing, sophisticated HTML site, p
viding a WML interface to your content (rather than relying on translation) is a good idea."
probably would not be reading this book if you didn’t already think so anyway. So when yo
start building the WML side of your application, there are some things to think about.

Phone Considerations

The WAP client is a phone first and foremost, and for your application to be compelling i
needs to take this fact into account. You can cause the phone to make a phone call, you can
deliver a real-time alert to some phones, and phones have numbered keypads, not keyboard
How you present your data is significant. When you think about delivering content to a pho
think about how the phone is going to be used.

Consider the following:

* Unlike a PC keyboard with an Enter key and mouse navigation, the phone has one or
more soft keys to which actions can be bound.

An HTML page gives the user the ability to choose from several possible actions with
Input/Submit fields, links, and buttons. How should these features be mapped onto a
WML card? '

Facebook's Exhibit No. 1073
Page 70

Writing for HTML and WML 319

................................ Pt

FE—

What is the most relevant information on a page that needs to be presented onto the
hone?
jearly, everything on the HTML page is not going to work on a phone.

What about frames?
_ Which frame should be sent to the phone?
s it possible to get back and forth across the frame pages?

What about banner ads? How would these work?

Nobody is going to advocate removing banner ads from your HTML pages (this may be
one of your current revenue sources), but with limited screen real estate you should think

 twice before using them.

Browser Considerations

p It Simple Stupid is one of the guidelines that HTML developers have a strong tendency
oid. There are plenty of sites out there that are ultra slick and super confusing. The temp-
n to employ all of the newest/latest technology can be too much to resist at times, and
lopers have the tendency to overlook the fact that their user base may or may not have the
ty to handle this latest technology on their client. I’m not suggesting that you regress to
days of Lynx and build a text-only site, but T do recommend that you consider the usability
lications of a clean, easily navigable site. And I can’t say it often enough: Just as you

1d with your HTML code, test your code on as many browsers/platforms/clients as you
ibly can. Don’t just test it to see whether it breaks, test it for usability. Can uneducated

ut your site, not in general) users accomplish simple tasks? Do they get lost in your site?
they get overwhelmed by your content or presentation?

end users going to be driving while they use the browser (I hope not), or are they going to
itting in a coffee shop? Are they going to be waiting for a train? They’re not likely to be at
sk. They are going to use their phones to find specific information quickly, or possibly

are going to want to kill some time and be entertained. Extra information that might

ance your HTML site will likely clutter a WML site.

ctly what data you present to users on an HTML page versus what you present them with
WML page can and should vary. Take a stock application, for example. On an HTML

e, it would be simple, and would probably be a good idea, to display a chart showing a

k’s performance over a day/week/month range along with any other data when you present
ock quote. However, the phone may or may not be able to display such a chart. If it can, the
played image may not be large enough to be meaningful to the user.

Facebook's Exhibit No. 1073
Page 71

320

Advanced WAP Development

ParT HI

One of the larger issues in dealing with the phone is the fact that users are not rnultitasking;
when using the browser. When you sit at your desk and you’re waiting for a Web page tg |,
it is not likely that you have the browser taking up the whole screen. Maybe you’re looking
different content in another browser window. Maybe you’re reading your email, maybe yoy
proofreading a document, or maybe you’re petting the cat. It all boils down to the fact tha
you’re willing to put up with some degree of latency because your attention can be drawny g,
to other things. When users are accessing content on their phone, they are staring at the ph@
screen, waiting for a response. What may in quantitative terms be a short response time cap.
seem much longer because attention is focused directly and exclusively on the device. A 1¢
second wait may be tolerable for an HTML page to load in a Web browser, but a 5 second -
can seem like an eternity when using a WAP-enabled phone. Keep this in mind when you
decide what part of your site you are going to deliver to the user. Of course, what is accept
varies from one application to the next, you’ll have to use your judgment (and some real-w
user feedback) here.

Database-Driven Applications

The key to building a compelling application that can be accessed from both a WAP-enable
phone and an HTML browser is synergy. Use the strengths of each environment to enhance ¢
user experience, and tailor what you will deliver to the device. The beauty of the Web is its
ability to deliver dynamic data that is constantly changing and unique to each user as appropr
ate. To this end, the information that you are going to present should live in a database. There
are many free, and not free, database choices out there on every platform with drivers for an '“
language that you want to use. For the sake of simplicity (and space), I have chosen one data
base and one language to present code in, but the underlying principles can be applied to any
database or language. »

Introduction to Employee Directory

Listing 13.1 is an example of an employee phone list that can be accessed from either an
HTML browser or a WAP browser from the same URL. Although in reality there are really &
different applications here, they both provide an interface into the same data store, and updat
in one medium will propagate to the other. The phone book application is based on a simple
SQL database running in mSQL (from Hughes Technologies at http://www.hughes.com.au
Database access is accomplished through the w3-msql library that ships with mSQL. Althoug
the code used in this chapter is specific to mSQL, the queries and principles used can be
applied to any SQL database. Of course, similar code could be written in ASP, ColdFusion,
Perl, JSP, and many other languages (as will be seen in the final chapters of this book).

Facebook's Exhibit No. 1073
Page 72

‘:database that this application uses relies on one table named emp_details. T he table has
columns: emp_no, first_name, last_name, phone, email, and dept. The emp_nois a
yential number that is unique and generated by the database for every row that is added to
table. The others are simply character values.

, application is accessed by the same URL from the PC browser or from the WAP browser.
s js done by using a script that examines the value of the HTTP_ACCEPT 'string and then re-
cts the client to the appropriate code.

nG 13.1 An Employee Phone List

Writing for HTML and WML {
- CHAPTER 13 |

r/local/bin/perl

= $ENV{"HTTP_ACCEPT"};
= $ENV{"HTTP_USER_AGENT"};

' gacc =~ "wml"){
' print "Location: http://delphi.phone.com/Hughes/empList.wsql\r\n\r\n“;

o
t" Location: http://delphi.phone.com/Hughes/empList.msql\r'\n\r\n";

print '<html>

quests it. This is a very simple page, which could certainly be enhanced with a corporate
nner at the top of the window and some navigation links along the left edge of the window.
owever, these should be kept small and relatively inconspicuous, since the employee infor-
ation is what users are really interested in. This is shown in Figure 13.6.

321 i

R

Facebook's Exhibit No. 1073

Page 73

322

Advanced WAP Development

ParT 1l

FIGURE 13.6 :
We can display all rows of the phone tree in the table since neither screen size nor maximum page size are constraing;
on the HIML browser.

The page in Figure 13.6 is generated by a simple query into the database that looks like this:

if (msglQuery($sock,"SELECT first_name, last_name, phone, email,
wemp_no, dept FROM emp_details ORDER BY 1ast_name") < Q)

{

echo("Error : $ERRMSG\n");

exit(1);
}
$res
$row

msqlStoreResult();
msqlFetchRow($res); .

>
<table border>
<tr>
<th>First name</th><th>Last Name</th>
w<th>Phone</th><th>Email</th><th>Department</th>
</tr>
<!
while (#$row > 0)
{
printf("<form action=edit_emp.msql method=POST>
w<tr><td>%s</td><td>%s</td><td>%s</td><td>%s</td>
w<td>%s</td><td><input type=Submit name=edit value=Edit>
w<input type=hidden name=emp_no value=%s</td></tr></form>",

Facebook's Exhibit No. 1073
Page 74

Writing for HTML and WML

CHAPTER 13

$row[@], $row[1], $row[2], urlEncode($row{3]),
1encode ($row([3]), $row[5], $Srow[4]);
$row = msqlFetchRow($res);

nsqlFreeResult ($res);

¢ temporarily ignore everything except for the SQL statement, we can see that the applica-
simply asks for every field from each row of the database. Stepping out a bit further we
see that there is a level of error checking built in to the application so that we can return an
from the query if one is generated (rather than causing the browser to hang or return an
tively meaningless error type 500). The results of the query are stored in a local variable

, and then one row at a time is pulled out of the results and stored in an array, $row.

HTML code that is used to wrap the results of the SQL query presents each row of data in
le. The entire result is iterated over, and the elements from the array are extracted and pre-
nted in a table cell. Each email address is wrapped in an link, which

[allow users to invoke their email client directly from their PC browser. The last column of
‘table contains an Edit button that will allow the user to update the record in the database

is will be discussed later on in this chapter).

hone Entry Point

ue to screen display limitations as well as the limit on the amount of information that can be
livered to a WAP phone at one time, the entry point of the application for the WAP phone is
ing to be simplified to just present the list of employee names. Figure 13.7 shows a screenful
the WAP presentation.

GURE 13.7
ven if the entire database were small enough to fit in a single deck, the table cannot be displayed in a meaningful
ay, so each name in the list becomes a link of its own.

323

Facebook's Exhibit No. 1073

Page 75

324 Advanced WAP Development : —

ParT I

Tn addition to the fact that only the names from the database are initially displayed becauge
memory limitations in WAP devices, we have to limit the number of records we can present
the user at one time. To allow access to the entire employee database, we need to keep track
which names have been delivered. Since we are only going to present nine possible recordsg
from the database in any given card, we can make the tenth item a More... link, which wilj
sent another screenful of data. To do this, we need a slightly more sophisticated select state.
ment for our SQL select:

if (msqlQuery($sock,"SELECT first_name, last_name, phone, email,

wemp_no, dept FROM emp_details »
WHERE last_name >= '$last_name' ORDER BY last_name") < |

echo("Error : $ERRMSG\n");
exit(1);
}
$res = msqlStoreResult();
$row = msqlFetchRow($res);
echo("<select>");
$counter = 0;
while ((#$row > 0) && ($counter < 9))
{

i

printf("<option onpick=\"#card%s\">%s, %s</option>",
wSrowl4],$row[1],$row[0]);
$row = msqlFetchRow($res);
$counter++;
if (#Srow > 0){
$last = 1;
if (($counter % 9) == 0){
$last = Q;
printf("<option onpick=\"empList.wsql?last_name=%s\">
wpore. ..</option>",$row[1]);
echo("</select>
</p>
</card>");

}

}
if($last == 1) {
echo("</select>
</p>
</card>");
$last = 0;
}

Facebook's Exhibit No. 1073
Page 76

v Writing for HTML and WML
- ' CHAPTER 13

325

tice that in the SQL select statement we include a WHERE clause so that we can limit exactly
: -h records are going to be selected based on a value of 1ast _name. When this select state-
nt is first called, there is no value for last_name, so the query will retrieve records from the
« of the alphabet. The entire result of the query is stored locally in a variable, $res, and
read out one row at a time. A counter is used to keep track of how many rows have been
and when the ninth record is reached, a More... link is built, with a destination of the

ipt and the last name set as the value of the last name displayed. When a user then requests
jast link, the script is re-invoked, this time with the last_name value assigned, ensuring
the correct record set is retrieved.

10

ption onpick=“empList.wsql?last__name=Longsreth">more. . .</option></select>

e application relies on this last name value, rather than the unique identifier of emp_no

cause the value of emp_no is not going to be sequential according to the last_name. After

her the More... link is built or the end of the data has been reached, the card is closed off,

d the script re-iterates back over the results, building the individual cards for each record that

] display the data.
ce a user selects one of the names in the list, the details associated with that user will be
splayed on a card of its own. This is the only way to represent the data in a user-friendly and

caningful way. When the user selects one of the names, their details will be displayed in full
1a new card. Figure 13.8 shows the details for one of the employees on the list.

URE 13.8

1 the user selects one of the employee names, all of their details are displayed. The phone number is surrounded
ith g wtai: / fwp/me; so that the number is callable directly from the browser.

ince we know that the user is going to be using this application from the phone, and itis a
hone book, it only makes sense to allow the user to be able to generate a call from the results.
he UP.Browser from Phone.com will allow the user to select the link that displays the phone

RS

Facebook's Exhibit No. 1073
Page 77

326

Advanced WAP Development

ParT Il

number, and automatically dial the number. Other devices may just present the user with 4 ;
Number feature that will drop the phone number into the phone’s voice interface, and the yg
can then choose to make the call. In the future, as more of the WTAI (Wireless TelephOny
Application Interface) specification from the WAP forum is implemented by devices, it wijj
possible to present the user with an option to add the information to the local phone book ¢
his device, or maybe send a text message to the user.

Remember that in the HTML application, the email address is presented as a hyperlink with
mailto: action that will allow the user to launch his email application directly from his
browser. Although there are WML-based email programs, there is no standard way to mVok
them at this time, so the email address in the WML application is not presented as an active
link.

HTML-Specific Features

The HTML application has some additional features beyond simply displaying the phone infc
mation. It allows users to either edit an existing listing or add a new listing to the database
These functions could be presented in the WML version of the application, but the entry of
data from the phone is often an arduous process and should be avoided whenever possible.
Providing an HTML interface into the data gives the user a much more usable way to mana
the information.

Adding an Employee to the Database
An employee may be added via the Add button at the bottom of the table, and brings up a sim.
ple HTML form page as shown in Figure 13.9.

The action on this form is to post all of the field values to a script, which will then create a
new row in the emp_details table in our database, generate an employee number for the
record, and insert the data.

if (msglQuery($sock, "select _seq from emp_details") < @) {
fatal('Query failed : $ERRMSG");

}

$res = msglStoreResult();

$row = msqlFetchRow($res);

$sequence = (int)$row[@];

msqlFreeResult ($res);

/*

** Insert the record

*/

$q = "insert into emp_details values ($sequence, '$first_name',

'$last_name', '$dept', '$phone’', ’'$email’)";

Facebook's Exhibit No. 1073
Page 78

Writing for HTML and WML

CHAPTER 13
if (msqlQuery($sock, $q) < 0) {
fatal{"Add employee failed : $ERRMSG") ;

}
msqlClose($sock);

L
pMIughss»/add_yeranslrr&?addzAdd

Add Employee Record
First Name e LmstMame |
Phone Number{ i Email | o
Departnient

URE 13.9

HIML form allows a user to input the data. The action taken when the user presses the Add Employee button will

Id a new record into the database.

he SELECT _seq statement will generate the new sequential number that can then be used as
e emp_no value. This value, along with all of the data that was picked up in the POST, is
erted into a new row in the database. When the update is completed, the user is returned to
employee list with the new record displayed in the appropriate alphabetical order.

diting an Existing Record
e other HTML-specific feature for the database is the ability to edit an existing record. The
it button that is presented in the last column of each row will build an edit card for the

mployee listed in that row, as you can see in Figure 13.10.

Facebook's Exhibit No. 1073

Page 79

328

Advanced WAP Development

Part Il

81 hitp:/dalphisHughes/edit_smp.msql

Edit Employee Record

Frist Wame {Viadimir i Last Mame |Bordsaux

Ficure 13.10

This HTML form allows a user to edit the data associated with a given employee. The fields in the form are automa,
cally filled in so the user only needs to change those that apply. Changes are committed to the database as soon as
user presses the Edit button.

The edit sequence relies on the emp_no field in the database, which is stored in a hidden field
in the form. This ensures that only the correct record is going to be updated.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<HEAD><TITLE>Edit Employee Record</TITLE></HEAD>
<BODY>

<CENTER>

<H2>Edit Employee Record</H2>

<FORM ACTION=update_emp.msql METHOD=POST>

<TABLE align=center>

<TR>

<form action=update_emp.msql

<table>

<tr><td>First Name</td><td><input name=first_name value=Vladimir></td>
<td>Last Name</td><td><input name=last name value=Bordeaux></td></tr>
<tr><td>Phone</td><td><input name=phone value=650-555-1582></td>
<td>Email</td><td><input name=email value=vbordeaux@wapcorp.com></td></tr>

Facebook's Exhibit No. 1073
Page 80

Writing for HTML and WML
CHAPTER 13

329

irst Name</td><td><select name=dept value=sales>
<OPTION VALUE=sales>Sales

<OPTION VALUE=dev>Development

<OPTION VALUE=admin>Administration

<OPTION VALUE=cs>Customer Support

put type=hidden name=emp_no value=113>

le>
t type="submit® name="Edit" value="Edit">

>F

cript that receives the post behaves very much like the script that adds a new employee to
atabase (this edit form should have Jooked familiar), however instead of performing an
SERT, it will UPDATE the record that is associated with the emp_no.

‘k gemp_no = (int) $emp_no;
 if (msqlQuery ($sock, "UPDATE emp_details
‘ SET first_name = '$first_name', last_name = '$last_name',

phone = '$phone', email = '$email’, dept = 'S$dept’ 13
WHERE emp_no = $emp_no") < 0)

echo("Error : $ERRMSG\n");
exit(1);

o}

msqlClose($sock);

e int in the very first line of this code, the $emp_no value that came in with the postdata, is
st to an int so it can be effectively used in the SQL query. It must be cast this way, other-

se it will be represented as a string, and there will be a type mismatch result from the SQL
tement. The UPDATE is otherwise very simple and straightforward.

ain, there is no technical limitation to prevent these add and edit functions from being pre-
nted on the phone. It is just not done here for space reasons, and also to underscore the point
at data entry is simpler and cleaner from an HITML interface.

hone-Specific Functionality

nce the phone cannot display all of the records at the same time on the initial screen, it is
portant to include a search capability for the database. This prevents users from having to
roll through many screens of results before finding the employee they are looking for. This
ature is not really needed for the HTML application since all records are displayed on the
me page, and users can use the Control-F find function from their HTML browser to search

I an employee.

——

Facebook's Exhibit No. 1073
Page 81

330

Advanced WAP Development

ParT 1l

If you look back to Figure 13.7, you will notice the Find label bound to the options soft kg
This action will bring up a find deck so the user can choose to search for a employee bage
first name or last name. The searches are exclusive, meaning that they cannot search for f;
and last name at the same time.

Ficure 13.11

The WML application needs to allow the user to search for an employee based on first or last name. The user sele
what he wants to search by, and a SQL query is generated.

The first or last name that is entered is then delivered on the query string to a script that
queries the database for matching records. If a match is found, only the first match is return
and if there is no match, a No Match card is returned instead. In addition to the matching
record (or no results), an “all” action is bound to the options key. This will present the user
with the employee listing, starting at the top of the alphabet. Following is the code for the
script that runs the query and returns the results:
if (#8first_name >0){

if (msqlQuery($sock,"SELECT first_name, last_name, phone, email,

wemp_no FROM emp_details

WHERE first name LIKE '%$first_name%'") < 0)

{
echo("Error : $ERRMSG\n");
exit(1);

}

else {

if (msqglQuery($sock,"SELECT first_name, last_name, phone, email,
wemp no FROM emp_details
WHERE last _name LIKE '%$last_name%'") < @)

echo("Error : $ERRMSG\n");
exit(1);
1}

Facebook's Exhibit No. 1073
Page 82

Writing for HTML and WML

CHAPTER 13

es = msglStoreResult();

ow = msgqlFetchRow($res);

(#Srow > 0){

printf("%s %s
<a href=\"wtai://wp/mc;%s\"”
\"call\">%s
%s
",

$row[0], $row[1], $row[2],$row[2], urlEncode($row[3]));

elsef
 pcho("$first_name $last_name Not Found!");}

echo("</p>

</card>

</wml>");
ript relies on the definition of the first_name variable from the HTTP request to decide
¢ SQL query should match first or last name. This code could be enhanced to return multi-
matches if they exist, but for simplicity’s sake, it will only return one row of data,

plication Conclusions

Employee Database application is just one simple possibility that can be used to present
same data to vastly different clients. The code that is used to perform this task is similar
ss the HTML and WML versions, but the key considerations of how much data to display
nce, how to display it in a meaningful way, and how to take advantage of client-specific
res are taken to heatt.

her Languages

stated at the beginning of the chapter, the WAP Forum is on a road to convergence with the
C, and the specifications for WML 2.0 is currently planned to be inline with XHTML (the
L version of HTML). Until this happens, it is worth noting that today WML is indeed an
application. As XML browsers begin to permeate the market, developers can begin to

¢ away from writing HTML and simply use XML along with Extensible Stylesheet

guage (XSL).

L tags within a document describe what the elements of the document are, rather than what
look like. The XSL does the job of describing how a given element should be displayed
¢d on the device that is rendering the element. Take for example our employee database.

ng XML, we could use tags such as <e-address> and <phone -num> to mark up the email
esses and phone numbers in the data that we present. The XSL used to build the HTML
sion of the application would then automatically wrap the email address in the mailto:

hor, and the XSL for the WAP phones would automatically build the wtai:/ /wp/mc link
und the phone number so that it could be automatically called.

331

Facebook's Exhibit No. 1073

Page 83

332

Advanced WAP Development

PArT 1l

There are volumes on XML and XSL, and it is beyond the scope of this one chapter to expl
how XML and XSL work together to transform data as appropriate to a requesting client,
However, it is worth looking at the Cocoon project from http://xml.apache.org/cocoon,
This project (which is currently under way) provides a way to accomplish exactly what ig d
cussed in this chapter, including employing the HTTP headers that are delivered by a devig,
request to ensure that the correct XSL information is used for a given device. This allows ¢
tent to be repurposed appropriately, allowing the support of a w1de range of device and yge
agents.

Summary

This chapter has taken a quick look at what it means to deliver the same content to an HT)
browser as well as a WAP browser. The key message is that while HTML can be delivered
phone through a translator, taking the time to write a WML interface into an application is
worth the effort in terms of both usability and functionality. Although WML and HTML ar
the road to convergence with the forthcoming XHTML specification from the W3C, it will
be some time before the specifications become reality. In preparing yourself for that time, an
even in preparing yourself to build a scalable Web application, content and data should be
abstracted from the presentation of that content. The simplest and most effective way to do
is to store your data in a database.

Any programming language can be used to provide access to the same content base to any
client. The key is sticking with what you know and what you are familiar with. It looks as
though XML/XSL will play a huge role in content delivery to a wide variety of clients in the
future. Abstracting your presentation from your content now will get you a long way toward
the future.

Facebook's Exhibit No. 1073
Page 84

Page 85

430

Sample Applications

PArT IV

E-Commerce Application Overview

For this fourth and final sample application, we are going to take an in-depth look at how ¢

fries, and computers. (A great business model, if you ask us!)

While shopping with a mobile device may be unfamiliar to many people, the Internet has
already carved out models for electronic shopping that consumers have grown accustomed t
and even expect. The backbone of an e-commerce shopping experience is the virtual shoppi
cart. The cart we’ll create in this example represents a session that you might use to track a
user’s login process through a content management system.

At this point, we would like to note that this application provides the basic functionality of an
e-commerce application, to demonstrate the fundamental techniques involved in designing a
WML interface that operates with a data-driven backend for e-commerce. This example does
not cover security or credit-card validation and therefore would not be recommended for real-
world deployment without those components. ‘

This sample application will be more technologically challenging than our previous ones. We.
will be coding this example in JSP, using TOMCAT or JRun servers. :

E-Commerce Application Walkthrough

We’ll begin by conducting a step-by-step walkthrough of the code contained in this applica-
tion. If you'd like to see any of the sections we’ll discuss here in their complete context, please
reference the end of the chapter, where all of the code listings are given in their entirety.

Keeping Track of the Data

In this application, we use several kinds of data, and each time we need to access one, we are
interfacing into a database using JDBC to a data source called “shop.” This database will drive
our WAP application. It includes the product catalog, shopping cart storage, and ordering infor
mation. Refer to Chapter 17, “Scheduling,” for database setup parameters. ~

Facebook's Exhibit No. 1073
Page 86

E-Commerce
CHAPTER 18

431

ne database itself has five tables. The first one is really our session management. In this
cample, there is a login screen that needs to be processed. For this application, the login page
ill serve as our session manager. When a user reaches the login. jsp page (see Listing 18.1),
¢ application will query a table called Vars to determine what shopping cart a user will have
ccess to. You can see this table in Figure 18.1. From this point on, we pass this cart identifica-
on with the user to make sure we can track his session.

iGURE 18.1
he vars table contains shopping cart identification information.

second table, called Itens, is at the core of our application. It is shown in Figure 18.2. In
his table we have a particular item, stock keeping units (SKUs—which are unique product
umbers used in inventory tracking) for an itém, a category, and pricing information. In a more
omplete application, this table might have inventory information or other fulfillment informa-

on.

Computers AS400 521 .
Cornputers | PDP11 {7 TN
Computers FPDP8 . §8.00 119295
Mauntain Dew | $2.00 ;743468

7 Up . $2.00 17668746
Seie | w00 eses
Soda DrPepper | 8200 112243 1
$0.00 $0,00 | (AutoNumber)

IGURE 18.2
he Ttems table contains pricing, category, and SKU information on various products.

he ShoppingCart_Items table stores all the data we need for cart management. In this table,
we are tracking a shopping cart ID, which will be unique for each user session; the items in a
articular cart (based upon Item_ID numbers from the Items table); and quantities. You can see :
what this table looks like in Figure 18.3.

inally, the last two tables contain our data for a completed order. When a user “checks out”
nd then enters his order information, the completed order information is entered into the
rders table, seen in Figure 18.4, and corresponding entries for the ordered items are
eposited into the Orders_Products table, seen in Figure 18.5.

Facebook's Exhibit No. 1073
Page 87

432

Sample Applications

ParT IV

(AutoNumber)

FIGURE 18.3

The ShoppingCart_Items table contains shopping cart ID numbers, items, and quantities.

FIGURE 18.4

The orders table contains user information for a complete order, such as address, phone number, and order ID
number.

1:
o} 0 (AutoNumben); 0

Ficure 18.5

The orders_Products table contains the confirmed list of products the customer ordered.

Preparing the Header, Data Source, and Session ID

Now that we have discussed the data model, let’s start walking through the heart of this exam-_
ple with login. jsp, from Listing 18.1. We are now coding in JSP, so our header information
needs to change a little bit because of the response type. Therefore, the header for each JSP file
will contain the standard XML directive, but additionally include the following line:

<% response.setContentType('text/vnd.wap.wml"); %>

This instructs the server that the mime-type will be text/vnd.wap.wnl, which is the accepted .
WML directive. k

After we have established that, we prime our database engine, and query the database for a
variable named CART from the Vars table. The goal here is to select a unique cart ID that we
can establish for the user.

Facebook's Exhibit No. 1073
Page 88

E-Commerce

~.1 433
CHAPTER 18

%@ page import="java.sql.* >

Connection dbConn = null;
int CartID=-1; -
ResultSet get_cart = null;

try
{
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver");
dhConn = DriverManager.getConnection(
"jdbc:odbc:shop"
)3
Statement userStmt = dbConn.createStatement();
get_cart = userStmt.executeQuery(
"SELECT VALUE from Vars WHERE Name='CART'"

)5

if (get_cart.next()) {
CartID = get cart.getInt("Value");
userStmt.executeUpdate(
"UPDATE Vars SET [Value]=[Value]+1 WHERE Name='CART'"
)
}
else
{
CartID=1;
userStmt.executeUpdate(
“INSERT INTO Vars(Name, [Valuel) SELECT 'CART' AS EXPR1, 2 as EXPR2"

)3

}

}

catch(Exception e)

{
out.println("Exception!il!");
out.println(e.getMessage());
return;

}

In the preceding code sample, we made provisions for error checking to ensure that the vars
table contains the correct entry if you are installing this application for the first time. When the
code is executed, the server will first query the table for a value, and if a value is found, it will

i
i
i
i
|
i
i

Facebook's Exhibit No. 1073
Page 89

434

Sample Applications

ParT IV

then increment the value by executing an update statement that sets the [value] = [valye

Tip

After we complete the session variable as illustrated above, we can construct our WAP deck.

Creating a Login that Tracks the User
In this application, our login.jsp file will serve as a welcome. We give a quick advertisemen ":
and then give the user an option to go to the next card, but pass our unique CartID in the url
parameters. We have now begun to track our user!

The following code snippet from Listing 18.1 shows the first WML card of the application.

<wml>
<card id="Welcome" title="Welcome">
<p>
Burgerworld.com
Burgers, Fries, Soda, and Computers... to go

<a href="main.jsp?CartID=<%=CartID%>">Enter

Facebook's Exhibit No. 1073
Page 90

E-Commerce
CHAPTER 18

435

</p>
</card>

FIGURE 18.6

The Burgerworld login screen shows the first card, where we start to keep track of our user’s ID.

Dynamically Generating Product Catalogs

Now that the user has logged in, it is time to present him with the product catalog. In our case,
we are going to dynamically generate a deck for item categories and the cards within those
categories as well.

The application will select all of the categories from the database and present them as main
menu choices. Then, under each category, the application will construct a card that will serve
as the submenu. In this example, the submenus only go one level deep; a category can only
contain items and cannot contain another category.

To accomplish this, we are going to need a few different database queries. At the top level, we
will query the database for the DISTINCT item_category information from the Items table.
This will form the main menu as seen in the following code sample, taken from Listing 18.2.

A
o

il

Connection dbConn null;
ResultSet get_cat null;
ResultSet get_products = null;
boolean isMore = false;

11

- - - |

Facebook's Exhibit No. 1073
Page 91

436

Sample Applications

ParT IV

// get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver®”);

/] setup the connection

dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”
)s

/! create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements
get_cat = userStmt.executeQuery(
"SELECT Distinct Item_Category from Items"

}

catch(Exception e)

{
out.println("Exception!!!");
out.println(e.getMessage());
return;

[/ assume no error conditions, for now

Facebook's Exhibit No. 1073

Page 92

E-Commerce
CHAPTER 18

437

CAUTION

Now that we have the main query, called get_cat, which contains all of the unique categories,
we can construct the main menu by cycling through the list of unique categories as shown in
he following code sample taken from Listing 18.2. You can see what this card looks like in

<card id="MainMenu" title="Menu"'>
<p>
Burgerworld.com

<%
try
{
while (get_cat.next())
{
String Category =
wget_cat.getString("Item_Category");
%>
<a href="#<%=Category%>"><%= Category %>

<%

}
}
catch(SQLException e)
{
}
%>
</p>

</card>

Facebook's Exhibit No. 1073

Page 93

438

Sample Applications

PART IV

FiGURE 18.7

The menu, listing Computers and Soda, has been dynamically generated from the data source.

Believe it or not, that was probably the easy part. Now, we’ll repeat the preceding step, and
dynamically generate product cards in the process. To do this, we will repeat the exact same
query for the distinct categories, but then create a card for each one with an ID called
Category as seen in the following code sample, taken from Listing 18.2.

<%
ResultSet get_catcard = null;
ResultSet get Items = null;
try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dbConn = DriverManager.getConnection(
*jdbc:odbc:shop”
)3
Statement userStmt = dbConn.createStatement();
get _catcard = userStmt.executeQuery(
"SELECT Distinct Item_Category from Items"

}

catch(Exception e)

{
out.println("Exception!!l"});
out.println(e.getMessage());
return;

}

The query get_catcard generates a list of items in a particular category. It does this by retriev
ing items from the Items table whose category matches the one currently in use. The query
keeps looping through the different categories, generating sublists of products, until all of the

Facebook's Exhibit No. 1073
Page 94

E-Commerce 439

CHAPTER 18

categories in the table have been queried. Assume the query get_catcard is looking at the cat-
egory Sodas. It will retrieve all of the products in the Items table that are categorized as sodas.
Once the query has retrieved all of the soda products, it stops, goes back, and looks for the i
next category. When the application finds the Burgers category, it will reinitiate the 5
get_catcard query, finding all the different burger products in the Items table. All of those
purger products will go into a sublist, which will link each product name to another location
where the user can learn more about the product. You can see how we did this in the following
code sample, taken from Listing 18.2.

try
{

while (get_catcard.next())

{
String CardCategory = get_catcard.getString("Item_Category");

try

{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

dbConn = DriverManager.getConnection(
“jdbc:odbc:shop”
)
Statement userStmt = dbConn.createStatement();
get _Items = userStmt.executeQuery(
"SELECT * FROM Items WHERE Item_Category='"

w+ CardCategory + "'"
)3

}

catch(Exception e)

{
out.println("Exception!!i");
out.println(e.getMessage());
return;

}

R

>

The next set of code is a little more difficult to understand. Keep in mind that in the code exe-
cution cycle, we are looping through distinct categories at this point.

Now, we are going to dynamically generate a card. The important thing to note is that the card
ID corresponds to the CardCategory. Since the main menu links are linking to a particular cat-
egory, we will dynamically generate cards by using the distinct category names as the card
IDs, as seen in the following code sample. The card for the category Computers can be seen in
Figure 18.8.

Facebook's Exhibit No. 1073
Page 95

440

Sample Applications

Part IV

<card id="<%= CardCategory %>"' title="Order <%= CardGCategory%>">
<p>
<h><%= CardCategory %>

while (get_Items.next())
{

%>

<a href="orderproduct.jsp?CartID=<%=request.getParameter
= ("CartID")%>&ltemID=<%=get_Items.getString("Item_ID")%>">
w<%=get Items.getString('Item_Name")%>

<% }o%s>
</p>
</card>
<% }
}
catch (SQLException e)
{
}
%>
</wml>
Ficure 18.8

The computers category’s submenu is displayed on this dynamically generated card.

CAUTION

Facebook's Exhibit No. 1073
Page 96

E-Commerce
CHAPTER 18

441

s we move on to the ordering stage of the application, we need to give the application some
eans by which to track an order’s components. One other important thing to note in the pre-
.ding code sample is that we are tracking items by their unique Item ID. This will become
ren more apparent and critical when we order a product.

ach product in the previous example contained a link to another WML deck called
~derproduct.jsp. We could have again-added this card to the main. jsp deck, but because of
ze limitations and presentation issues, we elected to make it another deck altogether.

showing and Storing Dynamic Product Information

wur next deck, orderproduct. jsp, is designed to provide the user with details about a partic-
lar product. In this deck we will show all of the relevant information about a particular prod-
ct, and then allow the user to enter a quantity. This deck is entered via the main. jsp deck,
there a user selects a category and a product. When the user arrives at the orderproduct.jsp
eck, he will have passed the Item_ID for the product he wants from the Items table as a URL
ariable named ItemID.

o start this deck off, we are going to do a SELECT * query against the Items table to retrieve
11 of the item information for the selected item, as shown in the code sample below, taken
'om Listing 18.3.

Connection dbConn = null;

ResultSet get_Item = null;

Facebook's Exhibit No. 1073

Page 97

Sample Applications
PART IV

442

// get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbeDriver®);

// setup the connection

dbConn = DriverManager.getConnection(
*jdbc:odbe:shop”
)

/! create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements
get _Item = userStmt.executeQuery
"SELECT * from Items where Item_ID="
w + request.getParameter("ItemID")

)3

}

catch(Exception e)

{
out.println(*Exceptioni!i!");
out.println(e.getMessage());
return;

}

%>

After we complete our query, we will display the data and ask the user to enter a quantity f
the item. Additionally, we have established a soft key called Order that will pass along the
CartID parameters and ItemID parameter via a form using the standard postfield method.
This is shown in the following code sample and in Figures 18.9 and 18.10.

<wml>
<card id="OrderIt" title="Order Product">
<do type="accept” label="Order">
<go href="addtocart.jsp">
<postfield name="Quantity" value="$Quantity"/>
<postfield name="CartID" value="<%= request.getParameter
w("CartID")%>"/>
<postfield name="ItemID" value="<%= request.getParameter
- ("TtemID")%>"/>
</go>
</do>
<p>
<% try

Facebook's Exhibit No. 1073
Page 98

E-Commerce 443

{
if (get_Item.next())
{
<%= get_Item.getString(’Item_Name")%>

Cost <%= get_Item.getString("Item_Cost")%>

SKU #<%= get_Item.getString("Item_SKU")%>

Quantity : <input type=‘text' name="Quantity" format="N*"/>
}
}
catch (Exception e)
{ .
}
</p>
</card>
Jwml>
URE 18.9

card shows the user a dynamically generated list of products in the Computer category.

CHAPTER 18

Facebook's Exhibit No. 1073
Page 99

Sample Applications .
PART IV

444

FiGure 18.10

This card asks what quantity of the item the user would like to purchase.

Now that the user has entered a quantity as well as verified that he is ordering the correct prod
uct, we need to send this data to a deck that will place the item in his cart. As you saw earlie
when the user enters a quantity and presses the Order soft key, we navigate to a deck called
addtocart.jsp. The addtocart. jsp file takes the item identification number and cart identify
cation number, and places it into the Shoppingcart_Items table. This is the table where we
store the ordered products until the user checks out.

The following code example, from Listing 18.3, shows how the application places product
information into the user’s shopping cart.

<%

Connection dbConn = null;
ResultSet get_Item = null;

/! get a connection to the database
try
{

Facebook's Exhibit No. 1073
Page 100

e

B E-Commerce 445 i
CHAPTER 18

// instantiate the db driver
Class.forName(*sun.jdbc.odbc .JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(
"jdbc:odbg:shop”

)3

/| create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements

userStmt.executeUpdate (
"INSERT INTO ShoppingCartﬂItems(ShoppingCartID, Item, Quantity)

SELECT " + request.getParameter("CartID") + " AS EXPR1, " +
request.getPar‘ameter‘("ItemID") + " as EXPR2,
+ request.getParameter("Quantity")

)3

}
catch(Exception e)
{
out.println("Exception!il");
out.println (e.getMessage());
return;
// assume no error conditions, for now
}

Creating a “Checkout” Procedure

he user has now logged in and has an active cart, has chosen a category, picked an item, and
ntered a quantity. Now, we must offer him a choice to continue shopping or to check out and
urchase the items currently stored in his shopping cart. Since we are tracking the user session
ia a CartID, we just need to pass the CartID back to the main. jsp page to allow the user to
ontinue shopping. If he would rather check out, we then need to route him to the

heckout . jsp deck. The following code sample, taken from Listing 18.3, does this. You can

<card id="OrderIt" title='Order Product">
<p>'
<p>The item is in your cart!

<a href="main.jsp?Car‘tID=<%=request.getParameter‘

w("CartID")%>">Shop More

WNBMBWSSSS =

Facebook's Exhibit No. 1073
Page 101

446

Sample Applications

PArT IV T

<a href="checkout.jsp?CartID=<%=request.getParameter
= ("CartID")%>">Check Out
</p>
</card>

</wml>

FiGURe 18.11

This card confirms the order and offers the user the option to continue shopping or move on to final checkout.

The checkout. jsp deck is designed to allow a user to verify his order and enter his order
information, address information, and credit card data. The page then takes the user to the fin
deck, called finishorder. jsp. The following section, taken from Listing 18.3, executes a '
simple query against the database to retrieve the items that are in a cart and then displays the
data in an intuitive format.

Connection dbConn
ResultSet getCart

null;
null;

i}

/! get a connection to the database

try

{
/! instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver”);

/] setup the connection

dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”
);

Facebook's Exhibit No. 1073
Page 102

E-Commerce

CHAPTER 18

/] create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements
getCart = userStmt.executeQuery(

“SELECT * FROM ShoppingCart_Items INNER JOIN Items ON ShoppingCart
’Items.Item—Items.Item_ID WHERE ShoppingCartID=" +
krequest.getParameter("CartID")

)

}
catch(Exception e)
{
out.println("Exceptiont!i!");
out.println(e.getMessage());
return;
}
%>
wml>
<card id="Checkout" title="Checkout">
<p>
Your order:

try

while (getCart.next())
{

<%=getCart.getString("Quantity")%> :
= getCart.getString("Item_Name")%>

}
}
catch (Exception e)
{
}
Continue
</p>
</card>

447

Facebook's Exhibit No. 1073

Page 103

448 Sample Applications o

PART IV

<card id="add" title="Add an appointment">

<do type="accept" label="Add">

<go href="finishorder.jsp">
<postfield name="address" value="S$Address"/>
<postfield name="creditcard" value="$CreditCard"/>
<postfield name="CartID" value="<%= request.getParameter("CartID")%>",

</go>

</do>

<p>
0rder Information

‘Address: <input type="text" name="Address"/>
Credit Card: <input type="text" name="CreditCard" />
</p>
</card>

</wml>

You can see the order verification that occurred in the preceding code sample in Figure 18.12,
The address entry field is shown in Figure 18.13 and the credit card number entry field is
shown in Figure 18.14. ‘

FIGURE 18.12

This card confirms with the use.r which products he is about to buy.

As noted earlier, this application does not simulate any credit card verification; but such verifi-
cation would be required in a real-world application.

The finishorder. jsp deck is really more of a functional deck in terms of data marshalling

-than any of our past ones. Since we are using the ShoppingCart_Items table as an order stag-

+ ing zone, the user has now confirmed his order and we need to send that order to our perma-
nent order tables, called Orders and Order_Items.

Facebook's Exhibit No. 1073
Page 104

E-Commerce 449

1GURE 18.13

Connection dbConn = null;

// get a connection to the database
try
{

CHAPTER 18

L
]

Facebook's Exhibit No. 1073
Page 105

450

Sample Applications

PART IV
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
// setup the connection
dbConn = DriverManager.getConnection(
"jdbc:odbc:shop"
)
// create a statement on the connection
Statement userStmt = dbConn.createStatement();
// issue the SQL statements
userStmt.executeUpdate(
"INSERT INTO Orders(Username, Address, Phone, CreditCard,
wOrderID) SELECT 'WEB' as EXPR1, '" + request.getParameter("Address") +
- "' AS EXPR2, '555-1212' as EXPR3, ‘" + request.getParameter(“CreditCard")
- + "' as expr4, " + request.getParameter("CartID") + " as expr5’

)5

userStmt.executeUpdate(
"INSERT INTO Orders_Products(OrderID, ItemID, Quantity)
w SELECT ShoppingCartID, Item, Quantity FROM ShoppingCart_Items WHERE
w ShoppingCartID=" + request.getParameter("CartID")
)3

H
catch(Exception e)
{
out.println("Exceptioni!!");
out.println(e.getMessage(});
return;
// assume no error conditions, for now
H

%>

Finally, we thank the user for his order, and offer him the option to continue to shop. You can
see what this card looks like in Figure 18.15.

<wml>
<card id="Notify" title="NotifyUser'>
<p>
<p>Thanks for your order!

Place a new order
</p>
</card>
</wml>

Facebook's Exhibit No. 1073
Page 106

E-Commerce

can also be found on the CD-ROM that accompanies this book.

login. jsp

Listing 18.1 The login.jsp File Creates the Login Page

Now that we’ve see how the code works and how to build shopping-cart functionality with
WAP, you can reference the complete code listings in the following section. The code listings

451

CHAPTER 18

<7xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
"http://www.wapforum.org/DTD/wmli2.dtd">

<% response.setContentType("text/vnd.wap.wml"); %>

<%@ page import="java.sql.*, javax.servlet.http.Cookie" %>

Connection dbConn = null;
int CartID=-1;
ResultSet get_cart = null;

try
{
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”
)3

Statement userStmt = dbConn.createStatement();

Facebook's Exhibit No. 1073
Page 107

Sample Applications
| PaRT IV

|

LisTinGg 18.1 Continued

get _cart = userStmt.executeQuery(
"SELECT VALUE from Vars WHERE Name='CART""

if (get_cart.next()) {
CartlD = getﬂcart.getlnt(“Value“);
userstmt.executeUpdate (
"|UPDATE Vars SET [Valuel=[Value]+1 WHERE Name='CART'"

)3
}
else
{
CartID=1;
userstmt.executelUpdate
"INSERT INTO Vars(Name, [Valuel]) SELECT 'CART' AS EXPR1, 2 as EXPR:
)i
g
}
catch(Exception e)
{
out.println("Exception!!!");
out.println(e.getMessage());
return;
// assume no error conditions, for now
}
%>
<wml>
<card id="Welcome" title="Welcome">
<p>
<p>Burgerworld.com
Burgers, Fries, Soda, and Computers... to go

<a href="main.jsp?CartID=<%=CartID%>“>Enter
</p>
</card>
</wml>

Facebook's Exhibit No. 1073
Page 108

E-Commerce

ain.jsp

|sTING 18.2 The main. jsp File Drives Dynamic Catalog Content to the User

CHAPTER 18

—
% response.setContentType("text/vnd.wap.wml"); %>

oxml version="1.0" encoding="UTF-8"?>

]DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
pttp://www.wapforum.org/DTD/wml12.dtd">

%@ page import="java.sql.*, javax.servlet.http.Cookie" %>

connection dbConn = null;
ResultSet get_cat null;
ResultSet get_products = null;
boolean isMore = false;

i}

/! get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbecDriver”);

// setup the connection
dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”

)5

// create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements
get_cat = userStmt.executeQuery(
"SELECT Distinct Item_Category from Items"

);

}
catch(Exception e)
{
out.println("Exception!!!");
out.println({e.getMessage());
return;
// assume no error conditions, for now
}

453

Facebook's Exhibit No. 1073

Page 109

Sample Applications
PART IV

454

LisTiNGg 18.2 Continued

%>

<wml>
<card id="MainMenu" title="Menu">
<p>
Burgerworld.com

<%
try

{
while (get_cat.next())

{
String Category = get_cat.getString

w ("Item_Category");
%>
<a href="#<%=Category%>"><%= Category %>

o
<%

}
catch(SAQLException e)

{

}

%>

</p>
</card>

ResultSet get_catcard = null;
ResultSet get_Items = null;
try

{

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”
)s
Statement userStmt = dbConn.createStatement();
get_catcard = userStmt.executeQuery(
"SELECT Distinct Item_Category from Items"

}

catch(Exception e)

{

out.println("Exception!{i");

out.println(e.getMessage());
return;

Facebook's Exhibit No. 1073
Page 110

E-Commerce

try

{
while (get_catcard.next())

{
String CardCategory = get_catcard.getString("Item_Category"”);

try

{
Class,.forName("sun.jdbc.odbc.JdbcOdbcDriver®);

dbConn = DriverManager.getConnection(

"jdbc:odbc:shop”

);
Statement userStmt = dbConn.createStatement();
get Items = userStmt.executeQuery(

"SELECT * FROM Items WHERE Item_Category='"

CardCategory + "'"

)3

}

catch(Exception e)

{
out.println("Exception!!i!l");
out.println(e.getMessage());
return;

}

<card id="<%= CardCategory %>' title="Order <%=

wCardCategory%>">
<p>
<h><%= CardCategory %>

while (get_Items.next())
{

<a href="orderproduct.jsp?CartlD=<%=request.getParameter("CartID")

<% }o%>
</p>
</card>
<% }
}
catch (SQLException e)
{

CHAPTER 18 | |

SURSNRRRSRESE

Facebook's Exhibit No. 1073

Page 111

Sample Applications
PART IV

456

Listing 18.2 Continued

%>

</wml>

orderproduct.jsp

LisTING 18.3 The orderproduct.jsp File Allows the User to Verify the Item and Spec‘i
a Quantity ‘

<% response.setContentType("text/vnd.wap.wnl"); %>

<?xml version="1.@" encoding="UTF-8"?>

<IDOCTYPE wml PUBLIC *“-//WAPFORUM//DTD WML 1.2//EN"
"http://www.wapforum.org/DTD/wml12.dtd">

<%@ page import="java.sql.*, javax.servlet.http.Cookie" %>

<%

Connection dbConn = null;
ResultSet get_Item = null;

// get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

// setup the connection
dbConn = DriverManager.getConnection(
"jdbc:odbc:shop”

);

// create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SQL statements
get Item = userStmt.executeQuery(
"SELECT * from Items where Item_ID=" +
wrequest.getParameter("ItemID") ‘

)3

}

catch(Exception e)

{

Facebook's Exhibit No. 1073
Page 112

E-Commerce 457
CHAPTER 18 | -
out.println("Exception!!!");
out.println(e.getMessage());
return;
// assume no error conditions, for now
}
wmnl>
<card id="OrderIt" title="Order Product">
<do type="accept" label="Order">
<go href="addtocart.jsp">
<postfield name="Quantity" value="$Quantity"/>
<postfield name="CartID" value="<%=
request.getParameter("CartID")%>"/>
<postfield name="ItemID" value="<%=
request.getParameter("ItemID")%>"/>
</go>
</do>
<p>
try
{
if (get_Item.next())
{
<p><%= get_Item.getString("Item_Name")%>

Cost <%= get Item.getString("Item_Cost")%>

SKU #<%= get Item.getString("Item_SKU")%>

Quantity : <input type="text"' name="Quantity' format="N*"/>
}
}
catch (Exception e)
{
}
</p>
</card>
</wml> %
-

Facebook's Exhibit No. 1073
Page 113

458

Sample Applications

ParT IV

addtocart.jsp

LisTiNG 18.4 The addtocart. jsp File Adds the Selected Item to the User’s Cart and
Prompts for “Checkout”

<% response.setContentType("text/vnd.wap.wml"); %>

<?xml version="1.0" encoding="UTF-8"7?>

<|DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
"http://www.wapforum.org/DTD/wmli12.dtd">

<%@ page import="java.sgl.*, javax.servlet.http.Cookie" %>

<%
Connection dbConn = null;
ResultSet get Item = null;

// get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.ddbcOdbeDriver");

/] setup the connection

dbConn = DriverManager.getConnection(
"jdbc:odbc:ishop”
)i

/! create a statement on the connection
Statement userStmt = dbConn.createStatement();

// issue the SOL statements
userStmt.executeUpdate(
"INSERT INTO ShoppingCart_Items(ShoppingCartID, Item, Quantity)
w SELECT " + request.getParameter("CartID") + " AS EXPR1, °
w» + request.getParameter("ItemID") + " as EXPR2, " + request.getParameter
w ("Quantity")
)3

}
catch(Exception e)
{
out.println("Exception!!i!");
out.println(e.getMessage());
return;
// assume no error conditions, for now
¥

Facebook's Exhibit No. 1073
Page 114

E-Commerce
CHAPTER 18

ml>
<card id="OrderIt" title="Order Product">
<p>
<p>The item is in your cart!

<a href="main.jsp?CartID=<%=request.getParameter
("CartID")%>">Shop More
<a href="checkout.jsp?CartID=<%=request.getParameter
("CartID")%>">Check Out
</p>
</card>

winl>

heckout.jsp

sTING 18.5 The checkout. jsp File Lists All Ordered Items and Allows the User to Enter
§ Shipping and Ordering Data

response.setContentType("text/vnd.wap.wml"); %>

xml version="1.0" encoding="UTF-8"7>

'DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
ttp://www.wapforum.org/DTD/wml12.dtd">

@ page import="java.sql.*, javax.servlet.http.Cookie" %>

Connection dbConn
ResultSet getCart

null;
null;

/! get a connection to the database

iry

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JdbcOdbcDriver”);

/! setup the connection

dbConn = DriverManager.getConnection(
"jdbc:odbc:shop"
)5

// create a statement on the connection
Statement userStmt = dbConn.createStatement();

Facebook's Exhibit No. 1073
Page 115

Sample Applications
PART IV

460

Listing 18.5 Continued

// issue the SQL statements
getCart = userStmt.executeQuery(

"SELECT * FROM ShoppingCart_Items INNER JOIN Items
wON ShoppingCart_Items.Item=Items.Item_ID WHERE ShoppingCartID="
w+ request.getParameter("CartID")

);

}

catch(Exception e)

{

out.println("Exception!!i®);
out.println(e.getMessage());

return;

// assume no error conditions, for now

}

%>

<wml>

<card id="Checkout" title="Checkout">
<p>

Your order:

~ ot

while (getCart.next())

%>

<%=getCart.getString("Quantity")%> :
w <%= getCart.getString("Item_Name")%>

<%

}

catch (Exception e)
{
}

o°
Vv

Continue
<[/p>
</card>

<card id="add" title="Add an appointment">

Facebook's Exhibit No. 1073
Page 116

E-Commerce

CHAPTER 18

<do type="accept' label="Add">
<go href="finishorder.jsp">
<postfield name="address" value="$Address"/>
<postfield name="creditcard” value="$CreditCard"/>
<postfield name="CartID" value="<%= request.getParameter("CartID")%>"/>
</go>
</do>

<p>

0Order Information

Address: <input type="text’ name="Address"/>

Credit Card: <input type="text" name="CreditCard" />
</p>
[card>

[wml>

inishorder.jsp

ISTING 18.6 The finishorder.jsp File Completes the User’s Order and Adds It to the
rder Database Table

% response.setContentType("text/vnd.wap.wml"); %>
?xml version="1.0" encoding="UTF-8"?>

IDOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML 1.2//EN"
http://www.wapforum.org/DTD/wnli2.dtd">

%@ page import="java.sql.*, javax.servlet.http.Cookie" %>

%
Connection dbConn = null;

/! get a connection to the database

try

{
// instantiate the db driver
Class.forName("sun.jdbc.odbc.JddbcOdbcDriver");

/! setup the connection
dhConn = DriverManager.getConnection(
"jdbc:odbc:shop”

)3

// create a statement on the connection
Statement userStmt = dbConn.createStatement();

461

Facebook's Exhibit No. 1073

Page 117

462

Sample Applications

Part IV

LisTingG 18.6 Continued

// issue the SQL statements

usersStmt.executeUpdate(

"INSERT INTO Orders(Username, Address, Phone, CreditCard,
wOrderID) SELECT 'WEB' as EXPR1, '" + request.getParameter("Address”)
w+ "' AS EXPR2, '555-1212' as EXPR3, '" + request.getParameter("CreditCarg®
w+ "' a5 expr4, " + request.getParameter('CartID") + " as exprs"

)3

userStmt.executeUpdate(

"INSERT INTO Orders Products(OrderID, ItemID, Quantity)
w SELECT ShoppingCartID, Item, Quantity FROM ShoppingCart_Items
wWHERE ShoppingCartID=" + request.getParameter("CartID")

)

h
catch(Exception e)
{
out.println("Exception!i!");
out.println(e.getMessage());
return;
// assume no error conditions, for now
}
%>
<wml> R
<card id="Notify" title="NotifyUser">
<p>
<p>Thanks for your order!

Place a new order
<[p>
</card>
</wml>
Summary

E-commerce is a highly practical and exciting application for mobile users. For this fourth and
final sample application, we showed you a complex example of how an e-commerce applica-
tion might work using JSP and WAP. We showed you what kinds of data we needed to store in
the data source, and how the set of tables we created were used throughout the application. ‘

Facebook's Exhibit No. 1073
Page 118

E-Commerce
CHAPTER 18

463

«t, we showed you how to keep track of the user’s shopping session with a specific User ID
at was passed throughout the application. Once that was established, we dynamically gener-
d categories and product lists, so that the application would be scalable and able to adapt to
anging products and additional categories. To keep track of the users’ selections, we created
amiliar “shopping cart,” which held items until they were ready for purchase. Finally, we
ated a way for the user to purchase those items by collecting purchase information and stor-
ng that data with the product data in a separate table.

\Jthough this e-commerce application was fairly straightforward, we built it in such a way that
ditional products or categories could, at any time, be added to the data source without

piring any changes to the code shown here. This kind of scalability will be critical for other
ds of e-commerce applications, because products and pricing can change at a moment’s

WAP is a powerful way to interface with mobile devices. When joined with a more dynamic
echnology, like JSP, the full potential of WAP can be realized in all kinds of applications, such
s e-commerce. It is then that we can bring any kind of data to anyone, anywhere, using WAP.

RS

Facebook's Exhibit No. 1073
Page 119

