
TERADATA, Ex. 1014, p. 652

624 Part V Further Topics

2 1.7 Philip A. Bernstein. David W. Sh1pmun. and James B. Rothnie. Jr. "Concurrency Control rn a
System for Distributed Databases <SOD- I).'' ACM TODS 5, No. J (March 1980).

See !he annotation 10 reference [2J .26).

2l .8 Yuri Breitbart, Hector Garcia-Molina, and Avi Silbenfchatz. ''Overview qf Multidatabase
Transaation Management: · The VLDB J<Jumal /.No. 2 (Oatober 1992).

l'he term multidataba~ system i$ s1:1metimes u~d to mean a distrib1;11ed system-usually
heteroge11emu-w1th full local autonomy. [The term ''federated system'' is also someumes used
with much the same mcaninE.) In such a system, purely local transactions are managed en­
tirely bJ lhe local DBMSs. but global transactions are a different maner. This paper provides
a survey of recent te.~ults and current research in tbi~ lnuer ("increasingly important") field.

21.9 Stefano Ceri and Giuseppe Pelagattl. Dis1rib111111i Dt1raba.1es.- Priticipws and Sy~fl!ms. New
York, N.Y.: McGmw-IDll (1984,).

21.10 E. F. Codd. "I& Your DBMS Really Relational?" Cn111puter111tJrld (Oct1>ber 14th. 1985);
"Does Y ur DBMS Run by !he Rules?" Cqmpt11erwm•/1i (October 2J st. 1985).

21.11 D. Daniels el 11/. "An lntrllduttlon Ill Di~trlbuted Query Compilation in R'"." In Distributed
Daur Bases (ed,, H.-J. Schneider): PrQC. 1n.d lntemutional Sy.mposium on Di~tributed Data
Bases (September 1982). New York, N. Y .: North-Holland (1982).

Sec the annotation to reforence l21.30)

21.ll C. J. Date. "DiStributed l>.uaba~es." Chapter'? of C. J. Dille, An lntroducrio11 to Database
Systems7 Volume fl. Reading. Mass,: Addison-Wesley (1983).

Portions of the present t'hapter are based on this earlierp11blication,

21.13 C. 1. Date. "What rs n Distributed Database System?" In C. l Date, Relntio11a/ Database
Writings /985'-1989. Reading. Mass.: Addison-Wesley (199(>).

The paper that introduced the "twelve Objectives" for dlstrlbuted systems (Section 21.3 is
modeled fairly directly on this paper). As mentioned in the body of the chapter. the objeccive
of local amonomy is not 100 pereent achievable; there are cenaln situatfon~ !hat necessari1y
involve rompromising on 11\at objective somewhat We summariT.elho:;e situations below for
purposes of reference.
• lndividulll frngroenrs of a fragmi:nted relation cannot norm~lly be a<;cessed direcily. not

even from the site at which 11\ey are stored.

• Individual copies of a replicated relation (or frl!gmentJ i>nnnot normally be acce.~sed di­
rectly. not even from the sire nt which they are stored.

• Let P be lhe primmy copy of some replicated relation (or fragment) R. -and let P be s10red
at site X. Then every si1e that accesses R is dependent on sue X. even 11' another copy of R
is in fact Stored at the site in qul!Stion.

• A relation that participates inn multi-sne imcgmy constraint cannot be accessedfor update
purposes within the local context of the site a.t which it ls Stored. but only within the context
of the distributed database in which the cons.train! is detined.

• A site that is acting as o. panlc1pam Ins 1wo.phnse commit process must abide by the deci­
sion (i.e .. commit or rollbllck T of ihe c:c:urespomling coordinator site.

21.14 C. J. Date. "Distributed Database: A Closer Look.'' Tn C. T. Date and Hugh Darwen, Rel11-
tia11fll Dmabase Wrirl11g.r 1989-199/. Reading, M~.: Alltlison-Wesley (1992).
A sequel 10 reference f21.131, dist:ussing most of the twelve objective.~ in considembly more
depth {albeit ~till in tutorial style).

2L15 C. J. Date. "Why ls It So D1rlicul1 10 Provide a Relational Interface m !MST' ln C. J. Dare.
Rc1ario11al Datablw :: Sd1•Ned Wrl1111gs. Re-.;dlng. Mass.: Addison-Wesley l 1986).

U .16 R. Epsteln,M. Stonebraker, and E. Wong. "Di~tnbmed Query Processing in a Relational Data
Base System.'' Proc. 1978 ACM SlGMOD lntermll1onnl ConfereJiee on Management of Data.
Austin. Texa' (May/June 1978).
See the annotation Lo reference [21.28).

TERADATA, Ex. 1014, p. 653

Chapter 21 Distributed Database and Olent/Server Systems 625

Zl.17 John Grant. Wilold Litwin, Nick Rt;>ussopoulos. and Ti mos Sellis. ·'Query Languages for Re­
lational Multidatabases.'' The VWB Jou:mal 2. No. 2 (April 1993).

PrQposes extensions to the relational algebra and relational calculus for dealing with multi·
database systems f21.8J. Issues pf optimmnion are discussed. and u is shown that every
multirelational algebraic expre.~\ion has a multitelatiqnat calculus equivalent ("the converse
of this theorem is an interesting resean:h problem'').

21.18 J. N. Gray. "A Discussion of Distribu1ed Systems." Proc. Congresso AICA 79, Bari. Italy
(October 1979). Also a~ailable as IBM Research Re1>9n R.12699 (Sepcembcr 1979).
A sketchy but good overview Mid w1orial.

21.19 RichardD. Hackathorn. ''Interoperability: DRDA or ROAT' Ln/oDB 6, No. 2 (Fall l991).
21.20 Michael Rammer and David Shipman. "Reliability Mechanisms for SD0.1: A System for

Distributed Databases:· A GM TODS 5, No. 4 (December 1980),

See the annotation 10 reference !21.26].

21.21 B. G. ~yet al. "NOies on Distrlbuied Databases." IBMResean:h Report.RJ257 I (July 1979).

This paper (by some of the original members or the R • 1eam) i.s divided.into fivec hapters:
I. Replicated data

2. Authorization and vieW11
3. lntrOduction 10 distributed li'ansaction management
4. Reoovery facilities

5. Transaction iniriation. 1111granon. and 1enmnauon
Chap1er I discusses the update propagation problem. Chapter 2 ill almost totally concerned
with authorization in a nondisuibuted sys1ern (in lbe style of System R). except for a few
remarks at the end. Chapter 3 considers transacaon initiation and termination, ooncurreoc)'
control. and recovery control, all rather briefly. Chaplet 4 is de voled to the topic of m:overy in
the nondistdbul¢ case (again). Finally, Chapter 5 discusses discdbut.cd transaction manage­
ment in some detail: in panicular. h gives a very careful presentation of 1wo-phasc commit

21.22 C. Moha;n and B. G. Lindsay. "Efficient Commi1 Protocols for the'freeof Processes Model of
Distributed Transactions." Proc. 2nd ACM SICiACT·STGOPS Symposium on l'rinciplC$ or
Distdbuted Computing (1983).

See the annotation ro reference [2 1.30].
21.23 Scon Newman and Jim Gray. "Whioh Way 10 Re.moic SQL?" Database Programming &

De.rign 4. No. 12 (December 199 I).
21.24 M. TamerOSZIJ and.Patrick Valduriez. Prinriples of Distributed Database Sy$ttms. Engle­

wood Cliffs, N. J.: Prentice-Ball (1991).

21.25 James 13.. Ro1hnie, Jr., and Nalhan Goodman. "A Sunrey of Research and Devel.oprnenl in
Distributed Database Management.'" Proc. 3rd International Conference on Vecy Large Data
Bases. Tokyo.Japan (October 1977). Also pubbsbed in reference[21.5}.

A very useful eMlysurvey. The field is discus."Wd under the following headings:
I Syncbronizil)g update iransaolions

2. Distribun:d query prO<le.'>liing
3, Handling componenl failure.~

~. Dircc1ory managemem

5. Database design
The last of 1h.:se refers 10 ~e pli)'$tC:cil de~ign problem-wha1 we called the allocation prob­
lem in Secuon 21.8.

21.26 J.B. R111hnie. Jr .• .rt al "lntroduc1ion io a Sy~tem for Distribu1ed Databases (SOD-I)." ACM
TODS .5. No, I <March 1980),
Referenttes l21.6-2 I .7]. [2t.20l. [21 26J. and [21 311 are all concerned with the early dlstrib-

TERADATA, Ex. 1014, p. 654

626 Part V Further Topics

uted protOlYPll SDD-1. which ran on a collection of DEC PDP-IQs interconoecied via the
ARPANET. lt provided full location. fragmentation. and replication independence. We offer
a few romments here on selected aspects of' the system.

Query processing: The SDD·I guecy optimizer (see references [21.liJ and [21.31])
made exrensive U!ill of an operato~ called semijoin, which we explain as fOIJGws. (Note: The term
.. semijoin" first appeared with a somewhar,dlfferent meaning in a paper by l'alermo [18.15].)
Given two refanons A and 8, the expression ':A semijoin B" is defined to be equal to the join
of A and B, projected back on to the attributes or A. In other words, the semijoin operation
yields that sub,el of the tuple.~ of A that match at least one tuple in B un.derthe joining condi·
Lion. For example. the semijoin of the supplier relation S and the shipment relation SP (over
supplier numbers) is the set of S tuples for suppliers who supply at least one part-namely.
~seI or S tuples foe ~uppliers SI, .S2. S3, and 54, given our usual sample data values. N0te
that the expressions ··A semijom EI" 'llnd "'8 semijoin A" are not equivalent. in general.

The advantage of using semijoins in dislrlbuted query processing is that they can have
lhe effect of reducing the volume of daUi shipped aoross the network. For example, suppose:
that. the suppller relation S is stored at site A and lhe shipment relation SP is store-0 at slteB.
and the query is "G:ompute the join of S and SP over S#." Jn&tead of shipping the entire
relation S to B (say). we can do thefollowmg:

• <:::ompute th.e prOJCCtioa (TEMP 1 \ of SP over S# .at B.
• .Ship TEMP I to A.

• Compute the semi join {TEMP2) of1EMP I and S over S# at A.

• Ship TEMP2 to B.

• Compute the semi join of TEMP2 and SP over Sit at B. The result is the answer to t11e
original query.

This ptocedure will obviously reduce the tOlli.I amount of data movement -across the network
if and only if

size f'l'EMPll + si;:e !'l'E!!1P21 < size {S)

where ihe size or a relation is the cardinality of that relation .multiplied by the width of an
individual tuple(in bits, say). The optimizer thus clearly needs tO be able to estimate the size
of intermediate resultssuch 115 TEMP I and TEMP2.

Update propagation: The SDD-1 update propagation algorithrn is "propagate irnmedl­
a1ely" (there is no aotlonof a primary copy).

Conrurrency C?ontrol: Concurrency control is based on a technique called thnes«amp­
ing, instead of on locking; 1he objective is to avoid the message overhead associated with
locking. but the price seems to be that there is nor in fact very much concurrency! The derails
are beyond the scope of this book (11).ough the annoration to reference [14.2] does describe lhe
basi<; idea very briefly): see reference [2L 7) oneference [2Ll2J formore infoanation.

'Recovery control: Recovery is based on afour-pbase commit prOlocol; the intem is 10
make the process more resilient than the conventional two-phase commit protocol to a failure
at the Coordinator site, but unfonunately h also makes the process considerably more com­
ple.1'. The details are (again) beyond the scope of this book.

Catalog: The catalog is managed by treating it asjf It were ordinary user data-it can be
arbirrarlly fragmented, and the fragments can be arbitrarily replicated.and distributed.just like
any other data. The advantage-~ of this approach are obvious. The di.Slldvantage is, of course. thiit
smee the system has no a priori lrnowledge of the location of any given piece of the catalog.
it is necessary to malntam a higbcr·levc.I Gatalog-{he dittctory locator-to provide exactly
that infunnaiionl The dite<itory locator is fully replicated (I.e .. a copy is stored at every site).

21.21 P. G. Selinger and M. E. Adiba "Actes.~ Path Selection in Di,nibured Dl1ta Base Management
Systems." ln S. M. Deen and P. Hammer,;ley (eds.), Proc. International Conference on Data
.B41ses. Aberdeen, Scotland (Juiy 1980). London. England: Heyden and Son~ Ltd. (1980).

See the annotation 10 reference [2 j .30).

TERADATA, Ex. 1014, p. 655

11

Chapter 21 Distributed Database and d ient/Server Systems 627

21.28 M. R. Stqnebraker and E. J. Neuholcl ''A Disunbuted Dalli BOl.!>e Version of lNGRES." l'rqc.
2nd Berlceley Conference on Distributed Data Management and Computer Networks. Law­
rence Berkeley Laboi:atory CMlly l 9n).

References [21.16] and [21 .28-2~ .29] are all concerned with the distributed £NGRES proto­
type. Distributed INGRES consists of several copies of University INGRES. running on sev­
eral interconnected DEC PDP-I ls. It supports locauon independence (likeSDD-1 nndR"):it
also supportS datll fragmentai'ion (via restriction but nbl 11rojection). with fragmenlation inde­
pendence, and data replication for such fragments. with replication ind~dence. Unlike
SDD-J and.R". Distribu1ed~GRES does not neces~arily assume that the communication
network is slow: on the contrary. it is designed 10 handle both ''slow" (long-haul) networks
and local (i.e .• comparatively fast) networks. The query optimizer understands the difference
between lhe two ca.~es. The query optimization algorithm is ba.~ically an extens.ion of the
INGRES decomposition sb:ategy described in Chapter 18 of this book: it is described in detail
in refcrenee-L21.16J.

Distributed INGRES proyideJ> two update propagation algorithms: a "performance" al­
gorithm. which works by updating.a primary copy and then returning eontrol to the transac­
tion (leaving the propagated updates to be performed in parallel by a set of slave processes):
and a "reliable" algorithm. which updates all copie$ immediately (see reference [2129)).
Concurrency control is based on locking in both cases. Recovery is based on two-phase com­
mit (with.certain improvemenlS that ace beyond the scope of~ book. as in the c<aseof R*;
again. see refei:ence [21.29] or refeci:nce 121.14)).

As for the catalog, Distributed INGRES uses a combination or full c.epllcation for ceruun
portions of the catalog-ba.~ically lhe ponions containing a logical description of the relations
visible tG> the wrer and a description of bow those relations are fragmented-together with
purely local catalog entries for other ponlonb, such as the portions describing local physical
storage s.tructura~. local database statistics (used by the optimizer), and ~ecurity and integrity
constraints.

21.29 M. R. Stonebraker. "Concurrency Control and Consistency of N,lultiple Copies in Distributed
INGRES." /EKE Transactions on Software Engineering SE-5. No. 3 (May 1979).

See the annotation to reference [21.28].
21.30 R. Williams et al. ~R•: An Overview oftheArchirecture," ln P. Scheuermann (ed.), lmpro1•­

ing Database Usability and Re~ponsiveness. New York,N.Y.: Academic Press (1982). Also
available as IBM Research Repon RJ3325 (December 1981).

References [21. 11]. (2 L22 I. f2 I .27], and [21 .30) are all concerned with R*. the distnbuted
version of the original System R prototype. R'i' provides location independence, but no frag­
mentation and no replication. and 1heniforc no fragmemation or replication independence ei­
ther. The question of update propagation does not arise. for 1he same reason. Concurrency
control is based on lpaking (note tha1 there ls only one copy of any objec1 10 be locked: lhc
question of a primazy copy also does nor arise). Recovery is based on two-phase commit, but
with cenain improvemems thal have the effect of reducing the number of messages required
(~reference [21.22] or reference [21.14]).

21.Jl Eugene Wong. "Retrieving Dispersed Dara from SDD- 1: A System for Distributed
Databa,!tes." In referenee [21.5].
See the annotation to reference (21.26(.

21.32 C. T. Yu and C. C. Chang. "Distributed Query Proeessing." ACM Comp. Surv. 16, No. 4
(December 1984).

A tutorial survey of techniques for query opnmiiarion m dis\rib111ed ~yi,1ems. 111cludes an
extensive bibliography.

TERADATA, Ex. 1014, p. 656

PART VI

OBJECT-ORIENTED
SYSTEMS

TERADATA, Ex. 1014, p. 657

Object-oriented technology is ~ imponan1 new area within the overall field of
database management Unfonunately. it is also an area in which there is .a certain
amount of confusion, as the reader will soon see. Part of the problem is that there is no
universally accepced. :ibs11act. fonnaUy defined .. objec1 daHL.model" (contrast the sicu­
ation wjlhrelational technology)~ Ralher, the term 00-wruch we use generically as
an abbreviation for "object-ariented .. or ·'objectorieacation,'· as thecontextdemands­
is best thought of as a convenient label for a collection of interconnected ideas. Of those
ideas, moreover, some are tightly interwoven and some are 001: some are essential and
~are~;~are~andm~are~;~aren~a~m~are•(~ry
few are truly new. as a mauer of fact); some really do apply ro databases and some do
not: and so on_

Regarding this latter point. incidentally. another source of confusion is the fact that
the 00 label is applied to a '>'ariecy of quite distinct disciplines. For example, it is used
to describe a certain graphic i11te1face style. a certain programming style. a certain set
of programming languages (not the same thing as programming style!), a certain set of
analysis and design methodologies, and so on, as well as a certJ!ln approach to dat.abilSe
management per se. And just because 00 might be good for some of these problems,
it does not follow that it is necessarily good for others.

In the chapters that follow. we attempt to clarify these matters. Specifically, we
present a tutorial on 00 as it applies to database systems, an analysis (not uncritical) of
00 database Goncepts, and a proposal for a rapprochement between 00 and relational
database technology. Note: We assume throughout that the reader has a re·asonable
prior understanmng of conventional (relational) database technology.

TERADATA, Ex. 1014, p. 658

22 Basic 00 Concepts

22.1 lntrodudion

"Everyone knows'' that today's relatiomtl products ate inadequate in a variety of ways.
And some people-- not this writer!-ould argue that the relational model is inade­
quate too. Be that as it may. some of the new features that seem to be needed in DBMSs
have existed for many years in object-oriented programming languages; it is thus
natural to investigate the idea of incorporating those features inro database systems. and
hence to consider the _possibility of object-o riented da tabase systems. And. of course.
many researchers, and some vendors. have been doing exactly this over the past few
years.

To repeat. 00 database systems have their origins in 00 programming languages.
And the basic idea in both disciplines is fue same-to wit: Users should not have to
wrestle with computer-oriented constructs such as bits and bytes (or even records and
fields). bur rather should be able to deal with objects, and operations on those objects,
that more closely resemble th.eir counterparts in the real world. For example. instead of
havfog to think in terms of a ''DEPT tuple" plus a collection of corresponding "EMP
tuples'' that include ''foreign key values" that "reference" the "primary key value" in
that "DEPT tuple," the user should be able to think directly of a department object that
actually contains a correJ>'J)Onding set of employee objec4. And instead of, e.g .. having
to ''insert" a "tuple" into Lhe "EMP relalion" with an appropriate "foreign~ey vaJue•·
that ·•references" the "primary key value'' of some "tuple" in the ·'DEPT relation:· the
user should be able to hire an employee object directly inro the relevant department
objecL ln other w()rds. the fundamental ide,a is to r aise the level Qf abstraction.

Now, raising the level of abstraction is unquestionably a desirable goal. and the 00
paradigm has been very successful in meeting that goal in the programming languages
arena [22.3]. TL is natural to ask, therefore, whether the i.ame paradi-gm can be applied
in the database arena also. Indeed, the idea of dealing with a database thal is made up
of encapsulated objects (e.g .. department objects that "know what it means" to hire an
employee or change their manager or cut their budget), instead of having to understand
relations. tuple updates, foreign keys, etc., is naturally much more attractj ve from the
user's point of view-at least at first sight.

TERADATA, Ex. 1014, p. 659

Chapter 22 Basic 00 Concepts 631

A word of caution is appropriate, however. The point is. although the programming
language and database management disciplines certainly do have a lot in common. they
also differ in certainimpQrtant res-pects. In particular, an application program (by defi­
nition) is intended to solve some specific problem. whereas a database (by definition)
is intended to solve a variety of different problems, some of which mighc not even
be known at the time the database is established. Io the application programming envi­
ronmenl, therefore. embedding a lot of '·intelligence" into encapsulated objecls is
clearly a good idea: h reduces~ amount of manipulative code that bas to be written
to use those objects. it improves programmer productivity. it increases application
maintainability, and so on. In the database environment, by contrast, embedding a lot
of intelligence into the database might or might not be a goOd idea: It might simplify
some problems, but it might at the same time make others more difficult or even im­
possible.

(lncidencally, the foregoing point is exactly one of the arguments against pre­
relational database systems such as IMS. A department object that contains a set of
employee objects is conceptually very similar to an IMS hierarchy in which department
"segroents"-this is the IMS t.enn-are superior to employee "segments." Such a hier­
archy is well suited to problems Jike "Find employees that work in the accounting de­
partment" It is not well suited to problems like "Find departments that employ MBAs."
Thus. many of the arguments that were made against the hierarchic approach in the
1970s are surfacing again in the 00 context)

The foregoing caveat notwithstanding, many people believe that 00 systems are
lhe next big step for.ward in database technology.lo particular. many believe that 00
techniques are the approach of choice for new application areas such as

• computer-aided design and manufacturing (CAD/CAM)

• computer-integrated manufacturing (CIM)

• computer-aided software engineering (CASE)

• geographic information systems (GIS)

• science and medicine

• document storage and retrieval

and so fonh (note that all oflheaboverepresent areas in which today's relational prod­
ucts do tend to run into trouble). There have certainly been numerous technical papers
on such matters in the literature over the past few years, and more recenlly several
commercial products have begun co appear. In this part of the book, therefore, we will
lake a look at what 00 technology is all about

The aim of this first chapter is simply to introduce lhe most important concepts
of the 00 approach, and in particular to describe those concepL~ from a database
perspective (much of the literature.. by contrast, presents the ideas very much from
a prQgramming perspective instead). The structure of the chapter is as follows. Fol­
lowing this introductory section, Section 22.2 presents a motivating example-an
example, that is, that today's reiational products do not handle satisfactorily, and
hence one that 00 technology stands a good chance of doing better on. Next. Sec-

TERADATA, Ex. 1014, p. 660

632 Part VI Object-Oriented Systems

tion 22.3 iiresents an overview of objects. obJect elasses. messages, and methods;
Sections 22.4-22.6 then focus in on certain specific aspects of these concepts and
discuss them in more depth. Section 22.7 briefly considers class hierarchirts;
Section 22.8 discusses a few miscellaneous topics. and Section 22.9 presents a
summary.

One laSl preliminary remark: Despite the facr that 00 sysrems were originally
meant specifically for "complex" applications such as CAD/CAM, CIM, CASE. etc.,
we deliberately use only very simple examples in our discussions, for reasons of space
and familiarity. Of course. adopting this simplifyfog approach in no way invalidates the
presentation. In any case, 00 technology is intended to be suitable for "simple" appli­
cations too.

22.2 A Motivating Example

We begin with a simple example. due to Stonebralcer (19.lOJ and elaborated by the
present author in reference (22.5], that illustrates some of the problems with today's
relational products. The database (which might be thought of as a grossly simplified
approximation to a CAD/CAM database) concerns rectangles. all of which are as­
sumed for simplicity to be "square on" to the X and Y axes- i.e., alJ sides are either
vertical or horizontal. Each rectangle can thus be uniquely represented by the coordi­
nates (xl,yl) and (x2,y2), respectively, of its bottom left and top cight com ers (see Fig.
22.1). lnSQL:

CREATE Tl\Bl..J' RECTANGLES
(RECT!D • • • • :u . . . ' X2 • • • • 'll . . . ' Y2 . . • I • • • •

UNIQUE f RECTID 1 ,
UNIQUE ! Xl, K2, Yl, Y2)) ;

Now consider the query "Find all rectangles that overlap the unit square (0, 1,0. l)"
(see Fig, 22.2). The "obvious"Tepresentation of this query in SQL is:

y2

yl

....... r--1
···-· ·· L___J

>!2

FIG. 22.1 The rectangle (XI, x2, y I, yZJ

TERADATA, Ex. 1014, p. 661

Chapter 22 Basic 00 Concepts 633

(0,l)i--~ (1, l)

FIG. 22.2 The unit square (0, 1,0, 1)

SELECT
F'ROM REeTN;GLES

WHERE (x.1 >= 0 AND X1 <= 1 AND 'll >= 0 AND i'1 <= l.)
- boLt.om left eorner inside unit square

OR X2 >= 0 ANO X2 <= 1 AND Y2 >; 0 AND Yl <= 1)
- cop right corner inside unit square

OR I lQ >= 0 AN!l :u <= l .;\NO Y2 >= 0 ANO '{2 <= 1 I
- rop left corner inside unit sql.\are

OR (X2 >= 0 AND X2 <= 1 AND Yl >= 0 AND Yl <= 1)
- bottom riglit co=er inside unit square

bR (XL <= 0 Aflll X2 >= 1 ANO Yl <= 0 AND Y2 >= 1)
- rectangle cotal.ly includes unic square

PR X1 <= 0 ANO x2 >= l ANO Yl >= 0 AND Y1 <= l I
- bottom edge crosses unit square

OR Xl >= 0 AND Xl <= 1 AND Yl <= 0 AllD Y2 >= 1)
- 1.eft. edge crosses unlt SQJ.18.l'e

OR X2 >= 0 AND X2 <= l AN1J Y! <= 0 AND ¥2 >= 1)
- rJ.ght edge =asses unit squaJ::e

OR X1 <= 0 AND X2 >= J 1\NO Y2 >= 0 AND Y2 <= l)

- top edge crosses unit square

Readers should take the time to convince themselves that this formulation is indeed
correct before continuing. Diagrams will probably prove helpful in this regard.

With a little further thought, however, it can be seen that the query can be ex­
pressed somewhat more simply as:

SELECT •..
f'RQN R:EC'I71NGI.ES

WRERi: I lU <= l AND Yl <= l
- bottom left corner is "downwind" of 11.11

ANO X2 >= 0 ANO Y2 >= 0 I
- i;op right corner is •upwind' of 10. 0)

Again, diagrams will probably prove helpful in understanding Lhis formulation.
The question now is: Could lhc system opLimizer 1ransfom1 the original long form

of the query into the corresponding short form? La other words, suppose the user ex­
presses the q'llery in the "obvious" (and obviously inefficient) long form: would the
system be capable of reducing that query to the more e flicienl short form before exe-

TERADATA, Ex. 1014, p. 662

634 Part VI Object-Oriented Systems

cut1ng h'l Reference f22,5] give.\ evidence to suggest that the answer t\I this que-;Uon is
almost certainly no, at least so far as today's commercial optinuzers are concerned.

In any case. despite the fact that we JUSt referred to the short fonu ru, "more effi­
cient." itislikely that performance on I.be &ban form will still be unacceptably poor in
most of today's rehuional products, given I.be usual storage structures-typioall y B­
trees-supported by those products (on average, the system will examine 50 percent of
the index entries for each of XI, X1. YI. and Y2)

Thus we see that today's relational products are indeed inadequate m certain re­
spects. To be specific, problems like the rectangles problem show clearly that certain
"simple" user requests

I . are unreasonably difficult to express. and

2. execute with unacceptably poor perfonnanee.

in those products. Such considerations provide much of the motivation behind the cur­
rent interest in 00 systems.

Note· We will give a ''good" solution ro the rectangles problem in Chapter 25 (Sec­
tion 25.3).

22.3 Objects, Methods, and Messages

[n this section, we introduce some of the principal terms and concepts of the 00 ap­
proach, namely object iq;elf (of course), ooject class, meth(Jd, and message. We will
alserelate these notions to more familiar terms and concepts wherever pessibJe or ap­
propriate.1n fac1. i1 is probably helpful to show a rough mapping of the 00 terms to
traditional progi:amming terms right at the outset (refer to Fig. 22.3).

Caveat: Before we start getting into details. It i& as well IQ warn re_aders not to
expect the kind of precision they are accllstomed to in the relational world. Indeed.
many 00 concepts--or the published definitioni; of those concepts. at any rate-are
quite imp,recise. and there is very little true consensus and much disagreement, even at
the most basic level (see references L22.2J, [22.1~22.11]. [22.14], and [22.16]). In
particular, there is no abstract, formally defined "object data model," .nor is there even
consensus on an informal model. (For such reasons we wilt always place phrases such

00 te-"11 ?ro_gramnt~..ng :.enn

o)?ject va.riab1" (."f •mutable")
oT value. 1-f • l.flllDUtab+tt• l

objecc c la·ss data i:ypa

met.bod Etinct ion
massage caU

FIG. 22.3 00 terminology

TERADATA, Ex. 1014, p. 663

Chapter 22 Basic 00 Concepts 635

as .. the 00 model" in quores in this book.) ln fac1, lhere seems, :ralher surprisingly, to
be much confusion over /'e1•els of absrraCJion-specifically. over the distinction be­
tween the model per se and its implementation.

The reader should also be wadred lhat. as a consequence of lhe foregoing state of
affairs, the definitions and explanations offered in this part of the book are nor univer­
saUy agreed upon and do not necessarily correspond to the way that any given 00
system actually works. lndeed1 just about every one of those definiti0ns and expJana­
lions could well be challenged by some other worker in Ibis field, and probably will be.

An Overview of 00 Technology

Q11estion: What is an object?
Answer: Everything!

lt is a basic tenet of lhe 00 approach tha1 "everything is an object" (sometimes
"everything is a first-class object"). Some objects are builtin. primitive, and Immu ta­
ble; examples might be integers (e.g., 3, 42) and character strings (e.g., "'Mozarr•·,
''HaydukeLives!"~. In traditional terminology. such objects correspond to simple val­
ues. Other objects- typically user-creared and typically mutable--are more complex.;
examples might be EMPs. DEPTs, VEHICLEs, etc. These more complex objects cor­
respond to variables,* of arbitrary internal complexity (where the phrase "arbitrary
internal complexity" is meant to imply that such objects can make use internally of any
or all of the usual programming language data types and type construcrors-=numbers,
strings. lists. arrays. stacks. etc.). Note: In some systems the term object is used to mean
the mutable case only {the term value then being used for the immutable case). Even in
those system5 where the term "object" does .strictly refer to both cases, the reader
should be aware that it is common in informal contexts to take the tenu to mean a
mutable object specificalJy, barring explicit statements to the contrary.

Every object has a type (the 00 tean is class). Individual objects are sometimes
referred to as object instances s_pecifically, in order to distinguish them clearly from the
corresponding object type or class. Please note also that the term rype here is used with
its usual programming language meaning; that is, an intrinsic aspect of any given type
consists of tine set of operators or functions (the 00 recm is methods) that can be
applied to objects of that type (see the discussion ef e11capsulatlt111 below). We will
normally assume that the type of an object is fixed at object creation time, although as
we will see ln Section 22. 7-when we discoss class trierarehies-an object migh1 be of
several types simultaneously, and might acquire and lose types dynamically.

As an aside. we remark that some 00 systems support both types and classes and
therefore make a distinction between the two concepts. We will disc~ss this possibility
further in Section 22.6.

All objects are encapsulated. What thL~ means is that the representation--1.e .. the

• NCtte, ho\l'cver, 1ha11hc (uni1u•lifil:d) 1erm vari/1blt in 00 "Y'"'ms nof1m ~pecullcally 10 a nrogmm 'uri•hlc
1ha1 I~ u11ed lO hold an 11bject ID (~ce l:uar).

TERADATA, Ex. 1014, p. 664

636 Pa rt VI Object-Oriented Systems

internal struclure--0f a given object, say a given DEPT. Is not vi.)ible to users of lhat
object; instead, users know only that lhe obJeOt is capable of perfonning certain func­
tions ("methods"). For example. the methods that apply to DEPT objects might be
m R E_EMP. FJRE_EMP. CUT_BUDGET. elc. Nute carefully thut such methpds con­
stitute the ONLY operatlo11s tlu1t can be applied to the objec/S i11 questioh. The code lhat
implements those merhods ts permitted to see the internal representation of lhe objects,
of course: to use 1he jargon, those ruethod!>'-and only those method~are allowed to
"break encap~ulation."

The ntlvarunge of encapsulation is that it allows the internal representation of ob­
jects to be changed without requiring any of the applications that use those objects to
be n:written-provided. of course, that any such change in iniernal representation L!.
accompanied by a corresponcling change to the code that implements the applicable
methods. ln other words, encapsulation implies data independence.

In accordance witb the idea of encapsulation. objects are sometimes described, a
little loosely. as having a private memory and a public interface:

• The private memory consists of instance variables (also known as members or
a11rib11tes). whose values represent the internal state of the objec1. ln a "pure" 00
system. insrance variables are completely private and hidden from users, but-as
indicated above-they are of course visible to the code that implement~ lhe meLhods.
However. we should add that many 00 systems are not "pure" in lhis sense but do
expose certain of their instance variables ro users. a point we will return to later.

• The public interface cansists of interface definitions-Le., definitions of the inputs
and outputi.-for the methods that apply to thil; object. The code that implements
those methods, like the instance variables, is hidden from lhe user. Note: It would
be more accurate to say that the public mrerface is part of the class-defining object
for the object in quescion (i.e., the o~ject that defines the class of which the object in
questi1ln is an instance). rather lhan parl of the object itself The code that implcmencs
lhose methods is kept wiLh the class-defining object, not with lhe object itself.

Incidentally. note Lhat if it is really true that predefioed methoui. are the only way
to manipulate obJeClS. then ad hoc query is imposs1ble!-unless object~ are designed in
accordance wilh a certain very specific discipline. anolher topic we wi11 come back to

later (in Chapter 24).
Methods are invoked by meani. or messages. A message ii. essentially just 11 func­

tion call. poss1hly W>ynchronous, in wh1oh one argument (the receiver or target) 1s dis­
tinguistied and given special i.ypt.actic treaanent. For in1>tance, the following might be
a message to department D, a.\krng il to hire employee E:

0 HTP.E_E~f (f I

(hypothetical :.ynuu: see Section 22.6 for an explanation of lhe argumen~ 0 and E).
The receh•er or target in this example ii, the object deno1ed by D. A conventional pro­
gramming language analog of this message might look like thu;:

H. IU._6MP I , E)

TERADATA, Ex. 1014, p. 665

Otapter 22 Basic 00 Concepts 637

For convenience, an 00 system will typically come equipped with certain builtin
classes and method.'1. In particular. the system will almost certainly provid~such classes
as NllMERJC (with methods"=","<","+","-'', etc.), CHAR (with methods."=","<",
" II" (string concatenation), SUBS'rlnNG, etc.), and so forth.

Instance Variables

We now lake a slightly closer loot<- al the concept of instance variables. The fact is, there
is a certain amount of confusion in this area. As slated previously, instance variables
would be com pletely hidden from the user in a pure 00 system, but many systems are
not pure. As a consequence. it ii. necessary to distinguish between public and private
instance variables.

For exam ple. suppose we have an object class of UNESEGs (line segments). Then
the user might be able 10 think of each individual LTNESEG as having a ST ART point
and an END point, and be able, e.g., to ask what the ST ART point is fur a given
LINESEG. Internally. however, LINESEGs might be represented by MIDPOINT,
LENGTH, and SLOPE, and these would be the variables seen by the code that imple­
ments the LlNESEG methods (whatever those might be). ln this example, then,
ST ART and END would be public instance variables and MJDPOJNT, LENGTH. and
SLOPE would be private instance variables.

It should be pointed out that-the foregoing notwithstanding-the concept of pub­
lic instance variables is logically unnecessary. That is. even 1f the user i~ allowed to
write an expression such as {say) ls.START to refer 10 the START point of LINESEG
Is, that expression can still be regarded as shorthand for a function call that invokes a
method called START tha1 re1umli the START poim for the LLNESEG ls. Ln accor­
dance wilh common practice, however, we wi ll nonnally assume (until further noLice)
that objects 1ypioally do have one or more public ins1ance variables.

It is worth pointing out too thatJUSl because certain "instance variable" arguments
happen to be required in order 10 create objects of a particular class. it does not follow
that those ins1ance variables are available for arbitrary purpose$. Suppose, forrexample,
that ccea1ing a UNESEO requires ST ART and END value11. Tl does no1 follow 1ha1 we
can ask for. e.g .. aJI LINESEGs with a given START value: whether this is possible
wilt depend on whether a $Uitable method has been defined.

Finally, note that some sy:.1.ems Suppt>rt a variation on private inblance variables
called protected instance variables. If objects of class C have a pro1ected insUlllcc vari­
able P. then Pis visible Lo the meth<xl~ defined for class C (of course) and lO the meth­
ods defined for any .mbclt.1.1~ (at any level> of cla~~ C. See Section 22.7 for a discussion
of subclasses.

Object Identity

Every object bas a unique identity called its "objecl ID'" or 0 10. Pnmillve ("immulll­
ble") objec11> like the imegcr 3 are self-ide111(fyir1g. i.e .• they arc their own O lDs; other
("mutable") objecl!. have (Conceptual) cultlre.1w11s as !Heir OIOs, anll U1ese addrei;~ei. can
be used elsewhere in the database as (conceplual) poi111ers to refer to the objcets in

TERADATA, Ex. 1014, p. 666

638 Part VI Object-Orienwd Systems

question. One implication-and one point of difference vis-ii-vis the relational model­
is that objects do not necessarily have to have any user-defined candidate keys. Note,
however, that OIDs are not directly visible to the user. See Section 22.5 and Chapters
23-25 for further discussion.

We remark that it is sometimes claimed that it is an advantage of 00 systems that
two di~tinct objects can be identical in all user-visible respects- Le., be duplicates of
one another-and yet be distinguished via theiic OIDs. To this writer, bo~ever, this
claim seems specious. For how ean the usl!rdistinguish between.two such objects, ex­
ternally? (See references [4.5] and (4. 11 J for further discussion of this issue in a specif­
ically relational context)

22.4 Objects and Object Classes Revisited

Let us n<!>w consider a detailed example. Suppose we wish to create two object classes,
DEPT (departments) anclEMP (employees). Suppose also that I.he: user-defined classes
MONEY and JOB.have already been created and the class CHAR is builtin. Then the
necessary class creation operations for DEPT and EMP might look something like the
following (bypothetfoal syntax):

CREATE OBJECT CLASS DEPT
PUBLIC' (DePTll

ON AME
BOOQ'E'l'
MGR

~.

CltAB,
MONEY.
~EF (EMP

EMPS REF (SET
METHODS (lilRE_ElME' (REF (BMP

E'IR£_EMP (REF (EMP

CREATE OBJECT CLASS E:MP
PUBLIC (EMP# CHAR,

EN AME CHAf1,
S1\LARY MONEY.

) .
(REF(EMP)))) •••

)) code ..•
)) •.. oode •.• , ••.)

POSITION REI'" (JOB)) .•.
METHODS • • •) •• •

Points arising:

I. We have chosen to model departments and employees by means of a containment
hierarchy, in which EMP objects are conceptually contained within DEPT ob­
jects. Thus. objects of class DEPT include a public instance variable called MGR,
representing the given department's manager. and another one called EMPS repre­
senting the given department's employees. More precisely. objects of class DcPT
inclllde a public instance variable called MGR whose value is a reference ("REF ')
to an employee, and another one called EMPS whose value is a reference to a set
of references to employees. {"Reference to" here really means OJD of-see further
discussion below.) We will elaborate on the containment hierarchy notionfo a few
moments.

TERADATA, Ex. 1014, p. 667

Chapter 22 Basic 00 Concepts 639

2. For the sake of the example. we have chosen 110 1 to include a ''foteign key" ins lance
variable within Gbjects of class EMF that refers to objects of class DEPT. This
decision is consistent with our decision 10 model departments-and-employees by
means of a containment hieaJcby. However, it does mean that the re is no di.reel
way IO get from a given EMP object 10 lhe correspQnding DEPT object. See
Chapter 24 (Section 24:3. subsection entitled ·'Relationships ..) for further discus­
sion.

3. Note that each CREA TE OIJJECT CLASS operation includes definitions (coding
details omitted) of the methods that apply to objects of chat class.

Fig. 22.4 shows some sample object instances corresponding 10 the DEPT and
EMP classes as just defined. Let us consider the EMP object at the top of that figure
(wilh om eee), which contains:

• The primitive value object "EOOl" (a charae1er string) in the public instance vari­
able EMF#

• The primitive value object "Smilh" (another cbatacter string) inlhe public instance
variable ENAME

• The user-defined object $50,000 (an object of class MONEY) in lhe public in­
stancevariable SALARY

• The OID of a user-defined object of class JOB in the public instance variable
POSITION

,,. ---· ·-----.....,
l=~~ EMP~ ENAME SALAR'l POSITION _c:~~~j

,... L::: £00I Smith $50, 000 . ---i--J '

!
J OB cod t nr EMP

<sayJ
objecc

I . -- MGR ----~

~ OID DE!")'ll DNAME BUDGET EMPS _c:~:~J ::: :;_

l _~dd DOl l:lk~g $1.000 . 000 ! . ---j--J
CDO for
DEPT

[L~~1
tsayJ

1. 1. 1. 1. 1. I ~~·j l SSS • ---- 1 1 1 l I 1 • I OIDs of EMP objects __J COO !:or SET
!REF1 !EMF)

FIG. 22.4 SarriRle DEPT apd E MP lnnances

TERADATA, Ex. 1014, p. 668

640 Part VI Object-Oriented Systems

It also contains a t leasi Lwo private insta"ce variables. one that contains the OID
eee otthe EMP object itself, and one I.bat cont.airu; lhe OID of the class-defining object
(CDO) for EMPs (so that the implementation can find the code for the methods that
apply to this object). Note: These two OTOs might or might not be physically stored
with the objeoL. For instance. the value eee need not necessarily be stored as part of lhe
relevant EMP object; it is necessary only that the implementation have some way of
locating that EMP object given that value eee (i.e .. some way of mapping that value eee
to I.bat EMP object's pby.sical address). Bat concepcualJy the user can always think of
the OID as being part of the object as shown.

Now let us tum to the DEPT object in the center of the figure (with OID ddd). That
object contains:

• The primitive value object "DO l" in the public instance variable DEPT#
• The primitive value object "Mktg" in the public instance variableDNAME

• The user-defined object $1,000.000 (an object of class MONEY) in the public in­
slaIICe variable BUDGET

• TheOID eee of a user-defined object of class EMP in the public instance vfil'iable
MGR (this is the OID of the object that represents the department manager)

• The OID sss of a user-defined object of class SETCREFCEMP)) in the public in­
stance variable EMPS (see below)

• Two private instance variables containing in turn the OID ddd of the DEPT object
il'!elf and the OID of the corresponding class-defining object

And the object with OID sss consisrs of a set of OIDs of individual EMP objects (plus
the usual private instance variables).

Now, Fig. 22.4 represen~i>the sample instances "as they really are"; i.e., the1igure
illustrates the daia structur~ component of '1he 00 model." and such figures must be
clearly understood by users of that model. 00 texts and presentations. however. typi­
cally do not show diagrams like that in Fig. 22.4; instead, they typically represent the
situation a~ shown in Fig. 225 (which might be regarded as being at ahigher level of
abstraction).

T.he representation shown in Fig. 22.5 is cenainly more consistent with the "con­
tainment hierarchy" interpretation. H owever, it obscures the important fact, already
di~cussed above, that objects often contain, not other objects as such, but rather 01Ds
of other objects. For example. Fig. 22.5 clearly suggests that the DEPT object shown
includes the gMP object for employee EOC)I twice (implying. among many other
things, lhat employee EOO I might be shown-inconsistently- as having two different
salaries in its two different appearances). This sleight-of-hand is the source of much
confusion. which is why we prefer pictures like thar of Fig. 22.4.

As an aside, we note that real 00 dam definitions tend to increase the confusion.
because they typically do 11oc define instance variables as "REFs" (as in our hypotheti­
cal syntax above) but instead directly rdlect the containment hierarchy interpretation.
Thus, for example, instance variable EMPS in object c lass DEPT would typical ly be

TERADATA, Ex. 1014, p. 669

Chapter 22 Basic 00 Concepts

DEPT: DEPT~: tlOl
DNAME: Mlttg

'----~
BUDGET: I $1. 000, OOQ I
MGR: EMP#: et)Ol.

E~: Srn~t.h

• SALARV: I sso. 000

l'OSrnON: ~

EMPS: ,_..I _______ _,

.EMP•: E001
ENAME: Smitch

SALARY: I $50. 000

POSITION: ~ -

FIG. 22.5 Sample DEPT and EMP instances:as:a containment hierarchy

641

defined not acs REF(SET(REF(EMP))) but just as SET(EMP). Although c11UIDsy, we
prefer our style of data definition, for clarity.

ft is worth pointing out too that all of the old criticisms of hierarchies in general (as
implemented in, e.g., IMS) apply to contaimnen1 hierarchies in particular. Space does
not permit derailed consideration of those criticisms here: suffice ii to say thal the over­
riding issue is lack of symmetry. In particular. hierarchies do not lend themselves well
to the representation of many-10-many relationships. Consider suppliel"l) and parts, for
instance. Do the suppliers contain the pans, or vice versa? Or both? What about suppli­
ers. parts, and projects?

Thus. it is our feeling, despite the common talk of "containment hierarchies." that
objects are not really hierarchies at all. fnstead, as Fig. 22-4 suggests. they are tuples-­
where the tuple components can be any of the following:

I . self-identifying values (e.g .. integers)

2. simple nonshared "subobjec1s" (e.g., MONEY objects)

3. OlDs of other. possibly shared. "subobjects" (see Section 22.6)

4. seu;. lists, arrays of I .. 2., 3 .. or 4.

(plus certain hidden OID. CDO OID, etc .. components). Note carefully. however. !hat
(in a pure system) such tuples are encapsulated.

TERADATA, Ex. 1014, p. 670

642 Part VI Object-Oriented Systems

22.5 Objed Identity Revisited

Today's relational DBMSs cypically rely on user-defined. user-controlled keys (''user
keys'' for short) for entity identification and referencing purposes. lt is we!Lknown,
however, that user keys suffer from a number of problems; reference [12.12) discusses
such problems in some detail and argues that relational DBMSs should support system­
defined keys ("surrogates") instead. And the argument in favor of OIDs inOO $ystems
is very similar to the argument in favor of surrogates in relational systems. (Do not,
however. make the mistake of equating the two: Surrogates are values and are visible
to the user; OIDs are addresse.v or pointers-at least conceptually- and are hidden
from the user.)

Points and questions arising:

J. First, it is very imp0rtant to understand that OIDs do n'ot avoid the Med for user
keys, as we will see in Chapter 23. To be more. precise. user keys are still needed
for interaction with the outside world, although inside the database alJ object cross­
referencingc-an now be performed via OIDs.

2. What is the OID for a 'derived object?~.g .. the join of a given EMP and the cor­
Tesponding DEPT, or the projection of a given DEPT over BUDGET and MGR?
This is another important question that we will have to defer for now. See Chapter
25 (Secition 25.4).

3. OJDs are the source of the oft-beard criticisms to the effect that 00 systems look
Like ''CODASYL warmed over"-where "CODASYL" refers generically to cer­
tain network (i.e .. prerelational) database systems such as IDMS. Certainly OIDs
tend to lead to a rather low-level, pointer-chasing style of programming (see Sec­
tion 22.6 and Chapter 23) that is very reminiscent of the old CODASYL style.
Also, the. fact that OIDs are pointers and not values accounts for the claims, also
sometimes beard. to the effect that CODASYL systems are closer to 00 systems
than relational systems ate.

22.6 Classes, Instances, and Colledions

00 systems make clear distinctions among the concepts of class. instance, and collec·
1io11. First of all. an object class is (as previously explained) basicalJy a data type, pos­
sibly buil.Lin, possibly U$Cr-defined, of arbitrary internal compl exity. (As1lll aside. how­
ever, we remark that-as mentioned in Section 22.3- some 00 systems use bocb
"type" and "class," in wb.icb case "type" means data type and "class" means collection.
We will not adopt this usage in this bQok.)

Every class under~Uinds a NEW message. which causes a new instance of the
class 10 be created (the method invoked by the NEW message is sometimes referred to
as a constructor function). For ex.ample (hypothetical syntax):

e : .. EMl? NEW ('EGOl ' ' 'Smitit ' . 1>50000 . POS l :

TERADATA, Ex. 1014, p. 671

Chapter 22 Basic 00 Concepts 643

Here POS is a program variable that contains the OJD of some JOB object. The
NEW method. is invoked on the object class EMP: it creates a new instance oftha1 class,
initializes it Lo !he specified values, and returns that new instance's OTO. That OID is
then assigned to the progi:am variattle E.

Next. because objects can contain pointers (OIDs) to other objeots instead of ob­
jects per se, thirvery same object can l5e shared by many objects.lo particular, che very
same object can belong to multiple collection objects simultaneously. To continue with
our example: ~

CREATE OBJEO.T CLASS EMP_ COLL_CLASS
PUBLIC I EM.l'_COt;t; REF I SE'r (REF (EMF) l)) .•.

A.w..EMPS ADD (E) ;

F:xplanation:

• An object of class EMP _COLL_ CLASS contains a single pJJblic instance variable,
called EMP _COLL, whose value is a pointer (OTO) to an objeet whose value is a
set of poi oters (OIDs) to individual EMP objects.

• ALLEMPS is a variable whose value is the OID of an o.bject o[class
EMP _COLL_ CLASS. After the assignment operation, it contains the OID of such
an object whose value in tum is the OID ofao empty set ofOIDs ofEMP objects.

• ADD is a method that is understood by objects of class EMP_COLL_CLASS. In
the example. that method is applied to the object of that class whose OID is given
in the variableALLEMPS; its ef(ect is to append the OID of the EMP object whose
OIDis given in the variable E to the (previously empty) set of OIDs whose OTO is
given in the EMP_COLL_CLASS object whose OTO is given in the variable
AILEMPS.

After the foregoing sequence of operations, we can say. loosely. that Lhe variable
Al..Lfil,1PS denotes a collection of EMPs that currently contains just one EMP. namely
employee EOCll. By the way, note the need to mention a user key value in this latter
sentence!

Of course. we can have any number of distinct. and possibly overh,1pping, "set~ of
employees" at any given time:

PROGRAMMERS :~ EMP_COLL_Cl.ASS NSW I) ;

PROGRAMMERS ADr;> (E:) 1

lilGRL"i_PAil) : : E:MP_CDLL_C!LASS llEW i l ;

RIGHL "i_Pl\IO AllD (S) ;

and so on. Contrast the suite of affairs in relational sys1e01s. For example, the SQL
statement

TERADATA, Ex. 1014, p. 672

644

CREATE 'l'AllLE. EME

I EMP-t1 • • . •
ENAM.E • • • '
SALARY ••• •
l?OSIT~ON

Part V1 Object-Oriented Systems

crea1es a type t1~1d a collec1ion simullaneously: 1.be (comp<>site) type corresponID, to the
table heading. and the (mitially empLy) ..:ollection correspond~ Lo the ta hie body. Like­
wise, the SQL su11emen1

711SEPT rrrro El•!P I - - - I 'ALOES I

creates an individual EMP row and appends ii to the EMP collection simultaneously.
ln SQL. therefore:

I. There is no way for an individual EMP ·'object" to exist without being part uf some
·•collection"-i.n f.act. exactly one ·'collection" <bul see bttlow).

2. There is no direct way Lo create two distinct "collections" of the same "class" of
EMP "objec1:.·• (bul see below).

3. There is no direc1 way lo share the same "object" across multiple "collections'' of
EMP ··objects" (bu1 see below).

At least. the foregoing are claims that are sometimes heard. Tn fact. however. they
do not stand up to close scrutiny. To be specific. the relational foreign key mechanism
can be used to achieve an equivalen1 effect in each case: for example, we could define
two more base tables called PROGRAMMERS and HIG HLY_PAID. each of them
consisting of jusl the employee numbers for !he relevant employees. Alternatively.
Lbe relational view mechanism can be U'\ed lo achieve a similar effect For example,
we could define PROGRAMMERS and HIGHL Y_PAID as views of the EMP base
table:

CREATE VIEW E'P.OGRAm!ERS
AS SELECT EMN. ENA.HE. SALARY, l OSl l 101~

FROM EMP

WHF.RE POSTT.ION - ' P:rOql amm~i-' ;

CRE..'1.TE VIEW liIGl:ILY_l?AlD
AS SELEC1 EM P1I . El IAN 8 . s;.w,RY . POS rT ION

F.RClM EMP
WHERE SALARY ""Ill<' Liu csh ~d, _·a_, S,50f!(

And now, of cour.se, It is perfectly possible for 1he very same employee "ebject" to
belong to two or more "collections" simu!timeously. Whal is more, membership in
those collection:. that happen 10 be view~ b. handled automatically by the system. not
manually by the progtammer.

We close thts discussion by ment1onin,g an illuminating parallel between the ob­
jecLr of 00 syscems and the explicit dynamic variables of certain programming Ian·
guage sy~tems {PUl's BASED variables are a case in p~iint) . Like an 00 objetl. an
explicit dynamic variable can have any number of dii.tinct instances. the storage for
which is al located by explicit programmer action. Furthermore, those instances. again

TERADATA, Ex. 1014, p. 673

Chapter 22 Basic 0 0 Concepts 645

like individual object instances. /w1,e 110 name. and thus can be referenced only through
poi nter~. In PL/T, for er.ample. we might write:

DC'L l'.'a'Z ••• BASED
DCL P POINTER :

ALLlX:ATF. '{'fZ !'1':'1' I p J

P > XY2. ' ;
•

l XY~ ~s a B>.SED Vat iablr -
• P is a po1nrer vaciable •

c.rea:te- a: n~~· 'XY'Z lnstar1ce *'
and SPt ? to pou1t to • L

q$&1qn the value J to the '!.Y.

instance P•:t .LOt eel c.o by P

(and so on). This PUI code bears a striking resemblance Lo the 00 code d1scus~ed
earlier; in particular. the declaration oftbe BASED variable is akin to the creation of an
object clash, and the ALLOCATE operation i1> akin to the creation of a NEW instance
of that class. We can thus see thanhe reason orDs are necessary 111 "the 00 model" 1;.

precisely because. in general. the objects they identiJy do not possess any other unique
oame-jusl like BASED variable instances in PL/I .

22.7 Class Hierarchies

No 1reaunenl of basic 00 concepu. would be complete without ~ome discussion of
class hierarchies (not to be confused with containmen1 hicrarchiel)). However, the 00
"class hierarchy'' concept is e~sentially the same as the type hierarch) con<:ept dis­
cussed in Chapter 19 (Section 19.4); we therefore content ourselves here w ith a few
brief definitions (pa1<1phrased frorn Ch11pter 19, for lhe most part) and 11 couple of rele
vant observmjons.

First. object class 1' i.s said 10 be a s ubclass of object class X-equivalently,
object class Xis said 10 be a superclass of object olass Y.-if and only if every
object of class Y is necessari ly an object of cla$s X (''Y lSA X") . Objects of clai.~ Y
then inheri1 1he instance 'ariables and methods that upply 10 class X. As a conse­
quence. the u~er can always use a Y ObJeCL wherever an X object is permiued (1.e .,
as an argument to various melhod:<;)- this is the principje of substitutability-and
thereby take advantage of code reusability. Nme: Inheriting ins1ance v(lriables is
referred Lo as structura l inheritance: inheriting method~ i~ referred to u ~ behav­
ioral inherilance. The abi lity to apply the S<Lme method lo d1ffernnl classes-or.
rather, the ability 10 apply different methodi, with tJ1e same name to different cla!>~e!>
(a class X method might need to be redefined for use with class Y)-b r<:ferred w
as polymorphisn1.

Herc is un example. Suppo~e RECTANGLE is a subclnss of POLYGON, which in
rum i~ a subdas~ of PLANE_PlGURE. The ohjcc1 class i..leclarutiun:. migt11t louk a~
follows:

CREA,~ •B.fl,t LASS PLANF._FI t!I E

f''Jlll Ir I ;;fl£/\ • • l •. •
f•IE1HODS l OVE:HL!\P • • • I ...

TERADATA, Ex. 1014, p. 674

646

CREATE OllJECT CLASS POLYGON
lSA I ~t.ANE_FIGURE)
PUBLIC (VE!CT1CES • • . I
METHOD I COUNT_.VEj¥1'lCES

CREATE OBJECT CLASS RECTANGl.JE
rs~ (l'OLYGi:lN)

) ...

PUBLIC (DlAGONAl.._L"ENG'l'R . • •)
!il:'l'HOOS (TAANSPOSE • • . I • • • ;

Part VI Object-Oriented Systems

A sample RECTANGLE instance is shown in Fig. 22.6. Note in particular that it
includes the instance variables of PLANE_FlGURE and POLYGON as well as the
instance variables of RECTANGLE per .se. Note too the implications for creating a
"N EW" instance of RECTANGLE, and c-0ntrast the siruation with Fig. 22.7, which
shows a relational representation of the same data.

,..-----~-------------~·-----.

: o::o l<REA VERTI..CES Dl.AGONAL_ LENGTH CLASS :
I '

t~;;~-et_c_-~_:_~c-·:_._._. _· ~~-~-~-:_ .. _._._._ .. _._._·_· _...~~f~~j
RECTANGLE crlo

FIG. 22.6 Sample RECTANGLE instance

FIG. 22.7 Relational version of Fig. 22.6

The system will come equipped with some buihtn class hierarchies. To OPAL, for
example (see Chapter 23), every class is considered to be a subclass (at some level) of
Lhe buHtin class OBJECT. Builtin subclasses of OBJECT include BOOLEAN, CHAR,
INTEGER. COLLECTION (etc.); COLLECTION in turn has a subclass called BAO (a
bag is the same as a set. except !hat it permits duplicates), and BAO has another called
SET (eLc., etc.).

TERADATA, Ex. 1014, p. 675

Chapter 22 Basic 00 Concepts 647

Finally. we repeat another point from Chapter L9, viz;: Some systems suppon the
notion of multiple inheritance, in which a given class can be a subclass of several
superclasses simultaneously. In such a system, class "hierarchies" really become class
lattices, in the sense that a given 'tchiJd" class might have several distinct "parent"
classes (but the "hierarchy" terminology is usually :retained nonetheless).

22.8 Miscellaneous Remarks
•

In this section we make a few miscellaneous observations regarding objects in general.

l. A given object might acquire new types and lose existing types dynamically. For
example, a given employee might become or cease to be a stockholder. The system
must therefore support the ability for a given object to change its position Within
the class hierarchy-e.g., to "move up and down" a given branch, or (more com­
plex) to be attached to or detached from an arbitrary node, at any time.

2. It is ofte111 suggested that 00 technology simplifies database design and develop­
ment (as well as database use) by providing high-level modeling constructs and
supporting those constructs directly in the system. (By contrast, relational systems
involve an extra level of indirection in mapping real-world objects into relations,
attributes. foreign keys, etc.) But this claim raises the question: How exactly do we
do 00 database design? For instance, bow do we decide whether to represent a
given collection as a set or a bag or a lii;t or an array? How do we decide whether
to represent data explicitly (via instance variables) or procedurally (via methods)?
And so on.

3. Finally, we remark that in an 00 system, objects-that is, individual objects per
se, not object classes-are:

• the natural unit of security and authorization

• the natural unit of recovery

• the natural unit of concurrency

(except where prohibited by the requirements of integrity constraints that span ob­
jects).

22.9 Summary

This bongs u.~ ro the end of the first of our series of chapters on the 00 approach.
Following our discussion of the motivaling RECTANGLES example, we explained

• Objects (i.e.. object instances). which correspond in tradiuonal lenn~ to variables
(ii ··mutable··) or values (if"immutable'')

• Object classes, which correspond to da1a rvpes

• Methods and messages, which correspond to functions and calls (pOssibly asyn­
chronous calls), respecu vely

TERADATA, Ex. 1014, p. 676

648 Part VI Object-Oriented Systems

In addition, we pointed out that '·mutable" objects correspond specifically to ex­
plicit dynamic variabJes. in programming parlance, whichis why they have to be ac­
cessed through pointers (i.e .. OIDs-see below).

Objects are encapsulated (i.e .• their intemaJ representation is not v1s1bJe to users
of the object; instead. users know only that the object can be manipulated via certain
method$). Objects are sometimes described as having a private memory and a public
interface: The private memory is the instance variables, the public interface is the
definitions of the interfaces to the methods. Jn a "pure" 00 system, anly the methods­
or. rather. the method exremals-are visible to the user, but many sysrems 11re not pure.
The metbads are kept with the the class-defining object (COO) for the object in ques­
tion.

Every object has a unique object ID (OID). A given object's OID is used to refer
to th~ object from other objects. Program variables also refer to objects by means of
their OID. We stressed the point that an OID is a poinJer, 11ot a value, and left some
rather important questions regarding OIDs unanswered. See Chapter 25 for further dis­
cussion.

We also described containmentJrlerarchies---despite ourfeeling that the eoncepj
is misleading; iniact,Jt would be more aceurate to.regard objects nQt·asJllerarchies, but
as (encapsulated) tuples, where the tuple components can be (a) self-identifying val­
ues, (b) simple nonshared "subobjects." (c) 01Ds of other (possibly shared) subobjects,
or (d) various combinations of tbeforegoin;g.

We then elaborated on the concepts of class, instance, and collection. 00 systems
make clear distinctions among these concepts; we gave some simple coding examples
to illustrate the point. and compared and contrasted the situation with relati<maJ sys­
tems.

We then briefly touched on the 00 class hierarchy concept, without however
going into very much detaiJ (because the concept bas already been described. in slightly
different terms, in Chapter 19). Finally, we offered a few further miscellaneous com­
ments regarding objects in general.

Exerdses

22.1 What is an object?

22.2 What does the term er1capsulated mean?

22.3 rnstance variables canrep11bllc. r1riva1e, or protected. Explain.

22.4 Wbatis the difference' between du.rs and type?
22.5 Define the concept object ID. What are the advantages of OIDs? What are the disadvan-

tages?

22.6 How might OIDs be implemented?

22. 7 What is a class-de tining objeo1 '?

22.8 What do you under.;cand by the term .. constructoc function"? Whal analogs (if any) of such
f unclions exist in traditional pr9gramming_ languages'!

22.9 Explain and ju8tify the conminment hierurch,1• concept.

TERADATA, Ex. 1014, p. 677

Chapter 22 Basic 00 Concepts

22.10 Explain the ideu and com:eptuul implementuuon of ""\hared ~ubobjects."'

22.JJ Give no example of multiple inhc:ritance

649

22.J 2 In Section 22.2 we gave two SQL formulat1on.'>-a long form and a shon form-Qf the
query "Find all~tangk~ thai O\etl:fp lheunll <.quare.·· Prove that those two fonnulalionsare
equivalent.

References and Bibliography

References [22.1-22-lJ. L12.61. and [22.11 I an: textbook.<> an 00 topics and relaled maners.
References (22.91 and [22.161 are collect1ons of research papers. References (22. 7-22.8).
rn. I 01. and 122.12 l are tutorials.

22.1 Grad) Booch Ohjec1 Ori11111ed Design, ~vftll Appllq11irm.v. Redwoqd Cit). Calif.: Benjamin/
CummtDgs Cl991J.

22.2 R. G. 0 . Cauell. ObJl!C'I DamMandgemelll. Reading. Mass .. Addi.Son-Wesley (1991).

The frrst boOk-length tutorial on the npplicatinn of 00 technology to databases speclfic­
a11). The following edited eJ1.tract suggesb that the field i~ ~till a long wa} frpm arr} kind
of consensus: "Progrnmmmg languages may need new S) ntaJt . swizzling [see Chapter
24, Section 24.21. replication. and new acces~ meth¢s also Tieed funher Study ... new
end-user and application development mols (ore I required ... more powerful query-lan­
guage features [must be] developed . new research in c-0ncUITt'tlC)' .control is
needed . . . timestamps and object-based concurrency semanncs need more e11plora­
tion ... performance models are needed ... ney,, work in knowledge management needs
to be inregrared with object and data mana~mcnt capabilities ... thir. l will lead to I a com­
plex l)pt1rnrzauon problem land] fey,, researchers have [the n11cessal) I expemse· ... feder­
ated [00] databases requlre more ~tud) ..

22.3 Brad J. Cqx. Object Oriented Programmi11g: A11 Et·o/111i()11C11) Appmacl1. Reading. Ma.~s.:

Addison-Wesley I 1986).

A tutorial te:itt on objeGt-orientcd ideas io I.he prog:rammin:g world, with I.he.emphasis on
the use of 00 li:C!bnique:s for software ~n£!ineering.

22.4 0 . J. DabJ. B M~brhaug, and K. Nygaard. Tire SJMU/.A 67 Commo11 Base la11g11age. Pub.
S-22. Norwegian Compuung Cemer. Oslo. Norway f 1970).

SIMULA 67 was a language designed eitpressly for writing s!Illuluuon applicauons. 00
programming languages gre\lo out of -.,ui;h lani\uagei., in fact. SIMULA 67 w~ reall) the
first 00 I anguage.

22.5 C. J. Date. "An Opum1zmion Problem." In C. J. Date and Hugh Darwen. RelC11io11al
DaruhllSt" \Vri1irr1J1 1989-1991 RCllding, i\ la$\ Addl~nn-WC!iley (1992)

22.6 Adele Goldberg and David Robson. Smullwlk-lJO: The Ln11111wg,e and ill l111pleme111u1io11.
Reading. l'vlihs.: AddlSOn-Wesle} I I 983J.
The definiuve account of the pioneering effons ai the Xerox Palo Alto Research Cemer to
design and build the Smalltult..-110 ~)stem. Thll lir..1 p.Ul or the hliol.. tout of four parts) is a
detailed description of the Smalltalk-SO programming language. on which the OPAL Jun­
guage of GemS1one is ba.'>etl (see Chnpter 13).

22.7 Nathan Goodman. "Object On.:ml"ti DmnbaseSy~tem~ · 111/oDB ./, No. J IP.ill 1989).

See ihe annotation lo thi~ paper in Chapter 15 lref.:r~ncc (25.5 (l.

TERADATA, Ex. 1014, p. 678

650 Part VI Object-Oriented Systems

22.8 Nathan Goodman. "The Object Dacabasc Debate," "'The Object Data Model:' and .. The
Objc~t Data Model in Aclion." bljoDB 5. No. 4 (Winter 1990-91); (). No. I
(Spring/Summer 1991); and 6. No. 2 (F:ill 1991).

22.9 Won Kim and Frederick R. Lochovsky (eds.). Objecr·Oriemed Co11C:ep1s. Databases.
and Applicalimi.~. Reading, Mass. .. Addti.~Qn-Wesley (1989).

22.10 Roger King. "My Cat Is Object-Oriented." In reference [22.9) ,

22.11 Kamran Pursayc:. Mack Chignell, Serrag Koshallan, and Harry Wong. fmellii;e111
Databuses. New York, NY.: John Wiley & Sons (1989).

22.12 Jacob Stein and David Mhler. "Concepts in Qbject-Oriented Dara Management."
Dauibase Programmiltg & De.rigii I. No. 4 cApri l 1988).

A good tutorial on 00 concepts by rwo of the Gemstone designers.
22.13 Michael Stonebraker. /11trod11e·tio11 to "New Datn Models": and /nlroductian to "Ex­

tendibility." B0th in M. Stonebraker (ed.}: Readings in Dat(Jbasl!, $yst11ms. San Mateo,
Calif.: Morgan Kallfmann { 1988).
These two introductions rntlude Stonebrnker's translation ofOO concepts to rraditional
terms and hi~ own brief analysis of what 00 technolcigy is trying to do and where il is
likely 10 lead in the future.

22.14 D. C. Tsichntzis and 0. M. Niersrras:i. "Directions in 00 Research:· fn reference 122.9).

This paper lends funher weight to the contention of the present writer that 00 database
technology is a long way from consensus: "'fhere are disagreemerus on basic definitions:
e.g .. what 1s an object'? .. . There 1s no reason to worry: Loose definitions are inevitable
and sometimes weloome during a dynamic periocJ of scientific discovery. They should
and will become more rigorolJ$ during a p«iod of consollilation that will inevitably fol­
low." But 00 concepts have been around for well over25 years! (see reference [22.4-1).

22.15 Gottfried Vos~en. Dma Models, Database lai1guages, and Datab/l,fe Mllllllgement Sys­
tems. Reading, Mass.: Addison-Wesley (1991).

22.16 Stanley B. Zdonik and David Maier (eds.). Readings in Objecr-Oriented Dmaf/ase Sys­
tl!lllS. San Mateo, Calif.: Morgan Kaufmann (1990).

Answers to Seleded Exercises

22.1 Part of the problem in discussing 00 rechnolog,y is that some of the most fondamental
00 concepts lack a clear. universally accepted definition. Here. for example, are some
"definitions" from the 00 literature of the term object:
• "Objec1.q are reusable modules of code that store data. information about relationships

between data and applications. and processes tbai control data and relationships"'
Cfrom a commercial produce nnnouncememJ.

• " An object is a chunk of private memory with a public interf11ce" [22.121.

• "An object is ao abstrac1 machine lbal defines a protocol lhrough whieh users of the
ob~ect may intcrac1" (introdm:lion lO reference [22.16]).

• '"An object fs a software strucwre tha1 conuuns dnlll and programs .. 122.7J.
• " ... everything is an Object ... an object ha.s a private memory and a public intcr­

foce" L22. I 5]

• " .. the objec1•orientcd rnodel b based on a collection of ohjec1s. An object cqntain~

TERADATA, Ex. 1014, p. 679

Chapter 22 Basic 00 Concepts 651

vulue:s stored in instance vcmables with.in the object ... these values are themselves
objec1s .•• An object also conmins bodies of code that operate on the objt:ct ... called
methods" f 3. 71.

Our own understanding of what an object is is explained in Section 22.3.
I

22.5 Some of the advantages of OIDs are 11s follows:

• They are not .. intelligem.·· See refecence L 12.81 for an explanation of why this state of
affalr.; i~ desirable.

• All objects in lbe database ore identllied in the same uniform way (contra.~\ the situa­
tion with relational datab~s).

• They never change so long a~ the object they identify remains in existence.

• There is no need to repeat user keys io referenciog objec~s. There is thus nQ need for
an "ON UPDATE" foreign key rult.

• They are noncomposite. See references [5.5-5.7) for an e:x.planation of why thi~ state
of affairs is desirable.

Some of the dislldvanlllges-the fact that they do not avoid the need for user keys. the
fact that they lead to n low-level ''pointer-chasing .. sty le of programming, and the fact
lb~ they apply to ''base .. objects only~were di:1Cussed l;>riefly in Section 22.5.

22.6 Possible implementation techniques include:

• Physical disk addresses (f'ru.1 but poor data independence).

" Logical disk addresses (i.e.. page and off\et addresses; fairly fast. better data indepen­
dence).

• Artificial ID~ (e.g., timestamps. sequence numbers; need mappin~ 10 actual ad­
dresse)).

22.12 See reference [22.5 J.

TERADATA, Ex. 1014, p. 680

23 A Cradle-to-Grave
Example

23.1 lntrodudion

ln the previous chapter we in1roduoed the basic concepts of the 00 approach. Now we
show bow those concepts fil together by presenting a .. cradle-to-grave" example-i.e.,
we show how an 00 database is defined. how il is populated, and how retrieval and
update operations can be performed against that database. Our example is based on one
of lhe best known 00 systems, namely GemStone (available from Servio Corporation
[23.2)) and its data langµage OPAL. Note: OPAL in tum was lleavily influenced by
Smalltalk-SO (see references [22.6J and L23. lj).

We introduce the example below. Section 23.2 then discusses data definition oper­
ations and Sections 23.3- 23.S discuss data manipulalion operations. Section 23.6 pres­
ents a summary and a few additional comments.

1l1• Example

The example is based on a simplified version of the education da1.4bruie from Exercise
5.3 in Chapter.5. To recap:

• An education database contains jnformation about an inhouse company education
training scheme. Por each training aourse. the database contains details of all offer­
ings of that course; for each offering it contains details of all student enroJlments
and all ~eachers for that offering. The databa~e also contains information about
employees.

A relational version of this database looks something like this:

lllMPuOYEE 1 DlF ff • EJ'lt<M£, JOB

PPU!ARY KEY l EMP• J

COURSE I COUR~E~. TITLE l
PEUMl\RY KEY ! COURSE# I

OF'PERING I C:OURSO . OFF•, ODATE, i..OCATTON)
PR IMAR'i KEY l COURSE#, OFF~ 1

FOREIGN KEY I COURSEi! I REFERENCES COURSE

TERADATA, Ex. 1014, p. 681

Chilpter 23 A Cr.tle-te>Grave Example

ENROLLMENT (COURSEi. OFF~ . EMP~. GRAUE l
PRIMARY KEY I COURSE#, OFF#, EMP• l
FOREIGN KEY I COURSEij, OFFJ l REFERENCES OFFERING
FO!llUGN K.EY I £ MP • f REFERENCES EMP

I

TEACHER ('CGURS.Eil, OFF ~ , £MP# l
PRIMARY KEY (COURSE•. OFF!, EMP~ l
FOR£ION KE:'i f COURSE# , OFF'il l REFERENCES OFFElRmG
rOREIGN KEY I £Mn) ~El'ERENCES El~P

653

Fig. 23. I gives a referential diagram for chis database. Refer 10 the Exercises and
Answers in Chapter 5 if you require further explanation.

I c0URS£ I
r

I OFFERING I
I I

I ENRGLLMENT I I TEACHER I

- ·I El~fPLOYEE I
FIG. 23. 1 Referential diagram for the. education database

23.2 Data Definition

w~ now proceed LO show an OPAL definition for the education daLabase. Here first is
the definition for an object class called EMPLOYEE (tbe lines are numbered for pur­
poses of subsequent reference):

1 OBJECT SUBCLASS 'U!PLOYEE'
2 UISTVARNAMES # (' EMf'ff '. 'Ell/IME ', 'JOB ')

.3 CONSTRAINTS ii (~ I' ENE'ff, STRINO 1 ,
ii ~ EHAME, S1'RillG I
s 4 JOB, STP.111 I I .

Explanation:

• Line I defines an ob)eCI class called EMPLOYEE, a subclass of the builtm class
called OBJECT. (In OPAL lenn~. line I is sending a messuge to the object caJled
OB,fECT, asking ii 10 execute 1he mclhod ~!led SUBCLASS; INSTV ARN AMES
and CONSTRAINTS specify parameters to thal method. Defining a new class­
like everything else-is 1hus done by sending a message 10 an object)

TERADATA, Ex. 1014, p. 682

654 Part VI Object-Oriented Systems

• Line 2 srates that objects of class EMPLOYEE have three public instance variables
called EMP#, ENAME, and JOB, respectively.

• Line 3 constrains the instance variable l:MP# to contain objects of class STRING.
Lines 4 and 5 are analogous.

Nore: Throughout this chapter we omit discussion of purely syntactic details {such as
the ubiquitous''#" signs in the foregoing example) that are essentially irrelevant for our
purposes.

Next the COURSE class:

' COURSE ' L OBJECT SUBCLASS
Z !NSTVARNAMES
3 CQl'ISTRAINTS

ff I 'COURSE#'. ·~J'TWE', ' OPFEJUNGS '
tt I * L # COURSE~. STRING J

4

5

E:xpla11atio11:

f II Trl'LE, STarNC]

[o OFF£ltl:NGS, OSE'r

• Line 5 here specifies that instance variable OFFERINGS will contain an object of
class OSET~r. more accurately, the OID of an object of class C>SET. * Infor­
mally, OFEERINGS will denote the set of all offedngs for the course in question.
ln other words, we have chosen to model the course-offerings relationship by
means of a containment hierarchy,ln which offerings are conceptually contained
within the corresponding course. See later for the definition of the class QSET.

Now the OFFERING class:

l OBl!TECT SUBCLASS ' OEFERING'
2 INSTVARNAMES ff 'OFFij', 'ODA'l'E 1 , 'LOCATION',
l '£NT{OLLlJENTS ' , '.TEACHERS '
4 CONSTRAINTS tt It ~ OFF# . S'l'lUl!IG I .
S" tt ODA'.l:E, DATE;'.PIME I .
6 ff LOC.ATI:'ON, ST!Hl!IG] .
7 ff ENROLLMENTS, NSET] .
a ff TEAOlF.:RS, TSET l I .

Explanation:

• Line 7 specifies that instance variable ENROLLMENTS will contain (the OID of)
an object of class NSET: infonnally. NSE'f will denote the sel of aJJ enrollments
for the offering in question. Likewise. TSET will denote the set of all teachers for
the offering ln question. Again, lher-efore. we are adopting a "containment hierar­
chy'" representation. See later for the NSET ®d TSET definitions.

• Note that we have chosen nor to include a "foreign key" instance variable within
objects of class OFFERING referring back to object~ of class COURSE. This de­
cision is consistent with our decision to use a containment hierare.hy. However, it

•The ttypolheliC!tl.l $ynrnx lntroduced in Cbnpler 22 wtiuld have m3de lhis point more explicit. defining the
in!lllnoe vnrinble OFFERINGS robe of type REFCSl31'!REF(OFFERINO)J).

TERADATA, Ex. 1014, p. 683

Chapter 23 A ,Cradle-to-Grave Example 655

does mean that £here is no direct way to get from a given OFFERlNO instance to
I.he corresponding COURSE instance. We will return to this issue in the next
chapter.

I
Now I.he ENROLLMENT class:

l OBJECT SUBCL.l\SS ' 'ENROLLMENT'
2 INS'l'1T.o\RNJ\M6S ~ I 'EM!'' . 'GRAUE' J

) 'CONSTRlHNTS #- I • I 11 BHP. EMPCOYEE
4 • I W OAAl'>E. S'I'IUllG

Exp(f,lnation:

• Again. objects of class ENROLLMENT do not include a "foreign key" insmnce
variable referencing objects of cla.~s OFEERLNO. Note, however. that ol;>jects of
class ENROLLMENT do include a kind of foreign key: I nstance variable EMP
(line 3) contains I.he OID of an object of class EMPLOYEE, representing the indi­
vidual employee to whom this enrollment ~rtains. Note: The "C<!lntainment hierar­
chy" interpretation would regard that EMPLOYEE object as actually being con­
tained within I.he ENROLLMENT object, of course. But note the asymmetry:
Enrollments are a many-to-many relationship. but the two participants in that rela­
tionship (employees and offerings) ate treated quite differently.

Now we tum to teachers. For I.he sake of the example, we depart slightly from the
original.relational version of the database and treat teachers as a subclass of employees:

L EMl'LOY:l::E SUBCT.ASS 'TEACl:iER '
2 INS'l'\IARNAMES ~· ['COURSES' J
3 CONSTAA!NTS # l # I "! COURSES. CS£T) j •

Explanation:

• Line I defines an object class called TEACHER, a subclass of Lhe previously de­
fined class BMPLOYEE (in other words, TEACHER "ISA" EMPLOYEE). Thus.
each individual TEACHER object has instance variables EMP#. ENAME. and
JOB (an inherited from EMPLOYEE), plus COURSES, which will cQntain the
OID of an object of class CSET. This CSET object will denote the set of all courses
this teacher can teach.

Now, we saw in Chapter 22 I.hat 00 systems make a clear disrinction between
classes and collections. Indeed, the foregoing class definitions assumed the existence
of several object collections~llecLions of offerings. collection~ of enrollments, col­
lections of teachers, and $0 on-but no such collections have yet been defined. Let us
therefore define a "collection" object class for each of the five classes defined above:
we will name them ESET. CSET. OSET, NSET, and TSET. respectively. An object of
class CSET, for example. will consist of a set of OIDs for individual objects of clas;;
COURSE. Here then are the definitions:

l SEi' S~ASS 'eSET'
2. CO.NS'l'RAINTS EMPLOY.EE

TERADATA, Ex. 1014, p. 684

656 Part VI Object-Oriented Systems

Explanation:

• Line 1 defines an object class called ESET. a subclass of the builtin class called SET.

• Line 2 constrains objects of class ESET to be sets of (OIDs oO objects of class
EMPLOYEE. To general, there could be any number of objects of class ES.ET. but
we will create just one (see Section_ 23 . 3), which will contain the set of OIDs of all
EMPLOYEE objects (referred to loosely in what follows as "the set of all employ­
ees"). InformaJJy. that ESET object will be the 00 analog of the EMPLOYEE base
relation in the rel ational version of the database.

• Observe that objects of class ESET have no public instance variables.

The CSET, OSET. NSET, and TSET definitions are analogous (see below). In each
of these cases, however, we will d!'{initely have to create several objects of the relevant
class, net just qpe. For example, there will be as many OSET object& as there are indi­
vidual COURSE objects. See Section 23.3 for the detaifa of actually creating these
several "set" objects.

SET SUBCLASS 'CSET'
CONSTRAIN'I)S COURSE

SET SU.BcLASS 'OSET'
CONSTRAINrS OFFERING

SET SUBCLASS "NSET'
CONS'l'RAINTS Et:iROLLMENT

SET StlBCLASS 'TSE:r''
CONS'l'RATNTS TEACRER

To conclude this section, Fig. 23.2 (opposite) gathers together aJJ of the foregoing
definitions (and reorders them) for ease of subsequent reference. That figure will serve
as a basis for the manipulative e:1'amples to be presented in the rest of this chapter.

23.3 Populating the Database

Now we consider what is involved in populllting this database. We consider each of the
five basic objear types (employees, courses, offerings, enrollments, teachers) in tum.

-=mployees

Recall that we intend to collect together the OIDs of all EMPLOYEE objects in an
ESET object, so first we need to create that ESET object:

QID_OF_SET_OF_ALL_ EMPS : "' E!irt NEW .

Explanaticm:

• The eJCpression on the right·hand side of this assignment returns the OID of a new.
empty instance of class ESET (i.e .• an empty set of EMPLOYEE OIDs.): the OID

TERADATA, Ex. 1014, p. 685

Chapter 23 A Crlldle-to-G111ve Ex-.nple

SET SUBCLASS 'ESET'
CONS'TRAINTS EMPLOYEE

SE'!' SUBCLASS ' CSE'!''
CONSTRAINTS COURSE

SET SUBCLASS 'OSET'

CONSTRAINTS OFFERING

SE't. SUBCLl\SS 'NS:E'l''

CONSTRAINTS ENROLLMENT

SET SUBCLASS ' TSET'

CONSTRAINTS 'ttACflER

OBJ.EC'!: SUBCLASS ' EMPLO'f:E£'
INSTVARNJIMES t ' EMPf ' , 'EN»ra' , •JOB' I
CONST RA:tNTS t [II • "EMPil, STRTNG J ,

[~ ~. STRING I
[# JOB, S'l'RING] l .

OBJECT SUB~S 'COURSE'

INSTV1\.RN1\MES • l 'COUR.SE11 ' , 'TITLE' , 'OFFERINGS '

CONSTRAINTS • [# ~ COURSE#. STRING J
W TI'I'.LE , S'r:RING J
• OFFERINGS, OSET

OBJECT SUBC1'ASS ' OFFERING '
INSTV.l\:RNAMES • [' OFF~ ' , 'OOATE ' , 'LOCA'l'ION',

'ENROLLMENTS' , 'TEA~HBRS'

CONSTRAINTS 11 l 11 I • OFF~, STRING I ,
(~ ODATE , DA'l'ETIME] ,

[11 LOCATION, STRING 1 ,
[• ENROLLMENTS. NS.ET f ,
[i TEACHERS, TSET] J •

OBJECT SlJBC!JASS 'ENROLLMENT'
INSTV~RNAMES I ['EMP', 'GRADE'
CONSTRAIN'l'S t [Ii -· EMP, EMPLOY-EtE

I ii GRADE, S'mING

EMPLOYEE SIJBCLASS 'TEAO!ER'
INS'rw>.RNAMES ij I 'COURSES'
CONSTRAINTS !I- I -~ l • COURSES, CSET J J -

FIG. 23-2 Data definition for the education database (00 version)

657

TERADATA, Ex. 1014, p. 686

658 Part VI Object-Oriented Syst~

of that new instance is rhen assigned 10 the program variable OlD_OF_SET_
OF_ ALL_EMPS. Informally. OID_OF_SET_OF_ALL_~S will be used to
identify "the set of all employees.··

Now. every time we create a new EMPLOYEE object we want the OID of that
object to be insened into the cSET object identified by lhe OID saved in the variable
OID_OF _SET _OF _ALL_ EMPS. We therefore define a method for creating such an
EMPLOYEE object andJnserting its OID into thatESET object:

l ME'l'.HO.D : ESE!I

2 AOO_EMPM EMi'CPARH
3 ADD_ENAME : EIDIME_PA.'ilol

~ llDO_ JOB' : JUl!_PA.'lM
5 I E!MP_Om
6 EMP_Or:D := BMPLO'lEE NEW

7 El1P_OLD SET:_Elil'W : EMP•_PA-RM
a SET_e~V>iME ! ENAME_PARM
9 SET_Joe : JOB_PARM

10 SELF ADD: :EME_Om •

ll "Ii

Explanation:

t • anonym<>\J.S !
I' parameters

I ' local variable • t
I • new employee • I
t • i.nii:1a li:.e • /

, • Utsert; .,

• Line L defines the code that follows (up to the terminating percent sign in line 11)
to bea method that applies to objects of class ESET. (In fact, of course, exact/yon(
object of that class will exist in the system at run. time.)

• Lines 2-4 define three patameters. with external names ADD_EMP#, ADD_
ENAME. and ADD_JOB. These names will be used in messages that invoke1be
method. The correspondingintemal namesEMP#_PARM. ENAME_PARM. and
JOB_PARM win be used in the code that implements the method.

• Line 5 defines EMP_Ol D to be a local variable. and line 6 then assign!; to that
variable the OID of a new, uninitialized EMPLOYEE instance.

• Lines 7-9 send a message to that new EMPLOYEEinstance; the message specifies
three methods (SET_EMP#. SET_ENAME, and SET_JOB) and passes one paratn­
eter to each of them (EMP#_PARM to SET_EMP#. ENAME~PARM to SET_
EN AME, and JOB_PARM to SET_JOB). Note: We are assuming here that SET_
EMP#t is a method that applies to an EMPLOYEE object and bas the effect of
setting the BMP# instance variable within that object to the specified value, and
similarly for SET_ENAME and SET_J0B. We will have a little more to say re­
garding these three methods in just a moment.

• Line I 0 sends a message to SELF, which is a special variable that represents the
object to which tbe mechod being defined is currently being applied (i.e .• lhe cur­
ren1 receiver or target object). The message causes the builtin method ADD 10 be
applied to that object (ADD is a method that is understood by every "collection"-
1ype class); the effect in the case at hand is to insert. the OID of the object identified
by EMP_OID into the object identified by SELF. Note: The reason the special

TERADATA, Ex. 1014, p. 687

Chapter 23 A Cradle-to-Grave Example 659

variable SELF is required is that the parameter corresponding to the receiver object
is otherwise unnamed.

• Note that-as pointed out by the comment in line I-the method being defined Ls
likewise unnamed. ln general, ~ n fact, methods do not have names in OPAL. but
instead are identified by their signature (i.e., the comoination of the name of the
class to which they apply and the external names oLtheirpacamerers). This conven­
tion leads to awkward circumlocutions, as can be seen. Note too another slightly
unfonunate implication-natnely. that if two methods both apply to the same class
and take the same parameters, those parameters must be given arbitrarily different
external names in the two methods.

Now we have a method for inserting new EMPLOYEEs into the database, but we
still have not actually inserted any. So let us do so:

OID_OF_SET_OF_ALL_EMPS ADD_ENPfi •E009'.
ADD_ENAME : 'W<1tt',

ADD_JOB : ' Janitor '

This statement (a) creates an EMPLOYEE object for employee E009 and (b) adds (the
OID ot) that EMPLOYEE object to the set of (OJDs 01) all EMPLOYEE objects.

Note. incidentiilly, that the builtin NEW methed must now never be used on class
EMPLOYEE other than as part of the method we have just defined-for otherwise we
might create some dangling EMPLOYEE objects, i.e., employees who are not repre­
sented in "the set of ~J employees." Note: We apologize for the burdensome repetition
of cumbersome circumlocutions like "the set of all employees" and "the method we
have just defined," but it is not easy to talk about things that have no name.

To conclude our discussion of the employees case, we must say something regard­
ing the methods SET_EMP#, SET_ ENAME, and SET_JOB. As explained in Chapter
22, a pure 00 system will not expose instance varfables to the user; instead, it will
permit objects to be manipulated solely by means of metheds (encapsulation). ln ac­
cordance with this principle, we will adopt the convention throughout this chapter ihat
instance vartables are indeed hidden; if a class definition in fact defines a "public"
instance variable v, we will treat that definition as shorthand for the delinitiol'l of a pair
of methods GET_11 and SET_v, where GET_ v returns the value of v to the caller and
SET_11 sets v to the value specified by the caller.

Courses

Employees really represent the simplest possibJe case, since they correspond to "regu­
lar entities" (to use the terminology of the E/R model), and moreover do noc contain any
other objects embedded within themselves. We now move on to consider the more
complex case of r:ourses, which-although still "regulfil entities"---<lo conGepcualJy
include ceitili.n other objects embedded within lhem. In outUne, the ~reps we must go
through are as follows:

l. Apply the NEW method to class CSET to create an initially empty ":set of all
courses'' (actually COURSE OIDs).

TERADATA, Ex. 1014, p. 688

660 Part Vl Object-Oriented Systems

2. Define a method for creating a new ~OUR SE object and inserting iL~ OID into "the
set of all courses." That method will take a specified COURSE# and TITLE as
parameters and will create a new COURSE object with the specified values. It will
also apply the NEW method to class OSET to create an initially empty set of offer­
ings (actually OFFERING OlDs'). and will then place the OID of that empty set of
offerings into the OFFERINGS position within the new COURSE object.

3. lnvoke the method ju$t defined for each individual course in tum.

Offerings

The "offerings" steps are as follows:

I. Define a method for creating a new OFFERJNG object. That method will take a
specified OFF#, ODATE. and LOCATION as parameters and will create a new
OFFERING object with those ~pecified values. It will also:

• Apply the NEW me1h0d to class NSET to create an initially empty set of enroll­
ments (actually ENROLLMENT OlDs). and then place the O.ID of that empty
set of enrollment~ into the ENROLLMENTS position within the new OFFER­
ING object.

• Apply the NEW method to cla..~sTSET to create an initially empty set of teachers
(actually TEACHER OlDs), and then pJace the OID of that empty set of teachers
inro the TEACHERS position within the new OFFERING object.

2. The method will also lake a COURSE# parameter. and will use that COURSE#
value to:

• Find the c0rresponding COURSE object for the new OFFBRING object. See
Section 23.4 for an explanation of how !,his mighr be done. Nore: Of course. ihe
method must reject the attempt to creare a new offering if the corresponding
course cannot be found. We omit further consideration of such exception cases
from the rest of our discussions.

• Hence. locate "the set of all offerings" for that COURSE object.

• J1ence. add the OID of the-new OFFERING object to the appropriate "set of all
offerings."

Noce carefuUy. therefore, that (a~ mentioned in Chapter 22) OIDs do not avoid the
need for ui>er keys such as COURSE#. Indeed, such keys are needed. not JUSt to
refer to objects in the outside world. but aJso 10 serve as the basis for lookups inside
the database.

3. Finally, invoke the method just defined for each individual offering in turn,

Note. incidentally, that (in keeping with ourcontainmenchlerarchy representation)
we have chosen not to create a "~et or all offerings." One implication of this omission
is that any query that requrres that set as its scmpe-e.g., "Find all offerings in New
York"- wiU involve a cenain amount ofproceduraJ workaround code.

TERADATA, Ex. 1014, p. 689

Chapter 23 A Cradle-to-Grave Example 661

Enrollments

The difference in kind between the enmllmenis and offerings cases is that
ENROLLMENT objects include a

1
insrance variable of class EMPLOYEE-namely,

the variable EMP. whose va1ue is the OID of che relevant EMPLOYEE object. Renee
the nece-ssary sequence of steps is as follows:

I. Define a method for creating anew ENROLLMENT object. That method! will rake
a specified COURSE#. OFF#, EMP# and GRADE as its parameters and will create ._
a new ENROLLMENT object with rbe specified GRADE value. l t will then:

• Ose the COURSE# and OFF# values to find che corrcspondin.g OFFERING ob­
ject for rbe new ENROLLMENT object.

• Hence, find "the set of all enrollments'" for thar OFFERING object.

• Hence, add the OID of the new ENROLLMENT ot>ject to the appropriali! "set of
all enrOllments."

Lt will also:

• Use the EMP# value ro find the relevant EMPLOYEE object.

• Hence, place theOJD of that EMPLOYEE object in 1he EMP posrtion within the
new ENROLLMENT object

2. Invoke the method ju~t defined for each individual enrollment in tum.

Teachers

The difference in kind between the teachers and offerings cases is that TaACHER is a
subclass of EMPLOYEE. Hence:

l. Define a method for creating a new TEACHER object That method will take a
specified COURSE#. OFF#. and EMP# as its parameters. it will then:

• Use the EMP# value to find the relevant EMPLOYEE object.

• Convert that EMPLOYEE object into a TEACHER object (~;nee chat employee
is now additionally a teacher, refer back to Section 22. 7 if you need to refresh
your memory regarding the representation of superclass/subclass objects in an
00 system).

It wW also:

• Use the COURSE# and OFF# values to find 1111: corresponding OPFERING ob­
ject for the new TEACHER objec1.

• Renee. find "the set of all teachers" for that OFFERING objecL
• Hence, add the OID of the new TEACHER object to the npproprillle ··set of all

teachers."

2. In addition, the set of courses this teacher can teach must be specified somehow
and the COURSES instance variable set appropriately in rhe new TEACHER ob­
ject. We omil the details of rhii, s1ep here.

3_ Invoke the method just defined for each mdividual reacher in tum.

TERADATA, Ex. 1014, p. 690

662 Part VI Object-Oriented Systems

Relational Analogs

For comparison purposes. we close this section with a reminder of what is involved in
populating the relational version of tbe education database. Here, for example, is the
SQL code to insert employeeE009 into the database:

!NSBR'I' IN'l'O EMBL-OY8E (t:MPil , ENAME!, JQB)

VALUES ('EOIJ!I'. 'Watt'. 'Janircrr') ;

Some further examples:

INSE:RT IWl'Q COURSE .I COURSE# , 'l'rTLE \
VALUES { • COOl', 'Dat.abase '.J;Ecbno.lc;>gy 1 J

INSERT INTO OFFERlNG (COURSEo, OFn, ©DATE, LOCATION I
VALU!>S ('C001 ', ' 001 ', DATE" ' ~4 01 18', 'COG ')

UISERT mTO ENROLLMENT (COORSEli , OPF;<, l;)!IP~ , GRMlE)
vAiiUEs 1·coo1•. •004•, •Eoos·. "l ;

And so on. Note in particular that tbe information the (end) user must provide in order
to inSert, say, a new eorollmenl is exactly the same in botb tbe relational and the 00
case.

23.4 Retrieval Operations

Before getting into details of retrieval operations as such, we make the point (though it
.should already be obvious) that OPAL-like 0 0 languages in general- is essentially
record-at-a-time, not set-at-a-time. B ence, most problems will require some program­
mer to write a block of procedural code.

We consider a single example-the query "Find all New Yor k offecings of course
COOl." We suppose for tbe sake of the example that we llave a vllriable called
OOSOAC whose value is the OID of "tbe set of all courses:• Here then is tbe code:

1 COVRSE_COOL , CQOl_OPFS • COOl_NY_OFFS I
2 COVRs E_COO l
3 ,: OOSOAC DETECT : l :CX I •coo1 • = ex GET_COUR$1!;~ 1 •
4 COO l_OFFS
5 c= COURSE_COOl GET_OFFERINGS •
6 COOl_ NY_OFFS
7 : ; CD01_0F£S SFf;Fr:rr : 1 : Ox_ I 'l'lew York' " OX G.EJ'_LOCA'l'lON J •
8 C00l_NY_ OFF5

Explanation:

• Line 1 declares three local variables-COURSE_ COO I. which will be u.~ed to hold
tbe OID of course COO I; COO !_ OFFS. which will be used to hold tbe OID or '·the
set of all offerings" for course eOO I: and coo·1 _NY_OFPS. which will be used to
hold the OJD of the set of OIDs of the required offerings.

• Lines 2- 3 send a message to the object denoted by the OOSOAC variable. The

TERADATA, Ex. 1014, p. 691

Chapter 23 A Cradle-~ra~ Example 663

message calls for 1he builtin DETECT method to be applied 10 tha1 objecL The
DETECT argument is a block of code of the form

I :x I p lx l l

Here p(.t) is a conditional exprtssion involving the variable x. and xis effectively a
range variable that ranges over the members of the set to which the DETECT is
applied (i.e., the set of COURSE objects, in the example). The result of the
DETECT is I.be OID of I.be first object encoumered in that set that makes p(x)
e.valuate to true-Le., it is tbe COURSE object for course COOl , in the example.
The 0 10 of thar COURSE object is then assigned to the variable COURSE_ COO I.
Nore: [tis also possible to specify an "escape" argument to DETECT to deal with
the case in which p(x) never evaluates to true. We omit the details here.

• Lines 4-5 assign the OLD of "the set of all offerings" for course COOl to the vari­
able COOl_OFFS.

• Lines 6-7 are rather similar to lines 2-3: The operation of th.e builtin SELECT
method is the same as that of DETECT, except that it returns the OID of the set of
OIDs of all objects (instead of just the first) that make p(:c) evaluate to true. In the
example. therefore, the effect is to assign the OID of the set of OIDs of New York
offerings of course COO! to the variable COOJ_NY_OFFS.

• Finally, line 8 returns that OID to the caller (the symbol "is used to mean "Dis­
play" or "Return result").

Points arising from this example:

1. First, note that the block of code in SELECT and DETECT can involve (al its most
complex) a set of simple scalar comparisons all ANDed together-Le .. it i5 a lim­
ited form of restriction condition.

2. The square brackets soooundin,g the block of code in SELECT and DETECT can
be replaced by curly brackets (braces). lf curly brackets are used, OPAL will at­
tempt to use an index (if an appropriate index exists) in applying the method. If
square brackets are used, it will not.

3. When we say that DETECT returns the OID of the ''first" object encountered that
makes p(::c) evaluate to true, we mean, of course, the first according to whatever
sequence OP AL uses lo search the set (sets have no intrinsic ordering of their own).
ln our example it makes no difference, because the "first" object that makes the
condition true is in fact the only such.

4. The observant reader will have noticed that we have been using expressions such
as "the DETECT method," whereas we pointed out previously that methods have
no names in OPAL. Indeed, DETECT and SELECT are not method names (and
phraseolo.gy such as "the DETECT method" is strictly incorrect). Rather, they are
external parameter names for certain builtin (and unnamed) methods. For brevity
and simplicity. however. we will continue l'O talk as ifDETECT and SELECT (and
olher similar items) were indeed met.hod n11111es.

11 5. The observant reader might also have noticed that we have been using (many

TERADATA, Ex. 1014, p. 692

664 Part VI Object-Oriented Systems

times!) I.he expressiol) .. the NEW me1bod.'' This usage is in fact not incoi:rect:
Methods rhat take no arguments olher than a receiver are an exception to the gen­
eral OP AL rule that methods are unnamed.

Now, I.he foregoing simple example does not illustrate rhe point, but (becau~ of
I.he record-at-a-time level of the OPAL language) many retrieval problems will natu­
rally require the execution of <m"e or more loops. OPAL supports loops by means of a
special DO method A message that invokes DO is similar infonn to one that invokes
SELECT or DETECT:

object DO < [: X I block-of•t:ode)

Here x ranges over the members of the set denoted by object, and block-of code is
executed for each ~"Ucb member in tum. Using 6ET_1• and SET_1• methods. that code
can retrieve instance variables wilhin the individual objeclS p(the set (or update them,
of course, but retrieval is the topic currently under discussion).

IFTRUE .and lFFALSE methods are also available to support conditional code
execution. We omit the details here.

23.5 Update Operations

The 00 analog of INSERT bas already been discussed in Section 23.3. The 00 ana­
logs ef UPDATE andDE.LETE are discussed below.

Update

Updating operations are performed in essentially the same manner as retrieval opera­
tions, except that SET _v methods are used instead of GEIT _v methods.

Delete

The builtio method REMOVE is used to delete objects. More precisely, it is used to
remove the OID of a specified object from a specified collecuon. When an object
reaches a point when there are no remaining reference!> 10 it-i.e .. it cannot be accessed
at all-then OJ? AL deletes it automatically by means of some kind of "garbage collec­
tion" process. Here is an example:

QID_OF_ SET_OF_ ALL_ EMPS
REl<IOVE ' DETECT : r : EX • EOO 1 • = e:x GET_El<IP~ l .

("remove employee EOO I from the set of all employees").

But What if we want to enforce (say) a "DELETE CASCADES" ruJe?-for exam­
ple. a rule to the effect that deleting an employee is to cascade and delete (e.g.) all
enrollments for that employee as well? The answer. of course, is that we have to imple­
ment an appropriate method once again; in other words. we have to write some more
procedural code.

lncidcntally. it might be thought that the garbage collection approach to deletion

TERADATA, Ex. 1014, p. 693

Chapter 23 A Cradle-to-Grave EJ(ample 665

does al least implement a kind of ·'DELETE RESTRICTED" rule. inlllilTluoh as an ob­
ject is not actually deleted so long a.~ any references lo that object exisL However, such
is not necessarily the case. For example, OFFERING objects do not include the OID of
the c0rresponding COURSE objec., and hence offerings do not "restrict" DELETEs on
courses.

(ln fact, containment hierarchies tacitly imply a klnd of "DELETE CASCADES"
rule. unless the user chooses either

• to include the parent OID in'lhe child, or

• to include the child OID in some other object elsewhereln the database.

in which case the "containment hierarchy" interpretation no longer makes sense any­
way. See the discussion of i111•erse 11ariables in Chapter 24.)

Note finally that REMOVE can be used to emulate a relational DESTROY or SQL
DROP operation--e.g .. to destroy the ENROLLMENT class objecL The details are left
as an exercise (highly nontrivial) for the reader.

23.6 Summary

This brings us ro the end of oar ''cradle-to-grave" example. Our example wa:s based on
OPAL, a dialect of Smalltalk-SO supported by the Gemstone product. We began by
discussing data «kfinition <>peralions. showlng how object classes are created in
OPAL And pointing out that we typically need both (a) a "base" object class, such as
EMPLOYEE, that allows us to create individual object instances. and (b) a ''oollection"
abject class. such as ESET. that allows us to gather together setJ> of s\ICh object in­
stances into one or more cQllections. The reasan both arc needed, of coul'$e, is that the
base object class is just a type declaration: thus. some collection object class is required
to hold (pointers to) actual object instances.

We then considered in some detail what is involved in populating the database,
showing how appropciate methods mlght be written. Those methods were fai:dy non­
trivial. involving as they did a great deal of procedural adjusrment of existing objects in
order to maintain (00 analogs of) cenain referential constraints. (Note: We will have
more to say regarding referential constraints in the next chapter.) We stressed the point
that au "insert" operations must be performed via those defined me1hods, not directly
via the builtin NEW method. We also pointed out that user keys are still necessary; in
particular, the information the end user has lo provide on "insert" is exactly t.he same in
the 00 case as it would be in 1he relational case.

Ne:ict. we consideted retrieval operations. Since 00 systems ure essentially
record-at-a-rime. retrieval operations (like everyth:lng else) tend robe fairly procedural
in nature. However, we did give examples of the OPAL DETECT and SELECT meth­
ods, wh.icti are slightly less proeedural 1han some.

Last, we considered update operations. ~update'· pttr sc is very ~imilnr to retrieval.
except for the use 0(SET_., methods instcud of GET y methods. "Deletion" i1i done
via the REMOVE method and a garbage collection proce~s (jn OPAL, lhat is: some

TERADATA, Ex. 1014, p. 694

666 Part VI Object-Oriented Systems

00 systems do support deletion in a more explicit manner). We briefly discussed th.e
implications of this latter fact for foreign key rules such as RESTRICTED and
CASCADES.

Miscellaneous Issues

We close this section (and this chapter) with a few miscellaneous remarks regardi11g
00 database operations in general.

• First, consider the following rwo methods:

1. Find the courses auended by employee E

2. Find the ell:IPloyees attending course C

These two methods are clearJy·.inverses of each other. but they must be separntely
denned-i.e .. two separate pieces of procedural code must be written. What is
more, of course, maners get combinatorially worse as the number of unknowns in­
creases. For instance. suppose we.have courses. employees, and grades. Then each
of the following queries will require a different method to be explicitly defined:

1. Ffndtbe grade obtained by employee Eon course C.

2. Find the employees who obtained an .. A" on course C.

3. Find the courses on which employee E obtained an "'A".

4: Find the grades obtained by ernpl<>yee Eon all courses.
{ecc., etc., etc.). Furthermore, it is not at all clear which object(s) these method{s)
should be applied to: to find the grade obtained by employee E on course C. for
example, do we send a message to E or to C? (See Chapter24 for funherdiscussion
of this latter point.)

The relational approach, of course, solves all of the foregoing problems very
nicely. First,, we have the ENROLLMENT relation. which represents aJJ relevant
information in a completely symrneuic manner:

ENROLLJ1ElllT I COIJRSE~ , OFFff , EMPll , GRADE)

Each of the queries mentioned above can then be represenled by a single relational
request against this relation: there is no need to define lots of different methods,
with different (in some cases. arbitrarily different) arguments. The details are left·
as an exercise to the reader. Relational systems thus provide symmetdc exploita­
tion f4. I l: The user can access any given relation with aay combination of attribute
values as "knowns" and retrieve the other attribute values as the corresponding
"unknowns." 00 systems, by contrast, do not pr9videsymmetric exploitaUon.

• Note that we have said nothing so far in this chapter regarding relational operators
such as jQin. What would it mean to join two objects? What class of object would
the result be? What would its OID be?

1t1 fact, 00 systems typically support path expressions mstead of join. For
example, we might write
ENROl..L . OFFERING . COURSE . COURS8o

to obtain the course number of t.h.e course of the offering of the enrollment whose

TERADATA, Ex. 1014, p. 695

Chapter 23 A Cradle-to-Grave Example 667

OLD is given in the v.ariabJe ENROLL. Such an expression is theOOcquivalcnt of
a cenain relatfonaJ expression (involving rwo joins and a projection). Bu.t note that
such "joins" ar:e therefore limited (a) to predefined paths only. and (b) to many-to­
one joins enly. Nore too lh:at sutll "joins'' do not yield new objects, i.e., they simply
naviMte through the database to lecate existing objects.

• We musrnot conclude our discussion of 00 database operations without consider­
ing lhe question of how much of what we have seen is intrinsic to 00 "'l'Stems in
general and how much is dut merely ro quirks of OPAL specifically. ft seems Lo
this writer that-in principle, at least--certaia of the complexities we have been
examining couJd have been avoided; for example, the fact that receiver parameters
are unnamed and1he fact that methods are unnamed both seem to lead to unneces­
sary complications. But other a'>pects of "the 00 model." such as the heavy em­
phasis on pointers and the record-at-a-time nature of programming and the fact that
objects !-hemselves are unnamed, seem to be more inherent. and some of the com­
plexity we have seen is due to such matters also.

Exercises

23.1 Design llll 00 version of the suppliers-and-parts database. Nore: This design will be used
as a basis for Exercises 23.2-2.3.4 below.

23.2 Write a suitable sel of OPAL data definition statements for your 00 versio11 of the
suppliers-and-parts datiibase.

23.3 Sketch the details of the necessary "database populating" methods for your 00 version or
the suppliers-and-parts databa-se.

23,4 Write OPAL code for the following queries on your 00 version of the suppliers·nnd·parts
databa_~ :

(a) Get all London suppliers.

(b) Gelallredpans.

23.S Consider the education database once again. Show what is involved in (a) deleting an
enrollment. (b) deleting an employee, {c) deleting a course (n,~suming in every case lhru
the OPAL-style garbage collection process applies). State any assumptions you make re­
garding such matters as "DELETE CASCADES," "DELETERESTRTCTED."" etc.

23.6 Suppose the suppliers-pans-projects database is to be represented by means of a single 00
containment hierarchy. !:low many possible such hierarchie.~ are there'? Which one i& be~t?

23.7 Consider a varfacion on the suppliers-parts-projects dat.abnse in wnich, inMendl of record·
ing that cenain suppliers supply certain pans to certain projects, we wish to record only
that (ii) certain suppliecs supply certain parts, (b) certain parts are supplied lo ci::nain pro­
jects. and (C) certain projects w:e supplied by certain ~appliers. Row niany possi\llt: 0 0
designs are there now (with or without containment hiemrchles)?

References and Bibliography

23.1 Geerge Copeland and David Maier. "Making Smalltalk a Daiabase Sysuim" rProc. 1984
ACM SfGMOD lntemnt.ional Conference on Management or Daw. Boston. Mass. (June
1984). Republished in M. Stonebraker (ed.). Readi11gs 111 Datdba.re Sy.1·1t!111S. San Mnicrt.
Calif.: Morgan Kaufmann (I 988).

TERADATA, Ex. 1014, p. 696

668 Part VI Object-Oriented Systems

Describes some of the enhancemcnL~ and changes that were made to Sm:rlltalk-80 122.61
in order to ecc:ne GemStone and OP AL.

23.2 Servio Cgrporation. GemSume Referern·e Mumwl. Beavenon, Ore. (1990).

Answers to Selecte~ Exercises

23.S We do not give a de\ailed answer to this que~tion. but .we do make one remark concerning
lts diffieulcy. First. let us agree 10 use the term ''delete .. as a sbonhand 10 mean .. make a
candidate for physical dele1ion" {i.e.. by erasing all references IQ the object in question).
Then in order to delete an object X. we must first tind all object.S Y that include a reference
to X; for each such object Y, we musl then either delete that object Y. or at least erase the
reference in that object Y to the object X (by setting thaueferenc.e to the sgecial value nil).
And pan of the problem .is that i1 is not possible 1.0 tell from !be data defmirion alone
exactly which objects include a reference to X. nor even how many of them there are.
Consider employees. for example, and the object class ESET. ln princi.ple. there could be
any number of ESET instances, and any subset of thoseESET instances could include a
reference to some specific employee.

23.6 There are obviously six pos$ible hierarchies:

S cont:alns (P cbntai..ns J))

S con~alns (.ol contdlns p

P co=alns \ J contains s
p COT1La1-as ' S contailns J
J cont;nrn> S con~ai.ns p

J cont:atns (P contains (s I

'"Which is best?" is unanswerable withoul additional information. but almost certainly all
of them are bad.

23.7 There are at least twelve "'obvious,. containment hierarchy designs. Here are four of them:

s conrains P contains I J

S contains J conlains I P
s contains .first: P t:hen ;J

s contains t.irst J then P

There are many other candidate designs-for example. an '"SP" object that shows directly
which. supplier,; supply which parts and also include~ two embedtled sets of projecl6, one
for the supplier and one for the part.

There is also a very simple design involvmg no hierarchies at all. consisting of fill
"SP" objec(, a "'PJ'' object. and a "JS" object.

TERADATA, Ex. 1014, p. 697

24 Additional 00 Concepts

•

24.1 Introduction

In this chapter we take a brief look at a somewhat mixed bag of issues. The issues in
question are all part of what is usually thought of as the general subject of 00 systems,
though in fact-despite the overall title of this chapter-every one of those issues is
actually quite independent of whether the system is object-oriented or not; there is no
reason, for example, why a database programming language should not be used with a
_relational system (see. e.g .. reference [24.2)). The issues are:

• Database programming language.~

• Versioning

• Transaction management

• Schemaevolution

• Performance considerations

We also consider some more Lradilional aspect.~ of database management and see
how they lookin an 00 context. Specifically. we examine:

• "Relationships" (i.e .. referenttal integrity)

• General integrity constraints

• "Methods that span classes" (i.e .. multi-argument functions)

• Ad hoc query

plus a few miscellaneous items. Our discussions will lead to a number of Important
questions regarding 00 systems.

24.2 The Issues

Database Programming Languages

The OPAL example~ in !.he previou~ ehap1cr illustrate the point that 00 systems typi­
cally do no! employ the embedded databus1• /ang11a,1w approach found m most (SQL)

TERADATA, Ex. 1014, p. 698

670 Part VI Object-Oriented Systems

relational products today. Instead. the same integrated language ls used for both
dai.abase operations and nonctatabase operations, To use the terminology of Chapter 2.
the host language and the database language are lightly coupled in 00 systems (in fact,
of course. the two languages are one and the same).

Now, it is undeniable that there are many advantages to such an approach [24.2].
One important one is the improved type checking that becomes possible. a.<; discussed
in Chapter 19. And reference (22.12] argues that the following is another:

"With a single unified language, there is no impedance mismatch between a proce­
dural programming language and an embeddedDML with declarative semantics."

The tenn impedance mismatch refers to the difference in level between today's typi­
cal programming languages, which are record-at-a-time, and relational languages such
as SQl. which are set-a[-a-time. And it is true that this difference in level does givelise
to certain practical problems in relational products. However, the solution to those
problems is not to bring the database language down LO the record-at-a-time level
(which is what 00 systems do)!- it is to introduce set-at-a-time facmties into pro­
gramming languages instead. The fact that 00 lal)guages are record-at-a-time is a
throwback to the days of prerelational systems such as IMS and IDMS.

To pursue this Latter point a moment loTiger: It is indeed the ca~ that most existing
00 languages are quite procedural or "3GL" in nature. As a consequence, all of the
relational set-level advantages are lost; in particular, the system's ability to optimize
user requests is severely undermined, which means that-as in prerelational systems-­
performance issues are largely left to some human user (the application programmer or
the D,BA). Wllat is more, (a) most installations currently use several distinct host lan­
guages anyway, not a "single language" (unified or otherwise); Cb) in an 00 system,
that "siogJe unified language" is likely to be OP AL. C++. or some otl\er 00 language
that is unfamiliar to most installations.

As an aside. we remark that although many 00 languages have been defined, the
two most commonly seen in the marketplace are indeed OPAL (or some other dialect
of Smalltalk) and C++. C++ in particular (24.6,24. I 0) is supported by most commercial
products and looks like becoming a de fe.cto standard (de-spite the fact that It is not
very "00-pure"). Efforts are al~o under way to define an official standard version
ofC++_

Note: Our discussions in this subsection have been concerned specifically with
programming languages, not with query languages. Indeed. as mentioned in Chapter
22, the idea of ad hoc query is somewhat at odds with the "pure" 00 idea of object
encapsulation; bowev.er. most 00 systems do provide some kind ot query language
(usually a derivative of SQL, With a name like "Object SQL" or ' 'OSQL," though the
reader is cautioned that such languages often do not look much like conventional SQL).
Another point of difference 1•is-a-vis relational systems, therefore. is that 00 systems
typically ase two different languages. one for application programming and one for
interactive q,uery; thus, they typically do nol support the dual-mode pr.inciple (see
Chapcer 8, Section 8.8).

We will consider the question of qd hoc query further in Section 24.3.

TERADATA, Ex. 1014, p. 699

Chapter 24 Additional 0 0 Concepts 671

Versioning

Many applications need the concept of multiple versions of a given o~ject; examples
include software develop ment, har~ware design. document creation, and so forth (see,
e.g .• references [24.4.24.8-24.9)). And some 00 systems support this concept directly.
Such.support typically includes:

• The ability to create a new version of a given objecc, typically by checking out a
copy of the object and movi,pg it from the database IQ the user.'s private worksta­
tion, where it can be kept and modified over a possibly extended period of time
(e.g .• hours or days)

• The ability to establish a given object version as the eurrent darabase version, cyp­
ically by checking it in and moving it from the user's workstation back to the
dacabase (which might in tum require some kind of mechanism for merging dis­
linct vecsions)

• The ability to delete (and ~chaps archive) obsolete versions

• The ability to interrogate the version history of a given object

Note that-as Fig. 24.1 suggests-version bistorieii are noc necessarily linear (ver­
sion V .2 in that figure branches into two distinct versions V .3a and V.3b, which are
subsequently merged to produce version V.4).

Next, becaU$e abjects are typically interrelated in various ways, the concept of ver­
sioning leads to the concept of configurations. A configuration is a collection of mu­
tually consistent versions of .interrelated objects. Configuratian support typical1y includes:

• The ability to copy an object version from one configuration to another (e.g .. from
an "old" oonfigura~on to a "new" one)

• The ability to move an object version from one configuration to another (i.e., to

add it to the "new" configuration and remove it from the "old" one)

Internally, suctloperations basically invoJve a lot of pointer juggling-but there
are major implications (beyond the scope of this book) for language syntax and seman­
tics in general and ad hoc query in particular.

I I
IV .)a I

I v.i I , I
V.2 I I I

<!'~C.
I

v . ll I

a
FIG. 24. i "fypical version history

TERADATA, Ex. 1014, p. 700

672 Part VI Object-Oriented Systems

Transaction Management

00 applications often involve complex processing requirements forwhich the classical
transaction management controls described in Chapters 13 and 14 are not well suited.
The basic problem is that (as suggested under "Versioning'' above) complex transac­
tions might las1 for hours or days, instead offor a few mJIJjseconds<at most as in.tradi­
tional systems. As a consequence:

l. Rolling back a transaction all the way to the beginning might cause the loss of an
unacceptably large amount of work

2. The use of conventional locking might cause unacceptably Jong delays (waiting for
locks to be released)

Point I here implies the need to be able to perform partial rollbacks; point 2 im­
plies the need for some nonlocking concurrency conttol mechanism. Long transactions
and nested transactio11s both address these requirements somewhat. We do not
discuss these concepts in detail here, but content ourselves with the following
observations:

• Long transactions: Here the concept of savepoints [13.lQ) and the concept of
sagas l l 3.8] are both relevant, sinee both effectively provide some kind of partial
rollback capability. Furthermore. moltiversion concurrency control [14.ll also
looks attractive (especially if the system supports versioning anyway as discussed
above), because it implies among other things Lhac

• Reads are never delayed (in particular, they are not delayed by any concurrent
long transaction)

• Reads never delay updates (in particu!M, they do not delay any concurrent long
transaction)

• lt is never necessary to roll back a read-ooJ y transaction

• Deadlock is possible only between update transactions

• Nested transactions: The nested transaction idea can be thought of as a generill­
ization of s'l!vepoints [13.101. Savepoints allow a transaction to be organized as a
sequence of actions that can be rolled back individually: nesting, by contrast. al­
lows a transaction to be organized (recursively) as a hierorchyuf such actions (see
Fig. 24.2). Io other words:

• BEGIN TRANSACTlON is extended to suppon subtranSactions (i.e., if BEGIN
is issued when a transaction is already running, it starts a child transaction)

• COMMIT TRANSACTION "commits" but only within the parent scQpe (if this
transaction is a child)

• ROLLBACK TRANSACTION undoes wotk back to the start of this particular
subtransaction (including child, grandchild, etc., transactions)

See the answer to Exercise 13.2 in Chapter 13 for further discussion.

TERADATA, Ex. 1014, p. 701

Chapter 24 Additional 0 0 Concepts 673

Al

~ I

I AJ.11
..-----'' '~--~

1 Ju I L I :u I e~c.

FIG. 24.2 iypical nested transaction

Schema Evolution

Traditional database products typically support only rather simple changes to an exist­
ing schema (e.g .• the addltion of a.new attribute to an existing base relation). However,
some applications require more sophisticated schema change support, and some 00
prototypes have investigated this problemin depth. Note, incidentally, that tbeproblem
is actually more complex in an 00 environment, because the schema is more complex.

The following taxonomy of possible schema changes is based on one given in a
paper an the 00 prototype ORION [24.3):

• Changes to an object class

l. Instance variable changes

• add instance variable

• delete instance variable

• renamelnstance variable

• change instance variable default value

• change insiance variable data type

• change instance variable inheritance source

2. Method changes

• add method

• delete method

• rename method

• change method internal code

• change method inheritance source

• Changes to the class hierarchy (assuming multiple inheritance)

• add class A to superclass list for class B

• delete class A from supercla$S list for class B

TERADATA, Ex. 1014, p. 702

674 Part VI Object-Oriented Systems

• Changes to tfle overall schema

• add class (anywhere)

• delete class (anywhert:)

• rename class

• partition class

• coalesce classes

It is not clear how much transparency ean be achieved with respect to the foregoing
changes, however, especially since vlew support is typically not include.d in "the 00
model" ($ee Section 243). ln fact, the BQSsibility of schema evolution implies a signif­
icant problem for 00 systems, owing to their record-at-a-time nature. As reference
(25.101 puts it: " [f the number of indexes changes or the data is reorganized to be dif­
ferently clustered (see the next subsection below], there is no way for [methods] to
automatically take advantage ofsuch changes."

Performance Considerations

Raw performance is one of the biggest objectives of all for 00 systems. To quote Cat­
tell[22.2]: ''Ao order-of-magnitude performance difference can effectively constitute a
functional difference, because it is not possible to use the system at all if performance
is too far below requirements" (slightly paraphrased).

Many factors are relevant to the perfonnaoce issue. Here are a few of them:

• Clustering: As we saw in Chapter 18, physical clustering of logically related data
on the disk is one of the most important performance factocs of all. 00 systems
typically 11se the logical information fr<>m the schema (regarding type hierarchies,
containment hierarchies, or olher explicit! y declared interobject relationships) as a
hint as to how the data should be physically clustered. Alternatively (and prefera­
bly). the OBA miglit be given some more eitplicit and direct control.

• Caching: As suggested under "Versioning" above, 00 systems are typically used
in a client/server enviromnen!, in which users "check out" data from the database
and bring it down to their workstation andkeep l t there for an extended period of
time. Caching logically Ielateddata at the clientsite qbvlously makes sense in such
an eovirorunent.

• Swizzling: The term "swizzling" refexs to the process of replacingOID-style pointers
by main memory addresses when objects are read into memory (and 1•ice versa
when the objects are written back to lhe database). The advantages for applications
that process "complex objects" and thus require extensive pointer chasing are obvious.

Reference [22.21 discusses a benchmark called 001 for measuring system perfor-
mance en a bill-of-materials database (see also reference [24.5]). The benchmark involves:

l. Random retrieval of 1000 parts, applying a user-defined function to each

2. Random insertion of 1000 pans

TERADATA, Ex. 1014, p. 703

Chapter 24 Additional 00 Concepts 675

3. Random part explosion (up to 7 levels). applying a user-defined function to every
part encountered

According to reference [22.2J. comparison of an (unspecified) 00 product with an
' (unspecified) scate-o(-lhe-art relational product showed up to two ordets of magnitude

difference in favor of 00---especially on "warm" aecesses {after the cache had been
populated). However. reference [22.2] i5 also careful to say that ''The differ-
cmces ... should not be attributed to a difference be1ween the relari0nal and 00 mod-
els There is .reason to believl!tbat most of the differences can be attributed 10 [im-
plementation matters!." This disclaimer is supported by the fact that the differences
were much smaller when the database was "large" (i.e .. when it was no longer possfble
to accommodate the entire database in the cache).

24.3 Some Questions

As promised in the introduction. we now tum our anention to some aspects of database
management that are usually regarde<I as traditional, see how they look in an 00 con­
text and use them as a basis For raising a number of ciuestions regarding 00 techmal­
ogy. The aspects in question are as follows:

• Relationships

• Integrity

• Methods that span classes

• Ad hoc query

• Miscellaneous

Relationships

00 products and the 00 literature typically use the term •·relationships" to refer spe­
cifically ~o those reJatiooshlps that would be represented by foreign keys in a relational
database. But they distinguish:

I. Subclass-to.superclass ("ISA") relationships

2. One-tQ-many relationships

3. Many-to-many relationships

We discuss each case in turn.

1. Subclass-to-superclass relationships are represented by the dass hierarchy-e.g ..

• • • R.ECTANCLE I:Sl\ ' POLYGON J , • ,

(to use the hypothetical syntax ofChapter22).

2. One-to-many relationships are represented either by a containment hierarchy-e.g ..

• . • DEFT' • • . (• . • EMPS REF I SET I REF (EMF) 1 J l

or by a m .ecbanism called " inverse variables" (see below).

TERADATA, Ex. 1014, p. 704

676 Part VI Object-Oriented Systems

3. Many-to-muny relationships are repre-;ented either by object sbaring~.g., sup­
plier and part objects might both .. contain" (and Ums share) shipment objects-or
by ''inverse variables" again.

Inverse variables: Consider departments anti employees once again. instead of
adopting a oontainmenL hierarthY representation. we might decide to define two sepa,.
rate object classes (rather ns in a relational database). and to include hoth (a) an EMPS
instance variable in each DEPT. corresponding to the set of employees in the depart­
ment, and (b) an EDEPT instance variable (say) in each EMP, corresponding to the
depanment for this employee:

DEPT DIPS REF I SE"l' (REF t EiMP l J

ilWER& E EMP. r:DlilP'T) . ••
EMP E:['lf:P'!' REF' ' netf>'I ' lNVSRSE L'BP'l' . J::M.l?S ' I • • •

The r 'fere11ce instance variable EDEPT and the rejere11ces set instance variable
EMPS are said to be inverses of each other. Inverse variables obviously need to be kept
mutually cansistent~ this is one aspect of referemial integrity (as that concept applies to
0 0 systems.), and we will return to itinjust a moment

The foregoing example illustrates the one4o-many case. Here is an example of the
many-to-many case:

s PAP.'l'S REF I SET t REF' I r I l l

INVERSE P .SUl'PS J
p SUPPS REF SE'!' REf' I S I I)

UNEPSE s ?ARTS

Here the inverse variables are both refere11ce set variables.
One obvious question that arise!\ is the followln~ How does 00 deal with relation­

ships that involve more than two object dasses-e.g~ suppliers. pans. and prejects?
The best (i.e .• mo~t symmetric) answer LO th4. question. of course. is that an "SPT'
object class is created, in which each SPJ object has1m "inverse variables·· relationship
with the appropriate supplier, the appropriate pan. and the appropriate project Given
Lhat creating a. new object class is apparently the best approach for ''relationships" of
degree greater lb1µ1 two. tbeque..<rtion arises as to why "relationships'' of degree two are
not treated in the same way.

Also-regarding inverse variables specifically-why is it necessary to introduce
the asymmetry. the directionality, and two different names for what is essentially one
thing? For example, the 00 analogs of the iwo relati~mal cxpres1;ions

SP P~ WF1ERE SP .. S ~ =- ' Sl.'
SP.S• Wf!ERE SP.Pi' : ' Pl.'

lc1ok some I bing Ii ke this:

S.PAR'.l!S P~ J/HEPE 5.S ~ ; 'Sl'
P.SO?PS s~ I/HERi. f r # : • "- .

(hypothetical c;ynwx. deliberately cbo~en to avoid irrelevant distinction~) .

Referential Integrity: A!i promised. we now Utk-e aslighLly closer look al 00 support
for referential imcgnty (frequently claimed as a strengtb of 00 systems, incidentally).

TERADATA, Ex. 1014, p. 705

,,

Chapter 24 Additional 0 0 Concepts 677

Various levels of support are possible. The following classification scheme is taken
from Cattell [22.2]:

• No system support: Referential integrity is the responsibility of the user or user­
wrillen methods (just as it was ln the original SQL standard. incidentally).

• Reference validation: The system checks that all references are to objects of the
correct type: however. object deletion might not be allowed (instead, Objects might
be "garbage collected'' when there are no remaining referenl:eS to them. as in
OP AL). As explained in Chapter 23. this level of support is roughly equivalent (but
only roughly) to a .. DELETE CASCADES" rule for nonshared subobjects within a
containment hierarchy and to a "DELETE RESTRICTED'' rule for pther objects.

• System maintenance: Here the system keeps all references up to date automati­
calJy (e.g. .• by setting references to deleted objects to 11i/). This rule is somewhat
akin to a ·'DELETE NULLIFfES" rule in a relational system.

• "Custom semantks": "DELETE CASCADES .. {outside of the containment hier­
archy) might be an example of ·'custom semantics." Such cases are typ.ically not
supported by 00 systems at the rime of writing. and must therefore be handled by
appropriate melhods- in other words. by user-written procedural code.

Integrity

We now tum to general integrity constraints. Here is an example (taken from Section
16.7): "Suppliers with statu~ less than 20 must not supply any part in a quantity greater
than 500." Using the integrity language developed in Chapter 16. this constraint mighr
be expressed ns follows in a relational system:

CREATE 1:NTEQRTI'Y RULE. C95
1~ S.S1'ATIJS < 20 ANO S.SP : SP.S•
TiraN SP. crt s sno ,

ln an 00 system, by contrast. this constrain~ will almost certainly have to be enforced
by procedµraJ code (though reference [24. 7] does describe a prototype implementation
of declarative integrity constraints in an 00 system). Such procedural code will h11ve
tO be included in at least al1 of the fbllowi ng:

1111 Method for creating ashipment

• Method f'or changing u shipment quanrjty

• Method fior changing a s upplier status

• Method for assigning a shipment to a different supplier

Points and questions arising:

I. We have obviously lost the possibility of the system detem1in1ng for use If when to
do the integri1y checking.

2. How do we ensure that all necessary methods 1 nclude all necessary enforcemem
code?

3. How do we prevent the user from (e.g.) bypassing the ··crea1e i.hipment" melhotl

TERADATA, Ex. 1014, p. 706

678 Part VI Object-Oriented Systems

and using the bu ii tin me1hod NEW directly on the shipment object dass (thereby
bypassing theimegrity check)?

4. How do we ensure uniformity of error messages:

• across all methods invoJved inenforcing "lhe same" constraint'!

• across all constraints {e.g., all referential constraints) that bear a strong family
resei;nblance?

5. If the constraint changes. how do we find all methods that need to be rewritten?

6. How do we ensure that the enforcement code is correct?

7. How do we do deferred (commit-time) integrity cnecJcing?

8. How do we query the system to find all constraints that apply to a given object or
combination of objects?

9. Will the constraints be enforced during load and other utility processing?

I 0. What about semantic optimization (i.e .• using integrity constraints to simplify que­
ries, as discussed in Chapter 18)?

And what are the implications of all of the above for productivity, both during applica­
tion creation and subsequent appUcation maintenance?

(As a practical matter, incidentally, the SQU92 standard [8. l l does include declar­
ative support for integrity constraints, and DBMS products, 00 or otherwise. are gomg
to have to support that standard. The implications for 00 systems are not clear.)

A note a11fimctional dependencies: Functional dependencies (FDs) are a special
kind of integrity constraint. and we have seen elsewhere in this book that the system
needs to know about FDs in order to behave in a variety of "intelligent"' ways. But 00
systems provide no way of declaring FDs. In fact, some writers seem to re-gard such a
lack almost as a virtue. As we know, FDs are important for database design: however.
reference [22.l2j says:

"Complex [data] can be represented directly [in an 00 system), without the need
co normalize ... "

Now, it might be true that 00 eliminates 1he "need to normalize." in the sense that
it directly supports unnormalized objects (i.e., hierarchies). However, it does nm follow
that 00 automatically eliminates I.he problems that unnormaHzed objects cause! The
point cannot be overemphasized that "the need to11onnali2.e" is not something that is
peculiar to relational systems. i.e .. something that can be ignored if lhe system is not
relational. On the contrary, the problems that nOJmalizalion solves are in he rem prob­
lems, and do not go away just because the data structure happens to be something other
than relational.

Methods Tt\at Span Classes

Consider lhe education database from Chapter 23 and the query "Find the grade ob­
tained by employee Eon course C' (where E and Care parameters). Let us suppose a
method M has been written to implement this query. ls M part of lhe EMPLOYEE

TERADATA, Ex. 1014, p. 707

Chapter 24 Additional 00 Concepts 679

object class or the COURSE object class? Whichever it is. why? How does the user
know? Whai are the implications?

To state matters differently: The idea of afunc1ion or method being bundled in with
an object class works fine so long ~the function in question takes just one argument.
But as soon as 1wo or more arguments are involved. a degree of arbitrariness inevitably
creeps in. ln fact. some-methods-NEW is an ex.ample- are bundled, not with the ob­
ject class of one of their parameters, but rather with that of their result, which seems to
introduce yet another element of arbitrariness.

So let us step back for a moment. Why are methods bundled in with an object class
anyway? The a nswer is that they need privileged access-access, that is, to the internal
represenration (i.e., private instance variable.s) of objects of the class in question. (Ac­
cess to other objects. by contrast. is by means of the usual GET and SET methods.)

But we already have a mechanism for dealing with privileged access. namely the
security mechanism.* Would it not be better to unbundle methods from object classes,
and instead use the security mechanism to control which methods are allowed to access
the internals of which objects? Such an approach would have the advantages rthat :

• Methods could be permitted to access the internals of any number of objects in­
stead ofbeing limited to just one.

• The asymmetry, arbitrariness, and awkwardness inherent in the bundling scheme
would be eliminated.

II ln particular, the ad hoc distinction between private and protected instance varl,.
ables would be unnecessary.

ln other words, i1 is lhe opinion of this writer that the bun.dling of methods with
object classes should not be regarded as a fundamental component of "the 00 model."
Please note that this is not a criticism of methods as such. onJy of the bundling aspe<:t
of such methods.

Ad Hoc Query

We have suggested a couple of times already thai 00 systems might have some diffi­
culty over ad hoc query. As we pu1 i1 in Chapter 22. " ... if ii is really rrue that pre­
defined methods ar:e the only way to manipula1e objects, then ad hoc query is impossi­
ble !-unJess objects are designed in accordance with a certain very specific discipline:•
For example. if the only methods defined for DEPT objects are HIRE_EMP,
FlRE_EMP, and CUT _BUDGET, lhen even a query as simple as "Who is the manager
of the programming department?" cannot be handled.

Careful consideration of examples such as the forego.ing leads to the following
conclusion. If we are indeed to be able to permil ad hoc queries agains1 objects of some
given class, then we must do 1he following two tb.tngs:

• Note 1ho1 we we tolbng ob<lu1 00 JatfJl1asnys1cm> spedfionlly hare. 00 ~rognammmg $)'Mems typlcally
dJd nol ho\1: O <OCUnl) mechnmlj11l, iU1d 1hi$ ~l~(gncttl)nck probably O<C:l.!U111$ for the tUITCJ11 >ilualiOn

TERADATA, Ex. 1014, p. 708

680 Part VI Object-Oriented Systems

l. Define and main1ain a ·'collection" lhat is the se1 of all currently exisfi11g objects of
lha1 class. This colleclion will serve as a defining scope for queries, much as base
relations do in a relational system.

2. Define the public interface for tha1 class fa sud1 a way as to expose one candidate
represemation of the objects to the user.

For example, consider the classes POINT and LINESEG (line segment). IT we de­
fine GET methods for the start and end points of line segments. and GET methods for
the x- and y-aoordlnates of pointS-and if we permit references to such methods to be
nested within scalar expressions in arbitrary ways-and if we do indeed define and
maintain a collection that is lhe ser of all line segments, and another collection that is
the set of all points-then we can indeed define an ad hoc tiue.ry language that wm
permit the user to as.le arbitrary unplanned queries agains1 objecti; of those classes. For
example:

• Find all tine segmencs stanlng at the origin (0,0)

1111 Find an line segments oflength one unit

• Find the midpoint of a specified line segment

(and so on). Note very carefully that the fact that line segments might internally be
represented by MJDPOINT. LENGTH, and SWPE, and points by polar coordinates R
and THETA , iu neither here nor there.

Points arising:

I. GET methods are sufficien1 for query per se, of course. SET methods are needed
to permit arbitrary updates.

2. There is nolhing wrong with the idea of expoSing more than one candidate repre­
sentation for a giv.en class. In the case of class POlNT, for example. we could
define methods GET _,t and GET _y and methods GET _rand GET_0, thereby mak­
ing queries thaL are expressed in teans Glf polar coordinates just as easy to fonnUlate
as ones expressed in terms of Cartesian coordinates. In effect, we would be telling
the user that each point has an x property and a y property and an r property and a
9 property. Ffowever, we could nol pretend that these properties were all indepen­
dent of one another; we would have to explain tha1. e,g., changing-rhe value ofx or
y will have the side•effect of changing both rand a. in general. (Furthermore, we
would have to explain the exact nature of the relationship between (x,y) and (r,9).
so that the details of those side-effects would be explicable and predictable.)

Note: We do not mean to suggest by the forcgaing that the various GET and SET
methods should be the only mernods defined for a given class. Ac the very least. £here
needs to be an appFopriate constructor function (NEW or some analog thereof) to create
new instances of the class. al,so a corresponding "destructor" function to destroy such
instances again. In addition. there almost cenhlnly need to be methods for comparing
class instances. assigning class instances, etc.

i

TERADATA, Ex. 1014, p. 709

Chapter 24 Additional 00 Concepts 681

Miscellaneous

We close !his section wi1h some comments and questions regarding a few miscella­
neous topics: views. the catalog. missing information. and closure.

' • Views: W hat is !he analog of views in an 00 system'?

Some 00 systems do suppon derived (public) instance variables-e.g .. the in­
stance variable AGE might be derived by subtracting the value of the instance vari­
able BIRTHDA TE from the i,;urrent date-bu1 such a capability falls far short of a
full view mechanism. Note: This question is related to the question of derived ob­
ject.s in general (see Chapter 25). See also reference (24.1]. which describes some
research :ideas for view suppon in an 00 system.

• The catalog: Where Is !he catalog in an 00 system? What does i1 look like? Are
there any standards?

lncidentaJly, this is as good a place as any 10 poinl out that there is really a differ­
ence in kind between an 00 DBMS and a relational DBMS. A relational DBMS
comes ready for use: As soon as the system is installed, users can start building
databases. writing applications. running queries. and so on. An 00 DBMS, by
contra.qt, is best thought of as a kiild of DBMS construc tion kit: lt provides a set of
buildlng block.~bject library maintenance tools. method compilers. etc.-that
can be used by technical staff (i.e., database professionals) 10 construct a U BMS in
the more familiar sense of the tenn. In particular. those database professi-0nals will
have to construct an appropdate catalog for the objects and melhods they create.
What is more, that conscructed DBMS will be application-specific: It might, for
example, be tailored for a certain set of CAD/CAM applications. but be essentially
useless for, e.g., medical applications.

• Missing information: Missing information is far from being a fully solved prob­
lem in relational systems (see Chapter 20). But 00 systems mostly seem to ignore
the problem altogether: at best !he evidence suggests that the 00 community lags
some way behind the relational community in this regard. For example: ··1s nil a
member of every rctassJ?" f22.12],

• Closure: What is the 00 analog of the relational closure property? Note: This
question is actually an exrremely imponant one. We will revisil it in Chapter 25.

24.4 Summary

In this chapfer we have concerned oursclvc:. with the following major topics.

• Database programming fa11g11ages: We explained lhe impedante mismatth
problem. and claimed that the solution to tbat problem was not to bring the
database language down to the record-at-a-time level. but rather 10 raise the pl'Q­
gramming language to the set-at-a-ti me level. Indeed, lbe fact that 00 languages
are so procedural is a i;evere disadvanruge of 1ho~e languages: in panicular. u seri­
ously undem1ines optimizability.

TERADATA, Ex. 1014, p. 710

682 Part VI Object-Oriented Systems

• Versioning: We briefly described the ideas of version and configuration support
and the basic notions of checking out database objects and subsequently checking
in those objects again.

• Tra11sac1ion management: 00 transactions might last for hours or days, instead of
just a few milliseconds. As a result, support for long and nested transactions be­
comes desirable. We briefly considered the use of multiversion concurrency con­
trol in this connection and summarized some of its advantages.

• Schema evolwio11: We presented a taxonomy of "Possible schema changes, and
pointed out in passing that the schema evolution problem is actually more complex
for an 00 system, because (a) the schema itself is more complex, (b) "the 00
model'' typically does not include any view sqpport, and (c) 00 code ls typically
record-at-a-time.

• Performance considerations: We stressed the point that performance is-one of the
biggest objectives of all for 00 systems, and briefly considered certain perfor­
manee-related issues, viz, clustering, caching, and pointer swizzling. We also
mentioned the 001 benclunark.

• Relationships: The term "relationships" is typically used in 00 contexts to refer
specifically to the 00 analog of foreign key relationships in the relational world.
However, subc111$S-lo-Superclass rela:tionships, one-to-many relationships, and
many-to-many relationships ate typically all treated differently. In particular, we
discussed the use of inverse variables and various possible levels of referential
integrity su_m>ort- none at all, "reference validation," system maintenance, and
"eustom semantics." Where pqssibJe, we related these cases to tbeiuelational an­
alogs.

• Integrity: We were very critical of the fact that 00 systems typically handle integ­
rity constraints procedurally (via methods), not declaratively.

• Methoas that span cla~·ses: We were also critical of the fact that 00 systems bun­
dle methods in with objec1 classes, especially as the choice of which particular
class the method is 10 be bundled wlth is often arbitrary. We suggested that meth­
ods in fact 11ot be so bundled, and that suitable extensions to the system's security
mechanism would be a preferable means of controDing whieh methods have access
to tbelnternals of which objects.

• Ad hoc query: We proposed a particular discipline that would allow 00 systems to
provide full ad hoc query support. The key component of that dlscipline consisted
in exposing one candidate represemMion of objects to the u~er (through appJ"Opri­
ate GET methods).

• Miscellaneous: Einally, we offered a few comments regarding views, the cata­
log, missing information, and closure. 1n particular. we pointed out that there is
really a difference in kind between an 00 DBMS and a relational DBMS, inas­
much as a relational DBMS comes ready for use, whereas an 00 DBMS. by con­
trast, is more of a co11struotion kit for building application-specific DB'MSi;.

TERADATA, Ex. 1014, p. 711

II

Chapter 24 Additional 00 Concep15 683

To pursue this last point a Httle further: We could speculate that the difference in
kind referred to reflects a difference in origins between the two disciplines. It appears
to this writer that 00 database technology most likely grew out of a desire 0111 the part
of 00 application programmers- for a variety of application-specific reasons-to
keep their application-specific objects in persistent memory. That"persistem memory~
could then cettainly be regarded as a databas~ but (a) it was indeed application­
specific, and as a consequence (b) there was liule perceived need to be able to perform
ad hoc quei;ies against it. Thus, the notions that

•
I . Such a database might be shared among M!veral applications, and hence that

2. The data should be subject to certain application-independent integrity constraints,
and also that

3. The data should likewise be subject to certain.security constraints,

aIJ surfaced later, after the basic idea of storing objects in a database was first con­
ceived, and thus aJI constitute "add-ons" to the original "00 model ..

Now, the foregoing speculations might be a lrttle wide of the mark. but they do
seem to this writer to explain some of the differences in emphasis that can be observed
in 00 database systems vis-ii-~•is traditionaJ database systems.

Exercises

24.l Whal do you understand by the tenns version and configuration?
24.2 Why are long iransactioli support and nested transaction support desirable?

24.3 Sk1:1cltan implementation.mechanism for multivecsion co11currem;y conirol.

24.4 Consider the perfonnance factors discussed briefly in Section 24.2. Are any 0f them truly
DO-specific? Justify your answer.

24.5 00 systems typically support 1n1.egrity constraints in a proced11ral fashion, via methods:
the main exception is tltat referential constraints·are typicaUY, supported (al lea:st in part)
dealatmively. What are the advamages of procedural support '1 Why do you think referen­
tial constraints are hanclled differemiy?

24.6 Explain the concepl of inverse variables.

24.7 Consider 'the schema evolutio11 taxonomy presented in Section 24.2. Which items in tha1
tax0nomy have coun1erparts in a relational system? What are !:hose coumerparts?

24.8 Wha1 are lhe implications of schema evolution for existingda1a7
24.9 Investigate any 00 system tha1 might be available to you. What programming language

does llta1 sys1em support? Does il support a query language? If so, what is it? In your
opinion, is i1 more or less powerful than conventional SQL? Does the sys1em support
versioning and configurations? If so. wha1 ~s involved on 1he pan of lhe user in managing
versions and in inu:rrogating ver~-lon histories? D~s 1he sys1em support long or nested
u:a:nsactions'I Does the sysrem have any schema evaluuon c:apab11ities? What does lhe
c•1alog look like'! How d~ the user interroga1e the ca1alog? Is there any view support'! If
so. haw extensive is it? (e.g .. wh31 about view updating'?) How is missing information
handled~

TERADATA, Ex. 1014, p. 712

684 Part VI Objert-Oriertted Systems

References and Bibliography

Sec al~o lhe references in Chapt<:ri 22 and 23.

24.L Serge Abiteboul and Anthony Bonner ·'Object~ and Views." Proc. ACM £ntemational
Conference on Management of Data, Denver, Colo. \May 1991).

"Proposes .a view mechanism for 00 syS'tems. The proposal appears co be Lhe first ro talce
behnvior {methods) into accoun1

24.2 M.alcolm P. Arkinson and O. Pett;r Buneman. "Type!> and Persistence in Database Pro­
gramming Languages: · ACM C<1111p. Sun-. 19. No. l (June 1987).

This papec is recommended as the best starting poim for reading in the area of database
programming languages in general.

24.J J. Banerjee er al • .. Data Model Issues for Object-Oriented Applkaiions.'' ACM TOOIS
(Tra11sacrio11s on Offiee Irifonnario11Sysri>m.~I5. No. I lMarch 1987). Republished in M.
Stonebraker (ed.). Rea1ll11gf /11 Darahase Sj'.rtem.r. San Mateo. Calif.: Morgan Kaufmann
(1988). Also republished in r.ererence (22161.

24.4 Anders Bjoi;nerstedt and Chrisler Hulten. "Version Control in an Object-Oriented Arehi­
tecture." ln reference 122.9).

24.S R. 0. G. Canel! and J. Skeert ... Object OperatiOnli Benchmark:· ACM TODS 17, No. I
(Mardi 1992).

24.6 Margaret A. Bilis and Bjarne Su:ou!i1.11Jp. The An110/qted C+ t Reference Manual. Read­
ing, Mass.: Addison-We-~ley (1990).

24.7 R. V. Jagadish and Xiaolei Qian. ··tntegrity Maintenance in an Object-Oriented
Database: · Proc. 18th International Conference on Very Large Data. Bases. Vancnuver.
Canada (August L992).

Proposes a declarative integrity mechanism for 00 systems. showing how an integrity
constrhln.fs compiler can incorporate lhe necessary Integrity checking code into melhods
for the appropriate. object classes.

24.8 R. Ii Katz and E. Chang. "Managing Change in a Computer-Aided Design Database." Proc.
13th International Conferenee on Very large Data Bases. Brighton. UK (Septemlier 1987).

24.~ John F. Roddick. "Schema Evolution in Database Systems-An Annotated Bibliogra­
phy." ACM SIGMOD Rcmrd 21, No. 4 (December 1992).

24.10 Bjame Stroustrup. The C++ P"1gra11tmi11g 4111g11age. Reading. Mass.: Addison-Wesley
(1986).

Answers to Selected Exercises

24.3 The following hrier description is taken from re.ference [21 .141. First of all. the system
must keep:

I. For each data object, a siack of eommined versions (el)Ch siack enuy giving 11 value for
the object and tire ID of the transaction that estahHshed that value: Le .. each stack
entry essentially consislS or a pointer to Ilic relevant entry in the log). The stad. is
in mverse chronolog.1cal sequence. with the most recent entry being on the top.

2. A list of rransacuon TDs for all committed transactions (the commir listl.

When -a t.rruisaction start~ executirtg, the system.gives it a-private copy ofthe commit list

TERADATA, Ex. 1014, p. 713

Chapter 2A Addhlonal 00 Concepts 685

Read operations on an object are directed to the most recent version of the object pro­
d uced b y a transaction e n that private list. Update operations. by contrast, 81C' directed to
the actual current data object (update/update conflict testing is thus still necessary).
When 1the transaction commitl.. the system update~ the commit list and !he data object
version stacks appropriately,. 1

24.4 The perfonnance factors discussed were clustering, caching. and pointer swiwlng. All of
these techniques are applicable 10 any system that provides a reasonable level of data
independence: they are thus not truly "OO-spec1fic." In fact. the idea of using the logical
database definition to decide what physical clustering to use. as some 00 systems do.
could be seen as potentially u1rdermining data independence. Note: It should be pointed
out too that another very important perfonnance factor, namely optimization, typically
does nor apply to 00 systems.

24.5 lt is the opinion of this writer that declarative support, if feasible, is alv.·ays better than
procedural support (for everything, not just for integrity constraints). In a nutshell. declar­
ative support means that the sy5tem does the work instead of the user. This Is why rela­
tional systems support dcelarative queries. declarative view definitions, declarative cursor
definitions (see Chapter 8). declarative integrity consuainrs. andso on.

TERADATA, Ex. 1014, p. 714

25 Toward an 00/Relational
Rapprochement

25.1 lntrodu(tion

We have now examined all of the major aspects of 00 systems. We began by claiming
(in Chapter 22) that today's relational products are inadequate in a variety of ways, and
we gave an example ("Eind all rectangles lb.at overlap the unit square") in suppc;>rt of
that claim. And we went on to say that some of the new features that seem to be needed
in DBMSs have existed for many years in 00 programming languages. and hence the
idea of 00 database systems is a natural one to investigate.BUT-and it is a very big
"but"-it does not follow that 00 database systems can or will replace relational sys­
tems. On the contrary, we should be l ooking fot a rapprochement between the two
technologjes-that is, a way of marrying the two technologies together. so as to get the
best of both worlds. The purpose of this final chapter is to investigate the possibility of
such11 rapprochement.

Now. it is this writer'soStrong opinion that any such rapprochement should be
finnly founded on the r elational model (which is after all the foundation of modern
database technology in general, as explained in Pan II of this book). That is, what
we want is for relational systems to evolve to incorporate the features-<>r. at least,
the good features-of 00. We do not want to discard relational systems entirely,
nor do we want two totally disparate systems. relational and 00. existing side by
side as equals but (perhaps) competit9rs. And this opinion is s,hared by many other
writers, including in particular the authors of the "Third Generation Database
System Manifesto" [25. I 01. who state categorically that third-generation
DBMSs must subsume second-generation DBMSs- where "second-generation
DBMSs" basl~y means relational systems, and "thicd generation DBMSs'' means
whatever comes next. The opinion is apparently not shared. however, by some of
the early 00 products, nor by certaiTI 00 researchers. Rere, for example. is a typi­
cal quote:

"Computer science has seen many generations of daca management, starting· with
indexed files, and larer, network and hierarchical DBMSs ... land] more recently
relational DBMSs ... Now. we are on the verge of another generaticm of database

TERADATA, Ex. 1014, p. 715

Chapter 25 Toward an CO/Relational Rapprochement 687

systems ... [that] provide object management, [supponing] much more complex
kinds of da1.a'' [25.41.

Here the writer is clearly suggesting that just as relational systems displaced the
older hierarchic and network systems, so 00 systems will displace relational systems
in exactly the same kind of way.

The l'.eason we disagree with thls position is tbal (to quote reference (3.2)) rela­
tional really is different. It is diffqrent because it is not ad hoc. The older. pre relational
systems were ad hoc; they might have provided solutions to certain important problems
of their day, but they did not rest on any solid theoretical foundation.* Unfortunately.
relational advocates-this writer included-did themselves a major disservice in the
early days when chey argued the relative merits of relational and prerelational systems;
such arguments were necessary at the time. of course, but they had the unlooked-for
effect of reinforcing the idea that telarional and prerelational DBMSs were essentially
the same kind of thing. And this mistaken idea in tum supports the position of the
quotation above from reference [25.4)-to wit, chat 00 is to relations as relations were
to hierarchies and networks.

In what follows. therefore. we take it as an axiom that what we want to do is
enhance relational systems to incorporate the good features (but not the bad fea­
tures!) of 00. To repeat, we do 1101 want to discard relational systems entirely. l t
would be a great pi ty to walk away from 25 years of solid relational research and
developmenL

The plan of the chapter is as follows. Section25.2 reviews the features of 00, in
an attempt ro separate the good from the bad_ Sections 25.3 and 25.4 then discuss ways
in which the good features might be added to relational systems; Section 25.3 concen­
trates on domains and Section 25.4 oILrelations per se. Section 25.5 describes the ben­
efits Cif a true rapprochement. Section 25.6 offers a summary.

25.2 A Review of "the 00 Model"

Below is a summary of the principal features of "the 00 model" 'i\~Lh a subjective
assessment as to which features areessential. which are ''nice ro have" bat not essential.
which are bad, etc.

• Objects: Objects themselves. both mutable (\lariables) and immutable (\lalues). are
clear I y e.c;senli.al.

• Who1 abvu1 00'/ 1~ 00 "d hU1" The following, q1101e from "'l'hc Ob)CCl·Onemed OQU1hnse Sy~tem Man·
ifesto" r2s.11 is. imerestilll! in this rcgnrd; "With nispocl IQ the ~pccificntlon I.\(the >yMcm, we arc qiking. Dur­
wlnian approach We hope that. QUI of the ><!t of c.xpotimon1;1I prt!lDl) p.:s berng built, ,1 fil l<>bj..:Cl-jlrienlodl
mood will emerge. We al>o hope thal \'iuhle implernemnuon technol<>gy for thilt moJel ... ;11 c•ul~c <lmuliu­
neously."

TERADATA, Ex. 1014, p. 716

688 Part VI Object-Oriented Systems

• Object IDs: Unnecessary, and in fact undesirable (see the "Conclusion" subsec·
lion at the end of Section 25.3).

• Object classes (meaning types): Essenrial. The associated notion of a constructor
f1111ctio11-which among other things effectively provides a way of writing a literal
value of the relevant type-b essential too.

• Encapsulation: See the subsectrnn "A note on encapsulation" below.

• Instance variables: First of all. private and protected instance variables are by
definition merely implementation matters and are thus nOI relevant to the definition
of an abstract. user-oriented model. wJlicb i& what we are concerned with here.
Second, public ins!B.nce variables do .not exist in a pure 00 system and are thus
also not relevant. Third. derived instance variables are a special case Qf public in·
seance variables and are thus aforriori irrelevant also. We conclude that instance
variables can be ignored: objects should be manipulable solely by methods.

• Containment hierarchy: We have already explained in Chapter 22 tbar in our
opinion the contairunent hierarchy concept is misleading and in fact an illusion.
Objects are really tuples, not hierarchies.

• Methods: This concepc is essential, of course (although we would prefer the more
conventional terms "function .. or "operator" fn place of the term "method").
Bundling method definitions with object clas$es is not essential, however, and
leads to several problems. We would prefer to use the security mechanism to con­
trol which functions have access to the internals of which objects.

• Messages: Again, the concept is essential. though we would prefer to replace the
term by the more conventional term "call .. or "invoeation"- always rec::ognizing
that such calls or invocations are not necessarily synchronous.

ii Class hierarchy: Essential. So roo i:s the related notion of i11herita11ce, although­
since we have no notion of (public) instance variables-there is no need to distin­
guish between structural and behm•ioral inheritance (all inheritance is by defini­
tion behavioral). Polymorphism is lhuR essential too, with its likely implication of
run-time binding(discussed in Chapter 19)-though this latter notion is an imple­
mentation matter and should not be regarded as part of "the 00 model" as such.

• Multiple inheritance: Secondary. (Actually this concept is likely to prove quite
important. but it seems to this writer that there are some significant co.nceptual and
definitionaJ issues to be resolved before we can include such a feature in a well­
defined abs1r.ac1 "00 model" with any significant degree of confidence. More
study i:s required_)

• Class-vs. Instance vs. collection: The distinctions nre essential, of coucse, but not
really exclusive to 00 (the concepts are distinct. and that is really all that needs to
be said).

a Database programming language: Niee ro have. but not exclusive to 00.

TERADATA, Ex. 1014, p. 717

Chapter 25 Toward an 00/Relatlonal Rapprochement 689

• JGL nature: A giant step backward.

• Versions: Nice to have. but not exclusive 10 00. The same goes for ihe related
concept of configurations.

• Long and nested transactions\ Nice to have, bUL not exclusive to 00.

• Schema evolution: Nice to have, but not ex.elusive to 00.

And-here is a list of features that "ihe 00 model" typically does n()t suppon:
•

• Ad hoc query: As explained in Chapter 24, early versions of "ihe 00 model"
typically did not include ad hoc query capabilities, because (a) ihe need for such
capabilities was not so pressing in the envirorunem in which 00 systems origi­
nated. and {b) such capabilities seem to imply either that objects must be designed
according to some discipline such as that outlined in Section 24.3 or that queries
will have to break encapsulation.

• Closure: Generic operators such ac; (object-level) union, join, -projection, etc., are
not supponed. Derived objeccs in general are not supponed.

• Symmetric exploitation: Not !>upponed. Each and every access request involves
a distinct, precoded, procedural method.

• Foreign keys: The "00 model" has several different mech~isms for dealing with
referential integrity, none of which is rhe same as ihe relational model's more uni­
form foreign key mechanism. Such matters as UDELETE RESTRICTED" and
"DELETE CASCADES" are typically left to procedural code (probably methods.
possibly application code).

• Declarative integrity constraints: Currently not supported (for reasons not unre­
lated to the reasons ad hoc query is typically not supported).

• Views: Currently not supported (for reasons nor unrelated to the reasons ad hoc
query is typically not supported).

• Catalog: Must be built by the professional l.taff whose job it is 10 tailor the 00
DBMS for whatever application it has been installed for. There is no universal
"common catalog" (nor was there for relational systems. of course. prior to
SQU92).

To summarize, the good (and essential) features of the ''00 model"-i.e., the ones
we wou]d like relational systems to support-are as follows:

• Objects and object classes. plus corresponding constructor functions (returning
objects, however. not O!Ds-see Section 25.3) and other aooess and maintenance
functions, togeiher with a (nece~!>arily) clear distinction among classes. instances,
and collections

• Class hierarchies, with (behavioral) inheritance, and therefore polymorphism
and run-Lime binding (though thi ~ hurer ii. not pan of the model as such)

TERADATA, Ex. 1014, p. 718

690 Part VI ObjKt·Orlented Systems

A Note on EncapsuJation

We have said that the system should support encapsulated objects, i.e .. objects that are
accessible only via appropriate access functions (there should be no "public instance
variables" in those objects at all). The advantage of such encapsulation is basically that
it provides data independence, as explained in Chapter 22. (In fact, 00 systems are
sometimes said to provide a parricularly stro11gform of data independence (22. 7J, lt is
important to understand. however, that- al least In principle-00 systems eannot pro­
vide any more data independence than relationai systems can. For example. there is
absolutely no reason-at least in principle- why a base relation called POINT, with
Cartesian coordinate attributes X and Y, should not map to a stored relation that repre­
sents points by theiq>olar coordinates R a:nd 0 instead. As we remarked in Chapter 3,
however. today's relational products unfortunately do not provide nearly as much data
independence as we would really like, or as much as relational systems are theoretically
capable of.)

Note, however, that it is possible to rake the encapsulation idea too far. There will
always be a need to access the data in ways that were not foreseen when the database
was originally created. and tlie notion of having to write new procedural code every
time a new data access requirement arise$ is simply not acceptable. Jndeed, sueh was
exactly the state of affairs with prerelational systems, and it was a major contributor to
their downfall.

Thus we see that the sys1em should .additionally support "objec1s" that are not en­
capsulated but expose their "instance variables" for all the world to see. And-to jump
ahead of ourselves for a momen~ose nonencapsuJated "objecis" are, precisely,
tuples in relations (see Section 25.3). Note that. at least in principle, nonencapsulated
relations can provide just as much data inoependence as can encapsulated objects (as
explained above); note too that, again in principle., tbe ideas of type hieratcbies, inher­
itance, etc .• apply a1 least as well to nonencapsulated relations as they do to encapsu­
Jated objects fas explained in Chapter 19). And, of course. relations can be accessed by
the well-known, builtin, generic operatol:s of the relational algebra in$lead of just by
methods that are specific to the particular relation in question, thus satisfying the "un­
foreseen requirements'' objective.

25.3 Domains vs. Objects

lo this section we argue that the l<ey to the desired rapprochement is the relational no­
tion of domains (indeed, we stated this as our position on the subject in Chapter 19).
For consider:

• The fundamental construct in 00 systems is the object class, whioh is basically a
user-defined, encapsulated data type of arbitrary internal complexity.

• The fundamental construct in relational systems-mostly not implemented, uofoF-

TERADATA, Ex. 1014, p. 719

Chapter 25 Toward an 00/Reiational Rapprochement 691

tunalely, in today's relational products-is the domain, which is (again) basically
a user-defined. encapsuJat,ed data type of arbitrary inlemal complexity.

1n other words. a domain and l\11 objecl class ar~ the same 1hing! Thus. a relational
system lhal implemented domains prQperly would be able to do all the things 1hat (it is
claimed) 00 SYstems can do and relationalsysiems cannot

Let us review the principal properties of domains as discussed in Chapter 19. We
showed in Iha! chapter:

•
• Row domains really are data types of arbitrary complexicy

• How the "scalar" values in such a domain can therefore have arbitrarily complex
internal structure

• How !hose values are encapsulated, however, and can be operated OJI only by pre­
defined functions

We also discussed:

• The fact that the function definitions are typicaUy 1101 bundled with the domain
definitions

• The relevance of !he "strong 1yping" concept from programming languages

• The ideas of inheritance and polymorphism as !hey apply 10 domains

Indeed, domains and object classes really are one and the same. Thus. domains
(and therefore relational attributes) can contain absolutely anylhing- arrays. lists.
stacks, documents, photographs. maps, blueprints, etc., etc. Another way of saying this
is: Domains eru:apsulate, relations don't

The Rectangles Problem Revisited

So.now we can give a '"good" solution to the rectangles problem. First of al) , we define
a domainofrectanpes ("we" here probably meaninglhe OBA):

CREA'l'E DOMAIN REC'171NQ!.iE: P. i:;p I , , , I ;

We assume here !hat !he representation ("REP") is in terms of one of the newer
storage structures (quadirees, grid files, R-rrees. etc.) that are $pecifically intended to
support spatial data such as geometric figures efficiently-see Ap pendix A, references
[A.48-A.591.

Next we define a "constructor" function for creating new rectangles (i.e .. for con­
verting a set of four floaring..cpoinl numbers in10 a rectangle):

CB.El'.TE FUNCTil3N RECTAl,JOLE

(A !'LOA'!', 1! FLOAT. C l"LOAT, D FLOAT I

RETURNS (l!t:r'l'ANOLE I
AR BE:Gil'l ;

DECLARE R RECTANGLE
R. X l : : A : R . X2 ; = B :

TERADATA, Ex. 1014, p. 720

692

R.Yl .- C ; R. 12 :- D ;
RE'rlJRN r P) ;

E f,JD ;

Part VI Object-Oriented Systems

Here we assume Lhat R.XI refers to the 1-totlrdinate oflhe bottom left-hand eomer
of rectangle R, etc .. and that a rectangle can be defined by specifying these four coor­
dinates. Note. incidentally. that we do nf!f bundle Lhe RECT~NGLE t"unctioo with the
RECTANGLE "objec1 c:Iass" (domain).

We also define a function to 1est two rectangles to see whether they overlap:

CR£A1'£ flJllC"l'WN IVJ::RLAI
I Rl RECTANGLE , Rl REC'flL'lGLE

PE'rtJRIJS : BoOL E:AN I
ns BEG11s i

• • • cope . . • 1

END :

Tne code here is low-level implementation code, probably written in a language
like C. to implement Lhe efjide11/ (~hort) fom1 of the ··overlaps" test against the ejficienr
(R-tree or whatever) storage srructure.

Now an SQL user can create a base table with a column defined on the rectangles
domain:

r'.J!EM'E TABkE REC'l"ANGUS
I fl.EC!!'!'TI • , • , A RECTAJ.JGLE

um QUE (~EC'ITD ! .
l J!fIQUE (P I l :

. . . '

And the query "Pindall rec1angle:. that overlap the unit square" now becomes simply:

SELECT ••

;1HE.'!E Ov.EP.ltAF t Fe , P.EC'l'ANt;LE (0 , l , 0, L } l ;

Note that Lhe expression RECTANGLE(O. 1,0, I) in thi.s query effeetively consti tutes a
kind of "rectangle literal."

Conclusion

The system shouldsupport relation.~, with the ··exronsion" (actually not an extension at
all) thai domains are properly supponed nnd can be user-defined data types of arbitrary
complexity. Now, we can call the elements or ~uch domains objec:ts if we Like (they are
totally encapsulated); note, however, 1hat al 1he relational level there is no need for
OIDs--the relational model requires relations 10 con1ain ati'lttal objects (at leas1 con­
ceptually). not pointers to objects. Thus. for example. the RECTANGLE functlen
(which i!. the relational analog of "NEW" for rectangles) does not return a rectangle
OLD, it returns (at least conceptually) w1 ac111al recta118le.

As for 1he ·'class vs. instance vs. collection" d1stinctitms:

• The clan is lhe domain.

• An ins tance ii> ru1 element of 1he dcm1ain. Sn far as the database is concerned,

TERADATA, Ex. 1014, p. 721

Chapter 25 Toward an 00/Relational Rapprochement 693

such instance~ eitiSt onJy within attribute po~ition~ within tuple-f. within relations;
however. we can create new "literal" instances at tlll)' lime for lJSe as arguments to
whatever operations or functions are defined for the domain in question.

• A col/ectio11 is the collection ofvalue.-. of any anribute defined on the domain. As
for sharing the vel)' same instance among several collecrions, the ejflU't of such
sharing c:an be achieved by means of foreign keys: actually placing two copies of
the same Instance in two distinct base relatiollb is np l sharing in the same sen:.e
(and in fact is typically contraindicated by the principles of further normalization).
Note: The very same instance can of course be shared among exactly one base
relation and any number of other (named) relation~ if those other relations are all
views.

To sum up: Relational vendors should do all in their power to extend their sys­
tems to include proper domain support. Indeed, an argument ean be made that the
whole reason thaJ 00 systems look attractive Is precisely because the relational
vendors to date have failed to support the relational model adequately. But this fact
should not be seen as an argument for abandoning relational sys tems entirely (or at
all !).

25.4 Relations vs. Objects

ln the previo~ section we equated otijecL classes and domaini.. Many products and
prototypes, however, aiie equating objecl classes and relutio11s instead.* ln this section
we arcgue that this latter equarion is a serious mistake.

We begin by considering a simple example. Here 1s a slighLly simplified version of
one 1>f the very fir.st CREATE OBJECT CLASS examples f rom Chapter 22:

CRSi\'l'e OBJEC'I' CUSS E~H·

Pt:rBL.IC (EMP!I- CHAR ,
ENAJ.IE CFIAR,

SAL. r/UMERJC) • . . :

And here ls a relational (SQL) analog:

CREATE TABLE EMP
I EHE't CHAR ,

EJllAhl.E t"HAR ,
SAL NLINER I t) .. •

• Reg.irtlfn11 1he gc11crnl <1uc:sum1 "f "'1,c1hoJ •ti)' 1 w1> <•m•CJ11' A ,mu B. ' " "h :.1 rul.11imh .111u ubj«ll d:iN:<,
J<c "the <anic" arid uan tluJs he Cl.Jil.lleu, chore I< a \ lmpk i;uncrnl prmc1pk- p1cv111u,I)' nrticulutcJ by thl• wrhcr
in refcri:n~c 14. 111. Jntl,u .. orih 1cpc.,1ir1Jl h~rc-1h111 c11n uwlully he .1p1>lluu Simply Jsk Y'1Uf'>clr "h every
instontto lll' A Un inl>lilflUC nr H'I" nncl. Clll>\<l'Scly. "" C\C.IY ill'IUAl'C or u '"'"'''"'""of,\,, .. Only Ir Ibo ~n•w•• r •
. \·~.r JO both 111'thc~c quc.tilln• i;. ii tnio ihJJI ,\ unJ II 010 hl<ntk.1J

TERADATA, Ex. 1014, p. 722

694 Part VI Object-Oriented Systems

It is very tempting to equate the two! And many systems have done exactly that,
including 1ris [25.3.2li.71, POSTGRBS [25.13-25.16}, UniSQL [25.111, and others.
UniSQL, for example. supports an extended form of SQL called SQUX. which we
illustrate by meaqs of the following example (based on one in the SQJ.JX user's
manual [25. 111). We start with a conventional, self-explanatory SQL CREATE
TABLE statement:

CREATE TABLE EMP

EMAME
SAL

WOBB'l
WORRS_FOR

CHARtSl,

C't!AR (20 l ,
NUMERIC,

CHAR (;!0) ,
CHA.~(20))

Two points arise immediately:

L SQUX does not currently support the SQL PRJMARY and FOREIGN KEY
clauses. Furthermore, since the intent is ro equate CREA TE TABLE and
"CREATE OBJECT CLASS'~s a matter of fact, SQLJX allows the keyword
TABLE in CREATE TABLE to be replaced by the keyword CLASS-the impli­
cations of adding such.support are not clear, since primary and foreign keys are 001

part of the object class concept.

2. SQL/X alSo does not support domains. Indeed, those who espouse the "relation =
object class'' equation tyP,ically never even mention domains. This omission is
probably due to the widespread failure on the part of the relational vendors to im­
plement domains, which in tum is-due to the failure of the original SQL language
to include any domain support in the first place.

Anyway, to get back to the elmmple: The first SQJ.JX extension is to add compos­
ite column support. Thus, e.g., we can replace the original CREATE TABLE by the
following (refer to Eig. 25.l):

EMP

EMP~ SNAME S.l\L FfOB81i' WORKS_F'OR

I NAME I ·re:AM I NAME i;OCl\TION

l CI'l'Y I STATE I

AG. 25.1 SQUX table with composite columns

TERADATA, Ex. 1014, p. 723

Chapter 25 Toward <1n OO/Relation<1I Rapprochement

CREATE TABLE RHP
(~~ CHAR(S},
E~ CHAR (20) ,
SAL NUMERIC ,

HOBBY ACTIVI'l'Y ,\
WORKS_FOR CbMPAl'l¥) ;

CREATE TABLE ACTIVITY
r NAME CHARC201.

TEAM INTEGER l

CREATE TABLE COM.PAN'!'
(!!AME CHAR C20} ,

LOCA'!'lON CIT'fSTATE

CREATE TABLE CITYSTATE
(erTY CHAR (20) ,

STJ\'l'E CBAR(2))

F:xplanation:

695

• The column HOBBY in table EMP is declared to be of type ACTIVITY.
ACTIVITY in turn is a tableof twe columns, NAMEandTEAM, where TEAM
represents the number of players in the corresponding team-e,g., a possible
"activity" might be (Soccer, l l). Each HOBBY value is thus actually an ordered
pair of values, a NAME value and a TEAM value. (More precisely, it is an
ordered pair of values that currently appears in 1he ACTIVITY table.) Inciden­
tally, those HOBBY values are not encapsulated (Fig. 25.1 notwithstanding);
thus, e.g., a "path expression" of the formEMP.HOBBY.NAME is legal (see
below).

• Similarly, column WORKS_FOR in table EMP is declared to be of type
COMP ANY, and COMPANY is also a table of two columns. one of which is de­
fined to be of type CITYS TA TE, which is another two-column table, and so on.

In other words, tables ACTIVITY, COMPANY, and CITYSTATE are all
considered to be types as well as tables (the same is true for table EMP also, of
course). Thus, the first SQL/X extension is roughly analogous to allowing objects
to contain other objects (i t is SQUX's version of support for the containment
hierarchy).

The next extension is to add table-valued columns. Sup pose, for example, that
employees can have an arbitrary number of hobbies, instead of just one (see Fig.
25.2):

Ctu;;)\'tS 'I'Aflc.E EMP

(EIMP~ CHJ>.R (5) ,
EN~ CHM(20l,
SAL NOJo!E,RlC.

HOBBre:s SET OF t ACTtV!T'/ J.
W©Rl<S_FOR COMPANY) ;

TERADATA, Ex. 1014, p. 724

696 Part \II Object-Oriented Systems

EN!'

EMP~ EN;.ME SAL l:IORBY WORKS_FOP.

NAME •rJ::.>J•l NAME L.OCA'l'ION

. . ..

. . .. I CT'l'Y I STATE I

. . . .
I . . I .. I

FIG. 25.2 SQLJX table with a table-valued column

Expla11arion;

• The AOBBJES value within any given row of table EMP is now (conceptually)
a set of zero or more (NAME, TEAM) pairs from the ACTIVITY table. This
second extension is thUsioughly anafogaus to allowing objects to contain •·ag­
gregate'" objects-a more complex version of the containment hierarchy. Nore:
The aggregate object types supported by SQUX are sets. sequences. and m14/riser.s
(bags).

The third ·~tension is to permit tables to have associated methods. For example:

cREhTE TABLE .:MP
I fil!?ii ClilAR 111 ,

ENAME CE!AR 110 l ,

SAL Nt1Ml::B1C,
HOBBIES SET OF ! ACTIVT~Y J,

WORKS_FOR l'.':OV.PANV I
m:TROD l!E'l1iIREMENT_.BENEFITS I I : !JUMEITTC 1

E:i:planatio11:

• RETIREMENT_BENEFITS is a function (method) that takes a given EMP in·
stance as its argument and produces a result of type NUMERIC. Note: The paren­
theses are reqmred; they surround a commalist (empty in the example) af data type
specifications for additional arguments 10 lhe function.

• The code tha1 implements the method is written in C plus embedded SQUX and
resides in an operating sys1em file-(Wbese name can tie.specified explicitly as part
of lbe CREATE TABLE stalement; if it is not. a defaull name derived from the
method name is assumed).

• The method is invokco by a CALL s1arement of the loan

CALL mechod (.u-gument COJJJ/tldliSC) ON ViH lat>le I NTO variable ;

TERADATA, Ex. 1014, p. 725

Chapter 2S Toward an CO/Relational Rapprochement 697

For example:
CJ'.LL RETIREMENT_ BENEFITS r J ON E INTO F :

Here E and F are program variables; E contains the OID of some particular EMP
instance, and the OID ofthe rdult of executing the method is assigned to F.

• Note. incidentally. that RETIREMENT_BENEFITS is not a "derived column."
SQL/X does not currently suppon derived columns (though such support is prom­
ised for a future release).

•
The final extension is to permit the definition of subclasses. For example (refer to

Fig. 25.3):

CREA'fE ~l\BLE PERSON

r sse CRAfH9J •
BrR'l'llDATE DATE,
ADDRESS Cf!ARC50l l

CRERC'E TABLE EMP

AS SUBCLASS 00' PERSON
(EMP11 CH.NH SJ ,

ENAME Ct!AIH 2 0 I ,

SAL NUMERIC,

HOBBIBS SET OF : AC'l'lVITY l,
WORKS_ FOR COM2J\m')

ME'l'.l:lOD RETlREl1ENT_BEN.ElflTS I) : l>'Ul\l.ERIC

E;cplanarion:

• EMP now .has three additiruial columns tSS#. BIR'IHDATB. ADDRESS) inher­
ited from PERSON. If PERSON bad any methods, it would inherit those too.
Along with Lhedata definition extensions sketched above. numerous data manipu­
lation extensions are required also. They include:

PERSQ!I

SSil BIR'H!DATE ADDRESS

:EMP •is a '"

l£MP~ ENAME SAL HOBBY WORl<S_POR

NAME TE:.i\M ~JAME LOCA·rroN

.. .. I C-'T\' I STAT£ I .. . -

.. . .

I . . I . . I

FIG. 25.3 SQUX supen:lasses and 51.lbclasses (example}

TERADATA, Ex. 1014, p. 726

698 Part VI Object-Oriented Systems

• :Path expressions (e.g. , EMP.WORKS_FOR.LOCATION.STATE}-a new kind
of scalar expression. For example:

SELECT ENAfff;, WORKS_E'OR. NAME
EROl! EM.P
WHE'RE WORKS_ FOR . LOCATION. B'l'J>.TE = ' C.ZI' ;

We remark1ha1 these path expressions go down the eontalnmenl hierarchy, whereas
1he path expressions discussed briefly al the end of Chapter 23 go up.

• An extended kind of path expces$ion tllat is multi-valued instead. of single-valued
(e.g., EMe.HOBBIES.NAME). Example:

SELEt:'r ENAMR. WORKS_FOR. NAME
FROM EM.El

WHERE (•Soccer', 'Bridge' } SUBSJi:TEO HOBBIES .NAME ;

The operator SUBSETEQ means "proper subset of or equal 10" (see below).

• The ability to write literal instances of complex objects. One simple example ap­
pears in the WHERE clause just shown. Here .is a more c0mplex example (a literal
EMP):

! '£001 1 , •smith', ssoooo,
f (•soccer•, 1.1), { 'Bl!'.:.dge•, 4));

(• IBJ.I ' , (' San Jose' , 'CA' l l l

• Table comparison operators sucll as SUBSET, SUBSETEQ, SETEQ, ere. (see ex­
ample above).

• Operations for ttaversing the class hierarchy. For example:

SELECI' SS~ , EN.AME

Ji'ROM EMP ;

The FROM clause "FROM T" allows the user to refer to ill columns of T, includ­
ing those inherited from superclasses (at any level) of T. By contrast. the FROM
clause "FROM ALL T" allows the user to Tefer to columns of subclasses (at any
level) of T as well. For example:

SELEC'r SS#, BIRTlIDicr'£, EN1\M£
!"ROM ALL. PERSON :

Note: It is not clear exactly wliat kind of object results from evaluating the expres­
s ion "ALL PERSON"- perhaps a set of tables?

• The ability to invoke methods within WHERE clauses etc., in order to condition
access (not supported at the time of writing).

• The ability to access (retrieve, update) individual values within multi-valued col­
umn values. For example:

UPDATE EMP
SET HOBBIES '" HOBBIES - I ' Soccer. • Ll I
WHERE ENAM6 ~ 'Smhh ' r

(cf the discussion of relational assignmem and relatfonal update operations in
Chapter 6).

TERADATA, Ex. 1014, p. 727

Chapter 25 Toward an 00/Relatlonal Rapprochement 699

We now proceed to examine some consequences of I.be foregoing. Ple-.tSe under­
stand dearly that the foUowing remarks are NOT intended as an attack on SQUX
per se; rather, they are applicable to any system or language that attempts 10 equate
relations and object classes. We use SQUX merely by way of illustration.

1. The first point is that this system is a long way from being a true 00 system. (As

an aside, we remark that it is not really a "nested relation" or "RVA" system ei­
ther-see Chapter 19-because of the points discussed in paragraphs 4 and 5
below.) It might best be char"aaterii.ed as an SQL system with extensions-which
means, first and foremost, that it is an SQL system. Nore: This comment b not
meant as a criticism; it is jw;I that an appreciation of thi~ point will belp the reader
to understand the points that follow.

2. SQUX "objects" are rows in tables (and are thus totally unencapsulated); the cor­
responding "instance variables'' are columns. Note: Again, these commenL<> are not
necessarily criticisms-they are just observations.

3. Note. therefore, that whereas a pure 00 class bas methods and no (public) instance
variables, an SQUX "class" bas public instance variables and does 001 necessarily
have any methods. Thus. che .. relation = class" equation looks a lhtle suspect al­
ready.

4. We remark that there is a difference in kind between the column definitions (e.g)

ENlJil: Cl:IAR (2 0)

and

WORKS:._FOR COMPANY

"'CHAR(20)" is a true data type (equivalently, a true- albeit primitive-domain);
it plaees a time-independent constraint on the values that can appear in column
EN AME. "COMP ANY'' by contrast is not a true data type: the constraint it places
on the values that can appear in column WORKS_FOR is time-dependent (it de­
pends, obviouiily, on the set of values currently appearing in table COMP ANY). In
fact, the "class vs. instance vs. collection" dfatinctions are muddied here, and the
concept of true domains bas been lost. The full implications of this state of affairs
are unclear.

5. SQLJX objects are regarded (in general) as containing ocher objects-Le .. they are
containment hierarchies. In fact, however, subobject sharing is done via poin ter~

(OTDs), and users must understand chis point clearly. For instance, referring back
ro the example of EMP objects "containing" COMP ANY objects: Suppose the user
updates one particular BMP object, changing (say) the name of the ··contained"
COMPANY object. Then that change will immediately be propagated 10 all other
BMP objects for employees of the same company.

Here are some funher Implications and questions arising from this same point~

• Can we insert a new EMP instance and specify a value for the contained
COMPANY instance thac does not currently exist in the COMPANY 1,able? If

TERADATA, Ex. 1014, p. 728

700 Part VI Object-Oriented Systems

the answer is yes. the definition of column WORKS_FOR as being of type
COMeANY does TIOt mean very much. since it does not significantly con­
SLCai11 lhe LNSERT operation. U the a11Swer is no, the INSERT ope.ration
becomes unnecessarily comple~-the user has to specify. not just a legal
COMPANY.NAME "foreign key" value fas would be required in the analogous
relational situation). but an entire legal COMPANY objecL Moreover, sp,eci fy­
ing an entire COMPANY object means-at besr-having lo tell the system
something it already knows: at worsL it means that if the user makes a mistake,
the INSERT will fail when it could perfectly well have succeeded,

• Suppose we want a "DELETE RESTRICTED" rule for COMPANY (Le., an
a(tempt to delete a company must fail if lhe company bas any employees).
Pre:;umably this rule mllljt l:le enforeed by a sl.litable method, M say. funher­
more, native SQL DELETE operations musr nol be p¢'ormed on COMPANY
objects other than within that method M . How is this laner requirement
enforced?

• Analogous remarks apply to "DELETE CASCADES," though possibly not to
''DELETE NULLIFIES."

• DELETE on an EMP presumably does nor delete the corresponding COM­
PANY. de~-pite the pretense that the corresponding COMPANY is contained
within theEMP.

• It follows from all of the above that we are not really talking about the relational
model any more. The fundamental data object is not a relation containing values,
it is a tabJe contailling values Gf!d poimers. As a cqnsequence. operamrs such as
projection and join require careful and subtle reinterprerarion. This is a big issue,
and we therefore make it our next major point.

6. Let us simplify the EMP table slighLly. as fellows (the notation is intended to be
self-explanatory):

EMP I EM!'~. SAL, WORYS_FOR (NAME, l,OCATTON I C'IT'I STA'!:£ I J I

Now suppose we project this EMP table over SAL and the corresponding company
CITY. Does lhe result look like this?-

(S AL , \ (ClTY)) I

or like t.bis7-

l SAL, C!'l'Y I

Refer to Fig. 25.4.

• If it is rhe fonner (which is more logically correct}-see the left-hand side of
the figur.e-theTI what is the name of the column th!ll coa1ain1, the relation
that contains the CITY value? Arul what is the name of the column tbm
contaills the relation that contains the relation that contains the CITY value?
Note: Lest the reader be tempted 10 reply "LOCATION.CITY'' and
"WORKS_FOR.LOCA.TlON.ClTY ," res1>ectively, we point out that these con-

TERADATA, Ex. 1014, p. 729

ch•pter 25 To-rd an 00/Rellltlon•I Rapprochement 701

SAL ??>??????? SAL CrTY

$50000 Rome
?7?7??

ssoooo ~ e

•

FIG. 25.4 Which projection iscorrect?

structs are not proper column names. They cannot be used in CREATE TABLE,
after all.

• If it is the latter-see lhe:Tight-hand side of the figure-then do we conclude that
hierarchic objects make sense only at the "base object" level and that, as soon as
we create any derived objects, we are back in the relational world'? If so. why did
we leave ii in the first place?

• Assuming that the left-hand result. with heading (SAL.((CITY))), is indeed tbe
correct one, can we now join that result to the CITYSTATE table over cities?
That is, is tbefollowlng comparison legal?

CITY = l (CI'l'Y l J

Note that the CITY values on the right-hand side will at least have to be doubly
unnested before the actual comparison can be done (for otherwise the eompari­
son will certainly either give false or else raise atype error).

The foregoing discussionillustrates the two points that (a) if join is going t<>
apply to hierarchic objects, it is going to require very careful definition, and (b)
even if that definition can be properly worked out, the resultant operation is
Llkely to be quite complex. In particular, the rules regardi~g the kjnd of object
that is produced by the join are likely to be ve1:11 complicared. The details are left
to the reader to meditate on.

7. Referring ag_ain 10 1.he projection example from the previous discus$ion: Which­
ever is the correct result. what class is it? What methods apply?

In our ex.ample. EMPs had only one method. namely RETIREMENT_BENE­
FITS. and Lhal method clearly does not apply 10 Lhe result of the projection; in fact,
it hardly seems reasonable that any methods that applied to EMP objeccs would apply.
And there certainly are no or.hers. So ir looks as if we are forced to conclude that no

method,r at ult apply to lhe result of a projection-Le., the resuh, whatever it is. is
not really an object class at all. (We might.wy it is an object class. but thal does not

TERADATA, Ex. 1014, p. 730

702 Part VI Object-Orient'ed Systems

make it onel-it will have instance variables and no methods, whereas we have
already observed that a true object class has methods and no instance variables.)

In fact, it is quite clear that when people equate relations and object classes, it
is specifically base relations they are referring to.* The relational closure property
applies to relational tables but11ot to object classes.

8. Following on from the previous point: Suppose we are given a baserelation Rand
we _project it over all of its columns. In the version of the relational algebra defined
in Chapter 6 of this book, the syntax for such a projection is simply R. So the
expression "R" is new ambiguous! Cf we think of it as referring to base relatioa.R.
then it is an object class, with methods. If we think of it as referring to the projec­
tion of base relation R over ,ail of its columns, then it is not an object class and it
h11& no methods. How do we tell the difference?

9. Finally, it has to be said that SQIJX represents a major increase in complexity
vi.~-a-vis plain SQL. Such additional complexity is an inevitable consequence of
making the wrong equation (i.e., "relatioa= object class" instead of "domain=
object class'').

25.5 Benefits of True Rapprochement

Jn lb.is section we briefly summarize the benefits ofa true OO/reJatio11al rapprochement
(i.e., a rapprochement that exploits the relational concept of domains properly, not one
that makes the mistaken equation of relations and object classes).

Ffrst of all, the system is still a:relationaJ system, so all the usual relatiooal benefits
:fpply [3.2]. In particular, the advantage of familiarity applies-the 00 capabilities rep­
resenc a very natural "extension" (accually not an e,xtension at all) to the relational
model.

Second, the l)ystem is also an 00 system, which implies the ft>Llowing addidonal
benefits:

• Open arclzitecrure (extendability): Users are no longer limited to the predefined.
builtin data types. The system can be tailored and extended in arbitrary ways to
meet the needs of specific application ·areas.

• U,ver-defined datll types «nilfimc1io11s, with inheritance: These in a nutshell are the
advantages of 00 systems in general.

• Strong typing: Pro.Per domain support prevides a sound basis for caiching rype
violations (preferably at compilation time), as discussed in Chapter l9.

• improved perfom1a11ce: Performance is improved because methods are executed

• Or a1 least 11t1mtd relation<: SQLIX does suppon views. whiob are regarded as "v1rtunl class.:~·~ the
um101111ion to reference [25.111. Vlnual classes do nor inhem methods from tbe dasses from which they are de­
nved. l'.\owcver,

TERADATA, Ex. 1014, p. 731

Chapter 25 Toward an 00/Relational Rapprocheml!flt 703

by the server. not the client.• As a crivial example, consider the query "Bind all
books with more than 20 chapters." Ina traditionalrelationa'l system, books miglit
be represented a$ "BLOBs" (a BLOB or basic large object is essentially just an
arbitrarily long byte string). aqd the client will have to retrieve each book in tum
and scan it to see if it has more than 20 chapters. But with proper 00 support, the
''number of chapters" method will be executed by r.be server, and only those books
actually desired will be transmitted to the client.

Note: The foregoing is not really an argument for 00, it is an argument for
• stored procedures (see Chapter 21). A traditional relational system with stored pro-

cedures will give the same performance benefits here as an 00 system with methods.

• Improved productivity; Once the appropriate object classes (<!ornains) have been
defined. users of those classes can obviously be much more productive, both in
application development and-probably more important- in application mainte­
nance also.

• Object-level recovery. concurreJtcy, and security: As i>Ointed out in Chapter 22.
objects- that is, iodividuaJ objects. not object classe~-are the natural unit foue­
covery. concurrency, and security purposes in an 00 system (integrity constraints
permitting).

• Accessibility: Complex objects now become available via the<elational query lan­
guage (probably SQL) to end users.

Furthermore, all of the criticisms we leveled at 00 systems in_previeus chapters no
longer apply. To be specific, the system can now support all of the following without
any undue difficulty:

• Ad hoc query

• Dual-mode access (i.e., using the same language for programmed and interactive
database access)

• Relationships of degree greater than two

• Methods that span classes

• Symmetric exploitation
• Declarativein.tegrity constraints

• Integrity constraints that span classes

• "Foreign key rules" (DELETE CASCADES, etc.)

• Semantic optimization

In addition:

• OIDs and pointer chasing are now totally "under the covers" and hidden from the user

• "Difficult" 00 questions (e.g., what does it mean to join two objects?) go away

• Not uuc a1 1hc time or writing for SQUX. A future rel~ will offer an optl,<?n by which 1he DBA con
specify where a given me1hod ls to be ei<ccu!Cd.

TERADATA, Ex. 1014, p. 732

704 Part VI Object-Oriented Systems

• The benefits of encapsulation still apply (to values within relations, not to relations
themselves)

• Relational systems can now handle "complex" application areas such as
CAD/CAM, as previouslydi:scusscil

And the approach js conceptually clean.

25.6 Summary

The message of this chapter (and indeed its three predecessors) can be summed up as
follows. First of all. 00 unquestionably has some good ideas, namely;

• User-defined data types (including user-defined functions)

• Inheritance (behavioral, not structural)

However. i t also has some ideas that would be better rejected, or at least kept under
the covers:

• oms and pointer chasing

• Strong procedural (3GL) orientation

• Function bundling

• Complex and asymmetric treatment of relationships

• Lacie of declarative integrity support

What we need to do is enhance relational systems tO incOJROcate the good ideas of
00 (but not the bad ones!). and we have argued that domains are the key to achieving
this goal. Specifically. we have argued that the equation "domain= object class" is
correct, and the equation "relation =object class" is incorrecL

References and Bibliography

See also I.be references in Chapter 19 and ChapterS 22-24.

25. l Malcolm Atkinson er aL "The Object-Oriented Database System Manifesto." Proc. First
lmemationnl Conference on Deductive and Object-Oriented Databases. Kyoco, Japan
(19a9), New York, N. Y.: Elsevier Science (1990).

One of I.be first attempts to build a consensus on what "the 00 model'' should include. See
reference [25. I 0 I for anotheranempL

25..2 Fran~ois Bancilhon. "A Logic-Programming/Object-Oriented Cocktail" ACM SJGMOD
Record 15. Nq. 3 (September 1936).

To quote the introduction: "The object-oriented appreach ... seems to be particularly well
fitted to [handling] new types of applications such as CAD. software [engineering], and
AL However, the natural extension to relational database t.eclmology is • . . the logic pro­
gramming par.1digm, (not I the object-oriented one. !Ibis paper addresses I.be question qfJ
whether the cwo paradigms are compatible.''

TERADATA, Ex. 1014, p. 733

chapter 25 Toward an CO/Relational Rapprochement 705

25.3 -Uavid Beech. "A Foundation for Evolutiun from Relational to Object Databases ... Jn Schmidt.
Ceri, and Missikoff (eds,): Ettending Database Tecluwlogy. New York. N.Y.: Springer­
Verlag (1988).

This is one of several papers that cliscuss the possibility of extending SQL to become some
kind of "Object SQL" or "OSQL" (see also reference [25.7] , which gives more detail on
this particular proposal). In c-0mmon with most such papers it has litlle or nothing to say
regarding domains. closure, or relational operator,s such as join; i.e., it falls into the "rela­
tion = class" trap. It also makes a number of somewhat contentious claims regarding
(among, other things) the ··s~th adaptation" of SQL. Here, for ex~rnple. is an OSQL
CREA TE FUNCTION Statement (taken from reference 125 ,7 J):

CREA'I'S FUNC'r.I.0.N RaiseA.LlSalatlea (1.nt.eg_er inc.rJ AS
lJ'PQA'l'E Salary(e) = newsal
FOR EACR Emii.Ioyee e , Integer, newsa)
WHERE 11ewsal = salaryfe) + == J

The following might seem to many people to be more ht keeping with the style of
conventional SQL:

CREATE FUNCTION' RalseAllSalaties !Integer lncr) AS
tllIDA'TIE" EJnpl.oyee
SET Salary = Salazy ~ in= ;

As in SQUX, "types" (tables) are not encapsolated. Note: One interesting aspect of
OSQL is thal (in contrast to some other 00 languages) meihods- i.e .• funcdons-are
themselves rqiarded as objects.

25.4 R. G. G. Canell. "'What Are Next-Generation DB Systems?" CACM 34. No. 10 (October
1991).

25.S Nathan Goodman. "Obje.ct Oriented Database S1stems." /nfaD.B 4. No. 3 (Fall 1989).

The previous edition of this bo6k included the following quoi,e from this paper.

"At this stage it is futile to compare lthel relational and object-Qciented [approaches].
We have to compare like te like: apples to apples, dreams to dreams. theory to theory, and
mature pri>ducts to mature products!'

And it (the previous edition} went on to say:

''Dreams aside, the relational approach has been in existence for some time: It rest~
on a very solid theoretical foundation. and it is the basis for a large number of marure
products. The 00 approach. by contrasL is new (at least in the darabase arena); it does not
p.ossess a theoretical foundation that can meaningfully be compared with the relauonal
model. and the few prOducL~ that exist can scarcely be described as mature. Thus, a great
deal remains to be done.before we can seriously begin to consider the question of \\'hethe.r
00 technology will ever represent a viable alternative to the relational approach."

While many of the foregoing remarks are still applicable. matters have crystallized
somewhat since the previous edition was i>ublished. In many ways. in rac1. relational 1•s.
00 can now be seen to be somewhat of an apples-and-oranges companson: as explained
in Chapter 24, a relational DBMS comes re11dyfor use, whereas an 0 0 DBMS by c-0ntrn~t
is best thought of as a kind or co11srrm1tlrm kit for building upplic::uion-specific DBMSs.

25.6 Michael Kifer, Won Kim, and Yeho)huu Sagiv. "Querying Object-Oriented Oat.abases,"
Proc. ACM lntematlonal Conference on Manngement orDnta. StlII Diego, Cnli r. (Junl"
1992).

Propose!> another "Object SQL" called XSQL.

TERADATA, Ex. 1014, p. 734

706 Part VI Object-Oriented Systems

25.7 Peterlyngbaek et al. "OSQL: A Language for Object Darabases." Technical Repon
HPL-DTD-91-4, Rewlett-PackardCompaiiy (January 15th. 1991).

See the annotatio1uo reference [25.1].

25.8 Gail M. Shaw and Stanley B. Zdonik. "A Query Algebra for Object-Oriented
Databases." Proc. 6th International Conference on Dara Engineering ~ebruary 1990).
Also Technical Report TR CS-89-19, Dept. of Computer Science, Brown University,
Providence, RI (March I 989).

ThiS paper serves to support the present writer's contention that any "00 aJgebra" wm
be inherently complex (because' objects are complex). ln particular, equality of:arblttar­
ily nested hierarchic objects requires very careful treatment. The basic idea behind the
specific proposals of thls paper is that each query algebra operator produces a relation,
in which. eaeb tuple contalns OIDs for certain database objects. In the case of join, for
example, each tuple oonlains 01Ds of objects that match one :another under the joining
condition. Those tuples do not inherit any methods from the component objects.

25.9 David W. Shipman. ''The Functional Data Model and the Data Language DAPLEX."
ACM TQDS 6, No. 1 (March l98 l). Republished in M. Stonebraker (ed.): Readifrgs lri
Database Systems. San Mateo, Calif.: Morgan Kaufinann (1988).

There have been several attempts to construct systems based on functions instead of
relations, and DAPLEX is one of the best known. The functional approaches share cer­
tain_ ideas with the 00 approach, including in particular a SQmewhat navigational (i.e.,
path-following) style of addressing objects that are functionally related to other objects
(that are functionally related to other objects, etc.). Note, however, that afunctionino~
of the so-called "'functional" models is typically not a mathematical function at all; it
mig)!t. foe ex111l1ple, be multi-valued.Jn fact. eonsiderable violence haS to be done to the
function concept in order to make it capable of all the things required of it in the "func­
tional data model" contexL Be that as it may. it seems to this writer that the functional
appr,Q8ch and the 00 approach are in large part the same thing under different names.

25.10 Michaei Stonebraker et al "Third Generation Database System Manife,sto." ACM
SIGMOD Record 19. No. 3 (September 1990).

In part, this paper is a response co---i.e., counteq>ropqsal to-the proposals of reference
[25.1]. A quote: "Second generation systems made a major conlribution in two areas,
nonprocedural data access and dara independence, and these advances must nol be com­
promlsed by third generation systems." The following features are stated to be essential
requirements of a "'third generation DBMS" (the Lisi is somewhat paraphrased):

I. Provide traditional DB services plus richer object struccures and rules
• Rieb type system
• Inheritance
• Functions and encapSulation
• Optional sys tem-assigned 1uple IDs [there seems to be some confusion here between

obje'<t IDs and ruplell)sj
• Rules (e..g,. in1egrity rules), not tied 10 specific objects

2. Subsume second generationDBMSs
• Navlgafion only as a las1 reson
• Intensional and extensional set defirulions [meaning collections that are maintained

automatlcally by the sys1em and collec1ions that are maintained manually, by the user]

TERADATA, Ex. 1014, p. 735

Chapter 25 Toward an 00/Relatlonal Rapprochement 707

• Updluable views
• Clus1ering, indexes. etc .. hidden l'rom the user

3. Suppon. open system~
• Multiple languages
• Pcrslsten<ie
• SQL [ch11racterized a~ "intergalactic data~"(!))

• Queries and results must be the lowest 'level of clienl/server communiclltion

Regarding SQLsuppon for "complex objects," incidentally. it seems to this writer
that such suppon. can be made part of a clean, absrracL 00 model only if the object
design diScipllne from Section 24.3 is made an essential part of that.model 100. Assum­
ing that such query capabilities are l,nc0rpoFl1ted into the model, w~ QOuld then extend
the requirement 10 permit those capabili1ies to be invoked from within app1.icacion code,
thereby:

I . Moving away from the present 3GL orientation of 00 systems_ and

2. Providing support for the dual-mode principle, as in relational systems.

We would also have a basis for stating integrity, constraints ·declaratively and ptoviding
declarative view support.

25.11 lJniSQL Jnc. UniSQUX Database Mariagement System User'5 Ma1111al: Release 1.2
(1991).

See Section 25.4 for an extended discussion of this product- Tt is worth noting that, pre­
cisely because (as stated in that section) it is really an extended SQL system, not a true
00 DBMS, some of thecnilicisms leveled at 00 systems in general in Chapter 14 and
elsewhere do not app!y to UniSQL in particular. To be more specific:

• UniSQL does support views ("virtual classes"). They have their own methods, bow­
ever-i.e .. they do not inherit methods from the cables (classes) from which they are
derived. lncidentally, lhe manual talks in terms of''classes and virtual cla,sses:· which
suggests that virtual olas:ses are not classes. This situation is reminiscent of the SQL
standard's talk of "tables and views" (see Chapter 3), which suggests lhat views are
not tables.

• ln fact, UniSQL doos suppon. deriwd objeets in general- i.e., the relutionul operators
join. union, etc.. are all suppon.ed. However. those derived objects are not regard1..'<i as
classes. and i1 is nol clear exactly what kind of objec1.s (e.g .. how nested they are) 1hose
operations produce.

• UniSQL does have a single language (SQL/X) for both programmed and interactive
access 10 the database. Moreover, that language is set- level. anti SQUX reque.\tS are
thus oplimii.able. tr also supports symmetric eicploitation.

• UniSQL does have suppon for missing i nformation~it provides both SQL-style nul Is
and (limited) ~upport for user-defined def~ull value.~.

• II also presumably supports a predefined sys1em cu1alog.

• Finally. it provides a separate CREA TE CLUSTER s1ntement, which mean~ that (un­
like some 00 systems) it Joe~ nol rnak.e the mistake of undermining dUlll indepen­
dence by lening the logical database definition diolllle what physical cllmcring to use.

25.12 Carlo Zaniolo. "The Datnbasc Language GEM:· Proc. 1983 ACM SfGMOD lntcma·
tional Conferenci: 1>n Management of Dutu, San Jo>e. Culif. (May il 983). Republished m

TERADATA, Ex. 1014, p. 736

708 Part VI a bject-Oriented Systems

M, Stonebraker (ed.): Readings in Datalme Sy,mu11s. San Mateo. Calif,: Morgan
Kaufmann (1988).

GEM is an acronym. standing for··oeneralEntity Manipulator." IL is effectively an ex­
tension to QUEL that supports non I NF relation~ (Le.. relations with set-valued attri­
butes) and relations with alternative attributes (e.g .. exempt EMPs have a SALARY at­
tribute, Tionexempt EMPs have HOURLY_ WAGE and OVERTIME auributes). It also
makes use of the 00 idea that objects coTiceptually cootain other objects (instead of
foreign keys that reference those other objects). and extends the familiar dot notation
to provide a simple way of referring to auributes of such conlllined objects (in effe<;t,
by implicitly traversing cenain preferred join paths). 'For example, the qualified
name EMP.DEPT.BUDGET could be used to refer to the budget of the depanment of
some given employee. Many other systems. including POSTGRES (25.13-25. 16(and
UniSQL [25.l I], have adopted and/or lldapted this idea.

Extendable Systems
A variety of research projects have been under way for some years to build sysiems that are
essentially relational STid yet (like 00 systems) are exte11dable--that i~. they allow knowledge­
able users (sometjmes called "database customizecs") to tailor the system in various ways, e.g ..
by defining their own data types. their own functions. their own storage strueturcs. and so on.
Two of the best known· projects are.POSTGRES from the University of California at Berkeley
and Starburst from lBM Research. The following is a brief selecti<m from the n11merous publi­
cations on these two project.~. Note, however, that neither of these systems adheres ro the "do­
maia- object class" equivalence advocated in the body of this chapter.

25.13 Michael Stonebraker and Lawrence A. Rowe. "The Desigttof POSTGREs:· Proc. ACM
SIGMOD IDlemationaJ Conference on Management of Data. Washington. D.C. (June
1986').

The stated objectives of POSTGRES are:

l. To provide beuer support for compJeJt objects

2. To provide user extendability for data types. operators. and access methods

3. To provide active database facilities (alerters and triggers) and inferencing support

4. To simplify the DBMS code for crash reco.very

5. To produce a design that t an take advantage of optical disks, multiple-processor
wor~stations. and custom-designed VLSl chips

6. To make as few changes as possible (preferably none) to lhe relational model

25.14 Michael Stonebraker. "The Design of the POSTGRHS Stor.ige System." Proc. 13th In- 1

temational Conference on Very Large Data Bases. Brighton, England (September 1987).

25.15 Lawrence A. Rowe and M1chacl R. Stonebraker. 'The POSTGRES Data Model.''
Proc. 13th Lntemational Conference o n Very Large Data Bases. Brighton. England
(September 1987).

25.16 Michael Stonebraker and Greg Kemnitz. 'The POSTGRES Next Generation Database
Management System." CACM 34. No. I 0 (October 1991),

25.17 Bruce Lindsay, John McPherson. and Hamid Pirahesh. "A Dam Management Extension
Archileeture:· Proc. ACM SIGMOD lntematlQnal Conference on Management of Data,
San Frnncisco., Calif. (May 1987).

Describe.5 the overall architecture of the Starbursl protoLYIJI!· Starburs1 "facilitates the

TERADATA, Ex. 1014, p. 737

Chapter 25 Toward an 00/Relatlonal Rapprodlement 709

implementation of d:ltII manageme111 elllenRion~ fo1· relational dninba.~e sys111ms." Two
kind$ of exte.nsions1.1re described in this paper. user-defined storage structures and1.1ccess
meLhods. and user-defined Integrity coru.'tralnts and niggered procedltres. However (to
quoie the paper). "1he:re are. of course. other directions in which it is impGnant to be able
to extend !DBMSs, including} user-defined 11.bstract data types land I query evaluation
cechniques." See reference [25. 181 below.

25.18 LauraM. Haai,. J. C. Freyrag. G. M. Lohman. and Hamid Pirahesh. "Extensible Query
Processing in Swl?urst."" Proc. ACM SIGMOD International Conference on Manage­
ment of P ata, Ponland, Ore. (June 1989).

The alms of the Starburst p;oject expanded somewhat after reference [25.17] was first
written: "Starburst provides support for adding new stomge methods for tables. new
types of access, methods and 1megriLy cansnaims. new data rypes. functions. and new
operation.~ on tab l~.'' The system is divided into two major cl')mponents, Core and Co­
rona.. (;Urresponding re$pectively to the RSS and RDS 1n the original System R prototype
[8.12-8.16]. Core supports the extcndubility runctions descrihetl in reference [25J7l.
Corona supports the Starburst query language Hydrogen. which is a dialect of SQL that
(a) eliminates most af tile implementation restrictions of System R SQL. (b) is much
more onhogt\nal 1han Syi;lem R SQL. (c) suppans recun;ive querie>. and (d) is user-ell­
tendable. The paper includes an mteresLin~ cliscuss1un of "query rewrite." i.e •. Hydrogen
transformlltion rules thilt are u.-red by the optimizer to convcn qlleries to a semanticuUy
equivalent but more efficient form (see Chapter LSJ. See ulso reference 118.44 I

25.19 Guy M. Lohman er aJ. '"Extensions to Starburst: Objects. Types. Functions. and Rules."
CACM 34, No. 10 (October 1991 l.

TERADATA, Ex. 1014, p. 738

APPENDIXES

TERADATA, Ex. 1014, p. 739

The following lllJpendixes cover a1somewbat mixed bag of topics. Appendix A pro­
vides a tutorial survey of common storage structures and access techniques. Appendix
B gives a brief overview of a commercial relational implementation-namely, IBM's
DB2 produc~-in arder to give some idea of bow a real relatienal DBMS actually
works. Appendix C is an introclu"tion to the ideas underlying logic-based systems (i.e.,
systems that attempt to marry ideas from the logic programming world with database
ideas). Finally, Appendix D presents a list of the more important abbreviations and
aeronyms introduced in lhe text, togelherwitb !heir meanings.

TERADATA, Ex. 1014, p. 740

APPENDIX

A Storage Structures and
Access Methods

A.1 lntrodudion

In this appendix we present a tutorial survey of techniques for physically representing
and accessing the database on the dislc (/'?ote: We use the term "disk'' throughout to
stand generically for all direct-access media, including, e.g., RAID mays, mass> stor­
age, and more recently optical disks, as well as conventional moving-head magnetic
disks per se). The reader is assumed to have a basic fanuliarlty with disk architecture
and to understand what is meant by such terms as seek time, rotational delay, cyUn­
der, track, read/write head, and so on. Good tutorials on such material can be found
in many places; see, for example, reference [A.4].

The basic point motivating all storage structure and access method technology is
that disk access times are much slower than main memory access times. Typical seek
times and rotational delays are both on the order of JO milliseconds or so, and typical
data transfer rates are somewhere in the range 5 to 10 million bytes per second; main
memory access is likely to be at least four or five order's of magnitude faster than disk
access on any given system. An overriding performance objective is thus to minimize
the number of disk accesses (diskJ/O' s). This appendix is concerned with techniques for
achieving that objective-i.e .. techniques for arranging stored data on the disk so that a
required piece of data, say a required stored record, can be located in as few I/O's as
possible.

As alre~dy suggested. any given arrangement of data on the disk is referred to
as a storage structur e. Many different storage structures can be and have been
devised, and of cour.se different structures have different performance characteris­
tics; some are good for some applications, others are good for others. There is no
single structure that is optimal for all applications. rt follows that a good system
should support a variety of different structures, so that different portions of
the database can be stored in different ways, and the storage structure for a given
ponion can be changed as performance requirements change or become better
understood.

The structure of the presentation is as follows. Following this introductory section.
Section A.2 explains in outline what is involvea in theove.rall process of locating and

TERADATA, Ex. 1014, p. 741

Append ix A Storage StNctures and A<cess Methods 713

accessing some particular storedrecord, * and identifies the major software components
involved in that process. Section A.3 then goes into a little more detail on two of those
components, the file manager and.the disk manager. Those two sections (A.2 and A.3)
need only be skimmed on a first ~ailing, if the reader desires: a lot of the detail they
contain is not really re<juired for an understanding of the subsequent material. The next
four sections (Sections A.4-A.7) should not be just skimmed, however, since they rep~
resent the most important part of the entire discussion; they describe some of the most
commo nly occurring storage s truaturci. found in present-day systems, under the head­
ings lnde:clng. hashing, pointer chains, and compression techniques, respectively. fj­

nally, Section A.8 presents a summary and a brief conclusion.
Note; The emphasis tbrougliout is 0,11 r:oncepts, not detail, The objective is to ex­

plain the general idea behind such notions ru; indexing, hashing, ere .. without getting
too boggeddown in the details of any one specific system or technique. The reader who
needs such detail is directed to the books and papers listed in the References and B ibli­
ography section at the end of !.he appendix.

A.2 Database Access: An Overview

Before we get into our discussion of storage scructures per se, we first briefly c:onsider
whaL is involved in the overall process of dauibase access in general. Localing a spi;:cific
piece of data in the database a11d presenting il to the user involves several layers of data
acce~s software. Of course. the derails of those layers vary considerably from system to
system, and so too does the terminology, but rhe principles are fairly standard and can
be ex:piained in outline as follows (refer ro Fig. A. I).

I. First, the DBMS decides what stored record is required, and asks the me manager
to retrieve that reoord. (We assume fortbe purposes of this simple explanation that
the DBMS is able to pinpoint the exact record desired ahead of time. In practice it
might need to retrieve a set of several records and search through those records in
main.memory 10 find the specific one desired. lo principle. however. this only means
thal I.be sequence of steps 1-3 must be repeated for each stored re<iord in that set.)

2. The file manager in tum decides what page contains the desired record. and asks
the disk manager to retrieve that page.

3. Finally, the disk manager determines the physical location of the desired page on
the disk, and issues the necessary disk 1/0 request. Nore: Sometimes. of course, the
requ.ired page will already be in a buffer in main memory as the resul t of a previous
retrieval, in which case it obviously should not be necessary 10 retrieve it again.

Loosely speaking, therefore, the DBMS hai. a view of the database as a collection
of stored records, and that view is supponed b} the me manager. the file manager. in

• Tbroughoul thi~ uppcndi~. since our tl1Sc11,~l11n• ur. ~II "I th• 'iar•g~ lovcl. we "'I• s1or.g .. lcvcl 1ermint1l·
ogy (Oles, rccort!J,, tic Id}. etc.) in pince of lheir rclnuon•l an.1101!;<

TERADATA, Ex. 1014, p. 742

714

t
d
d

Reques
store
recor

st
d
e

Reque
store

pag

0 Disk.I/
operatio n

DBMS

••

Ale
manager

0

..
Disk

manager

'

7' .
~

Stored
database

s
r

to red
record
eturred

s
p

to red
age

_/

a turned r

D
I

eta read
rom disk

FIG. A.1 The DBMS, file manager. and disk manager

Appendixes

1um, has a view of the darabase as a collection ofpages, and 1ha1 view is supported by
the disk manager; and 1he disk manager bas a view of the disk "as it really is." The three
subsections below amplify these ideas somewhat Section A.~ then goes into more de­
tail on the same topics.

Disk Manager

The disk manager is a componem of the underlying operating system. lt is the compo­
nenl responsible for all physicall/O operations (in some systems ii is referred to as the
"basic I/O services" component). As such. it clearly needs to be aware Of physical disk
addresses. For example, when the file manager asks to retrieve some specific page p,
the disk manager needs to know exactly where page pis on the physical disk. However,
the user of the disk manager-namely, the file manager~oes 1101 need to know that
information. lns1ead, Lhe file manager regards the disk simply as a logical collection of
page sets, each one consisting of a collettion of fixed-s~ pages. Each page set is
identified by a uniqlle page set ID. Each page, In tum, is identified by a page number
that is unique wilhi.n the disk; distinct page sets are disjoint (i.e., do not have any pages
in common). The mapping between page numbers and physical disk addresses is under­
stood and maintained by ch:e disk manager. The major advantage of this arrangement
(not the only one) is tha1 all devit.:e-specific code can be isolated within a single sys1em

TERADATA, Ex. 1014, p. 743

Appendix A Storage Stnlctures and Access Methods 715

component, namely the disk manager, and all higher-level comp0nimts-in 'Particular.
the file manager"--Can thus be device-i11depe11dent.

As just explained. the complete set of pages on the disk is divided into a collection
of disjoint subsets called page set~. One of tho!;e page sets. the free space page sel.
serves as a pool of available (i.e .. currently unused) pages; 1he others are all considered
to coniaio significant data. The allocation and deallocation of pages m and from page
sets is performed by the disk manager on demand from the fiJe manager. The operations
supported by the disk manager on page seis-i.e., the Operatio!"IS the file manager is
able to issue-include the following:

• Retrieve page p from page set s
• Replace page p within page sets

• Add a new page ro page set.~ (I.e., acquire an empty page from the free space page
set and return the new page number p)

.- Remove page p from page set s (i.e .. return page p to the free space page set)

The first two of these ONtations are of course the basic page-level .UO operations
the file manager needs. The other two allow page sets to grow and shdnk as necessary.

File Manager

The file manager use~ !he dii>k manager facilities jl'.!.~ described in such a way a:; to
permit its user-11iz .. the DBMS-to regard the disk as a collection of stored tiles (re­
member from Chapter I that a stored file is the collection of aJI occurrences of one type
of stored record). Each page set will contain one ormore stored files. Nore: The DBMS
dees need robe aware of the existence of page sets. even though it is not responsible for
managing them in detail, for reasons indicated in the next subsection. Lo particular. the
DBMS needs to know when two stored files share the same pageg1 or when rwo scored
records share the same page.

Each stored file is identified by a file name or tile ID, unique at least within its
containing page set. and' each stored record, in turn, is identified by a record number
or record ID (RID). unique 81. least within its c-0ntainings1ored file. (ln practice, record
IDs are usually unique, not just within their containing tile, bur acrually within the
entire disk. since they typically consist of the combination of a page number and some
value that is unique wltbin that page. See Section A3, later.)

The operations supponed by th.e file manager on stored liles-i.e .. the operations
the DBMS is able to issue-include the following:

• Retrieve stored record r f:rom stored file[

• Replace stored record r within stored file[

• Add a new stored record to stored file/ and return the new record ID r

• Remove stored record r from stored filtf

• Create a new stored file f
• Destroy stored file f

TERADATA, Ex. 1014, p. 744

716 Appendixes

Using these primitive file management operations, the DBMS is able to build and
manipulate che storage structures that are the principal concern of this appendix (see
Seccions A.4-A.7).

Note: Jn some systems che file manager is a component of the underlying operating
system, in others iL is packaged with the DBMS. For our purposes the distinction is not
importanL However. we remark in passing that. although operating systems do invari­
ably provide such a component, it is often the c~~ that the general-purpose file man­
ager provided by the operating system is not ideally suited to the requirements of cbe
special-purpose ··application'' chat is the DBMS. For more discussion of this topic. see
reference [A.44].

Clustering

We should not leave this overview discussion without a brief mention of the subject of
dara clustering. The basic idea behind clu..'ttering is to try and store records that are
logically related (and therefore frequently used together) physicalJy close together on
the disk. PhysicaJ data clustering is an extremely important facmr in-performance, as
can easily be seen from the following. Suppose the stored reeord most recently ac­
cessed is record rl, and suppose the next stored record required is record r2. Suppose
also tbac rf is stored on page pl and r2 is st-0red on pagep2. Then:

I . Tf p I and p2 are one and the s11me, then the access to r2 will not require any phys­
ical VO at all, because the de.~ired page p2 will already be in a buffer in main
memory.

2 lf pl and p2 are distinct but physically close together-in partiouJar, if they are
physicaJly adjacent-then the access to r2 will require a physicaJ VO (unJess, of
course. p2 also happens to be in a main memory buffer). but the seek time involved
in that 1/0 will be small. because the read/write beads will already be close to the
desired position. In particular. the seek time wm be zero if pl and p2 are in the
same cylinder.

As an example of clustering. weconsid:er the usuaJ suppliers-and-parts database:•

• If sequential access to all suppliers in supplier number order is a frequent applica­
tion requirement then the supplier records shouJd be clustered such that the sup­
plier SI record is physically close to the supplier S2 record. the supplier S2 record
is physically close to the supplier S3 record, and so on. This is an example of
intra-Die clustering: The clustering is applied within a single stored file.

• If. on the other hand, access to some specific supplier together with all shipments
for that supplier is a frequent application requirement. then supplier and shipment
records should be smred interleaved. with the shipment records for supplier SI
physically close Lo the s1.1pplier SI record. the shipment records for supplier S2

• We ~sumo for slmpliolly 1hmughou11hl.s appendix 1hal ea.oh indlvjdual supplier. pan. or ~bipmtttl tuple
maJIS to 8 smgle Jilored record on lhe disk lhnrring exp I ici1 s1111eme111s tp the conlrary).

TERADATA, Ex. 1014, p. 745

Appendix A Storage StructUres ancl Access Methods 717

physically elos~ co the supplier S2 record, and so on. This is an example of inter­
file clustering: The clustering is applied across more than one stored file.

Of course, a given file or sel o f files can be physically clustered in one and only one
way aL any given time. •

The DBMS can support clustering. both intro- and inter-file. by sLoring logically
related records on the same page where possible and on adjacent pages where no1 (this
is why the DBMS must know about pages as weU as stored files). When the DBMS
creates a new stored record. the .file manager must allow h 10 specify 1ha1 the new
record be stored ''near''-i.e., on the same page as. or at least on a page logically near
tQ-some existing record. The disk manager, in tum. will do its best Lo ensure thal two
pages that are logically adjacent are physically adjacent on the disk. See Section A.3.

Of course, the DBMS can only know what clustering is required if the darab11se
administrator is able to tell it. A good DBMS should allow the DBA to specify different
kinds of cl11$tering for different files. lt should also aJJow the clustering for a given file
or set of ftJes to be changed if the performance requirements change. Furthermore. of
course, any such change in physical clustering should not require any concomitant
changes in application programs, if data independence is to be achieved.

A.3 Page Sets and Files

As explained in the previous section, a major function of the clislc manager is to aJJow
the file manager to ignore aJJ details of physical disk 1/0 and to think in terms of (logi­
cal) "page VO" instead. This function of the disk manager is referred to as page man­
agement We present a very simple example to show ho\\ page management is typi­
cally handled.

Consider the suppliers-and-parts database once again. Suppose lhat the desired
logical ordering of records within each table is (loosely) pnmlll)' kev sequem·e~that is.
suppliers are required to be in supplier number order. parts in part number order, and
shipment$ in pan number order within supplier number order.* To keep matters simpJe,
suppose coo that each stored file js s1ored in a page set of its own. and that each ~tored
record rC{juires an entire page of its own. Suppose also that the disk contains a total of
64K = 65.536 pages (not at all unreasonable. by the wa)). Now consider the follpwing
sequence of events.

I. Initially the database contains no data al all. There is only one page ~et. the free
space page set, which contains all the pages on the disk-excepl for page tero,
which is special (see later). The remaining page.s are numbereu <:equentially from one.

2. The file manager re.quests the creation of a page set for supplier records. and inserts

• We Sn) "loosely'" because Ibo tdrrll/>ri1111m• lev .<e(/ut11c1• is n!lt woll tlc11ned if the pnmun key" •ompd!>
ire. Jn the ci1~1: of~hipmcnts. for exMipk. it might mean cith~r pbrt number oruol within ~~•pplh!r number CJrder Ot

the other wu> ohout.

TERADATA, Ex. 1014, p. 746

718 ApP9f'Cllxes

the five supplier records for suppliers S l--S5. The disk managerremoves pages 1-5
from the free space page set and lahels them .. the i;uppliers page set."

3. Sunilarly for pans and shipments. No\\. there are four page sets: the suppliers page
set (pages 1-5). the pans page set !pages 6-lll. the shipments page set (pages
12--13). and the free space page ~et (pages 24, 25. 26). The situation at this
poi m is as ~hown in Fig. A.2.

To continue whh the example:

4. Next. the me manager insens a new !Supplier stored record (for a new supplier,
supplier S6l. The disk manager locates the first free page in the free space page
sel-namely. page 24-and add:. ll to the suppliers page set.

5. The file manager deletes the stored record for supplier 52. The disk manager re­
turns the page for supplier S2 (page 2) to the free space page set.

6. The file manager inserts a new part stored record (for part P7). The disk manager
locates the first free page m the free space page set-namely. page 2-anii adds it
tb the parts page set.

7. The file manager deletei; the stored record for supplier S4. The disk manager re­
tµms the page for supplier S4 (page 4) co the free space page set.

And so on. The situation at lhb juncture i$ ru. illustrated in F ig. A.3. The Wint
about that figure is the following: After tbe system has been running for a while, it can
no longer be guaranteed that pages that are logically adjacent are still physically adja­
cent. even if they sinned out that way. For this reason. the logical sequence of pages in
a given page set mu.~t be represented, not by physical adjacency, but by pointers. Each
page will contain a page header, i.e .. a set of control information that includes (among

1 3 4 6

SI S2 S3 S4 SS

Pl PS

12

S1/P1

FIG. A.2 Disk layout after creation and 1n1ual loadmg of the suppliers-and-parts
database

TERADATA, Ex. 1014, p. 747

2 3
51 SS

P1 P2

12 13 18
51,,.1 51M S1/P5

18 22
S2/P1

24

FIG. A.J Disk layout after inserting supplier 56, deleting supplier S2. inserting part
P7, and deleting supplier ~

719

other things) the physical disk address of the page that immediately follows that page
in logical sequence. See Fig. A.4.

Points arising from the foregoing example:

• The page headers-in particular, the ' 'next page" pointers-are managed by the
disk manager; they should be completely invisible to the file manager.

• As explained in the subsection on clustering at the end of Section A.2. it is desir­
able ro store logically adjacent pages in physically adjacent locations on the disk
(as far as possible). For this reason. the disk manager norrnaUy allocates and
deallocates pages to and from page sets, not one at a time as suggested in the ex-

3 2 3 5 25 5 24

$1 P7 53 $5

8 8 9 9 10 11 2

P1 P2 P3 P4 PS P6

12 13 13 14 14 15 15 16 16 17 17 18

S1/P1 S1/P2 51/P3 S1/P4 51/PS S1/P6

18 19 19 20 20 21 21 22 22 23 23

S2/P1 S21P2 S3/P2 S4/P2 54/PS

FIG. A.4 fig A.3 revised to show •neJCt page• pointers (top right corner of each
page)

TERADATA, Ex. 1014, p. 748

720 Appendixes

ample, but rather in physically contiguous groups or extents of (say) 64 pages at a
time.

• The question ari!Y!s: How does the disk manager kngw where tbe various page sets
are locatediJ~r. more precisely, how does it know, for each page set. where me
(logically) first page of that page set is located? (It is sufficient to locate tbe lirst
page, of course, because the second and subsequent pages can then be located by
foTiowing the p0inters in the page headers.) The answer is that some fixed location
on the disk-typically cylinder zero, track zero-is used to store a i>age that gives
precisely that information. That page (variously referred to as tbe disk table of con­
tems. the disk directory. the page set directory. or simply page zero) thus typically
contains a list of the page sets currently in existence on the disk, together with a
p0inter to the first page of each such page set See Fig. A.5.

Now we turn to the file manager. Just as the disk manager allows the filemanager
10 ignore details of physical disk 1/0 and ro think for the most part in terms of logical
pages. so the file manager allows the DBMS to ignore details of page J/0 and to mink
for the most part in terms of stored files and stored records. This function of the file
manager is referred to as stored record management. We discuss that function very
briefly here. once again taking lhe suppliers-and-parts database as the basis for our
examples.

Suppose, then (rather more realistically now). that a single page c;an accommodate
several stored reGords. instead of just one as in the page management example. Suppose
too that the desired logical order for supplier records is supplier number order. as be­
fore. Consider the following sequence of evems.

Page set Address of
first page

Free space 4

Suppliers 1

Parts 6

Sh1pm1!nts 12

FIG. A.5 The disk directory (•page zeto")

TERADATA, Ex. 1014, p. 749

Appendix A Storage StN(tUres and Access Methods 721

I. First, the five stored records for suppliers Sl-55 are inserted and are stored to­
gether on some page p. as shown in Fig. A.6. Noce that page p still conrains a
considerable amount of free space.

2. Now suppose the DBMS inserls a new supplier stored record (for a new supplier,
say supplier 59). The file manager stores this record on page p (because there is
still space), immediately foJJowing the stored record for supplier SS.

3. Next. the DBM S deletes tbe stored record for supplier S2. The file manager erases
the S2 record from page p. afld shifts the recordi. for suppliers 53, S4, SS. and S9
up to fill the gap.

4. Next, the DBMS in.'lertS a new suppliei; stored record for another new supplier.
supplier S7. Again the file manager stores !hi!> record on page p (because there is
still space): it places the new record immediately foJJowiug that for supplier SS,
shifting the record for supplier S9 down to make room. The s ituation at this junc­
ture is illustrated in Fig. A. 7.

And so on. The point of the example is that the logical sequence of i.tored records
within any given page can be represented by plty~ica/ sequence wilhin that page. The
file manager will shift individual records up and down to achieve this effect, keepmg
aJJ data records together at the !Op of the page and all free space together at the bottom.
(The logical sequence of stored records across pages is of course represented by the
sequence of those pages Within their containing page seL, a~ described in the page man­
agement example earlier.)

As explained in Section A.2. stored records are identified internally by record ID
or RID. Fig. A.8 shows how Rills are typically implemented. The RID fur a s(ored

p I Rest of ~eaderf

S1 Smith 20 London S2 Jone'5 10 Paris

SJ Blake 30 Paris S4 Clark 20 London

SS Adams 30

FIG. A.6 Layout of page p after lnl ual loading or 1he
flVe supplier record~ for S l- S5

TERADATA, Ex. 1014, p. 750

n2

p (Rest of header)

S1 5111ith 20 London 53 ~lake 20 Paris

54 Clark 20 London 55 Adams 10 Athens

S7 59

FIG. A. 7 Layout of page p after rnserong supplier 59,
deleting supplier S2. and Inserting supplier S7

Appendixes

record r consi~s of two parts-the page number of the page p containing r, and a byte
offset from the foot ofp identifying a slot that contains, in tum, the byte offset of rfrom
the top of p. This scheme represents a good compromise between the speed of direct
addressing and the flexibility of indirect addressing: Records can be shifted up and
down within their containing page, as illustrated inFigs. A. 7 and AS, without.having
to change RIDs (only the local offsets at the foot of the page have to change); yet access
to a given record given its RID is fast, involving only a single page access. (It is desir-

Pagep

i'lecord r

f\10
torr~-~-~

Page Offse.t
no. frorr foot of pa.ge

FIG. A.8 Implementation of stored record IDs (RIDs)

TERADATA, Ex. 1014, p. 751

Appendix A Storage Structures and Access Methods 723

able that RIDs not change, because they are used elsewhere in the database as pointers
to the records in question-for example, in indexes. If the RID of some record did in
fact change, then all such pointer references elsewhere would have to be changed too.)

Note: Access ro a specific stored record under the foregoing scheme might in rare
cases involve two page accesses (but never more than two). Two accesses will be re­
quired if a varying length reco.rd is updated in such a way that it is now longer than it
was before, and there is not enough free space on the page to accommodate the in­
crease. In such a situation, the upda1ed record will be placed on another page (an over·
Dow page), and theorjginal record will then be replaced by a pointer (another RID) to
the new location. If the same thing happens again, so that the updated record has lO be
moved to still a third page, then the pointer in the original page will be changed to point
to this new.est location.

We are now almost ready lo move on to our discussion of storage slnlctures. Fro~
this point forward, we will assume for the most part Uust as the DBMS normally as­
sumes) that a given stored file is simply a collection of stored records. each uniquely
identified by a record ID that never changes so long as thar record remains in existence.
A few final points to conclude this section:

• Note that one consequence of the preceding discussion is thal, for any given stored
file, it is always possible to access all of the stored records m that s1ored file se­
quentially- where by "sequentially" we mean "store-0 record sequence within
page sequence within page set" (typically, ascending RID sequence). This se­
quence is often referred to loosely as physical sequence, though it should be clear
that it does not necessarily correspond to any obvious physical sequence on the
disk. For convenience, however. we will adopt the same term.

• Notice that access to a stored file in physical sequence is possible even if several
files share the same page se1 (i.e., if stored files are interleaved). Records that do
not belong to the stored file in question can simply be skipped over during the
sequential scan (see the note below regarding record prefixes).

• It should be stressed that physical sequence is often a1 least adequate as an access
path to a given stored file. Somecimes ii might even be optimal (especially if the
stored file is small, say not more than ten or so pages). However, it is frequently the
case that something better is needed. And, Sb indica1ed in Section A. l, an enor­
mous variety of techniques exist for achievmg such a "something belier."

111 For the remainder of chis appendix. we will usually assume for simplicity that the
(unique) "physical" sequence for any given stored file is primal)• key sequence (as
defined in Section A.3), barring any explici1 staiemem to the contrary. Please note,
however, that this assumption is made purely for the purpose of simplifying subse­
quent discussion: we recognize that there might be good reasons in practice for
physically sequencing a given SlOred file m some or.her manner. tl.g., by the value(s) of
some other field(s), or simply by time of amval (chronological se.quence).

• For various reasons. a stored record will probably contain certain control informa­
tion in addition to its user data fields. That information is typically collected t~

TERADATA, Ex. 1014, p. 752

724 Appendlxn

gether at the front o(the record in the form of a record prefix. Examples of the
kind of information found in such prefixes are the ID of che conraining srored file
{necessary if one page can contain records from several stored files), che record
length (necessary for varying length records), a delete flag (neeessary ifrecords are
not physically delered at the time of a logical delete operation), pointers (necessary
if records are chained together in any way), and so on. But of course all such con­
trol infonnation will normally be concealed from the user (i.e., end user or applica­
tion progr.ammer).

• Finally. note that the user data fields in a given s.tored record wi11 be of interest to
the DBMS bm not to the file manager (and not to the disk manager). The DBMS
needs to be aware of those :fields because it will use them as che basis for building
indexes and the like. The file manager, however, bas no need to be aware of them
at all. Thus. another distinction between the DBMS and the file manager is thac a
g1 ven stored record has a know11 lntemalstructure to theJ)BMS but is basically just
a byte string to the file manager.

Jn the remainder of this appendix we describe some of the more important tech­
niques for achieving the "something better" referred to above (i.e., an access path that
is better than physical sequence). The techniques are discussed under the general head­
ings of indexing, hashing, poimer chains, and compression techniques. One finalgen­
eralremark: The various techniques should not be seen as mutually exclusive. For ex­
ample, it is perfectly feasible to have a stored file with (say) both hashed and indexed
access to that file based on the same stored field, or with bashed access based on one
field and pQinter cha.in access based on another.

A.4 Indexing

Consider the suppliers table once again. Suppose the query "Find all suppliers in city
C ··(where C is a parameter) is an important one--i.e., one that is frequently executed
and is therefore required to perform well Given such a requirement, the OBA might
choose the stored representatioashown in fig. A. 9 .Jn that representation, there are two
stored files, a supplier file and a city file (probably in different page setS); the city file,
which we assume to be stored in city sequence (because CITY is the primary key),
includes poimers (RlDs) into the supplier file. To find all suppliers in London (say), the
DBMS now has two possible strategies:

L Search the entire supplier file, looking for all records with city value equal to
London

2. Search the city file for the 1-.oodon e!llries, ~d for each such eritry follow the
pointer to the corresponding recordin the supplier file

If the ratio of London suppliers to others is small, the second of these strategies is
likely 10 be more efficient than the first, because (a) the DBMS is aware of the physical
sequencing of the city file (it can stop ics search of that file as soon as it finds a city that

TERADATA, Ex. 1014, p. 753

Appendix A Storage Structures and Access Methods 725

City file (index) Suppller file (data)

51 Smith 20 L9ndon

London 5! Jone~ 10 Paris

London 53 Blake 30 Paris

Paris 54 Clark 20 London
•

Paris S5 Adams 30 Athens

FIG. A.9 Indexing the 5\.lpplier file on CITY

comes later than London in alphabetic order). and (b) even if it did have to search the
entire city file. that search would still probably require fewer J/0' s overall, because the
city file is physically smaller than the supplier file (because the records are smaller).

In this example. the city file is said to be an index ("the ClTY index") to che sup­
plier fil~ equivalently, the supplier fiJe is said to be indexed by the city file. An index
is thus a special kind of stored file. To be specific, it is a file in which each entry
(i.e., each record) consists of precisely two vaJues, a data value and a pointer (RID); the
data value is a value for some field of the indexed file. and the pointer identifies a
record of that file that has that vaJue for that field. The relevant field of the indexed file
is called the inde:{edfield, or sometimes the index key (we will not use this latter term,
however).

Note: Indexes are so called by analogy with conventional book indexes, which also
consist of entries containing "pointers" (page numbers) to facilitate the retrievaJ of in­
formation from an "indexed file" {i.e., the body of the bQok). Nore.however, that unlike
our CITY index, book indexes are hierarchically compressed-i.e., entries typically
contain several page numbers, nocjusr one. See Section A.7.

More terminology: An index on a primary key-e.g., an index on field S# of the
supplier file-is sometimes called a primary index. An index on any other field-e.g ..
the CITY index in the example-is sometimes called a secondary index. Also, an index
on a primary key, or more generally on any candidate key, is sometimes called a 1miqµe
index.

How Indexes Are Used

The fundarnentaJ advantage 0f an index 1s that ll speeds up retrieval. Bui there is a
disadvantage too: It sJows down updates. Por instance. every time a now srored record
is added to the Indexed file. a new entry wiU also have 10 be added to lhe index As a
more specific example. consider what the DBMS must do 10 the CITY index of Fig.
A.9 if supplier S2 moves from Pans to London. In general. therefore. the question that
must be answered when some field is being considered ali a candidate for indexing is:

TERADATA, Ex. 1014, p. 754

726 Appendixes

Which is more imponaot, efficient retrieval based on values of the field in question. or
the update overhead involved in providing that efficient retrieval?

E'or the remainde~ of this section we concentrate on retrieval operations specific­
ally.

Indexes can be used in essentially two differem ways. Birst, rhey can be used for
sequential access to the indexed file-where sequential means ··1n the sequence de­
fined by values of rhe indexed fiel d." Yor instance, the CITY index ill rhe example
above will allow records in the supplier file to be accessed Jn ciry sequence. Second,
mdexes can also be used for direct access to individual records in the indexed file on
the basis ofa given value for the indexed field. The query ''Find suppliers in London"
discussed at the start of the section iUustrates this second case.

lo fact, rhe two basic ideas just outlined can each be generalized slightly:

II Sequential attess: The index can also help with range queries- for instance, "Find
suppliers whose city is in some specified alphabetic range" (e.g .. begins with a
letter in the range L-R). Two imponant special cases are (a) "Find all suppliers
whose city alphabetically precedes (or follows) some specified value," and (b)
UFind ail suppliers whose city is alphabetically first (or last)."

• Direct access: The index can also help with list queries-for instance. "Find sup­
pliers whose cicy is in some sppcifled list" (e.g .. London, Paris. and New YorJc).

ln addition, there are certain queries~.g., e.'(istence tests-that can be answered
from the index alone. without any access to the indexed file at all. For example, con­
sider the query " Are there any suppliers in Athens?" The response to this query is
clearly "Yes" if and only if an entry for Athens exists in the CITY index.

A given stored file can have any number of indexes. For example. the supplier
stored file might have both a CITY index and a STATUS index (see Fig . .A.10). Those
indexes could then be used to provide efficient access to supplier records on the basis
of given values for either or both of CITY: and STA TVS. As an illustration of the
" both" case, consider the query "Find suppliers ln Paris with status 30." The CITY

CITY index Supplier file STATUS Index

A1t1ens S1 Smith 20 London 10

London S2 Jones 10 Paris 20

London 53 Blake 30 Paris 20

Paris S4 Clark 20 London 30

Paris 56 Adams 30 A1hens 30

FIG. A.10 Indexing the supplier flle on both OTY and STATUS

TERADATA, Ex. 1014, p. 755

Appendix A Storage StJ\lctures and Access Methods 727

index gives the RIDs-r2 and r3. say-for the suppliers in Paris: likewise. the
STATUS index gives the RIDs-r3 and r5. say-for suppliers with status 30. From
these two sets of RIDs it is clear that the onJy supplier satisfying the original query is
the supplier with RID equal co r31(narnely, supplier S3). Only Lhen does the DBMS
have to access the supplier file Itself, in order to retrieve the desired record.

More terminology: Indexes are sometimes referred to as inverted lists, for the fol­
lowing reason. First. a "ncmnal" file-the supplier file of Figs. A. I 0 and A 11 can be
taken as a typical "noonaJ fiJe".-lists, for each record, the values of the fields in I.hat
record. By contrast, an index lists. for each value of I.he indexed field, the records that
contain that value. (The inverted-list database systems mentioned briefly at the end of
Chapter I tlraw their oamefrOm this tenninology.) And one more tenn: A file with an
index on every field is sometimes said to be fully inverted.

Indexing on Field Combinations

lt is also possible to construct an index on the basis of values of t wo or more fields in
combination. For example, Fig. A.l l shows an index to the supplier file on the combi­
_nation of fields CITY and STATUS, in I.hat order. With such an index, lhe DBMS could
respond to the query discu.~sed above-"Find suppliers in Pads with status 30"-in a
single scan of a single index. lf the combined index were replaced by two separate
indexes. then (as described earlier) that query would involve two separate index scans.
Furthermore, it might be difficult in that case to decide which of those two scans should
be done first: since the two possible sequences might have very different performance
characteristics. the choice could be significant.

Note that the combined CITY/STATUS indell can also serve as an index <.m the
CITY field alone, since all the entries for a given city are al least still consecutive within
the combined index. (Another, separate indell will have to be provided if indexing on
STATUS is also required, however.) ln general, an index on the combination of fields

CITY/STATUS index Supplier file

Athena/30 S 1 Smith 20 London

lo"don/20 S2 Jones 10 Paris

London/20 S3 Blake 30 Paris

Parls/10 S4 Clark 20 London

Parl.t30 SS Adams 30 Athens

FIG. A.11 Indexing the supplier file on the combination of CITY and
STATUS

TERADATA, Ex. 1014, p. 756

728 Appendixes

FI, F2, F3, .. . Fn (in rhat order) will also serve as an index on Fl alone. as an index
on the combinarion F/F2 (or F2FI). as an index on tbe combination FIF2F3 (in any
order). and so on. Thus Lile rotal number of indexes required ro provide complete index­
ing in this way is nor as large as might appear at first glance (see ExerciseA.9 at the end
of this appendix).

Dense vs. Nondense Indexing

As stated several times already. the fundamental purp9se of an index is to speed up
retrieval-more specifically. to reduce ihe number of disk UO's needed to retrieve
some given srored record. Basically. rhis purpose is achieved by means ef pointers; and
up to this point we have assumed that all such pointers are record pointers (i.e., R!Ds).
In fact. however, it wouJd be sufficient for the stated purpose if those pointers were
simply page pointers (i.e., pa,ge-0umher.s).Jt is t.rl.le that lo.find the desired record within
a given page. the system would then have to do some additional work to search through
the page in main memory, but the number of J/O's would remain unchanged. Note: As
a matter of fact, the book index: analogy memioned earlier provides an example of an
index in which the pointers are page pointers rather than "record" pointers.

We can take this idea further. Recall rhat any given stored ffie has a single "physi­
cal" sequence, represented by the combination of (a) the sequence of stored records
withlneach page and (b) the sequence of pages wiLhin the containing page set. Suppose
the supplier file is stored such 1hat its physical sequence corresponds to the logical
sequence as defined by the values of some field. say the supplier number field; in other
word$, the supplier file is clusrered on Lhat field (see the di!;cussion of intra-file cluster­
ing at the end of Section A.2). Suppose also that an index is required on that field. Then
there is no need for that index to include an entry for every stored record in thC>indexed
file (i.e., the supplier file. in r.he example): all r.hat is needed is an entry for each page,
giving the highest supplier number on the page and the corresponding page number.
See Fig. A.12 (where we assume for Simplicity tbal a given page can held a maximum
of rwo supplier records).

Af, an example, consider what is involved in retrieving supplier 83 using this index.
First the system must scan the index, looking for the first enrcy with supplier number
greater than or equal to S3. It finds the index entry for supplier S4, which points to page
p (say). ll then retrieves page p and scans it in main memory. looking for rhe required
stored record (which in this example, of course, will be found very quicl,dy).

An index such as that ofFig. A.12 is said to be nondense(or sometimes sparse),
because it does not contain an entry for every stored record in the indexed file. (By
contrast, aU indexes discussed prior to this point have been deD1Je.) Oneadvamage of a
nondense lndex is that it will occupy less storage Lhan a correspo(lding dense index, for
the obvious reason that itcomains fewcl' entries. As a result, it will probably be quicker
ro scan also. A disadvantage 1s that it might no longer be possible to perform existence
tests on the basis of the index alone (sec the brief 11ote on this topic in the subsection
"How indexes are used" earlier in thii. section).

Nore that in general a given stored me can have ac most one nondense index,

TERADATA, Ex. 1014, p. 757

Appendix A Storage Structures and Access Methods ng

Slinde• Supplier Ille

52 51 Sniith 20- !-·-· London

54 52 Jonb 10 Pans

55 53 Blal\e 30 Paris I-· 54 Clar~ 20 London
•

SS Adams 30 Athens)-·"
FIG. A. 12 Example of a nondense index

because such an index relies on the (unique) physical sequence of the file in question.
All other Indexes must necessarily be dense.

B-bees

A particularly CQmmon and imponant kind of index is the 8-tree. Although ii is true
that there is no single storage structure tha1 is optimal for all applications, there is little
doubt that if a single struGture must be chosen, then B-trees of one k.irul or another are
probably the one to choose. B-trees do generally seem to be the best all-around per­
ionner. For tbisreason, in fact, most relational systems suppon 8 -trees as their princi­
pal form of storage structure, and several suppon no other.

Before we can explain what a B-tree is, we must first introduce one more prelimi­
-nary notion, namely the notion of a multi-level or tree-structured index.

The reason for providing an index in the first place is to remove the need for phys­
ical sequential scanning of the indexed ftle. "However, physical sequential scanning is
still needed in the index. If the indexed file is very large, then the index can itself get to
be quite sizable, and sequentially scanning the index can itself get 10 be quite time­
consuming. The solution to this problem is the same as before: We creat the index sim­
ply as a regular stored file, and build an index 10 tl (an index to the index). This idea can
be carried to as many levels as desired (three are common in practice; a file would have
10 be very large indeed to require more than three levels of indexing). Each level of the
index acts as a nondense inde'X to the level below (ii must be noodense, of course, for
otherwise nothing would be acbleved-level n would contain the same number of en­
tries as level (n+ I). and so would talce juM as long to scan).

Now we can discuss B-trees. A B-uee is a particular type of tree-struorured index.
B-trees as such were first described in a paper by Bayer and McCreight in 1972 [A.16].
Since that time, numerous variations on the basic idea have been proposed, by Bayer

TERADATA, Ex. 1014, p. 758

730 Appendixes

hi!T)self and by many other investigators; as already suggested, B-trees of one kind or
another are now probably the commonest storage struotute of all in modem database
systems. Here we describe the variation given by Knuth [Al]. (We remark m passing
that the index structure of IBM's "Virtual Storage Access Method" VSAM [A. I It] 1s
very similar to Knuth's structure; ho~ver. the VSAM version was invented indepen­
dently and includes additional features of its own. such as the use of compression tech­
niques. In fact, a precurs0r of the VSAM structure was described a~ early as 1969
[A.19].)

[n Knuth's variation, the index consists of two parts, the sequence set and the inde."<
set (to use VSAM terminology).

• The sequence set consists of a single-level index LO the actual data: that mdex 1~
normally dense, but could be nondense if the indexed file were clustered on the
indexed field. The entries in the index are (of course) grouped into pages. and the
pages are (of course) chained together. such that the logical ordering represented
by tbe index is tibtained by taking the entries in physical order in the first page on
the cbliin,folJowed by the entries in physicill order in the second page on the chain,
and so on. Thus the sequence set provides fast sequential access to the indexed data.

• The lndex set, in tum, provides fasl direct access 10 the sequence set (and hence 10

the data too). The index set is actually a tree-structured index to the sequence set:
in fact, it is the index set that is the real B-tree, strictly speaking. The combination
of index sel and sequence sec is sometimes called a "B-plus"-tree CB~ -tree). The top
level of the index set consists of a single node (i.e., a single page, but of courseoontain­
ing.many index enlries. like all !he o!her nodes). That top node is called the root.

A simple e<1ample is shown in Fig. A.13., which we explain as follows. First, the
values 6. 8, 12. _ . . 97, 99 are values of the indexed field, F say. Consider the top node,
\\lbicb consists of two F values (50 and 82) and three pointers (actually page numbers).
Data records wi!h F less than or equal to 50 can be found (eventually) by followi ng the
left pginler from this node; similarly, records with F greater than 50 and less than or
equal to 82 can be found by following the middle pointer; and records with F greater
than 82 can be found by following the right pointer. The other nodes of rhe index set are
interpreted analogously; note that (for example) following the right pointer from the
first node at the second level takes us lo all records with F greater than 32 and also less
than or cequa/ io 50 (by virtue of the fact that we have already followed the left pointer
from the next higher node).

The.B-tree (i.e .. index set) of Fig. A.13 is somewhat unrealistic, however, for the
folJowing two reasons:

• First. the nodes of a B-tree do not normally all contain the same number of data
values:

• Second. they normally do contain a certain amount of free space.

In general, a "B-tree of order n" has at least n but not more than 211 data values at
any given node (and if it bask data values, then it also has k+ I pointers)- No data value

TERADATA, Ex. 1014, p. 759

FIG. A. 13 Part of a simple 8-tree (Knuth's variation)

lndeK }411

Sequence se1
(woth pointers
10 dale records)

TERADATA, Ex. 1014, p. 760

732 Appendixes

appears in the tree more than once. We give the algorithm forscarching for a partioular
value \I in the structure of Fig. A.1'3; the algprithm for the general B-tree of order 11 is
n Simple generalization.

set N to the root node 1

Clo 1JT1t.il N '5 a SE;quence-ser. node. ;
let .\", Y (X < Y) be the dat'1 va....uea ~n ncde /'(:
if V $ X t.ho=n ;;et N to Lhe 1eLt J.awe.c poae o i N ;
i [X V $ I t.hen set N co Lhe middle lower node or N :
if V > Y then "'"t N to the right lower nod.,. of N :

end ;
j f \' occurs Ln a.ode N !:11.m exi.t f ... found -
.if v does not occui. ..1.n nooe N then exi · / • not tound • t ;

A problem wilh tree structures in general is tbatinsertfons and deletions can cause
Lile tree to become unba(anced. A Lree is unbalanced if lhe leaf nodes are 11ot all atthe
same level-Le., if different leaf nodes are ar different distances from the root node.
Since searching the tree involves a disk access for every node visited. search times can
become very unpredictable in an unbalanced tree. Npre: l n practice. the top level oflbe
index-possibly portions of other level!. too-will typically be kept in main memory
most of the time, which will have the effect of reducing the average number of disk
accesses. The overall point remains valid, however.

The notable advantage of B-trees, !;y contra.~t. is that the B-tree insection/deletion
algorithm guarantees that the tree will always be balanced. (the "B" in "B-tree" is
sometimes said to stand for "balanced" for this reason.) We briefly consider insertion
of a new value. V say. into a B-tr.ee of order n. The algorithm as described caters for the
inde;x set only. :.ince (as explained earlier.) it is the index set that Is the B-tree proper; a
Lei vial extension is needed to deal with the sequence set also.

• First. lbe search algorithm is execu ed to locate, not the sequence set node. but lhat
node (N say) at the lowest level of the index set in which VlQgjcally belongs. If N
contains free space, Vis inserted into N and the process terminates.

• Otherwise, node N (which must therefore contaii;i 2n values) is split intQ two nodes
NI and N2. Let S be the original 2n values plus the new value V, in their logical
sequence. The lowest n values in S are placed in the left node N /, the highest n
values in Sare plaoe4 in the right node N2. and the middle value, W say, is pro­
moted to lhe parent Tiode of N. P. say, to serve as a separator value for nodes NI and
N2. Future searches for a value U, on reaching node P, will be directed to node NI
if US' Wand to nodeN2 if U> W.

• An attempt is now made to insen W into P, and the process is repeated.

In the worst case, splitting will occur .all the way to lbe rop of the tree: a new root
node (parellC co the old root, which will now have be~n split mto two) will be created,
and the tree will increase in height by one level (but even so will still remain balanced).

The deletion algorithm I:. of course essenlially the inverse of the insertion algo­
rithm just described. Changing.a value is handled by deleting the old value and insert­
ing the new one.

TERADATA, Ex. 1014, p. 761

Appendix A Storage Structures and Access Methods 733

A.5 Hashing

Hashing (also called hash-addressing, and sometimes-confusingly-hash Index­
ing) is a technique for providing fast dire<;(access to a specific stored ~ord on the
basis of a given value for some.field. The fieldin question is usuallly but not necessarily
the primary key. ln outline, the technique works as follows.

• Each stored record is placed in the database at a location whose address (RID. or
perhaps just page number) is computed as some function (tbe bash function) of
some field of that record (the hash jit!ld, or sometimes hdsh key; we will not use
this latter term, however). The computed address is called the hash addres.5.

• To store the record initially, the DBMS computes the hash address for the new
record and instructs the file manager to place the record at thaL position.

• To retrieve the record $Ubsequently given the hash field value, theDBMS performs
the same computation as before and instructs the file manager to fetch the record at
the computed position.

As a simple illustration, suppose (a) chat supplier number values are SLOO, S200,
S300, S400. S500 (instead of SL, S2, 83, S4, SS), and (b) that each stored supplier
record requires an entire page to itself, and consider the following hash function:

hasn address cl.e. , pa ge number! ~

remainder lifter dividing n umeric pa rt of s ~ val ue by 13

This is a lrivtal example of a very common class of hash function called division/
remahuler . (For reasons that are beyond the scope of this appendix, the divisor in a
division/remainder hash is usually chosen to be prime, as in our example.) The page
numbers for the five suppliecs are then 9. 5, I, 10, 6, respectively, giv)ng us the repre­
sentation shown in Fig. A.14.

n should be elear from the foregoing description that bashing ell ffers from.indexing
inasmuch as. while a given stored file can have any number of indexes. it can have at
most one hash structure. To state this dffferently: A file can have any number of in­
dexed fields, but only one hash field- (These remarks assume the hash is direct. By
contrast. a file can have any number of indirect hashes. See reference fA.241-)

Jn addition to showing how hashing works. the example also shows why the hash
function isTiecessary.lt would theorelically be possible ~o use an "identity" hash func­
tion-e.g .. to take the primary key value directJy as the hash address (assuming, of
course, thac the primary key is numeric). Such a technique would generally be inade­
quate in practice. however. because the range of possible primary key values will usu­
ally be much Wider than the range of avai lable addresses. For iTistance, suppose that
supplier numbers are in fact in the l"Jnge S000-8999. as in the example above. Then
there would be I 000 possible distinct supplier numbers. whereas there might in fact be
only ten or so actual supplier!.. Thus. in order to avoid a eon~iderablc waste of storage
space. we would ideally like to find a hash function that would reduce any value in the
range 000-999 to one in the range 0-9 (say). To allow a littJe room for future growth.

TERADATA, Ex. 1014, p. 762

m---- L!.J w ----µ:=i-------~--- ITI
I

5300 Blake 30 Paris I I 5200 Jones 10 Parl5' I I

[_ij

L!.J l!!U ~ ~ LU I
!Adams

I
5500 30 A\hens I 5100 Smi tl:I 30 London 5'00 Clark 20 1~ondon I

----------L---- ---- ----------'
~ I I

I I

I
I I
I 1-------;-----

I I
I I
I

FIG. A.14 Example of a hashed structufe

TERADATA, Ex. 1014, p. 763

Appendix A Storage Structures .and Access Methods 735

it is usual to extend the target range by 20 percent or so; that was why we chose a
function that generated values in the range 0-12 rather than~ in ourexample above.

The example also illustrates one of the disadvantages of bashing: The "physical
sequence" of records within the stared .file will almost certainly not be the primary key
sequence, n0r indeed any other sequence that has any sensible logical interpretation. (In
addition, there may be gaps of arbitrary size between consecutive records.) [n fact, the
physical sequence of a stored file with a bashed structure is usuaUy-not invariably­
co.nsidered to represent no partic;_u)ar logical sequence.

(Of course, it is always possible to impose any desired logical sequence on a
bashed file by means of an index; indeed. it is possible to impose several such se­
quences, by means of several indexes, one for each sequence. See also references
[A.35) and [A37), which discuss the possibility of bashing schemes that do pre$erve
logical sequence in the file as stored.)

Another disadvantage of hashing in general is that there is always the possibility of
collisions-that is, two or more distinct records ("synonyms") that hash to the same
address. For example, suppose the supplier file (with suppliers SJOO, S200, etc.) also
includes a supplier with supplier number Sl400. Given the "divide by 13" hash func­
tion discussed above, that supplier would collide (at hash addTeSs 9) with supplier
S I 00. The hash function as it stands is thus clearly inadequate-ii needs to be extended
somehow to deal with the comsion problem.

In teflllS of our original example, one pol!sible eiuens1on i~ to treat the remainder
after division by 13, not as the hash address per se, bul rather as the start point for a
sequential scan. Thus, to insen supplier S 1400 (assuming that suppliers S I 00-8500
already exist), we go to page 9 and search forward from that position for the first free
page. The new supplier will be scored on page 11. To retrieve that supplier subse­
quently, we go through a similar procedure. This linear search method might well be
adequate if (as is likely in practice) several records are stored on each page. Suppose
each page can hold n stored records. Then the first " collisions at some hash address p
will all be stored on page p, and a linear search through those collisions will be totally
contained within that page. However. the ne~i.e .. (n+ l)st-<:ollision will of course
have to be stored on some distinct overOow page. and another VO will be needed.

Another approach LO the colllsion problem, perhaps more frequently encountered
in real systems, is to treat the result from the hash function. a say. as the storage ad­
dress. noL for a data record, bl!lt rather for an anchor point. The anchor point at storage
address a is then taken as the head of a chain of pointers (a collision chain) linking
together all records-or all pap!S of records-that collide at a. Within any given colli­
sion chain, the collisions will typically be kept in hash field sequence. Lo simplify sub­
sequent searebing.

Extendable Hashing

Ye! another disadvantage of hashing 3!i described above is that as the size of the hashed
file increases. so the number of collisions al~o tends to increase, and hence the average
access time increases correspondingJy (because more and more rime is spent searching

TERADATA, Ex. 1014, p. 764

736 Appendixes

through sets of collisions). Evenrually a point mighr beTeached where it becomes de­
sirable to reorganize the file-i.e .. to unload the existing file and to reload it, using a
new hashing function.

Extendahle hashing [A.28] is a nice variation on the basic hashing idea that alle­
viates the foregoing problems. lo fact, extendable hashing guarantees that the number
of disk accesses needed to locate a specific record (i.e .. the record having a specific
primary keyvalue) is nevermore than rwo. and will usually be only one. no matterwhat
the file size might be. (lt therefore also guaranrees that file reorganization will never be
required.) Note: Values of the hash field must be unique in the extendahle hashing
scheme. which of course they wlll be if lhat field is in fact the primary key as suggested
at the start of this section.

In outline, the scheme works as follows.

l. Let the basic hash function be Ii. and let the primary key value of some specific
record r be k. Hashing k-i.e .. evaluating h(k.~yields a value s called the
pseudokey of r. Pseudokeys are TIOI interpreted directly as addresses but ins~ead
lead to storage locarions in an indireet fashion as described below.

2. The stored file has a directory associated with it, also stored on the disk. The direc­
tory consis1s of a header. containing a valued called the depth of the directory.
together with 2n pointers. The pointer:. are pointers ro data pages, which contain the
actual stored records (many records per page). A directory of depth d can thus
handle a maximum file size of 2" distinct dara pages.

3. If we consider the leading d bits of a pseudokey as an unsigned binary integer b,
then the Ith pointer in the directory (I S i S 2d) points to a page that contains all
records for which b takes the value 1-1 . In other word,s, the first pointer points to
the page containing all records for which b is all zeros, the second pointer points to
the page for which bis 0 ... 01. and so on. (These 2d pointers are typically not all
distinct; that ~~. there wjll typically be fewer than 2a distinct data pages. See Pig.
A.15.) Thus, to find the record having primary key value k. we hash k to find the
pseudokey $ and take the first d bits of that pseudokey; if those bits have Lhe nu­
meric value i-J, we go to the ith pointer in the directory (first disk aooess) and
follow it to !he page containing the required record (second disk access).

Note: 1n pfactice the directory will usually be sufficiently small that it can be
kept in main memory most of the time. Thus the "two" disk accesses will usually
reduce to one in practice .

.i. Each data page also has a header giving the lucal depth p of that page (p s d).
Suppose, for exmnple. that il is three. and that the firSt pointer in the director)" (the
000 pointer) points to a page for which the local depth p is two. Local depth two
here.means lhat. not only does Uli$ page contain ;ill record!i with pseudokeys start­
ing 000. it contains all records With pseudc1keys starting 00 (i.e., those starting 000
and also those starting 00 I). In other words, the 00 I directory pointer also points to
this page. Again, see Fig. A. j 5.

5. Continuing the example from paragraph 3 abovu. suppose now that the 000 data
page js full and we wish to insert anew record having a pseudokcy thar scans 000

TERADATA, Ex. 1014, p. 765

Appendix A Storage Structures and Access Methods

Directory

Depth

000 pofnter__--!
001 pointer ,__ _ __,
010 pointer__--!
011 pointer

100 pointer_ _ _;p

101 pointer__-"!.
110 pointer

1-----3'.I
111 pointer

L__~

AG. A. 15 Example of extendable hashing

Data pages

2 Local depthl First two bits of
pseudokey =00

Laeal depth< First three bits of
pseudokey = 010

Local depth: Firs' three bits of
pseudokey =01 1

~ocal depth: First bit of
pseudokey = 1

737

(or 00 I). At this point the page is split in two; that is. a new. empty page is ac­
quired, and all 00 I records are moved out of the old page and into the new one. The
00 I pointer in the directory is changed to point to the new page (the 000 pointer
still points to the old one). The local depth p for each of the 1wo page,~ will now be
three. not two.

6. Again continuing the example. suppose that the data page for 000 becomes full
again and ha~ to split again. The c~5ting directory cannot handle such a split.. be­
cause the local depth of the page to be split is already equal to the uirectory depth.
Therefore we double the directory; that is. we increased by one and replace each
pointer by a pair of adjacent, identical point~rs. The data page can now be split;
0000 record~ are left in the old page and 0001 records go in the new page; the t1rs1
pointer in the directory is left unchanged (i.e., 1t still points to th~ old page), the

TERADATA, Ex. 1014, p. 766

738 Appendixes

second pointer is changed to point co the new page. Nore that doubling the directory is
a fairly inexpensive operation, since ic does not in.,,olve access to any of the data pages.

So much for our discussion of extendable hashing. Numerous funher variations on
the basic hashing idea have been devised: i;ee. f.or eicample, references [A.29- A.36].

A.6 Pointer Chains

Suppose-again. as at the beginning of Section AA, that the query ''Find all suppliecs in
city c· is an imponant one. Another stored represenmtion that can handle that query
reasonably well-possibly bener than an index. though not necessarily s~ses
pointer chains. Such a representation is illustrated in Fig, A.16. As can be seen, it in­
volves rwo stored files. a supplier me and a city ftle, much as in lhe index representa­
tion of Fig. A.9 (this time both files are probably m the same page set. for reasons to be
explained in Section A.7). ln the pointerchainrepresemationofFig. A.16.bowever. the
city file is not an index but what is sometimes referred to as a parentftle. The s1,1pplier
file is accordingly referred to as the child file, and the overall structure is an example of
parent/child organization.

In the example, the parent/child structure is based on supplier city values. The par­
ent (city) file Contains one stored record for each distinct supplier cicy, giving the city
value and acting as the he<ld of a clwin or ring of pointers linking together all child
(supplier) re.cords for suppliers m that city. Note that the city field has been removed
from the supplier tile; to find all suppliers in London (say). the DBMS can search the
city file for the London entry and then follow the corresponding pointer chain.

The principal advantage of the parent/child structure is that the insert/delete algo­
rithms are somewhat simpler, and might conceivably be more efficien1. than the corre­
sponding a)gorithmstor an index; also, the structure will probably occupy less storage
than the corresponding index structure. because each ci ty value appears exactly once
instead of many times. The principal dJsadv.anlages are as follows:

• For a given city. the only wa)' to access the 11.th supplier is to follow the chain and
access the ·1 s4 2nd •... (11 - I)St supplier too. Unless the supplier records are ap­
propriately clur.tered, each access will involve a separate seek operation, and the
time taken ro access the nth supplier could be considerable.

• Although.the ~tcuLture 1rughl ~ su11able for the query "Find suppliers in a given
city." 11 is of no hel1>- m fact, it 1s a posiuve hindrance- for the converse query
"Find the city for a given supplier" (where the given supplier is identified by a
given ~upplier number). For lhb latter 4uery, either a ha~h or an index on the sup­
plier file is probably desirable: note that a parenl/child structure based on supplier
numbers wou!d nm make much sense (wby uot?) And even when the given su~
µlier i:ecord ha:. been li.>cated, 1t 1~ bUll neces~ary 10 follow the cll3Jn to the pareni
record 10 discover the deill'ed city (the need for this exrra step is our Justification
for claiming that the parenr/child structure 1s actually a hindrance for this class of
query)

TERADATA, Ex. 1014, p. 767

Athens London Perie } CITY
'-------'~ file

•

51 Smith 20 10 53 Blake 30 20

FIG. A. 16 Example of a parent/child structure

TERADATA, Ex. 1014, p. 768

740 Appendixes

~ote, moreover. that the parent (city) file will probablr require index or hash
access too if it is of any significant size. "Bence pointer chains alone are not really
an adequate basis for a storage sl:Qlcture-orher mechanisms such as indexes will
almost certainly be needed as welJ.

• Because (a) the pointer chains actually run thcough !he stored records (i.e. , !he
record prefixes physically include the relevant pointers). and (b) values of the rel­
evant field are factored out of !he child records and placed in the parent records
instead, it is a nontrivial task to create a parent/child strocture over an existing set
of records. Io fact, such an operation will typically require a database reorgaona­
tion, at least for the relevant portion of the database. By contrast, it is a compara­
tively straightforward maner to create a new index over an ~xisting set of records.
Note: Creating a new hash will also typically require a reorganization, iocidentalJy.
unJess tlie bash is indirect [A.24].

Several variations are possible on the basic parent/child structure. Frn:example:

• The pointers could be made two-way. One advantage of this variation is that it
simplifies the process of pointer adjustment necessitated by the operation of delet­
ing a child record.

• Another extension would be to include a 1>0inter (a "parent pointer") from each
child record direct to the correspondi~ parent; this extension would reduce the
amount of chain-traversing involved in answering the query " Find the city for a
given supplier" (note, however. that it does not eliminate the need for a bash "Or
index to help witb_that query).

• Yet another variation would be not to remove the city field from tlte supplier file
but to repeat the field in !he supplier records (a Simple form of controlled redun­
dancy). Certain retrievals-e.g., ''Find the city for supplier S4''-would then be­
come more efficient. Note, however, that that increased efficiency bas nothing to
do with the pointer chain structure as such, also that a hash or index on supplier
numbers will probably still be required

Finally, of course, just as it is,,possibletQ have any11umber of indexes over a given
stored file. so it is equaJJy possible to have any number of pointer chains running
through a given stored file. (It is also possible. though perhaps unusual, to have both.)
Fig. A.17 shows a representation for the supplier-file that involves-iwo distinct pointer
chains, and therefore two distinct parent/child structures. one wilh a city file as parent
(as in Fig. A.16) and one with a status file as parent. The supplier file is the child file
for bolh of these structures.

A.7 Compression Techniques

Compression techniques are ways of reducing the amount of storage required for a
given collection of stored data. ~uite frequently the result of such compression will be
not only to save on storage space, but also (and probably more significantly) to save on

TERADATA, Ex. 1014, p. 769

Attiens London

-----' ------------------
I

Smit11 Jones

I

' I '

Paris

I
I I -----1-----
1

•

Adams I

I
I
I
I

'~----------~----t--------:'-----------~ :
--~-·---- ----~------------'• ' I I I I I -

l~ lfil (~:j1j ________ F

FIG. A. 17 Example of a multiple parent/child organizat ion

TERADATA, Ex. 1014, p. 770

742 Appendixes

disk 110; for if the data occupies less space. then fewer I/O operations will be needed ro
access it. On the other hand. extra proc~ssing will be needed to decompress the data
after it bas been retrieved. On balance, however, the I/O savings will probably out­
weigh the disadvantage ofthar additional processing.

Compression techniques are designed to exploit the fact that data values are almost
never completely random but instead display a_ certain amount of predictability. As a
trivial example. if a given person's name in a name.and-address file starts with the
letterR, then it ls extremely likely that the-next person·sname will startwitb the Jetter
R also-assuming. of course, that the file is in alphabetical order by name.

A common compression technique is thus to replace each individual data value by
some representation of the difference between it and the v alue that immediately llfC·
cedes •t-difTerential compression. Note, however, that such a technique requires that
the data in question be accessed sequentially. because to decompress any given stored
value requires knowledge of the immediately ~eding stored value. Differential com­
pression thus has its main applicability in situations when the data must be accessed
sequentially anyway, as in the case of (for example) the entries in a single-level index.
Note moreover that, in the case of an index specifically, the-pointers can be compressed
as wel I a5 the data- for if the logicaJ data orderinglmposed by1:he index is the same as,
or close to. the physical ordering of the underlying file. then successive pointer values
in the index will be quite similar to one another. and pointer compression is likely to be
beneficial. In fact. indexes almost always s tana to gainirom the use of compression. at
least for the data if notfor the pointers.

To illustrate differential compression. we depart for a moment from suppliers-and­
pans and c0nsider a page of entries from an ''employee name" index. Suppose the first
four entries an that page are for the fol10wing employees:

Roben:on
R~rt:.SOn

Re>ber.Sl:one
Ron1nson

Suppose also that employee names are 12 characters long. so that each of these
names should be considered (in its uncompressed form) to be padded at the right with
an appropriate number.of blanks. One way ro apply differential compression to thls set
of values is by replacing those characters a t the front of each entry that are the same as
those in the previous e-0try by a corresponding c0unc front compression. This ap­
proaciJ yields:

Q - :<oi::>er:o:n~

6 - son..._
1 - r.ona-
3 - tnson~

(trailing blanks now shown explicitly as"+").
Another possible compression technique for this set of data is simply to eliminate

alJ trailfng blanks (a.gain. replacing them by an appropriate count): an example of rear
compression. Further rear compression can be achieved by drepping al l characters to

TERADATA, Ex. 1014, p. 771

Appendix A Storage Structures a nd Access Me thods 743

Lhe right of the one required to distinguish the entry in question from its two immediate
neighbors, as follows:

o - 7 Roberto
6 - 2 - so
? - J - t

3-J.-l

The lmn of the two counts in each entry here is as in the previous example, the
second is a count of the number of characters recorded. We have'assumed that the next •
entry does not have "Robi" as its first four characters when decompressed. Note. how-
ever, that we have actually lost some information from this index. That is, when decom­
pressed. it looks like this:

Robe.rec?????
Robenson??
RobµtcSc77?1
Robi????????

(where "?" represents an unknown character). Such a Joss Qf information is obviously
permissible only if the data is recorded in full somewhere- in I.be example, in the un­
derlying employee file.

Hierarchic Compression

Suppose a given stored file is physically sequenced (i.e., clustered) by values of some
stored.field F. and,suppose also that each dlstioct value of F occurs in several (consec­
utive) records of that file. Por example. the supplier stored fiJe might be clustered by
values of the city field. in which case all London suppliers would be stored together. all
Paris suppliers would be stored together, and so on. In such a si tuation. the set of all
supplier records for a given city might profitably be comprC$Sed into a Single hierar­
chic stored record, ID which the eny value ID ques oon appears eJ1.actJy onc..e:. followed
by supplier number, name, and status inforrnallon for each supplier that happens to be
located in that city. See Fig. A . 18.

Athens J ss I Adams 130 I

London I Sl I Smith ! 20 I I S4 I Clark ! 20 I

Paris I S2 [Jones I 10 I I S3 I Blake 130 l
FIG. A .18 Example o"I h1erarcn1c compression (intra- file)

TERADATA, Ex. 1014, p. 772

744 Appendixes

The stored record type illustrated in Fig. A.18 consists of two parts: a fixed pan,
namely the city field, and a varying pa.rt. namely the set of supplier entries. (The latter
part is varying in the sense thal the number of entries lt contains- i.e., the number of
suppliers in the city in qu~1:ion-variesfrom one occurrence of the record to another.)
As explained in Chapter 3, such a varying set of entries within a record is usually re­
ferred to as a npeating group. Thus we would say that the hierarchic record type of
Fig. A.18 consists of a smgle city field and a repeating group of supp.lier information,
and the Iepeating group in rum consists of a supplier number field, a supplier name
field. and a supplier status field (one instance of the group for each supplier in the
relevant city).

Hierarchic compression of the type just described is often particularly appropriate
in an index. where it is commonly the case that several successive entries all have the
same data value (but of course different pointer values).

Jc follows from the foregoing that hierarchic compression of the kind illustrated is
ieasible only if intra-file clustering is in effect As the reader might already have real­
ized, however, a similar kind of compression can be applied with inter-file clustering
also. Suppose that suppliers and shipments are clustered as suggested at the end of
Section A.2-that is, shipments for supplier SI immediately follow the supplier record
for SI, shipments for supplier S2 immediately follow the supplier record for S2, and
so o.n. More specifically. suppose that supplier SI and the shipments for supplier S 1
are stored on page pl. supplier 52 and the shipments for supplier S2 are stored on
page p2, etc. Then an inter-file compression techliique can be applied as shown in
Fig. A.19.

Nore: Although we describe chis exam_ple as "inter-file." it really amounts co com­
bining the supplier and shipment flies into a single file and then applying intra-file
compression to that single file. Thus this case is not really different in kind from the
case already illustrated in Fig. A.18.

We conclude this subsection by, remarking that the pointer chain structure of Fig.

page p1 page p2

S1 Smith 20 London I P1 1300 I S2 Jones 10 Paris

EE .EEJ EE~
~

land similarly for pages p3, p4, p5)

FIG. A.19 Example of hierarchic i:ompres~ion (lntl!r..flle)

TERADATA, Ex. 1014, p. 773

Appendix A Storage Structures and Access Methods 745

A.16 can be regatded as a kind of inter-file compre.'ISion that does not require a oorre­
spending inter-file clustering (or, rather, Lhe pointers provide the logical effect of such
a clustering-so that compression is possible-but do not necessarily provide the cor­
responding physical performance tidvanrage at the same time-so that compression,
though possible. might not be a good idea).

Huffman Coding

"Huffman coding" [A.39) is a cbaracter encoding technique, little used in current sys­
tems, but one that can nevertheless result in significant data compression if different
characters occur in the data with different frequencies (which is the nonnal situation, of
course). The basic idea is as follows: Bit string encodings are assigned to represent
characters in such a way that different characters are represented by bit strings of dif­
ferent lengths, and the most commonly occurring characters are represented by the
shortest sttings. Also, no character bas an encoding (of n bits, say) such that those n bits
are identical to rbe first n bits of some other character encoding.

As a simple example, suppose the data co be represented involves only the charac­
ters A. B. C, D. E. and suppose also that the relative frequency of occutrence of rbose
five characters is as indicated in the following table:

Charact er Frequency coae
E 35l l
A JO\ 01
0 20\ 001
c 10\ 000]
B Sl 0000

Character E has the highest frequency and is therefore assigned the shortest ci>de,
a single bit, say a I-bit All other codes must then start with a 0-bit and must be at least
two bits long (a lone 0-bit would not be valid, since it would be indistinguishable from
the leading portion of other cooes). Character A is assigned the next shortest code, say
Ol; all other codes. !DUSI therefore begin 00. Similarly, characters D, C, and Bare as­
signed codes 001 , 0001. and 0000 respectively. Etercise j or the reader: What English
words do the following strings represent?

1 . 001 100010100 11

2. otooo1000110011

Given the encodings shown, the expected average lengrh of a coded character, in
bits. is

0. 35 • l -> 0. 30 ' 2 r 0 20 ' 3.; 0 . 10 • Q - 0.05 ' 4 = 2 .15 b i CI'<,

whereas if every character were assigned the same number of bits, as in a conventional
character codjng scheme, we would need three bits per character (to allow fof the five
possibilities).

TERADATA, Ex. 1014, p. 774

746 AppendixM

A.8 Summary

In thjs appendix we have taken a lengthy-by no means exhaustive!-look at some of
the most impoctantstorage structures used in current practice. We have a1so described
in outline how the data access software typically functions, and have sketched the ways
in which responsibility is divided up among the DBMS, the memanager, and the disk
manager. Our purpose throughout has been to explain overall concepts, notto desctibe
in fine detail how the various system components and storage structures acroally work:
indeed. we have tried hard not to get bogged down in too much detail, though of course
a certain amount of detail is unavoidable.

By way of summary, here is a brief review some of the major topics we have
touched on. First. we described clustering, the basic idea of which is that records that
are used together should be stored 11hysically close together. We also explained how
stored records are identified internally by recorlt IDs or RIDs. Then we eensidered
some of the most important storage structures encountered in praotice:

• Indexes (several variations thereof, including in _particular 8 -trees) and their use
for both sequential and direct access

• Hashing (including in particular extendable hashing) and its use for direct access

• Pointer chains (also known as parent/child structures) and numerous variations
thereof

We also examined a variety of compression techniques.
We conclude by stressing the point th4t most users are (or should be) unconcerned

with most of this material most of the time. The only "user" who needs to understand
these ideas in detw1 is the DBA, who is responsible for the physical design of the
database and for performance monitoring and tuning. For other users, such considera­
tions should preferably all be- under the CQvers. though it is probably .ttue to say that
those users will perform their job better if they have some Jdea of the way the system
functions iatemally. For DBMS implementers. on the ether hand, a working knowledge
ofthis material (indeed, an undecstandiog that goes much deeper than this intreductory
survey does) is cleatly desirable, if not mandatory.

Exercises

Exercises A.1-A.S might prove suitable as a basis for group discussion; they are intended to lead to a
deeper understanding of various physical database design considtratlons. Exercises A.9 and A. JO
have rather a mathematical fia vor

A.l Investigate any daU1base systems (the larger I.he better) that might be available to you.For each
such system. identify the components tlµjl perform the functions ascribed in the body ot .this
appendix 10. respecuvely, the d1sk manageu. the file manager, and I.he DBMS proper. What
kind of disks or other me.dia does the system suppon? Whac is the page size? What are the disk
capacities. both theoretical (in bytes) and llC'tual (in pages)? What arethe data rates! The access
times? How do thoi;e !ICCC$5 limes compare with the speed of main memory? Ate thei:e any
llmit.q on file ~ize or databiu.e q1ze~ If ~o. whal are they'1 W)lich of the storage stn:1crures de-

TERADATA, Ex. 1014, p. 775

Appendix A Stor11ge Structures and Access Methods 747

A.2

A.4

A.6

A.7

A.8

A.9

A.10

scribed in this 11ppendix does the system support? Doe:s ii ~upport any others? lf so, whar are
they?

A company's personnel database is to contain information about the divisions. departments.
and employees of that company. Each employee work$ in one department: each department L~
pan of One division. lnvenLSQme sample data and skt\teb some p0ssible corresponding stora_ge
structures. When: p()ssible. s1111e the relative advantagei. of each of thO:;e struelure~-i .e .. con­
sider bow typical retrieval and update operations would be handled in each case. Hint: The
constraints "each employee works in cme department" and "each department is part of one
division'' ate structurally similar to the oonsttaint "each supplier Is locat.ed in one city" (they are
all example.~ of lllllny-to-one nilallonships). A difference is that we would probably like 10
record more infonnalion Jn the<itlllbase for departments and divisions than we did for cities.

Repeat Exercise A.l for a database that is to eontain information about austomers and item~.
Each customer can order any number of items; each hem can be ordered by any number or
customers. Hint: There is a many-to-many relationship here between customers and items.
One way to represent such a relationship is by means of a dc1uble index. A double index is an
Index thal is u.~ed to index two data files simultllneGu.<;ly: a given entry in ~uch an index oorre­
spondS 10 a pair of related data rccGrds. one from each bf the two files. and contains 1wo daw
values and two pointers, Can you think of any O!herway~ or representing many-to-many(·to·
many-...) relationships'!

Repeat Exercise A.2 for a database that is to contain information about PB.ITS and components.
where a component is itse.lf a part and can have lower-level componems. Hint: How does this
problem differ from that of Exercise A.3?

A stored file of daLa records with no additional access structure (i.e., no index. no hash. etc.) 1s
sometimes called a heap. New tecords are inserted into a heap whereverthere happens to be
room. For small files-certainly for any Ille not requiring more thiln (say) nine or ten page,) 6f
storage-a heap is probably the most efficient structure o£1ill. Most files are bigger than that.
however. and in practice all but the smallest files should have some additional access structure,
say (at least) an index on the primary key. State the relative advantages and disadvantages of an
indexed struccure when compared with a heap struccure.

We referred several times in the body of this appendix 10 physical clustering. For example. 11

might be advantageoU$ to store the supplier records ~uch !hat their physical sequence is the
same as or close 10 their l.ogicat seque11ce as defin'i!d by valiles of the suppliernumber field (the
dusteringjleld). Ho'\V can the DBMS provide such physical clustering'?

lo Section A.5 we suggested chat one method of handlinglillSh collisions would be 10 tn!31 the
output from the bash function as the stan pqint fbr a sequential scan (the linear search teclt­
ruque). Can you see any difficulti~~ with that scheme?

Whal are the relntive advantages and di."3dvantages of the multiple parent/child orgamzat1on?
(See the end of Section A.6. Jt might help t0 review the advantages and disadvantages of 1he
multiple index organization. What are the similarities? Whnr are the differences?)

Let us define "complete indexing" to mean that an index existq for every dlsunm field combi­
nation in the indexed file. For example, complete indexing for a file with two fields J\ and B
would require two index~. ome on the combination AB (in that order) and one on the combina­
tion BA (in that order). How many lndiu~ are needed 10 provide complete inde11ing for a file
defined on (a) 3 fields; (b) 4 fields; (cl N fields?

Consider a simplified B·trec (index set plus sequence set) 10 which the ~equenae sel oontmns a
pointer ro each of N stored data record~. and each level above the sequence set (i.e .. each level
of lhe index set) contains a pointllr 10 every puge In the level below. Al the top Crom) level. of
coun;e, !here Is a single page. Suppose also 1h~t each page of the lndeic ~el comniM '' ind~x
entries. Derive eitpre&Sion.~ for 1he number of leve/.1 and the number or JHige.f in 1he entire
B-tree.

A.I I The first ten values of the indexed field in a particulnr indCJ1ed file are :as follows:

TERADATA, Ex. 1014, p. 776

748

Abratiams.GH
Ackermann.L2
_'\ckroyd. S
;"dams. T
Adams, TR
Adamson, CR

Allen.s
Ayre-S", ST
Railey, TE
Ba.Lleyman D

Appendbu!s

Each 1s padded with blanks nt the right to a total length of 15 characters. Show the values
nctuallyTecorded in the index if the front and rear comptession techniques described in Sec­
tion A. 7 are applied. What is ihe percentage saving in space? Show the sieps involved in
retrieving (or aucmpting to retrieve) the ruired record.~ for "Ackroyd,S'' and "Adams.V''.
Show also the steps involved in insen;ing a new stared ret.'Ord for "Allingham.M".

References and Bibliography

The following references are organiud into groups, as follows. References [A. l-A.10] are te.lllbooks
that either are devoted entirely to the topic of this appendix or at least include a detailed treatment of
it. References LA. I I-A .15 J describe some fonnal approaches to the subject. RefenmcedA.16-A.23]
are concerned specifically with iode)ting, especially B-trees; references [A.24--A.38] represent a se­
lection from the very extensive literature on hashing; references [A.39-A.40] discuss compression
techniques; and. finally, references (A.41-A.59] address sr;ime miscellaneous storage struCtures and
related issues Un particular, references LA.48-A.59'] diSt!uss certain new storage media and new kinds
or applications, and new storage !;IJ'Uctures for those media and applications).

A. I Donald E. Knuth. The Art of Computer Programming. Volume ill: Sqrting and Searching.
Reading.Mass.: Addl.l;on-Wesley (1973).

VQ!ume ill of Knutli' s classic $1!De.~ of volumes contains a eamprehensive analysis of search
algorithms. For database searching. where the da1a resides in secondary storage, the most di­
rtctly applicable sections are 6.2.4 (MUltiway Trees). 6.4 (Hashing). and 6.5 (Retrieval on Sec­
ondary K:eyi;)

A.2 James Martin. CnmpuLer Dara-Base Organiwrirm (2nd edition). Englewood Oiffs, NJ.: Pren­
tice-Hall (1977).

This book is divided mto two majorparts, "Logical Organization" and "Physical Organization."
The latter pan consists of an eittensive description (well over 300 pages) of storag_e structures
and correspa11ding access 1echniques.

A.3 Toby J. Teorey andJames P. Fl)'. Desfg11 of.Dmabase Stnmtures.Englewood Cliffs. NJ.: Pren­
tice-I-Jal\ c 19gz)
(Same 3.\ reference [12.2.71.) A Lutorial and handbook on databil$e design. both phy$ical and
logical Over 200 pages are de,•uted to physieal de.~ign.

A.4 Gia Wiedcmold. Dmaba.fl! De.rign (2nd edition). New Yock, N. Y.: McGraw-Hill (1983).

This book (15 chapters) Includes a good survey of secondacy storage devicc!s and their perfor­
mance"Parameters (one chapter, nearly 50 pages), and an e~tens.ive analysis of $econdary storage
~t:ructur~ (four chapters. over 250 poge;).

A.5 T A. Merrell ~e/aJfo11ul /11farmorio11 Sy.rtems. Reston, VA.: Re~ton Publishing Company. Im:.
(1984).

lnclud~ a lengthy intr0duction to. und analysis of. a variety of ~torage structures (about 100
pages), covering no1 only the structures described in the presem appendix but also several others.

TERADATA, Ex. 1014, p. 777

Appendix A Storage Structures and Access Methods 749

A.6 Jeffrey D. Ullman. Prtncip/esofDa1atJasew1</ K11uwledge•80,s11Systems: Vo/11mr. I Rockville:.
MD.: Computer Science Press (1988).

Includes a treatment of storage structures lhat 1s rather more theorcticral than that of the present
nppendu.

A.7 l:lenry F. Konh and Abraham SilheFSchatz. Databau Sw11em Concllprs <2nd -edition). New
York. N.Y.: McGraw-Hill Cl 991).

A.8 Peter D. Smith: and G. Michael Barnes. Filt!s a11d Datahases: All lntrod11ction Reading, Mas~. :

Addison-Wesley (1987).

A.9 Ramez Elmasri and ShamkD!llt 'l· Navathe. Fw1da1111m111/s of Dawba.<e Sy~tl!m.v (2nd edition).
Redwood City. Calif.:Benjamin/Cummings (1994).

References LA. 7 J, [A.SJ. and [A.9 J are all textbooks on database sys1.em"S. Each includei. mate­
rial on storage structures that gqes beyond the trentmem in rhe pre~enr appendix in certain
respec1$ (extensively so. in the UllliC of [A.II]).

A.JO Sak:ti P. Ghosh. Da1a Ba.te Organiza1i1111 for Da/U Manngeme.nr (2nd edition) Orlando. Ra. :
Academia Press (1986).

The primary emphasis of thi$ book. is on srorag.e strucrures and aS$OCia.ted acce!\.< methods--of
the book's ten chapters. al least six are devoted to tbese toptes. The treatment is fairly abstract.

A.IJ David K. Hsiao and Frank B\IJ'ary. "'A Formal System for lnfonnation Retneval from Files."
CACM 13, No. 2 (February 1970).

This paper represents what was probably the earlie:il attempt lo unify the ideas of different
storage structures- principally Indexes and pointer chains-into a general model. I.hereby pro·
vlding o basis for a formal theory of ~uch struatures. A gcnerillired retrieval algorirhm ls pre·
semcd for retrfeving records fn)m the general structure that satisfy an arbitrn.ty Boolean combi­
niuion of ''.fisld = V{)/Ut'" conditions.

A.12 Dennis G. Severance. "'Identifier Search Mechani$m~: A Survey and Generali;:cd Model,"'
ACM C<1mp. Surv. 6. No. 3 (September 1974).

This paper falls into two parts. The first pan pfl)vides a tutorial on certain srorage struct:ul'eS­
basically hashing and indexing. The second part has points m oommon with reference IA.. I I J;
like that paper. it defines a unified strucru:re. here caUed a lrie-trecstruclUre. lhat combines and
generalizes ideas from the structures dlscu.'!SCd Jn the first part. (The renn triR, pronounced Irv.
derives from a paper by Fi'edk.in [A.42].) The resulting Mructure provides a general model that
can repre~La wide variety of different structures in lfil'll1S of a small number of parameters; it
can therefore be used (and bas in fact been used) 10 help in choosing a particular structore
during the process of physical dacabase de.~ign.

A cliffereni::e between this paper and reference IA.. I I I 1s lhar the trie-cree structure bandies
hashes bul not pointer chains. whereas lhe proposal of reference I A.11 I handles pointer chams
but not hashe.~.

A.13 M. E. Senko. E. B. Altman, M. M. Astrahan, and P. L Fehtler. ··oata Structures and Accessing
in Dara-Base Systems." IBM Sy.r. J. 12, Nb. I (1973}.

Thlq paper Is in three pans:

I . Evolutian of lnfonnation Sysrems

2. Information Organization

3. Dara Repn::!;entations and the Data lndependen1 Acaes:;.ing MQdel

The first part c1ln ists of a ~hort hisrorkal ~urvcy uf rhe devt:lnpr:ncnt uf uatabm.c ~,l>~tcms
prior to 1973. The second part descnb~ •·rhe entity ser model ." which pruvidl!!. a hll\i~ for
describing a given enterprise in tC!mlS of amities and enrity ~et'> (it corre,~pond~ I Q the L'omiep
tual level of the ANSI/SPARC architec:lllreJ The third piltl i> lhe most original and sigoiRcnnt
pan of the paper: h forms an imrodu1.'11on to the D<11U lndep1111dl't11 Accessi11g Model (!)JAMI,
which is an attempt to describe a datllbase in term' of four ru~ssi ve levels 6f ab<tntctieln,

TERADATA, Ex. 1014, p. 778

750

namely the enti1y set I h1ghesl), string, encoding. and physical de\<1ce levels. These four levels
ean be thought Of as a more demi let!, but still abstract, definition of the conceptual and internal
p<;irtions of I.he ANSI/SP ARC arcbitecrture. T.bey can be briefly described as follows:

• Enriry .1e1 level: Analo~>ous to the ANSl/SP ARC oonceprual level.
• String lt!•'l'I. Access paths 10 data me defined as ordt!red sets or "strings" of data obj~.

Three type.'> of string are desoribed-.atomic strings (e)(ample: a siring connecting SfOred
field occurrences to fonn a part stored record occurrence), entity strings (ei1ample: a string
connecting pan srored record oceurrenoos for red pans). and link strings (eumple: a string
connecting a supplier stored record occUil'ellce to pact stored record oa:urrences fdr pans
i;upplied by that supplier).

• EncMing level. Daia objects and Strtrtgs are mapped imo linear address spaces, using a sltn­
ple representation primitive known as a ba.vic encoding unit.

• Physical devil'ti lel'd: Linear address spaces ate allocated to formatted physiclll subdivisions
(If real recording media.

'T.be Wiil of DlAM. like that of references [A.11-A.12], is (in pan) to provide a basis fbr a
~~tematic theory of storage structures and access methods. One criticism (wbich·applies to the
fonnalisms of references [A. I I) and [A.121 also. incidentally) is that sometimes the bes1
method of dealing with some giv.en access request is simply to sort the data. aruhorting is of
coul'MI dynamic. whereas 1be structure!> described by DIAM (and the models of [A. UJ and
lA 12]) are by definirinn always statil".

A..14 S. B. Yao. "An Aunbute Based Model for Oalabasc Access Cost Analysis." ACM TODS 2. No.
I 1March 1977).

The purpose of this paper 1s s1milar to that of references [A. l 1 J and [A.12]; in some respects.
in fact, it can be regarded as a sequel 10 tho:se earlier papers, in that ii pre.o;ents a generalized
model of databa~e storage structures that can be seen a~ a combination anti extension of !be
proposals oflhose papers. It also pre<>ents a se1 of "&CneraTI7.ed aoces8 algorithms and eostcqua­
tioos for that genecaliLed mooel Reference.~ are gfven lo a number of olher papm:s that report
on el(jlerimem:s witb an implemented physical file design analyzer based on the ideas of this
paper.

A.15 D. S. Batory. "Modeling the Sto~ Architecture$ of Commercial Database Systems." ACM
TODS 10, No. 4 (December 1985).

l'Te~ents a set of primitive operati<1ns, called elemeni(ll')' rransfarma,tions, by which the map­
ping from the conceptual schema to the corresponding internal schema (i,e .. the CDncepcuall
inlernnl mappmir-see Chapter 2) can be made explicit, and hence properly studied. The ele­
mentary t:rn.nsformations include augm,in1u11011 (extending a stored record by the inclusion of
prefix dntaa~ well as userdalll). 1mcodh1g (conveningdrua to an iruernlll form by. e.g .. com­
pression), .vegmet11atio11 (spHttlng a record into ~everal pieces for storage pucposes), and sevenil
others. The p~per ulaims that any, conceptuallintcrna.1 mapping can be represented by'llll appro­
priate sequence of such elemenlllry transformations. and hence thai the transformations could
fonn the basis of an approach 10 nut0rnatlng the developmem of data management software. By
wa} of iUusu'auon, the paper npplies the ideas to the analysis of three real-world systems: IN­
QUIRE. ADABAS, and System 2000.

A.16 R. Bayer and C McCre1ghl. ' 'Organi1..a11on and Maintenance ofUirge Orderedlndexes." Acta
fnfom1a1iao I. No. 3 (L972l.

A..17 Dougl11S Comer. ·111e UbiqlJ.itous B-1.Fee.'' ACM Comp Surv. J 1. No. 2 (June 1979).

A gO<KI tutorial on B-trees.

A.18 ~- f:' Wsgncr. "fndei1inr. Design C<1ns1deralions." fBM Sy~. J. 12, No. 4 (1973).

Ue>orib!!.~ t>a~k imJc:xing concepts, with details 11f lhe 1ecbniques-including compression
techmques-u.sed in IBM' s Virtual Storage Access Method. VSAM.

TERADATA, Ex. 1014, p. 779

751

A.19 H. K. Cblllg. "Compressed rndc:Jing Method." IBM Technical Di.sclmiur ~tin II, No. 11
(April 1969).

A.20 Gopal 1C. Gupta. MA Self-Assessment Procedure Dealing with Binary Search Trees Biid B­
trees.fl CACM 27. No. S (May 1984).

A.21 Vincent Y. Lum. MMulti-Attribute Retrieval with Combined Indexes." CACM 13, No. 11 (No­
vember 1970).

The paper that introduced the technique of indclting on field combinationS.

A.22 James K. Mullin. MRetrieval-Updale Speed Tradeoffs Using Combined Indices." CACM 14,
No. J 2 (December 1971). •

A sequel 10 reference [A.2 l] dial gives performance statistics for the combined index scheme
for various rettieval/updale ratios.

A.23 Ben Sbneidennan. "Reduced Combined lndexes for Efficient Mulliple Attribute Retrieval.''
lnfomllllion Sysrems 2. No. 4 (1976).

Proposes a refinement of Lum's combined indexing technique [A.21) that considerably re­
duces the storage space and search lime overheads. For example, the index combination ABCD.
BCDA, CDAB. lMBC, ACBD. BDAC--see the-answer to Exercise A.9(b)-Could be replaced
by the combinalionABCD. BCD. CDA, DAB, AC. BD. If each of A • .B, C:. D can assume 10
distinct values, then in !he worst case the original combination would involve 60.000 index
entries. the reduced combinal!ion only 13.200 entries.

A.24 R. Morris. "Scatter StO{age Techniques." CACM 11. No. I (Janwu:y 1968).

This paper is concerned primarily with hashing as it applies to the symbol table of an assembler
or compiler. Its main purpose is to describe an Indirect hashing scheme based on scan enables,
A soaner !able is a table of record addresses, somewhat ak1n 10 the directory used in extendable
hashing [A.28]. As with exiendable hashing. the hash function hashes lnto the seatter table. noc
diri:ctly lo the records themselves; the records themselves can be stored anywhere that seelll5
convenient. The seaner table can thus be thought of as a singte-Jevel index to the underlying
data. but an index that can be accessed directly via a hash instead of havmg 10 be sequentially
searched. Nore that a: given stored data file could conceivably have sevetnl distinct scaner ta­
bles, thus in effect providing hash access to the data on several distinct hash fields (at the cost
of an extral/O for any given hash access).

Despite its programming language orientation, !he papeT provides a good introduction to
bashing techniques in general. and most of the matenal 1s applicable to database. hashing also

A.25 W. D. Maurer and T. G. Lewis. "Hash Table Methods." ACM Comp. Surv. '1. No. I (March
1975).

A good tutorial, though now somewhat dated (it does nol discuss any of the newer approaches,
such as e.xtendable hashinID. The topics covered include basic ha.tjii.ng tl!chniques (not just
division/remainder. but also random, midsquare, radix. algebraic coding. folding, and digil
analysis techniques); collision and bucket overflow handling; wme theoreucaJ a11alys1& oi the
various 1eohniques~ and alternatives 10 hashmg (techniques to be used wben hashing either
cannot or should not be used). Nore: A bucket in hashing terminology is the unit of siorage­
iypitally a page-whose address is oompuccd by lhe hash function. A bucket normally tontliin•
several records.

A.26 V. Y. Lum, P. S. T. Yuen, and M. Dodd. "Key-to-Address Transfonn Techniques· A Funda­
mental Peifomiance S1udy on Large Existing f'onnuucd Files." CACM 14, No. 4 <Apnl I 'J7 I)
An investigation into the perfermana: of several differem "bn.~ic'" (i.e .. n!lnexumdable) hashing
algorithms. The condu!llon Is lhal the di vision/remainder method seem~ 10 be the besl ull
around performer.

A.27 M. V. Ramaknshno.. "l:lashmg 111 Praouce: Anulys1s of Hashing and Umve~sal Hashiog." Proc
1988 ACM SIGMOD lntemm1onnl Conference on Management of Data. Chicago. Ill 1June
1988).

TERADATA, Ex. 1014, p. 780

752 Appendixes

As this paper points ouL (following Knuth [A.J]), any system that implements hashing has to

solve rwo problems tha1 are almost Independent of one another: II has to choose among the
wide variety of possible hash function,~ 10 prCJVide one that is effi!clive • .and ii also has ro ~
vide an effective 1echJJique for dealing with collisions. The author claims that, while much
research has been devoted 10 1he second of these problems. very tiule has been done on the
first, and few attempts have been made to compare the performance of hashing in practice
with the performance that is theoretically achievable (reference [A.26] ls an exception).
How then doe$ a system implementer choose an appropria1e bash function? This paper
claims thai i1 is .Possible m choose a hash function tha1 in practice does yield p,erformance
close to 1ha1 pred1cn:d by theory. and presents a se1 of theoretical resultli in suP1>9n oflhis
claim.

A.28 ~onald Fagin, Jurg Nievergelt, Nicholas P ippenger, and H. Raymond Strong. "Extendible
Hashing-.A Fast Access Method for Dynamic Ries." ACM TODS 4. No. 3 (September
1979)

A.29 G. D. Knott. "Expandable Open Addressing Hash l:able Storage and Retrieval." Proc. 1971
ACM SlGADET Workshop' on Data Description. Aa:esi;, and Control, San Diego, Calif. (No.
vemtier 1971).

A.30 P.-A. Larson. "Dynamic Hashing.'' BlT 18 (1978).

A.31 Witold Litwin. "Virtual Hashing: A Dynamiclllly Changing H ashing." Proc. 4th lntemational
Conference on Very Large Da~ Bases, Berlin. FDR (September 1978).

A.32 Witold Litwin. "Linear Hashing: A New Tool for Rle and l'able Addre11sing." Proc. 6th Inter­
national Conference on Vecy Large Data Ba:ses. Montreal, Canada (October 1980).

A.33 Per-Ake Larson. "Linear Hashing with Overflow-Handling by LinevProbing." ACM TODS
10. No. l (March 1'985).

A.34 Per-Ake Larson. "Linear Aashlng with Separators-A Dynamic Hashing Seheme Achieving
One-Access Retrieval." ACM TODS 13. No. 3'CSeptember 1988).

References LA.28-A.34] all present ex1endable hashing schemes of one kind or another. The
prop6sals of [A.29]fur "expandabfe" ha~hiAg predate (and are therefore of course quiJe inde­
-pendent of) all of the others. Nevertheless. expandable .bashing is fairly similar to extendable
.hashing ru. denned in referemre [A.28J, and so 100 is "dynamic" hashing [A.30]. excepi that
bplh scheme$ use 11 tree-structured directory insti:.ad of the simple contiguous directory pro­
posed m 1eference [A.28]. "Vinual" hashing [A3 IJ is somewhat different; see the paper for
details. "linear" hashing. introduced in {A.32] and refined in {A.33) and [A.341. is an Improve­
ment on virtulU ha~hing.

A.JS Witold Litwin. "Trie Hashing." Proc. 1981 ACM SIGMOD International Conference on Man­
agement of Data, Ann Arbor. Mich. (Apri l l 981).

Pre.~t,~ an extendable hashing scheme with a number of deitirable properties:

• It is 1mfor-preserviJ1g Cthai i~. the "physical'' sequence of SIDred records corresponds to the
logical sequenc1l of those records a.~ defined by values of the bash.field).

-. ft avoids !he problems of complcidty. etc .. usually encountered with ordt:r-preserving
trashes.

• An arbitrary record can be accessed (or ~hown not to exist) ln a single disk access. even if the
ftle con1ain.~ mnny millions of records.

• The file can be arbitrarily vola1Uc fby contras\. many hash scliemes, at least of the non-
ex1endable varie1y. tend to work r:atherpooi:ly ln the face of high lnsen volumes).

The hash function it-;elf (wllich i::hanges with 1ime. a.., in all ex1enclahle hashing illgorlthms) is
represented by u 1rie ~truc1ure LA.42). which i& kept in main memory whenever I.he file is in use
and grows gracefully as theduta file grpv.s. The da,ta file i1self is. as all'!lady mentioned, kepi in
"physical'' scq_uenoe on values oflhe hnsh field: and the logioal sequence or leaf entries in the
trie ~'tructure corresponds. preclsely.10 t.hru "physical" sequence of 1he.data records. Overllaow

TERADATA, Ex. 1014, p. 781

Appendix A Storage Structures and Access Methods 753

In the data file is handled via a pilge-splitting technique. basically like the page-splltling tech­
nique used in a ,B-tree.

Trie hashing looks very interesting, Like other hash schemes, ii provides better perfor­
mance than indexing for direc1 access (one 110 vs. typically two or three for a B-ttee); and lL L~
preferable to most other hash sche111es in that it is order-preserving, which ll)eans that seque11-
liaJ access will also be fast No B-tree or ocher additional slnlcture is required to provide that
fast sequential access. Aowever. note the assumption tnat the trill will fit into main memory
(probably realistic enough). If that assumption is invalid (1..e_ 1f the data file is 100 large). or if
the order-preserving propeny is no1 required. then linear hashing (A.32] ot some other tellh­
nique might provide a.11referableJllUftnallvc.

A.36 David B. Lomet. "Bounded Index liJtponential Hashing." ACM TODS 8, No. I (March 1983).

Another extendable hashing SClheme. The author cl~ims 1hat the techniques proposed in thfa
paper:
• Provide direct access"' any record in clo~e tO one VO on average land nevermoie than two):

• Yield performance that is independent of the stored rue she (by contrast, most extendJ!blc
bashing schemes suffer from temporary perfom1ance degradation at the lime a directory
page split OCCUJ$, because.typically all such pages need to be split at appm1timately the same
time);

" M ake efficient use of the available disk space (1.e-. space utilization can ~ very good):
• Are straightforward to implement.

A.37 Anll K. Garg and C. C. Gotlieb. "Order-Pre~erving Key Transformations.'' ACM TODS 11. No.
2 (June J 986).

As eJtl?}ained in the annotation to [A.35J above, a tiash (or "key transfonnation'') function
is onler-pruenilng 1f the physical sequenca of stored reaords corresponds to the logtcal
sequence of those records as defined by values of the h3$h fleld. Order-pre.~erving hashes
are desirable for obvious reasons. One simple f.unctlon that is clearly order-preserving 1'
the following:

bash address= quotient after dividing hash field value
by some c:onstanr (say I 0.000)

However, an obvious problem with a function such a~ this one is that it pj!rfOTill!I very poorly if
hash field values arenonunifo rmly dis1ributed (which is 1be usual case. of course I. Renee some
re~earchers have proposed the idea of dis1riburion-deptmdent(but order-vreservingJ bash func­
tion$, i.e .. functions that transform nonunHomtly distributed bash Jield values into uniformly
distributed hash addresses. while maintaining the order-preservinglJroperty. (Note: Triehash­
ing (A.351 iJs an example of sue)! tn approach.} The present paper gjves 11 method for construct­
ing such hash functions for ceal-world data files and demonslflltes the prncuclll fewubihly of
those functions.

A.38 M. V. Ramakrishna and Per-Ake Lar5on. "File Organi'Lation Using Composite Perfeot Hash·
Ing.'' ACM TODS 14. No. 2 (June 1989).

A hash function is called p11rfec1 if It produces no overflows. (NIJ/I:: "No overfluws" does no1
mean ''no collisio~:· Far ex ample, if we assume that the hash function gener111il~ page a&
dresses, nol r11cord addresse;~e the remark on "bud;:ts" in the annotation to I A.251
11bov~and if each page can hold 11 stored records. then the bash func11on will be perfect 1f it
never maps more than n records ro 1he same page.) A perfect hash fumuion has the propeny that
'llny record can be retrieved In 11 single disk VO- This paper presents a pr.ictical methM for
finding and uSing &uch perfect function~

A.39 D. A. Huffman. ''A Method for the Construction of Minimum Redundancy COdes:· PrQc. lRE
40 (Septembet I ~52).

A.40 B. A. Marron and P. A. D, de Maine- "Au1oma!ic Darn Comprll.'>~ion "CA.CM llJ. No 11 (No­
vember 1967).

TERADATA, Ex. 1014, p. 782

754 Appendixes

Gi..;;es two compress1on/decompression algorithms: NUPAK, which operates on numeric data,
and A NP AK. which operate.~ on alphanumeric or "any" dara (I.e .. any string of bits).

A.41 Dennis G. Severance and Guy M. Lohman. "Differential Piles: Their AppJlcation to lhe Main­
tenance of Large Datab~;,." ACM TODS I, No. 3 {September IQ71!).

Discusses "clifferenual files" and their advantage£. The basic idea is that updates are not made
direcUy to the database itself, but instead are recordedin a physically distinct file-the differ­
ential file-and are merged with the actual database at some suitable subsequent time. The
following advantages are claimed for such nn approach:

• Database dumping cosl.~ are reduced.

• Incremental dumping is facillcated.

• Dumping and reorganization can bolh be performed concurrently with updating opera-
lions.

• Recovery after a program error is fast.

• Recovery 1lfler a hardware failure is f,ist

• The risk of a serious daUL loss is reduced.

• ''Memo files" are supponed efficiently. (A memo file is a kind of'scratchpad copy of some
portion of the database. us¢ to provide guick access to data that is probably up to date and
correct but is not guaranteed to be so. Sec the discussion of snapshors in Chapter 17.}

• Software development is simplified.

• The main file $0fty.>areis simplified.

• Future storage costs might be reduced.

One problem 11ot discussed is lhat of suppc>rting efficient sequential access to the data~.g..
via anJndex-when some of the records are in the~ database and someareill the differential
file.

A.42 E. Fredk.in. ''TRIE Memory." CACM J. No. 9 (September 1960).

A trie 1s a uee-struotured data file (rather than a tree-structured ,access path to such a file: that
is. the data is represented by the tree, it is not pointed tn/rom the tree-unless the "data file" is
really an incleJC to some other file. as It effectively Is In Irie bashing [A.35J). Each node in a Irie
logiciilly consists of n entries, where n is the number of.distinct symbols available for repre­
senting data values. For example, if each data hem is a decimal integer. then each node will
have exactly ten entries. corresponding to the ten symbols 0. I. 2 9. Consider !he data item
"4285." The (unique) node at the tap oft~ tree will include a pointer in the "4" entry. That
pointer wlll point to a node: corresponding to all existing dalll items having "4" as !heir first
digit. Thlit node in tum {the "4 .node") wiJJJ include a pointer in its "2" entry to a node corre­
sponding to all data items having "42" as their first two digiis (the "42 node"). The "42" node
will have a pointer in illl "8" entry to the "428" .node, and so on. And if (for example) there.~
no data items beginning "429," then the ''.9" entry .in the "42" node will be empty (there will be
no poi mer); in otherwerds. the cree is pruned to contain only nodes that are nonempty. (A uie
is lhus generally not a balanced tree.)

Note; 'The term trle derives rrom "retrieval," but is nevenheless usually pronounced try.
Tries are also known as radix Sf!arch trees or digital search trees.

A.43 &!gene Wong and 'T. C. Chiang. "Canonical Slnlcture in Anribuie.BasedP'Lle Organi:i;ation."
CACM 14, No. 9 (September 1971). I

PropoSCcs a novel storage structure based on Boolean olgebrn. lt is llSSYID~ tM! ;ill a\l(less re·
quests are expressed as a Boolean combination of elementary "field = 11a/ut" conditions. and
!hat those elementary condllioriS are 1111 kn.own. Then the file can be panitioned into disjoint
subsets for storage purposes. The sub.sets are the "atoms" of the Boolelln algebra consisting of
the sel or all se~ of recocds retrievable via the original Boolean access requests. The advantages
of such an arrangement include the following:

TERADATA, Ex. 1014, p. 783

Appendix A Stor.ge Structures and Access Me1hods 755

• Set intersect.ion of atoms is never necessary.

• An arbitrary BOOiean request can easily be converted in10 a reques.t for tbe union of one or
moreato~.

• Such a union never requires lhe
1
elimination of duplicates,

A.44 Michael S1onebraker. '•Operating SysteJJLSuppon for Database Management." CACM 24, No.
7 (July 1981).

DiscussC$ reasons why various operating system facilities-in particular. the operating system
tile manager- frequently do not provide the kind of services required by lhe DBMS, and sug­
ge~ some improvemems 10 lhose facilities.

A.45 M. Scbiolniclt. " A Survcf of Physical Dalabase Design Methodology and Techniques." Proc.
4chJnlematiDnal Conference on Very LargeDa1a.Base~. Berlin, FDR (September 1978).

AM S. Finkelstein, M. Schltolnick. and P. Tiberio. "Physical Database Design for Relalinnal
Databases." ACM TQDS B. No. I (MarchJ 988).

lo some respects, !he problem of physical da1abase design is more diffu:uh in a relational sys·
tem than it is in other kinds of system. This is because it is the system, nottbe user, lhat decides
how to "navigate" through lhe. scorage suucture; thus, the system will only have a chance of
perfonning well if the s1orage suuctures chosen by lhc database designer ace a good Iii wilh
what the system actually needs-which implies that lhe deSigner has 10 understand in $OJDC
dewl bow lhe system works inremally. And designers typicalJy will nol have such knowledge
(nor is it desirable that they should). Hence some kind of automaled physical design 1001 is
highly desirable. This papenepons on such a tool, called DBDSGN, which was developed to
work with System R l8. I 2- &. I 3j. DBDSGN takes as inpul a workload deflnitlon (le., a set of

ll5CI' ~ and their col'l'CSponding executloILirequencies). and produces as ou1p111 a sug­
gested physical design (i.e., a set of indcRS for each stored table. r.ypically lru:luding a "clus­
teringlndex"-see the answer to Bxercise A.~or each such t11ble). h interacts with the sys­
tem optimizer {see Cbapten 3 and 18) to obtain information such as the optimizer's
understanding of lhe datllbase (i.e., table sizes, etc.) and lhe cost formulas that the oplimizer
llSeS.

DBDSGN was used as tbe basis for an IBM pl'Q<iw:t called ROT, which is a design tool
for SQUDS (see AppendixB).

A.47 Kenneth C. Sevcik. "Data Base System Performance Prediction Using an Analytical Model."
Proc. 7th l nremational Conference on Very Large Data llases, Cannes, France (September
1981).

As its title implies, lhe scope of this paper is broader than 1ha1 of the present appendix-ii is
concerned with ovmll sys1e111 performance issues, no1 jus1 wllh storage SlllKltures as such. The
aulbor proposes a layered framework in which various IWign deQisions. and th¢ forcractiollli
~g those decisions. can be systematically st,udied. The laye{5 of the framework represent
lhe system atincreasmgly delailed levels of description; thus. each layer is more specific (i.e.,
al a lower level of absttactio.n) than the previous one. The names of the layers give some idea
of the corresponding levels of ~tall; abStract world, logical database. physical database. data
utiit ac;ces~. physical llO access, and device loadings. The author claims lbal an analytical
model based on this framework: could be used 10 predic1 numerous performance charal.!teristics,
inclu4ing device utilization. transaction throughput. and response times.

The paper includes an extensive bibliography on system performance (with commenrary).
In particular, ii includes a brief survey of work on the performance of different storage struc­
tures.

AAS Hanan Samet. "The Quadtrt:e and Rela1ed Hierarchical Da1aScructures." A.CM Comp. Surv. 16,
No. 2 (June 1984).

The Storage suuc1ures described in the prc:;en1 appendi1. work well for traditional commercial
databases. lfowever, as the field of da1aba!IC technology ei<.pands to include new kinds of
da~.g .• spatial dala. such as might be found m image-processmg or canograpbte applica·

TERADATA, Ex. 1014, p. 784

756

lions-so new methods of data represen1ation ~1 the storage level arc needed;liso. This p;lpel'iS
a 1utorial introduction 10 some of 1hose new methods. See Samet's book [A.491 for further
discussion, also references [A.50-A-59]

A.49 Hanan Samet. The Design and Analysis <1f SpaJi(l/ Dara StruL1ures. Reaaing, Mass.: Addison­
Wesley (1990),

See the annotation 10 the previous reference.

A.50 Stavro~ Chris1odoulakis and Daniel Alexander Ford. ·'Re.tdeval l'erfonnanee Versu.~ Disc
Space Utilization on WORM Optical Discs." Proc. 1989 ACM SIGMOD lnlemational Confer­
ence on Management of Daill. Portland, Ore. (May/June 1989).

See 1he anMuuion 10 reference [A.51].

A.51 David Lome1 and Beny Salzberg. "Access Me1hods for Multiversion Data." Proc. 1989
ACM SIGMOD ln1ema1jonal Conference on Management of Data, Portland, Ore.
(May/June 1989).

A "WORM disk" is an optical disk with the propeny that once a record has been wrinen 10 the
disk. it can never be rewritten-he .. it cannot be .updated in place. (WORM is an acrqnym,
standing for "Write Once, Read Many tim.es.") WORM technology has i:eaehed lhe point where
the use of WORM disks in database applications has become a practical proposition. Such
dfaks have obvious advantages for certain applications, particularly those involving some kind
of archival reqµitement. 'traditional storage structures such as B-trees are notadeqoaiefor suCh
disks, however. precisely because of the fact that rewriting is impos~ble. Hence (11,5 explained
in the annotatiqn to reference [A.48]. though for different nll!SQDS), new storage structures arc
needed. References [A.50] and I A.5 1) propose and anaJyze some such structures; reference
[A.51J. in particular, concerns itself with s1n1C1ures that are appropriate for applications In
which a complete hiStorical record is to be kepi (i.e., applications in which dalii is only added
10 the database. never deleted).

A.52 J. Encam~o and F. L Krau.o;e (eds.). File Struature.s anti Data .Bases for CAD. New Yock,
N.Y.: North-Holland (1982.).

Computer-aided design (CAD) applicanons ·are a mi!jor driving force behind the research into
new storage s1ructures. This book consists of the proceedings of a workshop on the subject.
with major sections as follows:

I . Data modeling for CAD
2. Dru.a models for geometric modeling

3. Databases for geometric modeling

4. l:lardware ~trucwres

5. CAD database re.search issue.~

6. Implementation problems in CAD darabtise >')'Siems
7. lndustrlal applications

A.53 R A. Fink.el and J. L. Bentley. "Quad-Trees-A Data Strucrure- for Renieval on Composile
Keys:· At ru lnfomw1ica4 (J 974).

A.54 J Nievergelt, H. Hinterberger. and K. C. Sevcik. "The Grid File: An Adaptable. Symmetric,
Mulllkey File Structure." ACM TODS 9. No. I (March 1984).

A.SS Antonin Gu1tman. ·'R-Trees: A Dynamic lndeir Stnwnm: for Spatial searching." Proc. ACM
SIOMOD International Conference on Manag_ement of Data; Boston, Mass. (June 1.984).

A.56 Nick Roussopoulos and Darnel Lelfker. "Direc1 Spatial Search on Piclorial Databases Usiog
Packed R·Trees ·· Proc. ACM SIGMOD lntematiooal €onference on Management of Data,
Ausun, Texas (May 1985).

A.57 l). A. Beckley. M. W . Evens. and V. K. Raman. "Multilcey Retrieval from K-D Trees and
Quad-Trees.·· Proc. ACM SI GM OD lntemat 1onal Conference-On Management of Data, Austin.
Texas (Muy 1985).

TERADATA, Ex. 1014, p. 785

Appendix A Storage Structures and Access Methods 757

A.51 Michael Fre~mon. "TheBANO File: A New Klnd of Grid File." Proc. ACM SIGMOD lntemll­
tional Confqi:nce on Management of Data, San f'rancii;co, Calif (May 1987).

A.59 Michael F. Barnsley and Alan D. Sloan. "A Better Way co Compres.\Jmages."BITE JJ. No. I
(January 1988).

Describes a.novel compression teci:ruque for images called/ractal campre~sion. The technique
worts by not storing the jrnage itself at all. bot rmher sroring code values that can be used to
recreate the desired imageas. and when needed by means of appropnace fractal cquations. ln
this way "compression ratios of 10,000 10 I-or even higher" can be achieved .

•

Answers to Selected Exercises

A.5 The advantages of indexes are as follows:

• They speed up direet access based on a given value for the indexed field or field combination.
Without the index, a sequential scan would be requrred.

• Ibey speed up sequential access based on rhe indexed field or field combination. Without the
index. a sort would be reqwred.

The disadvantages ai;e as follows:

• They take up space on the disk. The space IAken up by indeites can l!liily exceed that taken up
by the data itself in a heavily indexed dalllbase.

• While.an index will probably S]l\led up rettievai operations. ir will auhesame time slow down
update operations. Any lNSERT or DELETE on the index!l(l file or UPDATE on the indexed
field or field combination will require an accompanying update to the index.

A.6 In order to maintain the desired clustering, the DB.MS needs to be able 10 determine the appro­
priate physical insen point for a new s(lpplierrecord.. This requirement is basically the same as
ihe requirement to be able 10 locare a panicular record given a value for the clusrering field. In
other words. lhe DBMS needs an appropriate access srructure--for example. an index-based
on values of the clusteri11g field N111e: An index tl)at is used in this way to help mainrain physi­
cal clustering is sometimes called a clustering (ndeX; Ln general. a given stored file can have at
mosr one clustering index. by definition.

A.7 Let the hash function be h. and suppose we wish ro retneve the record with hash field value le..

• One obvious problem is lhar it is not unmediately clear whether the record srored at hash
address h(k) is lhe desired record or is instead a c<Jllision record rhat has overflowed from
some earlier ha.~h11Cklres.~. Of course. Ibis que~rion can easily be resolved by inspecting the
value of lhe has!! field i11 the s1ored ~rd

• Another problem is that, for any given value of /r(k), we need 10 be able 10 dercnnine when 10
stop the process of sequenti.ally searching for any given record. This problem can be solved
by keeping an appropriace flag in the stored record pre.fix .

• • Third, as pPinted our in the lntroduccloi;i ro the ~ubsecrlcm on cxrendable ha.~hing. when the
stored me gets close 10 full, 1t is Ukely that n1obl records will no1 be srored a1 !heir hash
address looation but will instead hnve overflowe.d IQ 5ome other pus11ion. If record rl o•er­
flows and is lherefore stored ar hash address Ill, n record r2 1ha1 subsequenrly hashes ro 112
might be forced to overflow w /JJ-e11en though there mighr as yet be m> records thw actually
ha.~h 10 h2 as such. In other words. rhe colHsion-handling teehniqu~ 1lsclf can lead Ill funhcr
collision.~. As a result. lhe average access time will go up, perhnp~ con~idernbly.

A.9 (a) 3. (b) 6. For ex.ample. If the four fleJd!; are A, 8, C. D. and if we U$e 1he appropriare ordered
combination of field names to deno,re the com:sponding index.. Lhl! following indexe.\ will ~uf­
fice: ABCD, BCDA, CDA8. DABC. ACBD. BDAC (c) In general. the number of indexe~ re­
'luired is equal to the number of w.ays of selecung 11 elements from u set of N elements, where 11

is lhe smallesr integer greater than l)t c4uaJ to N/2-i.eo. the number is Nt I< 11 t • (N-11)! }. For
proof see Lum [A.21 J.

TERADATA, Ex. 1014, p. 786

758 Appendixes

A.JO The number of /e11e/.1 ih Ille 8 -i.rec is the tiniquc positive integer k such !hat n~ - 1 < N Sn'.
Talcing logs to ba.'le n, we have II.- I < log,.N S k; hence

Ir.= ce1l(log,,N),

where ceilii:J denotes the smallest integer greater than or e<jual to x.
Nolli let the number of pages in lhe hh level of the indel. be P, (when: i = I conesponds lO

the loweM level). We show that

P = cetl (!!.)
I n'

and ~ence !hat lhe total number of pages is

Consider the expression

(~] cell n = .x, say.

SupposeN=qn1 + r (05 r 5n'- I}. Then

x=ceil (!)

(_pl_) =ceil n1~1

= eeil (...!!.._) n1+-I

lb) lf r>O. x=ceil (
9

:
1

)

Suppose q = q 'n +I (0 5 I 5n - I). Then N = (q'n + l)n1 + r= q'n' • 1 + (fn' +r);
sinc:e0<r5n'- I andOSr'~n-1,

hence ceil (n~ 1 J= q' +I.

But

x=ceiJ (q'n •: +
1

)

=l/ + I

since I 5 r' + I 5 n. Thull in both cases (a) and (b) we have that

. [~]- . (_!:!___) ce1l n - ctll) n•• 1 .

TERADATA, Ex. 1014, p. 787

Appendix A Storaga StJVctures and Access Methods 759

A.JI

Now, it is immediaJe that Pi = ceil (Nin}. It is also immediate thm P 1 + I = ceil{P; 111), I ~ { < k.

Thus. if P1=ceil(N/n
1

) , then [~N l
oeil l n'

P- •=ceil =ceil (_fj_) , .. r n n'+i

The rest follows by induction.

Valul!s recorded in index 8:pa11dedform

0 - 2 - Ab Ab
1 - 3 - -eke Ac.ke
3 - 1 - r Ackr
1 - 7 - dams,T+ Adfil\ls , T-+
7 - 1 - R Adams1 '1'R
5 - J_ - 0 Adamso
1 - J. - l Al
l - 1 -y Ay
0 - 7 - Bailey , Bailey ,
6 - L - lfl Ba1leyJ11

Poi ms arising.

I. The two figures greceding each recorded value represem, respectively. the number of
leading characters tha1 an: the same as those: i11 rhe preceding value and !he number of
characters actually stored.

2. The expanded form of each value shows what can be deduced from the inMx alone (via
a sequential scan) witbouLJooking at the indexed records.

3. The .. + .. characters in the fourth Une represent blanks.

4. We assume that the next value of the indexed lield does nor have "Baileym" as ill; first
seven characters.

Tlte percentage saving in storage space is I 00 • (150 - 35) I 150 percent= 76,67%.

The indeit search algorithm is as follows. Let V be the ~cified value (padded with blanks
if necessary to make it 15 characters long). Then:

found : = false ;
do fo:i: each index entry in turn ;

expand cm:rent index ent:ry and let eiq>anded leilgth "' N
i£ expa.ru}ed entry = leftmost N characters of V
Lhen do

r€trieve corresponding stored record
if value in thal: record = V
then found . - true ;
leave loop ;

e;nd I

if expanded en~ry > leftmost N characters of V
then leave loop

end ;
il found = false
then / • no stol;'ed r-ecord for V exist.s • / ;
else / • stored record for V has been found • I ;

For "Ackroyd,$'' wr: get a match on the third iretruion: we retrieve the corresponding record
and lind rha~ it is indeed the one we wnnL

For "Adams,V'' we get "index entry high" on the si~th iteration. so nq corresponding
record exists.

TERADATA, Ex. 1014, p. 788

760 Appendixes

For "Allin~hmn,M,. we get a match on lhe seventh iletation; however. the record reuieved
L<. for "Allcn,S". ~o ii li. permissible 10 in...ert a new one for "Allingham,M". (We are assuming
here lh~I \he inclex<!d field value.,\ are required 10 be unique.) lni;ening ''Allingham,M" involves
the following sreps.

I . Finding space and Moring the new record
2. Adju.,ting.the index entry for ··AUen.S" to read

1.-3 lle

3. Inserting an index eniry between those for ' 'Allen.S" and "Ayl'Cll.ST" tQ read
l 1 - j

Note that the preceding index entry ha~ 10 oo changed. In general, in~ng a new entry into the
index may affect the preceding enrry or the following entry, or possibly neither-but never
both..

TERADATA, Ex. 1014, p. 789

A PPEN DfX

B DB2: ,A Relational
Implementation

•

B.1 lntrodudion

In order ro give the reader some idea of how a real relational DBMS actually wocks­
i.e .. how it implements the features of the relational model*-we devote this appendix
to a brief overview of one panicular relational system, namely 0 82 ("IBM
DAT ABASE2") from IBM CGrporation [B. 1- 8 . 71. Nore: DB2 runs in the MVS envi­
ronmenL IBM alsopcoVides some other relational products for its other operating envi­
ronments. as foUows:

• DB2/6000 for the ADC environment
• DB2/2 (originally caUed lh,!! OS/2 Database Manager) for the OS/2 envkonment

• SQl.JDS for the VM and VSE environments (IBM has recently begun to refer to
lhis produ£t as "DB2 for VM and VSE")

• DB2/400 (originally called SQU400) for the OS/400 environment

These products are meant to bear a strong family resemblance. of course: in this
appendix, however. we will concentrate on the MVS product specillcally-i.e., the
name "DB2" should be undecstood throughout to refer to the origina.I DB2 product
specifically (where it makes any difference). Our discussions are essentially accurate aq
of the ~lease leyel Gurrruit at the time of wricing. namely D)n Version 3 Release I.
However, we doJlot hesitate to omit material that is ittelevaol to the purpose at hand,
nor to. make significant simplifications in the intereslS of brevity.

DB 2, llke most other commercial relational products, supports a dialect of SQL. In
particular. it permits SQL statements to be embedded i11 programs written in a variety
oflanguages (C, COBOL, PUI. etc.). What this mean.~ is that a program written in (say)
COBOL can include SQL statements chat are intermixed with cbe COBOL statements,
as explained in Chapter 3 (and discussed in more detail in Chapter 8). £n this appendix
we will concentrate on this embedded u~e of the language, for reasQns that will quickly
become apparent .

• Or Mime or them, QI any mte. A~ cxplllined '" Chapter 3, mnny aspcci. or lh~ rnod"I ,11:c In rru::1 nOL Imp le·
men1ed in today'$ C!Ommctc:inl producll..

TERADATA, Ex. 1014, p. 790

762 Appendixes

Note: Since 082 is an SQL system and uses the SQL terms table, row. and column
in place oflhe relatJonal tenns relation, tuple. and attribute, we will do likewise in this
appemhx (as mdeed we have been doing throughout thls book whenever we have been
deallng wjth SQL specifically).

B.2 Storage Strudure

We begin by baefly examining the way D B2 physically represents datun storage. Fig.
B.l is a schematic representation of DB2' s principal storage ob1ects and their mterrela­
uonshlps The figure is meant to be interpreted as follows.

• The total collecnon of stored data is divided up into a number of dJs1010t
datJlbases several user databases and several system databases, m general. (As
explained m Chapter I , there are often good practical reasons for dividing the data
among several chstmct databases, and 082. like most other systems, sapJK>rts thls
idea.) Note that the DB2 catalog is stored m one of the system databases.

Databases (mearung user databases specifically) are the unit of nan and stop,
m the sense that the system operator eaiunalre a given database available or un­
available for processing via an appropriate ST ART or STOP command.

• Each database is divided up into a number of disjoint spaces-several table spaces
and several index spaces, in ~neral. A "space" corresponds to what we caJJed a

Table
Sf)8Ce

Table {
space

Index
space$

User database

Stored Stored
table table

Stored
II table

• • •
I lro<!ex

I lf!dex

I lrodex

Stored
table

Stored
table

I

I
I

FIG. B.1 The mafor storage objects of 082

User database

Stored EJ table

e

~ e

• • •

I lridex I

• ••

Catalog database

Catalog
l!lble

Catalog Cetalog
table table

• • •

lrodex

TERADATA, Ex. 1014, p. 791

Appendix 8 082: A Relational Implementation 763

page set in Appendix A; in other words. it is a dynamically extendable collection
of pages. The pages in a given .. space" are all the same size-4K bytes for index
spaces, and either 4K bytes ot 32K bytesior table spaces (K = 1024). Al the phys­
ical level, DB2 uses the MVS access method VSAM ("Virtual Storage Access
Method'') to store its "spaces" on the disk.

• Each table space contains one or more stored tables. A stored table is the physical
representation of a base table: it consists of a collection of stored records, one for
each row of the corresponding base table.* A stored table thus corresponds to what
we called a stored file in Appendix A (except that, for operational reasons, very
large stored tables might be "partitioned'' across several stored files-bu1 this fac1
does not materially affect the discussions of the present appendix). A given stored
table must be wholly contained within a single table i.")lace.

• Each indeir space contailils exactly one Index (a B-tree). A given index must be
wholly contained within a single index space. A given stored table and all of its
associated indexes must be wholly contained within asingle database.

Note: If a given stored table .has any indexes at all, then exactly one is the
clustering index for that stored table. A Cillustering index is one for which the se­
quence defined by the index is the same as, or close to. the physical sequence (see
Exercise A.6 in Appendix A): note. therefore, that "clustering" in DB2 refers spe­
cifically to intrafile clustering, not interlile clustering. Clustering indexes are ex­
ttemely imporwn for optimiution purposes-the DB2 optimizer will always rry
to use a clustering index, if there is one, and if the sequence represented by that
index is appropriate fer the user request under consideration.

• Each stored record must be wholly contained wl1hin a single page; however, one
stored table can be spread over several pages, and one page can contain stored
records from several stored tables. As explained above. each stored recortl corre­
sponds to one row from one base table: however, agiven stored recordis not iden­
tical to the corresponding base table row. lnstead, it consislS of a byte string, made
up of a stored record prefix (containing such information as the internal system
Identifier for the stored Lable of which this stored record is a part) and a !>1!1 of
stored fields. Eatb stored field, in tum. has {usually) a stored field prefix
(containing such things as the data length, if the field is varying length) and an
encoded fonn of the actual data value. Note: Stored data is encoded in such a
manner that the IBM Systeni/360 (/370, /390, ...) "compare logical" instruction
CLC will always yield the appropriate response when applied to two values of the
same SQL data type. For example, binary integers are stored with their sign bit
reversed.

lnternally. stored records are addressed by record ID or RlD. as discussed in
Appendix A.

• ln other word5, b""' Ulblcs ill DB2 "ph)'si<!illly exist,'" in the sense lhn! they !IJI vt n tlln:c!l •lor:i~e rcprcsen
tntion-despitn the foc1 lhn4 ~triclly spcuking. phys1cnl ex.isreoee \,. 11n1 the Lli•lirJiul<h[ng chnrottcri•Uc of b;il;c
!llblt• ln the nilnliom1J model, as explained io Chapt~ 3 ond 4.

TERADATA, Ex. 1014, p. 792

8.3 System Components

The internal structure of DB2 is qmte comple'X, as is only to be expected of a state-of­
t he-an system that provides aU of the functions typically found in a modem DBMS.
The product thus contains a very large number of internal component.s. From a high­
level point of view, however, it can be reg;u-ded as having just four major components,
each of which divides up into numerous subcomponents. The four major components
are as follows:

I. The system services component, which supports system operation, operator com­
munication. logging, andsimilar functions

2. The locking services component. which provides the necessary controls for man­
aging concun:ent access to data

3. The database services component, which supportS the ddinition, retrieval, and
update of user and system data

4. The distributed data facility component. which provides DB2's distributed
database support

Of these four component~. the one that is most directly relevant to the user is. of
course, the database services comp<ment. We therefore concentrate here on that com­
ponent specifically. That component in turn divides into five prim;ipal subcomponent$,
which we refer to as the Pretompiler, Bind. the Run Time Supen•i.mr, the StoredDa/a
Mwwger, and the B1~ffer Mtmager (these terms are not always the ones used by IBM).
Together. these components support (11) the preparation of application programs for
execution and (b) the subsequent execution of those programs. The functions of the
individual components. in ouUine, are as follows (refer to Fig. B.2):

• The Precnmpiler is a preprocessor for application programs that contain embed­
ded SQLstatements. It collects those sta1ementslnto a Database Request Module
CDBRM). replacing them in the original program by host language CALLs to the
Run Time Supervisor.

• The Bind component compiles one or more relmed DBRMs ro produce an appll·
cation plan (i.e., executable code to implement the SQL statements in those
DBRM:., including in particular caU~ to the Siored Data f\ltanager). Note: The func­
tions of the Bind component have been .significantJy extended since the 082 prod­
uct was fust released. We conrenr ourselves here with a description of the basic
(original) functions only.

• The Run Time Supervt'ior oversees SQL programs during their execution. When
such a program requests some database operation, control goes first 10 the Run
Time Supervii:;or, thanks 10 tbe CALL inserted by lhePrecompiler. The Run Time
Supervisor then routes control fo the application plan. and the application plan in
cum invokes cbeStored Data Manager to perform the required function.

• T.he Stored Data Manager manages the ~tared database. retrieving and updating
records as requested by application ptans. In other word.s. the Stored Data Manager

TERADATA, Ex. 1014, p. 793

Appendix B DB2: A Relalional Implementation 765

/ --....
'- _/

' Source
M odule

/, .. r,

r-.... _/ ' . '- _/

M1>d1fied - Prercomp1ler -
~ .

Source OBFIM
Module

'- _/ '- - _/

' . ·~

Compiler Bind

, '
r /

----..... _/ '- _,

Ob1ect Appl1cat1on
Module Plan

'-...... '-· _,

Linkage
Ediro~ - (load Module)

" ,_
(Applleauon Plan)

/ ,......, ,.

'- ./

Runtime Supervisor
Loaq

Module
Data Manager /,

'- I'-_ - _/

Butter Manager ~
OB

!Other)

Maori Memory

FIG. B.2 Application preparation and execution

TERADATA, Ex. 1014, p. 794

766 Appendixes

is the component respons.ible for the functions attributed to the file manager in
Appendix A of tbis book. 11 invokes olher cOmponerui. as necessary to perform
subsidiary functions sucb as Jocking, logging. sorting, etc .. during Lhe perfonnance
of its basic task; in particular, it invokes the Buffer Manager (see below) 10 perfonn
physkal 1/0 operations.

• The BufTer Manager is the component responsible for physically transfening data
pages between the disk and main storage: i.e., it perfonns the actual 110 operations.
as indicated above. To use the terminolog¥ of Appendix A once again, just as the
Stored Data Manager corresponds to the file manager. so lhe Buffer Manager cor­
responds to the disk mmia$.er.

B.4 Detailed Control Flow

Let us examine the ideas of the previous section in a IJnle more depth. Refer to Fig, B.2
once again. That figure shows the major steps involved in the preparation and execution
of a DB2 application. To fix our ideas, let us ~sume the oi:iginal program P is written
in COBOL (we take COBOL for definitene~s; the overall process is of course essentially
the same for other language.~) . The steps that program P must go through are as follows:

I. Before P can be compiled by the regular COBOL compilec, it must first be pro­
cessed by the DB2 Precompiler. As explained above. the Precompiler is a prepro­
cessor for the OB2 application programming languages (C, COBOL, etc.). I~
function is to analyze a source program wciuen in one of those language$. strippio~
out the SQL statements it finds and replacing them by host language CALL state­
ments. Al execution time those CALLs will pas!> control to the Run Time Supervi­
sor. From the SQL statements it encou oters. the Precompiler constructs a Database
Request Module (DBRM), which subsequently beeQmes input to the Bind compo­
nent Nore: The DBRM can be regarded as just an lntemal representation of the
original SQL statements. lt doe~ nat consist of ex_ecutable code.

2. Next, the modified COBOL program is compiled and link-edited in the nonnal
way. Let 11$ agree 10 refer to the output from tbis step as "load.module P.''

3. Now we come lO the Bind s1ep. As already suggested, Bind is really an SQL com­
piler : It converts database requests (i.e .. SQL statements) into executable code.
(What is more. ii is an oprimi<:ing compiler: The output from Bind is 001 just code,
ii is optin1i-;:ed code. In DB2, in other words. the all-important optimizer compo­
nent is actually a subcomponent of Bind. We shall have a title more to say about
optimization in the next section.)

The input to Bind is a DBRM tor more likcly a set of sevecalDBRMs, if the
onginal program involved several separately compiled procedures). The output
from Bind- Le., the compiled code. which as already mentioned is caJJed an appli­
cMion plan-is stored away ln the DB2 catale>g, where it can be found when
needed by the Run Time Supervisor.

TERADATA, Ex. 1014, p. 795

Appendix B 082: A Relational Implementation 767

4. Finally we come to execution time.Since the origmal program has effectively been
broken into two pieces (load module and application plan). those two pieces must
somehow be brought back together again at execution time. This is how it works
(refer ro Fig. B.2). First, the load module Pis loaded into main memory: it starts to
execute in the usual way. Sooner or later it reaches the first of the CALLs inserted
by the Precompiler. Control goes to the Run Time S11pt>n•i,vor. The Run Time Su­
pervisor then retrieves the application plan from the <-acalog. loads it into main
memory, and passes control JO it. The applicati~n plan 1n tum invokes the SU>red
Data Manager, which performs the necessary operations on the actual stored data
(invoking the Buffer Manager as necessary) and passe~ results back to the execut­
ing application as apprepriate.

B.5 Compilation and Recompilation

Our discussions so far have glossed over one extremely important point, which we now
explain. First, as already indicated, DB2 1s a compiling ~y~tem: Database requests are
compiled (by Bind) into intern.al fonn. By contrast. manv other sysrems-oertainly all
prere1ational systems, to this writer's knowledge-are inrerpretfre in nature. Now,
compilation is certainly advantageous from I.he point of view of performance; it will
neady always yield bener run-lime perfoanance than will interpretation [B.101. How­
ever. it dees suffer from one significant drawback: It is possible that decisions made by
the "compiler" (actua11y Bind) a/ compilation time are no longer valid qt execution
time. The following simpleexample will serve to illustrate lhe problem:

I . Suppose program P is compiled on Monday. and ilie optimizer decides to use an
index-say index X.-in its access strategy for P. Then the application plan for P
will include explicic references to X by name; in other words. the generated code
will be tightly bound to (i.e., highly dependent on) the optimizer's choice of strat­
egy.

2. On Tuesday, some suitably autb0ri2ed user issues the statement

DRSP NIDEX :<_;

3. On Wednesday. some suitably authorized user tries to execllte program P. What
happens?

What does happen is the following. When an index is dropped. DB2 examines the
catalog to see which plans are dependent on thatlndex. Any such plans it finds it marks
"invalid." When the Run Time Supervisor retrieves such a plan for execution. it sees
the "invalid" marker, and therefore invoke,f Bind to pmd11re a 11ew pla11-i.e., to
choose some different access strategy and then to recompile the oJ;iginal DBRM (which
has been kept in che catalog) in accordance wii.h that new s1111tegy. Assuming the re­
compilation is successful. the new plan then replaces the old one. and the Run Time
Supervisor continues with that l!lew plan. Thus the entire recompilation process is "trans­
parent to the user''; the only effect that might be observed is a slight delay in the execu-

TERADATA, Ex. 1014, p. 796

768

tion of cenamSQL statements (possibly some change in overall program pecfonnance
also~ of course; the point is, however, that there should be.no effect on program logic).

Note carefully that the automatic recompilation we are talking about here is an SQL
recompilation, not a COBOL recompilation. It is not the COBOL program that is inval­
idated by the dropping of the indell, only the application plan associated with that program.

We can now see how it is possible for programs to be independent of physical
access structures-more specifically, how it is possible to create and drop (destroy)
such strucnu:es without at the same time having to rewtite programs. As explained in
Chapter 3, SQL statements such as SELECT and UPDATEnever include any explicit
mention of such structures. Instead, they simply indicate what data the user is interested
in; and it is DB2's responsibility- actually"Bind's responsibility-to choose a way of
getting to that data. and to change to another way if lhe old way no longer works. We
say that systems like DB2 provide a high degree of data independence (more specific­
ally, physical data independence, so called to distinguish it from logical data indepen­
dence, discussed in Chapter 17): Users and user programs are not dependent on the
physicaLstructure of the stored data-even though this is a compjJing system.

Nore: Dataindependence is easiet to provide in an inlel]lretive system, because the
process of "compilation" and optimization is effectively repeated every time the pro­
gram is executed. But lhat repetition represents a significant overhead, of course, which
is precisely why DB2 chose to go the compiling route.

One further point concerning the foregoing: Our example was in terms of a
dropped i11dex. and perhaps that is the commonest case in practice. However, a similar
sequence of events occurs when otherobjects (not just indexes) are dropped. Thus. for
example, dropping a base table will cause all plans that refer to that table to be flagged
as invalid. Of course, the automatic recompilation will work in this case only if another
table has been created with the same name as the old one by the time the recompilation
is done (and maybe noleven then, if there are significant differences between the old
table and the new one).

Let us rerurn to the index case for a memem. Given the fact that DB2 does auto­
matic recompilations if an existing index is dropped, the reader might be wondering
whether i~ wilJ also do such automatic recompjlations if a new index is created. The'
answer is no. it will not, And the reason is that 1here can be no guarantee in such a case
that recompiling will actually be profitable; recompilation might simply mean a lot of
unnecessary work. (existing com pi led code Dll ght already be using, an optimum strat ·
egy). The situation is different with DROP-a progr-am will simply not work. if it relies
on a nonemtent object (index or otherwise), so recompiling is mandatory in this case.
Thus, if some user-typically the DB A-creates a new index, and suspects that some
plan could now profitably be replaced, then he or she must expliciLly request that re·
placemem by means of an explicit "REB LND" command."' Even then, of course. there
is no guarantee that the new plan will in fact use the new tndex.

• h ;, not ilTIP"""lblo thlll DB'.! mighl be CJC.tend(d in some future rclcu.se tt1 perform ou1<>t1mtic rebinds on
irulcx cn:aticm as wdJ

TERADATA, Ex. 1014, p. 797

Appendix B 082: A Relational Implementation 769

We conclude this section by noting that SQL is always compiled in DB2. never
interpreced, even when the statements in question are submitted interac1ively. ln other
words, if the user enrers (say) a SELECT sta1ement at the terminal. then that statement
will be compiled and an application plan generated for it; that plan will then be exe­
cuted: and finally, after execution bas completed. that plan will be discarded. Experi­
ments have indicated that, even in the interactive case. compilation almost always re­
sults in better overall performance than interpretation (B. I OJ. The advantage of
compilation is that the actual pr~ess of physically accessing the required data is more
efficient, since it is done by tailored. compiled code. The disadvantage. of course. is
that there is a cost in doing the compilation. i.e., 1n producing tha~ compiled code in the
first place. Bui the advantage almost always outweii;is the disadvantage, sometimes
dramatic:ally so.

B.6 Utilities and Related Matters

In this section we take a brief l.ook at what is involved in controlling and managing-the
day-to-day operation of a system like DB2 There are numerous administration and
operational tasks that need to be perfonned. and the system prO\tides a variety of utility
programs and similar tools to assist in those tasks. We briefly describe some of Lhe D'B2
utilities in a little more detail in order to give a slightly clearer picture of the lcinds of
functions that need to be performed by such utilities in general. We also offer a brief
description of a few miscellaneous topics of a general ''utilities" naLUre. Please note.
however, that our descriptions are very much simplified~ more details can be-found In
reference [B.71. from which the following oulline descriptions have been extrllcled.

• CHEC~ The CHECK u1ility is used ro perform certain checks on the stored
data----'C.g .. to check that a given index is consistent with the table it indexes. or to
check that a given table doe.~ not coni.ain any "dangling" foreign key references
(i.e., foreign key values for which no corresponding row cxi~ in the 1nrget table;
note thal such dangling references might occur as a result olf running the LOAD
utility-see below-with referential integrity checking disabled).

• COPY: The COPY utilily create~ a full or incremental backup copy (:m inrage
copy) of a database or some portion thereof (see the discussion of MERGECOPY
and RECOVER below). An lncremcntal capy is a copy of jU"-l the pages lha1 have
been updated since the previous full or incremental copy was taken.

• LOAD: The LOAD utility loads data from a sequeminl file into one or more stored
tables within a specified daUt.base. The tables Jn question need nol be initially
emply. Nole that LOAD can be run with either logging or refcrenual 111regrity
checking disabled (or both. of course).

• MERGECOPY: The MERGECOPY ulility merges a full copy and one or more
incremental copies co produce an up-to-date full copy. or u sel of incremenlal cop­
ies to produce an up-to-date composite incremental oopy.

TERADATA, Ex. 1014, p. 798

770 Appendixes

• QUIESCE: The QUIESCE ulility is U$ed to quiesee operations (temporarily) on a
specified collection of base rabies. The quiesced state corresponds to a single point
in the log, so that the colle.ouon of tables can subseguently be recovered as a unit.
ln particular. QUIESCE can be useful in, establishing a point of co11sistency for a
colleCtion of tables that are related via referential constraints. thus ensuring that
subseguem recovery to that point will restore the data to a consistent state (see the
discussion of RECOVER below).

• RECOVER: The RECOVER utility uses the most recent full copy, any subse­
guent incremental copies, and any subsequent log data to recover data after (e.g.) a
media failure has occurred. RECOVER c:an also be used to perform poi/It-in-time
recoi•ery by recovering from a specific image copy or recovering to a speci fie point
in the log.

• REORG: The REORG utlllty reorganizes a srored databa1>e or some portion
thereof to reclaim wasted space and to reestablish clustering sequence (if applica­
ble).

• RUNSTATS: The RUNSTATS utility computes certain specified statistics on
specified stoced data (e.g., cardinality for a specified stored table). and writes those
statistics to the system catalog. Bind uses such statistics in its process of optimiza­
tion (see Chapter 18). They can also be useful for determining when reorganization
is necessary. RUNST ATS should tie elCecuted whenever a cable has been loaded,
an index has been created, data has been reorganized. or generally whenever there
has been a significant amount of update activity on some table. l t should then be
followed by an appropriate set of application plan REBINDs.

Explain

EXPL*IN is a special SQL state men! that can be used to obtain intbrmation regarding
the optimizer's choice of access strategy for a specified SQL query. (Note: EXPLAIN
is not included in the SQL ~tandacd [8 lJ, but many SQL productS suppon it in one
fotm or another.) The information provided includes indexe~ used, details of any sorts
that will be needed, and-ii the specified query involves any joins-the order in which
tables will be joined and the methods by which the mdividual joins will be performed
(see Chapter 18). Such information can be useful for tuning exkting appbcaoons. also
for determining how pro1ected applwuuons will pertoan. Here 1s an example:

EXPLAIN PLAN FO~
SELECT S. Sf!', P Pit
FROH S , P
WllERi' S C"TT'i : P CTTY

The output from l::XPLA IN is plcl.Ced 111 a ~pecml table in Lhe database called
PLAN_ TABLE. The user can the11 mterrogate Lhilt table by means of ordrnary SQL
SELECT stacements in order ro discover, tor example. whether a particular index is
bemg used or whether 1.re<LLIO!J a Hew 111de x m1gh1lib\1w.e the need tor a sort.

TERADATA, Ex. 1014, p. 799

Appendllt B 082: A Relational Implementation 771

Instrumentation Facility

The 082 Instrumentation Facll!ty gathers system diagnostic inform11tion, system­
wide statistics. perfonnance information. and accounting and audit data. The infonna­
tion can subsequently be analyzed' by tbe 082 Performance Monitor to produce a
variety ofreports, including Lhe following:

• Oraphfoal summaries of accounting and system statistics data

• Processing time infonnation.for SQL statement, Bind, utility. and command exe-
cution

• 1/0 summaries

• lnfonnation on locking efficiency (number of deadlocks. number of waits. etc.)

• A detailed trace of SQL slatement execution

Resource Limit Facility

The DB2llesoutte Limit Facility is a "08 2 governor." lrs principal use is 10 allow the
OBA to limit (on an individual user basis) the amount of :processor time that can be
consumed during the execution of SQL data manipulation operations that are entered
interactively. ff tbe specifi~d limit is exceeded. the offendlng operation is cancele.d.

B.7 Summary

We have presented a bcief overview of DB2 in order to give tbe reader some idea as to
what is involved in a real relational implementarion. First we described the principal
082 storage objects-datllbases, table and index spaces (analogous 10 the page sers
of Appendix A), stored tables (analagous to the stored files of Appendix A) and in­
dexes (B-trees in DB2). A stored table is the stored version of a base cable; DB2-like
most other relational products on the macket today-thus maps base tables to physical
storage in a fairly direct manner, and so does not provide as much data independence as
it really should (as discussed in Chapters 3 and 4).

We then took a look at application program preparation and execution. First the
Precompiler removes the SQL statementS from tlie program (replacing them by
CALLs) and uses those SQL statemen1s to build a Database Request Module
(Dl3RM). The program can then be compiled and link-edited in the usual way. The
DBRM(s) for a given program are processed by Bind to produce un application
plan-in effect, a compiled version of 1he original SQL statements (Bind can be
thought of as an optimizing SQL compller). At run time, the CALLs inserted by the
Precompiler cause control to go to the Run Time Supervisor. which invokes the
Stored Data l\fanager (DB2'fi analog of tbeji/e r11miagerof Appendix A) to perfonn
the desired ope.rations on the \IOred data. The Stored DaUl Manager in ium invoices the
Butler Manager (DB2's analog of the disk mt111ager of Appendix A) to carry out the
physical page 1/0' s.

TERADATA, Ex. 1014, p. 800

772

We also discussed the faet that SQL requests are compiled, not inrerpreted, in 082,
and explained bow DB2 performs automatic recompilation if necessitated by a
change in lhe physical storage suucture- in particular, if an existing index is dropped.

Finally. we gave a very brief overview of some of the most imponant DB2 utWtles
(CHECK, LOAD, COPY, etc.). together with certain related facilities such as
EXPLAIN.

Exercises

B.J Name the four major components ofDB2.

B.2 Draw a diagram showing the overall process of program preparation and program execu-
tion In DB2.

B.3 Explain how DB2 provides physical data independence.

B.4 List the principal storage objects of DB2.

B.S What is the maximum length in bytes of a DB2 Stored record? Note that !he maximum
width of a base table is less than this figure; why is thi~?

B.6 What is a clustering index? Why can a gi,ven stored table have a max.imum of one such
index? What are the advantages of such an index?

B.7 The DB2 Bind component includes the optimizer as an important subcomponent The
optimizer is responsible for deciding on a strategy for implementing database requests
(i.e .• SOL statements): in particular, it decides when and when not to make use of indexes.
How does the opti:mirer know what indexes 'eitlst7 How does it know whether a given
index is a clustering index?

B.8 Bxplain EXPLAIN.

References and Bibliography

References [B.1-B.5] are the principal DB'2m311uals from IBM. References fB.8-B.10] arecon­
cemed with various aspects of System R. the prototype predecessor to DB2 and to IBM's other
SQL products (In thL~ regard, see also references [8. U- 8.16] and 118.29~18.30]). Note: The
reader should be aware that after several commercial releases of the producl, !he details of
DB2's intemals--panicularly its eompilation and optimization mechanisms-have evolved
considerably and no longer display much trace oC their SystemR origins, From a 082 perspec­
tive. therefore. the System R references are now primarily of historical interest.

B.l IBM Corporation. IBM DATABASE 2 Version J General lriformiJJion IBM Form No.
GC26-4373.

B.2 IBM Corporation. IBM DATABASE 2 Version 3 Adminisrratirm G~ide (three volumes).
IBM Porm No. SC26-4374.

8.3 IBM Corporation. IBM DA'IABASE 2 Version 3 SQl Refer1mci:. IBM Form No. SC26,
4380.

B.4 IBM Corporation. IBM DATABASE 2 Versil1n 3 App/icatirm Programming and SQL
Gui.th. IBM Forro No. SC26-4377.

TERADATA, Ex. 1014, p. 801

Appendix B 082: A Relational Implementation 773

B.S IBM Corporation. lBM DATABASE 2 Version 3 Command and Utiliry Reference. IBM
Form No. SC26-4378.

B.6 Various aulhors. /BM Sys. J. 23, No. 2 (DB2 Spedal Issue, 1984).

A series of technical articles on bB2 as it was at first release. Topics discussed include:

• DB2 under IMS
• DB2 under TSO

• Data recov.ery
•

• DB2 design, performance, and tuning (I lUO]

• DB2 buffer management

• The Query Management Facility QMF

8 .7 C. J. Date and Colin J. White. A Guide lO l>B2 (4th edition). Reading. Mass.: Addison­
Wesley (1993).

Provides an CJ1tensive and thorough overview of 082 and some of its .::ompani<in prod­
ucts. Much of the present a'J>pendix is based on material from this book.

B.8 Raymond A. Lone and Bradford W. Wade. ''The Compilation of a High-Level Da1a Lan·
guage." IBM Research Report RJ2S98 (Augus1 1979).

The DB2 compilation/recompilruion scheme was pioneered by Sy~tem R This paper de­
scribes the System R mechanism in some derail. withoul however getting into quesuon~
of optimi211tion (see reference (18.291 for information on this liltter topic).

B.9 Raymond A. Lorle and J. F . Nilsson "An Access Specifo::ilion Language for a Relauonal
Data Base System." IBM J. R&.D. 23. No. 3 (May 1979)

Gives moredetails on one particular aspect of compilation in System R. For any given SQL
statement. tbe System R optimizer generates a program in an internal language called ASL
(Access Spedfication Language). That language serves a.s Lhe intl."rfaae between the opti­
mizer and che code J(enerc1rr1r. (The code generator. as ns name implle.~. conven& an ASL
program into machine code.) ASL ccmsists of operators such as "scan" and "in.c;en" on object~
such as indexes and stored files. The purpose of ASL was to make tbe overall U'llnblauon
process more manageable. by breakfog It down into a ~el of well-defined subpruccs;.es .

.B.10 Donald D. Chamberlin i!t /JI "Support for Ropetilive Tran~acllons and Ad-Hut Queries in
SystemR.''ACMTODS6, N1>. I (March 1981).

Giv~ some measuremenl.S of System R perfonnance in both the ad hoc query and
·•canned transaction" 1.mvirnnment!t. (A "eanru:d tmnsnction" is a !limple applicutmn thnt
accesse.o. only u small part of the database and h compiled pnur to execu1ion 1ime. It
corresponds 10 what we called n planned reque.w in Chapter 2.) The measurements were
taken on an IBM System 370 Modltl 158. ruonlng System R under the VM op<.,rating
system. They are described as "prelirnmary"; with thb caveat. however. The paper $how~.
among other lhmgs, thnt (a) onmpilaticm is ulmost ulway~ superior to interprelallun, l!ven
for ad l:oc (interactive) c1ucrie~. and Ch) a \ystem li~e Sysicm R ii. capahlc of pl'OCe~smg
several canned crnnsaccions a second. provided nppropno.te indexes cx1s1 m the database.

Since this paper wai; 11rst publiNhcd, several relational producL~. including in panic•
ular 082, have ac'11evcd perfonnanctl figu~ tlljll llfC comparable to the best ngure~ \lh•
tained with w11• database ~ystelll, relauonn.I 01 otherwise. In panlcular. tnlnsaction rotes m
the hundred' nnd even thl.lu~and~ of canned tnmM1c1io11~ per second hu'c bec:n demon­
strated.

TERADATA, Ex. 1014, p. 802

774 Appendixes

Answers to Selected Exercises

B. I The four major components of 082 are the system services, locking services, database
services. and distributed data facility components. The database services component. in
tum. divides into the Precompiler. Bind. Run Time Supervisor. Data Manager. and Buffer
Manager components.

8.4 The principal DB2 storage objects are databases. table spaces.lndex spaces, srored tabl.:s.
and indexes.

8.5 Sinre each stored [eeord must be wholly contained within a single page. the maximum
length of aDB2 stored record is constrained by the page size (either 4K or 32K byies). The
maximum wi,Plh of a base table is less than lhil! figure because the stored record includes
cenaln <ionirol infonnation-e.g .. in the stored record prefix-that is concealed from the
user.

B.6 A clustering index is an index for which the physical sequence af !he ind&xeddata is the
same as, or very close to, the logical sequence of that same data as represented by the index
entries (see Appendix A). A given stored table c~ot have more than one such index be­
cause-by definition-that stored table can have only one physical sequence. The advan­
tage of a clustering index is tbal sequential 'access via the index will access each data page
once only and will thus be as fast as possible.

8 .7 Allsuah infollDalion is kept in the catalog.

TERADATA, Ex. 1014, p. 803

APPENDLX

C Logic-Based Systems

•

C. 1 Introduction

A sigp:i:ficanl new tread has emerged within the database research community over the
past few years. That trend is toward database systems that are based on logic. Ex­
pressions such as logic darabase, inferential DBMS, expert DBMS, ded11ctive DBMS.
knowledge base. knowledge base management system (KBMS), logic as a data model,
recursive query proG'essing, etc .• etc., are now frequenUy encountered in the research
literature. But it is oot always easy to relate such terms and the ideas they reptesent to
familiar database tenns and concepts, nor to understand the mouvaaon underlying the
research from a traditional database perspective. There 1s a clear need for an explana­
tion of all of this activity in terms of conventional database ideas and i>rinciples This
appendix is an attempt to meet that need.

Our aim is thus to explain what logic-based database systems are all about from the
viewpoint of someone who is familjar with database technology but not neces$arily
with logic per se As each new idea from logic is introduced. therefore we will explain
it in conventional database terms, w.here possible or ap_propriate Of course we have
discussed cenain ideas from logic in this book already. particularly in the chapter on
relational calculus l Chapter 7). wlm.:h 11. directly b:u.ed on logu. Hn we' e1 theri:: ~ mo1 e
w log1c-ba11ed sy$Lems tban JUSt the relational caJcuJu~. a1> we will ~ee

The sLrUcrure of this appendix is as follows. Followrng this prehminar) back­
ground section. Secuon C.2 provides a bnef overview ot the stibJt:<:r. w1th a lmle his­
tory ~ccuom. C.311nd C.4 then provide an elemi.:ntary (and vt:ry much :.mlplified) rreat­
m..:nt ol pr<1[11).1'itim111l t:tlfculul and p1c1d1c .1111 caft·11lu ~ n:~111::cu vel y Nexi Set:11on C.5
muoduces the so-called prouf-theuretll vtew ot a darabase. and ~ecuoo Cb builds on
the ideas uf that "'ection to explw.n what 1~ meant by the term ded11~ 111 e DJJM:, Secuon
C 7 tbell di~CU5~e!> MllllU approm .. hes to lht" prublt:m of ft!('Ul~ll'I! t/W!f) (!llJCh.llllf;l Jnd
finally Secmon C.8 ofters a summary and a tew concluding renurrx.,.

TERADATA, Ex. 1014, p. 804

776 Appendixes

C.2 Overview

Research on the relationship be1weenda1abase lheory and logic goes backro.al leasnhe
Late 1970s. if not earlier-see, for ex:ample, references [C.51, [C.71. and [C.13]. Hew­
ever, !he principal i;timulus for the recent considerable expansion of interest In the sub­
jeet seems lo have btien the publication in 1984 of a landmark paper by Reiter [C.151.
In that paper. Reiter characterized the traditional perception of database systems as
mOdel-theoretic-by which he meant, very loosely speaking, that (a) the database is
seen as a set of explicit (i.e., base) rela1iens, each con raining a sec of explicit tuples. and
(b) executing a query can be regarded as. evaluating some ~ecified formula(i.e_, trulh­
v.alued expression) over those explicit relations and tuples. (We will ex.plain the mean­
ing of the tean "model-theoretic'" a Linle more precisely in Sect.inn_ C.5.)

Reiter then went on to argue that an alteD1i1tive proof-theoretic view was possible.
and indeed preferable in certain respects. l'n that alternative view-again very loosely
speaking-the database is seen as a set of axioms ("ground'" axioms, corresp<mding to
domain values and tuples in base relatians. plus certain '"deductive" axioms, robe dis­
cussed), and executing a query is regarded as provin.g that some specified formula is a
logical consequence of those axioms-in other words, proving that it is a theorem.
(Again. we will explain the term "proof-lheoretic'" a little more precisely in Section_
C.5.)

An example is in order. Consider the following query (ex.pressed in relational cal­
culus) against the usual suppliers-and-parts database:

sex WHERE SPX . OTY > 250

lo the ttaditional- i.e., model-theoretic-interpretation, we examine the shipment
tuples one by one, evaluating the formula !•QTY> 250" for each one in turn; the query
result then consists of just those shipment ruples for which the formula evaluates ro
true. Jn the proof-theoretic interpretation. by contrast. we consider the shipment tuples
(plus certain other items) as a.xioms of a certain " logical theqry" ; we then apply
theorem-1Jrovingtechniques to determine for which possible values of the variable SPX
rhe formula "'SPX.QTY > 250" is a logical consequence of those axioms within that
theory. The query result then consists of just those particular values of SPX.

Of course. this example is extremely simple-so simple, in fact, that the rellder
might be having difficulty in seeing what the difference between the two interpretations
really is. The point is, however. that the reasoning mechanism employed in !be at­
tempted proof (in the proof-theoreUc interpretation) can of course be much more so­
phisticated than our simple cltample is able to convey; indeed. it can handle certain
problems that are beyond the capabilities of cla~sical relational systems, as we will see.
Furthermore, the proof-theoretic interpretation carriei. with it an attractive set of addi­
tional features IC. t.:j]:

• Representational uniformity: Tl becomes possible to define a database languag!!
in which domain values, tuples in base relations. "deductive axiomi.." queries, and
integrity constraints are all represented in essentially the same way.

TERADATA, Ex. 1014, p. 805

Appendix C Logic-Based Systems 777

• Operational uniformity: Proof theory provides a basis for a unified auack on a
variety of apparently distinct problems, including query optimization (especially
semantic optimization). integrity constraint enforcement, database design (depen~
dency theory), program correctness proofs. and other problems.

• Semantic modeling: Proof theory also provides a good basis on which to define
various.semantic modeling ex(ensions, such as event!;, type hierarchies. and certain
types of entity aggregation.

• ExtendedaepHcation: Fimftly. proof theory also provides a basis for dealinjl with
certain issues that classical approaches have traditionally bad difficulty with-for
example. disjunctive information (e.g., "Supplier S5 supplies ·either part Pl or:i;>art
P2, but it is not known which").

Deductive Axioms

We offer a brief and preliminary explanation of the concept. referred to a couple of
times above, of a deductive axiom (also known as a rule of inference). BasiGally, a
deductive axiom is a rule by which, given certaln facts, we are able to deduce additional
facts. For example, gh(en the facts "Anne is the mother of Betty" and "Betty is the
mother of Celia," there is an obvious deductive axiom that allows us to deduce that
Anne is the grandmother of Ce:1ia. To jump ahead of ourselves for a moment, therefore,
we might imagine a deductive DBMS in which the two gjven facis are represenred as
tuples in a relation. as follows:

MOTHERQF MOTltEIR DAIJGH'I'ER

Anne. aeccy
lletcy Celia

These two facts would represent ground axioms for the system, Let us suppose also
that the deductive axiom llas been formally stated to the system somehow, e.g. , as fol­
lows:

IF MOTHEROF
A!ilD 1.fi'.lTHEROF

x, y)
y, z I

TRE!ll URANOMOTHEROF I ;.;, z I

(hypothetical and simplified syntax). Now the sys1em can apply the rule expressed in
the deductive axiom to the data represented by the ground uxioms (in n manner to be
explained in Section C.4) to deduce the result GRANDMOTHEROF (Anne.Celia).
Thus, u!jers can ask queries such as ''Who is the grandmother of Celi~'r or "Wbo are
the granddaughters of Anne?" (More precisely . I.hey can ask " Who is Anne the grand­
mother ot'l"-see Section C.4.)

Let us now attempl to relate the foregoing ide~ to traditional database concepts. in
b'adltionaJ terms. the deductive axi.om can be thought of as a 1•iew definition-for example:

CREATE VIEW GRAI>;DMQTHEROF ;..s
(MX. MOTHEjt AS GRANDMOTHEP. , MY, DAOGH1'E!l AS GAANODAllG!i'IE!I J

WHERE: MX.. OADGH'l'~ = MY. HO'l'HE:R :

TERADATA, Ex. 1014, p. 806

778 Appef1dixes

(here MX and MY are rupJe variables ranging over MOTHEROF). Queries such as the
ones mentioned above can now be framed in tenns of this view:

GX.GRANDMOTHER WHERE GX.GRANDDAUGH~ER: 'Celia•

GX. GRANDDAUGHTe:R WJiEll<E GX. GRANDMOTHF.l< ; • Alme.

(OX is a ruple variable ranging over GRANDMOTHEROF).
So far, therefore, all we have really done is presented a different syntax and differ­

ent interpretation formated al that is already basically familiar. However, we willsee in
later sections that there are in fact some si,goifican1 differences, not illustrated by the
simple examples of the present section. between logic-based systems and more tradi­
tional DBMSs.

C.3 Propositioiul Calculus

ln 1his section and the next, we present a very brief introduction to some of the basic
ideas of logic. The present section considers propositional calculus and Section C.4
considers predicate calculus LC:.1-C.3]. We remark immediately. however, that so far
as_ we are concerned, propositional caJculus is not all that important as an end in itself;
the major aim of the present section is really to pave the way for an under!!t.anding of
the next one. The aim of the two sections taken together is to provide a basis on which
re;> build in the rest of the appendix.

The reader is assumed to be familiar wil'.b the basic concepts of Boolean algebra.
Por purposes of reference, we state certain laws of Boolean algebra that we will be
needing later on:

• Distributive laws:

fANDlgOR hJ =
f()R l9ANDhJ ~

• De Morgan's laws:

f MD g
f OR g

OR f ANO b
AND fOR h

NOT I fANDg I = NOT f0R ~!OT g
NOT (i OR g I '= llOT f AND ~10'1" g

Here.f. g, and hare arbitrary truth-valued expressions.
Now we tum to logic per se. Logic can be defined as a formal method of reason­

ing. 13ecause it is formal. it can be used 10 perform formal tasks, such as testing the
validity of an argument by examining just the structure of that argument as a sequence
ofsteps (ie., without paying any attention t.o the meaning of those steps). Tn particular,
of course, because it is fonnal, it cao be mechanized-Le., it can be programmed, and
thus applied by the machine.

Propositional calculus and predicate calculus are two special cases of logic in gen­
eral (in fact. the fonner is a subset of the latter). The term "caleulus." in tum, is just a
general tenn that refers to any system of symbolic computation; in me particular cases
at hand, the kind of computation invelved is the computation of the truth value (true or
false) of certain formulas or expressions. Note: Naturally we assume throughout that
we are dealing with two-valued logic only.

TERADATA, Ex. 1014, p. 807

Appendix C Logk·Based SysUms

Terms

We begin by assuming that we hav.e some collection of objects. called constants, about
which we can make statement$ of yarious kinds. In datilbase parlance. these constants
are the elements of the underlying domains. We define a term as a statement involving
such constants that

• Does not involve any quantifiers (see Section C.4), and

• Either does not involve any logical connectives (see below) or is contained in pa­
rentheses. and

• Evaluates unequivocally to either true or false.

Foe example, "Supplier S L is located in London" and ''Supplier S2 is located in
London" and "Supplier S l supplies part Pl" are all terms (they evaluate to true, false,
and crue respectively, given our usuaJ sample data values). By contrast, "Supplier
Sl supplies some pan p" is not a term, because it contains a quantifier ("some part
p"). Another: counterexample: "Supplier S5 willsupply part Pl at some time in the
future" is also not a term. because it does not evaluate unequivocally to either true
or false .

Formulas

Next, we define the concept of a formula FormuJas of the propositional calculus­
more generally. of the predicate calculus (!lee the next section)--are used in database
systems to represent the conditional expression that defines the resuJt of a query
(among many other things).

formula
term
NO'!' term
cerm AND formula
i:erm OR (ormLtla

I cerm = Eormu.la

• ·- acomic· formula
I (formula l

Ponnulas are evaluated in accordance with the 1.ruth values of their constituent
tenns and the usual truth tables for the connectives. Points arising:

I. An aromicfonnulD is a tenn that involves no connectives and is not contained in
parentheses.

2. The symbol "=>" represencs the logical implication connective. The expression
f ~ g is defined to be logically equivalent to che expression NOT /OR g. Note: We
used "IF ... THEN ... ·• for this connective in Chapter 7 and el.sewbere in the
body of lhe text

3. We adopt the usual precedence rules for the connectives (NOT. then AND. then
OR. then "=>) in order to allow us to redute the number of parentheses that the
grammar would otherwise require.

TERADATA, Ex. 1014, p. 808

780 Appendixes

Rules of Inference

Now we come to the rules oflnferenceior lhe propositional calculus. Many such rules
exist.Each such rule i$ a statement oftheform

F £ = g

(where the symbol ~can be read as "It Is a lways the case that"; 110te that we need
some such symbol in order to be able to make metastatements, i.e., statements about
statements). Here are some examples of inference rules:

l . I=- (£ AlllD g) => f

2. I= t = (£ OR g)

3. F ((f => g) ANO (g => b l l => I { => h I

4. I=- (! !\ND ([- !I)) - g

Note: This one is particularly important. It is cailedi:he moduslJOnens rule. Informally,
it says tbatif/is true andfimplies g. then g-mustbe true as well. For example, given
the fact that each of the following (a) and (b) is true-

(a) Ibave no money;

(b) If I have no money then I will have to wash disbes;

-then we can infer that (c) is true as well:

(c) I w jll have to wash dishes.

To continue with our inference rules:

5. F (! => (g => h)) => ((f AND g) => b)

6. F (('f OR g) AND (NOT g OR h f) => (f OR h)

Note: This is another particularly important one. JLis.known as the resolutionrule. We
will have more to say about it under "Proofs" below and again in Section C.4.

Proofs

We now have the necessary apparatus for dealing with formal proofs (in the context of
the propositional ealcuJu~). The problem of proof js the problem of determining
whether some given formula g (the conclusion) is a logical consequence of some given
set of formulas f 1, fl, . .. fn (the premlses)*'- in symbols:

t'l, r2 • to 1- g

(read as '"g Is deducible from f 1, fl, ... fn" ; observe the use of another meta statement
symbol, 1-). The basic method of proceeding is known as forward chaining. For.ward
chaining consists of applying the rules oUnference repeatedly to the premises, and to
formulas deduced from those premises. and to formulas deduced from those formulas,
etc., etc., until the conc:lusion is deduced; in other words, the process "chainsiorward"

1 Also spelled premis!les (singular p,.nlis.<).

TERADATA, Ex. 1014, p. 809

Appendix c Logk-Based Systems 781

from the premises to the conciusion. However, there are several variations on this basic
theme:

I . Adopting a premise: ff g is Qf the form p ~ q, adopt p as an additional premise
and show that q is deducible from the given premises plus p.

2. Backward chaining: Instead of trying to prove p ~ q, prove the contrapositive
NOTq~NOTp.

3. Reductio ad absurdum: lastead of trying 10 prove p ~ q directJy. assume that p
and NOT q are both true and derive a contradiction.

4. Resolution: This method uses the resolution inference rule (No. 6 in the list shown
earlier).

We discuss the resolution technique in some detail, since it is of wide applicability
(in particular. it generalizes to the case of predicate calculus also. as we will see in
SectioaC.4).

Note first that the resolution rule is effectively a rule that allows us to cancel sub­
fonnulas; that is, given the two formulas

f OR g and N0T q OR h

we ean derive the simplified formula

f bR h

III particular. given/OR g and NOT g (i.e., taking Ii as true). we-can derive/
Observe, therefore. that the rule applies in general to a conjunction (AND) of two

foonnlas, each of which is a disjunction (OR) of two formulas. III order to apply the
resolution rule, therefore, we proceed as follows. (To make our discussion a little m ore
concrete, we explain the process in 1erms of a specific example.) Suppose we wish to
determine whether the following putative proof is in fact valid:

A => (B => C I , N0X D OR A, B f- D => C

(where A. B, C, and Dare formulas). We start by adopting the negation of the conclu­
sion as an additional premise, and then writing each premise on a separate line. as fol­
lows:

A~fB => C)

NOT DORA

B
NOT(D=Cl

Nore that these four lines are implicitly all "ANDed" togelher. We now convert
each individual line to conjunctive normal form, i.e .. a fonn consisting of one or more
fon:nulas all ANDed together. each individ11aJ formula contail\ing {possibly) NOTS and
ORs but no ANDs (see Chapter 18). Of course. the second and third lines are already in
this form. In order to convert the other two lines, we first eliminate all appearances of
"~·· (using the definition of that connective in term:. of NOT and OR): we then apply
the distributive laws and De Mo(gan's laws as necessary tsee the beginning of this

TERADATA, Ex. 1014, p. 810

782

section). We also drop redundant parentheses and pairs of adjacent NOTs (which can­
cel out). The four lines become

NOT A OR NOT B OR C

NOT D OR A
B
D AND NOT C

Next, any line tbatincludes any explicit ANDs weTeplace by a set of separate lines,
one for each of theindividualfonilulas ANDed together (dropping the ANDs in the
process). In the example. this step applies to the fourth line only. The premises now
look like this:

NOT A 0R NOT B OR C
NOT DOR A

Ii
D

NOT C

Now we can stan to.apply theresolutioo rule. We choose a pair of lines that can be
"resolved,'' i.e., a pair that contain (respectively) some particular formula and the nega­
tion of that formula. Let us choose the first two lines, which contain NOT A and A
respectively. and resolve them, giving

NOT D OR NQT B OR C
B

D

NOT C

(Note: We also need to keep the two original lines, in general, but in this particular
example they will not be needed any more.) Now we apply the rule again, again choos­
ing the fust two lines (resolving NOT Band 8), giving

NOT D OR C

D
NOT c

We choose the first rwo lines again (NOT D and D):

t
NOT C

And once again (C and NOT C); the fiaal result is the empty proposition (usually
represented thus: 0). which represenls a contradiction. By reductio ad absurdum, there­
fore, the desired result is proved.

C.4 Predicate calculus

We now tum our auenlion to the predicate calculus. The big difference between prop­
ositional calculus and predicate calculus is that the latter allows fonnulas to contain
quantifiers, which makes it very much more powerful and of very much wider applica­
bil.ity. Por example, the statemenc "Supplier SI supplies some part p" is not a legal

TERADATA, Ex. 1014, p. 811

Appendix C Logic-Based Systems 783

foanula in propositional calculus, but it is a legal fonmlla in predicate calculus. Bence
predicate calculus provides us with a basis for expressing queries such as ''What parts
are supplied by supplier SI?" or "Find suppliers who supply some part" or even "Find
suppliers who do not supply any phrts at a11:•

Predicates

A predicate is a rntth-1•al11ed fi.!notion, i.e., a function that, given appropriate argu·
ments, returns either true or false. For example, ">" is a predicate: the expression
''>{x,y)"-more conventionally written "x > y''-retums true if the value of x is greater
than lhe value of y and false othetwise. A predicate that takes n arguments is calle-0 an
n-place predicate. A proposition--or for that matter a formula-in the sense of Section
C.3 can be regarded as a zero-place predicate: [t has no argumenrs and evaluates to
eiJher true or false, unconditionally.

It is convenient to assume that the predicates"=",''>'', '2", etc., are builtin (i.e.,
they are pan of the formal system we are defining) and that expressions using them can
be written in the conventional manner, but of course users should be able to define their
own additional predicates as well. Indeed, that is the whole point. as we will quickly
see: The fact is, in database terms. a user-defined predicate is nothing more nor less
than a user-defined relation. The suppliers relation S. for example. can be regarded as
a predicate with four argume111s (S#, SN AME, STATUS. and CITY). Furthermore, the
expressions S(S I ,Slllith,20,Loodon) and S(S6, White,45,Rome) represent ''instances"
or "invocations'· of that predicate that evaluate 10 true and false respectively (within the
particular database that is represented by our usual sample set of values). Informally,
we can regard such predicates-together with any applicable integrity constraints,
which are also predicates-as defining what the corr~SPQnding relation "means," as
explained in Pan D of this book.

Well-Formed Formulas

The next step is to extend the definition of "formula." Tn order to avoid confusion with
the formulas of the previous section (which are actually a special case), we '!Vill now
switch.to the term weU-formed formula (WPF, pronounced "weff") lha1 we finn intro­
duced in Chapter7. Here is a simplified syntax for WFFs:

wtt : : = cerm
NOT (wff)

I Wff) ANO I wfi I
I wa J OR (1>1li J
(wfl J = (wf:.f)

I EXISTS variable ("ct l
I FORALL variable (t~ff I

Ce.rm ; : ~ I NOT I Pl edJcace r I argument ·<:ommdJ ist I l

Pofots arising:

I. A term is simply a possibly negated predicate ins1ance. Each org11.mlf11/ multL be a
constant, a variable, or a function reference. where each argument Lo a function

TERADATA, Ex. 1014, p. 812

784 Appendixes

reference in tum is a constl«lt or variable or function reference. The argument com­
malisr (and enclosing parentheses) are omitted for a zero-place predicaie. Nore:
Functions are peanined in order to allow WFFs to include computational expres­
sions such as "+(x,y)'"-more conventionally written "x + y''-and so forth.

2. As in Section C.3, we adopt the usual prece"dencerules for the connectives (NOT.
then AND. then OR, then~) in order to reduce the number of parentheses that the
grammar would otherwise require.

3. The readeris as~omed to be familiar with the quantifiers EXISTS and FORALL. *
4. De Morgan's laws can be generalized to apply to quantified WFFs, as follows:

NOT f FORALL x (t)) a EXISTS x (NOT t I
NOT I EXISTS X (f >) " FORALL x l NOT (E I)

This point was also discussed in Chaprer 7.
5. To repeat yet another point from Chapter 7: Wi(hin a given WFF. each occurrence

of a variable is either [ree or j>ound. An occurrence of a variable is bound if (a) it
is the variable immediately following a quantifier (the "quantified variable") or (b)

it is within the scope of a quantifier and has the same name as the applicable quan­
tified variable. A variable occurrence Is free iI it is 1101 bound.

6. A closed WFF is one that contains no free variable occummces. An open WFF is
a WFF that is not closed.

Interpretations and Models

What do WFFs mean? In order to provide a formal answer to this question, we intro­
duce the notion of an interpretation. An interpretation of a WFF--or more generally
of a set of WFFs-is defined as follows:

• First. we specify a universe of discom:se over which the WFFs are to be interpre­
ted. In other words. -we specify a mapping between the permitted constants of the
fonnal system (the domain values, in database tel'lllS) and objects in "the real
world."cach individual conslant corresponds to precisely one element in the uni­
verse of discourse.

• Second, we specify a meaning for each predicaie in terms of objects in the universe
of discourse.

• Third. we al~o specify a meaning for each function in terms of objects in the uni-
verse of discourse.

Then the interpretation consists of the combination of the universe of discourse, plus
the mapping of individual constants 10 objects in that universe, plus the defined mean­
ings for the predicates and functions with respect 10 that universe.

By way of example. lee the universe of discourse be the set of integers

• We nrc concerned here only wuh thlJfirst ortkr pred1ca1e calculus. wluch basically me:AAS that there nrc no
pred1ca1C variables (i.e .• variobl!!-' whose value is • prcd1cute), and hence that predicate~ cannot themselves be
subJcclCd to quantiuc~uon. See E;terc~o;e 7 ,9 m Chapter 7.

TERADATA, Ex. 1014, p. 813

Appendix C Logk...._. Systems 785

(0,1,2,3,4,5), let censtanlS such as "2" correspond lo elements of lbat universe in the
obvious way, and let the predicate.">" be defined to have the usual meaning. (We could
also define functions sucb as "+", "-", etc., if desired.) Now we can assign a truth value
to WFFs such as the following, as Indicated:

2 > l
2 > 3
EXISTS x I x > 2)
FORAI.iL x I x > 2)

- t::rue
- 'Cal.se
- true
-'false

Note, however, that other interpretations arei><>ssible. For example, we might spec­
ify the universe of discourse to be a set of security classifkation levels, as follows:

dest roy before reading (l:evel 5)
destroy after readl.ng I l e vel 4)
t:op searet:
secret
confidential
unclassified

!level 3)
I level 2)

(l evel 1)
(level 0)

The predicate ''>" could now mean "more secure (ie., higher classification) than."
Now, the reader will probably realize that the two possible interpretations just

given are isomorphic-that is, it is possible to set up a one-to-one correspondence be­
tween them. and hence at a deep level the two interpretations are really one and the
same. But it must be clearly understood that interpretations can ex:ist that are genuinely
different in kind. For example, we might onee again take the universe of discourse to
be the integers 0-5, but define tbe predicate ">" to mean eq1UJ1ily. (Of course. we would
probably cause a lot of confuSion that way, bat at least we would be within our rights
to do so.) Now the fust WFF above would evaluate to false instead of true,

Another point that must be clearly understood is that two interpretations migllt be
genuinely different in the foregoing sense and yet give the same troth vaJues for the
given set ofWFFs. This would be the case with the two different definitions of">" in
our example if the WFF .. 2 > i ·• were omitted.

Note. incidentally, that all of the WFFs we have been discussing in this subsection so
far have been ckJsed WFFs. The reason is that, given an interpre.tation, it is always possible
to assign a truth value unambiguously to aclosed WFF. but the truth value of an open WFF
will depend on the values assigned ro the free variables. For example, the open WFF

x > 3

is (obviously) true if the value of x is greater than 3 and false <>therwise (whatever
"greater than" and "3" mean in the interpretation).

Now we define a model of a WFF. or more generally or a set of(closed) WFFs, Lo
be an interpretation for which all WFFs in the set are true. The two interpretations given
above for the four WFFs

~ > l

2 > 3
BlUS'tS JC x > 2)
!'ORAL!. JC x > :?)

TERADATA, Ex. 1014, p. 814

786 Appendixes

in leans of the integers 0-5 were not models for 1hose WFFs, because some of the
WFFs evaluated to false under that interpretation. By contraSt, the first interpretation
(in which ">" was defined ··properly") would have been a model for the set ofWFFs

2 > l
) > 2
£XISTS x (x > 2)
FORALJ.. x (x > 2 OR NOT I x > 2))

Nole finally that, since a given set of WFFs can admit of several interpretations in
which all of lhe WFFs evaluate to true, it can therefore have several mQdels (in gen­
eral). Thus. a database can have several models (in general). since-in the model­
theoretic view-a database is basicall¥ a set ofWFFs. See Section C.5.

Clausal Form

Just as any proPQsitional calculus formula can be converted to conjunctive normaJ
form, so any predicate calculus WFF can be converted to clausalfonn, wbicltcanbe
regarded as an extended version of conjunctive normal form. One motivation for mak­
ing such a conversion is that (again) it allows us to apply the resolution rule in con­
structing or verifying proofs, as we Will see.

The conversion process proceeds as follows (in outline; for more details. see refer­
ence [C.IOJ). We illusttate the steps by applying them to a sample WFF. namely

l'ORALL x (p (x J AND EXISTS y (FORALL z l q C y , z) J))

Here p and q are predicates and x, y, and z are variables.

1. Eliminate"~" symbols as in Section G.'.l. In our example, this first transformation
has .no effect

2. Use De Morgan's laws, plus the fact that two adjacent NOTs cancel out, to move
NOTs so that they apply only to ceans. not to general WFFs. (Again this particular
transformation has no effect in our particular example.)

3. Convert the WFF to preoex normal form by moving all quantifiers to the front
(systematically renaming, variables if necessary):

FORALT. x I EXISTS y (FORAL.L z (p (x) AND q (y, z l l I)

4. Note that an existentially quantified WFF such as
EXISTSv(r(v)I

is equivalent to the WFF

r (a)

for some (µnknowo) coostanl a; that is, the original WFF asserts that some such a
does exist. we just don't know its value. Likewise, a WEF such as

FOllALL u ! EXISTS v (s (u, v 1))

is equivalent t-0 the WFF

FORALL !J (s r u, f (u) I)

TERADATA, Ex. 1014, p. 815

Appendix C logk-Based Systems 787

for some (unknown) function/ of the universally quantified variable u. The con­
stant a and the function /in these examples are known, respectively, as a Skolem
constant and a Skolem functi,on* (where a Sk-0lem constant i s really just a Skolem
function with no arguments). So the next step is to eliminate e llistenlial quantifiers
by replacing the corresponding quanti fied variables by (arbitrary) Skolem func­
tions of all universally quantified variables that prece-de the quantifier in question
in the WFF: ..
FORAIJL x (FORALL z (p !. x I AND q (f I x J • z J J l

5. All variables are now uruvecsally quantified. We can therefore adopt a convention
by which all variables are impliailly universally quantified and so drop the explicit
quantifiers:

pl x) AND q (f \ X), z I

6. Convert the WFF to conjunctive _noanal form, i.e., to a set of clauses all ANDed
together, each elause involving possibly NOTs and ORs but no ANDs. ln our ex­
ample, the WFF is already in this fonn.

7. Write each clause on a separate line and drop the ANDs:

p (x l
q(f(x),z)

This is the clausal fonn equivalent of tl!e original WFF.

Note: Jt follows from the foregoing procedure that the general form af a WFF in
clausal fonn is a set of clauses, each on a line ofits own. and each of the fonn

NOT AL OR NOT A2 OR • • • OR NOT Am OR BL OR B2 OR . . . OR Bn

where theA's andB's are all nonnegated tenns. We can rewrite such a clause, if we
like. as

Al AJqP A2 ~ . . • ANO .Am ~ Bl. OR .B2 OR • . . QR Sn

[f there is at most one B (n : 0 or 1), the clause is called a Horn dause; +

Using the Resolution Rule

Now we are in a pQsition to see haw a logic-based database system can deal with que­
ries. We use the example from the end of Section C.2. First. we have a predicate
MonIEROF, which takes two arguments, representing mother and daughter respec­
tively. and we are given the following !WO terms (predicate instances):

I . MOTREROF I A11ne, Bet t;y l

2. MOTHEROF l Betty, Ce-li.a J

We are also given the following WFF (the "deductive axiom"):

3. MOTHEROF [x. y I AND MOTHEROF (y, z I ~ GRANUMOTHEROF I x. :- 1

• Alier the logician T. A. Skolem.
I Afutr the logjolan A1'Md Hom.

TERADATA, Ex. 1014, p. 816

788 Appendixes

(note lhat this is a Hom clause). In order to simplify the application of the resolution
rule. let us rewrite the clause to eliminate the"~" symbol:

4. NOT MOTHEROF ! x, y l OR NOT MOTHEROF I y, 2) OR GRANDMOTHEROF l x , z)

We now show how to prove that Anne is the grandmother ofCelia-i.e., how to answer
the query "ls Anne Celia's grandmotherT' We begin by negating the conclusion thatis
to be proved and adopting it as an additional premise:

5 . .NOT GRANDMOTHEROF I Anne , Celia l

Now, to apply the resolution rule, we must systematically substitute values for vari­
ables in such a way that we can find two clauses that contain, respectively, a WFF and
its negation. Such substitution is legitimate because the variables are all implicitly uni­
versally quantified. and hence individual (nonnegated) WPFs must be true for each and
every legal combinations of' values ofiheir variables. Note: The process offinding a set
of substitutions that make two clauses resolvable in this manner is .known as imifica­
tion.

To see how the foregoing wodcs in the case at hand. note first that lines 4 and 5
contain the terms GRANDMOTHEROF(x,;:) and NOT GRANDMOTIIBROF(Anne,
Celia), respectively. So we substitute Anne for x and Celia for z in line4 and resolve,
to obtain

6. NOT MOTHEROF (Amia, y I OR i'l!JT Mo!I'BEROF (y, Celia)

Line 2 contains MOTHEROF(Betty,Celia). So we substitute Betty for yin line 6 ao<I
resolve. to obtain

7. NOT M01lBEROF I Anne, Betty')

Resolving line 7 and line I, we obtain the empty clause []: Contradiction. Renee the
answer to the original query is "Yes. Anoe is Celia's grandmother."

What about the quecy ''Who are lhe granddaughters of Anne?'' Observe first of all
that the system does not know about granddaughters, it only knows about grandmoth­
ers. We could add another deductive axiom to the effect that z is the granddaughter of
x if and only if x is the grandmother of z (no males are allowed in this database). Alter­
natively. of course, we could rephrase the question as "Who is Anne the grandmother
of?" Let us consider this latter formulation. The premises are (to repeat)

I. MOTREROF (Anne. Betty

2. MQll'f!EROF (Betty, Ce Ha l

3. t>jQll' MOTHEROF (x , y 1 OR NQT MOTl'!ERO~ t y, z) OR GRANOMOTHEROF (x , z)

We introduce a fourth premise, as fonows:

4. N!71' GRANDMOTJlEROF (Anne. r-) OR RES11[;'1' (r)

Intuitively. this says that either Anne is not the grandmother of anyone, or alternatively

TERADATA, Ex. 1014, p. 817

Appendix C Logic-lesed Systems 789

she is the grandmother. of some person r. We wish 10 discover the identity of all such
pa89ns r, assuming Ibey ex.isl. W~ proceed as follows.

First. substilUle Anne for x: and r for z and resolve lines 4 and 3, to obtain
I

5. NOT MOTHEROF (Anne, y) OR NOT MOTHEROF I y, z) OR RESULT I z)

Next. substituie Betty for y and resolve lines 5 and I , to obtain

6. NOT MOTHEROF (Betty, z) OR RESULT I z) ..
Now substilUte Celia for z and resolve lines 6 and 2, to obtain

7. RESULT (Celia l

Hence Anne is the grandmother of Celia.

Note: 1f we had been given an additional term. as follows-

MOTHEROE (Betty. Delia)

--dlen we could have substituled Delia for z in. the final step (instead of Celia) 1U1d
obtained

RESULT (Delia)

The user expects to see both names in the result, of course. Thus, the system needs to
apply the unification and resolution process exhaustively to generate all possible result
values. Details of this refinement are beyond the scope of the present discussion.

C.5 A Proof-Theoretic View of Databases

As explained in Section C .4, a clause is an expression of ihe form

.U ANO A2 ANQ • • . ANO Am ~ Bl OR B2 OR . . • OR Sn

where the A's aiid B's are all teans of theform

:c \ xl, icZ , .. , x c; I

(here r is a predicate and xi , x2, ... :a are the argumenis to that predicate). Following
reference [C.12], we now consider a couple of important special cases of this general
construe!.

1. case 1: m = o. n = 1

ln this case the clailse can be simplified to just

=> Bl

or in other words (dropping the implication symbol) to jus1

r I xl, x2, .. . , x t: I

for some predicate rand some set of argumentS :cl. x2, :ct. Jf lhex's are all con­
stants, the clause represenlS a ground axiom-Le .. it is a statement that is unequivo-

TERADATA, Ex. 1014, p. 818

790 Appendixes

cally true. In database tenns. such a statement correspandS to a tuple of some relation
R*. The predicate r corresponds to lhe "meaning" of relation R, as explained elsewhere
in this book. Foe example, in the suppliers-and-pans database, there is a relation called
SP, th.e meaning of which is that the indicated supplier (S#) is supplying the indicated
part (P#) in the indicated quantity (QTY). Note that this meaning corresponds to an
open WFF, since it contains some free variables (S#, P#, and QTY). By contrast, the
tuple CS I .Pl ,300)-io which the arguments ace ail constants-is a ground axiom er
closed WFF that asserts unequivocally that supplier SI is supplying part Pl in a quan­
tity of 300.

2. c-ase 2: m > 0, n = 1

In this case the clause takes the focm

A1 ANO A2 AND • • . ANIT AID => B

which can be regarded as a deductive axiom; it gives a (partial) definition of the pred­
icate on the right-band side of the implication symboUn terms of those on the left (see
the defmition of the GRANDMOTHER OF predicate earlier for an example).

Alternatively, such a elause might be regarded as defining aaintegrity constraint.
Suppose for the sake of the example that the suppliers relation S contains only two
attn'butes, S# and CITY. Then the clause

s (s. (;l I ~ S (s, c2) => cl ~ c2

expresses the constraint that CITY is functionally dependent on S#. Note the use of the
builtin predicate "=" in this example.

As the foregoing discussions demonstrate, tuples in relations ('1ground axioms").
derived relations ("deductive axioms"), and integrity constraints can all be regarded as
special cases of the general clause construct. Let us now try to see how these ideas can
lead to the •·proof-theoreric'· view of a database mentioned in Section C.2.

First, the traditional view of a database can be regarded as model-theoretic. By
"traditional view" here. we simply mean a view in which the database is percei,ved as.a
collection of explicitly named (base) relations, each containing a set of explicit tuples,
together with an explicit set of integrity constraints that those tuples are not allowed to

violate. It is this perception that can be characterized as ''model-theoretic." as we now
ex.plain.

• The underlying-domains contain values or constants that are supposed to stand for
certain objects in the "real world" (more precisely, in some interpretation, in the
sense of Section C.4). They thus correspond to the universe of discourse.

• The base relations (more precisely, the base relation headi11gs) represent a set of
predicates or open WFFs rhat are to be interpreted over that universe. For example.
the heading of relation SP represents the predicate "Supplier S-# supplies part P# in
quantity QTY."

• Or IP nn elemem of a. domain,

TERADATA, Ex. 1014, p. 819

Appendl11 C Loglc·Based Systems 791

• Each tuple in a given relation represents an instance of the corresponding predi­
cate: i.e .. it represents a proposition (a closed WFF-Jt contains no variables) that
ts unequivocally true in the unJverse of discourse.

• The integrity constraints are also closed WFFs, and they are interpreted over the
same universe. Since the d ata does not (i.e .. must not!) violate the constraints, these
constraint.~ necessarily evaluate ro true as well.

• The tup les and the integrity~onstraints can together be regarded as the set of axi­
oms defining a certain logical theory (loosely speaking, a '"theory"' in logic is a set
of axioms). Since those axioms are all true in the interpretation. then by definition
tbar interpretation is a model of that logical theory, in tbe sense of Section C.4.
Nor.e that, as pointed out in that section, the model might not be unique-that is, a
given database might have several possible interpretations, all of which are equally
valid from a logical standpoint.

In the model-theoretic view, therefore, the "meaning" of the database is the model,
in the foregoing sense of the tenn "model." And since there are many possible models,
there are many possible meanings, at least in principle.• Furthenn.ore. query processing
in the model-theoretic view is essentially a process of evaluating a certain open WFF to
discover which values of the free variables in that WFF cause the WFF to evaluate to
true within the model.

So much f or the model-theoretic view. However, in order to be able to apply the
rules of inference described in Sections C.3 and C.4, it becomes necessary Lo adopt a
dJfferent perspective, one in which the database is explicitly regarded as a certain logi­
cal theory. Le .. as a set of axioms. The "meaning" of the database then becomes, pre­
cisely, the coUection of all true statements that can be deduced from the axioms using
those axioms in alJ possible combinations-Le., it Is the sec of theorems that can be
proved from those axioms. This is the proof-theoretic view. In this view. query evalu­
ation becomes a theorem-proving process (conceptua!Jy speaking, at any rate; in the
interests of efficiency, h.owever, the system is likely to use mor,e conventional query
processing techniques, as we wiU see lo Sec.don C.7).

No1e: It follows from the foregoing paragraph that one difference between the
m(>del-theoretic and proof-theoretic views (intuitively speaking) is t!iat, whereas a
database can have many '"meanings"' in the model-theoret'ic view, it typica!Jy has pre­
cisely one "meaning" in rhe proof-theoretic view-except tha1 (a) as pointed out earlier,
that onemeaning is rea!Jy the canonical meaning in tJ:ie model-theoretic case. and in any
c.ase (b) the remark Lo the effect that there is only one meaning in the proof-theoretic
case ceases to be trUe, in general, if the database includes any negative axioms [C.9-
C. IOJ.

• However. If we assume thal the databll.\e lloc• not explichly cnnrain 1111)' ll>!!gatlve lnfonnatk>n (e.g .• a
ptQposition of lhc fonn "'NOT S#(S9)," meaning that S9 ls not a suppllcr number). th"re will ~l•o he a "'minimol ..
or ca11m1ical nl<'aning, which i.~ the inrencction or oil po~$1b\e modch IC.JO 1. In lhiset>Se. mCU'COvcr, Lhlll ~illlonlclll
maaning, will be rhc •amc a.• the meonin.g llS<!ribcd lo the datttb:l!IC under the pioof-lhcoretlc View, to be cxplJu.nckl

TERADATA, Ex. 1014, p. 820

792 Appendixes

The axioms for a ir,iven database(proof-theotetic view) can be infonnally summa­
rized as follows !C.15]:

I. Ground axioms. corresponding to the elements of the domains and the tuples of the
base relations. These axioms constitUte what is sometimes calle-0 the extensional
database (EDB).

2. A ··completion axiom"' for each relation. which states that no tuples of that relation
exist other than those explicitly appearing in that relation.. These axioms corre­
spond to what is usually called the Closed World Assumption (CW A). which
states that omission of a given tuple from a given relation implies that the proposi­
tion correspondin~ to that tuple is false. For example, the fact that the suppliers
relation S does nol include the tuple (S6.White,45,llome) means that the proposi­
tion "'There exists a supplier S6 named White with status 45 located in Rome" is
false.

3. The '"unique name" axiom. which states that every constant is distinguishable from
all the rest (i.e., has a unique name).

4. The "domain closure" axiom, which states that no constants exist other than those
in the daLabase domains.

5. A set of axioms (essentially standard) to define lhe builtin predicate "=". These
axioms are needed because the axioms in Nos. 2. 3, and 4 above each make use of
the equality predicate.

We conclude this section with a brief summary of the principal differences be­
tween the two perceptions (model-theoretic and proof-lheoretic). First of all. it has to
be said thalfrom a purely pragmatic standpoint there might nol be very much difference
al all!- at least in terms of present~day systems. However:

a Nos. 2-5 in the list of axioms for the proof-theoretic view make explicit certain
assumptions that are implicit in the notion of interpretation in the model-theoretic
view l C.15]. Stating assumptions explicitly is generally a_good idea; furtheanore,
it is necessary to specify those additional axioms expliciUy in order to be able to
apply general proof techniques, such as the res0lution method described in Sec­
tions C.3 and C.4.

a Note that the list of axioms makes no mention of integrity constraints. The reason
for that omission is that (in the proof-theoretic view) adding such constraints con­
verts the system imo a deductive DBMS. See Section C.6.

a The proof-theoretic view does enjoy a certain elegance that the model-theoretic
view does not, inasmuch as it provide; a uniform perception of several constructs
that are usually lhought of as more or less distinct: base data, queries, integrity
constraints (the previous point notwithstanding), vlnual data (etc,). As a conse­
C:Juence, the possibTiity arises of more uniform interfaces and more uniform imple­
mentations.

a The proof-theoretic view also provides a natural basis for Lreating certain problems
that relational systems have traditionally always had difficulty with-disjunctive
Information (e.g .. "Supplier S6 is Located In either Pa.Fis or Rome"), the derivation

TERADATA, Ex. 1014, p. 821

Appendix C Logk-Based Systems 793

of negative information (e.g., "Whe is TIOI a supplier?"), and recursive qu eries
(see the next section}--tbough in this last case, at least, there is noTeason in prin­
ciple why a classical relational system could nor be extended appropriately to deal
with such queries (a proposal for doing so can be found in reference LC.14}). We
will have more to say regarding such matters in Sections C.6 and C. 7.

• Finally, to quote Reiter [C.151. the proof-theoretic view "provides a correct treat­
ment of [extensions tol the relational model ro ineorporatemorereal world seman-..
tics" (including-~o repeat from Section C.2-events. type hierarchles, and certain
kinds of entity aggregation).

C.6 Deductive Database Systems

A deductive DBMS is a DBMS that supports the proof-theoretic view of a database,
and in particular is capable of deducing additional facts from the extensional database
by applying specified deducth'e axioms or rules of Inference to those facts. The de­
ductive axioms, together with the integrity constraints (discussed below), form what is
sometimes called the Intensional database (IDB). and the extensional database and the
intensional database together constitute what is usually called the deductive database
(not a very good !elm, since it is the DBMS. not the database, that oatrle$ our the de­
ductions).

As just indicated, the ded'uctive axioms form one part of the intensional database.
The other part coru;ists of addllionaJ axioms that represent integrity constraints (ie.,
rules whoseprimary pw:pose is to coru;train updates. though actually such rules can also
be used in the deduction process to generate new facts).

Let us see w hat the suppliers-and-parts database would look like in "deductive
DBMS" form. First, there will be a set of ground axioms defining the legal domain
values. Note: l n what fonows, we omit the (necessary) quotes surrounding string con­
stants purely for reasons of readabi1ity.

5# 5.1 NAME Smich 'STATUS 5) CI'r'{ Lonc;lon)
5# 52 NAME Jarrns STATUS LO CITY Paris)

S # S3 NAME 8'.Lal<e STATUS 15 CITY Rome ,
5~ 54 NAflc: Clark ei;c. crrr i\t.hens)

5! SS NAME r Adams ec:c.
s ~ 56 1'jAJ-!E (White

s~ S7 NAME t Nuc
etc . N,\).!E (ao.c

NAME r Sc..rew
&C .

et:c . , etc .. etc .

Nex;r, mere will be ground axioms for the tuples in 1he base relations:

s (S.l, Smith, 20 , London J
S (S2, Jones . 10. Par1a I
et:c .

TERADATA, Ex. 1014, p. 822

794

P (~1 . Nut. ~ed. 12, London_ I
\3-l=C .

SE' (Sl, Pl , 300)
etc .

Appendixes

Note: We are not seriously suggesting:lhat the excensional database wjlJ be created
by explicitly listing all of the ground axioms as indicated above; rather, of course. tra­
ditional data defnition and data entty methods will be used. la other words, deductive
D BMSs wm typically apply lheir deductians to conventional databa~s that already
exist and have been constructed in the conventional manner. Note.however, that it now
becomes more important than ever that the extensional database not violate any of the
declared integrity constraintS!-because a database that does violate any such con­
straints represents (in logical teans) an inconsistent set of axioms, and ii is well known
that absolutely any proposition whatsoever can be proved to be "rroe" from such a
starting point (in other words, contradictions can be derived). For exactly the same
reason, it is also import.ant that the stated set of integrity constraints be c0nsistent.

Now for the intensional database. H ere -are the domain constraints:

s (S, sn. se, SC I ... Sj l s) AND
N'AME (sn) AND
STATUS (s~) AND
CITY (SC)

P (p, pr!, p l. pw, pc J => P# (p I AND

ei:c.

NAME (pn I AND
COLOR (pl) AND
WE:ZGJIT (_pw) AND

C'ITY(pc)

Candidate key constraints:

S (s. snl, si:l, sc1 AND S (s, sn2, st2, sc2)
=> snl "' sn2 AND

stl = st2 Jl..ND

scl = sc2
et'c.

Foreign key constraints:

SP (s, p, q) => S (s, Sil, St , SC) AND
P (p, pn, pl, pw, pc) AND
QT'l(q)

And so on. Note: We assume for the sake of the exposition that variables appearing on
the right-hand side of the implication symbol and not on the left (Sn, st, etc., i n the
example) are existentially quantified. (AJI others are universally quantified. as ex­
plained in Section C.4.) Technically, we need same Skolem functions; sn, for example,
should really be replaced by (say) SN(s), wbere SN is a Skolem function.

Note, incidencally. that most of the constraints ~hown above are not pure clauses in

TERADATA, Ex. 1014, p. 823

Appendix c Logic-Based Systems 795

the sense of Section C.5. because the eight-band side is not just a disjunction of simple
terms.

Now let us add some more d~uctive axioms:

s (S, sn. sc, S C) AND s~ > 15 = GOOD_ SOP l?LIERS (s, s t , sc)

(compare the sample view definition in Chapter 17. Section L 7.1) . ..
s (sx. s;rn, sxt, SC I AND s (sy, Sjll), syec, SC)

~ S$._COLOCM!ED I s x , sy)

S (s, sn. st. c J AND P l p, pn , pl. pw, c)
= SP_COLOCATEO I s. p)

And soon.
In order to make the example a little more interesting, Let us now extend the

suppliers-and-parts database to incorporate a part struccure relation, showing which
pans px contain which parts py as immediate (i.e. first-level) componencs. First a con­
straint to show that px and py must bothJdentify existing parts:

~T_s'l'RilC'l'URE I px, py) = P l px. xn. x l, xw, x c AND
P r py, yn, y l, yw, ye J

Some data values:

E'ART_ STRUCTORE PJ. , 1?2
PART_S'I'RUCTGRE Pl , P3
PART_STRUCTORE P2, P 3
PART_S'l'RYCTURE P2, P4
etc.

(Io practice PART_STRUCTURE would probably also have a "quantity" argument.
showing how many py's ic takes to make a px, bur we omirlhis refinement for simplic­
ity.)

Now we can add a pair of deductive axioms to explain whac itmeans forpartpx to
contain part py as a component at any level:

PART_ S'.l'RUCTORE I p x , py l ~ COMPONENTOF (px , py)

PART_S'l'RUCTURE (p x . pz AND CO!iPONENTOF I RZ. PY J
= tOMPONENTOF" I px, .PJC I

Lo other words, part py IS a component of part px (at some level) if it is either an
immediate component of part px or an immediate component of some part p<.. that is in
tum a component (at seme level) of part px. Note that the second axiom here is recur­
sive- it defines the COMPONENTOF predicate In teans of itself. Classical relational
systems. by contrast, do not permit view definitions (or queries or integrity constraints
or ...) to be recursive in such a manner. This ability to suppon recursion is one of the
most immediately obvious <tistioctions between deductive DBMSs and their classical
counterparts-although, as mentioned in Section C.5 and also at earlier points in this

TERADATA, Ex. 1014, p. 824

796 Appendixes

book. tfiere is no fundamental reason why the classical relational algebra should not be
exiended to support an appropriate set of recursive operators.

We will have more to say regarding this recursive capability in the next section.

Data log

From the foregoing discussion. it should be clear that one of the most directly visible
portions of a deductive DBMS will be a language in which lhe deductive axioms (usu­
ally called rules) ('an be formulated. The best known example of such a language is
called (by analogy with Prolog) Datalog IC.91. We present a brief discussion of
Datalog in this subsection. Note: The emphasis in Datalog is on its descriptive power,
not iu. computational power (as was aJso the case with the original relational model.
incidflncally). Th~ objective is to define a language that ulcimately will have greater
expressive power than conventional relational languages (C.9]. As a consequence, the
stress in Dataiog-indeed. the stress throughout logic-based database systems in gen­
eral-is very heavily on query, not update, though it is possible. and desirable, to ex­
tend the language to support update also (see later).

In irs simplest form, Datalog supports the formulation of rules as simple Hom
clauses without functions. In Section C.4. we defined a Horn clause to be a WFF of
either of the following two fcmns:

Al AND A2 AUD

(where the A's and B are nonnegated predicate instances involving only constants and
variables). Following the SLyle of Prolog, however. Datalog actually writes the second
of these the other way around:

B <= Al AND .'\ .? AND . . • AND AJ1

To be consistent with other publications in this area, therefore. we will do the same in
what follows. In such a clause.Bis the rule head (or conclusion) and the A's are the
role body (or premises or goal; each individual A is a subgoal). For brevity, the ANDs
are oflen replaced by commas. A Datalogprogram is a set of suoh clauses separated
in some conventional manner---e.g .. by semicolons (in this book, however. we will not
use semicolons but instead will simply start each new clause on a new line). No mean­
ing attaches to the order of the clauses within such a program.

Note that the entire "ded11ctivedutabase" can be regarded as a Datalog program in
che foregoing sense. For example, we could Lake all of the axioms stated above for
suppliers-and-partli (the ground axioms, the integrity constraints, and the deductive ax­
ioms). write them all in Dalalog style.. ~eparate lhem by semicolons or by writing them
on separate lines. and the result would be a Datalog program. As noted earlier, how­
ever, the e.xtensional part of the databa.o;e will typically 11oc be created in such a fashion,
but rather in some more conventional manner. Thus. the primary function of Datalog is
to support Ille formulation of deductive axioms specifically. As already pointed our,

TERADATA, Ex. 1014, p. 825

Appendix C logic-Based Systems 797

that function can be r~garded a11 an ex1ension of !he view definition mechanism found
in conventional relalional DBMSs today.

Da1alog can also be used as
1
a query language (again, much like Prolog). For

example, suppose we have been given the following Datalog definition of GOOD_
SUPPLIERS:

GOOD_SUPl!LlERS (s, s~. SC J <= s r S, s.n, st. S C) ANO st > 1 5

Efere are some typical queries agttinst GOOD _SUPPLfERS.

1. Find aJJ good suppliers:
? <= GOOD_!lOP Pf.JER!l t s. s ~. SC)

2. Find good suppliers in Paris:
? <= OOOD_SlJP PLI ERS l s. st, Pans)

3 . Is supplier SI a good supplier?
? <= eoClo_SOPPLrERS (st, st, sc l

And so on. In other words, a query in Datalog consists of a speeial rule with ahead of
"?" and a body consisting of a single term that denotes the query result; the head "?"
means {by convention) "Display."

lt should be pointed out that. despite the fact that Datalog does support rec~on,
!here ace quite a few features of conventional relational languages !bar Daralog in its
original form does not support- scalar operations ("+", "-". etc.). aggregate operations
(COUNT, SUM, etc.), sel difference (because clauses cannot be negated), grouping,
etc. It also does not support attribute Tiaming (the significance of a predicate argument
depends on its relative positicm). nor does it provide full domain support (i.e .. user­
defined data type support in the sense of Chapter 19). As noted earlier, it also does not
provide any update operations, nor (as a special case of the laner-) does it support the
declarative specification of foreign ke~ delete and update rules in the sense Of Chapter
5 (DELETE CASCADES. etc.).

Jn order to address some of the foregoing shortcomings, a variety of extensions to
basic Da1alog have been proposed. Those extensioru; are intended lo provide the fol­
lowing features, among others:

• Negative premises- for example:
ss_COWCA1'ED I s.x. sy) <= s I sx, sxn, sxt. sc l ANO

S I S}'. syfl, syt, sc I AND
NOT(sx-s.yl

• Scalar fimctions (buillin and user-defined)-for example:
P_WT_Hl_GAAMS ! p, pn, RJ, pg, pc) =

P I p, pn. p,l. pw. pc l JIND pg = pw • '2!i4

In this example we have assumed thal the builLin function"*" (multiplica1ion) can
be wrinen in conventional infix notatioTI. A more orthodox logic representation of
the term following the AND would be ''=(pg,•(pw.454))".

• Aggregate functions and grouping (somewhat along the lines of our rela1ional
SUMMARIZE operalOr-see Chapter 6). Such opera1ors are necessary in order to

TERADATA, Ex. 1014, p. 826

798 Appendixes

address (for example) what is sometimes called the grass requirements problem,
which is the problem of finding. not only which parts py are componenrs of some
part px at any level, but also how many py' s (at all levels) it takes ro make a px
(natutally we are assuminghere that PART_STRUCTURE includes a QTY a~
bute).

• Update operations: One approach to meeting this obvious requirement [C.JO}­
not the oilly one-;is based on the observation that in basic Datalog, any predicate
in a ruJe head must be nonnegated, and that every tuple generated by the rule can
be regarded as being "inserted" into the result relation. A p ossible extension would
thus be to allow negated predicates in a rule head and to treat the negation as re­
questing the deletion (of pertinent tuples).

• NonHom clauses in the rule pody,---:in other words, allow complete.ly general
WFFs in the definition of rules.

A survey of the foregoing ex:tensions, With examples, can be found in the book by
Gardarinand Valduriez LC.IOI. which also discusses a variety ofDatalog implementa­
tion techniques.

C.7 Recursive Query Processing

As indicated in the previous !.-ection, one of the most notable features of deductive
database systems is their support for recursion (recursive ruJe definitions, and hence
recursive queries also). As a consequence of this fact, the past few ye.ars have seen a
great deal of research into techniques for implementing such recursion-indeed. just
about every database conference since L98.6 or so bas included one or more papers on
the subject (see the References and Bibliography section at the end of this appendix).
Since recursive query suppott represents a problem that typically has not existed in
classical DBMSs. we discuss it briefly in the present section.

By way of example, we repeat from Section C.6 the recursive aefinition of the
"part structure" relation (for brevity, however, we .now abbreviate l>ART_STRUC­
TURE to P.S and COMPONENTOF to COMP; we also convert the definition to
Datalog form).

CO!>U' (px, PY) <= PS (px, PY l

COMP (px. PY) <= PS l px, pz I AND COMP l pz, PY J

Here is a typical recursive query against this database("Explode part Pl"):

? <= COMI? C Pl, PY >

To return to the definition per se: The second ruJe in that definition-Le., the re­
cur~ive rule- is said to be linearly recursive beCause the predicate in the rule head
appears just once in the rule body. As a mat!ter of fact, it would be possible to restate the
definition in such a way that the recursion would not be Linear:

TERADATA, Ex. 1014, p. 827

Appendix C Logic-Based Systems 799

COMP (px. PY I <= PS (px, PY I

COl!P ! px, PY <= COMI' (px:, pz:) AND COMP (i:;z, PY l

Jiowever, there is a general f~ling that linear recursiruuepcesents "the interesting
case," in the sense that most recurSions that arise in practice are naturally lineru:, and
furthermore there are known efficient techniques for dealing with the linear case
[C.16). We therefore restrict our attention to ti near recursion for the remainder of this
section. •

Note: For completeness. we should point out that it is necessary to generalize the
definition of "recursive role'' (and of linear recursion) to deal with more complex cases
such as the following:

P (x, y) <= Q I x, <:) AND It (~. y l
Q (x. y J c:: E' { x. 2 J »ID s (z, y J

For brevity, we ignore such refinements here. The interested reader is referred to refer­
ence [C.16) for more details.

As in classical (nonrecursive) query processing, the overaU problem of implement­
ing a given recursive query can be divided into two subproblems, namely (a) transform­
ing the original query into some equivalent but more efficient form and (b) actually
executing the result of that ttansformation. The literature contains descriptions of a
variety of attacks on both of these problems. Reference [C. I 6] provides an excellent
survey, analysis, and comparison of published techniques as of about 1988. In the pres­
ent section, we briefly discuss some of the simpler techniques. We will illusttate them
by showing their application to the query "Explode part Pl.'' using the following set of
sample values for the PS relation (based on Fig. 4.4 from Chapter 4, but ignoring QTY
_for simplicity):

PS :2X l2Y

1n P2
E'l 123
P2 123
.22 P4
1'3 E'S
P4 PS
P5 P6

Unification and Resolution

One possible approach, of course. is to use the standard Prolog techniques of unltlca·
tlon and resolution, as described in Section C.4. In the example, this approach works
as follows. The first premises are the deductive axioms, which look like this in conjunc­
tive nonnal form:

l. NOT PS (px, PY) OR COMP (px, PY I

2. NOT PS I px, pz l OR N01' COMP (pz, PY) OR COt~P I px, PY I

We construct another premi$e from the desired conclusion:

TERADATA, Ex. 1014, p. 828

800 Appendixes

3. 1'lOT COMP (1'1. py) OR RESULT (py)

The ground axioms form the remaining premises. Consider, for example, the ground
axiom

4. PS (Pl, P2)

Substituting Pl for px and P2 for py inline 1. we can resolve lines I and 4 to yield

5. COMP (Pl. P2)

Jiow substituting P2 for py in lil\e 3 and resolving lines 3 and 5, we obtain

6. RESULT I 1?2 l

So P2 is a comeonent of P l. An exactly analogous argument will show that P3 is
also a companent of Pl. Now, of course, we have the additional axioms
COMP(PJ.P2) and COMP(PL,P3); we can now apply the foregoing process recur­
sively to determine the complete part explosion. The details are left as an exercise
for the reader.

In practice, however, unification and resolution can be quite costly in perfonnance.
It will thus often be desirable to find some more effieient strategy. The remaining sub­
sections below discuss some possible approaches to this problem.

Naive Evaluation

Naive evaluation [C.25] is probably the simplest approach of all. As the name sug­
gests. the algorithm is very simple-minded; it can most easily be explained (for our
sample query) in teans of the following pseudocode.

COMP : : PS :
do until COMP reacl;les a • fixpo,int;• ;

COMP 1 ~ COMP UfllIQN (OOM'P ><. I'S) :
end :
DISPLAY : : COMB WHERE PX = 'Bl' ;

Relations COMP and DTSPLA Y (like relation PS) each have two attributes, PX
and PY. Loosely speaking, the algorithm works by repeatedly forming an inteanediate
result consisting of the union of the join of relation PS and the previous intermediate
result, until that intermediate result reaches a ''fixpofntl'-i.e., until it ceases to grow.
Note: The expression "COMP • PS" is shorthand for ·~om COMP and PS over
COMP.PY and PS.PX and project the result over COMP.PX and PS.PY." For brevity,
we ignore the attribute renaming operations that our dialect of the algebra wouJd re­
quire to make this work (see Chapter 6).

Let us step through the algorithm with our sample set of data values. After the first
iteration of the loop. the value of the expression COMP x PS is as shown below on the
left and the resulting value of COMP is as shown below on the cight (with. tupJes added
on this iteration flagged with an asterisk):

TERADATA, Ex. 1014, p. 829

Appllldtx C Logk-lllllld Syslellls 801

COMP x PS PX PY'. COMP 1'X PY

Pl Pl Pl P2

Pl P4 Pl P3
Pl PS P2 P3
P2 PS P2 P4
PJ P6' in PS
1'4 1'6 P4 PS

PS P6
Pl P4
Pl PS
P2 PS •
~ P6
P4 P6

After the secoruUteration, they look like this:

COMP x PS PX PY COMP PX PY

Pl P3 .Pl P2
m P4 t>l P3

Pl PS P2 PJ
P2 PS P2 P4
1'3 P!i P3 PS
P4 p~ 1'4 PS
1'1 1'6 t'5 P6
1"2 P6 Pl P4

Pl l?S

PZ PS
E3 Pli
P4 P6

Pl 1?6
P2 P6

Note carefully that the computation_ of COMP)(PS in this second step repeats the
entire computation of COMP)(PS from the first step but additionally computes some
extra tuples (actually just two.extra ruples-(PI ,P6) and (P2,P6)-in the case at band).
This is one reason why the naive evaluation algorithm is not very intelligent.

After the third iteration, the value of COMP)(PS (after more repeated computa­
tion) turns out to be the same as on the previous iteration; COMP has thus reached a
fixpoint, and we exiL from the loop. The final result is then computed as a restriction of
COMP:

COMP PX PY

Pl l'2
Pl Pl
Pl P4
Pl PS
Pl Pf>

TERADATA, Ex. 1014, p. 830

802 Appendixes

Another g]aringlnefficiency is now apparent: The algorithm has effectively com­
puted the explosion for every part-in fact,. it has computed the transitive closure of
relation PS (see beJow)---'and has rhen thrown everything away again except for the
tuples actually wanted. fn other words. again, a great deal of unnecessary work has
been performed.

A note regarding trarrsitive clbsure: The transitive closure of a binary relation
R(X. YJ is a superset of R, defined as follows: The tuple (x,y) appears in the transjtive
cl.osure of R if and only if it appears in R or there exists a sequence of values zl,
z2 •... vi such that the tuples (x.zl), (~1. c;2), .. . (c;n,y) all appear in R.

Note in conclusion thar the naive evalliation technictue can be regarded as an appli­
cation of forward chaining: Starting from the extensional database (i.e., the actual data
values), it am:>lies the premises ofthedefinition (j.e., the rule body) repeatedly until the
desired.resultis;obtained.Jn fact, the algotithmactualJy computes the minimal model
for the Daralog program (see Sections C.5 and C.6).

Seminaive Evaluation

The first obvieus improvement to the naive evaluation algorithm is to avoid repeating
the compurations of each step in the next step: uSelllinaive evaluation [C.28]. £n otber
words, in each step we compute just the new tuples that need to· be appended on this
particular iteration. Again we e"'plain the idea in terms of the "Explode part Pl " exam­
ple. P seudocode :

NEW :~ PS :

COMP : ~NEW ;
do ~til NEW fs emjlty

.NEW : = (l'/EW x 1'5 !ffl'IUS COM!' 1
COMP : = COMf' UN10N NEW ;

end ,
DTSPBAY : : COMP WHERE PX = ' Pl ' ;

Let us again step through the algorithm. On initial entty into the loop, NEW and
COMP are both identical to PS:

PX PY COMP .PX P¥

Pl P2 Pl P2
Pl Pl ru Pl
P:i P3 P2 P3
B2 Pa P2 P4
P3 PS P3 PS
E'4 PS N PS
I'S 1?6 1'5 E6

At the end of the first iteration. they look like this:

TERADATA, Ex. 1014, p. 831

Appendix C Logk-Based Systems 803

NEW PX PY COMP PX PY

Pl P4 Pl P2
-Pl P5 i;>l 113
E2 PS ' 1'2 P3
P3 P6 P2 P4
P4 P6' P3 PS

Pol PS
-PS P6
Pl P4
Pl PS
P2 PS
P3 P6 •
N P6

COMP is the same as h was at this srage under naive evaluation, and NEW is just the
new tuples that were added to COMP on this iteration: note in particular that NEW does
not include the tuple (Pl J>3) (compare the naive evaluation counterpart).

At the end of the next iteration we have:

NEW PJ! !'Y COMP PX PY

Pl P6 1?1 B2
Jl2 M Pl P3

P2 P.l
l'2 P4
P3 PS
B4 PS
P5 P6
Pl P4
1'1 25
l'2 PS
P3 P6
P4 P6
Pl P6
P2 P6

The next iteration makes NEW empty. and so we leave the loop.

Staitic Filtering

Static filtering is a refinemen t on the basic idea from classical optimi1.ation theory of
performing restrictions a.<; early as possible. It can be regarded as an application of
backward chaining, in that it effectively uses information from the query (the conclu­
sion) to modify the rules (the premises). lt is also referred Lo as reducmg the set of
relevam facts. in that it (again) uses information from the query to eliminate useless
tuples in the extensional database right at the ouLSe1. The effect in terms of ourexample
can be explained in terms of the following pseudocode:

TERADATA, Ex. 1014, p. 832

804 Appendixes

NEW :: PS WHERE PX: 'Pl' :
COMP :: NEW ;

do unt.11 NEW Ls empty
NEW : = (NEW It. PS) MIJ)IUS COMP

.COMP : = COMP ONION NEW
end :
DISPLAY : = COMP ;

Once again we step through lhe algorithm. On initial entry into the loop, NEW and
COMP both look like this:

NEW PX PY COMP PX PY

Pl P2 Pl P2
Pl P3 Pl P3

At the end of the first iteration, they look like this:

NEW PX PY COMP Pl! PY

l'l P4 Pl P.2
Pl PS Pl P3

l?l. !?4 •
Pl PS

At the end of the nex.t jteration we have:

COMP PX PY

E'l P2
E'l P3
Pl Pll
Pi PS
Pl P6

The next iteration makes NEW emjlty, and so we leave the loop.
This concludes our brief introduction to recursive query processing strategies. Of

course, many other approaches have been proposed in the literature, most of them con­
sidei;ably more sophisticated than the rather simple ones discussed above; however,
there is insufficient space in a book of this nature to cover all of the background mate­
rial lb.at js needed for a proper understanding of those approaches. See references
[C.16-C.43] for further discussion.

C.8 Summary

This beings us to the end of our shon introduction to che topic of database systems that
are based on logic. The idea is still comparatively new, but it looks very interesting.
Several potential advan~ges were identified at various points in the preceding sections.

TERADATA, Ex. 1014, p. 833

Appendix C Logic-Based Systems 805

Qne further advantage, not mentioned explicitly in the body of the appendix, is that
logic could form the basis of a ge~uinely seamless integration between general-purpose
programming languages and the database. In other words, instead of the "embedded

\
data sublanguage" approach supported by most DBMS products today-an approach
that is not particularly elegant, to say the least-the system could provitle a single
logic-based language in which "data is data," regardless of whether it is kept in a shared
database or Jocal to the application. (Of course, there are a number of obstacles to be
overcome before such a goal can be achieved, not the least of which is to demonstrate
to the satisfaction of the IT community at large that logic is suitable as a basis for a
general-purpose programming language in the first place.)

Quite apart from the foregoing possibility, it is certain that some applications, at
least. willneedDatalog-style access-(or similar) to data stored in a shared database. The
question thus arises: How exactly can such access be provided? There are two broad
answers to this question, referred to generically as loose coupling and right coupling
[C.1 ll.
• The loose coupling approach consists essentially of taking an existing DBMS and

an existing logic programming language system and providing a call interface be­
tween the two. In such an approach, the user is definitely aware of the fact that
there are two distinct systems involved-database operations (e.g., SQL state­
menlS) must be executed to retrieve data beforeJogic opei:ations(e.g .• Prolognlles)
can be applied to that data. This approach thus eertainly does not provide the
"seamless integration" referred to above.

• The tight coupling approach, by contrast, involves a proper integration of the
DBMS and the logic programming system; in other words, the DBMS query lan­
guage includes direct support for the logical inferencing operations (etc.). Thus, the
user deals with oneJanguage, not two.

The pros and cons of the two approaches are obvious: Loose coupling is more
straightforward to implement but is not so attractive from the user's point of view;
conversely, tight coupling is harder to implement but is more anractive to the user. In
addition, tight coupling is likely to perfonn bener (the scope for logic query optimiza­
tion is necessarily very limited in a Loose coupling system). For obvious reasons, how­
ever. I.be first commercial products (a few do exist) are based on loose coupling.

Let us quickly review the major points of the material we have covered. We began
with a brief tutorial on propositional calculus and predicate calculus, introducing the
following concepts among others:

• An ioterpTi!tatioo of a set of WFFs is lhe combination of (a) a universe of dis­
course, (b) a mapping from individual constants appearing in those WFFs to ob­
jects in that universe, and tc) a set of defined meanings for the predicates and func­
tions appearing in those WFFs .

• A model for a set of WFFs is an interpretation for which aU WPFs in the set eval­
uate to rme. A given set of WFFs can have any number of models (in general).

• A proof is the process of showing that some given WFF g (the conclusion) is a

TERADATA, Ex. 1014, p. 834

806 Appendixes

logical consequence of some given set of WFFsf/,f2, .. . fa (ihe premises). We
discussed one proof method,JmowAas resolution and uniOcatlon, in sqme detail.

We then eiramined the proof-theoretic View of databases. ln sue.I) a view, the
database is regarded as consisting of the com bination of an extensional database and
an intensiona l database. The eidensional database contains ground axioms, i.e., the
base data (loosely speaking); !he intensionaJ database eontains integrity constraints and
deductive axioms,Le., views (again, loosely speaking). The "meaning" of the database
then consists of the set of theorems that can be deduced from the axioms; executing a
query ®comes (at least conceptually) a theorem-proving process. A deductive
DBMS is a DBMS that s upports this proof-lheoretic view. We briefly de~bed
Datalog, a user language for such a DB MS.

One immediately obvious distinction between Datalog and traditional relational
languages is that Datalog,.supports recursive axioms, and hence recursive queries­
though there is no reason why the traditional relational algebra and calculus should not
be extended ro do likewise.* We discussed s:ome simple techniques for evaluating such
queries.

In conclusion: We opened this appendix by mentioning a number oftenns-"logic
database," "inferential DBMS," "'deductive DBMS," etc., etc.-tbat are often met with
nowadays in the research literature (and indeed in vendor advertising). Let us therefore
close it by providing some definitions for those terms. We wam the reader, however.
that there is not always a consensus on these matters, and different definitions can prob­
ably be found in other publieations. Following are the definitions preferred by thepres­
enr writer.

• Recursive query processing: This is an easy one. RecuFSive query processing refers
to the evaluation (and in particular optimization) of queries whose definition js

intrinsically recursive. See Sectian C.7.

• Knowledge base: This term is sometimes used to mean what we called the inten­
sional database in Section C.6-ie., Jt consists of the rules (the integrity con­
straintS and deductive axioms), as opposed to the base data, which constitutes the
exrensional database. B ut then other writers use "knowledge base" to mean the
combination of both the intensional and extensional databases (see "deductive
database" below~xcept that, as reference [C.10] puts it, "a knowledge base
often includes complex objects Las well as) classical relations." (See Pan VI of chis
book for a discussion of ··complex objects . .,) Then again, the term bas another,
more specific meaning altogether in natural lan~ge systems. II is probably bes!
to avoid the term emirely.

• Knowledge: Another easy one! Knowledge i.s what is in the knowledge

• Ill lb.ls connccticm It is l.oreresti.ng to observe that IClational DBMSs need to be able to perform rc:eucswe
proce .. i ng under lhcco\lcd< ru1ywa)', bc!caose the.catalog will contain ccrtam recursively structured mfolllUltn,m
rc.g.. domain dcfimllons expressed in 1erms or othet domrun definitions. view defimtJons expressed in terms or
other' icw detimuons. etc.).

TERADATA, Ex. 1014, p. 835

Appendix (Logic-Based Systems 807

base ... This definition thus redmies the problem of defining "knowledge" to a
previously unsolved problem.

• Knowledge base manageme11(system (KBMS): The software thar manages the
knowledge base. The term is typically used as a synonym for deductive DBMS.
q.v.

• Deductive DBMS: A DBMS that suppons the proof-theoretic view of databases.
and in panicular is capable of deducing additional information from the exren-

•
sional database by applying inferentiaJ (i.e., deductive) rules tl'lat are stored in the
intensional database. A deductive DBMS will almost certainly support recursive
rules and so perform recursive query processing.

Iii Deductive database: (D~recated teem.) A database that is managed by a deductive
DBMS.

• Expert DBMS: Synonym for deductive DBMS.

• Expert database: (Deprecated tenn.) A database. that is managed by an expen
DBMS.

• lnferential DBMS: Synonym for deductive DBMS.

• Logic-based system: Sy.non_ymfor deductive DBMS.

• Logicdatabase: (Deprecate-d term.) Synonym for deductive database.

• wgit as a data modi!/: A data model consists of objms, i11regtity rules. and oper­
ators. In a deductive DBMS, the objects, integrity rules, and operators are all rep­
resented in the same unifoan way, nameJy as axioms in a legic language such as
DataJog; indeed, as explained in Section C.6, a database in such a system can be
regarded, grecisely, as a logic program containing axioms of all three kinds. ln
such a system, therefore, we might legitimately say that the abstract data model for
the gyslem is logic itself.

Exercises

C.l Ose the ~esolution method LO see whether the following statemenis are walid in the propo­
sitional calculus:

(a) A = B , C = B, D = (A OR C) • D I- 8

(b) (A = 1J) AND (C = D) , (8 ~ E AND D => F') ,
NOT(EANDF),A :=> C I- NOT;\

(c) (A OR B l :=> !!), D :=> NOT (E OR F 1 ,
NOT ! B AND C AND E) 1-

NO'l' (G = NOT (C Afll) H I)

C.2 Convert the followi ng WFFs to clausal form:

!aJ FORALI. x F'OAALL y Ip I x. }) ~ EXISTS :! (q x. z I

(bl EXIS'l'S x I EXISTS y I :P x. } I => FOP.Al.L z (q x. Z I

(Cl J;;XISTS x I EXJSTS y I R l x. y) => EUS'l'S z (q x. z I

TERADATA, Ex. 1014, p. 836

808

CJ The following is 4 fairly standard example of a logic database:

MAN
WOMAN
1'1AN
MAN
MAN

PARENT
l'AR~T
PARENT
PARENT
PARENT

Adam)
Eve j
Cain l
Abel J
Enoch }

Adam, Cain
Adam, Abel
E;ve, cain }
Eve, Abel }
Caln, Enoch)

.FATHER x, y) <= PARENT
MO'rHER x, y) = PARENT

x, y) AND M.11.N (x)
x, y) AND WOMAN (x)

SIBLING x, y <= PAR.E:NT (z, x) AND PARENT z, y)

.BRO'l'HER x, .Y <= SIBLING (x , y) AND MAN (x

SISTER (x, y) <= SIBLING (x, y) AND WOMAN (x

ANCESTOR (x, Y) <= PARENT (x, y)

Appendixes

ANCESTOR (x, y J <= PAREN'T' (x, z) AND ANCESTOR (z, ,}()

Use the resolutlon method to answer the followjng queries:

(a) Who is the motherof Cain?

(b) Who are Cain's siblings?

(c) Who are Cain:S brothers?

(d) Who are Cain~s sisters?

(e) Who are &och's ance.~tors?

C.4 Define the tenns interpretation and model.

C.S Write a set of Daialog axioms for the definitional portion (only) of the suppliers-pans-
projects database.

C.6 Give Data1og solutions. wl)ere possible, to Exercises 6.1 ~.48.

C.7 Give Datalog solutions. where possible. to Exercises 16.1-16.16.

C.8 Complete (to your own satisfaction) the explanation given in Section C.7 of the unification
and resolution implementation of the "Explode pan P l" query.

References and Bibliography

The field of logic-based systems has mushroomed within the Jast few years. Tiie following list
represents a tiny fraclion of the literaLure currently available_ It is partially arranged into groups,
as follows. PirsL. references [C.1-C. 9 j are books th~l either <1re devoted to the subject of logic.in
general (particularly in 'II computing and/or datal)ase c:omext) or are collections of papers on
logic-based dallJbasc systems specifically. References [C.IO-C.12] are tutorials, .as are the
books by Ceri e1 al. jC.46] andDas [C.47J. References [C.14). jC.17-C.201, [C.30], and [C.49-
C.50'1 are concerned wU.h the Lmns:iLivc closure operation and iL~ hnplementation. References

TERADATA, Ex. 1014, p. 837

App.ndlx C Logk·Based Systems 809

[C.21-C.24] descrlbe an important recursive query processing technique called "magic sets"
(and variations thereon). The remaining references are included principally to show just how
much investigation is going on ill um field; they address a variety of aspects of the subject. and
are presented for the most part without funher tommeni.

C. l Robert R. Stoll Se1s, l..iJgic, and AXiomaric Theories. San Francisco, Calif.: W. H. Freeman
and Company (1961).

A good introduction to logic in general.

Cl Zohar Manna and Richard Wajdinger. The l..iJgiJ:al Basis/or Computer Programming. Vol­
ume/: Deductive Reasoning (1985); Volume l/: Deductive Techniques 0990). Reading,
Mass.: Addison-Wesley (1985. L990).

c.J Peter M. D. Gray. Logic, Algebra and Oat abases. Chiohesrer, Engl and: Ellis.Horwood.Ltd.
(1984).

Contains a good gentle imroduction to propositional calculus and predicate calculus
(among a number of other relevant topics) from a database (l9int of view.

C.4 Adrian WaJker, Michael McCord, John F. Sowa. and Walter G. Wilson. K11owledge Sys­
tems and Prolog (2nd edition). :Reading, Ma.~s.: Addison-Wesley (1990).
This book is about logic programming in general, not logic-based database systems specif­
ica1Jy, but it contains a great deal that is relevant to the .latter topic.

C.S Herv~ Gallaire and Jack Minker. /.,()gic and Data Bases. New York. N. Y .: Plenum PuhliSh­
ing Corp. (1978).

One of the first, if not rhe first, colleccions of papers in the field.

C.6 Larry Kershberg (ed.). Expen Database Sy.~tems lProc. 1st lntemaiional Workshop on &­
pen Database Systems, Kiawah Wand, S.C.}. Menlo Park. Calif.: Benjamin/Cummings
(1986).

An excellent and thought-provoking collection of papers. Not all of them are directly re­
lated to l}le main subject of the present appendix. however. ln(leed. the titles of the sections
betray a certain degree of confusion as to what the subject o.f "eillpert database systems"
really is! Those titles-are as follows:

t. Theory of knowledge bases
2. Logic programming and databases

3. Expert database system architectures. cools, and techniqul:l>

4. Reasoninginexpendacabase systems

5. Intelligent database access and interaction

Tn addition. there is a keynote paper by John Smith on expen dambase systems, and reports
from working groups on { 1 J knowledge base managernem systems. (2) logjc programmin&
and databases. and (3) object-oriented database systems and knowledge systems. As
Kershberg remarks in his prefilce. the expert database sy~tcm concept "connotes diverse
definitions and decidedly different architectures:·

C.7 Jack Minker (ed.). Fim11r/111im1.1 of Ded1u•1fl>e D1.1tab1.1.re.r tmd Logit• Pr/Jgr11mmi11g. San
Mateo, Calif.: Morgan Kaufmann (1988).

C.8 John Mylopoulos and Michael L Brodie (ed~.J. Retuiir1gs i11 J\rtiftt'ial lntllllige11ce a11il
Databases. San Mateo, Calif.: Morgan Kaufmann C 1988).

C.!> Jeffrey D. Ullman. DutaQase and K11awled1:e-81.1se Sy.11ems (two volumes). Roch ille,
Md.: Computer Science Press (1988, 1989).

Volume I of this two-volume work includes one (long) cbapler (out of a total of 10 chap-

TERADATA, Ex. 1014, p. 838

810 Appendixes

ters) that is entirely devoted to the logic- based approach. That chapter (which is the origin
of Datalog. incidentally) includes a discu.™on of the relationship between logic and rela­
tional aJgebra, and another on relational calculus-botli domain and tuple versions-as a
special case of the logic approach. Volume II includes five chapters (out of seven) on var­
ious aspects of logic-based systems.

ClO Georges Gardarin and Patrick Valduriez. Relational Databases and Know(edge Bases.
Reading, Mass. : Addison-Wesley (1989).

Contains a chapter on deductive systems that (although tutorial in nature) goes into the
underlying theory, optimization algorithms, etc., in much more detail than. the present
appendix does.

CU Michael Stonebraker. lntroduc:tion to "Integration of Knowledge and DaraManagemenL"
In M. Stonebraker (ed.): /Uadings in Database Systems. San Mateo. Qillf.: Morgan
Kaufmann (1988).

c.12 Herv~ Gallaire, Jack Minker. and Jean-Marie Nicolas. "Logic and Databases: A Deduc­
tive Approach." ACM Comp. Surv. 16, No. 2 (June 1984).

C.13 Veronica Dahl. "On Datilbase Systems Development through Logic." ACM TODS 7. No.
I (March 1982).

A good and clear description of the bas.ic ideas underlyi,ng logic-based d,atabase sys1ems,
with examples taken from a Proleg-based prototype Implemented by Dahl in 1977.

C.14 Rakesh Agrawal: "Alpha; An Extension of ReJational Algebra to Express a Oass of Re­
cursive Queries ... IEEE Transactions on Software Engineering I 4, No. 7 (July 1988).

Proposes a new operator called alpha that supports the formulation of .. a large class of
recursive queries" (actually a superset of linear recursive queries) while staying within the
framework of conventional relational algebra (more orless; lhe operator aetuafly produces
a non INF result, i.e .• a relation one of whose attdbutes is relation-valued. but then places
bounds on how that result can be used in o(der to avoid having lo define a complete alge­
bra for suoh unnormalized relations). The contention is th.at lhe alpha operator is suffi­
ciently powerful to deal with most practiw problems involving recursion, while at the
same lime being easier to implement efficiently than any completely general recursion
mechanism would be; The paper gives several examples of the use of the proposed cper­
ator; in particular. it shows how lhe transitive closllre and ··gross requirements" problems
~see reference [C.17) and Section C.6 respectiv-ely) can both easily behandled.

RefetencC'[C. 191 describes some related work on implementation. Reference IC.ISi
is also relevanL

C.15 Raymond Reiter. "Towarc;ls a Logical Reconstruction of Relational Database Theory." ln
On Conc:eptual Modelling: Perspectives from Anificial Tntelligence, Databases, and Pro­
gramming Languages (eds., Michael L. Brodie. John Mylopoulos, and Joachim W.
Schmidt). New York. N.Y.: Springer-Verlag (t984).

As mentioned in Section C.2, Reiter·s work was by no means the ftrSt in this area- many
ri:Searchers had.investigated the relationship between logic and databases before (see. e.g,,
references [C.5], [C.71 , and [C.13]). However. it seems to have been Reiter's "logical
rcconstruetlon of relational theory'· that spurred much of the current activity and high
degree of imeresl in the .field.

C.16 Fran~ois BanciJhon and Raghu Ramakrishnan. "An Amateur's lntroduction to Recursive
Query Processing Strategies." Proc. 1986 ACM SJGMOD {ntemational Conferi:nce on
Management of Data, Washington. D.C. (May 1986). Republished in revised form in M.
Stonebraker (ed.). Readings in Databast: Sysrems. San Mateo. Calif.: Morgan Kaufmann
(1988). Also republished in reference (C.8).

TERADATA, Ex. 1014, p. 839

Appendix C Logic-Based Systems 811

An excellent overview. The paper scans by observing that there is both a positivoand a
negative side to all of Lhe research on the recursive query implementation problem. The
positive side is that n.umerous techniques have been identified that do et least solve !be
problem; the negBlive side is thal it is not Bl all clear how to choose the technique that is
most appropriate in a given sinlation (in_ panicular. most or the techniques are presented
in lhe literature with little or no discussion of petfoanance chara.cteristies). Then, after a
section describing the basic ideas of logic databases, the paper gees on to descnl>e a num·
ber of proposed algorithms-naive evaluation, seminaive evaluation, iterative query/sub­
query, recursive query/subquery, APEX, Prolog. Henschen/Naqvi. Abo-Ullman, Kifer-• Lozinskii, counting, magic sets. and generallzed magic sets. The paper compares these
different approaches on the basis of application domain (i.e .• the class of problems to
which the algorithm can be applied), performance, and ease of implementation. The paper
also includes perfonnance figures (with comparative analysis) from testing the various
algorithmS on a simple benchmark.

C.17 Yannis :E. foanniais. "On the Computation of !be Transitive Closure of Relational Opera­
tors." Proc. 12th Torernational Conference on Very Large.Data Bases, Kyoto, .fapan (Au­
gust 1986).

Transitive closure is an operation of fundamental importance in recursive query process­
ing fC.18]. This paper proposes a new algorithm (based on a ''divide and conquer" ap­
prilach) for implementing that operation. See also references (C.14J, L C.18-C.20], and
[C.49-C.50].

C.18 H. V. Jagadisb. Rakesh Agrawal, and Linda Ness. "A Study of Transitive Closure as a
Recursion Mechanism." Proc. 1987 ACM SI GM OD Jntemalional Conference on Man­
agement of Data. San Francisco. Calif. (May l 987).

To quote from the abstract: "(This paper shows) that every linearly recursive query can be
expressed as a transitive closure possibly preceded and followed by operations already
available in relational algebra." The suggestion is that providing an efficient implementa­
tion of transitive closure is therefore sufficient as a basis forprov.iding an efficient imple­
mentation of linear recursio11 in:generaJ, and hlmce for making deductive DBMSs efficient
on a large class of recursive problems.

C.19 Ralcesh Agrawal and R. Jagadisll. "Direct Algorithms for Computing the Transitive Oo­
sure of Dalllbase 'Relations." l'roc. 13th fntemational Conference on Very Large Data
Bases. Brighton. England (September 1987).

Propose.~ a set of transitive closure algorithms that "do not view the problem as one of
evaluating a recursion, but ratbl!r obtain the closure from first principles" (hence the tenn
direct). The paper includes a useful summary of earlier work on other direct algorithms.

C.20 Hongjtm Lu. "New Strategies for Computing the Transitive Closure of a Database Rela­
tion.'' Proc. 13th lntemational conference on Very Large Data Bases, Brighton, England
(September 1987).

More algorithms for transitive closure. Like reference (C.19), the paper also includes a
useful survey of earlier ar~oaches 10 the problem.

C.21 Fran~ois Bancilhon, Dav J Maier, Yehoshua Sagiv, and Jeffrey D. Ullman, "Magic Sets
and Other Strange Ways to Implement Logic Programs.'' Proc. 5th ACM SJGMOD­
SIGACTSymposium on Principles of Database Systems (1986).

The basic idea of "magic sets" is 10 introduce new selS of rules \magic rule.~'") dynami­
cally that are guaranteed to produce the same result as the original query but are more
efficient. in the sense that they reduce the set of "relevant facts" (see Section C.7). The
details are a liule complex. and beyond the scope of these notes; the reader is referred 19

TERADATA, Ex. 1014, p. 840

812 Appendixes

the paper or to Bancilhon and Ramakrlshnan' s survey [C. 16'] or the books by Ullman
(C.9(or Gardarin and Villduriez (C.10] for more explanation. We remark; b<iwever, thill
numerous variations on the b.asic idea have been devised-see, e.g., references [C.22-
C.241 below.

See also reference ll8.221 in Chapter JS.

C.22 Catriel Beeri and .Raghu Ramakrishnan. "On the Power of Magic." Proc. 6th ACM
Sl GMOD-SIGACT Symposium on l'rincrples of Database Systems (1987).

C.23 Domenico Sacca and Carlo Zaniolo. "Magic CQunting Methods." Proc. 1987 ACM
SlGMOD lntemalional Conference on Management of Data, San.Francisco, Calif, (May
1987).

C.24 Georges Gardarin. ''Magic Functions: A Technique to Optimiz.e Extended Datalog Recur­
sive Programs." Proc. 13th rntemational Conference on Very Large Data Bases, Brighton,
England (September 1987).

C.25 A. Aho and T.D. Ullman. "Unive~ality of Data Retrieval Languages." Proc. 6th ACM
Symposium <>n Principles Gf Programming Languages. San Antonio, Texas (January
1979).

Given a .sequence of relations R, j{R), flft.R)), ... (where! is some fixed function), the
least ftxpoint of tile sequence is defined IQ be-a.reJation.R* derived in accordance with the
following naive evaluation algorithm (see Section C. 7):

.q• : -= R i

qo until R• stops Jjrowing
R• ; ~ R" UNION f (R') :

end ;

This1)3per proposes tile addit,ion of a leastiixpoint operator to the relational algebra.

c..26 Jeffrey D. Ullman. "Implementation of Logical Query Languages for Databases." ACM
TODS JO. No. 3 (September 1985).

Describes an important class of implementation techniques for possibly recursive queries.
The tel:bniques are defined in. terms of ··eapture rules" on "rule/goal trees," w.bich are
graph.~ that.represent 11 query strate._gy in te.nns of cla~ and predicates. The paper defiDC!l
Several such ruJes--one that corresponds to the application of relational algebra operators,
two more that correspond Ill forward and backward chaining respectively, and a "side­
ways" rule that allows results to be passed from one subgoal to another. Sideways infor­
mation passing lateF became the basis for the so-called magic seJ tecl;miques [C.2L-C.24J.

C.1.7 Shalom Tsur and Carlo Zaniolo. "LDL: A.Logic-Based Data-Language'." Proc. 12th lnter­
nalional Conference on Very Large Dar,a l3aws. Kyoto, Japan (August 1986).

L DL includes {I) sets as a primitive data object. (2) negation (based on set difference), (3)
data: definition operations. and (4) update operations (for da~definitions, base relations,
and derived relations-the lust of these not implemented al the time of publication of the
paper). II is a pure logic language. (no ()rdering dependencies a:mong statements) and is
compiled. not interpreted.

See also the book by Naqvi and Tsur [C.451 on the same subject.

C.28 Frao~ois Bancilhon.. "Naive Evaluation of Recursively Defined Relations." In M. Brodie
and J. MylopouJos (eds.)'. 011 Knowledge Base Managemeril SystenM: Integrating
Databa.w and Al Systenu. New York. N.Y.: Springer-Verlag (1986).

C.29 Eliezer L Lozinskii. "A Problem-Oriented fnferentlal Database System." ACM TODS J / ,
No. 3 (September 1986).

The source of the concept of "relevant facrs." The paper describe.~ a prototype system that

TERADATA, Ex. 1014, p. 841

Appendbi C Logk-llased Systems 813

makes use of the extensional database co curb lhe otherwise very fast expans:ion of the
search space that infeninlial technique-~ typically give rise lo.

C.JO AmoaRosenlhal et al.. "Traversal Recursion: A Practical Approach to Supporting Recur­
sive Applications." Proc. 1986 ACM SlGMOD International Conference on Managemem
of Data, Washlng\on. D.C. (June 1986).

C.31 Georges Gardarin and Christophe de Maindreville. "Evaluation of Database Recursive
Logic Programs as Recurrent Function Series." Proc. 1986 ACM SIG MOD International
Conference on Management of Data. Washington, D.C. (June 1986) . ..

C.32 Louiqa Raschid and Stanley Y. W. Su. "A Paraltel Processing Strategy for Evaluating
Recursive Queries." Proc. l2lh International Conference on Very Large Data Bases,
Kyoto. Japan (August 1986).

C.33 Nicolas Spyratos. "The Partition Model: A Deductive Database Model." ACM TO.VS 12.
No. I (March 1987).

C..34 Jiawei Han and Lawrence J. Henschen. "Handlfng Redundancy i'n the Processing of Re­
cursive Queries." Proc. 1987 ACM Sl OMOD 1.mernational Conference on Management
of Data, San Francisco. Calif. (May 1987).

C.35 WeiningZhang andC. T. Yu. "A Net.~saf}' Condition for a Doubly Recursh•e Rule to be
Equivalent to a Linear RecuraiveRule." Proc.1987 ACM SIGMODJnwnational Confer­
ence on Management ofDaia, San Francisco, Calif. (May 1987).

C..36 Wolfgang Nejdl "Recursive Strategies for Answering Recursive Queries- The
RQA/FQI Strategy." Proc. L3tb Jntemational Conference on Very Large Data Bases.
Brighton, England (September 1987).

C.37 Kyu-Young Whang and Sbamkant B. Nav.athe. "An Extended Di!ijun<itive Normal
Form Approach for Optimizing Recursive Logic Queries in Loosely CoupledEnvi­
ronments." Proc. 13th International Conference on Very L8.fge Da1a Bases, Brighton,
England (September 1987).

C.38 Jeffrey P. l'faughton. "Compiling Separable Recursions." Proc. 1988 ACM SlGMOD In­
ternational Conference on Management of Data, Chicago; lJl (June 1988).

C.39 Cheong Youn, UWrc:nce J. Henschen. and Jiawei Han. "Classification of Recursive For­
mulas in Deductive Databases."Proc. 1988 ACM SIGMOD lnternationaJ Conference on
Management of Data, Chicago, Ill (June 1988).

C.40 S. Ceri. G. Gottlob. and L. Lavazza. "Translation and Opttmization of Logic Querle~: The
Algebraic Approach." Proc. 12th lnlemational Conference on Very Large Data Bases,
Kyoto, Japan (August 1986).

C.41 S. Geri and L. Tanca. "Oplimiuuion of Systems of Algebraic Equations for Evaluating
Daialog Queries." Proc. l3tb ln1ernational Co11fe-rence on Very 4rge Data Bases. Brigh-
100. England (September 1987).

C.42 Allen Van Gelder. "'A Message Pa$sing Framewofk for Logical Query Evaluntion." Proc.
1986 ACM SIGMOD International Conference on Management ofUata. Washington,
D.C. (June 1986).

C.43 Ouri Wt>lfson and Avi Silberschatz. "Distributed ProceSl>ing of Logie Programs." Proc.
1988 ACM SlG~OU International Conference on Monagcrncnl of Data, Chicago. Ill .
(June 1988).

C.44 Jeffrey F. Naughton et al . .. Efficient Evaluation of Right-. Left-, and Multi-Linear Rules:·
Proc. 1989 ACM Sl GMOD Cnternalional Conference on Management of Data, Ponland,
Ore. (June 1989).

TERADATA, Ex. 1014, p. 842

814 Appendixes

C.45 Sluilni!ll Naqvi and Shalom Tsur. A Logical language for Data and Kni>wledge Bases.
New York. N. Y.: Computer Science Press (l989).

An indepth. book-length presentation of the language LDL rc.:Z7l
C.46 S. Ceri, G. Go!tlob, andL. Tanca. C:Cgic Programming and Databases. New York. N.Y.:

Sprin.ger-Verlag (199()).

C.47 Subrata Kumar Das. Deductil•e Databases and logic Programming. Reading, Mass.:
Addison-Wesley (1992).

C.48 Michael Kifer and Eliezer Lozinskii. "On Compile-Time Query Optimization in Deduc­
tive Databases by Means of Static Filtering." ACM TODS 15. No. 3(September1990).

C.49 Rakesb Agrawal, Shaul Dar, and R. V. Jagadisb. "Direct Transitive Closure Algorithms:
Design and Performance Evaluation." ACM TODS 15, No. 3 (September 1990).

C.50 H. V. Jagadish. u A Compression Method Lo Materialize Transitive Closure." ACM TODS
1'5, No. 4 (December 1990).

Propose5 an indexing technique that allows the transitive closure of a given relation to be
stored in compressed form, such that testing 10 see whether a given tuj!le appears in the
closure can be done via a single table lookup followed by an index comparison.

C.SJ Serge Abjteboul and Stephane Grumbach. "A Rule-Based Language with Functions and
Sets." ACM TODS 16. No. l (March 1991).
Describes a language oalJed COL ("complex object language")-an extension of
Datalog.-that integrates the ideas of deductive andobject-orlenteddatabases.

Answers to Selected Exercises

C. I (a) and (b) are valid. (c) is not

C.2 In the following. a, b, and c are Skolem constants and f is a Skolem 'function with two
argumeQts.

Ca) P x , y ~ q x, r < ;;:, y))

(b) p a, b ~ 9 a, z)

(c) P a, b ~ q a, c)

C.6 In accordam:e with our usual practice, we have numbered the following ~lutions as
C.6.n. where 6.n is 1he'Tlumber of the original exercise In Chapter 6.

C.6.J.3 ? C= J j, jn, jc)

C.6.14 7 = J j, jn, Ilondon

C.6.JS RES (s) = S'PJ (S, p, .n)
? =RES (s)

C.6.L6 ? = SEJ (s, p, j, q) AND 300 5 q AND q!> 750

C.6. 17 ~ES cpl, pc) ~ P { p, pn, pl, w, pc J
? -.= RES (pl , pc l

C.6.18 RES (s, p, j) = S (s, sn, st:, c) AND
P (p , pn, pl, w, c) AND
J (j, jn, c)

? ¢:: RES (s, p, j)

TERADATA, Ex. 1014, p. 843

C.6.19-C.6.20 Canno1 be done without nega1ion.

C.6.21 RES I p) c:: SPJ (s. p, j, q) AND
S (s, sn, sc, London I

? c:: RES(p) I

C.6.ll RES I p I c:: SPJ I s. p, J, q l AND
s (s, sn, SC, London I
J (j, jn, London I

? c:: RES (Pl •

AND

C.6.23 Res (cl, c2 I c:: SPJ s, p , j, q I AND
s I s, sn, st. cl l AND
J (j, Jn , c2)

? c:: RES (cl. c2)

C.6.24 RES (p) c:: SPJ (s, p. j, q I AND
s I s, sn, st, c I AND
J I j, '"· c

? c:: R£S (p l

C.6.25 Cannot be done wilhou1 negation.

C.6.26 RES (pl, p2 l c:: SPJ s, pl, jl, ql I AND
SPJ (s, p2, j2, q2 l

? c:: RES (pl, p2 I

C.6.27-C.6.JO Cannoc be done wilhout grouping and aggregate functions .

C .6.31 RES I jn I c:: J I J, ;n, JC > AND
SPJ (Sl. p, J. q I

? c:: RES (jn)

C .6.32 RES I pl) c:: p (p , pn, pl, w, pc I ANO
SPJ (Sl, p. j, q)

? c:: RES pl)

C.6.33 RES I p I c:: p (p, pn, pl. w, pc l AND
SPJ (s. p,], q) AND
J (j, jn, London I

? c:: RES I p '

C.6.34 RES (j I c:: SPJ (s. p, j, q) AND

SPJ (Sl, p, j2, q2 l
? c:: RES (j)

C.6.35 RES (s l c:: SPJ I s. p. j, q) ANO
SPJ (s2, p,)2. q2 J AND
SPJ C s2. p2. jJ. q3) AND
p (p2, pn. Red, c I

? c:: RES (s)

C.6.36 RES I s) c:: S s, sn, sc, c) AND

s Sl, snJ, stJ, cl J AND st~ scl
? c:: RES (s I

C.6.37-C.6.39 Cannol be done wilhou1 grouping and aggregate func1iort\.

C.6.40-C.6.44 Canr-.01 be done w11hou1 negation

C.6.45 RES I l c:: s, sn, st, c >

RES (c) c:: P (p, pn, pl. w, c

815

TERADATA, Ex. 1014, p. 844

816

RES (c) = J (j, jn, c l
? =lIBS (c)

c.6.46 RES (p = SPJ
s {

= SPJ
J (

s, J;J, j, .<ii) AND
s, sn , s t , London)
(s, p, j, q) AND
j, j n , Lon&n)

RES (p

? RES (p)

C.4.47...,C.4.48 Cannot be done without negation.

Appendixes

C.7 We show the constraints as conventional implications instead of in the "backward"'
Datalog style. We have numbered them C. 7 .n, where 16.n is the ntunber of the original
exercise in Chapter J 6.

C.7.1 CITY Lon don)
CITY Paris)
CITY Rome)
CITY Atbens)
CITY Oslo)
CITY Stockho]Jq
CITY Mad r i d J
CITY Ams ter dam

s S", sn,, st, c ~ CITY c
1' p, pn , pc, p w, c) ~ CITY c
J j, j n , c) ~ CITY c

C.7.2 p p, pn, Red , p w, pc) ~ pw < 5 0

C.7.3 Cannot be done without negation.

C.7.4 s sJ. , snl , s cl , At h ens :J'iND
s (s2, sn2, s t:2, At: hen s ~ s 1 = s2

C.7.5-C.7.6 Cannot be done without groupil)g and aggn:igatefulictions.

C.7.7 J j, J'n , c = s (oS. sn, s t , c)

c .1;s J j , . Jn , c ~ SPJ (s, p , j, lil J AND
s { s , sn, SI:°, c)

C.7.9 p (pl , jl>n1, pll, pwl, pal) ~

? l p2, 1m2. Red, p w2, pc2)

C.7.10 Cannot be done without grouping and aggregate functions.

C.7.U Cannot be done without negation.

C.7.12 P (pl, prtl, pll, pwl, pcl) ~
P (p2, ~n2, Red, -ew2, pc2) AND pw2 < Sil

C.7.13 Cannot be done (thiS is a transition constraint).

C. 7.14-C.7.lS Cannot be done without grouping and aggregate functions.

C.7.16 Cannot be done (this is n transition constraint).

TERADATA, Ex. 1014, p. 845

APPENDIX

D

ACID
ACM
ADT

AK
ANSI

ANSUSPARC

BCNF
BCS
BLOB

BNF
CACM

CAD/CAM
CASE

coo
CIM
CK
CODASYL

CPU

cs
DA

DB/DC
DBA
DBMS
DBRM

DBTG

Abbreviations
and Acronyms

•

atomicity/consistency/isolation/durability

Association for Computing Machinery
abstract data type

alternate key

American.National Standards Institute
literally, ANSl7Systems Planning and Requirements Committee;

used to refer to the three-level database sy.stemarchitecture
described in Chapter 2

Boyee/Codd normal form
British Computer Society
basic (or binary) large object

Backus/Naur form or Backus normal form
Communicatians of the ACM (ACM publication)

computer-aided design/computer-aided.manufacturing
computer-aided software engineering

class-defining object
computer-integrated manufacturing

candidate key
literally. Conference on D ata Systems Languages; used to refer to

certain prerelational (network) systems such as IDMS

central processing unit
cursor stability (DB2)

data administrator

database/data communications

database administrator
database management system
databaserequest module (DB2)

literally.Data Base Task Group; used interchangeably with
CODASYL

TERADATA, Ex. 1014, p. 846

818

DB2

DC
DDB
DDBMS
DDL
DES

DK/NF
Dlll
DML
DRDA
DSL
DUW
E/R

EDB
EKNF
EMVD
FD
FK
110
IDB
IDMS
IMS
IND
INGRES
INGRES/STA~

IRDS
lS
ISO
IT
lX

JD
LAN
mLS
MVD
NF~

OID
00
OODB
OOPL

IBM DATABASE 2
data communications
distributed daW>ase:
distributed DBMS
data definition language
Data Encryption Standard
domain-key normal form
Data Language/T (IMS)

data manipulation language
Distributed RelationalUatabllse Architecture (IBM)
data sublanguage
distributed unit of work
entity/relationship
extensional database
elementary key .normal form
embeddedMVD
functional dependence
foreign key
input/output
intensional database
Integrated Database Management System
Information Management System
inclusion dependence
Interactive Graphics and Retrieval System
distributed version of INGRES
l.nfocmation Resource Dictionary Systems
intent shared (lock). also information system$
lotematiooal Organization:for Standardization
information technology
intent exclusive (lock)
j oin dependence
local area network
multilevel secure
multivalued dependence
"NP squared" = non I NF
object ID
object-oriented or objecc-orientation
object-oriented database
object-oriented programming language

Appendixes

TERADATA, Ex. 1014, p. 847

Appendix D Abbreviations and Acronyms

OSI
OSQL

PJ/NF
PK
I>RTV
QBE

QMF
QUEL
It•
RAID
RDA
ROB
RDBMS
RID
RM/T
RMNL
RM/V2

RPC

RR
RUW
RVA

s
SAG

SDD-1

STGMOD

SIX
SPARC

SQL
SQL/DS

SQU92
TCB

TCP/IP
TIO
TODS

u
unk

UNK
uow

Open Systems Interconnection
ObjectSQL

projection-joll\nonnal fonn
primary key

Peterlee Relational Test Vehicle
Query-By- Example

Query ManagementFacility
Query Language (INGRES)
"R star" (distributed versiQD of System R)

redundant array of inexpensive disks
Remote Data Access
relational database

relational DBMS
(stored) recordID

relationalmode.l/fasmania

relationalmodelNersion I
relational modelN~rsion 2
remote prQCedure call

repeatable read (DB2)
remote unit of we ek
relation-vaJued attribute

shared (lock}
SQL Access Group
System for Distributed Databases - L
Special fnterest Group on Management of D ata (ACM special

.interest group)
shared intent exclusive (lock)
see ANSJ/SP ARC

(originally} Structured Query Language
SQLJData System

the current ISO/ ANSI SQL standard
Trusted Co mputing Base
Ti:ansmissi on Control ProtocoJ/Intemet Protocol
(stored) tuple ID
Transactions on Database Systems (ACM publication)
update (lock)
unknown (truth value)

unknown (null)
u nit of work

819

TERADATA, Ex. 1014, p. 848

820 Appendixes

VLDB Very Large Data Bases (annual conference)
VSAM Virtual Storage Access Method (IBM)
WAL write-ahead log
WAN wide area network
WFF well-formed fonnula
WORM write-once/read-many-times
WYSIWYG what you see is what you get
x exclusive (lock)
X3H2 ANSI database committee

lNF first normal form
2NF second normal form
2PC two-phase commit
2PL two-phase locking
2VL two-valued logic
3GL third generation language
3VL three-valued logic
3NF third nonnal fonn
4GL fourth generation language
4NF fourth normal fonn
4VL four-valued logic
5NF fifth normal fonn (same as PJINF)

TERADATA, Ex. 1014, p. 849

.

Index

Abileboul, Serge, 684, 814
Abrial, Jean Raymond. 366
abstract data type

stt data type, domain
abstract syntax tree

see query tree
access methods, 7 l2ff
access path selection, 507
ACID properties, 379
active domain, 102
Adachi, S .. S3 I
Adiba. Michel E., 494, 626
Adleman, L .• 428. 437
adopting a premise, 781
11gent. 604
aggregate function

relational algebra, 162
relational calculus, 20 I
SQL,229

..

Agrawal. Rakesh, 565. 810, 81l.814
Abo, Alfred v .. 330, 339, 812
alerter

SN triggered procedure
ALL (SQL)

see duplicates
all-or-any condition (SQL). 242
Allen, Frank W .. 366
ALPHA

see DSL ALPHA
ALTER DOMAIN (SQL). 222
ALTER TABLE (SQL), 89, 224
alternate key, 115
Altman, Edward B .. 749
American National Standard.~ lnStiwte

see ANSl
anchor point. 735
Andersen. Erika. 568

ANSI.65
ANSUSPARC, 28. 50
ANSUSPARC architecture. 28ff

vs. SQL, 72
ANS1/X3,50
ANS1/X3/SPARC Study Group on Data

Base Management Sy~'lelllS
see ANSJ/SPARC

Anton, Jeff, 67
APPEND (QUEL), 424
application plan (D'.82), 764, 766
application preparation (DB2), 764ff
application programmer, 7
ARlES,389
arity

see degree
Annstrong, W. W., 275, 281. 282. 339, 340
Armstrong'i; axioms, 275, 282
Arya. Manish, 565
Ashenhurs1, Robert L .. 73
assertion (SQL)

see CREA TE ASSERTION
as.~ignmenr (relational)

$ee relational assignment
association (RM{f), 367
associative emi ty (RMIT)

see ~ssociation (RM/f)
associativity, 149
Astrahan. Morton M •. 255, 256. 749
Alk.lnson, Malcolm P .. 684, 704
a1omicity

relations. 305
scalar values. 55, 93. 547ff
i.ransactions.376,379

uuribute, 79. 87
relation-valued 56'0ff

n1tribu1e integrity (metanllc), 130

TERADATA, Ex. 1014, p. 850

822

audit lrilil, 422
authentication

see password
authority

see privilege
authorization

see security
auwmatic navigation

see navigation
availability, 598
AVG

s&? aggregate function
axiom (database). 776

B-tree. 729ff
backend, 42
backward chaining. 781
Badal. B. Z .. 4S1
Bancilhon, Pran~ois, 704, &JO, 811. 8L2
Banerjee. J .. 684
Barnes, G.Micbael, 749
Bamsley,Mlchael F .. 757
base relation

see relation
base table. 62
Batory, Don S .. 526, 750
Bayer, Rudolf. 4.IO. 729, 750
BCNF. 290. 306, 313
Beckley, D. A •• 756
Beech, David. 705
Beeri, Catriel. 330. 339, 812
BEGIN DECLARE SECITON (SQL). 246
BEGIN TRANSACTION, 377
Bell, David, 623
Bentley, J. L .. 756
Bernstein, Philip A .. 3J 5, 386, 41l, 457.

495.623, 624
bill or materials. 12, 208. 212

see also pans explosion, recursive queries
binacy relation

see degree
Bind (DB2), 764. 766
Bitton, Dina. 528, 529
Bjork, L. A., 386
Bjomersredl, Anders, 684
Blasgen, JVlichaei W., 256, 41 I, 527
Blaustein, Barbara T., 457
block

see p1,1ge
body (relation), 87
Bonner. Anthony, 684
Booch, Grady, 649

Boral, Haran. 529
bound variable, 189~ 192
Boyce, Raymond F., 256
Boyce/Codd normalfuan

5eeBCNF
Breitbart. Yuri, 624
Brodie, Michael L .. 809
Brosda. Volken, 340
brute force

see join implementation
bucket, 751
Buff, H. W .. 4,94
Buffer Manager (DB2), 766, 767
13uneman, 0. Peter, 458. 684

C+.+o.684
caching, 6.74
caJcuJus, 778
candidate key, l l 2ff, 452

and nulls, L24
inherita,nee, see inheritance
SQL, 223

Index

Cannan. Stephen, 255
canonical form, 505
cardinality, 79, 87
Carlson, C. Rohen, 340
Cartesian product, 141, 147

extended, 147
Casanova. Marco A., 283. 495
CASCADE (SQL). 222, 224, 225, 433,

454
eASeADES

see foreign key ruJes
CASE (SQL), 244
Casey. R. G .. 283
CAST CSQL). 244
catalog. 60. 74, 106

distributed, 608
00,681
SQL, see Information Schema

Caitell. R. G. G., 649, 674. 684. 705
Ceri, Stefano, 458, 624, 8 14
Chamberlin, DonaW D .. 255, 256. 458,

495,565, 773
Chang, C. C .. 627
Chang, C. L., 208
Chang, ElJis. 684
Chang, H. K.. 751
Chang, Philip Yen-Tang, 530
characteristic (RMff). 367
characteristic entity (RM/T)

stt characteristic (RMff)

TERADATA, Ex. 1014, p. 851

Index

chase. 339
CHECK option (SQL). 490
checking lime, 440
checkpoint. 380
Chen. Peter Pin-Shan. 348, 351, 355.'362.

366.367,370
Cheng. Josephine M .. 535
Chiang. T. C.. 754
Chignell, Mark, 650
Cbristodoulakis. Stavros. 756
chronological sequence, 723
ciphenext. 427
Clarice. Edmund M .• 457
class

see object class
class-defining object. 636
class hierarchy

see lype hierarchy
classification level, 425
clausal form. 782
clearance level, 425
Clea,·eland. J. Craig, 565
Clemons, Ede K.. 458
client

su client/server
client/server. 42ff. 616ff

SQL. 618
CLOSE Clll'SOr (SQL). 250
closed WFF. 784
Closed World Assumption

see CWA
closure

attributes, 277
FDs. 275

•

relalional algebra, 54, 14lff. 467. 513
clustering. 674, 716

inter-file. 717
intra-file. 716

clu.<itering index
DB2. 763
Set also index

Codd. Edgar F, passim
Codd's reduction algorithm. 197ff
coercton, 54 S
collection object. 643
collision. 735
colhs1on chain, 735
combined index

ue index
Comer, Doughc.. 750
commahsi <BNF). 91
command-drhc:n mterface. 8

comment CSQLJ. 228
COMMIT.376

SQL.384
commit point. 377
commutativity. 149. 5 10
compensating transaction. 387
compilauoo CDB2), 767
complex object

.ruobject
composire domain

see domain
compression. 740

differential, 742
fracral, 757
front. 742
hierarchic. 743
rear. 742

conceptual database design
see database design

conceptual DDL. 35
conceptual record. 34
conceptual schema. 35
conceptual view. 34
conceprual/intemal mapping, 36
conclusion (proof), 780
conc11171!11Cy,391If

distributed. 612
conditional expression (SQL). 24 1 ff
configuration. 671
COnJURCl, 51 1
conjunctive normal form, Sil. 781
CONNECT (SQL). 618
connection trap. 12. 332, 346
consistency (transacuon). 379

see t11.vo Inconsistency. integrity
constraint

see Integrity constraint
constructor function. 549
containment hierarchy. 638
controlled redundancy

see redundancy
convoy, 411
Coordinator, 383
Copeland. George. 667
cost formula. 506
COUNT

see aggregate funcuon
cover (FD\), 2711

im:ducibh.:. sre 1rreducib11ity
Cox. Brad J .• 649

823

CREATE ASSERTION <SQLJ. 454
CRBA TE BASE RELATION. 84. 90-91

TERADATA, Ex. 1014, p. 852

824

CREATE DOMAIN. 83. 548, 551
SQL, 22l

CREA TE INTEGRITY'RULE1 443
CREATE SECURITY RULE. 4 L9
CREATE SNAPSHOT, 489
CRBATE TABLE (SQLl, 65, 223
CREATE VIEW. 62, 470

SQL,68,490
criterion for update acceptability. 97. 168
Croi>, Richard A., 386
cs

see isolation level
cursor (SQL). 248
cimor stability

see isolation level
CWA, 792

D$1. 0. J. , 64-9
Dahl. Veronica, 810
Daniels. D., 624
DAPLEX. 706
Dar. Shaul. 814
Darwen, Hugh A. C .. 103. l04, l32, 133,

142. 174. 175. 2-09, 255, 276, 281.
284.495,565,589

Das. Subrata Kumar, 814
data administ:riltor, 13
data communications. 4L
data communications manager

see DC manager
data compression

see compression
data definition language

seeDDL
data dictionacy

see dictionary
data encryption

.tee encryption
Data Encryption Standard

see DES
data fragmentalioa

see fragmentation
data independence, l6ff

DB2, 768
logical, 468
00,636
physical, 468
see also encapsulaLion

Dam Independent Accessing Model
see DIAM

data integral.ion, 6
data manipullltion language

seeDML

data model, l 03, 34.8
data i;>rotection

Index

see coacurrency, integrity. recovery. s~
curicy

data (eplication
see replloation

data repository
see dictionary

data sharing. 6
datJi sublanguage

seeDSL
Data Sublanguage ALPHA

see DSL ALPHA
data type, 543ff

abstract. 543
SQL.221
user-defined. 543
see also domain

database. 2. 9ff
advantages. 13-14.
DBZ. 762

database/data communications system
see DB/DC sys1em

database adminislratoJ:
see DBA

database design, 268ff
conceptual, 37
lofilcal, 37
physical. 37

database management system
se~DBMS

database manager
see DBMS

database predicate. 4 50
daiabase procedure. I 22

see also stored procedure; triggered pro­
cedure

database programming languages, 669ff
Oa1abase Request Module (DB2)

see DBRM (DB2)
daialia.se statistics, 5 13

Oll2, 513- 514
INGRES.514

database system. 2, 4ff
Datalag. 796ff
Date, C. J., passim
Davies, C. T .. Jr., 387, 390
Dayill. Umesllwar" 495
DB manager

see DBMS
DB/DC syStem. 42
DBA. 14. 37ff
DBMS, 7, 39.ff

TERADATA, Ex. 1014, p. 853

Index

DBMS independence. (J05
DBRM (082). 764. 766
DB2, 132. 133, 384, 386. 388, 403, 500,

507' 526. 535, 592, 76lff
components, 764

DB2 Distributed Data Facility. 896
DC manager, 41, 383
DDBMS.595
DDL,33
de Maindreville, Christophe, 813 •
de Maine. P. A. D .. 753
DeMorgan's Laws, 778
deadlock, 398

global, 613
DECLARE CURSOR (SQL). 249
decryption

see encryption
deductive axiom, 777, 793, 802
deductive database. 807
deductiveDBMS, 793
DEE

see TABLE_DEE and TABLE_DUM
defaull values, 128, 591

SQL. 221, 223
deferred checking (SQL). 455
DEFINE INTEGRITY (QUEL). 459
DEFINE ~RMIT (QUEL), 424
degree, 79,87,89

ElR,353
degre1;1 of consistency

see isolation level
DELETE, 167

CURRENT (SQL), 250
embedded (SQL). 248
SQL,67, 235

delete rule
see foreign key rules

DeJobel, Claude, 283. 340. 344
DeMichiel, Linda. 565
Denning, Dorothy E .. 435
Denning, Peter J .. 435
dense index

see index
dependency

see FD. lND. JD. MVD
dependency diagram

see FD diagram
dependency preseFYation

see FD preservation
dependency theory. 338
dependent(FD).273
derived relation

see relation

derived rable, 62
DES, 428. 435
descriptor. 61
designation (RM!f), 367
designative entity (RMfl)

see designation (RMIT)
DESTROY BASE RELATION, 91
DESTROY DOMAIN, 84, 551
DESTROY SECURITY RULE, 420
DESTROY SNAPSHOT, 489
DESTROYVIEW. 471
detachment

see query decomposition
DETECT (OPAL), 663
determinant (FD). 273
De Wirt, David J., 528. 529
D.IAM. 749
dictionary, 40, 365

see also catalog
differe~ce.141, 146

SQL, see EXCEPT
differential compression

see compression
differential file. 754
Diffie, W., 428, 436
digital search tree

see trie
digital signature, 430
dite<!taccess(index). 725
direct bash

see hashing
direct invocation (SQL). 68
dirty react, 407
DlSCONNECT (SQL), 618
discretionary access control, 4 l 7ff
disjunctive iQforrnacion. 792
disk directory, 720
disk manager, 713-714
disk table of conten1s

see disk directory
D1STINCT (SQL), 227

aggregate functions. 229
disuibuU!d daUlbase, 48. 593ff

fundamental principle, 596
distributed DBMS

see DDBMS
Di~tributed fNGRES , 596, 624ff
distributed processing, 44-45

825

Distributed Relational Database Arcbitec·
1ure

see DRDA
distnbuted request (DRDA), 623
distributed unit of work (DRDA), 623

TERADATA, Ex. 1014, p. 854

826

distri butioo independence, 621
distribllliVity, 778
divide, 141 , 155

see see also generalized divide
DIVIDEBY

see divide
DJVIDE8Y PER, 176'
division/remainder (hash), 733
DKINK,337
DML.33
Dodd, M., 751
domain, 79, 8Jff. 543ff

as data type, 85
composite, 550
relation-valued. 560ff
simple, 550
SQL,220

domain calculus. I 86, 203ff
domain check override. 544
domain variable, 186. 203
domain-key normal fmm

see DK/NF
double index

see indelt'
DRDA. 619, 622
DROP ASSERTION(SQL), 454
DROP DOMAIN (SQL), 2'22
DROP TABLE (SQL), 225
DROP VIEW (SQL). 491
DSL,33

loosely coupled, 33
tightly coupled, 33

DSLALPRA, 185, 212
dlliil-mode principle, 244
DUM

see T ABLE_DEE and T ABLE_DUM
dllmp. 382
dump/restore, 382

see also unload/reload
duplicares, 92, I 04

SQL. 222, 227, 234
and lhree-valued logic, 575ff

dllrability (liansaction), 379
dynamic hashing

see bashing
dynamic SQL, 250ff

E-relalion {RMff), 349
FJR diagram JO--J l,355ff
E/R model. 347ff
EDB. 792
elementary k~y normal form. 316

-ems. MBigaret A., 684
Elmasri. Ramez, 368. 749
embedded MVD

seeEMVD
embedded SQL. 68, '244ff

and lhree-valued logic. 585
EMVD,341
encapsulation, 548, 630. 635. 690
Encama~ao. J.. 756
encryptlon.426

public-key, 428ff
encryption key. 427
end user, 8
entity, 10,349,350,351

vs. relationship. 12, 69, 363
entity dassification {RM!f). 367
entity integril)' (metarole). 124
entity subtype

see subtype
entity SllpCrtype

see subtype
entity/telatiqnsflip diagram

see E/R diagram
entity/relationship model

see E/R model
Epstein, ~obert S .• 536, 624
eqoijain, 154
escalation

see lock escalation
escrow lacking, 413
EswarlPl, Kapali P., 412, 458, 459, 527
Evens, M. W .. 756
EXCEPT (SQL), 234
exclusive IQCk

seeX lock
EXEC SQL, 245
EXECUTE (SQL). 251
existential quantifier

.reeEXISTS
EXlSTS.190

SQL, 232
lhree-valued logic, 574

expert database; 807
expert DBMS, 807
EXPLAIN (DB2), 770
explicit dynamic variable, 644
extend, 160
cxrendable hashing

see hashing
extendable system. 708
extended Canesian product

see Cartesian product

Index

TERADATA, Ex. 1014, p. 855

Index

extensional database
seeEDB

external DDL. 34
extemalrecord, 34
external schema, 34
external view, 34
extemal/conceprual mapping, 36
extemaUextemal mapping. 37

..
Fagin, Jlonald, 283. 284, 327, 328, 329,

332, 333. 334. 335. 339, 34(),341,
342, 344. 436, 752

FD. 271ff
axiomatization. see Armstrong's axioms
transitive, 275
trivial, 274

FD diagram, 294
ED preservation, 303ff
federatedsystem. 624
Fehder, Paul L., 749
Fernandez, Eduardo B., 435, 436
FETCH, 93

SQL. 250
fifthnonnal fonn, 333
file manager, 713, 715

vs. DBMS, 41
final noanfil form

see fifth normal form
Finkel, R. A., 756
Finkelstein, Sheldon, 532, 755
flPS.255
first normal form. 93, 289. 296
fix-point. 800, 812
Fleming, Candace C., 368
flow controls. 435
FORALL.190

three-valued logic, 574
Ford. Daniel Alexander, 756
foreign key, I I 6ff. 452

and nulls, 126
SQL.223

foreign k,eyrules, 120ff, 127-128
forms-driven interface, 8
formula. 779

seealsq WFF
forward chaining, 780
rour-valued logic, 571
fourth generation language, 31
fourth normal form, 329
fragmentation. 599
fr11gmentation independence. 60 I
fragmentation transparency

see &agµientation independence
Franasz.ek, Peter A., 412
Fredkin. E .• 749, 754
free space page set

see page set
free variable

see bound variable
Freeston, Michael, 757
Freytag, Johann Christoph, 540, 709
front compression

see compression
frontend. 42
Fry, James P .. 354, 371, 748
full FD. 294
fully inverted. 727
functional dependency

see.FD
:functionally determines

seel'D
Furtado. Antonio L., 177. 495
further nonnalization, 288ff

not a panacea, 336
reversibility, 290

Gallaire, HCrv6, 809. 810
Ganslci, Richard A .• 536, 537
Garcia-Molina, BCGmr, .387. 624

827

Gardarin, Georges, 459, 79.8. 8 IQ, 812. 813
Garg, Anil K., 753
gateway, 614ff
GE~. 707
GemStone, 649, 652
generalized divide, J7 S
generaliz.ed summarize, 174
GET_v, 659
Ghosh. Sakti P .. 749
Gilbert, Arthur M., 256
global deadlock

see deadlock
Goldberg. Adele, 649
Goldstein. R. C.. 176
Goodman. Nathan, 386, 41 J. 495. 540.

625,649, 705
Gotlieb, C. C., 753
Gottlob, G., 814
Graefe, Goetz, 541
GRANT (SQL). 432
grant authority (SQL), 432
Grant, John, 533, 625
GRANT option (SQL), 432
granularity of loclcs

see lock granularil.y

TERADATA, Ex. 1014, p. 856

828

Gray, James N .. 387. 388. 411. 412. 413.
495.625

Gniy. Peter M. D .. 809
greater-I.ban join. 154
Griffiths, Patricia P.

see Selinger, Patricia G.
Grimson. Jane, 623
ground axiom, 776. 789
GROUP BY' (SQJ..,), 230. 238
grouped table (SQL). 238
growth in the.database. 468
Grumbach, Stephane, 814
Gupta, Anoop. 539
Gupta, Gopa.J K., 751
Guttman, Antonin. 756

Baas. Laura M., 709
Hackathorn. Richard D., 625
Haderle.Don, 389
Had~ilacos. Vassos. 386
Hall. Patrick A. V .. 142. 177. 368, 530
Hammer. Michael M., 369, 459, 625
Han. Jiawel, 813
Hanson. Eric. 567; 568
Harary, Frank, 749
hard crash. 380
Fliirder, Theo, 3~8. 413
Hasan. Waqar, 531
llash-addressing

see bashing
hash-mdexing

see hashing
hashing. 733ff

direct. 733
dynamic. 752
extendable, 735ff
indirect, 733
linear. 752
orl:ler-preserving, 753
perfect. 753
trie, 752
virtual. 7 52

bash join
see join implementation

hash lookup
see join implementation

l:IAVlNG (SQL). 2.30, 238
headlng (relation), 87
heap. 747
Heath, Jan I.. 294, 3 16. 591
Heath's theorem, 294, 317, 329
Reaven, T. E .. 566

Reid, Gerald 0., 209, 210
Beller. M., 410
l:fellerstrin, Joseph M .. 531
Rellman, M. E .. 428, 436
Hen.'iCben, Lawrence I .. 813
hidden data, 4 70
hierarchic compression

see compression
hierarcl\ic system, 23
Hinterberger, H .. 756
Hitchcock. Peter, 177
Hom clause. 787
Horowitz, Bruce M., L'33
host language. 33
horJ.-pot. 413
Howard, J.H.,339
Rsiao, David K .. 749
Ruffman, l). A., 753
Huffman coding, 745
Hu II, Richard. 369
Hulten. Cbrister. 684

IDB, 793
idempotence. 50
identity

multiplication, 171

lndeJ1

rejaliooal aJgebra, see T ABLE_DEE and
TABLE_DUM

IP ... THEN ...
see logical implication

IF~UNK.572
impedance mismatch, 670
implication

see logical implication
implication problem, 3'39, 342
IN. 170

SQL, 231
inclusion dependenc;:y

see IND
rnconsistency. 14
locoosistent analysis, 394. 398
JND,281
independent projections, 304
index. 72~

clustenng, 757
combined, 727
dense. 728
double. 747
multilevel, 729
nondcnse. 729
primary. 725
secondary. 725

TERADATA, Ex. 1014, p. 857

Index

sparse, 7:!8
1ree-Mruc1urcd, 729
unique. 725
.ru also B-tree

mde11 lookup
.ree join implementation

tndell set (B-Lree), 730
index space (D8 2). 762
indicator variabJe (SQL), 585
indirect bash

see bashing
inference controls. 435
inferential DBMS. 807
inflight checking. 132

•

Inf0rma1ion Resource Dictionary Sysrem
see £RDS

Information Schema (SQL). 68. 225
INGRES, 133, 210, 388, 423. 437. 459.

536.568
INGRES/ST AR, 596
inheritance

auribute name, 142ff
behavioral. 645
candidate key. 143, 284
domains, 554
FD.284
integrity constraint, 441
multiple. 559. 647
relations. 557
structural. 645
type, see type hierarchy

INSERT. 167
embedded ISQL). 248
SQL, 61. 234

inslanoe variable. 636
private. 637
protected, 637
public. 637

Instrumentation Facili1y (DB2). 771
integrated

see data integration
integrity, 416. 44()ff

00.677
SQL. 454ff
su also candidate key. dependency, for­

eign key. m1cgri1y con,troint. in1cgrity
rule\. me1arul.:'

iniegrity con\lnunl. ol.43
lmmctliatc v.1. Jef.:rred. 446. 449
lmmcdia1e "·'· deferred CSQL). 455
Mate 11.1. trnnMuon. 451

1n1cgri1y rule class1fication scheme • .i.w

integrity rules, 442ff
anribu1c. 445
classification scheme, 444
database. 449
database-specific, 111, 441
domain.444
relation. 446
see also metarules

i nten~ional da1abase
see IDB

intent locking. 404, 412
inter-file clu~tering

see clustering
internal DDL. 35
internal record. 35

see alsn stored record
internal schema. 36

see also storage strueture
internal view. 35

829

International Organization for Standardiza­
tion

set ISO
interpretation (logic). 784
intersect, 141. 146

SQL. 234
intra-file clustering

see clustering
inverse variable, 6 76
invened lis1

see index
inverted list system. 22-23
Ioannidis, Y annis E .. 538, 540, 811
IRDS, 51
irreducibili1y

candida1e key. 114
cover, 280
FD. 278, 294

is deducible from (I-). 780
IS/I, 177
lSBL. 177
IS0.50.219.255.366.622
isolation level. 402ff

CS (D82J. 403
RR (DB2J, 403
SQL. 384, 406-407

isola11on (lnm\lauon). 379
IS_UNK.572
11 1~ alway~ the ca.-.e lha1 (I=), 780

Jaeschke. G .. 565
Jugudi~h.11. V. 684. 811, 814
Jagannathan, D., 369

TERADATA, Ex. 1014, p. 858

830

Jajadia, Sushi. 4-36
Jarke. Matthias, 527, 531
JD, 332

axiomatilation, 344
join, 53. 141, 152

see also equijoin, natural join. oater join.
0-join

join dependency
see JD

joih implementation, 5 I 91'f
journal

sulog

Kaplan, Roberts .. 340
Karz, Randy H. , 684
KBMS.807
Keaer, Anhur M.. 495
l(emnitz, Greg, 708
Kent, William, 51, 316, 342. 343, 366. 369
kernel (RMIT), 367
kernel entity (RMff)

see kernel (RM/I')
Kersch berg. Larry, 177. 809
key coni.1taint (OK/NF)

see DK/NF
key transformation

.vee hashing
Khoshafian. Setrag. 650
Kiessling, Werner, 536, 537
Kifer. Michael, 705, 814
Kim. Won. 526, 536. 537, 538. 650. 705
King, Jonathan J .• 533
KiD.g". Roger, 369. 650
Kilakami, H., 53 I
Klug, Anthony, 50. 178
Knoll. G. D .. 752
knowledge, 806
knowledge base, 806
knowledge base management system

see KBMS
Knuth. DonaldE., 130,748
Kooh.Jllrgen,527,531
Korth, Henry F .. 343. 388. 566. 749
Krause. F. -L. . J56
Kreps. Peter, 210
Krishnamurthy, Ravi. 540
Kuhns.J. L . • 186,210
Kung, H. T.,413

Lncroix, M., 186, 210. 591
Lan;on, Per-Ake. 752. 753
Lavazza, L .. 81.3

Lavender Book. 425. 4-35
left-irreducible,(FD). 278, 294
Leifker, Daniel, 756
Lempel, Abraham. 437
Levy, Eliczer. 388
Lewis, 1:. 0., 751

Index

Lindsay. llruce G .. 3S9. 494. 565, 625, 708
h near hashing

see hashing
list (BNP). 91
Lilwin. Witold. 652. 752
Liu, Ken-Chih. 591
load,44
local autonomy, 598. 752
location independence, 599
location transparency

see location independence
Lochovsky, E'red H .• 650
lock escalation, 406
lock granulanly. 404
locking, 395ff
fog. 377

active. 377
archive.. 3'77

logic as a data model, 807
logic-ba.~ed system. 775ff. 807
logic database, 807
logioal data independence

sec data independence
logical database design

sec database design
logical implication. 196
logical theory. 776, 791
Lohman, Guy M .. 539. 540, 709. 754
Lomet. David B .. 753, 756
long, transaction. 672
Loomi~, Mary E. S .. 366
Loosley. Chris~ .. 535
Lorie, Raymond A., 255, 389. 412, 413,

773
lossless decomposition

see nonloss decomposition
lost update, 392, 396
Lozinskii, Eliezer l.,. 812, 814
Lu. l:longjon, 811
Lucchesi, Oaudio L .• 284
L\llll. Vincent Y .. 751
Lyngbaek. Peter. 706

MacAIMS, 176
magic, 532. 811
Maier, Davicl 343, 591, 650, 667. 811

TERADATA, Ex. 1014, p. 859

Index

Makinouehi. A .. 531. 566
mandatory access control. 417. 425-426
Manna. Zobar, 809
Mannila. Heikkl. 369
Mannino, Michael V .. 366
manual navigation

see navigation
Mark,owitz. Victor M .. 133
Marron. -S. A., 753
Martin, fames, 748
Mliryanski. Fred, 370
MATCH (SQL),.141
MATCHING. 163. 170

..

materialization (view processing), 4 72
Maurer. W., 751
MAX

see aggregate function
MAYBE. 573
McCord, Michael. 809
McCreigbt, C., 729, 750
McGoveran. David, 440, 496, 591
MeLeod, Dennis J.. 105. 369
McPherson, John. 708
media fililure. 380. 382
Melkanoff. Michel. 459
Melton. Jim. 255
membership condition (domain calculus),

204
Mendelzon. Alben 0., 342
menu-driven interface, 8
Merrett. T. a, L77, 528. 748
message. 635
metarules, 129
method.635
MIN

see aggregate function
minimall!y

ilet irreducibillly
Minker, Jack. 533, 809. 8 LO
MINUS

see difference
missing information. 570ff

00.681
see also null, three-valued logic

Mlnuna, M., 411
model (logic), 785, 791
model-theoretic. 776
modus ponens, 780
Mohan, C .• 389. 625
Morris, R .. 751
Mullin. James K .. 751
multidatabase sys1em. 624

multidependenoy
.reeMVD

multidetemunes
see MVD

lilllltilevel lndcx
see index

multilevel secure system, 426. 436. 437
multiuser syslcm,5
multi valued dependem:y

see MVD
multiversion locking, 410, 672
Mumick. lnderpal Singh, 532
Muralikrisbmw. M .. 536, 538
MVD, 328

ax iomati1.ation, 339
embedded, see EMVD

Myhrhaug, B., 649
Mylopoulos. John, 809

n-ary relation
see relation

n-decornposahle. 330
11-tuple

see tuple
naive evaluation, 800
Nakano. Ryobei. 539
named relation

see relation
Naqvi. Shainim. 814
na1uraljoin, 141 , 152
.Naughton, Jeffre.y F .. 8 L3
Navathe. Sharnkant :S .. 368. 749. 813
navigation. 58
Negri. M., 257. 528
Nejdl. Wolfgang. 813
Ness, L .• 811
NEST, 561, 567
ne$ted relation, 560
ne.~ted transaction. 390. 672

see also savepoint
network system. 23
Neuhold. Erich L 627
NI!W.642
Newman. Scou, 625
NF? relation, 560
Ng. Raymond T., 5'40
Nicolas. Jean-Marie. 330. 343. 810
Nierstrasz, 0 . M., 650
NievergelL, Jilrg. 752. 756
Nilss.on, J, F .. 773
NO ACTION CSQL)

w•eCASCADE

831

TERADATA, Ex. 1014, p. 860

832

nondense index
see index

nonloss decompositon, 292ff
nonrepeatable read. 407
normal form, 289
normalization, 94

see al.so further nonn;ilization
nonnalization procedure. 290, 335
normalized relation, 93
Notley, M, Garth, 177
null, 123. 570ff

and GllDdidate keys, I 24
and foreign keys, U6
sQL,582ff
see also missing information. three­

valued logic
nullary projection

see project
nullllty relation

.ree T ABLE_DEE and TABLE~DUM
NULLCPIES

see foreign key rules
nullology. I 04
nulls rule

see foreign key rules
Nygaard, K., 649

O'Neil, Patrick E., 413
object, 635, 650
object class, 635. 642

vs. domain, 550, 690.ff
vs. relation, 693ff

object ID
seeOID

object instance
see object

object orlented
seeOO

Object Oriented Database System Mani­
festo, 704

"Object SQL"
seeOSQL

OID 637. 642. 651
Olle, T. William. 370
online application. 8
00,629ff

good ideas of. 689
001benehmark.670
OODBMS. 6i9ff

as a construction kit, 68 I
OPAL, 649. 652ff
OPEN cursor (SQL). 249

open WFF
see closed WFF

optical di$k, 7 56
optimistic conCU(Tency control,413
optimizabillty. 502
optimization. 58. 159. 50 I ff

0 82, 766
distributed, 603, 606ff
semantic, 512
three-vaJued logic, 577

optimization inhibitors, 524
OPTIMIZEDB (INGRES), 514
Orange Book, 425, 435

Index

ORACLE? distributed database option, 596
ORDER BY (SQL), 227
ordering

column (attribute), 93
column (SQL), 223
row (1Uple). 92
row (SQL), 221

orthogonality, 230
Osborn, SylviaL .. 284, 344, 566
OSQL, 705-706
Otten, Gerard, 255
outer difference. S82
outer intersection, 582
outer join. 579ff, 589

SQL, 583
outer union, 581, 582

SQL, 583
overflow page, 723, 735
overloading

see polymorphism
Owlet!, J .. 368
Ozsoyoglu, Z. Meral. 533
Ozsu, M. Tamer, 625

P-celation (RMff}, 349
page, 36, 7 I 4ff

DB2, 763
page head.er, 718
page management, 717
page set, 714

free space, 715
page zero

see disk directory
Palermo, Frank P .. 529
Papidimitriou. Cbris!OS H., 283. 414
parent/child storage structure, 738
Packer.1>. S .. 340, 344
Parsaye, Kamran. 650
panicipaot

TERADATA, Ex. 1014, p. 861

Index

EIR.~S~
two-phase commit, 383

para explosion. 265
St!e also bill of materials, recursive.que-

ries
password, 418
patb_expression, 666
Pecberer.~oben M .. 527
Pelagani, Gfuseppe,257, 528, 624.
Performance Monitor (DB2), 771
phantom. 407
physical database design

see database design
physical record

see page
physicaJ sequence. 723
Pippenger, Nicholas, 752
Pirahesh, Hamid. 389, 531, 532, 708, 709
:eirone,Alain, 186.210,591
PJINF

see fifth normal form
plaintext. 426
planned request, 40
pointer chain. 738
polymorphism. 5Sl, 645
Popek, G. J,, 457
POSTGRES, 708
Precompiler (DB2}, 764, 766
predicate. 97. 168, 783

database. see database predicate
derived relation. 168
relation, set relation

predicate c:aloulus. 782ff
"predicate transitive closure". 5 1 l
prefix

see record prefix
pre!Ilise(proon.780
premiss

see premise
prenex normal form. 194. 786
PREPARE (SQL). 251
Price. T. G .. 411
primary copy. 610, 6L3
primarydomain, 131
primary index

set index
-primary key, 79. 115
primitive operator.;

Set!. relational algebra
private memory, 636
privilege, 418

SQL, 432

product
see Canesian product

project, 53.1 41, 151
identity projection. 151
nullary projection, 151

projettian-join normal fonn
see fifth nonnal fonn

proof, 780
proof-theoretic, 776. 789. 791
propagating updates

see update propagation
property, 12, 349. 350, 353, 361
PROPERTY (RM/T). 349
proposition. 97
propositional calculus, 778ff
PRTV, 177,531
public interface. 636
public-key encryption

see encryption
Putzolu, Gianfranco R., 412. 413

QBE, 186,210
Qian. Xiaolei, 684
qualified name (SQL). 227
QllWltifier. 190

see also EXISTS, FORALL
QUEL. I 86, 210, 423, 424, 568

see also lNGRES
query COO), 679
~ipline, 680

query deromposition, 5 I 4ff
query language. 8
query language proeessor, 8
query modification

ue request modification
query plan, 507
q ucry tree, 504
Query-By-Example

see QBE
QUIST.ill
quota query. 213
quotienl relation, 177

R"'. 596. 608, 624ff
radix search tree

Siu! trie
RllihH. Kari-Jouke. 369
Ramakrishna. M. V .. 751. 753
Rllmakrishnan. Raghu, 532, 810, 812
Raman, V. K., 756
llANGE.188

QUEI.. 186

833

TERADATA, Ex. 1014, p. 862

834

range variable, 186
see also domain variable, tuple variable

Rashid, Louiqa, 813
RDA, 618
read loclt

sees lock
rear compression

see compression
REBIND (082), 768
recompilation (D82)

see compilation (D82)
record ID

see RID
record number

see RID
record prdix. 724
recovery. 374ff

distributed, 610
media,382
system, 380
transaction, 3 77

recursive queries. 795. 798ff, 806
see also bill of materials, part~ explosion

reducing the search space, 507
reductio ad absurdum, 781
redundancy. 14, 274.288,324.326,374

controlled. 14
suong.101,321

referenced relation. 118
referencing relation. 118
referential constraint. 118
referential cycle. 119
referential diagram. 118
referential integmy (metarule). 118. 120

00.676
SQL. 223

referential path, 119
regular entity (EIR). 351
Reiner. David S., 526
Rei~er. A .. 410
Reisner, Phylhs. 255
Rener. Raymond. 776. 810
relation. 56. 86ff

ba..c. 95
Codd. 102
dcri\Cd,95
c~pre~~ible. 95
meaning. 97, 168
named. 95
predicate, '48
~tored. 96
"ume-vnrymg". 89

value, 86
variable, 86
I'S, table. 88

relation-valued attribute
see auribute

relational algebra, I 39ff
implementation. 5 I 9ff
primitive operators. 158, 178
puTpOSe, 158
transfonnation rules, 159, 508ff

relational assignment.. 166
target relation. 488

relational calculus. I 85ff

lndu

see also domain calculus, tuple calculus
relational comparisons. 169
relational completeness. I <io. 200

SQL. 258
relational database. 98
relational model, passim
Relational Model I Version I

Codd, 103
comments and criticisms, passim

Relational Model I Version 2
see RMIV2

relational system, 52. 56
relationr>hip. I l-12. 349. 350. 353

00.675
recursive, 35 7
see also entity

reliability. 598
Remote Data Access

reeRDA
remote procedure call

see RPC
remote request (DRDA). 623
remote unit of work (DRDA). 623
RENAME. 143. 144
reorganizauon, 44
repeatable read

SQL I'S. DB2. 403
see also isolation level

repeating group. 56. 744
REPLACE (QUEL). 424
replicallon. 602

vs two-phase commit, 611
replication independence. 603
replication tr.truparency

.ree replicauon mdcpendence
reposi1ory

;ee dicuonary
request modification. 423
Rescher. Nicholas. 591

TERADATA, Ex. 1014, p. 863

Index

resolution, 780. 78 1. 787, 799
Resource Limit Facility (DB2), 771
resource manager, 382
restrict, 52, 67, t4J. 150
RESTRICT (SQL)

see CASCADE
RESTRfCl'ED

see foreign key rules
restriction condition, 150
restructuririg, 1168
RETRIEVE (QUEL). 423
rel!Sllbility (code). 554, 645
Reuter, Andreas, 388
REVOKE (SQL), 433
RID, 715. 721

DB2. 763

•

Rissanen, Jocma, 305, 316, 324. 329
Rivest, R. L.. 428, 437
~.349,367,565

commen~ and criticisms, 105
RM/V2, 103
Robinson. John T .. 412. 413
Robson, David, 649
Roddick. Jol;m F .. 684
ROLLBACK. 376

SQL,384
Rose11thal, Amon, 813
Roth, Mark A., 566
Rothermel. Kurt, 413
Rothoie. James B., Jr., 529, 623. 624, 625
Roussopoulos, Nick. 625. 756
Rowe.l..awrence A .. 536. 708
RPC,620
RR

see isolation level
RS A encryption

see public-key encryption
Rubinstein. Brad. 568
rule of inference

see deductive axiom
Run Time Supervisor (DB2), 764. 767
RUNSTATS (DB2). 514. 770
run-tlme binding, 556

S look, 395ff
SAA. 255
Sacca, Domenico, 812
Sacco. Giovanni Maria. 528
safe expression, 211
$aga, 387. 672
Sagiv, Yebostwa. 344, 534, 705, 811
Salem, Kenneth. 387

Salveter. Sharon C., 459
Sa!Zberg, Betty, 756
Samet, Hanan, 755, 756
Sandhu, Ravi, 436
Sarin, S. K., 459
savepoint, 38&, 672
Sbatella, L., 257
sealar, 55 , 547ff
scalar expression (SQL), 243
scattertable, 751
schedule, 401

equivalent, 40 I
inti:rleaved, 401
serial, 401

Sebek, A., 565
Scbkolnick,Mario, 755
Schmid, H. A .. 370
Schwanz, Peter, 389
Sciore. E., 344
SOD-L, 596, 623ff
second normal form. 300
secondary index

see index
secwity, 416ff

context-depeodem, 422
QUEL . .see request niodification
SQL.430ff
statistical summary, 421
value-dependent, 420, 421
vaJue-independenL, 420
via views, 470

security rules, 4 I 7ff
SELECT (OPAL). 663
select(ntlational Algebra)

see restrict
SELECT (SQL), 66, 226ff
"SELECT •" (SQL), 227
SELECT clause (SQL), 2~5
selec1-expression (SQL), 235ff

conceptual evaluation, 239ff
Selinger, Patricia G., 436, 534, 626
Sellis, Thnos K.. 539, 540. 625
semantic modeling, 347
semantic optimization

see optimization
semantic override

see domain check override
semijoin. 529. 626
seminwve evaluatiom, 802
Senko, Michael E .. 749
SEQUEL. 255
SEQUEU2. 256

835

TERADATA, Ex. 1014, p. 864

836

SEQUEUXRM, 255
sequence set (indel!), 730
sequential access (index), 726
sequential access (physical)

see physical sequence
serializability, 400ff
serialization, 402
server

see client/server
SET CONNECTfON (SQL), 6 l8
SET CONSTRAINTS (SQL). 455
SETDEFAUL T (SQL)

see CASCADE
set membership

see IN
SET NULL (SQL)

see CASCADE
set processing capability, 54
SET TRANSACTION (SQL). 384
SET_y,659
Sevcik.Kenneth C .. 755, 756
Severance, Dennis G_ 749, 754
shadow page. 389
Shamir. A .. 428, 437
Shapiro. Leonard J •• 528
shared

see data sharing
shared look

see S lock
Shaw, Gail M .• 706
Sbenoy, Sreelrumar l'., 533
Shibamiya. A .• 535
Shim, Kyuseok. 540
Shipman, David W .. 623, 624, 625. 706
Shneidennan. Ben, 751
Siegel. Michael. 533
Silllerschatz, Abl"llham. 388, 566. 624. 749,

813
Simon. Alan R., 255
simple domain

see domain
SIMULA 67, 649
single·u.~er system. 5
singleton SELECT (SQL), 147
Skeen. T.. 684
Skolem constant, 787
Skolem function, 787
Sloan, Alan, D .. 757
Smalltalk-SO, 649. 6S2
Smith, Diane C. P., 770
Smith, John Miles. 338. 344, 370. 53()
Smitll, Ken, 437

Smith. Peter D., 749
snapshot, 96, 489, 494
soft crash. 380
Sol. H. G .. 370
sort/merge join

see join implementation
Sowa. Jolln F .. 809
spatial data. 69 l, 755- 757
sphere of control. 387
Spyraros. Nicolas, 813
SQL,pas.rim
SQL standard

seeSQU92
SQL2

sttSQU92
SQLr92

seeSQLJ92
SQLJ92, 219
SQLJDS, 256
SQLCODE, 246
SQLST A TE. 246
SQUARE,155
Starburst, 539, 540, 708
static filtering, 803
statistical database, 435
Scein, Jacob, 650
Stoll, Robert R., 809

Index

Stonebraker, Michael R.. 210. 4-37, 45,9,
496,536,567,568,624.627,650.
706, 708, 755. 8J 0

storage struc1ure. 7 l2ff
0132. 762

Scored Data Manager. fDB2). 764, 767
SlOred field, 18
stored file. 19
stored procedure. 122, 44 l. 620
stored record. 19

DB2, 763
stored record management, 720ff
storedTelatlon

see relation
stored table (082). 763
Storey, Veda C., 370
strict homo~neity assumplion,595
Strnad, Alcis J., 176
S1rong, H. Raymond. 752
strong redundancy

see redundaney
strong typing, 546
Scroustrup. Bjame. 684
Suuctured Query Language

seeSQL

TERADATA, Ex. 1014, p. 865

Index

Su, Stanley 'i'. W .. 8 L3
subclass

see subtype
subquery (SQL). 23Q. 23 1,536{[
substitution (view processiog), 467
substitutability (subtype). 554, 645
subtype. 350.354, 368. 554ff
SUM

see aggregate function
summarize. I 63 •

see also generalized summarize
Summers, Rita C., 435, 436
Sundemunan. Rajshakhar. 591
Sundgren, Bo, 370
superclass

see subtype
supenype

see subtype
surrogate, 368
Swami. Arun, 539
Swenson, J. R., 370
swizzling, 674
SYBASE. 133. 568
symmetric exploitation, 673
syncpoint

see commit point
system catalog

see catalog
system failure, 350
System R, 210. 256. 388. 389. 436, 494.

528. 534,537, m
table, 56

vs. J'elation, see relation
table expression (SQL). 226. 235ff
tablespaoe (082), 762
TABLE_DEE and TABLE_DUM. 109,

138. 179, 180, 2J4, 589
tableau, 533
Tanca. L. 814
targel item, 192
target relation

assignment. see relational assignment
refe:renrial integrity. see referenced rela-

tioo
Tasker, Dan, 370
Taylor, Blll.abeth, 363
Teorey, Toby J., 354. 371. 748
Tezuka. M~ 531
theorem, 776. 791
8-join. 154
0-restrict

837

see restrict
Third Generation Database System Mani-

festo. 686. 706
third normal fonn, 296, 302, 312
Thomasian, Alexander. 412
three-valued logic. 123. 570ff

interprellition, 579
Thuraisingham, Bbavani, 437
Tiberio, P., 755
TIMES

see Cartesian produc1
timestam_ping, 41 1
Todd. Stephen J. P., l 75, 177, 368
Traiger, Irving L., 4 L2, 413, 495
transaction. 375

unitofconcurrency,379
unit of iniegriry, 379
unit of recovery. 3 79
unit of work. 375

transaction manager, 376
transfoanatio.n rules

see relational algebra
transitive closure, 802
transitive PD

see PD
iree-strucw:red index

ste index
Irie, 749, 754
t:rie hashing

see hashing
trigger condition, 453
triggered procedure. 122. 441 . 453
trivial FD

see FD
trusted system, 426
Tsicbritzis, Dionysios C~ 50, 650
Tsur, Shalom.~ 12, 814
tuple, 57, 79, 87
tuple calculus, 186, I 87ff
1uple ID, 369
tuple substitution

see query decomposition
1uple variable. 186, J 88
Turbyfill, Carolyn. 528
two-phase commit. 382. 604, 611

improvements, 387
two-phase locking protocol. 40 I
two-pl\ase locking theorem, 40 I
type compauble. 145. 543,546, 552. 556
type constructor. 551

tuple, 553
relation. 551

TERADATA, Ex. 1014, p. 866

838

type hierarchy. 354. 556, 645ff
iype lattice, 559. 647

Uhrowezik, Peter P .. 51
Ullmnn. Jeffrey D .. 21I,306. 330,

339. 342,343.344, 749.809,
811.812

unary relntion
see degree

uncommined dependency. 392. 397
unification,788, 799
union. 141. 146

SQL,234
union compatible, 145

see also type compatible
UniSQL, 694ff, 707
uni versa I quantifier

see FORALL
universal relation, 315, 3.42, 343
universe of discourse. 784
11nk

,1"1111 unknown
UNK

in domain. 575
vs. tmli. 575
.ree af.~011ull, three-valued logic

u11k11ow11 (Lruth value), 570
see also three-valued logic

unload/reload 44
see also dump/restore

UNNEST, 561, 567
unplanned request, 40
UPDATE, 167

CURRENT (SQL). 250
embedded(SQL). 248
SQL.67. 234

update anomalies, 29.8. 301, 308, 327,
332

update propagation, 15
distdbuted system, 603. 6JO

updtuerule
see foreign key mies

updating views
see view

user group, 4 18
Ubl:r ID, 4 18
ulilttic:s, 44

UB2,i69

Valduriez, Patrick. 625, 798, 810
value set (E/R). 353
Van Gelder. Allen, 813
van Griethuysen. J. J .. 50

Vardi, Moshe Y .. 342, 343
Verrijn-Stuart, A. A., 370
version. 67·1
view, 62. 96, 466ff

Q0,681
retrieval, 412
security (SQL). 430
update. 472ff
v.s. base relation, 64

violation response
Integrity, 443
security, 419

vinual hashing
see hashing

Virtual Storage Access Method
seeVSAM

Index

von Biiltzingsloewen, Giinter, 536, 537
van Hallt, Barbara, 368
Vossen. Gonfried, 340. 650
VSAM. 730. 750

Wade, Bradfotd. W., <t36, 773
Wagner, R. E .. 750
Wait-For Graph, 400, 614
W aldinger, Richard. 809
Walker, Adrian,.349. 809
Warden. Andrew

see Darwen. Hugh A. C.
Warren, David H. D .. 538
weak entity (E/R), 351
well-fanned fonnula

ue WFF
WFF, 188, 783
Whang, JCyu-Young. 540.81 3
WHENEVER (SQL), 246
WHERE clause (SQL). 238
White, Colin J., 132, 773
Wtdom, Jennifer, 458
Wie<lerhold. Gio, 748
Wilkinson, W. Kevin. 529
Williams, Robin, 627
Wilson, Walter G., 809
Wi nsberg, Paul. 51. 366
Wtnslen, Marianne. 437
Wisconsin benchmark. 528
Wodon,.P .• 2 IO
Wolfson, Ouri , 813
Wong, Eugene., 210. 437, 459. 535. 538.

624,627, 754
Wong, Harry K. T., 536, 537. 650
-Wood,C.,435,436
WORM disk

see optical disk

TERADATA, Ex. 1014, p. 867

Index

Wonhington, P. S., 535
write lock

seeX look
write-ahead log rule, 379

X lock, 395ff
X!Open,255

Yang. Dongqing. 354, 371
Yaaaal<.akis, M .. 534
Yao, S. Bing. 527. 750

•

Yost, Robert A. , 256
Youn.Cheong,813
Youssefi, Karel, 535
Yu, C. T .• 627, 813
Yuen, P. S. T., 751

Zaniolo, Carlo. 312, 3 L6, 707, 812
Zdonik. Stanley lJ .• 650. 706
Zhang, Weining. 813
Zloof, MosheM., 2l0-2ll

839

TERADATA, Ex. 1014, p. 868

TERADATA, Ex. 1014, p. 869

•

TERADATA, Ex. 1014, p. 870

s s~ SHAME I STA'l'IJS =y SP Sll p~ O'l'Y

S1 Smirh 2Q London Sl el 300
S2 Jones lP PaLJ.S Sl P2 200
S3 Blake 30 Paris Sl P3 40()
54 Clar Jc 20 London 51 P4. 200
55 Ad.ams 30 Athens Sl P5 10()

Sl P6 100
52 Pl 300

p p~ PNAME COLOR WEIGHT CITY 52 p2 400
Pl Nllt Red 12 Londort S.3 P2 200

1'2 Boll:: Green 17 Paris S4 P2 200
54 P4 JOO
54 11$' 401)

P3 Screw Blue 17 Rome
P4 Screw R<?d 14 London
P5 Cam Blue ll Parl.sc

P6 Cog Red HJ London

The suppliers-and-parts database (sample valuiis)

TERADATA, Ex. 1014, p. 871

•

-
s s• SNAKE STATUS CITY SPJ SI Pl J I OTY

Sl smith 20 London St Pl Jl 200
S2 Jones 10 Paris Sl Pl J' 700
Sl Blake 30 Paris S2 Pl Jl 400

S' Clark 20 London S2 Pl J2 200

SS ~ 30 Athens S2 Pl J3 200
S2 Pl J4 500
S2 Pl J5 600

p Pl PNAME C:OLOR WEIGHT CITY S2 P3 J6 400

Pl Nut Red 12 London S2 Pl J7 800

P2 Bolt Green 17 Paris sa PS J2 100

Pl screw Blue 17 Rome 53 P3 .:u 200

P4 Screw Red 14 London SJ P4 J2 soo
PS Cam Blue 12 Paris S4 P6 J3 300

P6 Cog Red 19 t.ondon S4 P6 J7 300
SS P2 J2 200
SS Pl J4 100

J JI JNAME CITY SS po; JS 500

Jl Sorter Paris SS PS J7 100

Jl Display Rome S5 P6 J2 200

J3 OCR Athena SS Pl J4 100

J4 Console Athens SS PJ J4 200

JS RAID London SS P4 J4 800

J6 EDS Oslo SS PS J4 400

J7 Tape London SS P6 J4 500

