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2 1.7 Philip A. Bernstein. David W. Sh1pmun. and James B. Rothnie. Jr. "Concurrency Control rn a 
System for Distributed Databases <SOD- I).'' ACM TODS 5, No. J (March 1980). 

See !he annotation 10 reference [2J .26). 

2l .8 Yuri Breitbart, Hector Garcia-Molina, and Avi Silbenfchatz. ''Overview qf Multidatabase 
Transaation Management: · The VLDB J<Jumal /.No. 2 (Oatober 1992). 

l'he term multidataba~ system i$ s1:1metimes u~d to mean a distrib1;11ed system-usually 
heteroge11emu-w1th full local autonomy. [The term ''federated system'' is also someumes used 
with much the same mcaninE.) In such a system, purely local transactions are managed en­
tirely bJ lhe local DBMSs. but global transactions are a different maner. This paper provides 
a survey of recent te.~ults and current research in tbi~ lnuer ("increasingly important") field. 

21.9 Stefano Ceri and Giuseppe Pelagattl. Dis1rib111111i Dt1raba.1es.- Priticipws and Sy~fl!ms. New 
York, N.Y.: McGmw-IDll (1984,). 

21.10 E. F. Codd. "I& Your DBMS Really Relational?" Cn111puter111tJrld (Oct1>ber 14th. 1985); 
"Does Y ur DBMS Run by !he Rules?" Cqmpt11erwm•/1i (October 2J st. 1985). 

21.11 D. Daniels el 11/. "An lntrllduttlon Ill Di~trlbuted Query Compilation in R'"." In Distributed 
Daur Bases (ed,, H.-J. Schneider): PrQC. 1n.d lntemutional Sy.mposium on Di~tributed Data 
Bases (September 1982). New York, N. Y .: North-Holland ( 1982). 

Sec the annotation to reforence l21.30) 

21.ll C. J. Date. "DiStributed l>.uaba~es." Chapter'? of C. J. Dille, An lntroducrio11 to Database 
Systems7 Volume fl. Reading. Mass,: Addison-Wesley ( 1983). 

Portions of the present t'hapter are based on this earlierp11blication, 

21.13 C. 1. Date. "What rs n Distributed Database System?" In C. l Date, Relntio11a/ Database 
Writings /985'-1989. Reading. Mass.: Addison-Wesley (199(>). 

The paper that introduced the "twelve Objectives" for dlstrlbuted systems (Section 21.3 is 
modeled fairly directly on this paper). As mentioned in the body of the chapter. the objeccive 
of local amonomy is not 100 pereent achievable; there are cenaln situatfon~ !hat necessari1y 
involve rompromising on 11\at objective somewhat We summariT.elho:;e situations below for 
purposes of reference. 
• lndividulll frngroenrs of a fragmi:nted relation cannot norm~lly be a<;cessed direcily. not 

even from the site at which 11\ey are stored. 

• Individual copies of a replicated relation (or frl!gmentJ i>nnnot normally be acce.~sed di­
rectly. not even from the sire nt which they are stored. 

• Let P be lhe primmy copy of some replicated relation (or fragment) R. -and let P be s10red 
at site X. Then every si1e that accesses R is dependent on sue X. even 11' another copy of R 
is in fact Stored at the site in qul!Stion. 

• A relation that participates inn multi-sne imcgmy constraint cannot be accessedfor update 
purposes within the local context of the site a.t which it ls Stored. but only within the context 
of the distributed database in which the cons.train! is detined. 

• A site that is acting as o. panlc1pam Ins 1wo.phnse commit process must abide by the deci­
sion (i.e .. commit or rollbllck T of ihe c:c:urespomling coordinator site. 

21.14 C. J. Date. "Distributed Database: A Closer Look.'' Tn C. T. Date and Hugh Darwen, Rel11-
tia11fll Dmabase Wrirl11g.r 1989-199/. Reading, M~.: Alltlison-Wesley ( 1992). 
A sequel 10 reference f21.131, dist:ussing most of the twelve objective.~ in considembly more 
depth {albeit ~till in tutorial style). 

2L15 C. J. Date. "Why ls It So D1rlicul1 10 Provide a Relational Interface m !MST' ln C. J. Dare. 
Rc1ario11al Datablw :: Sd1•Ned Wrl1111gs. Re-.;dlng. Mass.: Addison-Wesley l 1986). 

U .16 R. Epsteln,M. Stonebraker, and E. Wong. "Di~tnbmed Query Processing in a Relational Data 
Base System.'' Proc. 1978 ACM SlGMOD lntermll1onnl ConfereJiee on Management of Data. 
Austin. Texa' (May/June 1978). 
See the annotation Lo reference [21.28). 
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Zl.17 John Grant. Wilold Litwin, Nick Rt;>ussopoulos. and Ti mos Sellis. ·'Query Languages for Re­
lational Multidatabases.'' The VWB Jou:mal 2. No. 2 (April 1993). 

PrQposes extensions to the relational algebra and relational calculus for dealing with multi· 
database systems f21.8J. Issues pf optimmnion are discussed. and u is shown that every 
multirelational algebraic expre.~\ion has a multitelatiqnat calculus equivalent ("the converse 
of this theorem is an interesting resean:h problem''). 

21.18 J. N. Gray. "A Discussion of Distribu1ed Systems." Proc. Congresso AICA 79, Bari. Italy 
(October 1979). Also a~ailable as IBM Research Re1>9n R.12699 (Sepcembcr 1979). 
A sketchy but good overview Mid w1orial. 

21.19 RichardD. Hackathorn. ''Interoperability: DRDA or ROAT' Ln/oDB 6, No. 2 (Fall l991). 
21.20 Michael Rammer and David Shipman. "Reliability Mechanisms for SD0.1: A System for 

Distributed Databases:· A GM TODS 5, No. 4 (December 1980), 

See the annotation 10 reference !21.26]. 

21.21 B. G. ~yet al. "NOies on Distrlbuied Databases." IBMResean:h Report.RJ257 I (July 1979). 

This paper (by some of the original members or the R • 1eam) i.s divided.into fivec hapters: 
I. Replicated data 

2. Authorization and vieW11 
3. lntrOduction 10 distributed li'ansaction management 
4. Reoovery facilities 

5. Transaction iniriation. 1111granon. and 1enmnauon 
Chap1er I discusses the update propagation problem. Chapter 2 ill almost totally concerned 
with authorization in a nondisuibuted sys1ern (in lbe style of System R). except for a few 
remarks at the end. Chapter 3 considers transacaon initiation and termination, ooncurreoc)' 
control. and recovery control, all rather briefly. Chaplet 4 is de voled to the topic of m:overy in 
the nondistdbul¢ case (again). Finally, Chapter 5 discusses discdbut.cd transaction manage­
ment in some detail: in panicular. h gives a very careful presentation of 1wo-phasc commit 

21.22 C. Moha;n and B. G. Lindsay. "Efficient Commi1 Protocols for the'freeof Processes Model of 
Distributed Transactions." Proc. 2nd ACM SICiACT·STGOPS Symposium on l'rinciplC$ or 
Distdbuted Computing ( 1983). 

See the annotation ro reference [2 1.30]. 
21.23 Scon Newman and Jim Gray. "Whioh Way 10 Re.moic SQL?" Database Programming & 

De.rign 4. No. 12 (December 199 I). 
21.24 M. TamerOSZIJ and.Patrick Valduriez. Prinriples of Distributed Database Sy$ttms. Engle­

wood Cliffs, N. J.: Prentice-Ball (1991). 

21.25 James 13.. Ro1hnie, Jr., and Nalhan Goodman. "A Sunrey of Research and Devel.oprnenl in 
Distributed Database Management.'" Proc. 3rd International Conference on Vecy Large Data 
Bases. Tokyo.Japan (October 1977). Also pubbsbed in reference[21.5}. 

A very useful eMlysurvey. The field is discus."Wd under the following headings: 
I Syncbronizil)g update iransaolions 

2. Distribun:d query prO<le.'>liing 
3, Handling componenl failure.~ 

~. Dircc1ory managemem 

5. Database design 
The last of 1h.:se refers 10 ~e pli)'$tC:cil de~ign problem-wha1 we called the allocation prob­
lem in Secuon 21.8. 

21.26 J.B. R111hnie. Jr .• .rt al "lntroduc1ion io a Sy~tem for Distribu1ed Databases (SOD-I)." ACM 
TODS .5. No, I <March 1980), 
Referenttes l21.6-2 I .7]. [2t.20l. [21 26J. and [21 311 are all concerned with the early dlstrib-
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uted protOlYPll SDD-1. which ran on a collection of DEC PDP-IQs interconoecied via the 
ARPANET. lt provided full location. fragmentation. and replication independence. We offer 
a few romments here on selected aspects of' the system. 

Query processing: The SDD·I guecy optimizer (see references [21.liJ and [21.31]) 
made exrensive U!ill of an operato~ called semijoin, which we explain as fOIJGws. (Note: The term 
.. semijoin" first appeared with a somewhar,dlfferent meaning in a paper by l'alermo [18.15].) 
Given two refanons A and 8, the expression ':A semijoin B" is defined to be equal to the join 
of A and B, projected back on to the attributes or A. In other words, the semijoin operation 
yields that sub,el of the tuple.~ of A that match at least one tuple in B un.derthe joining condi· 
Lion. For example. the semijoin of the supplier relation S and the shipment relation SP (over 
supplier numbers) is the set of S tuples for suppliers who supply at least one part-namely. 
~seI or S tuples foe ~uppliers SI, .S2. S3, and 54, given our usual sample data values. N0te 
that the expressions ··A semijom EI" 'llnd "'8 semijoin A" are not equivalent. in general. 

The advantage of using semijoins in dislrlbuted query processing is that they can have 
lhe effect of reducing the volume of daUi shipped aoross the network. For example, suppose: 
that. the suppller relation S is stored at site A and lhe shipment relation SP is store-0 at slteB. 
and the query is "G:ompute the join of S and SP over S#." Jn&tead of shipping the entire 
relation S to B (say). we can do thefollowmg: 

• <:::ompute th.e prOJCCtioa (TEMP 1 \ of SP over S# .at B. 
• .Ship TEMP I to A. 

• Compute the semi join {TEMP2) of1EMP I and S over S# at A. 

• Ship TEMP2 to B. 

• Compute the semi join of TEMP2 and SP over Sit at B. The result is the answer to t11e 
original query. 

This ptocedure will obviously reduce the tOlli.I amount of data movement -across the network 
if and only if 

size f'l'EMPll + si;:e !'l'E!!1P21 < size {S) 

where ihe size or a relation is the cardinality of that relation .multiplied by the width of an 
individual tuple(in bits, say). The optimizer thus clearly needs tO be able to estimate the size 
of intermediate resultssuch 115 TEMP I and TEMP2. 

Update propagation: The SDD-1 update propagation algorithrn is "propagate irnmedl­
a1ely" (there is no aotlonof a primary copy). 

Conrurrency C?ontrol: Concurrency control is based on a technique called thnes«amp­
ing, instead of on locking; 1he objective is to avoid the message overhead associated with 
locking. but the price seems to be that there is nor in fact very much concurrency! The derails 
are beyond the scope of this book (11).ough the annoration to reference [ 14.2] does describe lhe 
basi<; idea very briefly): see reference [2L 7) oneference [2Ll2J formore infoanation. 

'Recovery control: Recovery is based on afour-pbase commit prOlocol; the intem is 10 
make the process more resilient than the conventional two-phase commit protocol to a failure 
at the Coordinator site, but unfonunately h also makes the process considerably more com­
ple.1'. The details are (again) beyond the scope of this book. 

Catalog: The catalog is managed by treating it asjf It were ordinary user data-it can be 
arbirrarlly fragmented, and the fragments can be arbitrarily replicated.and distributed.just like 
any other data. The advantage-~ of this approach are obvious. The di.Slldvantage is, of course. thiit 
smee the system has no a priori lrnowledge of the location of any given piece of the catalog. 
it is necessary to malntam a higbcr·levc.I Gatalog-{he dittctory locator-to provide exactly 
that infunnaiionl The dite<itory locator is fully replicated (I.e .. a copy is stored at every site). 

21.21 P. G. Selinger and M. E. Adiba "Actes.~ Path Selection in Di,nibured Dl1ta Base Management 
Systems." ln S. M. Deen and P. Hammer,;ley (eds.), Proc. International Conference on Data 
.B41ses. Aberdeen, Scotland (Juiy 1980). London. England: Heyden and Son~ Ltd. ( 1980). 

See the annotation 10 reference [2 j .30 ). 
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21.28 M. R. Stqnebraker and E. J. Neuholcl ''A Disunbuted Dalli BOl.!>e Version of lNGRES." l'rqc. 
2nd Berlceley Conference on Distributed Data Management and Computer Networks. Law­
rence Berkeley Laboi:atory CMlly l 9n). 

References [21.16] and [21 .28-2~ .29] are all concerned with the distributed £NGRES proto­
type. Distributed INGRES consists of several copies of University INGRES. running on sev­
eral interconnected DEC PDP-I ls. It supports locauon independence (likeSDD-1 nndR"):it 
also supportS datll fragmentai'ion (via restriction but nbl 11rojection). with fragmenlation inde­
pendence, and data replication for such fragments. with replication ind~dence. Unlike 
SDD-J and.R". Distribu1ed~GRES does not neces~arily assume that the communication 
network is slow: on the contrary. it is designed 10 handle both ''slow" (long-haul) networks 
and local (i.e .• comparatively fast) networks. The query optimizer understands the difference 
between lhe two ca.~es. The query optimization algorithm is ba.~ically an extens.ion of the 
INGRES decomposition sb:ategy described in Chapter 18 of this book: it is described in detail 
in refcrenee-L21.16J. 

Distributed INGRES proyideJ> two update propagation algorithms: a "performance" al­
gorithm. which works by updating.a primary copy and then returning eontrol to the transac­
tion (leaving the propagated updates to be performed in parallel by a set of slave processes): 
and a "reliable" algorithm. which updates all copie$ immediately (see reference [2129)). 
Concurrency control is based on locking in both cases. Recovery is based on two-phase com­
mit (with.certain improvemenlS that ace beyond the scope of~ book. as in the c<aseof R*; 
again. see refei:ence [21.29] or refeci:nce 121.14)). 

As for the catalog, Distributed INGRES uses a combination or full c.epllcation for ceruun 
portions of the catalog-ba.~ically lhe ponions containing a logical description of the relations 
visible tG> the wrer and a description of bow those relations are fragmented-together with 
purely local catalog entries for other ponlonb, such as the portions describing local physical 
storage s.tructura~. local database statistics (used by the optimizer), and ~ecurity and integrity 
constraints. 

21.29 M. R. Stonebraker. "Concurrency Control and Consistency of N,lultiple Copies in Distributed 
INGRES." /EKE Transactions on Software Engineering SE-5. No. 3 (May 1979). 

See the annotation to reference [21.28]. 
21.30 R. Williams et al. ~R•: An Overview oftheArchirecture," ln P. Scheuermann (ed.), lmpro1•­

ing Database Usability and Re~ponsiveness. New York,N.Y.: Academic Press (1982). Also 
available as IBM Research Repon RJ3325 (December 1981 ). 

References [21. 11 ]. (2 L22 I. f2 I .27], and [21 .30) are all concerned with R*. the distnbuted 
version of the original System R prototype. R'i' provides location independence, but no frag­
mentation and no replication. and 1heniforc no fragmemation or replication independence ei­
ther. The question of update propagation does not arise. for 1he same reason. Concurrency 
control is based on lpaking (note tha1 there ls only one copy of any objec1 10 be locked: lhc 
question of a primazy copy also does nor arise). Recovery is based on two-phase commit, but 
with cenain improvemems thal have the effect of reducing the number of messages required 
(~reference [21.22] or reference [21.14]). 

21.Jl Eugene Wong. "Retrieving Dispersed Dara from SDD- 1: A System for Distributed 
Databa,!tes." In referenee [21.5]. 
See the annotation to reference (21.26(. 

21.32 C. T. Yu and C. C. Chang. "Distributed Query Proeessing." ACM Comp. Surv. 16, No. 4 
(December 1984). 

A tutorial survey of techniques for query opnmiiarion m dis\rib111ed ~yi,1ems. 111cludes an 
extensive bibliography. 
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Object-oriented technology is ~ imponan1 new area within the overall field of 
database management Unfonunately. it is also an area in which there is .a certain 
amount of confusion, as the reader will soon see. Part of the problem is that there is no 
universally accepced. :ibs11act. fonnaUy defined .. objec1 daHL.model" (contrast the sicu­
ation wjlhrelational technology)~ Ralher, the term 00-wruch we use generically as 
an abbreviation for "object-ariented .. or ·'objectorieacation,'· as thecontextdemands­
is best thought of as a convenient label for a collection of interconnected ideas. Of those 
ideas, moreover, some are tightly interwoven and some are 001: some are essential and 
~are~;~are~andm~are~;~aren~a~m~are•(~ry 
few are truly new. as a mauer of fact); some really do apply ro databases and some do 
not: and so on_ 

Regarding this latter point. incidentally. another source of confusion is the fact that 
the 00 label is applied to a '>'ariecy of quite distinct disciplines. For example, it is used 
to describe a certain graphic i11te1face style. a certain programming style. a certain set 
of programming languages (not the same thing as programming style!), a certain set of 
analysis and design methodologies, and so on, as well as a certJ!ln approach to dat.abilSe 
management per se. And just because 00 might be good for some of these problems, 
it does not follow that it is necessarily good for others. 

In the chapters that follow. we attempt to clarify these matters. Specifically, we 
present a tutorial on 00 as it applies to database systems, an analysis (not uncritical) of 
00 database Goncepts, and a proposal for a rapprochement between 00 and relational 
database technology. Note: We assume throughout that the reader has a re·asonable 
prior understanmng of conventional (relational) database technology. 
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22.1 lntrodudion 

"Everyone knows'' that today's relatiomtl products ate inadequate in a variety of ways. 
And some people-- not this writer!-ould argue that the relational model is inade­
quate too. Be that as it may. some of the new features that seem to be needed in DBMSs 
have existed for many years in object-oriented programming languages; it is thus 
natural to investigate the idea of incorporating those features inro database systems. and 
hence to consider the _possibility of object-o riented da tabase systems. And. of course. 
many researchers, and some vendors. have been doing exactly this over the past few 
years. 

To repeat. 00 database systems have their origins in 00 programming languages. 
And the basic idea in both disciplines is fue same-to wit: Users should not have to 
wrestle with computer-oriented constructs such as bits and bytes (or even records and 
fields). bur rather should be able to deal with objects, and operations on those objects, 
that more closely resemble th.eir counterparts in the real world. For example. instead of 
havfog to think in terms of a ''DEPT tuple" plus a collection of corresponding "EMP 
tuples'' that include ''foreign key values" that "reference" the "primary key value" in 
that "DEPT tuple," the user should be able to think directly of a department object that 
actually contains a correJ>'J)Onding set of employee objec4. And instead of, e.g .. having 
to ''insert" a "tuple" into Lhe "EMP relalion" with an appropriate "foreign~ey vaJue•· 
that ·•references" the "primary key value'' of some "tuple" in the ·'DEPT relation:· the 
user should be able to hire an employee object directly inro the relevant department 
objecL ln other w()rds. the fundamental ide,a is to r aise the level Qf abstraction. 

Now, raising the level of abstraction is unquestionably a desirable goal. and the 00 
paradigm has been very successful in meeting that goal in the programming languages 
arena [22.3]. TL is natural to ask, therefore, whether the i.ame paradi-gm can be applied 
in the database arena also. Indeed, the idea of dealing with a database thal is made up 
of encapsulated objects (e.g .. department objects that "know what it means" to hire an 
employee or change their manager or cut their budget), instead of having to understand 
relations. tuple updates, foreign keys, etc., is naturally much more attractj ve from the 
user's point of view-at least at first sight. 
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A word of caution is appropriate, however. The point is. although the programming 
language and database management disciplines certainly do have a lot in common. they 
also differ in certainimpQrtant res-pects. In particular, an application program (by defi­
nition) is intended to solve some specific problem. whereas a database (by definition) 
is intended to solve a variety of different problems, some of which mighc not even 
be known at the time the database is established. Io the application programming envi­
ronmenl, therefore. embedding a lot of '·intelligence" into encapsulated objecls is 
clearly a good idea: h reduces~ amount of manipulative code that bas to be written 
to use those objects. it improves programmer productivity. it increases application 
maintainability, and so on. In the database environment, by contrast, embedding a lot 
of intelligence into the database might or might not be a goOd idea: It might simplify 
some problems, but it might at the same time make others more difficult or even im­
possible. 

(lncidencally, the foregoing point is exactly one of the arguments against pre­
relational database systems such as IMS. A department object that contains a set of 
employee objects is conceptually very similar to an IMS hierarchy in which department 
"segroents"-this is the IMS t.enn-are superior to employee "segments." Such a hier­
archy is well suited to problems Jike "Find employees that work in the accounting de­
partment" It is not well suited to problems like "Find departments that employ MBAs." 
Thus. many of the arguments that were made against the hierarchic approach in the 
1970s are surfacing again in the 00 context) 

The foregoing caveat notwithstanding, many people believe that 00 systems are 
lhe next big step for.ward in database technology.lo particular. many believe that 00 
techniques are the approach of choice for new application areas such as 

• computer-aided design and manufacturing (CAD/CAM) 

• computer-integrated manufacturing (CIM) 

• computer-aided software engineering (CASE) 

• geographic information systems (GIS) 

• science and medicine 

• document storage and retrieval 

and so fonh (note that all oflheaboverepresent areas in which today's relational prod­
ucts do tend to run into trouble). There have certainly been numerous technical papers 
on such matters in the literature over the past few years, and more recenlly several 
commercial products have begun co appear. In this part of the book, therefore, we will 
lake a look at what 00 technology is all about 

The aim of this first chapter is simply to introduce lhe most important concepts 
of the 00 approach, and in particular to describe those concepL~ from a database 
perspective (much of the literature.. by contrast, presents the ideas very much from 
a prQgramming perspective instead). The structure of the chapter is as follows. Fol­
lowing this introductory section, Section 22.2 presents a motivating example-an 
example, that is, that today's reiational products do not handle satisfactorily, and 
hence one that 00 technology stands a good chance of doing better on. Next. Sec-
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tion 22.3 iiresents an overview of objects. obJect elasses. messages, and methods; 
Sections 22.4-22.6 then focus in on certain specific aspects of these concepts and 
discuss them in more depth. Section 22.7 briefly considers class hierarchirts; 
Section 22.8 discusses a few miscellaneous topics. and Section 22.9 presents a 
summary. 

One laSl preliminary remark: Despite the facr that 00 sysrems were originally 
meant specifically for "complex" applications such as CAD/CAM, CIM, CASE. etc., 
we deliberately use only very simple examples in our discussions, for reasons of space 
and familiarity. Of course. adopting this simplifyfog approach in no way invalidates the 
presentation. In any case, 00 technology is intended to be suitable for "simple" appli­
cations too. 

22.2 A Motivating Example 

We begin with a simple example. due to Stonebralcer (19.lOJ and elaborated by the 
present author in reference (22.5], that illustrates some of the problems with today's 
relational products. The database (which might be thought of as a grossly simplified 
approximation to a CAD/CAM database) concerns rectangles. all of which are as­
sumed for simplicity to be "square on" to the X and Y axes- i.e., alJ sides are either 
vertical or horizontal. Each rectangle can thus be uniquely represented by the coordi­
nates (xl,yl) and (x2,y2), respectively, of its bottom left and top cight com ers (see Fig. 
22.1). lnSQL: 

CREATE Tl\Bl..J' RECTANGLES 
( RECT!D • • • • :u . . . ' X2 • • • • 'll . . . ' Y2 . . • I • • • • 

UNIQUE f RECTID 1 , 
UNIQUE ! Xl, K2, Yl, Y2 ) ) ; 

Now consider the query "Find all rectangles that overlap the unit square (0, 1,0. l )" 
(see Fig, 22.2). The "obvious"Tepresentation of this query in SQL is: 

y2 

yl 

....... r--1 
···-· ·· L___J 

>!2 

FIG. 22.1 The rectangle (XI, x2, y I, yZJ 
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(0,l)i--~ (1, l) 

FIG. 22.2 The unit square (0, 1,0, 1) 

SELECT 
F'ROM REeTN;GLES 

WHERE ( x.1 >= 0 AND X1 <= 1 AND 'll >= 0 AND i'1 <= l. ) 
- boLt.om left eorner inside unit square 

OR X2 >= 0 ANO X2 <= 1 AND Y2 >; 0 AND Yl <= 1 ) 
- cop right corner inside unit square 

OR I lQ >= 0 AN!l :u <= l .;\NO Y2 >= 0 ANO '{2 <= 1 I 
- rop left corner inside unit sql.\are 

OR ( X2 >= 0 AND X2 <= 1 AND Yl >= 0 AND Yl <= 1 ) 
- bottom riglit co=er inside unit square 

bR ( XL <= 0 Aflll X2 >= 1 ANO Yl <= 0 AND Y2 >= 1 ) 
- rectangle cotal.ly includes unic square 

PR X1 <= 0 ANO x2 >= l ANO Yl >= 0 AND Y1 <= l I 
- bottom edge crosses unit square 

OR Xl >= 0 AND Xl <= 1 AND Yl <= 0 AllD Y2 >= 1 ) 
- 1.eft. edge crosses unlt SQJ.18.l'e 

OR X2 >= 0 AND X2 <= l AN1J Y! <= 0 AND ¥2 >= 1 ) 
- rJ.ght edge =asses unit squaJ::e 

OR X1 <= 0 AND X2 >= J 1\NO Y2 >= 0 AND Y2 <= l ) 

- top edge crosses unit square 

Readers should take the time to convince themselves that this formulation is indeed 
correct before continuing. Diagrams will probably prove helpful in this regard. 

With a little further thought, however, it can be seen that the query can be ex­
pressed somewhat more simply as: 

SELECT •.. 
f'RQN R:EC'I71NGI.ES 

WRERi: I lU <= l AND Yl <= l 
- bottom left corner is "downwind" of 11.11 

ANO X2 >= 0 ANO Y2 >= 0 I 
- i;op right corner is •upwind' of 10. 0) 

Again, diagrams will probably prove helpful in understanding Lhis formulation. 
The question now is: Could lhc system opLimizer 1ransfom1 the original long form 

of the query into the corresponding short form? La other words, suppose the user ex­
presses the q'llery in the "obvious" (and obviously inefficient) long form: would the 
system be capable of reducing that query to the more e flicienl short form before exe-
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cut1ng h'l Reference f22,5] give.\ evidence to suggest that the answer t\I this que-;Uon is 
almost certainly no, at least so far as today's commercial optinuzers are concerned. 

In any case. despite the fact that we JUSt referred to the short fonu ru, "more effi­
cient." itislikely that performance on I.be &ban form will still be unacceptably poor in 
most of today's rehuional products, given I.be usual storage structures-typioall y B­
trees-supported by those products (on average, the system will examine 50 percent of 
the index entries for each of XI, X1. YI. and Y2) 

Thus we see that today's relational products are indeed inadequate m certain re­
spects. To be specific, problems like the rectangles problem show clearly that certain 
"simple" user requests 

I . are unreasonably difficult to express. and 

2. execute with unacceptably poor perfonnanee. 

in those products. Such considerations provide much of the motivation behind the cur­
rent interest in 00 systems. 

Note· We will give a ''good" solution ro the rectangles problem in Chapter 25 (Sec­
tion 25.3). 

22.3 Objects, Methods, and Messages 

[n this section, we introduce some of the principal terms and concepts of the 00 ap­
proach, namely object iq;elf (of course), ooject class, meth(Jd, and message. We will 
alserelate these notions to more familiar terms and concepts wherever pessibJe or ap­
propriate.1n fac1. i1 is probably helpful to show a rough mapping of the 00 terms to 
traditional progi:amming terms right at the outset (refer to Fig. 22.3). 

Caveat: Before we start getting into details. It i& as well IQ warn re_aders not to 
expect the kind of precision they are accllstomed to in the relational world. Indeed. 
many 00 concepts--or the published definitioni; of those concepts. at any rate-are 
quite imp,recise. and there is very little true consensus and much disagreement, even at 
the most basic level (see references L22.2J, [22.1~22.11 ]. [22.14], and [22.16]). In 
particular, there is no abstract, formally defined "object data model," .nor is there even 
consensus on an informal model. (For such reasons we wilt always place phrases such 

00 te-"11 ?ro_gramnt~..ng :.enn 

o)?ject va.riab1" ( ."f •mutable" ) 
oT value. 1-f • l.flllDUtab+tt• l 

objecc c la·ss data i:ypa 

met.bod Etinct ion 
massage caU 

FIG. 22.3 00 terminology 
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as .. the 00 model" in quores in this book.) ln fac1, lhere seems, :ralher surprisingly, to 
be much confusion over /'e1•els of absrraCJion-specifically. over the distinction be­
tween the model per se and its implementation. 

The reader should also be wadred lhat. as a consequence of lhe foregoing state of 
affairs, the definitions and explanations offered in this part of the book are nor univer­
saUy agreed upon and do not necessarily correspond to the way that any given 00 
system actually works. lndeed1 just about every one of those definiti0ns and expJana­
lions could well be challenged by some other worker in Ibis field, and probably will be. 

An Overview of 00 Technology 

Q11estion: What is an object? 
Answer: Everything! 

lt is a basic tenet of lhe 00 approach tha1 "everything is an object" (sometimes 
"everything is a first-class object"). Some objects are builtin. primitive, and Immu ta­
ble; examples might be integers (e.g., 3, 42) and character strings (e.g., "'Mozarr•·, 
''HaydukeLives!"~. In traditional terminology. such objects correspond to simple val­
ues. Other objects- typically user-creared and typically mutable--are more complex.; 
examples might be EMPs. DEPTs, VEHICLEs, etc. These more complex objects cor­
respond to variables,* of arbitrary internal complexity (where the phrase "arbitrary 
internal complexity" is meant to imply that such objects can make use internally of any 
or all of the usual programming language data types and type construcrors-=numbers, 
strings. lists. arrays. stacks. etc.). Note: In some systems the term object is used to mean 
the mutable case only {the term value then being used for the immutable case). Even in 
those system5 where the term "object" does .strictly refer to both cases, the reader 
should be aware that it is common in informal contexts to take the tenu to mean a 
mutable object specificalJy, barring explicit statements to the contrary. 

Every object has a type (the 00 tean is class). Individual objects are sometimes 
referred to as object instances s_pecifically, in order to distinguish them clearly from the 
corresponding object type or class. Please note also that the term rype here is used with 
its usual programming language meaning; that is, an intrinsic aspect of any given type 
consists of tine set of operators or functions (the 00 recm is methods) that can be 
applied to objects of that type (see the discussion ef e11capsulatlt111 below). We will 
normally assume that the type of an object is fixed at object creation time, although as 
we will see ln Section 22. 7-when we discoss class trierarehies-an object migh1 be of 
several types simultaneously, and might acquire and lose types dynamically. 

As an aside. we remark that some 00 systems support both types and classes and 
therefore make a distinction between the two concepts. We will disc~ss this possibility 
further in Section 22.6. 

All objects are encapsulated. What thL~ means is that the representation--1.e .. the 

• NCtte, ho\l'cver, 1ha11hc (uni1u•lifil:d) 1erm vari/1blt in 00 "Y'"'ms nof1m ~pecullcally 10 a nrogmm 'uri•hlc 
1ha1 I~ u11ed lO hold an 11bject ID (~ce l:uar). 
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internal struclure--0f a given object, say a given DEPT. Is not vi.)ible to users of lhat 
object; instead, users know only that lhe obJeOt is capable of perfonning certain func­
tions ("methods"). For example. the methods that apply to DEPT objects might be 
m R E_EMP. FJRE_EMP. CUT_BUDGET. elc. Nute carefully thut such methpds con­
stitute the ONLY operatlo11s tlu1t can be applied to the objec/S i11 questioh. The code lhat 
implements those merhods ts permitted to see the internal representation of lhe objects, 
of course: to use 1he jargon, those ruethod!>'-and only those method~are allowed to 
"break encap~ulation." 

The ntlvarunge of encapsulation is that it allows the internal representation of ob­
jects to be changed without requiring any of the applications that use those objects to 
be n:written-provided. of course, that any such change in iniernal representation L!. 
accompanied by a corresponcling change to the code that implements the applicable 
methods. ln other words, encapsulation implies data independence. 

In accordance witb the idea of encapsulation. objects are sometimes described, a 
little loosely. as having a private memory and a public interface: 

• The private memory consists of instance variables (also known as members or 
a11rib11tes). whose values represent the internal state of the objec1. ln a "pure" 00 
system. insrance variables are completely private and hidden from users, but-as 
indicated above-they are of course visible to the code that implement~ lhe meLhods. 
However. we should add that many 00 systems are not "pure" in lhis sense but do 
expose certain of their instance variables ro users. a point we will return to later. 

• The public interface cansists of interface definitions-Le., definitions of the inputs 
and outputi.-for the methods that apply to thil; object. The code that implements 
those methods, like the instance variables, is hidden from lhe user. Note: It would 
be more accurate to say that the public mrerface is part of the class-defining object 
for the object in quescion (i.e., the o~ject that defines the class of which the object in 
questi1ln is an instance). rather lhan parl of the object itself The code that implcmencs 
lhose methods is kept wiLh the class-defining object, not with lhe object itself. 

Incidentally. note Lhat if it is really true that predefioed methoui. are the only way 
to manipulate obJeClS. then ad hoc query is imposs1ble!-unless object~ are designed in 
accordance wilh a certain very specific discipline. anolher topic we wi11 come back to 

later (in Chapter 24). 
Methods are invoked by meani. or messages. A message ii. essentially just 11 func­

tion call. poss1hly W>ynchronous, in wh1oh one argument (the receiver or target) 1s dis­
tinguistied and given special i.ypt.actic treaanent. For in1>tance, the following might be 
a message to department D, a.\krng il to hire employee E: 

0 HTP.E_E~f ( f I 

(hypothetical :.ynuu: see Section 22.6 for an explanation of lhe argumen~ 0 and E). 
The receh•er or target in this example ii, the object deno1ed by D. A conventional pro­
gramming language analog of this message might look like thu;: 

H. IU._6MP I , E ) 
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For convenience, an 00 system will typically come equipped with certain builtin 
classes and method.'1. In particular. the system will almost certainly provid~such classes 
as NllMERJC (with methods"=","<","+","-'', etc.), CHAR (with methods."=","<", 
" II" (string concatenation), SUBS'rlnNG, etc.), and so forth. 

Instance Variables 

We now lake a slightly closer loot<- al the concept of instance variables. The fact is, there 
is a certain amount of confusion in this area. As slated previously, instance variables 
would be com pletely hidden from the user in a pure 00 system, but many systems are 
not pure. As a consequence. it ii. necessary to distinguish between public and private 
instance variables. 

For exam ple. suppose we have an object class of UNESEGs (line segments). Then 
the user might be able 10 think of each individual LTNESEG as having a ST ART point 
and an END point, and be able, e.g., to ask what the ST ART point is fur a given 
LINESEG. Internally. however, LINESEGs might be represented by MIDPOINT, 
LENGTH, and SLOPE, and these would be the variables seen by the code that imple­
ments the LlNESEG methods (whatever those might be). ln this example, then, 
ST ART and END would be public instance variables and MJDPOJNT, LENGTH. and 
SLOPE would be private instance variables. 

It should be pointed out that-the foregoing notwithstanding-the concept of pub­
lic instance variables is logically unnecessary. That is. even 1f the user i~ allowed to 
write an expression such as {say) ls.START to refer 10 the START point of LINESEG 
Is, that expression can still be regarded as shorthand for a function call that invokes a 
method called START tha1 re1umli the START poim for the LLNESEG ls. Ln accor­
dance wilh common practice, however, we wi ll nonnally assume (until further noLice) 
that objects 1ypioally do have one or more public ins1ance variables. 

It is worth pointing out too thatJUSl because certain "instance variable" arguments 
happen to be required in order 10 create objects of a particular class. it does not follow 
that those ins1ance variables are available for arbitrary purpose$. Suppose, forrexample, 
that ccea1ing a UNESEO requires ST ART and END value11. Tl does no1 follow 1ha1 we 
can ask for. e.g .. aJI LINESEGs with a given START value: whether this is possible 
wilt depend on whether a $Uitable method has been defined. 

Finally, note that some sy:.1.ems Suppt>rt a variation on private inblance variables 
called protected instance variables. If objects of class C have a pro1ected insUlllcc vari­
able P. then Pis visible Lo the meth<xl~ defined for class C (of course) and lO the meth­
ods defined for any .mbclt.1.1~ (at any level> of cla~~ C. See Section 22.7 for a discussion 
of subclasses. 

Object Identity 

Every object bas a unique identity called its "objecl ID'" or 0 10. Pnmillve ("immulll­
ble") objec11> like the imegcr 3 are self-ide111(fyir1g. i.e .• they arc their own O lDs; other 
("mutable") objecl!. have (Conceptual) cultlre.1w11s as !Heir OIOs, anll U1ese addrei;~ei. can 
be used elsewhere in the database as (conceplual) poi111ers to refer to the objcets in 
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question. One implication-and one point of difference vis-ii-vis the relational model­
is that objects do not necessarily have to have any user-defined candidate keys. Note, 
however, that OIDs are not directly visible to the user. See Section 22.5 and Chapters 
23-25 for further discussion. 

We remark that it is sometimes claimed that it is an advantage of 00 systems that 
two di~tinct objects can be identical in all user-visible respects- Le., be duplicates of 
one another-and yet be distinguished via theiic OIDs. To this writer, bo~ever, this 
claim seems specious. For how ean the usl!rdistinguish between.two such objects, ex­
ternally? (See references [4.5] and (4. 11 J for further discussion of this issue in a specif­
ically relational context) 

22.4 Objects and Object Classes Revisited 

Let us n<!>w consider a detailed example. Suppose we wish to create two object classes, 
DEPT (departments) anclEMP (employees). Suppose also that I.he: user-defined classes 
MONEY and JOB.have already been created and the class CHAR is builtin. Then the 
necessary class creation operations for DEPT and EMP might look something like the 
following (bypothetfoal syntax): 

CREATE OBJECT CLASS DEPT 
PUBLIC' ( DePTll 

ON AME 
BOOQ'E'l' 
MGR 

~. 

CltAB, 
MONEY. 
~EF ( EMP 

EMPS REF ( SET 
METHODS ( lilRE_ElME' ( REF ( BMP 

E'IR£_EMP ( REF ( EMP 

CREATE OBJECT CLASS E:MP 
PUBLIC ( EMP# CHAR, 

EN AME CHAf1, 
S1\LARY MONEY. 

) . 
(REF(EMP)))) ••• 

)) code ..• 
)) •.. oode •.• , ••. ) 

POSITION REI'" ( JOB ) ) .•. 
METHODS • • • ) •• • 

Points arising: 

I. We have chosen to model departments and employees by means of a containment 
hierarchy, in which EMP objects are conceptually contained within DEPT ob­
jects. Thus. objects of class DEPT include a public instance variable called MGR, 
representing the given department's manager. and another one called EMPS repre­
senting the given department's employees. More precisely. objects of class DcPT 
inclllde a public instance variable called MGR whose value is a reference ("REF ') 
to an employee, and another one called EMPS whose value is a reference to a set 
of references to employees. {"Reference to" here really means OJD of-see further 
discussion below.) We will elaborate on the containment hierarchy notionfo a few 
moments. 
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2. For the sake of the example. we have chosen 110 1 to include a ''foteign key" ins lance 
variable within Gbjects of class EMF that refers to objects of class DEPT. This 
decision is consistent with our decision 10 model departments-and-employees by 
means of a containment hieaJcby. However, it does mean that the re is no di.reel 
way IO get from a given EMP object 10 lhe correspQnding DEPT object. See 
Chapter 24 (Section 24:3. subsection entitled ·'Relationships .. ) for further discus­
sion. 

3. Note that each CREA TE OIJJECT CLASS operation includes definitions (coding 
details omitted) of the methods that apply to objects of chat class. 

Fig. 22.4 shows some sample object instances corresponding 10 the DEPT and 
EMP classes as just defined. Let us consider the EMP object at the top of that figure 
(wilh om eee), which contains: 

• The primitive value object "EOOl" (a charae1er string) in the public instance vari­
able EMF# 

• The primitive value object "Smilh" (another cbatacter string) inlhe public instance 
variable ENAME 

• The user-defined object $50,000 (an object of class MONEY) in lhe public in­
stancevariable SALARY 

• The OID of a user-defined object of class JOB in the public instance variable 
POSITION 

,,. ---· ·-----....., 
l=~~ EMP~ ENAME SALAR'l POSITION _c:~~~j 

,... L::: £00I Smith $50, 000 . ---i--J ' 

! 
J OB cod t nr EMP 

<sayJ 
objecc 

I . -- MGR ----~ 

~ OID DE!")'ll DNAME BUDGET EMPS _c:~:~J ::: :;_ 

l _~dd DOl l:lk~g $1.000 . 000 ! . ---j--J 
CDO for 
DEPT 

[L~~1 
tsayJ 

1. 1. 1. 1. 1. I ~~·j l SSS • ---- 1 1 1 l I 1 • I OIDs of EMP objects __J COO !:or SET 
!REF1 !EMF) 

FIG. 22.4 SarriRle DEPT apd E MP lnnances 
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It also contains a t leasi Lwo private insta"ce variables. one that contains the OID 
eee otthe EMP object itself, and one I.bat cont.airu; lhe OID of the class-defining object 
(CDO) for EMPs (so that the implementation can find the code for the methods that 
apply to this object). Note: These two OTOs might or might not be physically stored 
with the objeoL. For instance. the value eee need not necessarily be stored as part of lhe 
relevant EMP object; it is necessary only that the implementation have some way of 
locating that EMP object given that value eee (i.e .. some way of mapping that value eee 
to I.bat EMP object's pby.sical address). Bat concepcualJy the user can always think of 
the OID as being part of the object as shown. 

Now let us tum to the DEPT object in the center of the figure (with OID ddd). That 
object contains: 

• The primitive value object "DO l" in the public instance variable DEPT# 
• The primitive value object "Mktg" in the public instance variableDNAME 

• The user-defined object $1,000.000 (an object of class MONEY) in the public in­
slaIICe variable BUDGET 

• TheOID eee of a user-defined object of class EMP in the public instance vfil'iable 
MGR (this is the OID of the object that represents the department manager) 

• The OID sss of a user-defined object of class SETCREFCEMP)) in the public in­
stance variable EMPS (see below) 

• Two private instance variables containing in turn the OID ddd of the DEPT object 
il'!elf and the OID of the corresponding class-defining object 

And the object with OID sss consisrs of a set of OIDs of individual EMP objects (plus 
the usual private instance variables). 

Now, Fig. 22.4 represen~i>the sample instances "as they really are"; i.e., the1igure 
illustrates the daia structur~ component of '1he 00 model." and such figures must be 
clearly understood by users of that model. 00 texts and presentations. however. typi­
cally do not show diagrams like that in Fig. 22.4; instead, they typically represent the 
situation a~ shown in Fig. 225 (which might be regarded as being at ahigher level of 
abstraction). 

T.he representation shown in Fig. 22.5 is cenainly more consistent with the "con­
tainment hierarchy" interpretation. H owever, it obscures the important fact, already 
di~cussed above, that objects often contain, not other objects as such, but rather 01Ds 
of other objects. For example. Fig. 22.5 clearly suggests that the DEPT object shown 
includes the gMP object for employee EOC)I twice (implying. among many other 
things, lhat employee EOO I might be shown-inconsistently- as having two different 
salaries in its two different appearances). This sleight-of-hand is the source of much 
confusion. which is why we prefer pictures like thar of Fig. 22.4. 

As an aside, we note that real 00 dam definitions tend to increase the confusion. 
because they typically do 11oc define instance variables as "REFs" (as in our hypotheti­
cal syntax above) but instead directly rdlect the containment hierarchy interpretation. 
Thus, for example, instance variable EMPS in object c lass DEPT would typical ly be 
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DEPT: DEPT~: tlOl 
DNAME: Mlttg 

'----~ 
BUDGET: I $1. 000, OOQ I 
MGR: EMP#: et)Ol. 

E~: Srn~t.h 

• SALARV: I sso. 000 

l'OSrnON: ~ 

EMPS: ,_..I _______ _, 

.EMP•: E001 
ENAME: Smitch 

SALARY: I $50. 000 

POSITION: ~ -

FIG. 22.5 Sample DEPT and EMP instances:as:a containment hierarchy 
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defined not acs REF(SET(REF(EMP))) but just as SET(EMP). Although c11UIDsy, we 
prefer our style of data definition, for clarity. 

ft is worth pointing out too that all of the old criticisms of hierarchies in general (as 
implemented in, e.g., IMS) apply to contaimnen1 hierarchies in particular. Space does 
not permit derailed consideration of those criticisms here: suffice ii to say thal the over­
riding issue is lack of symmetry. In particular. hierarchies do not lend themselves well 
to the representation of many-10-many relationships. Consider suppliel"l) and parts, for 
instance. Do the suppliers contain the pans, or vice versa? Or both? What about suppli­
ers. parts, and projects? 

Thus. it is our feeling, despite the common talk of "containment hierarchies." that 
objects are not really hierarchies at all. fnstead, as Fig. 22-4 suggests. they are tuples-­
where the tuple components can be any of the following: 

I . self-identifying values (e.g .. integers) 

2. simple nonshared "subobjec1s" (e.g., MONEY objects) 

3. OlDs of other. possibly shared. "subobjects" (see Section 22.6) 

4. seu;. lists, arrays .... of I .. 2., 3 .. or 4. 

(plus certain hidden OID. CDO OID, etc .. components). Note carefully. however. !hat 
(in a pure system) such tuples are encapsulated. 
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22.5 Objed Identity Revisited 

Today's relational DBMSs cypically rely on user-defined. user-controlled keys (''user 
keys'' for short) for entity identification and referencing purposes. lt is we!Lknown, 
however, that user keys suffer from a number of problems; reference [ 12.12) discusses 
such problems in some detail and argues that relational DBMSs should support system­
defined keys ("surrogates") instead. And the argument in favor of OIDs inOO $ystems 
is very similar to the argument in favor of surrogates in relational systems. (Do not, 
however. make the mistake of equating the two: Surrogates are values and are visible 
to the user; OIDs are addresse.v or pointers-at least conceptually- and are hidden 
from the user.) 

Points and questions arising: 

J. First, it is very imp0rtant to understand that OIDs do n'ot avoid the Med for user 
keys, as we will see in Chapter 23. To be more. precise. user keys are still needed 
for interaction with the outside world, although inside the database alJ object cross­
referencingc-an now be performed via OIDs. 

2. What is the OID for a 'derived object?~.g .. the join of a given EMP and the cor­
Tesponding DEPT, or the projection of a given DEPT over BUDGET and MGR? 
This is another important question that we will have to defer for now. See Chapter 
25 (Secition 25.4). 

3. OJDs are the source of the oft-beard criticisms to the effect that 00 systems look 
Like ''CODASYL warmed over"-where "CODASYL" refers generically to cer­
tain network (i.e .. prerelational) database systems such as IDMS. Certainly OIDs 
tend to lead to a rather low-level, pointer-chasing style of programming (see Sec­
tion 22.6 and Chapter 23) that is very reminiscent of the old CODASYL style. 
Also, the. fact that OIDs are pointers and not values accounts for the claims, also 
sometimes beard. to the effect that CODASYL systems are closer to 00 systems 
than relational systems ate. 

22.6 Classes, Instances, and Colledions 

00 systems make clear distinctions among the concepts of class. instance, and collec· 
1io11. First of all. an object class is (as previously explained) basicalJy a data type, pos­
sibly buil.Lin, possibly U$Cr-defined, of arbitrary internal compl exity. (As1lll aside. how­
ever, we remark that-as mentioned in Section 22.3- some 00 systems use bocb 
"type" and "class," in wb.icb case "type" means data type and "class" means collection. 
We will not adopt this usage in this bQok.) 

Every class under~Uinds a NEW message. which causes a new instance of the 
class 10 be created (the method invoked by the NEW message is sometimes referred to 
as a constructor function). For ex.ample (hypothetical syntax): 

e : .. EMl? NEW ( 'EGOl ' ' 'Smitit ' . 1>50000 . POS l : 
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Here POS is a program variable that contains the OJD of some JOB object. The 
NEW method. is invoked on the object class EMP: it creates a new instance oftha1 class, 
initializes it Lo !he specified values, and returns that new instance's OTO. That OID is 
then assigned to the progi:am variattle E. 

Next. because objects can contain pointers (OIDs) to other objeots instead of ob­
jects per se, thirvery same object can l5e shared by many objects.lo particular, che very 
same object can belong to multiple collection objects simultaneously. To continue with 
our example: ~ 

CREATE OBJEO.T CLASS EMP_ COLL_CLASS 
PUBLIC I EM.l'_COt;t; REF I SE'r ( REF ( EMF ) l ) ) .•. 

A.w..EMPS ADD ( E ) ; 

F:xplanation: 

• An object of class EMP _COLL_ CLASS contains a single pJJblic instance variable, 
called EMP _COLL, whose value is a pointer (OTO) to an objeet whose value is a 
set of poi oters (OIDs) to individual EMP objects. 

• ALLEMPS is a variable whose value is the OID of an o.bject o[ class 
EMP _COLL_ CLASS. After the assignment operation, it contains the OID of such 
an object whose value in tum is the OID ofao empty set ofOIDs ofEMP objects. 

• ADD is a method that is understood by objects of class EMP_COLL_CLASS. In 
the example. that method is applied to the object of that class whose OID is given 
in the variableALLEMPS; its ef(ect is to append the OID of the EMP object whose 
OIDis given in the variable E to the (previously empty) set of OIDs whose OTO is 
given in the EMP_COLL_CLASS object whose OTO is given in the variable 
AILEMPS. 

After the foregoing sequence of operations, we can say. loosely. that Lhe variable 
Al..Lfil,1PS denotes a collection of EMPs that currently contains just one EMP. namely 
employee EOCll. By the way, note the need to mention a user key value in this latter 
sentence! 

Of course. we can have any number of distinct. and possibly overh,1pping, "set~ of 
employees" at any given time: 

PROGRAMMERS :~ EMP_COLL_Cl.ASS NSW I ) ; 

PROGRAMMERS ADr;> ( E: ) 1 

lilGRL"i_PAil) : : E:MP_CDLL_C!LASS llEW i l ; 

RIGHL "i_Pl\IO AllD ( S ) ; 

and so on. Contrast the suite of affairs in relational sys1e01s. For example, the SQL 
statement 
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CREATE 'l'AllLE. EME 

I EMP-t1 • • . • 
ENAM.E • • • ' 
SALARY ••• • 
l?OSIT~ON 
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crea1es a type t1~1d a collec1ion simullaneously: 1.be (comp<>site) type corresponID, to the 
table heading. and the (mitially empLy) ..:ollection correspond~ Lo the ta hie body. Like­
wise, the SQL su11emen1 

711SEPT rrrro El•!P I - - - I 'ALOES I 

creates an individual EMP row and appends ii to the EMP collection simultaneously. 
ln SQL. therefore: 

I. There is no way for an individual EMP ·'object" to exist without being part uf some 
·•collection"-i.n f.act. exactly one ·'collection" <bul see bttlow). 

2. There is no direct way Lo create two distinct "collections" of the same "class" of 
EMP "objec1:.·• (bul see below). 

3. There is no direc1 way lo share the same "object" across multiple "collections'' of 
EMP ··objects" (bu1 see below). 

At least. the foregoing are claims that are sometimes heard. Tn fact. however. they 
do not stand up to close scrutiny. To be specific. the relational foreign key mechanism 
can be used to achieve an equivalen1 effect in each case: for example, we could define 
two more base tables called PROGRAMMERS and HIG HLY_PAID. each of them 
consisting of jusl the employee numbers for !he relevant employees. Alternatively. 
Lbe relational view mechanism can be U'\ed lo achieve a similar effect For example, 
we could define PROGRAMMERS and HIGHL Y_PAID as views of the EMP base 
table: 

CREATE VIEW E'P.OGRAm!ERS 
AS SELECT EMN. ENA.HE. SALARY, l OSl l 101~ 

FROM EMP 

WHF.RE POSTT.ION - ' P:rOql amm~i-' ; 

CRE..'1.TE VIEW liIGl:ILY_l?AlD 
AS SELEC1 EM P1I . El IAN 8 . s;.w,RY . POS rT ION 

F.RClM EMP 
WHERE SALARY ""Ill<' Liu csh ~d, _·a_, S,50f!( 

And now, of cour.se, It is perfectly possible for 1he very same employee "ebject" to 
belong to two or more "collections" simu!timeously. Whal is more, membership in 
those collection:. that happen 10 be view~ b. handled automatically by the system. not 
manually by the progtammer. 

We close thts discussion by ment1onin,g an illuminating parallel between the ob­
jecLr of 00 syscems and the explicit dynamic variables of certain programming Ian· 
guage sy~tems {PUl's BASED variables are a case in p~iint) . Like an 00 objetl. an 
explicit dynamic variable can have any number of dii.tinct instances. the storage for 
which is al located by explicit programmer action. Furthermore, those instances. again 
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like individual object instances. /w1,e 110 name. and thus can be referenced only through 
poi nter~. In PL/T, for er.ample. we might write: 

DC'L l'.'a'Z ••• BASED 
DCL P POINTER : 

ALLlX:ATF. '{'fZ !'1':'1' I p J 

P > XY2. ' ; 
• 

l XY~ ~s a B>.SED Vat iablr -
• P is a po1nrer vaciable • 

c.rea:te- a: n~~· 'XY'Z lnstar1ce *' 
and SPt ? to pou1t to • L 

q$&1qn the value J to the '!.Y. 

instance P•:t .LOt eel c.o by P 

(and so on). This PUI code bears a striking resemblance Lo the 00 code d1scus~ed 
earlier; in particular. the declaration oftbe BASED variable is akin to the creation of an 
object clash, and the ALLOCATE operation i1> akin to the creation of a NEW instance 
of that class. We can thus see thanhe reason orDs are necessary 111 "the 00 model" 1;. 

precisely because. in general. the objects they identiJy do not possess any other unique 
oame-jusl like BASED variable instances in PL/I . 

22.7 Class Hierarchies 

No 1reaunenl of basic 00 concepu. would be complete without ~ome discussion of 
class hierarchies (not to be confused with containmen1 hicrarchiel)). However, the 00 
"class hierarchy'' concept is e~sentially the same as the type hierarch) con<:ept dis­
cussed in Chapter 19 (Section 19.4); we therefore content ourselves here w ith a few 
brief definitions (pa1<1phrased frorn Ch11pter 19, for lhe most part) and 11 couple of rele 
vant observmjons. 

First. object class 1' i.s said 10 be a s ubclass of object class X-equivalently, 
object class Xis said 10 be a superclass of object olass Y.-if and only if every 
object of class Y is necessari ly an object of cla$s X (''Y lSA X") . Objects of clai.~ Y 
then inheri1 1he instance 'ariables and methods that upply 10 class X. As a conse­
quence. the u~er can always use a Y ObJeCL wherever an X object is permiued (1.e ., 
as an argument to various melhod:<;)- this is the principje of substitutability-and 
thereby take advantage of code reusability. Nme: Inheriting ins1ance v(lriables is 
referred Lo as structura l inheritance: inheriting method~ i~ referred to u ~ behav­
ioral inherilance. The abi lity to apply the S<Lme method lo d1ffernnl classes-or. 
rather, the ability 10 apply different methodi, with tJ1e same name to different cla!>~e!> 
(a class X method might need to be redefined for use with class Y)-b r<:ferred w 
as polymorphisn1. 

Herc is un example. Suppo~e RECTANGLE is a subclnss of POLYGON, which in 
rum i~ a subdas~ of PLANE_PlGURE. The ohjcc1 class i..leclarutiun:. migt11t louk a~ 
follows: 

CREA,~ •B.fl,t LASS PLANF._FI t!I E 

f''Jlll Ir I ;;fl£/\ • • l •. • 
f•IE1HODS l OVE:HL!\P • • • I ... 
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CREATE OllJECT CLASS POLYGON 
lSA I ~t.ANE_FIGURE ) 
PUBLIC ( VE!CT1CES • • . I 
METHOD I COUNT_.VEj¥1'lCES 

CREATE OBJECT CLASS RECTANGl.JE 
rs~ ( l'OLYGi:lN ) 

) ... 

PUBLIC ( DlAGONAl.._L"ENG'l'R . • • ) 
!il:'l'HOOS ( TAANSPOSE • • . I • • • ; 

Part VI Object-Oriented Systems 

A sample RECTANGLE instance is shown in Fig. 22.6. Note in particular that it 
includes the instance variables of PLANE_FlGURE and POLYGON as well as the 
instance variables of RECTANGLE per .se. Note too the implications for creating a 
"N EW" instance of RECTANGLE, and c-0ntrast the siruation with Fig. 22.7, which 
shows a relational representation of the same data. 

,..-----~-------------~·-----. 

: o::o l<REA VERTI..CES Dl.AGONAL_ LENGTH CLASS : 
I ' 

t~;;~-et_c_-~_:_~c-·:_._._. _· ~~-~-~-:_ .. _._._._ .. _._._·_· _...~~f~~j 
RECTANGLE crlo 

FIG. 22.6 Sample RECTANGLE instance 

FIG. 22.7 Relational version of Fig. 22.6 

The system will come equipped with some buihtn class hierarchies. To OPAL, for 
example (see Chapter 23), every class is considered to be a subclass (at some level) of 
Lhe buHtin class OBJECT. Builtin subclasses of OBJECT include BOOLEAN, CHAR, 
INTEGER. COLLECTION (etc.); COLLECTION in turn has a subclass called BAO (a 
bag is the same as a set. except !hat it permits duplicates), and BAO has another called 
SET (eLc., etc.). 
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Finally. we repeat another point from Chapter L9, viz;: Some systems suppon the 
notion of multiple inheritance, in which a given class can be a subclass of several 
superclasses simultaneously. In such a system, class "hierarchies" really become class 
lattices, in the sense that a given 'tchiJd" class might have several distinct "parent" 
classes (but the "hierarchy" terminology is usually :retained nonetheless). 

22.8 Miscellaneous Remarks 
• 

In this section we make a few miscellaneous observations regarding objects in general. 

l. A given object might acquire new types and lose existing types dynamically. For 
example, a given employee might become or cease to be a stockholder. The system 
must therefore support the ability for a given object to change its position Within 
the class hierarchy-e.g., to "move up and down" a given branch, or (more com­
plex) to be attached to or detached from an arbitrary node, at any time. 

2. It is ofte111 suggested that 00 technology simplifies database design and develop­
ment (as well as database use) by providing high-level modeling constructs and 
supporting those constructs directly in the system. (By contrast, relational systems 
involve an extra level of indirection in mapping real-world objects into relations, 
attributes. foreign keys, etc.) But this claim raises the question: How exactly do we 
do 00 database design? For instance, bow do we decide whether to represent a 
given collection as a set or a bag or a lii;t or an array? How do we decide whether 
to represent data explicitly (via instance variables) or procedurally (via methods)? 
And so on. 

3. Finally, we remark that in an 00 system, objects-that is, individual objects per 
se, not object classes-are: 

• the natural unit of security and authorization 

• the natural unit of recovery 

• the natural unit of concurrency 

(except where prohibited by the requirements of integrity constraints that span ob­
jects). 

22.9 Summary 

This bongs u.~ ro the end of the first of our series of chapters on the 00 approach. 
Following our discussion of the motivaling RECTANGLES example, we explained 

• Objects (i.e.. object instances). which correspond in tradiuonal lenn~ to variables 
(ii ··mutable··) or values (if"immutable'') 

• Object classes, which correspond to da1a rvpes 

• Methods and messages, which correspond to functions and calls (pOssibly asyn­
chronous calls), respecu vely 
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In addition, we pointed out that '·mutable" objects correspond specifically to ex­
plicit dynamic variabJes. in programming parlance, whichis why they have to be ac­
cessed through pointers (i.e .. OIDs-see below). 

Objects are encapsulated (i.e .• their intemaJ representation is not v1s1bJe to users 
of the object; instead. users know only that the object can be manipulated via certain 
method$). Objects are sometimes described as having a private memory and a public 
interface: The private memory is the instance variables, the public interface is the 
definitions of the interfaces to the methods. Jn a "pure" 00 system, anly the methods­
or. rather. the method exremals-are visible to the user, but many sysrems 11re not pure. 
The metbads are kept with the the class-defining object (COO) for the object in ques­
tion. 

Every object has a unique object ID (OID). A given object's OID is used to refer 
to th~ object from other objects. Program variables also refer to objects by means of 
their OID. We stressed the point that an OID is a poinJer, 11ot a value, and left some 
rather important questions regarding OIDs unanswered. See Chapter 25 for further dis­
cussion. 

We also described containmentJrlerarchies---despite ourfeeling that the eoncepj 
is misleading; iniact,Jt would be more aceurate to.regard objects nQt·asJllerarchies, but 
as (encapsulated) tuples, where the tuple components can be (a) self-identifying val­
ues, (b) simple nonshared "subobjects." (c) 01Ds of other (possibly shared) subobjects, 
or (d) various combinations of tbeforegoin;g. 

We then elaborated on the concepts of class, instance, and collection. 00 systems 
make clear distinctions among these concepts; we gave some simple coding examples 
to illustrate the point. and compared and contrasted the situation with relati<maJ sys­
tems. 

We then briefly touched on the 00 class hierarchy concept, without however 
going into very much detaiJ (because the concept bas already been described. in slightly 
different terms, in Chapter 19). Finally, we offered a few further miscellaneous com­
ments regarding objects in general. 

Exerdses 

22.1 What is an object? 

22.2 What does the term er1capsulated mean? 

22.3 rnstance variables canrep11bllc. r1riva1e, or protected. Explain. 

22.4 Wbatis the difference' between du.rs and type? 
22.5 Define the concept object ID. What are the advantages of OIDs? What are the disadvan-

tages? 

22.6 How might OIDs be implemented? 

22. 7 What is a class-de tining objeo1 '? 

22.8 What do you under.;cand by the term .. constructoc function"? Whal analogs (if any) of such 
f unclions exist in traditional pr9gramming_ languages'! 

22.9 Explain and ju8tify the conminment hierurch,1• concept. 
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22.10 Explain the ideu and com:eptuul implementuuon of ""\hared ~ubobjects."' 

22.JJ Give no example of multiple inhc:ritance 

649 

22.J 2 In Section 22.2 we gave two SQL formulat1on.'>-a long form and a shon form-Qf the 
query "Find all~tangk~ thai O\etl:fp lheunll <.quare.·· Prove that those two fonnulalionsare 
equivalent. 
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• " .. the objec1•orientcd rnodel b based on a collection of ohjec1s. An object cqntain~ 
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vulue:s stored in instance vcmables with.in the object ... these values are themselves 
objec1s .•• An object also conmins bodies of code that operate on the objt:ct ... called 
methods" f 3. 71. 

Our own understanding of what an object is is explained in Section 22.3. 
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an "ON UPDATE" foreign key rult. 

• They are noncomposite. See references [5.5-5.7) for an e:x.planation of why thi~ state 
of affairs is desirable. 

Some of the dislldvanlllges-the fact that they do not avoid the need for user keys. the 
fact that they lead to n low-level ''pointer-chasing .. sty le of programming, and the fact 
lb~ they apply to ''base .. objects only~were di:1Cussed l;>riefly in Section 22.5. 

22.6 Possible implementation techniques include: 

• Physical disk addresses (f'ru.1 but poor data independence). 

" Logical disk addresses (i.e.. page and off\et addresses; fairly fast. better data indepen­
dence). 
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dresse)). 

22.12 See reference [22.5 J. 
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23.1 lntrodudion 

ln the previous chapter we in1roduoed the basic concepts of the 00 approach. Now we 
show bow those concepts fil together by presenting a .. cradle-to-grave" example-i.e., 
we show how an 00 database is defined. how il is populated, and how retrieval and 
update operations can be performed against that database. Our example is based on one 
of lhe best known 00 systems, namely GemStone (available from Servio Corporation 
[23.2)) and its data langµage OPAL. Note: OPAL in tum was lleavily influenced by 
Smalltalk-SO (see references [22.6J and L23. lj). 

We introduce the example below. Section 23.2 then discusses data definition oper­
ations and Sections 23.3- 23.S discuss data manipulalion operations. Section 23.6 pres­
ents a summary and a few additional comments. 

1l1• Example 

The example is based on a simplified version of the education da1.4bruie from Exercise 
5.3 in Chapter.5. To recap: 

• An education database contains jnformation about an inhouse company education 
training scheme. Por each training aourse. the database contains details of all offer­
ings of that course; for each offering it contains details of all student enroJlments 
and all ~eachers for that offering. The databa~e also contains information about 
employees. 

A relational version of this database looks something like this: 

lllMPuOYEE 1 DlF ff • EJ'lt<M£, JOB 

PPU!ARY KEY l EMP• J 

COURSE I COUR~E~. TITLE l 
PEUMl\RY KEY ! COURSE# I 

OF'PERING I C:OURSO . OFF•, ODATE, i..OCATTON ) 
PR IMAR'i KEY l COURSE#, OFF~ 1 

FOREIGN KEY I COURSEi! I REFERENCES COURSE 
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ENROLLMENT ( COURSEi. OFF~ . EMP~. GRAUE l 
PRIMARY KEY I COURSE#, OFF#, EMP• l 
FOREIGN KEY I COURSEij, OFFJ l REFERENCES OFFERING 
FO!llUGN K.EY I £ MP • f REFERENCES EMP 

I 

TEACHER ( 'CGURS.Eil, OFF ~ , £MP# l 
PRIMARY KEY ( COURSE•. OFF!, EMP~ l 
FOR£ION KE:'i f COURSE# , OFF'il l REFERENCES OFFElRmG 
rOREIGN KEY I £Mn ) ~El'ERENCES El~P 

653 

Fig. 23. I gives a referential diagram for chis database. Refer 10 the Exercises and 
Answers in Chapter 5 if you require further explanation. 

I c0URS£ I 
r 

I OFFERING I 
I I 

I ENRGLLMENT I I TEACHER I 

- ·I El~fPLOYEE I 
FIG. 23. 1 Referential diagram for the. education database 

23.2 Data Definition 

w~ now proceed LO show an OPAL definition for the education daLabase. Here first is 
the definition for an object class called EMPLOYEE (tbe lines are numbered for pur­
poses of subsequent reference): 

1 OBJECT SUBCLASS 'U!PLOYEE' 
2 UISTVARNAMES # ( ' EMf'ff '. 'Ell/IME ', 'JOB ' ) 

.3 CONSTRAINTS ii ( ~ I' ENE'ff, STRINO 1 , 
ii ~ EHAME, S1'RillG I 
s 4 JOB, STP.111 I I . 

Explanation: 

• Line I defines an ob)eCI class called EMPLOYEE, a subclass of the builtm class 
called OBJECT. (In OPAL lenn~. line I is sending a messuge to the object caJled 
OB,fECT, asking ii 10 execute 1he mclhod ~!led SUBCLASS; INSTV ARN AMES 
and CONSTRAINTS specify parameters to thal method. Defining a new class­
like everything else-is 1hus done by sending a message 10 an object) 
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• Line 2 srates that objects of class EMPLOYEE have three public instance variables 
called EMP#, ENAME, and JOB, respectively. 

• Line 3 constrains the instance variable l:MP# to contain objects of class STRING. 
Lines 4 and 5 are analogous. 

Nore: Throughout this chapter we omit discussion of purely syntactic details {such as 
the ubiquitous''#" signs in the foregoing example) that are essentially irrelevant for our 
purposes. 

Next the COURSE class: 

' COURSE ' L OBJECT SUBCLASS 
Z !NSTVARNAMES 
3 CQl'ISTRAINTS 

ff I 'COURSE#'. ·~J'TWE', ' OPFEJUNGS ' 
tt I * L # COURSE~. STRING J 

4 

5 

E:xpla11atio11: 

f II Trl'LE, STarNC ] 

[ o OFF£ltl:NGS, OSE'r 

• Line 5 here specifies that instance variable OFFERINGS will contain an object of 
class OSET~r. more accurately, the OID of an object of class C>SET. * Infor­
mally, OFEERINGS will denote the set of all offedngs for the course in question. 
ln other words, we have chosen to model the course-offerings relationship by 
means of a containment hierarchy,ln which offerings are conceptually contained 
within the corresponding course. See later for the definition of the class QSET. 

Now the OFFERING class: 

l OBl!TECT SUBCLASS ' OEFERING' 
2 INSTVARNAMES ff 'OFFij', 'ODA'l'E 1 , 'LOCATION', 
l '£NT{OLLlJENTS ' , '.TEACHERS ' 
4 CONSTRAINTS tt It ~ OFF# . S'l'lUl!IG I . 
S" tt ODA'.l:E, DATE;'.PIME I . 
6 ff LOC.ATI:'ON, ST!Hl!IG ] . 
7 ff ENROLLMENTS, NSET ] . 
a ff TEAOlF.:RS, TSET l I . 

Explanation: 

• Line 7 specifies that instance variable ENROLLMENTS will contain (the OID of) 
an object of class NSET: infonnally. NSE'f will denote the sel of aJJ enrollments 
for the offering in question. Likewise. TSET will denote the set of all teachers for 
the offering ln question. Again, lher-efore. we are adopting a "containment hierar­
chy'" representation. See later for the NSET ®d TSET definitions. 

• Note that we have chosen nor to include a "foreign key" instance variable within 
objects of class OFFERING referring back to object~ of class COURSE. This de­
cision is consistent with our decision to use a containment hierare.hy. However, it 

•The ttypolheliC!tl.l $ynrnx lntroduced in Cbnpler 22 wtiuld have m3de lhis point more explicit. defining the 
in!lllnoe vnrinble OFFERINGS robe of type REFCSl31'!REF(OFFERINO)J). 
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does mean that £here is no direct way to get from a given OFFERlNO instance to 
I.he corresponding COURSE instance. We will return to this issue in the next 
chapter. 

I 
Now I.he ENROLLMENT class: 

l OBJECT SUBCL.l\SS ' 'ENROLLMENT' 
2 INS'l'1T.o\RNJ\M6S ~ I 'EM!'' . 'GRAUE' J 

) 'CONSTRlHNTS #- I • I 11 BHP. EMPCOYEE 
4 • I W OAAl'>E. S'I'IUllG 

Exp(f,lnation: 

• Again. objects of class ENROLLMENT do not include a "foreign key" insmnce 
variable referencing objects of cla.~s OFEERLNO. Note, however. that ol;>jects of 
class ENROLLMENT do include a kind of foreign key: I nstance variable EMP 
(line 3) contains I.he OID of an object of class EMPLOYEE, representing the indi­
vidual employee to whom this enrollment ~rtains. Note: The "C<!lntainment hierar­
chy" interpretation would regard that EMPLOYEE object as actually being con­
tained within I.he ENROLLMENT object, of course. But note the asymmetry: 
Enrollments are a many-to-many relationship. but the two participants in that rela­
tionship (employees and offerings) ate treated quite differently. 

Now we tum to teachers. For I.he sake of the example, we depart slightly from the 
original.relational version of the database and treat teachers as a subclass of employees: 

L EMl'LOY:l::E SUBCT.ASS 'TEACl:iER ' 
2 INS'l'\IARNAMES ~· [ 'COURSES' J 
3 CONSTAA!NTS # l # I "! COURSES. CS£T ) j • 

Explanation: 

• Line I defines an object class called TEACHER, a subclass of Lhe previously de­
fined class BMPLOYEE (in other words, TEACHER "ISA" EMPLOYEE). Thus. 
each individual TEACHER object has instance variables EMP#. ENAME. and 
JOB (an inherited from EMPLOYEE), plus COURSES, which will cQntain the 
OID of an object of class CSET. This CSET object will denote the set of all courses 
this teacher can teach. 

Now, we saw in Chapter 22 I.hat 00 systems make a clear disrinction between 
classes and collections. Indeed, the foregoing class definitions assumed the existence 
of several object collections~llecLions of offerings. collection~ of enrollments, col­
lections of teachers, and $0 on-but no such collections have yet been defined. Let us 
therefore define a "collection" object class for each of the five classes defined above: 
we will name them ESET. CSET. OSET, NSET, and TSET. respectively. An object of 
class CSET, for example. will consist of a set of OIDs for individual objects of clas;; 
COURSE. Here then are the definitions: 

l SEi' S~ASS 'eSET' 
2. CO.NS'l'RAINTS EMPLOY.EE 
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Explanation: 

• Line 1 defines an object class called ESET. a subclass of the builtin class called SET. 

• Line 2 constrains objects of class ESET to be sets of (OIDs oO objects of class 
EMPLOYEE. To general, there could be any number of objects of class ES.ET. but 
we will create just one (see Section_ 23 . 3 ), which will contain the set of OIDs of all 
EMPLOYEE objects (referred to loosely in what follows as "the set of all employ­
ees"). InformaJJy. that ESET object will be the 00 analog of the EMPLOYEE base 
relation in the rel ational version of the database. 

• Observe that objects of class ESET have no public instance variables. 

The CSET, OSET. NSET, and TSET definitions are analogous (see below). In each 
of these cases, however, we will d!'{initely have to create several objects of the relevant 
class, net just qpe. For example, there will be as many OSET object& as there are indi­
vidual COURSE objects. See Section 23.3 for the detaifa of actually creating these 
several "set" objects. 

SET SUBCLASS 'CSET' 
CONSTRAIN'I)S COURSE 

SET SU.BcLASS 'OSET' 
CONSTRAINrS OFFERING 

SET SUBCLASS "NSET' 
CONS'l'RAINTS Et:iROLLMENT 

SET StlBCLASS 'TSE:r'' 
CONS'l'RATNTS TEACRER 

To conclude this section, Fig. 23.2 (opposite) gathers together aJJ of the foregoing 
definitions (and reorders them) for ease of subsequent reference. That figure will serve 
as a basis for the manipulative e:1'amples to be presented in the rest of this chapter. 

23.3 Populating the Database 

Now we consider what is involved in populllting this database. We consider each of the 
five basic objear types (employees, courses, offerings, enrollments, teachers) in tum. 

-=mployees 

Recall that we intend to collect together the OIDs of all EMPLOYEE objects in an 
ESET object, so first we need to create that ESET object: 

QID_OF_SET_OF_ALL_ EMPS : "' E!irt NEW . 

Explanaticm: 

• The eJCpression on the right·hand side of this assignment returns the OID of a new. 
empty instance of class ESET (i.e .• an empty set of EMPLOYEE OIDs.): the OID 
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SET SUBCLASS 'ESET' 
CONS'TRAINTS EMPLOYEE 

SE'!' SUBCLASS ' CSE'!'' 
CONSTRAINTS COURSE 

SET SUBCLASS 'OSET' 

CONSTRAINTS OFFERING 

SE't. SUBCLl\SS 'NS:E'l'' 

CONSTRAINTS ENROLLMENT 

SET SUBCLASS ' TSET' 

CONSTRAINTS 'ttACflER 

OBJ.EC'!: SUBCLASS ' EMPLO'f:E£' 
INSTVARNJIMES t ' EMPf ' , 'EN»ra' , •JOB' I 
CONST RA:tNTS t [ II • "EMPil, STRTNG J , 

[ ~ ~. STRING I 
[ # JOB, S'l'RING ] l . 

OBJECT SUB~S 'COURSE' 

INSTV1\.RN1\MES • l 'COUR.SE11 ' , 'TITLE' , 'OFFERINGS ' 

CONSTRAINTS • [ # ~ COURSE#. STRING J 
W TI'I'.LE , S'r:RING J 
• OFFERINGS, OSET 

OBJECT SUBC1'ASS ' OFFERING ' 
INSTV.l\:RNAMES • [ ' OFF~ ' , 'OOATE ' , 'LOCA'l'ION', 

'ENROLLMENTS' , 'TEA~HBRS' 

CONSTRAINTS 11 l 11 I • OFF~, STRING I , 
( ~ ODATE , DA'l'ETIME ] , 

[ 11 LOCATION, STRING 1 , 
[ • ENROLLMENTS. NS.ET f , 
[ i TEACHERS, TSET ] J • 

OBJECT SlJBC!JASS 'ENROLLMENT' 
INSTV~RNAMES I [ 'EMP', 'GRADE' 
CONSTRAIN'l'S t [ Ii -· EMP, EMPLOY-EtE 

I ii GRADE, S'mING 

EMPLOYEE SIJBCLASS 'TEAO!ER' 
INS'rw>.RNAMES ij I 'COURSES' 
CONSTRAINTS !I- I -~ l • COURSES, CSET J J -

FIG. 23-2 Data definition for the education database (00 version) 

657 
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of that new instance is rhen assigned 10 the program variable OlD_OF_SET_ 
OF_ ALL_EMPS. Informally. OID_OF_SET_OF_ALL_~S will be used to 
identify "the set of all employees.·· 

Now. every time we create a new EMPLOYEE object we want the OID of that 
object to be insened into the cSET object identified by lhe OID saved in the variable 
OID_OF _SET _OF _ALL_ EMPS. We therefore define a method for creating such an 
EMPLOYEE object andJnserting its OID into thatESET object: 

l ME'l'.HO.D : ESE!I 

2 AOO_EMPM EMi'CPARH 
3 ADD_ENAME : EIDIME_PA.'ilol 

~ llDO_ JOB' : JUl!_PA.'lM 
5 I E!MP_Om 
6 EMP_Or:D := BMPLO'lEE NEW 

7 El1P_OLD SET:_Elil'W : EMP•_PA-RM 
a SET_e~V>iME ! ENAME_PARM 
9 SET_Joe : JOB_PARM 

10 SELF ADD: :EME_Om • 

ll "Ii 

Explanation: 

t • anonym<>\J.S ! 
I' parameters 

I ' local variable • t 
I • new employee • I 
t • i.nii:1a li:.e • / 

, • Utsert; ., 

• Line L defines the code that follows (up to the terminating percent sign in line 11) 
to bea method that applies to objects of class ESET. (In fact, of course, exact/yon( 
object of that class will exist in the system at run. time.) 

• Lines 2-4 define three patameters. with external names ADD_EMP#, ADD_ 
ENAME. and ADD_JOB. These names will be used in messages that invoke1be 
method. The correspondingintemal namesEMP#_PARM. ENAME_PARM. and 
JOB_PARM win be used in the code that implements the method. 

• Line 5 defines EMP_Ol D to be a local variable. and line 6 then assign!; to that 
variable the OID of a new, uninitialized EMPLOYEE instance. 

• Lines 7-9 send a message to that new EMPLOYEEinstance; the message specifies 
three methods (SET_EMP#. SET_ENAME, and SET_JOB) and passes one paratn­
eter to each of them (EMP#_PARM to SET_EMP#. ENAME~PARM to SET_ 
EN AME, and JOB_PARM to SET_JOB). Note: We are assuming here that SET_ 
EMP#t is a method that applies to an EMPLOYEE object and bas the effect of 
setting the BMP# instance variable within that object to the specified value, and 
similarly for SET_ENAME and SET_J0B. We will have a little more to say re­
garding these three methods in just a moment. 

• Line I 0 sends a message to SELF, which is a special variable that represents the 
object to which tbe mechod being defined is currently being applied (i.e .• lhe cur­
ren1 receiver or target object). The message causes the builtin method ADD 10 be 
applied to that object (ADD is a method that is understood by every "collection"-
1ype class); the effect in the case at hand is to insert. the OID of the object identified 
by EMP_OID into the object identified by SELF. Note: The reason the special 
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variable SELF is required is that the parameter corresponding to the receiver object 
is otherwise unnamed. 

• Note that-as pointed out by the comment in line I-the method being defined Ls 
likewise unnamed. ln general, ~ n fact, methods do not have names in OPAL. but 
instead are identified by their signature (i.e., the comoination of the name of the 
class to which they apply and the external names oLtheirpacamerers). This conven­
tion leads to awkward circumlocutions, as can be seen. Note too another slightly 
unfonunate implication-natnely. that if two methods both apply to the same class 
and take the same parameters, those parameters must be given arbitrarily different 
external names in the two methods. 

Now we have a method for inserting new EMPLOYEEs into the database, but we 
still have not actually inserted any. So let us do so: 

OID_OF_SET_OF_ALL_EMPS ADD_ENPfi •E009'. 
ADD_ENAME : 'W<1tt', 

ADD_JOB : ' Janitor ' 

This statement (a) creates an EMPLOYEE object for employee E009 and (b) adds (the 
OID ot) that EMPLOYEE object to the set of (OJDs 01) all EMPLOYEE objects. 

Note. incidentiilly, that the builtin NEW methed must now never be used on class 
EMPLOYEE other than as part of the method we have just defined-for otherwise we 
might create some dangling EMPLOYEE objects, i.e., employees who are not repre­
sented in "the set of ~J employees." Note: We apologize for the burdensome repetition 
of cumbersome circumlocutions like "the set of all employees" and "the method we 
have just defined," but it is not easy to talk about things that have no name. 

To conclude our discussion of the employees case, we must say something regard­
ing the methods SET_EMP#, SET_ ENAME, and SET_JOB. As explained in Chapter 
22, a pure 00 system will not expose instance varfables to the user; instead, it will 
permit objects to be manipulated solely by means of metheds (encapsulation). ln ac­
cordance with this principle, we will adopt the convention throughout this chapter ihat 
instance vartables are indeed hidden; if a class definition in fact defines a "public" 
instance variable v, we will treat that definition as shorthand for the delinitiol'l of a pair 
of methods GET_11 and SET_v, where GET_ v returns the value of v to the caller and 
SET_11 sets v to the value specified by the caller. 

Courses 

Employees really represent the simplest possibJe case, since they correspond to "regu­
lar entities" (to use the terminology of the E/R model), and moreover do noc contain any 
other objects embedded within themselves. We now move on to consider the more 
complex case of r:ourses, which-although still "regulfil entities"---<lo conGepcualJy 
include ceitili.n other objects embedded within lhem. In outUne, the ~reps we must go 
through are as follows: 

l. Apply the NEW method to class CSET to create an initially empty ":set of all 
courses'' (actually COURSE OIDs). 
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2. Define a method for creating a new ~OUR SE object and inserting iL~ OID into "the 
set of all courses." That method will take a specified COURSE# and TITLE as 
parameters and will create a new COURSE object with the specified values. It will 
also apply the NEW method to class OSET to create an initially empty set of offer­
ings (actually OFFERING OlDs'). and will then place the OID of that empty set of 
offerings into the OFFERINGS position within the new COURSE object. 

3. lnvoke the method ju$t defined for each individual course in tum. 

Offerings 

The "offerings" steps are as follows: 

I. Define a method for creating a new OFFERJNG object. That method will take a 
specified OFF#, ODATE. and LOCATION as parameters and will create a new 
OFFERING object with those ~pecified values. It will also: 

• Apply the NEW me1h0d to class NSET to create an initially empty set of enroll­
ments (actually ENROLLMENT OlDs). and then place the O.ID of that empty 
set of enrollment~ into the ENROLLMENTS position within the new OFFER­
ING object. 

• Apply the NEW method to cla..~sTSET to create an initially empty set of teachers 
(actually TEACHER OlDs), and then pJace the OID of that empty set of teachers 
inro the TEACHERS position within the new OFFERING object. 

2. The method will also lake a COURSE# parameter. and will use that COURSE# 
value to: 

• Find the c0rresponding COURSE object for the new OFFBRING object. See 
Section 23.4 for an explanation of how !,his mighr be done. Nore: Of course. ihe 
method must reject the attempt to creare a new offering if the corresponding 
course cannot be found. We omit further consideration of such exception cases 
from the rest of our discussions. 

• Hence. locate "the set of all offerings" for that COURSE object. 

• J1ence. add the OID of the-new OFFERING object to the appropriate "set of all 
offerings." 

Noce carefuUy. therefore, that (a~ mentioned in Chapter 22) OIDs do not avoid the 
need for ui>er keys such as COURSE#. Indeed, such keys are needed. not JUSt to 
refer to objects in the outside world. but aJso 10 serve as the basis for lookups inside 
the database. 

3. Finally, invoke the method just defined for each individual offering in turn, 

Note. incidentally, that (in keeping with ourcontainmenchlerarchy representation) 
we have chosen not to create a "~et or all offerings." One implication of this omission 
is that any query that requrres that set as its scmpe-e.g., "Find all offerings in New 
York"- wiU involve a cenain amount ofproceduraJ workaround code. 
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Enrollments 

The difference in kind between the enmllmenis and offerings cases is that 
ENROLLMENT objects include a

1
insrance variable of class EMPLOYEE-namely, 

the variable EMP. whose va1ue is the OID of che relevant EMPLOYEE object. Renee 
the nece-ssary sequence of steps is as follows: 

I. Define a method for creating anew ENROLLMENT object. That method! will rake 
a specified COURSE#. OFF#, EMP# and GRADE as its parameters and will create ._ 
a new ENROLLMENT object with rbe specified GRADE value. l t will then: 

• Ose the COURSE# and OFF# values to find che corrcspondin.g OFFERING ob­
ject for rbe new ENROLLMENT object. 

• Hence, find "the set of all enrollments'" for thar OFFERING object. 

• Hence, add the OID of the new ENROLLMENT ot>ject to the appropriali! "set of 
all enrOllments." 

Lt will also: 

• Use the EMP# value ro find the relevant EMPLOYEE object. 

• Hence, place theOJD of that EMPLOYEE object in 1he EMP posrtion within the 
new ENROLLMENT object 

2. Invoke the method ju~t defined for each individual enrollment in tum. 

Teachers 

The difference in kind between the teachers and offerings cases is that TaACHER is a 
subclass of EMPLOYEE. Hence: 

l. Define a method for creating a new TEACHER object That method will take a 
specified COURSE#. OFF#. and EMP# as its parameters. it will then: 

• Use the EMP# value to find the relevant EMPLOYEE object. 

• Convert that EMPLOYEE object into a TEACHER object (~;nee chat employee 
is now additionally a teacher, refer back to Section 22. 7 if you need to refresh 
your memory regarding the representation of superclass/subclass objects in an 
00 system). 

It wW also: 

• Use the COURSE# and OFF# values to find 1111: corresponding OPFERING ob­
ject for the new TEACHER objec1. 

• Renee. find "the set of all teachers" for that OFFERING objecL 
• Hence, add the OID of the new TEACHER object to the npproprillle ··set of all 

teachers." 

2. In addition, the set of courses this teacher can teach must be specified somehow 
and the COURSES instance variable set appropriately in rhe new TEACHER ob­
ject. We omil the details of rhii, s1ep here. 

3_ Invoke the method just defined for each mdividual reacher in tum. 
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Relational Analogs 

For comparison purposes. we close this section with a reminder of what is involved in 
populating the relational version of tbe education database. Here, for example, is the 
SQL code to insert employeeE009 into the database: 

!NSBR'I' IN'l'O EMBL-OY8E ( t:MPil , ENAME!, JQB ) 

VALUES ('EOIJ!I'. 'Watt'. 'Janircrr') ; 

Some further examples: 

INSE:RT IWl'Q COURSE .I COURSE# , 'l'rTLE \ 
VALUES { • COOl', 'Dat.abase '.J;Ecbno.lc;>gy 1 J 

INSERT INTO OFFERlNG ( COURSEo, OFn, ©DATE, LOCATION I 
VALU!>S ( 'C001 ', ' 001 ', DATE" ' ~4 01 18', 'COG ' ) 

UISERT mTO ENROLLMENT ( COORSEli , OPF;<, l;)!IP~ , GRMlE ) 
vAiiUEs 1·coo1•. •004•, •Eoos·. "l ; 

And so on. Note in particular that tbe information the (end) user must provide in order 
to inSert, say, a new eorollmenl is exactly the same in botb tbe relational and the 00 
case. 

23.4 Retrieval Operations 

Before getting into details of retrieval operations as such, we make the point (though it 
.should already be obvious) that OPAL-like 0 0 languages in general- is essentially 
record-at-a-time, not set-at-a-time. B ence, most problems will require some program­
mer to write a block of procedural code. 

We consider a single example-the query "Find all New Yor k offecings of course 
COOl." We suppose for tbe sake of the example that we llave a vllriable called 
OOSOAC whose value is the OID of "tbe set of all courses:• Here then is tbe code: 

1 COVRSE_COOL , CQOl_OPFS • COOl_NY_OFFS I 
2 COVRs E_COO l 
3 ,: OOSOAC DETECT : l :CX I •coo1 • = ex GET_COUR$1!;~ 1 • 
4 COO l_OFFS 
5 c= COURSE_COOl GET_OFFERINGS • 
6 COOl_ NY_OFFS 
7 : ; CD01_0F£S SFf;Fr:rr : 1 : Ox_ I 'l'lew York' " OX G.EJ'_LOCA'l'lON J • 
8 C00l_NY_ OFF5 

Explanation: 

• Line 1 declares three local variables-COURSE_ COO I. which will be u.~ed to hold 
tbe OID of course COO I; COO !_ OFFS. which will be used to hold tbe OID or '·the 
set of all offerings" for course eOO I: and coo·1 _NY_OFPS. which will be used to 
hold the OJD of the set of OIDs of the required offerings. 

• Lines 2- 3 send a message to the object denoted by the OOSOAC variable. The 
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message calls for 1he builtin DETECT method to be applied 10 tha1 objecL The 
DETECT argument is a block of code of the form 

I :x I p lx l l 

Here p(.t) is a conditional exprtssion involving the variable x. and xis effectively a 
range variable that ranges over the members of the set to which the DETECT is 
applied (i.e., the set of COURSE objects, in the example). The result of the 
DETECT is I.be OID of I.be first object encoumered in that set that makes p(x) 
e.valuate to true-Le., it is tbe COURSE object for course COOl , in the example. 
The 0 10 of thar COURSE object is then assigned to the variable COURSE_ COO I. 
Nore: [tis also possible to specify an "escape" argument to DETECT to deal with 
the case in which p(x) never evaluates to true. We omit the details here. 

• Lines 4-5 assign the OLD of "the set of all offerings" for course COOl to the vari­
able COOl_OFFS. 

• Lines 6-7 are rather similar to lines 2-3: The operation of th.e builtin SELECT 
method is the same as that of DETECT, except that it returns the OID of the set of 
OIDs of all objects (instead of just the first) that make p(:c) evaluate to true. In the 
example. therefore, the effect is to assign the OID of the set of OIDs of New York 
offerings of course COO! to the variable COOJ_NY_OFFS. 

• Finally, line 8 returns that OID to the caller (the symbol "is used to mean "Dis­
play" or "Return result"). 

Points arising from this example: 

1. First, note that the block of code in SELECT and DETECT can involve (al its most 
complex) a set of simple scalar comparisons all ANDed together-Le .. it i5 a lim­
ited form of restriction condition. 

2. The square brackets soooundin,g the block of code in SELECT and DETECT can 
be replaced by curly brackets (braces). lf curly brackets are used, OPAL will at­
tempt to use an index (if an appropriate index exists) in applying the method. If 
square brackets are used, it will not. 

3. When we say that DETECT returns the OID of the ''first" object encountered that 
makes p(::c) evaluate to true, we mean, of course, the first according to whatever 
sequence OP AL uses lo search the set (sets have no intrinsic ordering of their own). 
ln our example it makes no difference, because the "first" object that makes the 
condition true is in fact the only such. 

4. The observant reader will have noticed that we have been using expressions such 
as "the DETECT method," whereas we pointed out previously that methods have 
no names in OPAL. Indeed, DETECT and SELECT are not method names (and 
phraseolo.gy such as "the DETECT method" is strictly incorrect). Rather, they are 
external parameter names for certain builtin (and unnamed) methods. For brevity 
and simplicity. however. we will continue l'O talk as ifDETECT and SELECT (and 
olher similar items) were indeed met.hod n11111es. 

11 5. The observant reader might also have noticed that we have been using (many 
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times!) I.he expressiol) .. the NEW me1bod.'' This usage is in fact not incoi:rect: 
Methods rhat take no arguments olher than a receiver are an exception to the gen­
eral OP AL rule that methods are unnamed. 

Now, I.he foregoing simple example does not illustrate rhe point, but (becau~ of 
I.he record-at-a-time level of the OPAL language) many retrieval problems will natu­
rally require the execution of <m"e or more loops. OPAL supports loops by means of a 
special DO method A message that invokes DO is similar infonn to one that invokes 
SELECT or DETECT: 

object DO < [ : X I block-of•t:ode ) 

Here x ranges over the members of the set denoted by object, and block-of code is 
executed for each ~"Ucb member in tum. Using 6ET_1• and SET_1• methods. that code 
can retrieve instance variables wilhin the individual objeclS p(the set (or update them, 
of course, but retrieval is the topic currently under discussion). 

IFTRUE .and lFFALSE methods are also available to support conditional code 
execution. We omit the details here. 

23.5 Update Operations 

The 00 analog of INSERT bas already been discussed in Section 23.3. The 00 ana­
logs ef UPDATE andDE.LETE are discussed below. 

Update 

Updating operations are performed in essentially the same manner as retrieval opera­
tions, except that SET _v methods are used instead of GEIT _v methods. 

Delete 

The builtio method REMOVE is used to delete objects. More precisely, it is used to 
remove the OID of a specified object from a specified collecuon. When an object 
reaches a point when there are no remaining reference!> 10 it-i.e .. it cannot be accessed 
at all-then OJ? AL deletes it automatically by means of some kind of "garbage collec­
tion" process. Here is an example: 

QID_OF_ SET_OF_ ALL_ EMPS 
REl<IOVE ' DETECT : r : EX • EOO 1 • = e:x GET_El<IP~ l . 

("remove employee EOO I from the set of all employees"). 

But What if we want to enforce (say) a "DELETE CASCADES" ruJe?-for exam­
ple. a rule to the effect that deleting an employee is to cascade and delete (e.g.) all 
enrollments for that employee as well? The answer. of course, is that we have to imple­
ment an appropriate method once again; in other words. we have to write some more 
procedural code. 

lncidcntally. it might be thought that the garbage collection approach to deletion 
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does al least implement a kind of ·'DELETE RESTRICTED" rule. inlllilTluoh as an ob­
ject is not actually deleted so long a.~ any references lo that object exisL However, such 
is not necessarily the case. For example, OFFERING objects do not include the OID of 
the c0rresponding COURSE objec., and hence offerings do not "restrict" DELETEs on 
courses. 

(ln fact, containment hierarchies tacitly imply a klnd of "DELETE CASCADES" 
rule. unless the user chooses either 

• to include the parent OID in'lhe child, or 

• to include the child OID in some other object elsewhereln the database. 

in which case the "containment hierarchy" interpretation no longer makes sense any­
way. See the discussion of i111•erse 11ariables in Chapter 24.) 

Note finally that REMOVE can be used to emulate a relational DESTROY or SQL 
DROP operation--e.g .. to destroy the ENROLLMENT class objecL The details are left 
as an exercise (highly nontrivial) for the reader. 

23.6 Summary 

This brings us ro the end of oar ''cradle-to-grave" example. Our example wa:s based on 
OPAL, a dialect of Smalltalk-SO supported by the Gemstone product. We began by 
discussing data «kfinition <>peralions. showlng how object classes are created in 
OPAL And pointing out that we typically need both (a) a "base" object class, such as 
EMPLOYEE, that allows us to create individual object instances. and (b) a ''oollection" 
abject class. such as ESET. that allows us to gather together setJ> of s\ICh object in­
stances into one or more cQllections. The reasan both arc needed, of coul'$e, is that the 
base object class is just a type declaration: thus. some collection object class is required 
to hold (pointers to) actual object instances. 

We then considered in some detail what is involved in populating the database, 
showing how appropciate methods mlght be written. Those methods were fai:dy non­
trivial. involving as they did a great deal of procedural adjusrment of existing objects in 
order to maintain (00 analogs of) cenain referential constraints. (Note: We will have 
more to say regarding referential constraints in the next chapter.) We stressed the point 
that au "insert" operations must be performed via those defined me1hods, not directly 
via the builtin NEW method. We also pointed out that user keys are still necessary; in 
particular, the information the end user has lo provide on "insert" is exactly t.he same in 
the 00 case as it would be in 1he relational case. 

Ne:ict. we consideted retrieval operations. Since 00 systems ure essentially 
record-at-a-rime. retrieval operations (like everyth:lng else) tend robe fairly procedural 
in nature. However, we did give examples of the OPAL DETECT and SELECT meth­
ods, wh.icti are slightly less proeedural 1han some. 

Last, we considered update operations. ~update'· pttr sc is very ~imilnr to retrieval. 
except for the use 0( SET_., methods instcud of GET y methods. "Deletion" i1i done 
via the REMOVE method and a garbage collection proce~s (jn OPAL, lhat is: some 
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00 systems do support deletion in a more explicit manner). We briefly discussed th.e 
implications of this latter fact for foreign key rules such as RESTRICTED and 
CASCADES. 

Miscellaneous Issues 

We close this section (and this chapter) with a few miscellaneous remarks regardi11g 
00 database operations in general. 

• First, consider the following rwo methods: 

1. Find the courses auended by employee E 

2. Find the ell:IPloyees attending course C 

These two methods are clearJy·.inverses of each other. but they must be separntely 
denned-i.e .. two separate pieces of procedural code must be written. What is 
more, of course, maners get combinatorially worse as the number of unknowns in­
creases. For instance. suppose we.have courses. employees, and grades. Then each 
of the following queries will require a different method to be explicitly defined: 

1. Ffndtbe grade obtained by employee Eon course C. 

2. Find the employees who obtained an .. A" on course C. 

3. Find the courses on which employee E obtained an "'A". 

4: Find the grades obtained by ernpl<>yee Eon all courses. 
{ecc., etc., etc.). Furthermore, it is not at all clear which object(s) these method{s) 
should be applied to: to find the grade obtained by employee E on course C. for 
example, do we send a message to E or to C? (See Chapter24 for funherdiscussion 
of this latter point.) 

The relational approach, of course, solves all of the foregoing problems very 
nicely. First,, we have the ENROLLMENT relation. which represents aJJ relevant 
information in a completely symrneuic manner: 

ENROLLJ1ElllT I COIJRSE~ , OFFff , EMPll , GRADE ) 

Each of the queries mentioned above can then be represenled by a single relational 
request against this relation: there is no need to define lots of different methods, 
with different (in some cases. arbitrarily different) arguments. The details are left· 
as an exercise to the reader. Relational systems thus provide symmetdc exploita­
tion f4. I l: The user can access any given relation with aay combination of attribute 
values as "knowns" and retrieve the other attribute values as the corresponding 
"unknowns." 00 systems, by contrast, do not pr9videsymmetric exploitaUon. 

• Note that we have said nothing so far in this chapter regarding relational operators 
such as jQin. What would it mean to join two objects? What class of object would 
the result be? What would its OID be? 

1t1 fact, 00 systems typically support path expressions mstead of join. For 
example, we might write 
ENROl..L . OFFERING . COURSE . COURS8o 

to obtain the course number of t.h.e course of the offering of the enrollment whose 
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OLD is given in the v.ariabJe ENROLL. Such an expression is theOOcquivalcnt of 
a cenain relatfonaJ expression (involving rwo joins and a projection). Bu.t note that 
such "joins" ar:e therefore limited (a) to predefined paths only. and (b) to many-to­
one joins enly. Nore too lh:at sutll "joins'' do not yield new objects, i.e., they simply 
naviMte through the database to lecate existing objects. 

• We musrnot conclude our discussion of 00 database operations without consider­
ing lhe question of how much of what we have seen is intrinsic to 00 "'l'Stems in 
general and how much is dut merely ro quirks of OPAL specifically. ft seems Lo 
this writer that-in principle, at least--certaia of the complexities we have been 
examining couJd have been avoided; for example, the fact that receiver parameters 
are unnamed and1he fact that methods are unnamed both seem to lead to unneces­
sary complications. But other a'>pects of "the 00 model." such as the heavy em­
phasis on pointers and the record-at-a-time nature of programming and the fact that 
objects !-hemselves are unnamed, seem to be more inherent. and some of the com­
plexity we have seen is due to such matters also. 

Exercises 

23.1 Design llll 00 version of the suppliers-and-parts database. Nore: This design will be used 
as a basis for Exercises 23.2-2.3.4 below. 

23.2 Write a suitable sel of OPAL data definition statements for your 00 versio11 of the 
suppliers-and-parts datiibase. 

23.3 Sketch the details of the necessary "database populating" methods for your 00 version or 
the suppliers-and-parts databa-se. 

23,4 Write OPAL code for the following queries on your 00 version of the suppliers·nnd·parts 
databa_~ : 

(a) Get all London suppliers. 

(b) Gelallredpans. 

23.S Consider the education database once again. Show what is involved in (a) deleting an 
enrollment. (b) deleting an employee, {c) deleting a course (n,~suming in every case lhru 
the OPAL-style garbage collection process applies). State any assumptions you make re­
garding such matters as "DELETE CASCADES," "DELETERESTRTCTED."" etc. 

23.6 Suppose the suppliers-pans-projects database is to be represented by means of a single 00 
containment hierarchy. !:low many possible such hierarchie.~ are there'? Which one i& be~t? 

23.7 Consider a varfacion on the suppliers-parts-projects dat.abnse in wnich, inMendl of record· 
ing that cenain suppliers supply certain pans to certain projects, we wish to record only 
that (ii) certain suppliecs supply certain parts, (b) certain parts are supplied lo ci::nain pro­
jects. and (C) certain projects w:e supplied by certain ~appliers. Row niany possi\llt: 0 0 
designs are there now (with or without containment hiemrchles)? 
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23.1 Geerge Copeland and David Maier. "Making Smalltalk a Daiabase Sysuim" rProc. 1984 
ACM SfGMOD lntemnt.ional Conference on Management or Daw. Boston. Mass. (June 
1984). Republished in M. Stonebraker (ed.). Readi11gs 111 Datdba.re Sy.1·1t!111S. San Mnicrt. 
Calif.: Morgan Kaufmann ( I 988). 
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Describes some of the enhancemcnL~ and changes that were made to Sm:rlltalk-80 122.61 
in order to ecc:ne GemStone and OP AL. 

23.2 Servio Cgrporation. GemSume Referern·e Mumwl. Beavenon, Ore. ( 1990). 

Answers to Selecte~ Exercises 

23.S We do not give a de\ailed answer to this que~tion. but .we do make one remark concerning 
lts diffieulcy. First. let us agree 10 use the term ''delete .. as a sbonhand 10 mean .. make a 
candidate for physical dele1ion" {i.e.. by erasing all references IQ the object in question). 
Then in order to delete an object X. we must first tind all object.S Y that include a reference 
to X; for each such object Y, we musl then either delete that object Y. or at least erase the 
reference in that object Y to the object X (by setting thaueferenc.e to the sgecial value nil). 
And pan of the problem .is that i1 is not possible 1.0 tell from !be data defmirion alone 
exactly which objects include a reference to X. nor even how many of them there are. 
Consider employees. for example, and the object class ESET. ln princi.ple. there could be 
any number of ESET instances, and any subset of thoseESET instances could include a 
reference to some specific employee. 

23.6 There are obviously six pos$ible hierarchies: 

S cont:alns ( P cbntai..ns J ) ) 

S con~alns ( .ol contdlns p 

P co=alns \ J contains s 
p COT1La1-as ' S contailns J 
J cont;nrn> S con~ai.ns p 

J cont:atns ( P contains ( s I 

'"Which is best?" is unanswerable withoul additional information. but almost certainly all 
of them are bad. 

23.7 There are at least twelve "'obvious,. containment hierarchy designs. Here are four of them: 

s conrains P contains I J 

S contains J conlains I P 
s contains .first: P t:hen ;J 

s contains t.irst J then P 

There are many other candidate designs-for example. an '"SP" object that shows directly 
which. supplier,; supply which parts and also include~ two embedtled sets of projecl6, one 
for the supplier and one for the part. 

There is also a very simple design involvmg no hierarchies at all. consisting of fill 
"SP" objec(, a "'PJ'' object. and a "JS" object. 
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24.1 Introduction 

In this chapter we take a brief look at a somewhat mixed bag of issues. The issues in 
question are all part of what is usually thought of as the general subject of 00 systems, 
though in fact-despite the overall title of this chapter-every one of those issues is 
actually quite independent of whether the system is object-oriented or not; there is no 
reason, for example, why a database programming language should not be used with a 
_relational system (see. e.g .. reference [24.2)). The issues are: 

• Database programming language.~ 

• Versioning 

• Transaction management 

• Schemaevolution 

• Performance considerations 

We also consider some more Lradilional aspect.~ of database management and see 
how they lookin an 00 context. Specifically. we examine: 

• "Relationships" (i.e .. referenttal integrity) 

• General integrity constraints 

• "Methods that span classes" (i.e .. multi-argument functions) 

• Ad hoc query 

plus a few miscellaneous items. Our discussions will lead to a number of Important 
questions regarding 00 systems. 

24.2 The Issues 

Database Programming Languages 

The OPAL example~ in !.he previou~ ehap1cr illustrate the point that 00 systems typi­
cally do no! employ the embedded databus1• /ang11a,1w approach found m most (SQL) 
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relational products today. Instead. the same integrated language ls used for both 
dai.abase operations and nonctatabase operations, To use the terminology of Chapter 2. 
the host language and the database language are lightly coupled in 00 systems (in fact, 
of course. the two languages are one and the same). 

Now, it is undeniable that there are many advantages to such an approach [24.2]. 
One important one is the improved type checking that becomes possible. a.<; discussed 
in Chapter 19. And reference (22.12] argues that the following is another: 

"With a single unified language, there is no impedance mismatch between a proce­
dural programming language and an embeddedDML with declarative semantics." 

The tenn impedance mismatch refers to the difference in level between today's typi­
cal programming languages, which are record-at-a-time, and relational languages such 
as SQl. which are set-a[-a-time. And it is true that this difference in level does givelise 
to certain practical problems in relational products. However, the solution to those 
problems is not to bring the database language down LO the record-at-a-time level 
(which is what 00 systems do)!- it is to introduce set-at-a-time facmties into pro­
gramming languages instead. The fact that 00 lal)guages are record-at-a-time is a 
throwback to the days of prerelational systems such as IMS and IDMS. 

To pursue this Latter point a moment loTiger: It is indeed the ca~ that most existing 
00 languages are quite procedural or "3GL" in nature. As a consequence, all of the 
relational set-level advantages are lost; in particular, the system's ability to optimize 
user requests is severely undermined, which means that-as in prerelational systems-­
performance issues are largely left to some human user (the application programmer or 
the D,BA). Wllat is more, (a) most installations currently use several distinct host lan­
guages anyway, not a "single language" (unified or otherwise); Cb) in an 00 system, 
that "siogJe unified language" is likely to be OP AL. C++. or some otl\er 00 language 
that is unfamiliar to most installations. 

As an aside. we remark that although many 00 languages have been defined, the 
two most commonly seen in the marketplace are indeed OPAL (or some other dialect 
of Smalltalk) and C++. C++ in particular (24.6,24. I 0) is supported by most commercial 
products and looks like becoming a de fe.cto standard (de-spite the fact that It is not 
very "00-pure"). Efforts are al~o under way to define an official standard version 
ofC++_ 

Note: Our discussions in this subsection have been concerned specifically with 
programming languages, not with query languages. Indeed. as mentioned in Chapter 
22, the idea of ad hoc query is somewhat at odds with the "pure" 00 idea of object 
encapsulation; bowev.er. most 00 systems do provide some kind ot query language 
(usually a derivative of SQL, With a name like "Object SQL" or ' 'OSQL," though the 
reader is cautioned that such languages often do not look much like conventional SQL). 
Another point of difference 1•is-a-vis relational systems, therefore. is that 00 systems 
typically ase two different languages. one for application programming and one for 
interactive q,uery; thus, they typically do nol support the dual-mode pr.inciple (see 
Chapcer 8, Section 8.8). 

We will consider the question of qd hoc query further in Section 24.3. 
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Versioning 

Many applications need the concept of multiple versions of a given o~ject; examples 
include software develop ment, har~ware design. document creation, and so forth (see, 
e.g .• references [24.4.24.8-24.9)). And some 00 systems support this concept directly. 
Such.support typically includes: 

• The ability to create a new version of a given objecc, typically by checking out a 
copy of the object and movi,pg it from the database IQ the user.'s private worksta­
tion, where it can be kept and modified over a possibly extended period of time 
(e.g .• hours or days) 

• The ability to establish a given object version as the eurrent darabase version, cyp­
ically by checking it in and moving it from the user's workstation back to the 
dacabase (which might in tum require some kind of mechanism for merging dis­
linct vecsions) 

• The ability to delete (and ~chaps archive) obsolete versions 

• The ability to interrogate the version history of a given object 

Note that-as Fig. 24.1 suggests-version bistorieii are noc necessarily linear (ver­
sion V .2 in that figure branches into two distinct versions V .3a and V.3b, which are 
subsequently merged to produce version V.4). 

Next, becaU$e abjects are typically interrelated in various ways, the concept of ver­
sioning leads to the concept of configurations. A configuration is a collection of mu­
tually consistent versions of .interrelated objects. Configuratian support typical1y includes: 

• The ability to copy an object version from one configuration to another (e.g .. from 
an "old" oonfigura~on to a "new" one) 

• The ability to move an object version from one configuration to another (i.e., to 

add it to the "new" configuration and remove it from the "old" one) 

Internally, suctloperations basically invoJve a lot of pointer juggling-but there 
are major implications (beyond the scope of this book) for language syntax and seman­
tics in general and ad hoc query in particular. 

I I 
IV .)a I 

I v.i I , I 
V.2 I I I 

<!'~C. 
I 

v . ll I 

a 
FIG. 24. i "fypical version history 
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Transaction Management 

00 applications often involve complex processing requirements forwhich the classical 
transaction management controls described in Chapters 13 and 14 are not well suited. 
The basic problem is that (as suggested under "Versioning'' above) complex transac­
tions might las1 for hours or days, instead offor a few mJIJjseconds<at most as in.tradi­
tional systems. As a consequence: 

l. Rolling back a transaction all the way to the beginning might cause the loss of an 
unacceptably large amount of work 

2. The use of conventional locking might cause unacceptably Jong delays (waiting for 
locks to be released) 

Point I here implies the need to be able to perform partial rollbacks; point 2 im­
plies the need for some nonlocking concurrency conttol mechanism. Long transactions 
and nested transactio11s both address these requirements somewhat. We do not 
discuss these concepts in detail here, but content ourselves with the following 
observations: 

• Long transactions: Here the concept of savepoints [13.lQ) and the concept of 
sagas l l 3.8] are both relevant, sinee both effectively provide some kind of partial 
rollback capability. Furthermore. moltiversion concurrency control [14.ll also 
looks attractive (especially if the system supports versioning anyway as discussed 
above), because it implies among other things Lhac 

• Reads are never delayed (in particular, they are not delayed by any concurrent 
long transaction) 

• Reads never delay updates (in particu!M, they do not delay any concurrent long 
transaction) 

• lt is never necessary to roll back a read-ooJ y transaction 

• Deadlock is possible only between update transactions 

• Nested transactions: The nested transaction idea can be thought of as a generill­
ization of s'l!vepoints [ 13.101. Savepoints allow a transaction to be organized as a 
sequence of actions that can be rolled back individually: nesting, by contrast. al­
lows a transaction to be organized (recursively) as a hierorchyuf such actions (see 
Fig. 24.2). Io other words: 

• BEGIN TRANSACTlON is extended to suppon subtranSactions (i.e., if BEGIN 
is issued when a transaction is already running, it starts a child transaction) 

• COMMIT TRANSACTION "commits" but only within the parent scQpe (if this 
transaction is a child) 

• ROLLBACK TRANSACTION undoes wotk back to the start of this particular 
subtransaction (including child, grandchild, etc., transactions) 

See the answer to Exercise 13.2 in Chapter 13 for further discussion. 
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FIG. 24.2 iypical nested transaction 

Schema Evolution 

Traditional database products typically support only rather simple changes to an exist­
ing schema (e.g .• the addltion of a.new attribute to an existing base relation). However, 
some applications require more sophisticated schema change support, and some 00 
prototypes have investigated this problemin depth. Note, incidentally, that tbeproblem 
is actually more complex in an 00 environment, because the schema is more complex. 

The following taxonomy of possible schema changes is based on one given in a 
paper an the 00 prototype ORION [24.3): 

• Changes to an object class 

l. Instance variable changes 

• add instance variable 

• delete instance variable 

• renamelnstance variable 

• change instance variable default value 

• change insiance variable data type 

• change instance variable inheritance source 

2. Method changes 

• add method 

• delete method 

• rename method 

• change method internal code 

• change method inheritance source 

• Changes to the class hierarchy (assuming multiple inheritance) 

• add class A to superclass list for class B 

• delete class A from supercla$S list for class B 
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• Changes to tfle overall schema 

• add class (anywhere) 

• delete class (anywhert:) 

• rename class 

• partition class 

• coalesce classes 

It is not clear how much transparency ean be achieved with respect to the foregoing 
changes, however, especially since vlew support is typically not include.d in "the 00 
model" ($ee Section 243). ln fact, the BQSsibility of schema evolution implies a signif­
icant problem for 00 systems, owing to their record-at-a-time nature. As reference 
(25.101 puts it: " [f the number of indexes changes or the data is reorganized to be dif­
ferently clustered (see the next subsection below], there is no way for [methods] to 
automatically take advantage ofsuch changes." 

Performance Considerations 

Raw performance is one of the biggest objectives of all for 00 systems. To quote Cat­
tell[22.2]: ''Ao order-of-magnitude performance difference can effectively constitute a 
functional difference, because it is not possible to use the system at all if performance 
is too far below requirements" (slightly paraphrased). 

Many factors are relevant to the perfonnaoce issue. Here are a few of them: 

• Clustering: As we saw in Chapter 18, physical clustering of logically related data 
on the disk is one of the most important performance factocs of all. 00 systems 
typically 11se the logical information fr<>m the schema (regarding type hierarchies, 
containment hierarchies, or olher explicit! y declared interobject relationships) as a 
hint as to how the data should be physically clustered. Alternatively (and prefera­
bly). the OBA miglit be given some more eitplicit and direct control. 

• Caching: As suggested under "Versioning" above, 00 systems are typically used 
in a client/server enviromnen!, in which users "check out" data from the database 
and bring it down to their workstation andkeep l t there for an extended period of 
time. Caching logically Ielateddata at the clientsite qbvlously makes sense in such 
an eovirorunent. 

• Swizzling: The term "swizzling" refexs to the process of replacingOID-style pointers 
by main memory addresses when objects are read into memory (and 1•ice versa 
when the objects are written back to lhe database). The advantages for applications 
that process "complex objects" and thus require extensive pointer chasing are obvious. 

Reference [22.21 discusses a benchmark called 001 for measuring system perfor-
mance en a bill-of-materials database (see also reference [24.5]). The benchmark involves: 

l. Random retrieval of 1000 parts, applying a user-defined function to each 

2. Random insertion of 1000 pans 
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3. Random part explosion (up to 7 levels). applying a user-defined function to every 
part encountered 

According to reference [22.2J. comparison of an (unspecified) 00 product with an 
' (unspecified) scate-o(-lhe-art relational product showed up to two ordets of magnitude 

difference in favor of 00---especially on "warm" aecesses {after the cache had been 
populated). However. reference [22.2] i5 also careful to say that ''The differ-
cmces ... should not be attributed to a difference be1ween the relari0nal and 00 mod-
els .... There is .reason to believl!tbat most of the differences can be attributed 10 [im-
plementation matters!." This disclaimer is supported by the fact that the differences 
were much smaller when the database was "large" (i.e .. when it was no longer possfble 
to accommodate the entire database in the cache). 

24.3 Some Questions 

As promised in the introduction. we now tum our anention to some aspects of database 
management that are usually regarde<I as traditional, see how they look in an 00 con­
text and use them as a basis For raising a number of ciuestions regarding 00 techmal­
ogy. The aspects in question are as follows: 

• Relationships 

• Integrity 

• Methods that span classes 

• Ad hoc query 

• Miscellaneous 

Relationships 

00 products and the 00 literature typically use the term •·relationships" to refer spe­
cifically ~o those reJatiooshlps that would be represented by foreign keys in a relational 
database. But they distinguish: 

I. Subclass-to.superclass ("ISA") relationships 

2. One-tQ-many relationships 

3. Many-to-many relationships 

We discuss each case in turn. 

1. Subclass-to-superclass relationships are represented by the dass hierarchy-e.g .. 

• • • R.ECTANCLE I:Sl\ ' POLYGON J , • , 

(to use the hypothetical syntax ofChapter22). 

2. One-to-many relationships are represented either by a containment hierarchy-e.g .. 

• . • DEFT' • • . ( • . • EMPS REF I SET I REF ( EMF ) 1 J l 

or by a m .ecbanism called " inverse variables" (see below). 
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3. Many-to-muny relationships are repre-;ented either by object sbaring~.g., sup­
plier and part objects might both .. contain" (and Ums share) shipment objects-or 
by ''inverse variables" again. 

Inverse variables: Consider departments anti employees once again. instead of 
adopting a oontainmenL hierarthY representation. we might decide to define two sepa,. 
rate object classes (rather ns in a relational database). and to include hoth (a) an EMPS 
instance variable in each DEPT. corresponding to the set of employees in the depart­
ment, and (b) an EDEPT instance variable (say) in each EMP, corresponding to the 
depanment for this employee: 

DEPT DIPS REF I SE"l' ( REF t EiMP l J 

ilWER& E EMP. r:DlilP'T ) . •• 
EMP E:['lf:P'!' REF' ' netf>'I ' lNVSRSE L'BP'l' . J::M.l?S ' I • • • 

The r 'fere11ce instance variable EDEPT and the rejere11ces set instance variable 
EMPS are said to be inverses of each other. Inverse variables obviously need to be kept 
mutually cansistent~ this is one aspect of referemial integrity (as that concept applies to 
0 0 systems.), and we will return to itinjust a moment 

The foregoing example illustrates the one4o-many case. Here is an example of the 
many-to-many case: 

s PAP.'l'S REF I SET t REF' I r I l l 

INVERSE P .SUl'PS J 
p SUPPS REF SE'!' REf' I S I I ) 

UNEPSE s ?ARTS 

Here the inverse variables are both refere11ce set variables. 
One obvious question that arise!\ is the followln~ How does 00 deal with relation­

ships that involve more than two object dasses-e.g~ suppliers. pans. and prejects? 
The best (i.e .• mo~t symmetric) answer LO th4. question. of course. is that an "SPT' 
object class is created, in which each SPJ object has1m "inverse variables·· relationship 
with the appropriate supplier, the appropriate pan. and the appropriate project Given 
Lhat creating a. new object class is apparently the best approach for ''relationships" of 
degree greater lb1µ1 two. tbeque..<rtion arises as to why "relationships'' of degree two are 
not treated in the same way. 

Also-regarding inverse variables specifically-why is it necessary to introduce 
the asymmetry. the directionality, and two different names for what is essentially one 
thing? For example, the 00 analogs of the iwo relati~mal cxpres1;ions 

SP P~ WF1ERE SP .. S ~ =- ' Sl.' 
SP.S• Wf!ERE SP.Pi' : ' Pl.' 

lc1ok some I bing Ii ke this: 

S.PAR'.l!S P~ J/HEPE 5.S ~ ; 'Sl' 
P.SO?PS s~ I/HERi. f r # : • "- . 

(hypothetical c;ynwx. deliberately cbo~en to avoid irrelevant distinction~) . 

Referential Integrity: A!i promised. we now Utk-e aslighLly closer look al 00 support 
for referential imcgnty (frequently claimed as a strengtb of 00 systems, incidentally). 
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Various levels of support are possible. The following classification scheme is taken 
from Cattell [ 22.2]: 

• No system support: Referential integrity is the responsibility of the user or user­
wrillen methods (just as it was ln the original SQL standard. incidentally). 

• Reference validation: The system checks that all references are to objects of the 
correct type: however. object deletion might not be allowed (instead, Objects might 
be "garbage collected'' when there are no remaining referenl:eS to them. as in 
OP AL). As explained in Chapter 23. this level of support is roughly equivalent (but 
only roughly) to a .. DELETE CASCADES" rule for nonshared subobjects within a 
containment hierarchy and to a "DELETE RESTRICTED'' rule for pther objects. 

• System maintenance: Here the system keeps all references up to date automati­
calJy (e.g. .• by setting references to deleted objects to 11i/). This rule is somewhat 
akin to a ·'DELETE NULLIFfES" rule in a relational system. 

• "Custom semantks": "DELETE CASCADES .. {outside of the containment hier­
archy) might be an example of ·'custom semantics." Such cases are typ.ically not 
supported by 00 systems at the rime of writing. and must therefore be handled by 
appropriate melhods- in other words. by user-written procedural code. 

Integrity 

We now tum to general integrity constraints. Here is an example (taken from Section 
16.7): "Suppliers with statu~ less than 20 must not supply any part in a quantity greater 
than 500." Using the integrity language developed in Chapter 16. this constraint mighr 
be expressed ns follows in a relational system: 

CREATE 1:NTEQRTI'Y RULE. C95 
1~ S.S1'ATIJS < 20 ANO S.SP : SP.S• 
TiraN SP. crt s sno , 

ln an 00 system, by contrast. this constrain~ will almost certainly have to be enforced 
by procedµraJ code (though reference [24. 7] does describe a prototype implementation 
of declarative integrity constraints in an 00 system). Such procedural code will h11ve 
tO be included in at least al1 of the fbllowi ng: 

1111 Method for creating ashipment 

• Method f'or changing u shipment quanrjty 

• Method fior changing a s upplier status 

• Method for assigning a shipment to a different supplier 

Points and questions arising: 

I. We have obviously lost the possibility of the system detem1in1ng for use If when to 
do the integri1y checking. 

2. How do we ensure that all necessary methods 1 nclude all necessary enforcemem 
code? 

3. How do we prevent the user from (e.g.) bypassing the ··crea1e i.hipment" melhotl 
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and using the bu ii tin me1hod NEW directly on the shipment object dass (thereby 
bypassing theimegrity check)? 

4. How do we ensure uniformity of error messages: 

• across all methods invoJved inenforcing "lhe same" constraint'! 

• across all constraints {e.g., all referential constraints) that bear a strong family 
resei;nblance? 

5. If the constraint changes. how do we find all methods that need to be rewritten? 

6. How do we ensure that the enforcement code is correct? 

7. How do we do deferred (commit-time) integrity cnecJcing? 

8. How do we query the system to find all constraints that apply to a given object or 
combination of objects? 

9. Will the constraints be enforced during load and other utility processing? 

I 0. What about semantic optimization (i.e .• using integrity constraints to simplify que­
ries, as discussed in Chapter 18)? 

And what are the implications of all of the above for productivity, both during applica­
tion creation and subsequent appUcation maintenance? 

(As a practical matter, incidentally, the SQU92 standard [8. l l does include declar­
ative support for integrity constraints, and DBMS products, 00 or otherwise. are gomg 
to have to support that standard. The implications for 00 systems are not clear.) 

A note a11fimctional dependencies: Functional dependencies (FDs) are a special 
kind of integrity constraint. and we have seen elsewhere in this book that the system 
needs to know about FDs in order to behave in a variety of "intelligent"' ways. But 00 
systems provide no way of declaring FDs. In fact, some writers seem to re-gard such a 
lack almost as a virtue. As we know, FDs are important for database design: however. 
reference [22.l2j says: 

"Complex [data] can be represented directly [in an 00 system), without the need 
co normalize ... " 

Now, it might be true that 00 eliminates 1he "need to normalize." in the sense that 
it directly supports unnormalized objects (i.e., hierarchies). However, it does nm follow 
that 00 automatically eliminates I.he problems that unnormaHzed objects cause! The 
point cannot be overemphasized that "the need to11onnali2.e" is not something that is 
peculiar to relational systems. i.e .. something that can be ignored if lhe system is not 
relational. On the contrary, the problems that nOJmalizalion solves are in he rem prob­
lems, and do not go away just because the data structure happens to be something other 
than relational. 

Methods Tt\at Span Classes 

Consider lhe education database from Chapter 23 and the query "Find the grade ob­
tained by employee Eon course C' (where E and Care parameters). Let us suppose a 
method M has been written to implement this query. ls M part of lhe EMPLOYEE 
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object class or the COURSE object class? Whichever it is. why? How does the user 
know? Whai are the implications? 

To state matters differently: The idea of afunc1ion or method being bundled in with 
an object class works fine so long ~the function in question takes just one argument. 
But as soon as 1wo or more arguments are involved. a degree of arbitrariness inevitably 
creeps in. ln fact. some-methods-NEW is an ex.ample- are bundled, not with the ob­
ject class of one of their parameters, but rather with that of their result, which seems to 
introduce yet another element of arbitrariness. 

So let us step back for a moment. Why are methods bundled in with an object class 
anyway? The a nswer is that they need privileged access-access, that is, to the internal 
represenration (i.e., private instance variable.s) of objects of the class in question. (Ac­
cess to other objects. by contrast. is by means of the usual GET and SET methods.) 

But we already have a mechanism for dealing with privileged access. namely the 
security mechanism.* Would it not be better to unbundle methods from object classes, 
and instead use the security mechanism to control which methods are allowed to access 
the internals of which objects? Such an approach would have the advantages rthat : 

• Methods could be permitted to access the internals of any number of objects in­
stead ofbeing limited to just one. 

• The asymmetry, arbitrariness, and awkwardness inherent in the bundling scheme 
would be eliminated. 

II ln particular, the ad hoc distinction between private and protected instance varl,. 
ables would be unnecessary. 

ln other words, i1 is lhe opinion of this writer that the bun.dling of methods with 
object classes should not be regarded as a fundamental component of "the 00 model." 
Please note that this is not a criticism of methods as such. onJy of the bundling aspe<:t 
of such methods. 

Ad Hoc Query 

We have suggested a couple of times already thai 00 systems might have some diffi­
culty over ad hoc query. As we pu1 i1 in Chapter 22. " ... if ii is really rrue that pre­
defined methods ar:e the only way to manipula1e objects, then ad hoc query is impossi­
ble !-unJess objects are designed in accordance with a certain very specific discipline:• 
For example. if the only methods defined for DEPT objects are HIRE_EMP, 
FlRE_EMP, and CUT _BUDGET, lhen even a query as simple as "Who is the manager 
of the programming department?" cannot be handled. 

Careful consideration of examples such as the forego.ing leads to the following 
conclusion. If we are indeed to be able to permil ad hoc queries agains1 objects of some 
given class, then we must do 1he following two tb.tngs: 

• Note 1ho1 we we tolbng ob<lu1 00 JatfJl1asnys1cm> spedfionlly hare. 00 ~rognammmg $)'Mems typlcally 
dJd nol ho\1: O <OCUnl) mechnmlj11l, iU1d 1hi$ ~l~(gncttl )nck probably O<C:l.!U111$ for the tUITCJ11 >ilualiOn 
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l. Define and main1ain a ·'collection" lhat is the se1 of all currently exisfi11g objects of 
lha1 class. This colleclion will serve as a defining scope for queries, much as base 
relations do in a relational system. 

2. Define the public interface for tha1 class fa sud1 a way as to expose one candidate 
represemation of the objects to the user. 

For example, consider the classes POINT and LINESEG (line segment). IT we de­
fine GET methods for the start and end points of line segments. and GET methods for 
the x- and y-aoordlnates of pointS-and if we permit references to such methods to be 
nested within scalar expressions in arbitrary ways-and if we do indeed define and 
maintain a collection that is lhe ser of all line segments, and another collection that is 
the set of all points-then we can indeed define an ad hoc tiue.ry language that wm 
permit the user to as.le arbitrary unplanned queries agains1 objecti; of those classes. For 
example: 

• Find all tine segmencs stanlng at the origin (0,0) 

1111 Find an line segments oflength one unit 

• Find the midpoint of a specified line segment 

(and so on). Note very carefully that the fact that line segments might internally be 
represented by MJDPOINT. LENGTH, and SWPE, and points by polar coordinates R 
and THETA , iu neither here nor there. 

Points arising: 

I. GET methods are sufficien1 for query per se, of course. SET methods are needed 
to permit arbitrary updates. 

2. There is nolhing wrong with the idea of expoSing more than one candidate repre­
sentation for a giv.en class. In the case of class POlNT, for example. we could 
define methods GET _,t and GET _y and methods GET _rand GET_0, thereby mak­
ing queries thaL are expressed in teans Glf polar coordinates just as easy to fonnUlate 
as ones expressed in terms of Cartesian coordinates. In effect, we would be telling 
the user that each point has an x property and a y property and an r property and a 
9 property. Ffowever, we could nol pretend that these properties were all indepen­
dent of one another; we would have to explain tha1. e,g., changing-rhe value ofx or 
y will have the side•effect of changing both rand a. in general. (Furthermore, we 
would have to explain the exact nature of the relationship between (x,y) and (r,9). 
so that the details of those side-effects would be explicable and predictable.) 

Note: We do not mean to suggest by the forcgaing that the various GET and SET 
methods should be the only mernods defined for a given class. Ac the very least. £here 
needs to be an appFopriate constructor function (NEW or some analog thereof) to create 
new instances of the class. al,so a corresponding "destructor" function to destroy such 
instances again. In addition. there almost cenhlnly need to be methods for comparing 
class instances. assigning class instances, etc. 

i 
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Miscellaneous 

We close !his section wi1h some comments and questions regarding a few miscella­
neous topics: views. the catalog. missing information. and closure. 

' • Views: W hat is !he analog of views in an 00 system'? 

Some 00 systems do suppon derived (public) instance variables-e.g .. the in­
stance variable AGE might be derived by subtracting the value of the instance vari­
able BIRTHDA TE from the i,;urrent date-bu1 such a capability falls far short of a 
full view mechanism. Note: This question is related to the question of derived ob­
ject.s in general (see Chapter 25 ). See also reference (24.1 ]. which describes some 
research :ideas for view suppon in an 00 system. 

• The catalog: Where Is !he catalog in an 00 system? What does i1 look like? Are 
there any standards? 

lncidentaJly, this is as good a place as any 10 poinl out that there is really a differ­
ence in kind between an 00 DBMS and a relational DBMS. A relational DBMS 
comes ready for use: As soon as the system is installed, users can start building 
databases. writing applications. running queries. and so on. An 00 DBMS, by 
contra.qt, is best thought of as a kiild of DBMS construc tion kit: lt provides a set of 
buildlng block.~bject library maintenance tools. method compilers. etc.-that 
can be used by technical staff (i.e., database professionals) 10 construct a U BMS in 
the more familiar sense of the tenn. In particular. those database professi-0nals will 
have to construct an appropdate catalog for the objects and melhods they create. 
What is more, that conscructed DBMS will be application-specific: It might, for 
example, be tailored for a certain set of CAD/CAM applications. but be essentially 
useless for, e.g., medical applications. 

• Missing information: Missing information is far from being a fully solved prob­
lem in relational systems (see Chapter 20). But 00 systems mostly seem to ignore 
the problem altogether: at best !he evidence suggests that the 00 community lags 
some way behind the relational community in this regard. For example: ··1s nil a 
member of every rctassJ?" f22.12], 

• Closure: What is the 00 analog of the relational closure property? Note: This 
question is actually an exrremely imponant one. We will revisil it in Chapter 25. 

24.4 Summary 

In this chapfer we have concerned oursclvc:. with the following major topics. 

• Database programming fa11g11ages: We explained lhe impedante mismatth 
problem. and claimed that the solution to tbat problem was not to bring the 
database language down to the record-at-a-time level. but rather 10 raise the pl'Q­
gramming language to the set-at-a-ti me level. Indeed, lbe fact that 00 languages 
are so procedural is a i;evere disadvanruge of 1ho~e languages: in panicular. u seri­
ously undem1ines optimizability. 



TERADATA, Ex. 1014, p. 710

682 Part VI Object-Oriented Systems 

• Versioning: We briefly described the ideas of version and configuration support 
and the basic notions of checking out database objects and subsequently checking 
in those objects again. 

• Tra11sac1ion management: 00 transactions might last for hours or days, instead of 
just a few milliseconds. As a result, support for long and nested transactions be­
comes desirable. We briefly considered the use of multiversion concurrency con­
trol in this connection and summarized some of its advantages. 

• Schema evolwio11: We presented a taxonomy of "Possible schema changes, and 
pointed out in passing that the schema evolution problem is actually more complex 
for an 00 system, because (a) the schema itself is more complex, (b) "the 00 
model'' typically does not include any view sqpport, and (c) 00 code ls typically 
record-at-a-time. 

• Performance considerations: We stressed the point that performance is-one of the 
biggest objectives of all for 00 systems, and briefly considered certain perfor­
manee-related issues, viz, clustering, caching, and pointer swizzling. We also 
mentioned the 001 benclunark. 

• Relationships: The term "relationships" is typically used in 00 contexts to refer 
specifically to the 00 analog of foreign key relationships in the relational world. 
However, subc111$S-lo-Superclass rela:tionships, one-to-many relationships, and 
many-to-many relationships ate typically all treated differently. In particular, we 
discussed the use of inverse variables and various possible levels of referential 
integrity su_m>ort- none at all, "reference validation," system maintenance, and 
"eustom semantics." Where pqssibJe, we related these cases to tbeiuelational an­
alogs. 

• Integrity: We were very critical of the fact that 00 systems typically handle integ­
rity constraints procedurally (via methods), not declaratively. 

• Methoas that span cla~·ses: We were also critical of the fact that 00 systems bun­
dle methods in with objec1 classes, especially as the choice of which particular 
class the method is 10 be bundled wlth is often arbitrary. We suggested that meth­
ods in fact 11ot be so bundled, and that suitable extensions to the system's security 
mechanism would be a preferable means of controDing whieh methods have access 
to tbelnternals of which objects. 

• Ad hoc query: We proposed a particular discipline that would allow 00 systems to 
provide full ad hoc query support. The key component of that dlscipline consisted 
in exposing one candidate represemMion of objects to the u~er (through appJ"Opri­
ate GET methods). 

• Miscellaneous: Einally, we offered a few comments regarding views, the cata­
log, missing information, and closure. 1n particular. we pointed out that there is 
really a difference in kind between an 00 DBMS and a relational DBMS, inas­
much as a relational DBMS comes ready for use, whereas an 00 DBMS. by con­
trast, is more of a co11struotion kit for building application-specific DB'MSi;. 
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To pursue this last point a Httle further: We could speculate that the difference in 
kind referred to reflects a difference in origins between the two disciplines. It appears 
to this writer that 00 database technology most likely grew out of a desire 0111 the part 
of 00 application programmers- for a variety of application-specific reasons-to 
keep their application-specific objects in persistent memory. That"persistem memory~ 
could then cettainly be regarded as a databas~ but (a) it was indeed application­
specific, and as a consequence (b) there was liule perceived need to be able to perform 
ad hoc quei;ies against it. Thus, the notions that 

• 
I . Such a database might be shared among M!veral applications, and hence that 

2. The data should be subject to certain application-independent integrity constraints, 
and also that 

3. The data should likewise be subject to certain.security constraints, 

aIJ surfaced later, after the basic idea of storing objects in a database was first con­
ceived, and thus aJI constitute "add-ons" to the original "00 model .. 

Now, the foregoing speculations might be a lrttle wide of the mark. but they do 
seem to this writer to explain some of the differences in emphasis that can be observed 
in 00 database systems vis-ii-~•is traditionaJ database systems. 

Exercises 

24.l Whal do you understand by the tenns version and configuration? 
24.2 Why are long iransactioli support and nested transaction support desirable? 

24.3 Sk1:1cltan implementation.mechanism for multivecsion co11currem;y conirol. 

24.4 Consider the perfonnance factors discussed briefly in Section 24.2. Are any 0f them truly 
DO-specific? Justify your answer. 

24.5 00 systems typically support 1n1.egrity constraints in a proced11ral fashion, via methods: 
the main exception is tltat referential constraints·are typicaUY, supported (al lea:st in part) 
dealatmively. What are the advamages of procedural support '1 Why do you think referen­
tial constraints are hanclled differemiy? 

24.6 Explain the concepl of inverse variables. 

24.7 Consider 'the schema evolutio11 taxonomy presented in Section 24.2. Which items in tha1 
tax0nomy have coun1erparts in a relational system? What are !:hose coumerparts? 

24.8 Wha1 are lhe implications of schema evolution for existingda1a7 
24.9 Investigate any 00 system tha1 might be available to you. What programming language 

does llta1 sys1em support? Does il support a query language? If so, what is it? In your 
opinion, is i1 more or less powerful than conventional SQL? Does the sys1em support 
versioning and configurations? If so. wha1 ~s involved on 1he pan of lhe user in managing 
versions and in inu:rrogating ver~-lon histories? D~s 1he sys1em support long or nested 
u:a:nsactions'I Does the sysrem have any schema evaluuon c:apab11ities? What does lhe 
c•1alog look like'! How d~ the user interroga1e the ca1alog? Is there any view support'! If 
so. haw extensive is it? (e.g .. wh31 about view updating'?) How is missing information 
handled~ 
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Answers to Selected Exercises 

24.3 The following hrier description is taken from re.ference [21 .141. First of all. the system 
must keep: 

I. For each data object, a siack of eommined versions (el)Ch siack enuy giving 11 value for 
the object and tire ID of the transaction that estahHshed that value: Le .. each stack 
entry essentially consislS or a pointer to Ilic relevant entry in the log). The stad. is 
in mverse chronolog.1cal sequence. with the most recent entry being on the top. 

2. A list of rransacuon TDs for all committed transactions (the commir listl. 

When -a t.rruisaction start~ executirtg, the system.gives it a-private copy ofthe commit list 
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Read operations on an object are directed to the most recent version of the object pro­
d uced b y a transaction e n that private list. Update operations. by contrast, 81C' directed to 
the actual current data object (update/update conflict testing is thus still necessary). 
When 1the transaction commitl.. the system update~ the commit list and !he data object 
version stacks appropriately,. 1 

24.4 The perfonnance factors discussed were clustering, caching. and pointer swiwlng. All of 
these techniques are applicable 10 any system that provides a reasonable level of data 
independence: they are thus not truly "OO-spec1fic." In fact. the idea of using the logical 
database definition to decide what physical clustering to use. as some 00 systems do. 
could be seen as potentially u1rdermining data independence. Note: It should be pointed 
out too that another very important perfonnance factor, namely optimization, typically 
does nor apply to 00 systems. 

24.5 lt is the opinion of this writer that declarative support, if feasible, is alv.·ays better than 
procedural support (for everything, not just for integrity constraints). In a nutshell. declar­
ative support means that the sy5tem does the work instead of the user. This Is why rela­
tional systems support dcelarative queries. declarative view definitions, declarative cursor 
definitions (see Chapter 8). declarative integrity consuainrs. andso on. 
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Rapprochement 

25.1 lntrodu(tion 

We have now examined all of the major aspects of 00 systems. We began by claiming 
(in Chapter 22) that today's relational products are inadequate in a variety of ways, and 
we gave an example ("Eind all rectangles lb.at overlap the unit square") in suppc;>rt of 
that claim. And we went on to say that some of the new features that seem to be needed 
in DBMSs have existed for many years in 00 programming languages. and hence the 
idea of 00 database systems is a natural one to investigate.BUT-and it is a very big 
"but"-it does not follow that 00 database systems can or will replace relational sys­
tems. On the contrary, we should be l ooking fot a rapprochement between the two 
technologjes-that is, a way of marrying the two technologies together. so as to get the 
best of both worlds. The purpose of this final chapter is to investigate the possibility of 
such11 rapprochement. 

Now. it is this writer'soStrong opinion that any such rapprochement should be 
finnly founded on the r elational model (which is after all the foundation of modern 
database technology in general, as explained in Pan II of this book). That is, what 
we want is for relational systems to evolve to incorporate the features-<>r. at least, 
the good features-of 00. We do not want to discard relational systems entirely, 
nor do we want two totally disparate systems. relational and 00. existing side by 
side as equals but (perhaps) competit9rs. And this opinion is s,hared by many other 
writers, including in particular the authors of the "Third Generation Database 
System Manifesto" [25. I 01. who state categorically that third-generation 
DBMSs must subsume second-generation DBMSs- where "second-generation 
DBMSs" basl~y means relational systems, and "thicd generation DBMSs'' means 
whatever comes next. The opinion is apparently not shared. however, by some of 
the early 00 products, nor by certaiTI 00 researchers. Rere, for example. is a typi­
cal quote: 

"Computer science has seen many generations of daca management, starting· with 
indexed files, and larer, network and hierarchical DBMSs ... land] more recently 
relational DBMSs ... Now. we are on the verge of another generaticm of database 
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systems ... [that] provide object management, [supponing] much more complex 
kinds of da1.a'' [25.41. 

Here the writer is clearly suggesting that just as relational systems displaced the 
older hierarchic and network systems, so 00 systems will displace relational systems 
in exactly the same kind of way. 

The l'.eason we disagree with thls position is tbal (to quote reference (3.2)) rela­
tional really is different. It is diffqrent because it is not ad hoc. The older. pre relational 
systems were ad hoc; they might have provided solutions to certain important problems 
of their day, but they did not rest on any solid theoretical foundation.* Unfortunately. 
relational advocates-this writer included-did themselves a major disservice in the 
early days when chey argued the relative merits of relational and prerelational systems; 
such arguments were necessary at the time. of course, but they had the unlooked-for 
effect of reinforcing the idea that telarional and prerelational DBMSs were essentially 
the same kind of thing. And this mistaken idea in tum supports the position of the 
quotation above from reference [25.4)-to wit, chat 00 is to relations as relations were 
to hierarchies and networks. 

In what follows. therefore. we take it as an axiom that what we want to do is 
enhance relational systems to incorporate the good features (but not the bad fea­
tures!) of 00. To repeat, we do 1101 want to discard relational systems entirely. l t 
would be a great pi ty to walk away from 25 years of solid relational research and 
developmenL 

The plan of the chapter is as follows. Section25.2 reviews the features of 00, in 
an attempt ro separate the good from the bad_ Sections 25.3 and 25.4 then discuss ways 
in which the good features might be added to relational systems; Section 25.3 concen­
trates on domains and Section 25.4 oILrelations per se. Section 25.5 describes the ben­
efits Cif a true rapprochement. Section 25.6 offers a summary. 

25.2 A Review of "the 00 Model" 

Below is a summary of the principal features of "the 00 model" 'i\~Lh a subjective 
assessment as to which features areessential. which are ''nice ro have" bat not essential. 
which are bad, etc. 

• Objects: Objects themselves. both mutable (\lariables) and immutable (\lalues). are 
clear I y e.c;senli.al. 

• Who1 abvu1 00'/ 1~ 00 "d hU1" The following, q1101e from "'l'hc Ob)CCl·Onemed OQU1hnse Sy~tem Man· 
ifesto" r2s.11 is. imerestilll! in this rcgnrd; "With nispocl IQ the ~pccificntlon I.\( the >yMcm, we arc qiking. Dur­
wlnian approach We hope that. QUI of the ><!t of c.xpotimon1;1I prt!lDl) p.:s berng built, ,1 fil l<>bj..:Cl-jlrienlodl 
mood will emerge. We al>o hope thal \'iuhle implernemnuon technol<>gy for thilt moJel ... ;11 c•ul~c <lmuliu­
neously." 
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• Object IDs: Unnecessary, and in fact undesirable (see the "Conclusion" subsec· 
lion at the end of Section 25.3). 

• Object classes (meaning types): Essenrial. The associated notion of a constructor 
f1111ctio11-which among other things effectively provides a way of writing a literal 
value of the relevant type-b essential too. 

• Encapsulation: See the subsectrnn "A note on encapsulation" below. 

• Instance variables: First of all. private and protected instance variables are by 
definition merely implementation matters and are thus nOI relevant to the definition 
of an abstract. user-oriented model. wJlicb i& what we are concerned with here. 
Second, public ins!B.nce variables do .not exist in a pure 00 system and are thus 
also not relevant. Third. derived instance variables are a special case Qf public in· 
seance variables and are thus aforriori irrelevant also. We conclude that instance 
variables can be ignored: objects should be manipulable solely by methods. 

• Containment hierarchy: We have already explained in Chapter 22 tbar in our 
opinion the contairunent hierarchy concept is misleading and in fact an illusion. 
Objects are really tuples, not hierarchies. 

• Methods: This concepc is essential, of course (although we would prefer the more 
conventional terms "function .. or "operator" fn place of the term "method"). 
Bundling method definitions with object clas$es is not essential, however, and 
leads to several problems. We would prefer to use the security mechanism to con­
trol which functions have access to the internals of which objects. 

• Messages: Again, the concept is essential. though we would prefer to replace the 
term by the more conventional term "call .. or "invoeation"- always rec::ognizing 
that such calls or invocations are not necessarily synchronous. 

ii Class hierarchy: Essential. So roo i:s the related notion of i11herita11ce, although­
since we have no notion of (public) instance variables-there is no need to distin­
guish between structural and behm•ioral inheritance (all inheritance is by defini­
tion behavioral). Polymorphism is lhuR essential too, with its likely implication of 
run-time binding(discussed in Chapter 19)-though this latter notion is an imple­
mentation matter and should not be regarded as part of "the 00 model" as such. 

• Multiple inheritance: Secondary. (Actually this concept is likely to prove quite 
important. but it seems to this writer that there are some significant co.nceptual and 
definitionaJ issues to be resolved before we can include such a feature in a well­
defined abs1r.ac1 "00 model" with any significant degree of confidence. More 
study i:s required_) 

• Class-vs. Instance vs. collection: The distinctions nre essential, of coucse, but not 
really exclusive to 00 (the concepts are distinct. and that is really all that needs to 
be said). 

a Database programming language: Niee ro have. but not exclusive to 00. 
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• JGL nature: A giant step backward. 

• Versions: Nice to have. but not exclusive 10 00. The same goes for ihe related 
concept of configurations. 

• Long and nested transactions\ Nice to have, bUL not exclusive to 00. 

• Schema evolution: Nice to have, but not ex.elusive to 00. 

And-here is a list of features that "ihe 00 model" typically does n()t suppon: 
• 

• Ad hoc query: As explained in Chapter 24, early versions of "ihe 00 model" 
typically did not include ad hoc query capabilities, because (a) ihe need for such 
capabilities was not so pressing in the envirorunem in which 00 systems origi­
nated. and {b) such capabilities seem to imply either that objects must be designed 
according to some discipline such as that outlined in Section 24.3 or that queries 
will have to break encapsulation. 

• Closure: Generic operators such ac; (object-level) union, join, -projection, etc., are 
not supponed. Derived objeccs in general are not supponed. 

• Symmetric exploitation: Not !>upponed. Each and every access request involves 
a distinct, precoded, procedural method. 

• Foreign keys: The "00 model" has several different mech~isms for dealing with 
referential integrity, none of which is rhe same as ihe relational model's more uni­
form foreign key mechanism. Such matters as UDELETE RESTRICTED" and 
"DELETE CASCADES" are typically left to procedural code (probably methods. 
possibly application code). 

• Declarative integrity constraints: Currently not supported (for reasons not unre­
lated to the reasons ad hoc query is typically not supported). 

• Views: Currently not supported (for reasons nor unrelated to the reasons ad hoc 
query is typically not supported). 

• Catalog: Must be built by the professional l.taff whose job it is 10 tailor the 00 
DBMS for whatever application it has been installed for. There is no universal 
"common catalog" (nor was there for relational systems. of course. prior to 
SQU92). 

To summarize, the good (and essential) features of the ''00 model"-i.e., the ones 
we wou]d like relational systems to support-are as follows: 

• Objects and object classes. plus corresponding constructor functions (returning 
objects, however. not O!Ds-see Section 25.3) and other aooess and maintenance 
functions, togeiher with a (nece~!>arily) clear distinction among classes. instances, 
and collections 

• Class hierarchies, with (behavioral) inheritance, and therefore polymorphism 
and run-Lime binding (though thi ~ hurer ii. not pan of the model as such) 
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A Note on EncapsuJation 

We have said that the system should support encapsulated objects, i.e .. objects that are 
accessible only via appropriate access functions (there should be no "public instance 
variables" in those objects at all). The advantage of such encapsulation is basically that 
it provides data independence, as explained in Chapter 22. (In fact, 00 systems are 
sometimes said to provide a parricularly stro11gform of data independence (22. 7J, lt is 
important to understand. however, that- al least In principle-00 systems eannot pro­
vide any more data independence than relationai systems can. For example. there is 
absolutely no reason-at least in principle- why a base relation called POINT, with 
Cartesian coordinate attributes X and Y, should not map to a stored relation that repre­
sents points by theiq>olar coordinates R a:nd 0 instead. As we remarked in Chapter 3, 
however. today's relational products unfortunately do not provide nearly as much data 
independence as we would really like, or as much as relational systems are theoretically 
capable of.) 

Note, however, that it is possible to rake the encapsulation idea too far. There will 
always be a need to access the data in ways that were not foreseen when the database 
was originally created. and tlie notion of having to write new procedural code every 
time a new data access requirement arise$ is simply not acceptable. Jndeed, sueh was 
exactly the state of affairs with prerelational systems, and it was a major contributor to 
their downfall. 

Thus we see that the sys1em should .additionally support "objec1s" that are not en­
capsulated but expose their "instance variables" for all the world to see. And-to jump 
ahead of ourselves for a momen~ose nonencapsuJated "objecis" are, precisely, 
tuples in relations (see Section 25.3). Note that. at least in principle, nonencapsulated 
relations can provide just as much data inoependence as can encapsulated objects (as 
explained above); note too that, again in principle., tbe ideas of type hieratcbies, inher­
itance, etc .• apply a1 least as well to nonencapsulated relations as they do to encapsu­
Jated objects fas explained in Chapter 19). And, of course. relations can be accessed by 
the well-known, builtin, generic operatol:s of the relational algebra in$lead of just by 
methods that are specific to the particular relation in question, thus satisfying the "un­
foreseen requirements'' objective. 

25.3 Domains vs. Objects 

lo this section we argue that the l<ey to the desired rapprochement is the relational no­
tion of domains (indeed, we stated this as our position on the subject in Chapter 19). 
For consider: 

• The fundamental construct in 00 systems is the object class, whioh is basically a 
user-defined, encapsulated data type of arbitrary internal complexity. 

• The fundamental construct in relational systems-mostly not implemented, uofoF-
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tunalely, in today's relational products-is the domain, which is (again) basically 
a user-defined. encapsuJat,ed data type of arbitrary inlemal complexity. 

1n other words. a domain and l\11 objecl class ar~ the same 1hing! Thus. a relational 
system lhal implemented domains prQperly would be able to do all the things 1hat (it is 
claimed) 00 SYstems can do and relationalsysiems cannot 

Let us review the principal properties of domains as discussed in Chapter 19. We 
showed in Iha! chapter: 

• 
• Row domains really are data types of arbitrary complexicy 

• How the "scalar" values in such a domain can therefore have arbitrarily complex 
internal structure 

• How !hose values are encapsulated, however, and can be operated OJI only by pre­
defined functions 

We also discussed: 

• The fact that the function definitions are typicaUy 1101 bundled with the domain 
definitions 

• The relevance of !he "strong 1yping" concept from programming languages 

• The ideas of inheritance and polymorphism as !hey apply 10 domains 

Indeed, domains and object classes really are one and the same. Thus. domains 
(and therefore relational attributes) can contain absolutely anylhing- arrays. lists. 
stacks, documents, photographs. maps, blueprints, etc., etc. Another way of saying this 
is: Domains eru:apsulate, relations don't 

The Rectangles Problem Revisited 

So.now we can give a '"good" solution to the rectangles problem. First of al) , we define 
a domainofrectanpes ("we" here probably meaninglhe OBA): 

CREA'l'E DOMAIN REC'171NQ!.iE: P. i:;p I , , , I ; 

We assume here !hat !he representation ("REP") is in terms of one of the newer 
storage structures (quadirees, grid files, R-rrees. etc.) that are $pecifically intended to 
support spatial data such as geometric figures efficiently-see Ap pendix A, references 
[A.48-A.591. 

Next we define a "constructor" function for creating new rectangles (i.e .. for con­
verting a set of four floaring..cpoinl numbers in10 a rectangle): 

CB.El'.TE FUNCTil3N RECTAl,JOLE 

( A !'LOA'!', 1! FLOAT. C l"LOAT, D FLOAT I 

RETURNS ( l!t:r'l'ANOLE I 
AR BE:Gil'l ; 

DECLARE R RECTANGLE 
R. X l : : A : R . X2 ; = B : 
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R.Yl .- C ; R. 12 :- D ; 
RE'rlJRN r P ) ; 

E f,JD ; 
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Here we assume Lhat R.XI refers to the 1-totlrdinate oflhe bottom left-hand eomer 
of rectangle R, etc .. and that a rectangle can be defined by specifying these four coor­
dinates. Note. incidentally. that we do nf!f bundle Lhe RECT~NGLE t"unctioo with the 
RECTANGLE "objec1 c:Iass" (domain). 

We also define a function to 1est two rectangles to see whether they overlap: 

CR£A1'£ flJllC"l'WN IVJ::RLAI 
I Rl RECTANGLE , Rl REC'flL'lGLE 

PE'rtJRIJS : BoOL E:AN I 
ns BEG11s i 

• • • cope . . • 1 

END : 

Tne code here is low-level implementation code, probably written in a language 
like C. to implement Lhe efjide11/ (~hort) fom1 of the ··overlaps" test against the ejficienr 
(R-tree or whatever) storage srructure. 

Now an SQL user can create a base table with a column defined on the rectangles 
domain: 

r'.J!EM'E TABkE REC'l"ANGUS 
I fl.EC!!'!'TI • , • , A RECTAJ.JGLE 

um QUE ( ~EC'ITD ! . 
l J!fIQUE ( P I l : 

. . . ' . . . . 

And the query "Pindall rec1angle:. that overlap the unit square" now becomes simply: 

SELECT •• 

;1HE.'!E Ov.EP.ltAF t Fe , P.EC'l'ANt;LE ( 0 , l , 0, L } l ; 

Note that Lhe expression RECTANGLE(O. 1,0, I) in thi.s query effeetively consti tutes a 
kind of "rectangle literal." 

Conclusion 

The system shouldsupport relation.~, with the ··exronsion" (actually not an extension at 
all) thai domains are properly supponed nnd can be user-defined data types of arbitrary 
complexity. Now, we can call the elements or ~uch domains objec:ts if we Like (they are 
totally encapsulated); note, however, 1hat al 1he relational level there is no need for 
OIDs--the relational model requires relations 10 con1ain ati'lttal objects (at leas1 con­
ceptually). not pointers to objects. Thus. for example. the RECTANGLE functlen 
(which i!. the relational analog of "NEW" for rectangles) does not return a rectangle 
OLD, it returns (at least conceptually) w1 ac111al recta118le. 

As for 1he ·'class vs. instance vs. collection" d1stinctitms: 

• The clan is lhe domain. 

• An ins tance ii> ru1 element of 1he dcm1ain. Sn far as the database is concerned, 
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such instance~ eitiSt onJy within attribute po~ition~ within tuple-f. within relations; 
however. we can create new "literal" instances at tlll)' lime for lJSe as arguments to 
whatever operations or functions are defined for the domain in question. 

• A col/ectio11 is the collection ofvalue.-. of any anribute defined on the domain. As 
for sharing the vel)' same instance among several collecrions, the ejflU't of such 
sharing c:an be achieved by means of foreign keys: actually placing two copies of 
the same Instance in two distinct base relatiollb is np l sharing in the same sen:.e 
(and in fact is typically contraindicated by the principles of further normalization). 
Note: The very same instance can of course be shared among exactly one base 
relation and any number of other (named) relation~ if those other relations are all 
views. 

To sum up: Relational vendors should do all in their power to extend their sys­
tems to include proper domain support. Indeed, an argument ean be made that the 
whole reason thaJ 00 systems look attractive Is precisely because the relational 
vendors to date have failed to support the relational model adequately. But this fact 
should not be seen as an argument for abandoning relational sys tems entirely (or at 
all !). 

25.4 Relations vs. Objects 

ln the previo~ section we equated otijecL classes and domaini.. Many products and 
prototypes, however, aiie equating objecl classes and relutio11s instead.* ln this section 
we arcgue that this latter equarion is a serious mistake. 

We begin by considering a simple example. Here 1s a slighLly simplified version of 
one 1>f the very fir.st CREATE OBJECT CLASS examples f rom Chapter 22: 

CRSi\'l'e OBJEC'I' CUSS E~H· 

Pt:rBL.IC ( EMP!I- CHAR , 
ENAJ.IE CFIAR, 

SAL. r/UMERJC ) • . . : 

And here ls a relational (SQL) analog: 

CREATE TABLE EMP 
I EHE't CHAR , 

EJllAhl.E t"HAR , 
SAL NLINER I t ) .. • 

• Reg.irtlfn11 1he gc11crnl <1uc:sum1 "f "'1,c1hoJ •ti)' 1 w1> <•m•CJ11' A ,mu B. ' " "h :.1 rul.11imh .111u ubj«ll d:iN:<, 
J<c "the <anic" arid uan tluJs he Cl.Jil.lleu, chore I< a \ lmpk i;uncrnl prmc1pk- p1cv111u,I)' nrticulutcJ by thl• wrhcr 
in refcri:n~c 14. 111. Jntl ... .,u .. orih 1cpc.,1ir1Jl h~rc-1h111 c11n uwlully he .1p1>lluu Simply Jsk Y'1Uf'>clr "h every 
instontto lll' A Un inl>lilflUC nr H'I" nncl. Clll>\<l'Scly. "" C\C.IY ill'IUAl'C or u '"'"'''"'""of,\,, .. Only Ir Ibo ~n•w•• r • 
. \·~.r JO both 111'thc~c quc.tilln• i;. ii tnio ihJJI ,\ unJ II 010 hl<ntk.1J 



TERADATA, Ex. 1014, p. 722

694 Part VI Object-Oriented Systems 

It is very tempting to equate the two! And many systems have done exactly that, 
including 1ris [25.3.2li.71, POSTGRBS [25.13-25.16}, UniSQL [25.111, and others. 
UniSQL, for example. supports an extended form of SQL called SQUX. which we 
illustrate by meaqs of the following example (based on one in the SQJ.JX user's 
manual [25. 111). We start with a conventional, self-explanatory SQL CREATE 
TABLE statement: 

CREATE TABLE EMP 

EMAME 
SAL 

WOBB'l 
WORRS_FOR 

CHARtSl, 

C't!AR ( 20 l , 
NUMERIC, 

CHAR ( ;!0) , 
CHA.~(20) ) 

Two points arise immediately: 

L SQUX does not currently support the SQL PRJMARY and FOREIGN KEY 
clauses. Furthermore, since the intent is ro equate CREA TE TABLE and 
"CREATE OBJECT CLASS'~s a matter of fact, SQLJX allows the keyword 
TABLE in CREATE TABLE to be replaced by the keyword CLASS-the impli­
cations of adding such.support are not clear, since primary and foreign keys are 001 

part of the object class concept. 

2. SQL/X alSo does not support domains. Indeed, those who espouse the "relation = 
object class'' equation tyP,ically never even mention domains. This omission is 
probably due to the widespread failure on the part of the relational vendors to im­
plement domains, which in tum is-due to the failure of the original SQL language 
to include any domain support in the first place. 

Anyway, to get back to the elmmple: The first SQJ.JX extension is to add compos­
ite column support. Thus, e.g., we can replace the original CREATE TABLE by the 
following (refer to Eig. 25.l ): 

EMP 

EMP~ SNAME S.l\L FfOB81i' WORKS_F'OR 

I NAME I ·re:AM I NAME i;OCl\TION 

l CI'l'Y I STATE I 

AG. 25.1 SQUX table with composite columns 
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CREATE TABLE RHP 
( ~~ CHAR(S}, 
E~ CHAR (20) , 
SAL NUMERIC , 

HOBBY ACTIVI'l'Y ,\ 
WORKS_FOR CbMPAl'l¥ ) ; 

CREATE TABLE ACTIVITY 
r NAME CHARC201. 

TEAM INTEGER l 

CREATE TABLE COM.PAN'!' 
( !!AME CHAR C20} , 

LOCA'!'lON CIT'fSTATE 

CREATE TABLE CITYSTATE 
( erTY CHAR (20) , 

STJ\'l'E CBAR(2) ) 

F:xplanation: 

695 

• The column HOBBY in table EMP is declared to be of type ACTIVITY. 
ACTIVITY in turn is a tableof twe columns, NAMEandTEAM, where TEAM 
represents the number of players in the corresponding team-e,g., a possible 
"activity" might be (Soccer, l l ). Each HOBBY value is thus actually an ordered 
pair of values, a NAME value and a TEAM value. (More precisely, it is an 
ordered pair of values that currently appears in 1he ACTIVITY table.) Inciden­
tally, those HOBBY values are not encapsulated (Fig. 25.1 notwithstanding); 
thus, e.g., a "path expression" of the formEMP.HOBBY.NAME is legal (see 
below). 

• Similarly, column WORKS_FOR in table EMP is declared to be of type 
COMP ANY, and COMPANY is also a table of two columns. one of which is de­
fined to be of type CITYS TA TE, which is another two-column table, and so on. 

In other words, tables ACTIVITY, COMPANY, and CITYSTATE are all 
considered to be types as well as tables (the same is true for table EMP also, of 
course). Thus, the first SQL/X extension is roughly analogous to allowing objects 
to contain other objects (i t is SQUX's version of support for the containment 
hierarchy). 

The next extension is to add table-valued columns. Sup pose, for example, that 
employees can have an arbitrary number of hobbies, instead of just one (see Fig. 
25.2): 

Ctu;;)\'tS 'I'Aflc.E EMP 

( EIMP~ CHJ>.R ( 5) , 
EN~ CHM(20l, 
SAL NOJo!E,RlC. 

HOBBre:s SET OF t ACTtV!T'/ J. 
W©Rl<S_FOR COMPANY ) ; 
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EN!' 

EMP~ EN;.ME SAL l:IORBY WORKS_FOP. 

NAME •rJ::.>J•l NAME L.OCA'l'ION 

. . .. 

. . .. I CT'l'Y I STATE I 

. . . . 
I . . I .. I 

FIG. 25.2 SQLJX table with a table-valued column 

Expla11arion; 

• The AOBBJES value within any given row of table EMP is now (conceptually) 
a set of zero or more (NAME, TEAM) pairs from the ACTIVITY table. This 
second extension is thUsioughly anafogaus to allowing objects to contain •·ag­
gregate'" objects-a more complex version of the containment hierarchy. Nore: 
The aggregate object types supported by SQUX are sets. sequences. and m14/riser.s 
(bags). 

The third ·~tension is to permit tables to have associated methods. For example: 

cREhTE TABLE .:MP 
I fil!?ii ClilAR 111 , 

ENAME CE!AR 110 l , 

SAL Nt1Ml::B1C, 
HOBBIES SET OF ! ACTIVT~Y J, 

WORKS_FOR l'.':OV.PANV I 
m:TROD l!E'l1iIREMENT_.BENEFITS I I : !JUMEITTC 1 

E:i:planatio11: 

• RETIREMENT_BENEFITS is a function (method) that takes a given EMP in· 
stance as its argument and produces a result of type NUMERIC. Note: The paren­
theses are reqmred; they surround a commalist (empty in the example) af data type 
specifications for additional arguments 10 lhe function. 

• The code tha1 implements the method is written in C plus embedded SQUX and 
resides in an operating sys1em file-(Wbese name can tie.specified explicitly as part 
of lbe CREATE TABLE stalement; if it is not. a defaull name derived from the 
method name is assumed). 

• The method is invokco by a CALL s1arement of the loan 

CALL mechod ( .u-gument COJJJ/tldliSC ) ON ViH lat>le I NTO variable ; 
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For example: 
CJ'.LL RETIREMENT_ BENEFITS r J ON E INTO F : 

Here E and F are program variables; E contains the OID of some particular EMP 
instance, and the OID ofthe rdult of executing the method is assigned to F. 

• Note. incidentally. that RETIREMENT_BENEFITS is not a "derived column." 
SQL/X does not currently suppon derived columns (though such support is prom­
ised for a future release). 

• 
The final extension is to permit the definition of subclasses. For example (refer to 

Fig. 25.3): 

CREA'fE ~l\BLE PERSON 

r sse CRAfH9J • 
BrR'l'llDATE DATE, 
ADDRESS Cf!ARC50l l 

CRERC'E TABLE EMP 

AS SUBCLASS 00' PERSON 
( EMP11 CH.NH SJ , 

ENAME Ct!AIH 2 0 I , 

SAL NUMERIC, 

HOBBIBS SET OF : AC'l'lVITY l, 
WORKS_ FOR COM2J\m' ) 

ME'l'.l:lOD RETlREl1ENT_BEN.ElflTS I ) : l>'Ul\l.ERIC 

E;cplanarion: 

• EMP now .has three additiruial columns tSS#. BIR'IHDATB. ADDRESS) inher­
ited from PERSON. If PERSON bad any methods, it would inherit those too. 
Along with Lhedata definition extensions sketched above. numerous data manipu­
lation extensions are required also. They include: 

PERSQ!I 

SSil BIR'H!DATE ADDRESS 

:EMP •is a '" 

l£MP~ ENAME SAL HOBBY WORl<S_POR 

NAME TE:.i\M ~JAME LOCA·rroN 

.. .. I C-'T\' I STAT£ I .. . -

.. . . 

I . . I . . I 

FIG. 25.3 SQUX supen:lasses and 51.lbclasses (example} 
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• :Path expressions (e.g. , EMP.WORKS_FOR.LOCATION.STATE}-a new kind 
of scalar expression. For example: 

SELECT ENAfff;, WORKS_E'OR. NAME 
EROl! EM.P 
WHE'RE WORKS_ FOR . LOCATION. B'l'J>.TE = ' C.ZI' ; 

We remark1ha1 these path expressions go down the eontalnmenl hierarchy, whereas 
1he path expressions discussed briefly al the end of Chapter 23 go up. 

• An extended kind of path expces$ion tllat is multi-valued instead. of single-valued 
(e.g., EMe.HOBBIES.NAME). Example: 

SELEt:'r ENAMR. WORKS_FOR. NAME 
FROM EM.El 

WHERE ( •Soccer', 'Bridge' } SUBSJi:TEO HOBBIES .NAME ; 

The operator SUBSETEQ means "proper subset of or equal 10" (see below). 

• The ability to write literal instances of complex objects. One simple example ap­
pears in the WHERE clause just shown. Here .is a more c0mplex example (a literal 
EMP): 

! '£001 1 , •smith', ssoooo, 
f ( •soccer•, 1.1 ), { 'Bl!'.:.dge•, 4) ); 

( • IBJ.I ' , ( ' San Jose' , 'CA' l l l 

• Table comparison operators sucll as SUBSET, SUBSETEQ, SETEQ, ere. (see ex­
ample above). 

• Operations for ttaversing the class hierarchy. For example: 

SELECI' SS~ , EN.AME 

Ji'ROM EMP ; 

The FROM clause "FROM T" allows the user to refer to ill columns of T, includ­
ing those inherited from superclasses (at any level) of T. By contrast. the FROM 
clause "FROM ALL T" allows the user to Tefer to columns of subclasses (at any 
level) of T as well. For example: 

SELEC'r SS#, BIRTlIDicr'£, EN1\M£ 
!"ROM ALL. PERSON : 

Note: It is not clear exactly wliat kind of object results from evaluating the expres­
s ion "ALL PERSON"- perhaps a set of tables? 

• The ability to invoke methods within WHERE clauses etc., in order to condition 
access (not supported at the time of writing). 

• The ability to access (retrieve, update) individual values within multi-valued col­
umn values. For example: 

UPDATE EMP 
SET HOBBIES '" HOBBIES - I ' Soccer. • Ll I 
WHERE ENAM6 ~ 'Smhh ' r 

(cf the discussion of relational assignmem and relatfonal update operations in 
Chapter 6). 
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We now proceed to examine some consequences of I.be foregoing. Ple-.tSe under­
stand dearly that the foUowing remarks are NOT intended as an attack on SQUX 
per se; rather, they are applicable to any system or language that attempts 10 equate 
relations and object classes. We use SQUX merely by way of illustration. 

1. The first point is that this system is a long way from being a true 00 system. (As 

an aside, we remark that it is not really a "nested relation" or "RVA" system ei­
ther-see Chapter 19-because of the points discussed in paragraphs 4 and 5 
below.) It might best be char"aaterii.ed as an SQL system with extensions-which 
means, first and foremost, that it is an SQL system. Nore: This comment b not 
meant as a criticism; it is jw;I that an appreciation of thi~ point will belp the reader 
to understand the points that follow. 

2. SQUX "objects" are rows in tables (and are thus totally unencapsulated); the cor­
responding "instance variables'' are columns. Note: Again, these commenL<> are not 
necessarily criticisms-they are just observations. 

3. Note. therefore, that whereas a pure 00 class bas methods and no (public) instance 
variables, an SQUX "class" bas public instance variables and does 001 necessarily 
have any methods. Thus. che .. relation = class" equation looks a lhtle suspect al­
ready. 

4. We remark that there is a difference in kind between the column definitions (e.g) 

ENlJil: Cl:IAR ( 2 0 ) 

and 

WORKS:._FOR COMPANY 

"'CHAR(20)" is a true data type (equivalently, a true- albeit primitive-domain); 
it plaees a time-independent constraint on the values that can appear in column 
EN AME. "COMP ANY'' by contrast is not a true data type: the constraint it places 
on the values that can appear in column WORKS_FOR is time-dependent (it de­
pends, obviouiily, on the set of values currently appearing in table COMP ANY). In 
fact, the "class vs. instance vs. collection" dfatinctions are muddied here, and the 
concept of true domains bas been lost. The full implications of this state of affairs 
are unclear. 

5. SQLJX objects are regarded (in general) as containing ocher objects-Le .. they are 
containment hierarchies. In fact, however, subobject sharing is done via poin ter~ 

(OTDs), and users must understand chis point clearly. For instance, referring back 
ro the example of EMP objects "containing" COMP ANY objects: Suppose the user 
updates one particular BMP object, changing (say) the name of the ··contained" 
COMPANY object. Then that change will immediately be propagated 10 all other 
BMP objects for employees of the same company. 

Here are some funher Implications and questions arising from this same point~ 

• Can we insert a new EMP instance and specify a value for the contained 
COMPANY instance thac does not currently exist in the COMPANY 1,able? If 
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the answer is yes. the definition of column WORKS_FOR as being of type 
COMeANY does TIOt mean very much. since it does not significantly con­
SLCai11 lhe LNSERT operation. U the a11Swer is no, the INSERT ope.ration 
becomes unnecessarily comple~-the user has to specify. not just a legal 
COMPANY.NAME "foreign key" value fas would be required in the analogous 
relational situation). but an entire legal COMPANY objecL Moreover, sp,eci fy­
ing an entire COMPANY object means-at besr-having lo tell the system 
something it already knows: at worsL it means that if the user makes a mistake, 
the INSERT will fail when it could perfectly well have succeeded, 

• Suppose we want a "DELETE RESTRICTED" rule for COMPANY (Le., an 
a(tempt to delete a company must fail if lhe company bas any employees). 
Pre:;umably this rule mllljt l:le enforeed by a sl.litable method, M say. funher­
more, native SQL DELETE operations musr nol be p¢'ormed on COMPANY 
objects other than within that method M . How is this laner requirement 
enforced? 

• Analogous remarks apply to "DELETE CASCADES," though possibly not to 
''DELETE NULLIFIES." 

• DELETE on an EMP presumably does nor delete the corresponding COM­
PANY. de~-pite the pretense that the corresponding COMPANY is contained 
within theEMP. 

• It follows from all of the above that we are not really talking about the relational 
model any more. The fundamental data object is not a relation containing values, 
it is a tabJe contailling values Gf!d poimers. As a cqnsequence. operamrs such as 
projection and join require careful and subtle reinterprerarion. This is a big issue, 
and we therefore make it our next major point. 

6. Let us simplify the EMP table slighLly. as fellows (the notation is intended to be 
self-explanatory): 

EMP I EM!'~. SAL, WORYS_FOR ( NAME, l,OCATTON I C'IT'I STA'!:£ I J I 

Now suppose we project this EMP table over SAL and the corresponding company 
CITY. Does lhe result look like this?-

( S AL , \ ( ClTY ) ) I 

or like t.bis7-

l SAL, C!'l'Y I 

Refer to Fig. 25.4. 

• If it is rhe fonner (which is more logically correct}-see the left-hand side of 
the figur.e-theTI what is the name of the column th!ll coa1ain1, the relation 
that contains the CITY value? Arul what is the name of the column tbm 
contaills the relation that contains the relation that contains the CITY value? 
Note: Lest the reader be tempted 10 reply "LOCATION.CITY'' and 
"WORKS_FOR.LOCA.TlON.ClTY ," res1>ectively, we point out that these con-



TERADATA, Ex. 1014, p. 729

ch•pter 25 To-rd an 00/Rellltlon•I Rapprochement 701 

SAL ??>??????? SAL CrTY 

$50000 Rome 
?7?7?? 

ssoooo ~ e 

• 

FIG. 25.4 Which projection iscorrect? 

structs are not proper column names. They cannot be used in CREATE TABLE, 
after all. 

• If it is the latter-see lhe:Tight-hand side of the figure-then do we conclude that 
hierarchic objects make sense only at the "base object" level and that, as soon as 
we create any derived objects, we are back in the relational world'? If so. why did 
we leave ii in the first place? 

• Assuming that the left-hand result. with heading (SAL.((CITY))), is indeed tbe 
correct one, can we now join that result to the CITYSTATE table over cities? 
That is, is tbefollowlng comparison legal? 

CITY = l ( CI'l'Y l J 

Note that the CITY values on the right-hand side will at least have to be doubly 
unnested before the actual comparison can be done (for otherwise the eompari­
son will certainly either give false or else raise atype error). 

The foregoing discussionillustrates the two points that (a) if join is going t<> 
apply to hierarchic objects, it is going to require very careful definition, and (b) 
even if that definition can be properly worked out, the resultant operation is 
Llkely to be quite complex. In particular, the rules regardi~g the kjnd of object 
that is produced by the join are likely to be ve1:11 complicared. The details are left 
to the reader to meditate on. 

7. Referring ag_ain 10 1.he projection example from the previous discus$ion: Which­
ever is the correct result. what class is it? What methods apply? 

In our ex.ample. EMPs had only one method. namely RETIREMENT_BENE­
FITS. and Lhal method clearly does not apply 10 Lhe result of the projection; in fact, 
it hardly seems reasonable that any methods that applied to EMP objeccs would apply. 
And there certainly are no or.hers. So ir looks as if we are forced to conclude that no 

method,r at ult apply to lhe result of a projection-Le., the resuh, whatever it is. is 
not really an object class at all. (We might.wy it is an object class. but thal does not 
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make it onel-it will have instance variables and no methods, whereas we have 
already observed that a true object class has methods and no instance variables.) 

In fact, it is quite clear that when people equate relations and object classes, it 
is specifically base relations they are referring to.* The relational closure property 
applies to relational tables but11ot to object classes. 

8. Following on from the previous point: Suppose we are given a baserelation Rand 
we _project it over all of its columns. In the version of the relational algebra defined 
in Chapter 6 of this book, the syntax for such a projection is simply R. So the 
expression "R" is new ambiguous! Cf we think of it as referring to base relatioa.R. 
then it is an object class, with methods. If we think of it as referring to the projec­
tion of base relation R over ,ail of its columns, then it is not an object class and it 
h11& no methods. How do we tell the difference? 

9. Finally, it has to be said that SQIJX represents a major increase in complexity 
vi.~-a-vis plain SQL. Such additional complexity is an inevitable consequence of 
making the wrong equation (i.e., "relatioa= object class" instead of "domain= 
object class''). 

25.5 Benefits of True Rapprochement 

Jn lb.is section we briefly summarize the benefits ofa true OO/reJatio11al rapprochement 
(i.e., a rapprochement that exploits the relational concept of domains properly, not one 
that makes the mistaken equation of relations and object classes). 

Ffrst of all, the system is still a:relationaJ system, so all the usual relatiooal benefits 
:fpply [3.2]. In particular, the advantage of familiarity applies-the 00 capabilities rep­
resenc a very natural "extension" (accually not an e,xtension at all) to the relational 
model. 

Second, the l)ystem is also an 00 system, which implies the ft>Llowing addidonal 
benefits: 

• Open arclzitecrure (extendability): Users are no longer limited to the predefined. 
builtin data types. The system can be tailored and extended in arbitrary ways to 
meet the needs of specific application ·areas. 

• U,ver-defined datll types «nilfimc1io11s, with inheritance: These in a nutshell are the 
advantages of 00 systems in general. 

• Strong typing: Pro.Per domain support prevides a sound basis for caiching rype 
violations (preferably at compilation time), as discussed in Chapter l9. 

• improved perfom1a11ce: Performance is improved because methods are executed 

• Or a1 least 11t1mtd relation<: SQLIX does suppon views. whiob are regarded as "v1rtunl class.:~·~ the 
um101111ion to reference [25.111. Vlnual classes do nor inhem methods from tbe dasses from which they are de­
nved. l'.\owcver, 



TERADATA, Ex. 1014, p. 731

Chapter 25 Toward an 00/Relational Rapprocheml!flt 703 

by the server. not the client.• As a crivial example, consider the query "Bind all 
books with more than 20 chapters." Ina traditionalrelationa'l system, books miglit 
be represented a$ "BLOBs" (a BLOB or basic large object is essentially just an 
arbitrarily long byte string). aqd the client will have to retrieve each book in tum 
and scan it to see if it has more than 20 chapters. But with proper 00 support, the 
''number of chapters" method will be executed by r.be server, and only those books 
actually desired will be transmitted to the client. 

Note: The foregoing is not really an argument for 00, it is an argument for 
• stored procedures (see Chapter 21). A traditional relational system with stored pro-

cedures will give the same performance benefits here as an 00 system with methods. 

• Improved productivity; Once the appropriate object classes (<!ornains) have been 
defined. users of those classes can obviously be much more productive, both in 
application development and-probably more important- in application mainte­
nance also. 

• Object-level recovery. concurreJtcy, and security: As i>Ointed out in Chapter 22. 
objects- that is, iodividuaJ objects. not object classe~-are the natural unit foue­
covery. concurrency, and security purposes in an 00 system (integrity constraints 
permitting). 

• Accessibility: Complex objects now become available via the<elational query lan­
guage (probably SQL) to end users. 

Furthermore, all of the criticisms we leveled at 00 systems in_previeus chapters no 
longer apply. To be specific, the system can now support all of the following without 
any undue difficulty: 

• Ad hoc query 

• Dual-mode access (i.e., using the same language for programmed and interactive 
database access) 

• Relationships of degree greater than two 

• Methods that span classes 

• Symmetric exploitation 
• Declarativein.tegrity constraints 

• Integrity constraints that span classes 

• "Foreign key rules" (DELETE CASCADES, etc.) 

• Semantic optimization 

In addition: 

• OIDs and pointer chasing are now totally "under the covers" and hidden from the user 

• "Difficult" 00 questions (e.g., what does it mean to join two objects?) go away 

• Not uuc a1 1hc time or writing for SQUX. A future rel~ will offer an optl,<?n by which 1he DBA con 
specify where a given me1hod ls to be ei<ccu!Cd. 
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• The benefits of encapsulation still apply (to values within relations, not to relations 
themselves) 

• Relational systems can now handle "complex" application areas such as 
CAD/CAM, as previouslydi:scusscil 

And the approach js conceptually clean. 

25.6 Summary 

The message of this chapter (and indeed its three predecessors) can be summed up as 
follows. First of all. 00 unquestionably has some good ideas, namely; 

• User-defined data types (including user-defined functions) 

• Inheritance (behavioral, not structural) 

However. i t also has some ideas that would be better rejected, or at least kept under 
the covers: 

• oms and pointer chasing 

• Strong procedural (3GL) orientation 

• Function bundling 

• Complex and asymmetric treatment of relationships 

• Lacie of declarative integrity support 

What we need to do is enhance relational systems tO incOJROcate the good ideas of 
00 (but not the bad ones!). and we have argued that domains are the key to achieving 
this goal. Specifically. we have argued that the equation "domain= object class" is 
correct, and the equation "relation =object class" is incorrecL 
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3. Suppon. open system~ 
• Multiple languages 
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tension to QUEL that supports non I NF relation~ (Le.. relations with set-valued attri­
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Describe.5 the overall architecture of the Starbursl protoLYIJI!· Starburs1 "facilitates the 
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implementation of d:ltII manageme111 elllenRion~ fo1· relational dninba.~e sys111ms." Two 
kind$ of exte.nsions1.1re described in this paper. user-defined storage structures and1.1ccess 
meLhods. and user-defined Integrity coru.'tralnts and niggered procedltres. However (to 
quoie the paper). "1he:re are. of course. other directions in which it is impGnant to be able 
to extend !DBMSs, including} user-defined 11.bstract data types land I query evaluation 
cechniques." See reference [25. 181 below. 

25.18 LauraM. Haai,. J. C. Freyrag. G. M. Lohman. and Hamid Pirahesh. "Extensible Query 
Processing in Swl?urst."" Proc. ACM SIGMOD International Conference on Manage­
ment of P ata, Ponland, Ore. (June 1989). 

The alms of the Starburst p;oject expanded somewhat after reference [25.17] was first 
written: "Starburst provides support for adding new stomge methods for tables. new 
types of access, methods and 1megriLy cansnaims. new data rypes. functions. and new 
operation.~ on tab l~.'' The system is divided into two major cl')mponents, Core and Co­
rona.. (;Urresponding re$pectively to the RSS and RDS 1n the original System R prototype 
[8.12-8.16]. Core supports the extcndubility runctions descrihetl in reference [25J7l. 
Corona supports the Starburst query language Hydrogen. which is a dialect of SQL that 
(a) eliminates most af tile implementation restrictions of System R SQL. (b) is much 
more onhogt\nal 1han Syi;lem R SQL. (c) suppans recun;ive querie>. and (d) is user-ell­
tendable. The paper includes an mteresLin~ cliscuss1un of "query rewrite." i.e •. Hydrogen 
transformlltion rules thilt are u.-red by the optimizer to convcn qlleries to a semanticuUy 
equivalent but more efficient form (see Chapter LSJ. See ulso reference 118.44 I 

25.19 Guy M. Lohman er aJ. '"Extensions to Starburst: Objects. Types. Functions. and Rules." 
CACM 34, No. 10 (October 1991 l. 
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The following lllJpendixes cover a1somewbat mixed bag of topics. Appendix A pro­
vides a tutorial survey of common storage structures and access techniques. Appendix 
B gives a brief overview of a commercial relational implementation-namely, IBM's 
DB2 produc~-in arder to give some idea of bow a real relatienal DBMS actually 
works. Appendix C is an introclu"tion to the ideas underlying logic-based systems (i.e., 
systems that attempt to marry ideas from the logic programming world with database 
ideas). Finally, Appendix D presents a list of the more important abbreviations and 
aeronyms introduced in lhe text, togelherwitb !heir meanings. 
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APPENDIX 

A Storage Structures and 
Access Methods 

A.1 lntrodudion 

In this appendix we present a tutorial survey of techniques for physically representing 
and accessing the database on the dislc (/'?ote: We use the term "disk'' throughout to 
stand generically for all direct-access media, including, e.g., RAID mays, mass> stor­
age, and more recently optical disks, as well as conventional moving-head magnetic 
disks per se). The reader is assumed to have a basic fanuliarlty with disk architecture 
and to understand what is meant by such terms as seek time, rotational delay, cyUn­
der, track, read/write head, and so on. Good tutorials on such material can be found 
in many places; see, for example, reference [A.4]. 

The basic point motivating all storage structure and access method technology is 
that disk access times are much slower than main memory access times. Typical seek 
times and rotational delays are both on the order of JO milliseconds or so, and typical 
data transfer rates are somewhere in the range 5 to 10 million bytes per second; main 
memory access is likely to be at least four or five order's of magnitude faster than disk 
access on any given system. An overriding performance objective is thus to minimize 
the number of disk accesses (diskJ/O' s). This appendix is concerned with techniques for 
achieving that objective-i.e .. techniques for arranging stored data on the disk so that a 
required piece of data, say a required stored record, can be located in as few I/O's as 
possible. 

As alre~dy suggested. any given arrangement of data on the disk is referred to 
as a storage structur e. Many different storage structures can be and have been 
devised, and of cour.se different structures have different performance characteris­
tics; some are good for some applications, others are good for others. There is no 
single structure that is optimal for all applications. rt follows that a good system 
should support a variety of different structures, so that different portions of 
the database can be stored in different ways, and the storage structure for a given 
ponion can be changed as performance requirements change or become better 
understood. 

The structure of the presentation is as follows. Following this introductory section. 
Section A.2 explains in outline what is involvea in theove.rall process of locating and 
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accessing some particular storedrecord, * and identifies the major software components 
involved in that process. Section A.3 then goes into a little more detail on two of those 
components, the file manager and.the disk manager. Those two sections (A.2 and A.3) 
need only be skimmed on a first ~ailing, if the reader desires: a lot of the detail they 
contain is not really re<juired for an understanding of the subsequent material. The next 
four sections (Sections A.4-A.7) should not be just skimmed, however, since they rep~ 
resent the most important part of the entire discussion; they describe some of the most 
commo nly occurring storage s truaturci. found in present-day systems, under the head­
ings lnde:clng. hashing, pointer chains, and compression techniques, respectively. fj­

nally, Section A.8 presents a summary and a brief conclusion. 
Note; The emphasis tbrougliout is 0,11 r:oncepts, not detail, The objective is to ex­

plain the general idea behind such notions ru; indexing, hashing, ere .. without getting 
too boggeddown in the details of any one specific system or technique. The reader who 
needs such detail is directed to the books and papers listed in the References and B ibli­
ography section at the end of !.he appendix. 

A.2 Database Access: An Overview 

Before we get into our discussion of storage scructures per se, we first briefly c:onsider 
whaL is involved in the overall process of dauibase access in general. Localing a spi;:cific 
piece of data in the database a11d presenting il to the user involves several layers of data 
acce~s software. Of course. the derails of those layers vary considerably from system to 
system, and so too does the terminology, but rhe principles are fairly standard and can 
be ex:piained in outline as follows (refer ro Fig. A. I). 

I. First, the DBMS decides what stored record is required, and asks the me manager 
to retrieve that reoord. (We assume fortbe purposes of this simple explanation that 
the DBMS is able to pinpoint the exact record desired ahead of time. In practice it 
might need to retrieve a set of several records and search through those records in 
main.memory 10 find the specific one desired. lo principle. however. this only means 
thal I.be sequence of steps 1-3 must be repeated for each stored re<iord in that set.) 

2. The file manager in tum decides what page contains the desired record. and asks 
the disk manager to retrieve that page. 

3. Finally, the disk manager determines the physical location of the desired page on 
the disk, and issues the necessary disk 1/0 request. Nore: Sometimes. of course, the 
requ.ired page will already be in a buffer in main memory as the resul t of a previous 
retrieval, in which case it obviously should not be necessary 10 retrieve it again. 

Loosely speaking, therefore, the DBMS hai. a view of the database as a collection 
of stored records, and that view is supponed b} the me manager. the file manager. in 

• Tbroughoul thi~ uppcndi~. since our tl1Sc11,~l11n• ur. ~II "I th• 'iar•g~ lovcl. we "'I• s1or.g .. lcvcl 1ermint1l· 
ogy (Oles, rccort!J,, tic Id}. etc.) in pince of lheir rclnuon•l an.1101!;< 
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1um, has a view of the darabase as a collection ofpages, and 1ha1 view is supported by 
the disk manager; and 1he disk manager bas a view of the disk "as it really is." The three 
subsections below amplify these ideas somewhat Section A.~ then goes into more de­
tail on the same topics. 

Disk Manager 

The disk manager is a componem of the underlying operating system. lt is the compo­
nenl responsible for all physicall/O operations (in some systems ii is referred to as the 
"basic I/O services" component). As such. it clearly needs to be aware Of physical disk 
addresses. For example, when the file manager asks to retrieve some specific page p, 
the disk manager needs to know exactly where page pis on the physical disk. However, 
the user of the disk manager-namely, the file manager~oes 1101 need to know that 
information. lns1ead, Lhe file manager regards the disk simply as a logical collection of 
page sets, each one consisting of a collettion of fixed-s~ pages. Each page set is 
identified by a uniqlle page set ID. Each page, In tum, is identified by a page number 
that is unique wilhi.n the disk; distinct page sets are disjoint (i.e., do not have any pages 
in common). The mapping between page numbers and physical disk addresses is under­
stood and maintained by ch:e disk manager. The major advantage of this arrangement 
(not the only one) is tha1 all devit.:e-specific code can be isolated within a single sys1em 
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component, namely the disk manager, and all higher-level comp0nimts-in 'Particular. 
the file manager"--Can thus be device-i11depe11dent. 

As just explained. the complete set of pages on the disk is divided into a collection 
of disjoint subsets called page set~. One of tho!;e page sets. the free space page sel. 
serves as a pool of available (i.e .. currently unused) pages; 1he others are all considered 
to coniaio significant data. The allocation and deallocation of pages m and from page 
sets is performed by the disk manager on demand from the fiJe manager. The operations 
supported by the disk manager on page seis-i.e., the Operatio!"IS the file manager is 
able to issue-include the following: 

• Retrieve page p from page set s 
• Replace page p within page sets 

• Add a new page ro page set.~ (I.e., acquire an empty page from the free space page 
set and return the new page number p) 

.- Remove page p from page set s (i.e .. return page p to the free space page set) 

The first two of these ONtations are of course the basic page-level .UO operations 
the file manager needs. The other two allow page sets to grow and shdnk as necessary. 

File Manager 

The file manager use~ !he dii>k manager facilities jl'.!.~ described in such a way a:; to 
permit its user-11iz .. the DBMS-to regard the disk as a collection of stored tiles (re­
member from Chapter I that a stored file is the collection of aJI occurrences of one type 
of stored record). Each page set will contain one ormore stored files. Nore: The DBMS 
dees need robe aware of the existence of page sets. even though it is not responsible for 
managing them in detail, for reasons indicated in the next subsection. Lo particular. the 
DBMS needs to know when two stored files share the same pageg1 or when rwo scored 
records share the same page. 

Each stored file is identified by a file name or tile ID, unique at least within its 
containing page set. and' each stored record, in turn, is identified by a record number 
or record ID (RID). unique 81. least within its c-0ntainings1ored file. (ln practice, record 
IDs are usually unique, not just within their containing tile, bur acrually within the 
entire disk. since they typically consist of the combination of a page number and some 
value that is unique wltbin that page. See Section A3, later.) 

The operations supponed by th.e file manager on stored liles-i.e .. the operations 
the DBMS is able to issue-include the following: 

• Retrieve stored record r f:rom stored file[ 

• Replace stored record r within stored file[ 

• Add a new stored record to stored file/ and return the new record ID r 

• Remove stored record r from stored filtf 

• Create a new stored file f 
• Destroy stored file f 
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Using these primitive file management operations, the DBMS is able to build and 
manipulate che storage structures that are the principal concern of this appendix (see 
Seccions A.4-A.7). 

Note: Jn some systems che file manager is a component of the underlying operating 
system, in others iL is packaged with the DBMS. For our purposes the distinction is not 
importanL However. we remark in passing that. although operating systems do invari­
ably provide such a component, it is often the c~~ that the general-purpose file man­
ager provided by the operating system is not ideally suited to the requirements of cbe 
special-purpose ··application'' chat is the DBMS. For more discussion of this topic. see 
reference [A.44]. 

Clustering 

We should not leave this overview discussion without a brief mention of the subject of 
dara clustering. The basic idea behind clu..'ttering is to try and store records that are 
logically related (and therefore frequently used together) physicalJy close together on 
the disk. PhysicaJ data clustering is an extremely important facmr in-performance, as 
can easily be seen from the following. Suppose the stored reeord most recently ac­
cessed is record rl, and suppose the next stored record required is record r2. Suppose 
also tbac rf is stored on page pl and r2 is st-0red on pagep2. Then: 

I . Tf p I and p2 are one and the s11me, then the access to r2 will not require any phys­
ical VO at all, because the de.~ired page p2 will already be in a buffer in main 
memory. 

2 lf pl and p2 are distinct but physically close together-in partiouJar, if they are 
physicaJly adjacent-then the access to r2 will require a physicaJ VO (unJess, of 
course. p2 also happens to be in a main memory buffer). but the seek time involved 
in that 1/0 will be small. because the read/write beads will already be close to the 
desired position. In particular. the seek time wm be zero if pl and p2 are in the 
same cylinder. 

As an example of clustering. weconsid:er the usuaJ suppliers-and-parts database:• 

• If sequential access to all suppliers in supplier number order is a frequent applica­
tion requirement then the supplier records shouJd be clustered such that the sup­
plier SI record is physically close to the supplier S2 record. the supplier S2 record 
is physically close to the supplier S3 record, and so on. This is an example of 
intra-Die clustering: The clustering is applied within a single stored file. 

• If. on the other hand, access to some specific supplier together with all shipments 
for that supplier is a frequent application requirement. then supplier and shipment 
records should be smred interleaved. with the shipment records for supplier SI 
physically close Lo the s1.1pplier SI record. the shipment records for supplier S2 

• We ~sumo for slmpliolly 1hmughou11hl.s appendix 1hal ea.oh indlvjdual supplier. pan. or ~bipmtttl tuple 
maJIS to 8 smgle Jilored record on lhe disk lhnrring exp I ici1 s1111eme111s tp the conlrary). 
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physically elos~ co the supplier S2 record, and so on. This is an example of inter­
file clustering: The clustering is applied across more than one stored file. 

Of course, a given file or sel o f files can be physically clustered in one and only one 
way aL any given time. • 

The DBMS can support clustering. both intro- and inter-file. by sLoring logically 
related records on the same page where possible and on adjacent pages where no1 (this 
is why the DBMS must know about pages as weU as stored files). When the DBMS 
creates a new stored record. the .file manager must allow h 10 specify 1ha1 the new 
record be stored ''near''-i.e., on the same page as. or at least on a page logically near 
tQ-some existing record. The disk manager, in tum. will do its best Lo ensure thal two 
pages that are logically adjacent are physically adjacent on the disk. See Section A.3. 

Of course, the DBMS can only know what clustering is required if the darab11se 
administrator is able to tell it. A good DBMS should allow the DBA to specify different 
kinds of cl11$tering for different files. lt should also aJJow the clustering for a given file 
or set of ftJes to be changed if the performance requirements change. Furthermore. of 
course, any such change in physical clustering should not require any concomitant 
changes in application programs, if data independence is to be achieved. 

A.3 Page Sets and Files 

As explained in the previous section, a major function of the clislc manager is to aJJow 
the file manager to ignore aJJ details of physical disk 1/0 and to think in terms of (logi­
cal) "page VO" instead. This function of the disk manager is referred to as page man­
agement We present a very simple example to show ho\\ page management is typi­
cally handled. 

Consider the suppliers-and-parts database once again. Suppose lhat the desired 
logical ordering of records within each table is (loosely) pnmlll)' kev sequem·e~that is. 
suppliers are required to be in supplier number order. parts in part number order, and 
shipment$ in pan number order within supplier number order.* To keep matters simpJe, 
suppose coo that each stored file js s1ored in a page set of its own. and that each ~tored 
record rC{juires an entire page of its own. Suppose also that the disk contains a total of 
64K = 65.536 pages (not at all unreasonable. by the wa) ). Now consider the follpwing 
sequence of events. 

I. Initially the database contains no data al all. There is only one page ~et. the free 
space page set, which contains all the pages on the disk-excepl for page tero, 
which is special (see later). The remaining page.s are numbereu <:equentially from one. 

2. The file manager re.quests the creation of a page set for supplier records. and inserts 

• We Sn) "loosely'" because Ibo tdrrll/>ri1111m• lev .<e(/ut11c1• is n!lt woll tlc11ned if the pnmun key" •ompd!> 
ire. Jn the ci1~1: of~hipmcnts. for exMipk. it might mean cith~r pbrt number oruol within ~~•pplh!r number CJrder Ot 

the other wu> ohout. 
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the five supplier records for suppliers S l--S5. The disk managerremoves pages 1-5 
from the free space page set and lahels them .. the i;uppliers page set." 

3. Sunilarly for pans and shipments. No\\. there are four page sets: the suppliers page 
set (pages 1-5). the pans page set !pages 6-lll. the shipments page set (pages 
12--13). and the free space page ~et (pages 24, 25. 26 . . .. ). The situation at this 
poi m is as ~hown in Fig. A.2. 

To continue whh the example: 

4. Next. the me manager insens a new !Supplier stored record (for a new supplier, 
supplier S6l. The disk manager locates the first free page in the free space page 
sel-namely. page 24-and add:. ll to the suppliers page set. 

5. The file manager deletes the stored record for supplier 52. The disk manager re­
turns the page for supplier S2 (page 2) to the free space page set. 

6. The file manager inserts a new part stored record (for part P7). The disk manager 
locates the first free page m the free space page set-namely. page 2-anii adds it 
tb the parts page set. 

7. The file manager deletei; the stored record for supplier S4. The disk manager re­
tµms the page for supplier S4 (page 4) co the free space page set. 

And so on. The situation at lhb juncture i$ ru. illustrated in F ig. A.3. The Wint 
about that figure is the following: After tbe system has been running for a while, it can 
no longer be guaranteed that pages that are logically adjacent are still physically adja­
cent. even if they sinned out that way. For this reason. the logical sequence of pages in 
a given page set mu.~t be represented, not by physical adjacency, but by pointers. Each 
page will contain a page header, i.e .. a set of control information that includes (among 

1 3 4 6 

SI S2 S3 S4 SS 

Pl PS 

12 

S1/P1 

FIG. A.2 Disk layout after creation and 1n1ual loadmg of the suppliers-and-parts 
database 
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FIG. A.J Disk layout after inserting supplier 56, deleting supplier S2. inserting part 
P7, and deleting supplier ~ 

719 

other things) the physical disk address of the page that immediately follows that page 
in logical sequence. See Fig. A.4. 

Points arising from the foregoing example: 

• The page headers-in particular, the ' 'next page" pointers-are managed by the 
disk manager; they should be completely invisible to the file manager. 

• As explained in the subsection on clustering at the end of Section A.2. it is desir­
able ro store logically adjacent pages in physically adjacent locations on the disk 
(as far as possible). For this reason. the disk manager norrnaUy allocates and 
deallocates pages to and from page sets, not one at a time as suggested in the ex-

3 2 3 5 25 5 24 

$1 P7 53 $5 

8 8 9 9 10 11 2 

P1 P2 P3 P4 PS P6 

12 13 13 14 14 15 15 16 16 17 17 18 

S1/P1 S1/P2 51/P3 S1/P4 51/PS S1/P6 

18 19 19 20 20 21 21 22 22 23 23 

S2/P1 S21P2 S3/P2 S4/P2 54/PS 

FIG. A.4 fig A.3 revised to show •neJCt page• pointers (top right corner of each 
page) 
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ample, but rather in physically contiguous groups or extents of (say) 64 pages at a 
time. 

• The question ari!Y!s: How does the disk manager kngw where tbe various page sets 
are locatediJ~r. more precisely, how does it know, for each page set. where me 
(logically) first page of that page set is located? (It is sufficient to locate tbe lirst 
page, of course, because the second and subsequent pages can then be located by 
foTiowing the p0inters in the page headers.) The answer is that some fixed location 
on the disk-typically cylinder zero, track zero-is used to store a i>age that gives 
precisely that information. That page (variously referred to as tbe disk table of con­
tems. the disk directory. the page set directory. or simply page zero) thus typically 
contains a list of the page sets currently in existence on the disk, together with a 
p0inter to the first page of each such page set See Fig. A.5. 

Now we turn to the file manager. Just as the disk manager allows the filemanager 
10 ignore details of physical disk 1/0 and ro think for the most part in terms of logical 
pages. so the file manager allows the DBMS to ignore details of page J/0 and to mink 
for the most part in terms of stored files and stored records. This function of the file 
manager is referred to as stored record management. We discuss that function very 
briefly here. once again taking lhe suppliers-and-parts database as the basis for our 
examples. 

Suppose, then (rather more realistically now). that a single page c;an accommodate 
several stored reGords. instead of just one as in the page management example. Suppose 
too that the desired logical order for supplier records is supplier number order. as be­
fore. Consider the following sequence of evems. 

Page set Address of 
first page 

Free space 4 

Suppliers 1 

Parts 6 

Sh1pm1!nts 12 

FIG. A.5 The disk directory (•page zeto") 
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I. First, the five stored records for suppliers Sl-55 are inserted and are stored to­
gether on some page p. as shown in Fig. A.6. Noce that page p still conrains a 
considerable amount of free space. 

2. Now suppose the DBMS inserls a new supplier stored record (for a new supplier, 
say supplier 59). The file manager stores this record on page p (because there is 
still space), immediately foJJowing the stored record for supplier SS. 

3. Next. the DBM S deletes tbe stored record for supplier S2. The file manager erases 
the S2 record from page p. afld shifts the recordi. for suppliers 53, S4, SS. and S9 
up to fill the gap. 

4. Next, the DBMS in.'lertS a new suppliei; stored record for another new supplier. 
supplier S7. Again the file manager stores !hi!> record on page p (because there is 
still space): it places the new record immediately foJJowiug that for supplier SS, 
shifting the record for supplier S9 down to make room. The s ituation at this junc­
ture is illustrated in Fig. A. 7. 

And so on. The point of the example is that the logical sequence of i.tored records 
within any given page can be represented by plty~ica/ sequence wilhin that page. The 
file manager will shift individual records up and down to achieve this effect, keepmg 
aJJ data records together at the !Op of the page and all free space together at the bottom. 
(The logical sequence of stored records across pages is of course represented by the 
sequence of those pages Within their containing page seL, a~ described in the page man­
agement example earlier.) 

As explained in Section A.2. stored records are identified internally by record ID 
or RID. Fig. A.8 shows how Rills are typically implemented. The RID fur a s(ored 

p I Rest of ~eaderf 

S1 Smith 20 London S2 Jone'5 10 Paris 

SJ Blake 30 Paris S4 Clark 20 London 

SS Adams 30 

FIG. A.6 Layout of page p after lnl ual loading or 1he 
flVe supplier record~ for S l- S5 
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p (Rest of header) 

S1 5111ith 20 London 53 ~lake 20 Paris 

54 Clark 20 London 55 Adams 10 Athens 

S7 59 

FIG. A. 7 Layout of page p after rnserong supplier 59, 
deleting supplier S2. and Inserting supplier S7 
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record r consi~s of two parts-the page number of the page p containing r, and a byte 
offset from the foot ofp identifying a slot that contains, in tum, the byte offset of rfrom 
the top of p. This scheme represents a good compromise between the speed of direct 
addressing and the flexibility of indirect addressing: Records can be shifted up and 
down within their containing page, as illustrated inFigs. A. 7 and AS, without.having 
to change RIDs (only the local offsets at the foot of the page have to change); yet access 
to a given record given its RID is fast, involving only a single page access. (It is desir-

Pagep 

i'lecord r 

f\10 
torr~-~-~ 

Page Offse.t 
no. frorr foot of pa.ge 

FIG. A.8 Implementation of stored record IDs (RIDs) 
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able that RIDs not change, because they are used elsewhere in the database as pointers 
to the records in question-for example, in indexes. If the RID of some record did in 
fact change, then all such pointer references elsewhere would have to be changed too.) 

Note: Access ro a specific stored record under the foregoing scheme might in rare 
cases involve two page accesses (but never more than two). Two accesses will be re­
quired if a varying length reco.rd is updated in such a way that it is now longer than it 
was before, and there is not enough free space on the page to accommodate the in­
crease. In such a situation, the upda1ed record will be placed on another page (an over· 
Dow page), and theorjginal record will then be replaced by a pointer (another RID) to 
the new location. If the same thing happens again, so that the updated record has lO be 
moved to still a third page, then the pointer in the original page will be changed to point 
to this new.est location. 

We are now almost ready lo move on to our discussion of storage slnlctures. Fro~ 
this point forward, we will assume for the most part Uust as the DBMS normally as­
sumes) that a given stored file is simply a collection of stored records. each uniquely 
identified by a record ID that never changes so long as thar record remains in existence. 
A few final points to conclude this section: 

• Note that one consequence of the preceding discussion is thal, for any given stored 
file, it is always possible to access all of the stored records m that s1ored file se­
quentially- where by "sequentially" we mean "store-0 record sequence within 
page sequence within page set" (typically, ascending RID sequence). This se­
quence is often referred to loosely as physical sequence, though it should be clear 
that it does not necessarily correspond to any obvious physical sequence on the 
disk. For convenience, however. we will adopt the same term. 

• Notice that access to a stored file in physical sequence is possible even if several 
files share the same page se1 (i.e., if stored files are interleaved). Records that do 
not belong to the stored file in question can simply be skipped over during the 
sequential scan (see the note below regarding record prefixes). 

• It should be stressed that physical sequence is often a1 least adequate as an access 
path to a given stored file. Somecimes ii might even be optimal (especially if the 
stored file is small, say not more than ten or so pages). However, it is frequently the 
case that something better is needed. And, Sb indica1ed in Section A. l, an enor­
mous variety of techniques exist for achievmg such a "something belier." 

111 For the remainder of chis appendix. we will usually assume for simplicity that the 
(unique) "physical" sequence for any given stored file is primal)• key sequence (as 
defined in Section A.3), barring any explici1 staiemem to the contrary. Please note, 
however, that this assumption is made purely for the purpose of simplifying subse­
quent discussion: we recognize that there might be good reasons in practice for 
physically sequencing a given SlOred file m some or.her manner. tl.g., by the value(s) of 
some other field(s), or simply by time of amval (chronological se.quence). 

• For various reasons. a stored record will probably contain certain control informa­
tion in addition to its user data fields. That information is typically collected t~ 
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gether at the front o( the record in the form of a record prefix. Examples of the 
kind of information found in such prefixes are the ID of che conraining srored file 
{necessary if one page can contain records from several stored files), che record 
length (necessary for varying length records), a delete flag (neeessary ifrecords are 
not physically delered at the time of a logical delete operation), pointers (necessary 
if records are chained together in any way), and so on. But of course all such con­
trol infonnation will normally be concealed from the user (i.e., end user or applica­
tion progr.ammer). 

• Finally. note that the user data fields in a given s.tored record wi11 be of interest to 
the DBMS bm not to the file manager (and not to the disk manager). The DBMS 
needs to be aware of those :fields because it will use them as che basis for building 
indexes and the like. The file manager, however, bas no need to be aware of them 
at all. Thus. another distinction between the DBMS and the file manager is thac a 
g1 ven stored record has a know11 lntemalstructure to theJ)BMS but is basically just 
a byte string to the file manager. 

Jn the remainder of this appendix we describe some of the more important tech­
niques for achieving the "something better" referred to above (i.e., an access path that 
is better than physical sequence). The techniques are discussed under the general head­
ings of indexing, hashing, poimer chains, and compression techniques. One finalgen­
eralremark: The various techniques should not be seen as mutually exclusive. For ex­
ample, it is perfectly feasible to have a stored file with (say) both hashed and indexed 
access to that file based on the same stored field, or with bashed access based on one 
field and pQinter cha.in access based on another. 

A.4 Indexing 

Consider the suppliers table once again. Suppose the query "Find all suppliers in city 
C ··(where C is a parameter) is an important one--i.e., one that is frequently executed 
and is therefore required to perform well Given such a requirement, the OBA might 
choose the stored representatioashown in fig. A. 9 .Jn that representation, there are two 
stored files, a supplier file and a city file (probably in different page setS); the city file, 
which we assume to be stored in city sequence (because CITY is the primary key), 
includes poimers (RlDs) into the supplier file. To find all suppliers in London (say), the 
DBMS now has two possible strategies: 

L Search the entire supplier file, looking for all records with city value equal to 
London 

2. Search the city file for the 1-.oodon e!llries, ~d for each such eritry follow the 
pointer to the corresponding recordin the supplier file 

If the ratio of London suppliers to others is small, the second of these strategies is 
likely 10 be more efficient than the first, because (a) the DBMS is aware of the physical 
sequencing of the city file (it can stop ics search of that file as soon as it finds a city that 
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City file (index) Suppller file (data) 

51 Smith 20 L9ndon 

London 5! Jone~ 10 Paris 

London 53 Blake 30 Paris 

Paris 54 Clark 20 London 
• 

Paris S5 Adams 30 Athens 

FIG. A.9 Indexing the 5\.lpplier file on CITY 

comes later than London in alphabetic order). and (b) even if it did have to search the 
entire city file. that search would still probably require fewer J/0' s overall, because the 
city file is physically smaller than the supplier file (because the records are smaller). 

In this example. the city file is said to be an index ("the ClTY index") to che sup­
plier fil~ equivalently, the supplier fiJe is said to be indexed by the city file. An index 
is thus a special kind of stored file. To be specific, it is a file in which each entry 
(i.e., each record) consists of precisely two vaJues, a data value and a pointer (RID); the 
data value is a value for some field of the indexed file. and the pointer identifies a 
record of that file that has that vaJue for that field. The relevant field of the indexed file 
is called the inde:{edfield, or sometimes the index key (we will not use this latter term, 
however). 

Note: Indexes are so called by analogy with conventional book indexes, which also 
consist of entries containing "pointers" (page numbers) to facilitate the retrievaJ of in­
formation from an "indexed file" {i.e., the body of the bQok). Nore.however, that unlike 
our CITY index, book indexes are hierarchically compressed-i.e., entries typically 
contain several page numbers, nocjusr one. See Section A.7. 

More terminology: An index on a primary key-e.g., an index on field S# of the 
supplier file-is sometimes called a primary index. An index on any other field-e.g .. 
the CITY index in the example-is sometimes called a secondary index. Also, an index 
on a primary key, or more generally on any candidate key, is sometimes called a 1miqµe 
index. 

How Indexes Are Used 

The fundarnentaJ advantage 0f an index 1s that ll speeds up retrieval. Bui there is a 
disadvantage too: It sJows down updates. Por instance. every time a now srored record 
is added to the Indexed file. a new entry wiU also have 10 be added to lhe index As a 
more specific example. consider what the DBMS must do 10 the CITY index of Fig. 
A.9 if supplier S2 moves from Pans to London. In general. therefore. the question that 
must be answered when some field is being considered ali a candidate for indexing is: 
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Which is more imponaot, efficient retrieval based on values of the field in question. or 
the update overhead involved in providing that efficient retrieval? 

E'or the remainde~ of this section we concentrate on retrieval operations specific­
ally. 

Indexes can be used in essentially two differem ways. Birst, rhey can be used for 
sequential access to the indexed file-where sequential means ··1n the sequence de­
fined by values of rhe indexed fiel d." Yor instance, the CITY index ill rhe example 
above will allow records in the supplier file to be accessed Jn ciry sequence. Second, 
mdexes can also be used for direct access to individual records in the indexed file on 
the basis ofa given value for the indexed field. The query ''Find suppliers in London" 
discussed at the start of the section iUustrates this second case. 

lo fact, rhe two basic ideas just outlined can each be generalized slightly: 

II Sequential attess: The index can also help with range queries- for instance, "Find 
suppliers whose city is in some specified alphabetic range" (e.g .. begins with a 
letter in the range L-R). Two imponant special cases are (a) "Find all suppliers 
whose city alphabetically precedes (or follows) some specified value," and (b) 
UFind ail suppliers whose city is alphabetically first (or last)." 

• Direct access: The index can also help with list queries-for instance. "Find sup­
pliers whose cicy is in some sppcifled list" (e.g .. London, Paris. and New YorJc). 

ln addition, there are certain queries~.g., e.'(istence tests-that can be answered 
from the index alone. without any access to the indexed file at all. For example, con­
sider the query " Are there any suppliers in Athens?" The response to this query is 
clearly "Yes" if and only if an entry for Athens exists in the CITY index. 

A given stored file can have any number of indexes. For example. the supplier 
stored file might have both a CITY index and a STATUS index (see Fig . .A.10). Those 
indexes could then be used to provide efficient access to supplier records on the basis 
of given values for either or both of CITY: and STA TVS. As an illustration of the 
" both" case, consider the query "Find suppliers ln Paris with status 30." The CITY 

CITY index Supplier file STATUS Index 

A1t1ens S1 Smith 20 London 10 

London S2 Jones 10 Paris 20 

London 53 Blake 30 Paris 20 

Paris S4 Clark 20 London 30 

Paris 56 Adams 30 A1hens 30 

FIG. A.10 Indexing the supplier flle on both OTY and STATUS 



TERADATA, Ex. 1014, p. 755

Appendix A Storage StJ\lctures and Access Methods 727 

index gives the RIDs-r2 and r3. say-for the suppliers in Paris: likewise. the 
STATUS index gives the RIDs-r3 and r5. say-for suppliers with status 30. From 
these two sets of RIDs it is clear that the onJy supplier satisfying the original query is 
the supplier with RID equal co r31(narnely, supplier S3). Only Lhen does the DBMS 
have to access the supplier file Itself, in order to retrieve the desired record. 

More terminology: Indexes are sometimes referred to as inverted lists, for the fol­
lowing reason. First. a "ncmnal" file-the supplier file of Figs. A. I 0 and A 11 can be 
taken as a typical "noonaJ fiJe".-lists, for each record, the values of the fields in I.hat 
record. By contrast, an index lists. for each value of I.he indexed field, the records that 
contain that value. (The inverted-list database systems mentioned briefly at the end of 
Chapter I tlraw their oamefrOm this tenninology.) And one more tenn: A file with an 
index on every field is sometimes said to be fully inverted. 

Indexing on Field Combinations 

lt is also possible to construct an index on the basis of values of t wo or more fields in 
combination. For example, Fig. A.l l shows an index to the supplier file on the combi­
_nation of fields CITY and STATUS, in I.hat order. With such an index, lhe DBMS could 
respond to the query discu.~sed above-"Find suppliers in Pads with status 30"-in a 
single scan of a single index. lf the combined index were replaced by two separate 
indexes. then (as described earlier) that query would involve two separate index scans. 
Furthermore, it might be difficult in that case to decide which of those two scans should 
be done first: since the two possible sequences might have very different performance 
characteristics. the choice could be significant. 

Note that the combined CITY/STATUS indell can also serve as an index <.m the 
CITY field alone, since all the entries for a given city are al least still consecutive within 
the combined index. (Another, separate indell will have to be provided if indexing on 
STATUS is also required, however.) ln general, an index on the combination of fields 

CITY/STATUS index Supplier file 

Athena/30 S 1 Smith 20 London 

lo"don/20 S2 Jones 10 Paris 

London/20 S3 Blake 30 Paris 

Parls/10 S4 Clark 20 London 

Parl.t30 SS Adams 30 Athens 

FIG. A.11 Indexing the supplier file on the combination of CITY and 
STATUS 
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FI, F2, F3, .. . Fn (in rhat order) will also serve as an index on Fl alone. as an index 
on the combinarion F/F2 (or F2FI). as an index on tbe combination FIF2F3 (in any 
order). and so on. Thus Lile rotal number of indexes required ro provide complete index­
ing in this way is nor as large as might appear at first glance (see ExerciseA.9 at the end 
of this appendix). 

Dense vs. Nondense Indexing 

As stated several times already. the fundamental purp9se of an index is to speed up 
retrieval-more specifically. to reduce ihe number of disk UO's needed to retrieve 
some given srored record. Basically. rhis purpose is achieved by means ef pointers; and 
up to this point we have assumed that all such pointers are record pointers (i.e., R!Ds). 
In fact. however, it wouJd be sufficient for the stated purpose if those pointers were 
simply page pointers (i.e., pa,ge-0umher.s).Jt is t.rl.le that lo.find the desired record within 
a given page. the system would then have to do some additional work to search through 
the page in main memory, but the number of J/O's would remain unchanged. Note: As 
a matter of fact, the book index: analogy memioned earlier provides an example of an 
index in which the pointers are page pointers rather than "record" pointers. 

We can take this idea further. Recall rhat any given stored ffie has a single "physi­
cal" sequence, represented by the combination of (a) the sequence of stored records 
withlneach page and (b) the sequence of pages wiLhin the containing page set. Suppose 
the supplier file is stored such 1hat its physical sequence corresponds to the logical 
sequence as defined by the values of some field. say the supplier number field; in other 
word$, the supplier file is clusrered on Lhat field (see the di!;cussion of intra-file cluster­
ing at the end of Section A.2). Suppose also that an index is required on that field. Then 
there is no need for that index to include an entry for every stored record in thC>indexed 
file (i.e., the supplier file. in r.he example): all r.hat is needed is an entry for each page, 
giving the highest supplier number on the page and the corresponding page number. 
See Fig. A.12 (where we assume for Simplicity tbal a given page can held a maximum 
of rwo supplier records). 

Af, an example, consider what is involved in retrieving supplier 83 using this index. 
First the system must scan the index, looking for the first enrcy with supplier number 
greater than or equal to S3. It finds the index entry for supplier S4, which points to page 
p (say). ll then retrieves page p and scans it in main memory. looking for rhe required 
stored record (which in this example, of course, will be found very quicl,dy). 

An index such as that ofFig. A.12 is said to be nondense(or sometimes sparse), 
because it does not contain an entry for every stored record in the indexed file. (By 
contrast, aU indexes discussed prior to this point have been deD1Je.) Oneadvamage of a 
nondense lndex is that it will occupy less storage Lhan a correspo(lding dense index, for 
the obvious reason that itcomains fewcl' entries. As a result, it will probably be quicker 
ro scan also. A disadvantage 1s that it might no longer be possible to perform existence 
tests on the basis of the index alone (sec the brief 11ote on this topic in the subsection 
"How indexes are used" earlier in thii. section). 

Nore that in general a given stored me can have ac most one nondense index, 
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Slinde• Supplier Ille 

52 51 Sniith 20- !-·-· London 

54 52 Jonb 10 Pans 

55 53 Blal\e 30 Paris I-· 54 Clar~ 20 London 
• 

SS Adams 30 Athens )-·" 
FIG. A. 12 Example of a nondense index 

because such an index relies on the (unique) physical sequence of the file in question. 
All other Indexes must necessarily be dense. 

B-bees 

A particularly CQmmon and imponant kind of index is the 8-tree. Although ii is true 
that there is no single storage structure tha1 is optimal for all applications, there is little 
doubt that if a single struGture must be chosen, then B-trees of one k.irul or another are 
probably the one to choose. B-trees do generally seem to be the best all-around per­
ionner. For tbisreason, in fact, most relational systems suppon 8 -trees as their princi­
pal form of storage structure, and several suppon no other. 

Before we can explain what a B-tree is, we must first introduce one more prelimi­
-nary notion, namely the notion of a multi-level or tree-structured index. 

The reason for providing an index in the first place is to remove the need for phys­
ical sequential scanning of the indexed ftle. "However, physical sequential scanning is 
still needed in the index. If the indexed file is very large, then the index can itself get to 
be quite sizable, and sequentially scanning the index can itself get 10 be quite time­
consuming. The solution to this problem is the same as before: We creat the index sim­
ply as a regular stored file, and build an index 10 tl (an index to the index). This idea can 
be carried to as many levels as desired (three are common in practice; a file would have 
10 be very large indeed to require more than three levels of indexing). Each level of the 
index acts as a nondense inde'X to the level below (ii must be noodense, of course, for 
otherwise nothing would be acbleved-level n would contain the same number of en­
tries as level (n+ I). and so would talce juM as long to scan). 

Now we can discuss B-trees. A B-uee is a particular type of tree-struorured index. 
B-trees as such were first described in a paper by Bayer and McCreight in 1972 [A.16]. 
Since that time, numerous variations on the basic idea have been proposed, by Bayer 



TERADATA, Ex. 1014, p. 758

730 Appendixes 

hi!T)self and by many other investigators; as already suggested, B-trees of one kind or 
another are now probably the commonest storage struotute of all in modem database 
systems. Here we describe the variation given by Knuth [Al]. (We remark m passing 
that the index structure of IBM's "Virtual Storage Access Method" VSAM [A. I It] 1s 
very similar to Knuth's structure; ho~ver. the VSAM version was invented indepen­
dently and includes additional features of its own. such as the use of compression tech­
niques. In fact, a precurs0r of the VSAM structure was described a~ early as 1969 
[A.19].) 

[n Knuth's variation, the index consists of two parts, the sequence set and the inde."< 
set (to use VSAM terminology). 

• The sequence set consists of a single-level index LO the actual data: that mdex 1~ 
normally dense, but could be nondense if the indexed file were clustered on the 
indexed field. The entries in the index are (of course) grouped into pages. and the 
pages are (of course) chained together. such that the logical ordering represented 
by tbe index is tibtained by taking the entries in physical order in the first page on 
the cbliin,folJowed by the entries in physicill order in the second page on the chain, 
and so on. Thus the sequence set provides fast sequential access to the indexed data. 

• The lndex set, in tum, provides fasl direct access 10 the sequence set (and hence 10 

the data too). The index set is actually a tree-structured index to the sequence set: 
in fact, it is the index set that is the real B-tree, strictly speaking. The combination 
of index sel and sequence sec is sometimes called a "B-plus"-tree CB~ -tree). The top 
level of the index set consists of a single node (i.e., a single page, but of courseoontain­
ing.many index enlries. like all !he o!her nodes). That top node is called the root. 

A simple e<1ample is shown in Fig. A.13., which we explain as follows. First, the 
values 6. 8, 12. _ . . 97, 99 are values of the indexed field, F say. Consider the top node, 
\\lbicb consists of two F values (50 and 82) and three pointers (actually page numbers). 
Data records wi!h F less than or equal to 50 can be found (eventually) by followi ng the 
left pginler from this node; similarly, records with F greater than 50 and less than or 
equal to 82 can be found by following the middle pointer; and records with F greater 
than 82 can be found by following the right pointer. The other nodes of rhe index set are 
interpreted analogously; note that (for example) following the right pointer from the 
first node at the second level takes us lo all records with F greater than 32 and also less 
than or cequa/ io 50 (by virtue of the fact that we have already followed the left pointer 
from the next higher node). 

The.B-tree (i.e .. index set) of Fig. A.13 is somewhat unrealistic, however, for the 
folJowing two reasons: 

• First. the nodes of a B-tree do not normally all contain the same number of data 
values: 

• Second. they normally do contain a certain amount of free space. 

In general, a "B-tree of order n" has at least n but not more than 211 data values at 
any given node (and if it bask data values, then it also has k+ I pointers)- No data value 
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appears in the tree more than once. We give the algorithm forscarching for a partioular 
value \I in the structure of Fig. A.1'3; the algprithm for the general B-tree of order 11 is 
n Simple generalization. 

set N to the root node 1 

Clo 1JT1t.il N '5 a SE;quence-ser. node. ; 
let .\", Y ( X < Y) be the dat'1 va....uea ~n ncde /'( : 
if V $ X t.ho=n ;;et N to Lhe 1eLt J.awe.c poae o i N ; 
i [ X V $ I t.hen set N co Lhe middle lower node or N : 
if V > Y then "'"t N to the right lower nod.,. of N : 

end ; 
j f \' occurs Ln a.ode N !:11.m exi.t f ... found -
.if v does not occui. ..1.n nooe N then exi · / • not tound • t ; 

A problem wilh tree structures in general is tbatinsertfons and deletions can cause 
Lile tree to become unba(anced. A Lree is unbalanced if lhe leaf nodes are 11ot all atthe 
same level-Le., if different leaf nodes are ar different distances from the root node. 
Since searching the tree involves a disk access for every node visited. search times can 
become very unpredictable in an unbalanced tree. Npre: l n practice. the top level oflbe 
index-possibly portions of other level!. too-will typically be kept in main memory 
most of the time, which will have the effect of reducing the average number of disk 
accesses. The overall point remains valid, however. 

The notable advantage of B-trees, !;y contra.~t. is that the B-tree insection/deletion 
algorithm guarantees that the tree will always be balanced. (the "B" in "B-tree" is 
sometimes said to stand for "balanced" for this reason.) We briefly consider insertion 
of a new value. V say. into a B-tr.ee of order n. The algorithm as described caters for the 
inde;x set only. :.ince (as explained earlier.) it is the index set that Is the B-tree proper; a 
Lei vial extension is needed to deal with the sequence set also. 

• First. lbe search algorithm is execu ed to locate, not the sequence set node. but lhat 
node (N say) at the lowest level of the index set in which VlQgjcally belongs. If N 
contains free space, Vis inserted into N and the process terminates. 

• Otherwise, node N (which must therefore contaii;i 2n values) is split intQ two nodes 
NI and N2. Let S be the original 2n values plus the new value V, in their logical 
sequence. The lowest n values in S are placed in the left node N /, the highest n 
values in Sare plaoe4 in the right node N2. and the middle value, W say, is pro­
moted to lhe parent Tiode of N. P. say, to serve as a separator value for nodes NI and 
N2. Future searches for a value U, on reaching node P, will be directed to node NI 
if US' Wand to nodeN2 if U> W. 

• An attempt is now made to insen W into P, and the process is repeated. 

In the worst case, splitting will occur .all the way to lbe rop of the tree: a new root 
node (parellC co the old root, which will now have be~n split mto two) will be created, 
and the tree will increase in height by one level (but even so will still remain balanced). 

The deletion algorithm I:. of course essenlially the inverse of the insertion algo­
rithm just described. Changing.a value is handled by deleting the old value and insert­
ing the new one. 
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A.5 Hashing 

Hashing (also called hash-addressing, and sometimes-confusingly-hash Index­
ing) is a technique for providing fast dire<;( access to a specific stored ~ord on the 
basis of a given value for some.field. The fieldin question is usuallly but not necessarily 
the primary key. ln outline, the technique works as follows. 

• Each stored record is placed in the database at a location whose address (RID. or 
perhaps just page number) is computed as some function (tbe bash function) of 
some field of that record (the hash jit!ld, or sometimes hdsh key; we will not use 
this latter term, however). The computed address is called the hash addres.5. 

• To store the record initially, the DBMS computes the hash address for the new 
record and instructs the file manager to place the record at thaL position. 

• To retrieve the record $Ubsequently given the hash field value, theDBMS performs 
the same computation as before and instructs the file manager to fetch the record at 
the computed position. 

As a simple illustration, suppose (a) chat supplier number values are SLOO, S200, 
S300, S400. S500 (instead of SL, S2, 83, S4, SS), and (b) that each stored supplier 
record requires an entire page to itself, and consider the following hash function: 

hasn address cl.e. , pa ge number! ~ 

remainder lifter dividing n umeric pa rt of s ~ val ue by 13 

This is a lrivtal example of a very common class of hash function called division/ 
remahuler . (For reasons that are beyond the scope of this appendix, the divisor in a 
division/remainder hash is usually chosen to be prime, as in our example.) The page 
numbers for the five suppliecs are then 9. 5, I, 10, 6, respectively, giv)ng us the repre­
sentation shown in Fig. A.14. 

n should be elear from the foregoing description that bashing ell ffers from.indexing 
inasmuch as. while a given stored file can have any number of indexes. it can have at 
most one hash structure. To state this dffferently: A file can have any number of in­
dexed fields, but only one hash field- (These remarks assume the hash is direct. By 
contrast. a file can have any number of indirect hashes. See reference fA.241-) 

Jn addition to showing how hashing works. the example also shows why the hash 
function isTiecessary.lt would theorelically be possible ~o use an "identity" hash func­
tion-e.g .. to take the primary key value directJy as the hash address (assuming, of 
course, thac the primary key is numeric). Such a technique would generally be inade­
quate in practice. however. because the range of possible primary key values will usu­
ally be much Wider than the range of avai lable addresses. For iTistance, suppose that 
supplier numbers are in fact in the l"Jnge S000-8999. as in the example above. Then 
there would be I 000 possible distinct supplier numbers. whereas there might in fact be 
only ten or so actual supplier!.. Thus. in order to avoid a eon~iderablc waste of storage 
space. we would ideally like to find a hash function that would reduce any value in the 
range 000-999 to one in the range 0-9 (say). To allow a littJe room for future growth. 
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FIG. A.14 Example of a hashed structufe 
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it is usual to extend the target range by 20 percent or so; that was why we chose a 
function that generated values in the range 0-12 rather than~ in ourexample above. 

The example also illustrates one of the disadvantages of bashing: The "physical 
sequence" of records within the stared .file will almost certainly not be the primary key 
sequence, n0r indeed any other sequence that has any sensible logical interpretation. (In 
addition, there may be gaps of arbitrary size between consecutive records.) [n fact, the 
physical sequence of a stored file with a bashed structure is usuaUy-not invariably­
co.nsidered to represent no partic;_u)ar logical sequence. 

(Of course, it is always possible to impose any desired logical sequence on a 
bashed file by means of an index; indeed. it is possible to impose several such se­
quences, by means of several indexes, one for each sequence. See also references 
[A.35) and [A37), which discuss the possibility of bashing schemes that do pre$erve 
logical sequence in the file as stored.) 

Another disadvantage of hashing in general is that there is always the possibility of 
collisions-that is, two or more distinct records ("synonyms") that hash to the same 
address. For example, suppose the supplier file (with suppliers SJOO, S200, etc.) also 
includes a supplier with supplier number Sl400. Given the "divide by 13" hash func­
tion discussed above, that supplier would collide (at hash addTeSs 9) with supplier 
S I 00. The hash function as it stands is thus clearly inadequate-ii needs to be extended 
somehow to deal with the comsion problem. 

In teflllS of our original example, one pol!sible eiuens1on i~ to treat the remainder 
after division by 13, not as the hash address per se, bul rather as the start point for a 
sequential scan. Thus, to insen supplier S 1400 (assuming that suppliers S I 00-8500 
already exist), we go to page 9 and search forward from that position for the first free 
page. The new supplier will be scored on page 11. To retrieve that supplier subse­
quently, we go through a similar procedure. This linear search method might well be 
adequate if (as is likely in practice) several records are stored on each page. Suppose 
each page can hold n stored records. Then the first " collisions at some hash address p 
will all be stored on page p, and a linear search through those collisions will be totally 
contained within that page. However. the ne~i.e .. (n+ l)st-<:ollision will of course 
have to be stored on some distinct overOow page. and another VO will be needed. 

Another approach LO the colllsion problem, perhaps more frequently encountered 
in real systems, is to treat the result from the hash function. a say. as the storage ad­
dress. noL for a data record, bl!lt rather for an anchor point. The anchor point at storage 
address a is then taken as the head of a chain of pointers (a collision chain) linking 
together all records-or all pap!S of records-that collide at a. Within any given colli­
sion chain, the collisions will typically be kept in hash field sequence. Lo simplify sub­
sequent searebing. 

Extendable Hashing 

Ye! another disadvantage of hashing 3!i described above is that as the size of the hashed 
file increases. so the number of collisions al~o tends to increase, and hence the average 
access time increases correspondingJy (because more and more rime is spent searching 
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through sets of collisions). Evenrually a point mighr beTeached where it becomes de­
sirable to reorganize the file-i.e .. to unload the existing file and to reload it, using a 
new hashing function. 

Extendahle hashing [A.28] is a nice variation on the basic hashing idea that alle­
viates the foregoing problems. lo fact, extendable hashing guarantees that the number 
of disk accesses needed to locate a specific record (i.e .. the record having a specific 
primary keyvalue) is nevermore than rwo. and will usually be only one. no matterwhat 
the file size might be. (lt therefore also guaranrees that file reorganization will never be 
required.) Note: Values of the hash field must be unique in the extendahle hashing 
scheme. which of course they wlll be if lhat field is in fact the primary key as suggested 
at the start of this section. 

In outline, the scheme works as follows. 

l. Let the basic hash function be Ii. and let the primary key value of some specific 
record r be k. Hashing k-i.e .. evaluating h(k.~yields a value s called the 
pseudokey of r. Pseudokeys are TIOI interpreted directly as addresses but ins~ead 
lead to storage locarions in an indireet fashion as described below. 

2. The stored file has a directory associated with it, also stored on the disk. The direc­
tory consis1s of a header. containing a valued called the depth of the directory. 
together with 2n pointers. The pointer:. are pointers ro data pages, which contain the 
actual stored records (many records per page). A directory of depth d can thus 
handle a maximum file size of 2" distinct dara pages. 

3. If we consider the leading d bits of a pseudokey as an unsigned binary integer b, 
then the Ith pointer in the directory (I S i S 2d) points to a page that contains all 
records for which b takes the value 1-1 . In other word,s, the first pointer points to 
the page containing all records for which b is all zeros, the second pointer points to 
the page for which bis 0 ... 01. and so on. (These 2d pointers are typically not all 
distinct; that ~~. there wjll typically be fewer than 2a distinct data pages. See Pig. 
A.15.) Thus, to find the record having primary key value k. we hash k to find the 
pseudokey $ and take the first d bits of that pseudokey; if those bits have Lhe nu­
meric value i-J, we go to the ith pointer in the directory (first disk aooess) and 
follow it to !he page containing the required record (second disk access). 

Note: 1n pfactice the directory will usually be sufficiently small that it can be 
kept in main memory most of the time. Thus the "two" disk accesses will usually 
reduce to one in practice . 

.i. Each data page also has a header giving the lucal depth p of that page (p s d). 
Suppose, for exmnple. that il is three. and that the firSt pointer in the director)" (the 
000 pointer) points to a page for which the local depth p is two. Local depth two 
here.means lhat. not only does Uli$ page contain ;ill record!i with pseudokeys start­
ing 000. it contains all records With pseudc1keys starting 00 (i.e., those starting 000 
and also those starting 00 I). In other words, the 00 I directory pointer also points to 
this page. Again, see Fig. A. j 5. 

5. Continuing the example from paragraph 3 abovu. suppose now that the 000 data 
page js full and we wish to insert anew record having a pseudokcy thar scans 000 
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Directory 

Depth 

000 pofnter ....__--! 
001 pointer ,__ _ __, 
010 pointer ....__--! 
011 pointer 

100 pointer ...._ _ _;p .... 

101 pointer ....__-"!. 
110 pointer 

1-----3'.I 
111 pointer 

L__~ 

AG. A. 15 Example of extendable hashing 

Data pages 

2 Local depthl First two bits of 
pseudokey =00 

Laeal depth< First three bits of 
pseudokey = 010 

Local depth: Firs' three bits of 
pseudokey =01 1 

~ocal depth: First bit of 
pseudokey = 1 
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(or 00 I). At this point the page is split in two; that is. a new. empty page is ac­
quired, and all 00 I records are moved out of the old page and into the new one. The 
00 I pointer in the directory is changed to point to the new page (the 000 pointer 
still points to the old one). The local depth p for each of the 1wo page,~ will now be 
three. not two. 

6. Again continuing the example. suppose that the data page for 000 becomes full 
again and ha~ to split again. The c~5ting directory cannot handle such a split.. be­
cause the local depth of the page to be split is already equal to the uirectory depth. 
Therefore we double the directory; that is. we increased by one and replace each 
pointer by a pair of adjacent, identical point~rs. The data page can now be split; 
0000 record~ are left in the old page and 0001 records go in the new page; the t1rs1 
pointer in the directory is left unchanged (i.e., 1t still points to th~ old page), the 
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second pointer is changed to point co the new page. Nore that doubling the directory is 
a fairly inexpensive operation, since ic does not in.,,olve access to any of the data pages. 

So much for our discussion of extendable hashing. Numerous funher variations on 
the basic hashing idea have been devised: i;ee. f.or eicample, references [A.29- A.36]. 

A.6 Pointer Chains 

Suppose-again. as at the beginning of Section AA, that the query ''Find all suppliecs in 
city c· is an imponant one. Another stored represenmtion that can handle that query 
reasonably well-possibly bener than an index. though not necessarily s~ses 
pointer chains. Such a representation is illustrated in Fig, A.16. As can be seen, it in­
volves rwo stored files. a supplier me and a city ftle, much as in lhe index representa­
tion of Fig. A.9 (this time both files are probably m the same page set. for reasons to be 
explained in Section A.7). ln the pointerchainrepresemationofFig. A.16.bowever. the 
city file is not an index but what is sometimes referred to as a parentftle. The s1,1pplier 
file is accordingly referred to as the child file, and the overall structure is an example of 
parent/child organization. 

In the example, the parent/child structure is based on supplier city values. The par­
ent (city) file Contains one stored record for each distinct supplier cicy, giving the city 
value and acting as the he<ld of a clwin or ring of pointers linking together all child 
(supplier) re.cords for suppliers m that city. Note that the city field has been removed 
from the supplier tile; to find all suppliers in London (say). the DBMS can search the 
city file for the London entry and then follow the corresponding pointer chain. 

The principal advantage of the parent/child structure is that the insert/delete algo­
rithms are somewhat simpler, and might conceivably be more efficien1. than the corre­
sponding a)gorithmstor an index; also, the structure will probably occupy less storage 
than the corresponding index structure. because each ci ty value appears exactly once 
instead of many times. The principal dJsadv.anlages are as follows: 

• For a given city. the only wa)' to access the 11.th supplier is to follow the chain and 
access the ·1 s4 2nd •... (11 - I )St supplier too. Unless the supplier records are ap­
propriately clur.tered, each access will involve a separate seek operation, and the 
time taken ro access the nth supplier could be considerable. 

• Although.the ~tcuLture 1rughl ~ su11able for the query "Find suppliers in a given 
city." 11 is of no hel1>- m fact, it 1s a posiuve hindrance- for the converse query 
"Find the city for a given supplier" (where the given supplier is identified by a 
given ~upplier number). For lhb latter 4uery, either a ha~h or an index on the sup­
plier file is probably desirable: note that a parenl/child structure based on supplier 
numbers wou!d nm make much sense ( wby uot?) And even when the given su~ 
µlier i:ecord ha:. been li.>cated, 1t 1~ bUll neces~ary 10 follow the cll3Jn to the pareni 
record 10 discover the deill'ed city (the need for this exrra step is our Justification 
for claiming that the parenr/child structure 1s actually a hindrance for this class of 
query) 
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51 Smith 20 10 53 Blake 30 20 

FIG. A. 16 Example of a parent/child structure 
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~ote, moreover. that the parent (city) file will probablr require index or hash 
access too if it is of any significant size. "Bence pointer chains alone are not really 
an adequate basis for a storage sl:Qlcture-orher mechanisms such as indexes will 
almost certainly be needed as welJ. 

• Because (a) the pointer chains actually run thcough !he stored records (i.e. , !he 
record prefixes physically include the relevant pointers). and (b) values of the rel­
evant field are factored out of !he child records and placed in the parent records 
instead, it is a nontrivial task to create a parent/child strocture over an existing set 
of records. Io fact, such an operation will typically require a database reorgaona­
tion, at least for the relevant portion of the database. By contrast, it is a compara­
tively straightforward maner to create a new index over an ~xisting set of records. 
Note: Creating a new hash will also typically require a reorganization, iocidentalJy. 
unJess tlie bash is indirect [A.24]. 

Several variations are possible on the basic parent/child structure. Frn:example: 

• The pointers could be made two-way. One advantage of this variation is that it 
simplifies the process of pointer adjustment necessitated by the operation of delet­
ing a child record. 

• Another extension would be to include a 1>0inter (a "parent pointer") from each 
child record direct to the correspondi~ parent; this extension would reduce the 
amount of chain-traversing involved in answering the query " Find the city for a 
given supplier" (note, however. that it does not eliminate the need for a bash "Or 
index to help witb_that query). 

• Yet another variation would be not to remove the city field from tlte supplier file 
but to repeat the field in !he supplier records (a Simple form of controlled redun­
dancy). Certain retrievals-e.g., ''Find the city for supplier S4''-would then be­
come more efficient. Note, however, that that increased efficiency bas nothing to 
do with the pointer chain structure as such, also that a hash or index on supplier 
numbers will probably still be required 

Finally, of course, just as it is,,possibletQ have any11umber of indexes over a given 
stored file. so it is equaJJy possible to have any number of pointer chains running 
through a given stored file. (It is also possible. though perhaps unusual, to have both.) 
Fig. A.17 shows a representation for the supplier-file that involves-iwo distinct pointer 
chains, and therefore two distinct parent/child structures. one wilh a city file as parent 
(as in Fig. A.16) and one with a status file as parent. The supplier file is the child file 
for bolh of these structures. 

A.7 Compression Techniques 

Compression techniques are ways of reducing the amount of storage required for a 
given collection of stored data. ~uite frequently the result of such compression will be 
not only to save on storage space, but also (and probably more significantly) to save on 
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FIG. A. 17 Example of a multiple parent/child organizat ion 
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disk 110; for if the data occupies less space. then fewer I/O operations will be needed ro 
access it. On the other hand. extra proc~ssing will be needed to decompress the data 
after it bas been retrieved. On balance, however, the I/O savings will probably out­
weigh the disadvantage ofthar additional processing. 

Compression techniques are designed to exploit the fact that data values are almost 
never completely random but instead display a_ certain amount of predictability. As a 
trivial example. if a given person's name in a name.and-address file starts with the 
letterR, then it ls extremely likely that the-next person·sname will startwitb the Jetter 
R also-assuming. of course, that the file is in alphabetical order by name. 

A common compression technique is thus to replace each individual data value by 
some representation of the difference between it and the v alue that immediately llfC· 
cedes •t-difTerential compression. Note, however, that such a technique requires that 
the data in question be accessed sequentially. because to decompress any given stored 
value requires knowledge of the immediately ~eding stored value. Differential com­
pression thus has its main applicability in situations when the data must be accessed 
sequentially anyway, as in the case of (for example) the entries in a single-level index. 
Note moreover that, in the case of an index specifically, the-pointers can be compressed 
as wel I a5 the data- for if the logicaJ data orderinglmposed by1:he index is the same as, 
or close to. the physical ordering of the underlying file. then successive pointer values 
in the index will be quite similar to one another. and pointer compression is likely to be 
beneficial. In fact. indexes almost always s tana to gainirom the use of compression. at 
least for the data if notfor the pointers. 

To illustrate differential compression. we depart for a moment from suppliers-and­
pans and c0nsider a page of entries from an ''employee name" index. Suppose the first 
four entries an that page are for the fol10wing employees: 

Roben:on 
R~rt:.SOn 

Re>ber.Sl:one 
Ron1nson 

Suppose also that employee names are 12 characters long. so that each of these 
names should be considered (in its uncompressed form) to be padded at the right with 
an appropriate number.of blanks. One way ro apply differential compression to thls set 
of values is by replacing those characters a t the front of each entry that are the same as 
those in the previous e-0try by a corresponding c0unc front compression. This ap­
proaciJ yields: 

Q - :<oi::>er:o:n~ 

6 - son..._ 
1 - r.ona-
3 - tnson~ 

(trailing blanks now shown explicitly as"+"). 
Another possible compression technique for this set of data is simply to eliminate 

alJ trailfng blanks (a.gain. replacing them by an appropriate count): an example of rear 
compression. Further rear compression can be achieved by drepping al l characters to 
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Lhe right of the one required to distinguish the entry in question from its two immediate 
neighbors, as follows: 

o - 7 Roberto 
6 - 2 - so 
? - J - t 

3-J.-l 

The lmn of the two counts in each entry here is as in the previous example, the 
second is a count of the number of characters recorded. We have'assumed that the next • 
entry does not have "Robi" as its first four characters when decompressed. Note. how-
ever, that we have actually lost some information from this index. That is, when decom­
pressed. it looks like this: 

Robe.rec????? 
Robenson?? 
RobµtcSc77?1 
Robi???????? 

(where "?" represents an unknown character). Such a Joss Qf information is obviously 
permissible only if the data is recorded in full somewhere- in I.be example, in the un­
derlying employee file. 

Hierarchic Compression 

Suppose a given stored file is physically sequenced (i.e., clustered) by values of some 
stored.field F. and,suppose also that each dlstioct value of F occurs in several (consec­
utive) records of that file. Por example. the supplier stored fiJe might be clustered by 
values of the city field. in which case all London suppliers would be stored together. all 
Paris suppliers would be stored together, and so on. In such a si tuation. the set of all 
supplier records for a given city might profitably be comprC$Sed into a Single hierar­
chic stored record, ID which the eny value ID ques oon appears eJ1.actJy onc..e:. followed 
by supplier number, name, and status inforrnallon for each supplier that happens to be 
located in that city. See Fig. A . 18. 

Athens J ss I Adams 130 I 

London I Sl I Smith ! 20 I I S4 I Clark ! 20 I 

Paris I S2 [ Jones I 10 I I S3 I Blake 130 l 
FIG. A .18 Example o"I h1erarcn1c compression (intra- file) 
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The stored record type illustrated in Fig. A.18 consists of two parts: a fixed pan, 
namely the city field, and a varying pa.rt. namely the set of supplier entries. (The latter 
part is varying in the sense thal the number of entries lt contains- i.e., the number of 
suppliers in the city in qu~1:ion-variesfrom one occurrence of the record to another.) 
As explained in Chapter 3, such a varying set of entries within a record is usually re­
ferred to as a npeating group. Thus we would say that the hierarchic record type of 
Fig. A.18 consists of a smgle city field and a repeating group of supp.lier information, 
and the Iepeating group in rum consists of a supplier number field, a supplier name 
field. and a supplier status field (one instance of the group for each supplier in the 
relevant city). 

Hierarchic compression of the type just described is often particularly appropriate 
in an index. where it is commonly the case that several successive entries all have the 
same data value (but of course different pointer values). 

Jc follows from the foregoing that hierarchic compression of the kind illustrated is 
ieasible only if intra-file clustering is in effect As the reader might already have real­
ized, however, a similar kind of compression can be applied with inter-file clustering 
also. Suppose that suppliers and shipments are clustered as suggested at the end of 
Section A.2-that is, shipments for supplier SI immediately follow the supplier record 
for SI, shipments for supplier S2 immediately follow the supplier record for S2, and 
so o.n. More specifically. suppose that supplier SI and the shipments for supplier S 1 
are stored on page pl. supplier 52 and the shipments for supplier S2 are stored on 
page p2, etc. Then an inter-file compression techliique can be applied as shown in 
Fig. A.19. 

Nore: Although we describe chis exam_ple as "inter-file." it really amounts co com­
bining the supplier and shipment flies into a single file and then applying intra-file 
compression to that single file. Thus this case is not really different in kind from the 
case already illustrated in Fig. A.18. 

We conclude this subsection by, remarking that the pointer chain structure of Fig. 

page p1 page p2 

S1 Smith 20 London I P1 1300 I S2 Jones 10 Paris 

EE .EEJ EE~ 
~ 

land similarly for pages p3, p4, p5) 

FIG. A.19 Example of hierarchic i:ompres~ion (lntl!r..flle) 
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A.16 can be regatded as a kind of inter-file compre.'ISion that does not require a oorre­
spending inter-file clustering (or, rather, Lhe pointers provide the logical effect of such 
a clustering-so that compression is possible-but do not necessarily provide the cor­
responding physical performance tidvanrage at the same time-so that compression, 
though possible. might not be a good idea). 

Huffman Coding 

"Huffman coding" [A.39) is a cbaracter encoding technique, little used in current sys­
tems, but one that can nevertheless result in significant data compression if different 
characters occur in the data with different frequencies (which is the nonnal situation, of 
course). The basic idea is as follows: Bit string encodings are assigned to represent 
characters in such a way that different characters are represented by bit strings of dif­
ferent lengths, and the most commonly occurring characters are represented by the 
shortest sttings. Also, no character bas an encoding (of n bits, say) such that those n bits 
are identical to rbe first n bits of some other character encoding. 

As a simple example, suppose the data co be represented involves only the charac­
ters A. B. C, D. E. and suppose also that the relative frequency of occutrence of rbose 
five characters is as indicated in the following table: 

Charact er Frequency coae 
E 35l l 
A JO\ 01 
0 20\ 001 
c 10\ 000] 
B Sl 0000 

Character E has the highest frequency and is therefore assigned the shortest ci>de, 
a single bit, say a I-bit All other codes must then start with a 0-bit and must be at least 
two bits long (a lone 0-bit would not be valid, since it would be indistinguishable from 
the leading portion of other cooes). Character A is assigned the next shortest code, say 
Ol; all other codes. !DUSI therefore begin 00. Similarly, characters D, C, and Bare as­
signed codes 001 , 0001. and 0000 respectively. Etercise j or the reader: What English 
words do the following strings represent? 

1 . 001 100010100 11 

2. otooo1000110011 

Given the encodings shown, the expected average lengrh of a coded character, in 
bits. is 

0. 35 • l -> 0. 30 ' 2 r 0 20 ' 3.; 0 . 10 • Q - 0.05 ' 4 = 2 .15 b i CI'<, 

whereas if every character were assigned the same number of bits, as in a conventional 
character codjng scheme, we would need three bits per character (to allow fof the five 
possibilities). 



TERADATA, Ex. 1014, p. 774

746 AppendixM 

A.8 Summary 

In thjs appendix we have taken a lengthy-by no means exhaustive!-look at some of 
the most impoctantstorage structures used in current practice. We have a1so described 
in outline how the data access software typically functions, and have sketched the ways 
in which responsibility is divided up among the DBMS, the memanager, and the disk 
manager. Our purpose throughout has been to explain overall concepts, notto desctibe 
in fine detail how the various system components and storage structures acroally work: 
indeed. we have tried hard not to get bogged down in too much detail, though of course 
a certain amount of detail is unavoidable. 

By way of summary, here is a brief review some of the major topics we have 
touched on. First. we described clustering, the basic idea of which is that records that 
are used together should be stored 11hysically close together. We also explained how 
stored records are identified internally by recorlt IDs or RIDs. Then we eensidered 
some of the most important storage structures encountered in praotice: 

• Indexes (several variations thereof, including in _particular 8 -trees) and their use 
for both sequential and direct access 

• Hashing (including in particular extendable hashing) and its use for direct access 

• Pointer chains (also known as parent/child structures) and numerous variations 
thereof 

We also examined a variety of compression techniques. 
We conclude by stressing the point th4t most users are (or should be) unconcerned 

with most of this material most of the time. The only "user" who needs to understand 
these ideas in detw1 is the DBA, who is responsible for the physical design of the 
database and for performance monitoring and tuning. For other users, such considera­
tions should preferably all be- under the CQvers. though it is probably .ttue to say that 
those users will perform their job better if they have some Jdea of the way the system 
functions iatemally. For DBMS implementers. on the ether hand, a working knowledge 
ofthis material (indeed, an undecstandiog that goes much deeper than this intreductory 
survey does) is cleatly desirable, if not mandatory. 

Exercises 

Exercises A.1-A.S might prove suitable as a basis for group discussion; they are intended to lead to a 
deeper understanding of various physical database design considtratlons. Exercises A.9 and A. JO 
have rather a mathematical fia vor 

A.l Investigate any daU1base systems (the larger I.he better) that might be available to you.For each 
such system. identify the components tlµjl perform the functions ascribed in the body ot .this 
appendix 10. respecuvely, the d1sk manageu. the file manager, and I.he DBMS proper. What 
kind of disks or other me.dia does the system suppon? Whac is the page size? What are the disk 
capacities. both theoretical (in bytes) and llC'tual (in pages)? What arethe data rates! The access 
times? How do thoi;e !ICCC$5 limes compare with the speed of main memory? Ate thei:e any 
llmit.q on file ~ize or databiu.e q1ze~ If ~o. whal are they'1 W)lich of the storage stn:1crures de-
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A.2 

A.4 

A.6 

A.7 

A.8 

A.9 

A.10 

scribed in this 11ppendix does the system support? Doe:s ii ~upport any others? lf so, whar are 
they? 

A company's personnel database is to contain information about the divisions. departments. 
and employees of that company. Each employee work$ in one department: each department L~ 
pan of One division. lnvenLSQme sample data and skt\teb some p0ssible corresponding stora_ge 
structures. When: p()ssible. s1111e the relative advantagei. of each of thO:;e struelure~-i .e .. con­
sider bow typical retrieval and update operations would be handled in each case. Hint: The 
constraints "each employee works in cme department" and "each department is part of one 
division'' ate structurally similar to the oonsttaint "each supplier Is locat.ed in one city" (they are 
all example.~ of lllllny-to-one nilallonships). A difference is that we would probably like 10 
record more infonnalion Jn the<itlllbase for departments and divisions than we did for cities. 

Repeat Exercise A.l for a database that is to eontain information about austomers and item~. 
Each customer can order any number of items; each hem can be ordered by any number or 
customers. Hint: There is a many-to-many relationship here between customers and items. 
One way to represent such a relationship is by means of a dc1uble index. A double index is an 
Index thal is u.~ed to index two data files simultllneGu.<;ly: a given entry in ~uch an index oorre­
spondS 10 a pair of related data rccGrds. one from each bf the two files. and contains 1wo daw 
values and two pointers, Can you think of any O!herway~ or representing many-to-many( ·to· 
many-... ) relationships'! 

Repeat Exercise A.2 for a database that is to contain information about PB.ITS and components. 
where a component is itse.lf a part and can have lower-level componems. Hint: How does this 
problem differ from that of Exercise A.3? 

A stored file of daLa records with no additional access structure (i.e., no index. no hash. etc.) 1s 
sometimes called a heap. New tecords are inserted into a heap whereverthere happens to be 
room. For small files-certainly for any Ille not requiring more thiln (say) nine or ten page,) 6f 
storage-a heap is probably the most efficient structure o£1ill. Most files are bigger than that. 
however. and in practice all but the smallest files should have some additional access structure, 
say (at least) an index on the primary key. State the relative advantages and disadvantages of an 
indexed struccure when compared with a heap struccure. 

We referred several times in the body of this appendix 10 physical clustering. For example. 11 

might be advantageoU$ to store the supplier records ~uch !hat their physical sequence is the 
same as or close 10 their l.ogicat seque11ce as defin'i!d by valiles of the suppliernumber field (the 
dusteringjleld). Ho'\V can the DBMS provide such physical clustering'? 

lo Section A.5 we suggested chat one method of handlinglillSh collisions would be 10 tn!31 the 
output from the bash function as the stan pqint fbr a sequential scan (the linear search teclt­
ruque). Can you see any difficulti~~ with that scheme? 

Whal are the relntive advantages and di."3dvantages of the multiple parent/child orgamzat1on? 
(See the end of Section A.6. Jt might help t0 review the advantages and disadvantages of 1he 
multiple index organization. What are the similarities? Whnr are the differences?) 

Let us define "complete indexing" to mean that an index existq for every dlsunm field combi­
nation in the indexed file. For example, complete indexing for a file with two fields J\ and B 
would require two index~. ome on the combination AB (in that order) and one on the combina­
tion BA (in that order). How many lndiu~ are needed 10 provide complete inde11ing for a file 
defined on (a) 3 fields; (b) 4 fields; (cl N fields? 

Consider a simplified B·trec (index set plus sequence set) 10 which the ~equenae sel oontmns a 
pointer ro each of N stored data record~. and each level above the sequence set (i.e .. each level 
of lhe index set) contains a pointllr 10 every puge In the level below. Al the top Crom) level. of 
coun;e, !here Is a single page. Suppose also 1h~t each page of the lndeic ~el comniM '' ind~x 
entries. Derive eitpre&Sion.~ for 1he number of leve/.1 and the number or JHige.f in 1he entire 
B-tree. 

A.I I The first ten values of the indexed field in a particulnr indCJ1ed file are :as follows: 
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Abratiams.GH 
Ackermann.L2 
_'\ckroyd. S 
;"dams. T 
Adams, TR 
Adamson, CR 

Allen.s 
Ayre-S", ST 
Railey, TE 
Ba.Lleyman D 

Appendbu!s 

Each 1s padded with blanks nt the right to a total length of 15 characters. Show the values 
nctuallyTecorded in the index if the front and rear comptession techniques described in Sec­
tion A. 7 are applied. What is ihe percentage saving in space? Show the sieps involved in 
retrieving (or aucmpting to retrieve) the ruired record.~ for "Ackroyd,S'' and "Adams.V''. 
Show also the steps involved in insen;ing a new stared ret.'Ord for "Allingham.M". 
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hashes bul not pointer chains. whereas lhe proposal of reference I A.11 I handles pointer chams 
but not hashe.~. 

A.13 M. E. Senko. E. B. Altman, M. M. Astrahan, and P. L Fehtler. ··oata Structures and Accessing 
in Dara-Base Systems." IBM Sy.r. J. 12, Nb. I ( 1973}. 

Thlq paper Is in three pans: 
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describing a given enterprise in tC!mlS of amities and enrity ~et'> (it corre,~pond~ I Q the L'omiep 
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namely the enti1y set I h1ghesl), string, encoding. and physical de\<1ce levels. These four levels 
ean be thought Of as a more demi let!, but still abstract, definition of the conceptual and internal 
p<;irtions of I.he ANSI/SP ARC arcbitecrture. T.bey can be briefly described as follows: 

• Enriry .1e1 level: Analo~>ous to the ANSl/SP ARC oonceprual level. 
• String lt!•'l'I. Access paths 10 data me defined as ordt!red sets or "strings" of data obj~. 

Three type.'> of string are desoribed-.atomic strings (e)(ample: a siring connecting SfOred 
field occurrences to fonn a part stored record occurrence), entity strings (ei1ample: a string 
connecting pan srored record oceurrenoos for red pans). and link strings (eumple: a string 
connecting a supplier stored record occUil'ellce to pact stored record oa:urrences fdr pans 
i;upplied by that supplier). 

• EncMing level. Daia objects and Strtrtgs are mapped imo linear address spaces, using a sltn­
ple representation primitive known as a ba.vic encoding unit. 

• Physical devil'ti lel'd: Linear address spaces ate allocated to formatted physiclll subdivisions 
(If real recording media. 

'T.be Wiil of DlAM. like that of references [ A.11-A.12], is (in pan) to provide a basis fbr a 
~~tematic theory of storage structures and access methods. One criticism (wbich·applies to the 
fonnalisms of references [A. I I) and [A.121 also. incidentally) is that sometimes the bes1 
method of dealing with some giv.en access request is simply to sort the data. aruhorting is of 
coul'MI dynamic. whereas 1be structure!> described by DIAM (and the models of [A. UJ and 
lA 12]) are by definirinn always statil". 
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The purpose of this paper 1s s1milar to that of references [A. l 1 J and [A.12]; in some respects. 
in fact, it can be regarded as a sequel 10 tho:se earlier papers, in that ii pre.o;ents a generalized 
model of databa~e storage structures that can be seen a~ a combination anti extension of !be 
proposals oflhose papers. It also pre<>ents a se1 of "&CneraTI7.ed aoces8 algorithms and eostcqua­
tioos for that genecaliLed mooel Reference.~ are gfven lo a number of olher papm:s that report 
on el(jlerimem:s witb an implemented physical file design analyzer based on the ideas of this 
paper. 
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mentary t:rn.nsformations include augm,in1u11011 (extending a stored record by the inclusion of 
prefix dntaa~ well as userdalll). 1mcodh1g (conveningdrua to an iruernlll form by. e.g .. com­
pression), .vegmet11atio11 (spHttlng a record into ~everal pieces for storage pucposes), and sevenil 
others. The p~per ulaims that any, conceptuallintcrna.1 mapping can be represented by'llll appro­
priate sequence of such elemenlllry transformations. and hence thai the transformations could 
fonn the basis of an approach 10 nut0rnatlng the developmem of data management software. By 
wa} of iUusu'auon, the paper npplies the ideas to the analysis of three real-world systems: IN­
QUIRE. ADABAS, and System 2000. 

A.16 R. Bayer and C McCre1ghl. ' 'Organi1..a11on and Maintenance ofUirge Orderedlndexes." Acta 
fnfom1a1iao I. No. 3 ( L972l. 
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A.18 ~- f:' Wsgncr. "fndei1inr. Design C<1ns1deralions." fBM Sy~. J. 12, No. 4 ( 1973). 
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vember 1970). 

The paper that introduced the technique of indclting on field combinationS. 

A.22 James K. Mullin. MRetrieval-Updale Speed Tradeoffs Using Combined Indices." CACM 14, 
No. J 2 (December 1971 ). • 

A sequel 10 reference [A.2 l] dial gives performance statistics for the combined index scheme 
for various rettieval/updale ratios. 

A.23 Ben Sbneidennan. "Reduced Combined lndexes for Efficient Mulliple Attribute Retrieval.'' 
lnfomllllion Sysrems 2. No. 4 (1976). 

Proposes a refinement of Lum's combined indexing technique [A.21) that considerably re­
duces the storage space and search lime overheads. For example, the index combination ABCD. 
BCDA, CDAB. lMBC, ACBD. BDAC--see the-answer to Exercise A.9(b)-Could be replaced 
by the combinalionABCD. BCD. CDA, DAB, AC. BD. If each of A • .B, C:. D can assume 10 
distinct values, then in !he worst case the original combination would involve 60.000 index 
entries. the reduced combinal!ion only 13.200 entries. 

A.24 R. Morris. "Scatter StO{age Techniques." CACM 11. No. I ( Janwu:y 1968). 

This paper is concerned primarily with hashing as it applies to the symbol table of an assembler 
or compiler. Its main purpose is to describe an Indirect hashing scheme based on scan enables, 
A soaner !able is a table of record addresses, somewhat ak1n 10 the directory used in extendable 
hashing [A.28]. As with exiendable hashing. the hash function hashes lnto the seatter table. noc 
diri:ctly lo the records themselves; the records themselves can be stored anywhere that seelll5 
convenient. The seaner table can thus be thought of as a singte-Jevel index to the underlying 
data. but an index that can be accessed directly via a hash instead of havmg 10 be sequentially 
searched. Nore that a: given stored data file could conceivably have sevetnl distinct scaner ta­
bles, thus in effect providing hash access to the data on several distinct hash fields (at the cost 
of an extral/O for any given hash access). 

Despite its programming language orientation, !he papeT provides a good introduction to 
bashing techniques in general. and most of the matenal 1s applicable to database. hashing also 

A.25 W. D. Maurer and T. G. Lewis. "Hash Table Methods." ACM Comp. Surv. '1. No. I (March 
1975). 

A good tutorial, though now somewhat dated (it does nol discuss any of the newer approaches, 
such as e.xtendable hashinID. The topics covered include basic ha.tjii.ng tl!chniques (not just 
division/remainder. but also random, midsquare, radix. algebraic coding. folding, and digil 
analysis techniques); collision and bucket overflow handling; wme theoreucaJ a11alys1& oi the 
various 1eohniques~ and alternatives 10 hashmg (techniques to be used wben hashing either 
cannot or should not be used). Nore: A bucket in hashing terminology is the unit of siorage­
iypitally a page-whose address is oompuccd by lhe hash function. A bucket normally tontliin• 
several records. 

A.26 V. Y. Lum, P. S. T. Yuen, and M. Dodd. "Key-to-Address Transfonn Techniques· A Funda­
mental Peifomiance S1udy on Large Existing f'onnuucd Files." CACM 14, No. 4 <Apnl I 'J7 I) 
An investigation into the perfermana: of several differem "bn.~ic'" (i.e .. n!lnexumdable) hashing 
algorithms. The condu!llon Is lhal the di vision/remainder method seem~ 10 be the besl ull 
around performer. 

A.27 M. V. Ramaknshno.. "l:lashmg 111 Praouce: Anulys1s of Hashing and Umve~sal Hashiog." Proc 
1988 ACM SIGMOD lntemm1onnl Conference on Management of Data. Chicago. Ill 1June 
1988). 
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As this paper points ouL (following Knuth [A.J ]), any system that implements hashing has to 

solve rwo problems tha1 are almost Independent of one another: II has to choose among the 
wide variety of possible hash function,~ 10 prCJVide one that is effi!clive • .and ii also has ro ~ 
vide an effective 1echJJique for dealing with collisions. The author claims that, while much 
research has been devoted 10 1he second of these problems. very tiule has been done on the 
first, and few attempts have been made to compare the performance of hashing in practice 
with the performance that is theoretically achievable (reference [A.26] ls an exception). 
How then doe$ a system implementer choose an appropria1e bash function? This paper 
claims thai i1 is .Possible m choose a hash function tha1 in practice does yield p,erformance 
close to 1ha1 pred1cn:d by theory. and presents a se1 of theoretical resultli in suP1>9n oflhis 
claim. 

A.28 ~onald Fagin, Jurg Nievergelt, Nicholas P ippenger, and H. Raymond Strong. "Extendible 
Hashing-.A Fast Access Method for Dynamic Ries." ACM TODS 4. No. 3 (September 
1979) 

A.29 G. D. Knott. "Expandable Open Addressing Hash l:able Storage and Retrieval." Proc. 1971 
ACM SlGADET Workshop' on Data Description. Aa:esi;, and Control, San Diego, Calif. (No. 
vemtier 1971). 

A.30 P.-A. Larson. "Dynamic Hashing.'' BlT 18 ( 1978). 

A.31 Witold Litwin. "Virtual Hashing: A Dynamiclllly Changing H ashing." Proc. 4th lntemational 
Conference on Very Large Da~ Bases, Berlin. FDR (September 1978). 

A.32 Witold Litwin. "Linear Hashing: A New Tool for Rle and l'able Addre11sing." Proc. 6th Inter­
national Conference on Vecy Large Data Ba:ses. Montreal, Canada (October 1980). 

A.33 Per-Ake Larson. "Linear Hashing with Overflow-Handling by LinevProbing." ACM TODS 
10. No. l (March 1'985). 

A.34 Per-Ake Larson. "Linear Aashlng with Separators-A Dynamic Hashing Seheme Achieving 
One-Access Retrieval." ACM TODS 13. No. 3'CSeptember 1988). 

References LA.28-A.34] all present ex1endable hashing schemes of one kind or another. The 
prop6sals of [A.29]fur "expandabfe" ha~hiAg predate (and are therefore of course quiJe inde­
-pendent of) all of the others. Nevertheless. expandable .bashing is fairly similar to extendable 
.hashing ru. denned in referemre [A.28J, and so 100 is "dynamic" hashing [A.30]. excepi that 
bplh scheme$ use 11 tree-structured directory insti:.ad of the simple contiguous directory pro­
posed m 1eference [A.28]. "Vinual" hashing [A3 IJ is somewhat different; see the paper for 
details. "linear" hashing. introduced in {A.32] and refined in {A.33) and [A.341. is an Improve­
ment on virtulU ha~hing. 

A.JS Witold Litwin. "Trie Hashing." Proc. 1981 ACM SIGMOD International Conference on Man­
agement of Data, Ann Arbor. Mich. (Apri l l 981 ). 

Pre.~t,~ an extendable hashing scheme with a number of deitirable properties: 

• It is 1mfor-preserviJ1g Cthai i~. the "physical'' sequence of SIDred records corresponds to the 
logical sequenc1l of those records a.~ defined by values of the bash.field). 

-. ft avoids !he problems of complcidty. etc .. usually encountered with ordt:r-preserving 
trashes. 

• An arbitrary record can be accessed (or ~hown not to exist) ln a single disk access. even if the 
ftle con1ain.~ mnny millions of records. 

• The file can be arbitrarily vola1Uc fby contras\. many hash scliemes, at least of the non-
ex1endable varie1y. tend to work r:atherpooi:ly ln the face of high lnsen volumes). 

The hash function it-;elf (wllich i::hanges with 1ime. a.., in all ex1enclahle hashing illgorlthms) is 
represented by u 1rie ~truc1ure LA.42). which i& kept in main memory whenever I.he file is in use 
and grows gracefully as theduta file grpv.s. The da,ta file i1self is. as all'!lady mentioned, kepi in 
"physical'' scq_uenoe on values oflhe hnsh field: and the logioal sequence or leaf entries in the 
trie ~'tructure corresponds. preclsely.10 t.hru "physical" sequence of 1he.data records. Overllaow 
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In the data file is handled via a pilge-splitting technique. basically like the page-splltling tech­
nique used in a ,B-tree. 

Trie hashing looks very interesting, Like other hash schemes, ii provides better perfor­
mance than indexing for direc1 access (one 110 vs. typically two or three for a B-ttee); and lL L~ 
preferable to most other hash sche111es in that it is order-preserving, which ll)eans that seque11-
liaJ access will also be fast No B-tree or ocher additional slnlcture is required to provide that 
fast sequential access. Aowever. note the assumption tnat the trill will fit into main memory 
(probably realistic enough). If that assumption is invalid (1..e_ 1f the data file is 100 large). or if 
the order-preserving propeny is no1 required. then linear hashing (A.32] ot some other tellh­
nique might provide a.11referableJllUftnallvc. 

A.36 David B. Lomet. "Bounded Index liJtponential Hashing." ACM TODS 8, No. I (March 1983). 

Another extendable hashing SClheme. The author cl~ims 1hat the techniques proposed in thfa 
paper: 
• Provide direct access"' any record in clo~e tO one VO on average land nevermoie than two): 

• Yield performance that is independent of the stored rue she (by contrast, most extendJ!blc 
bashing schemes suffer from temporary perfom1ance degradation at the lime a directory 
page split OCCUJ$, because.typically all such pages need to be split at appm1timately the same 
time); 

" M ake efficient use of the available disk space (1.e-. space utilization can ~ very good): 
• Are straightforward to implement. 

A.37 Anll K. Garg and C. C. Gotlieb. "Order-Pre~erving Key Transformations.'' ACM TODS 11. No. 
2 (June J 986). 

As eJtl?}ained in the annotation to [A.35J above, a tiash (or "key transfonnation'') function 
is onler-pruenilng 1f the physical sequenca of stored reaords corresponds to the logtcal 
sequence of those records as defined by values of the h3$h fleld. Order-pre.~erving hashes 
are desirable for obvious reasons. One simple f.unctlon that is clearly order-preserving 1' 
the following: 

bash address= quotient after dividing hash field value 
by some c:onstanr (say I 0.000) 

However, an obvious problem with a function such a~ this one is that it pj!rfOTill!I very poorly if 
hash field values arenonunifo rmly dis1ributed (which is 1be usual case. of course I. Renee some 
re~earchers have proposed the idea of dis1riburion-deptmdent(but order-vreservingJ bash func­
tion$, i.e .. functions that transform nonunHomtly distributed bash Jield values into uniformly 
distributed hash addresses. while maintaining the order-preservinglJroperty. (Note: Triehash­
ing (A.351 iJs an example of sue)! tn approach.} The present paper gjves 11 method for construct­
ing such hash functions for ceal-world data files and demonslflltes the prncuclll fewubihly of 
those functions. 

A.38 M. V. Ramakrishna and Per-Ake Lar5on. "File Organi'Lation Using Composite Perfeot Hash· 
Ing.'' ACM TODS 14. No. 2 (June 1989). 

A hash function is called p11rfec1 if It produces no overflows. (NIJ/I:: "No overfluws" does no1 
mean ''no collisio~:· Far ex ample, if we assume that the hash function gener111il~ page a& 
dresses, nol r11cord addresse;~e the remark on "bud;:ts" in the annotation to I A.251 
11bov~and if each page can hold 11 stored records. then the bash func11on will be perfect 1f it 
never maps more than n records ro 1he same page.) A perfect hash fumuion has the propeny that 
'llny record can be retrieved In 11 single disk VO- This paper presents a pr.ictical methM for 
finding and uSing &uch perfect function~ 

A.39 D. A. Huffman. ''A Method for the Construction of Minimum Redundancy COdes:· PrQc. lRE 
40 (Septembet I ~52). 

A.40 B. A. Marron and P. A. D, de Maine- "Au1oma!ic Darn Comprll.'>~ion "CA.CM llJ. No 11 (No­
vember 1967). 
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Gi..;;es two compress1on/decompression algorithms: NUPAK, which operates on numeric data, 
and A NP AK. which operate.~ on alphanumeric or "any" dara (I.e .. any string of bits). 

A.41 Dennis G. Severance and Guy M. Lohman. "Differential Piles: Their AppJlcation to lhe Main­
tenance of Large Datab~;,." ACM TODS I, No. 3 {September IQ71!). 

Discusses "clifferenual files" and their advantage£. The basic idea is that updates are not made 
direcUy to the database itself, but instead are recordedin a physically distinct file-the differ­
ential file-and are merged with the actual database at some suitable subsequent time. The 
following advantages are claimed for such nn approach: 

• Database dumping cosl.~ are reduced. 

• Incremental dumping is facillcated. 

• Dumping and reorganization can bolh be performed concurrently with updating opera-
lions. 

• Recovery after a program error is fast. 

• Recovery 1lfler a hardware failure is f,ist 

• The risk of a serious daUL loss is reduced. 

• ''Memo files" are supponed efficiently. (A memo file is a kind of'scratchpad copy of some 
portion of the database. us¢ to provide guick access to data that is probably up to date and 
correct but is not guaranteed to be so. Sec the discussion of snapshors in Chapter 17.} 

• Software development is simplified. 

• The main file $0fty.>areis simplified. 

• Future storage costs might be reduced. 

One problem 11ot discussed is lhat of suppc>rting efficient sequential access to the data~.g.. 
via anJndex-when some of the records are in the~ database and someareill the differential 
file. 

A.42 E. Fredk.in. ''TRIE Memory." CACM J. No. 9 (September 1960). 

A trie 1s a uee-struotured data file (rather than a tree-structured ,access path to such a file: that 
is. the data is represented by the tree, it is not pointed tn/rom the tree-unless the "data file" is 
really an incleJC to some other file. as It effectively Is In Irie bashing [A.35J). Each node in a Irie 
logiciilly consists of n entries, where n is the number of.distinct symbols available for repre­
senting data values. For example, if each data hem is a decimal integer. then each node will 
have exactly ten entries. corresponding to the ten symbols 0. I. 2 ... . 9. Consider !he data item 
"4285." The (unique) node at the tap oft~ tree will include a pointer in the "4" entry. That 
pointer wlll point to a node: corresponding to all existing dalll items having "4" as !heir first 
digit. Thlit node in tum {the "4 .node") wiJJJ include a pointer in its "2" entry to a node corre­
sponding to all data items having "42" as their first two digiis (the "42 node"). The "42" node 
will have a pointer in illl "8" entry to the "428" .node, and so on. And if (for example) there.~ 
no data items beginning "429," then the ''.9" entry .in the "42" node will be empty (there will be 
no poi mer); in otherwerds. the cree is pruned to contain only nodes that are nonempty. (A uie 
is lhus generally not a balanced tree.) 

Note; 'The term trle derives rrom "retrieval," but is nevenheless usually pronounced try. 
Tries are also known as radix Sf!arch trees or digital search trees. 

A.43 &!gene Wong and 'T. C. Chiang. "Canonical Slnlcture in Anribuie.BasedP'Lle Organi:i;ation." 
CACM 14, No. 9 (September 1971 ). I 

PropoSCcs a novel storage structure based on Boolean olgebrn. lt is llSSYID~ tM! ;ill a\l(less re· 
quests are expressed as a Boolean combination of elementary "field = 11a/ut" conditions. and 
!hat those elementary condllioriS are 1111 kn.own. Then the file can be panitioned into disjoint 
subsets for storage purposes. The sub.sets are the "atoms" of the Boolelln algebra consisting of 
the sel or all se~ of recocds retrievable via the original Boolean access requests. The advantages 
of such an arrangement include the following: 
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• Set intersect.ion of atoms is never necessary. 

• An arbitrary BOOiean request can easily be converted in10 a reques.t for tbe union of one or 
moreato~. 

• Such a union never requires lhe
1
elimination of duplicates, 

A.44 Michael S1onebraker. '•Operating SysteJJLSuppon for Database Management." CACM 24, No. 
7 (July 1981). 

DiscussC$ reasons why various operating system facilities-in particular. the operating system 
tile manager- frequently do not provide the kind of services required by lhe DBMS, and sug­
ge~ some improvemems 10 lhose facilities. 

A.45 M. Scbiolniclt. " A Survcf of Physical Dalabase Design Methodology and Techniques." Proc. 
4chJnlematiDnal Conference on Very LargeDa1a.Base~. Berlin, FDR (September 1978). 

AM S. Finkelstein, M. Schltolnick. and P. Tiberio. "Physical Database Design for Relalinnal 
Databases." ACM TQDS B. No. I (MarchJ 988). 

lo some respects, !he problem of physical da1abase design is more diffu:uh in a relational sys· 
tem than it is in other kinds of system. This is because it is the system, nottbe user, lhat decides 
how to "navigate" through lhe. scorage suucture; thus, the system will only have a chance of 
perfonning well if the s1orage suuctures chosen by lhc database designer ace a good Iii wilh 
what the system actually needs-which implies that lhe deSigner has 10 understand in $OJDC 
dewl bow lhe system works inremally. And designers typicalJy will nol have such knowledge 
(nor is it desirable that they should). Hence some kind of automaled physical design 1001 is 
highly desirable. This papenepons on such a tool, called DBDSGN, which was developed to 
work with System R l8. I 2- &. I 3j. DBDSGN takes as inpul a workload deflnitlon (le., a set of 

ll5CI' ~ and their col'l'CSponding executloILirequencies). and produces as ou1p111 a sug­
gested physical design (i.e., a set of indcRS for each stored table. r.ypically lru:luding a "clus­
teringlndex"-see the answer to Bxercise A.~or each such t11ble). h interacts with the sys­
tem optimizer {see Cbapten 3 and 18) to obtain information such as the optimizer's 
understanding of lhe datllbase (i.e., table sizes, etc.) and lhe cost formulas that the oplimizer 
llSeS. 

DBDSGN was used as tbe basis for an IBM pl'Q<iw:t called ROT, which is a design tool 
for SQUDS (see AppendixB ). 

A.47 Kenneth C. Sevcik. "Data Base System Performance Prediction Using an Analytical Model." 
Proc. 7th l nremational Conference on Very Large Data llases, Cannes, France (September 
1981). 

As its title implies, lhe scope of this paper is broader than 1ha1 of the present appendix-ii is 
concerned with ovmll sys1e111 performance issues, no1 jus1 wllh storage SlllKltures as such. The 
aulbor proposes a layered framework in which various IWign deQisions. and th¢ forcractiollli 
~g those decisions. can be systematically st,udied. The laye{5 of the framework represent 
lhe system atincreasmgly delailed levels of description; thus. each layer is more specific (i.e., 
al a lower level of absttactio.n) than the previous one. The names of the layers give some idea 
of the corresponding levels of ~tall; abStract world, logical database. physical database. data 
utiit ac;ces~. physical llO access, and device loadings. The author claims lbal an analytical 
model based on this framework: could be used 10 predic1 numerous performance charal.!teristics, 
inclu4ing device utilization. transaction throughput. and response times. 

The paper includes an extensive bibliography on system performance (with commenrary). 
In particular, ii includes a brief survey of work on the performance of different storage struc­
tures. 

AAS Hanan Samet. "The Quadtrt:e and Rela1ed Hierarchical Da1aScructures." A.CM Comp. Surv. 16, 
No. 2 (June 1984). 

The Storage suuc1ures described in the prc:;en1 appendi1. work well for traditional commercial 
databases. lfowever, as the field of da1aba!IC technology ei<.pands to include new kinds of 
da~.g .• spatial dala. such as might be found m image-processmg or canograpbte applica· 
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lions-so new methods of data represen1ation ~1 the storage level arc needed;liso. This p;lpel'iS 
a 1utorial introduction 10 some of 1hose new methods. See Samet's book [A.491 for further 
discussion, also references [A.50-A-59] 

A.49 Hanan Samet. The Design and Analysis <1f SpaJi(l/ Dara StruL1ures. Reaaing, Mass.: Addison­
Wesley ( 1990), 

See the annotation 10 the previous reference. 

A.50 Stavro~ Chris1odoulakis and Daniel Alexander Ford. ·'Re.tdeval l'erfonnanee Versu.~ Disc 
Space Utilization on WORM Optical Discs." Proc. 1989 ACM SIGMOD lnlemational Confer­
ence on Management of Daill. Portland, Ore. (May/June 1989). 

See 1he anMuuion 10 reference [A.51]. 

A.51 David Lome1 and Beny Salzberg. "Access Me1hods for Multiversion Data." Proc. 1989 
ACM SIGMOD ln1ema1jonal Conference on Management of Data, Portland, Ore. 
(May/June 1989). 

A "WORM disk" is an optical disk with the propeny that once a record has been wrinen 10 the 
disk. it can never be rewritten-he .. it cannot be .updated in place. (WORM is an acrqnym, 
standing for "Write Once, Read Many tim.es.") WORM technology has i:eaehed lhe point where 
the use of WORM disks in database applications has become a practical proposition. Such 
dfaks have obvious advantages for certain applications, particularly those involving some kind 
of archival reqµitement. 'traditional storage structures such as B-trees are notadeqoaiefor suCh 
disks, however. precisely because of the fact that rewriting is impos~ble. Hence (11,5 explained 
in the annotatiqn to reference [A.48 ]. though for different nll!SQDS), new storage structures arc 
needed. References [A.50] and I A.5 1) propose and anaJyze some such structures; reference 
[A.51J. in particular, concerns itself with s1n1C1ures that are appropriate for applications In 
which a complete hiStorical record is to be kepi (i.e., applications in which dalii is only added 
10 the database. never deleted). 

A.52 J. Encam~o and F. L Krau.o;e (eds.). File Struature.s anti Data .Bases for CAD. New Yock, 
N.Y.: North-Holland (1982.). 

Computer-aided design (CAD) applicanons ·are a mi!jor driving force behind the research into 
new storage s1ructures. This book consists of the proceedings of a workshop on the subject. 
with major sections as follows: 

I . Data modeling for CAD 
2. Dru.a models for geometric modeling 

3. Databases for geometric modeling 

4. l:lardware ~trucwres 

5. CAD database re.search issue.~ 

6. Implementation problems in CAD darabtise >')'Siems 
7. lndustrlal applications 

A.53 R A. Fink.el and J. L. Bentley. "Quad-Trees-A Data Strucrure- for Renieval on Composile 
Keys:· At ru lnfomw1ica4 (J 974 ). 

A.54 J Nievergelt, H. Hinterberger. and K. C. Sevcik. "The Grid File: An Adaptable. Symmetric, 
Mulllkey File Structure." ACM TODS 9. No. I (March 1984). 

A.SS Antonin Gu1tman. ·'R-Trees: A Dynamic lndeir Stnwnm: for Spatial searching." Proc. ACM 
SIOMOD International Conference on Manag_ement of Data; Boston, Mass. (June 1.984). 

A.56 Nick Roussopoulos and Darnel Lelfker. "Direc1 Spatial Search on Piclorial Databases Usiog 
Packed R·Trees ·· Proc. ACM SIGMOD lntematiooal €onference on Management of Data, 
Ausun, Texas (May 1985). 

A.57 l). A. Beckley. M. W . Evens. and V. K. Raman. "Multilcey Retrieval from K-D Trees and 
Quad-Trees.·· Proc. ACM SI GM OD lntemat 1onal Conference-On Management of Data, Austin. 
Texas (Muy 1985). 
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A.51 Michael Fre~mon. "TheBANO File: A New Klnd of Grid File." Proc. ACM SIGMOD lntemll­
tional Confqi:nce on Management of Data, San f'rancii;co, Calif (May 1987). 

A.59 Michael F. Barnsley and Alan D. Sloan. "A Better Way co Compres.\Jmages."BITE JJ. No. I 
(January 1988). 

Describes a.novel compression teci:ruque for images called/ractal campre~sion. The technique 
worts by not storing the jrnage itself at all. bot rmher sroring code values that can be used to 
recreate the desired imageas. and when needed by means of appropnace fractal cquations. ln 
this way "compression ratios of 10,000 10 I-or even higher" can be achieved . 

• 

Answers to Selected Exercises 

A.5 The advantages of indexes are as follows: 

• They speed up direet access based on a given value for the indexed field or field combination. 
Without the index, a sequential scan would be requrred. 

• Ibey speed up sequential access based on rhe indexed field or field combination. Without the 
index. a sort would be reqwred. 

The disadvantages ai;e as follows: 

• They take up space on the disk. The space IAken up by indeites can l!liily exceed that taken up 
by the data itself in a heavily indexed dalllbase. 

• While.an index will probably S]l\led up rettievai operations. ir will auhesame time slow down 
update operations. Any lNSERT or DELETE on the index!l(l file or UPDATE on the indexed 
field or field combination will require an accompanying update to the index. 

A.6 In order to maintain the desired clustering, the DB.MS needs to be able 10 determine the appro­
priate physical insen point for a new s(lpplierrecord.. This requirement is basically the same as 
ihe requirement to be able 10 locare a panicular record given a value for the clusrering field. In 
other words. lhe DBMS needs an appropriate access srructure--for example. an index-based 
on values of the clusteri11g field N111e: An index tl)at is used in this way to help mainrain physi­
cal clustering is sometimes called a clustering (ndeX; Ln general. a given stored file can have at 
mosr one clustering index. by definition. 

A.7 Let the hash function be h. and suppose we wish ro retneve the record with hash field value le.. 

• One obvious problem is lhar it is not unmediately clear whether the record srored at hash 
address h(k) is lhe desired record or is instead a c<Jllision record rhat has overflowed from 
some earlier ha.~h11Cklres.~. Of course. Ibis que~rion can easily be resolved by inspecting the 
value of lhe has!! field i11 the s1ored ~rd 

• Another problem is that, for any given value of /r(k), we need 10 be able 10 dercnnine when 10 
stop the process of sequenti.ally searching for any given record. This problem can be solved 
by keeping an appropriace flag in the stored record pre.fix . 

• • Third, as pPinted our in the lntroduccloi;i ro the ~ubsecrlcm on cxrendable ha.~hing. when the 
stored me gets close 10 full, 1t is Ukely that n1obl records will no1 be srored a1 !heir hash 
address looation but will instead hnve overflowe.d IQ 5ome other pus11ion. If record rl o•er­
flows and is lherefore stored ar hash address Ill, n record r2 1ha1 subsequenrly hashes ro 112 
might be forced to overflow w /JJ-e11en though there mighr as yet be m> records thw actually 
ha.~h 10 h2 as such. In other words. rhe colHsion-handling teehniqu~ 1lsclf can lead Ill funhcr 
collision.~. As a result. lhe average access time will go up, perhnp~ con~idernbly. 

A.9 (a) 3. (b) 6. For ex.ample. If the four fleJd!; are A, 8, C. D. and if we U$e 1he appropriare ordered 
combination of field names to deno,re the com:sponding index.. Lhl! following indexe.\ will ~uf­
fice: ABCD, BCDA, CDA8. DABC. ACBD. BDAC (c) In general. the number of indexe~ re­
'luired is equal to the number of w.ays of selecung 11 elements from u set of N elements, where 11 

is lhe smallesr integer greater than l)t c4uaJ to N/2-i.eo. the number is Nt I< 11 t • (N-11)! }. For 
proof see Lum [A.21 J. 
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A.JO The number of /e11e/.1 ih Ille 8 -i.rec is the tiniquc positive integer k such !hat n~ - 1 < N Sn'. 
Talcing logs to ba.'le n, we have II.- I < log,.N S k; hence 

Ir.= ce1l(log,,N ), 

where ceilii:J denotes the smallest integer greater than or e<jual to x. 
Nolli let the number of pages in lhe hh level of the indel. be P, (when: i = I conesponds lO 

the loweM level). We show that 

P = cetl (!!.) 
I n' 

and ~ence !hat lhe total number of pages is 

Consider the expression 

(~] cell n = .x, say. 

SupposeN=qn1 + r (05 r 5n'- I}. Then 

x=ceil (!) 

(_pl_) =ceil n1~1 

= eeil (...!!.._) n1+-I 

lb) lf r>O. x=ceil (
9

: 
1

) 

Suppose q = q 'n +I (0 5 I 5n - I). Then N = (q'n + l)n1 + r= q'n' • 1 + (fn' +r); 
sinc:e0<r5n'- I andOSr'~n-1, 

hence ceil (n~ 1 J= q' +I. 

But 

x=ceiJ ( q'n •: + 
1

) 

=l/ + I 

since I 5 r' + I 5 n. Thull in both cases (a) and (b) we have that 

. [~]- . (_!:!___) ce1l n - ctll) n•• 1 . 
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A.JI 

Now, it is immediaJe that Pi = ceil (Nin}. It is also immediate thm P 1 + I = ceil{P; 111), I ~ { < k. 

Thus. if P1=ceil(N/n
1

) , then [~N l 
oeil l n' 

P- •=ceil =ceil (_fj_) , .. r n n'+i 

The rest follows by induction. 

Valul!s recorded in index 8:pa11dedform 

0 - 2 - Ab Ab 
1 - 3 - -eke Ac.ke 
3 - 1 - r Ackr 
1 - 7 - dams,T+ Adfil\ls , T-+ 
7 - 1 - R Adams1 '1'R 
5 - J_ - 0 Adamso 
1 - J. - l Al 
l - 1 -y Ay 
0 - 7 - Bailey , Bailey , 
6 - L - lfl Ba1leyJ11 

Poi ms arising. 

I. The two figures greceding each recorded value represem, respectively. the number of 
leading characters tha1 an: the same as those: i11 rhe preceding value and !he number of 
characters actually stored. 

2. The expanded form of each value shows what can be deduced from the inMx alone (via 
a sequential scan) witbouLJooking at the indexed records. 

3. The .. + .. characters in the fourth Une represent blanks. 

4. We assume that the next value of the indexed lield does nor have "Baileym" as ill; first 
seven characters. 

Tlte percentage saving in storage space is I 00 • ( 150 - 35) I 150 percent= 76,67%. 

The indeit search algorithm is as follows. Let V be the ~cified value (padded with blanks 
if necessary to make it 15 characters long). Then: 

found : = false ; 
do fo:i: each index entry in turn ; 

expand cm:rent index ent:ry and let eiq>anded leilgth "' N 
i£ expa.ru}ed entry = leftmost N characters of V 
Lhen do 

r€trieve corresponding stored record 
if value in thal: record = V 
then found . - true ; 
leave loop ; 

e;nd I 

if expanded en~ry > leftmost N characters of V 
then leave loop 

end ; 
il found = false 
then / • no stol;'ed r-ecord for V exist.s • / ; 
else / • stored record for V has been found • I ; 

For "Ackroyd,$'' wr: get a match on the third iretruion: we retrieve the corresponding record 
and lind rha~ it is indeed the one we wnnL 

For "Adams,V'' we get "index entry high" on the si~th iteration. so nq corresponding 
record exists. 
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For "Allin~hmn,M,. we get a match on lhe seventh iletation; however. the record reuieved 
L<. for "Allcn,S". ~o ii li. permissible 10 in...ert a new one for "Allingham,M". (We are assuming 
here lh~I \he inclex<!d field value.,\ are required 10 be unique.) lni;ening ''Allingham,M" involves 
the following sreps. 

I . Finding space and Moring the new record 
2. Adju.,ting.the index entry for ··AUen.S" to read 

1.-3 lle 

3. Inserting an index eniry between those for ' 'Allen.S" and "Ayl'Cll.ST" tQ read 
l 1 - j 

Note that the preceding index entry ha~ 10 oo changed. In general, in~ng a new entry into the 
index may affect the preceding enrry or the following entry, or possibly neither-but never 
both.. 
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B DB2: ,A Relational 
Implementation 

• 

B.1 lntrodudion 

In order ro give the reader some idea of how a real relational DBMS actually wocks­
i.e .. how it implements the features of the relational model*-we devote this appendix 
to a brief overview of one panicular relational system, namely 0 82 ("IBM 
DAT ABASE2") from IBM CGrporation [B. 1- 8 . 71. Nore: DB2 runs in the MVS envi­
ronmenL IBM alsopcoVides some other relational products for its other operating envi­
ronments. as foUows: 

• DB2/6000 for the ADC environment 
• DB2/2 (originally caUed lh,!! OS/2 Database Manager) for the OS/2 envkonment 

• SQl.JDS for the VM and VSE environments (IBM has recently begun to refer to 
lhis produ£t as "DB2 for VM and VSE") 

• DB2/400 (originally called SQU400) for the OS/400 environment 

These products are meant to bear a strong family resemblance. of course: in this 
appendix, however. we will concentrate on the MVS product specillcally-i.e., the 
name "DB2" should be undecstood throughout to refer to the origina.I DB2 product 
specifically (where it makes any difference). Our discussions are essentially accurate aq 
of the ~lease leyel Gurrruit at the time of wricing. namely D)n Version 3 Release I. 
However, we doJlot hesitate to omit material that is ittelevaol to the purpose at hand, 
nor to. make significant simplifications in the intereslS of brevity. 

DB 2, llke most other commercial relational products, supports a dialect of SQL. In 
particular. it permits SQL statements to be embedded i11 programs written in a variety 
oflanguages (C, COBOL, PUI. etc.). What this mean.~ is that a program written in (say) 
COBOL can include SQL statements chat are intermixed with cbe COBOL statements, 
as explained in Chapter 3 (and discussed in more detail in Chapter 8). £n this appendix 
we will concentrate on this embedded u~e of the language, for reasQns that will quickly 
become apparent . 

• Or Mime or them, QI any mte. A~ cxplllined '" Chapter 3, mnny aspcci. or lh~ rnod"I ,11:c In rru::1 nOL Imp le· 
men1ed in today'$ C!Ommctc:inl producll.. 
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Note: Since 082 is an SQL system and uses the SQL terms table, row. and column 
in place oflhe relatJonal tenns relation, tuple. and attribute, we will do likewise in this 
appemhx (as mdeed we have been doing throughout thls book whenever we have been 
deallng wjth SQL specifically). 

B.2 Storage Strudure 

We begin by baefly examining the way D B2 physically represents datun storage. Fig. 
B.l is a schematic representation of DB2' s principal storage ob1ects and their mterrela­
uonshlps The figure is meant to be interpreted as follows. 

• The total collecnon of stored data is divided up into a number of dJs1010t 
datJlbases several user databases and several system databases, m general. (As 
explained m Chapter I , there are often good practical reasons for dividing the data 
among several chstmct databases, and 082. like most other systems, sapJK>rts thls 
idea.) Note that the DB2 catalog is stored m one of the system databases. 

Databases (mearung user databases specifically) are the unit of nan and stop, 
m the sense that the system operator eaiunalre a given database available or un­
available for processing via an appropriate ST ART or STOP command. 

• Each database is divided up into a number of disjoint spaces-several table spaces 
and several index spaces, in ~neral. A "space" corresponds to what we caJJed a 

Table 
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Table { 
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User database 

Stored Stored 
table table 
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FIG. B.1 The mafor storage objects of 082 
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page set in Appendix A; in other words. it is a dynamically extendable collection 
of pages. The pages in a given .. space" are all the same size-4K bytes for index 
spaces, and either 4K bytes ot 32K bytesior table spaces (K = 1024 ). Al the phys­
ical level, DB2 uses the MVS access method VSAM ("Virtual Storage Access 
Method'') to store its "spaces" on the disk. 

• Each table space contains one or more stored tables. A stored table is the physical 
representation of a base table: it consists of a collection of stored records, one for 
each row of the corresponding base table.* A stored table thus corresponds to what 
we called a stored file in Appendix A (except that, for operational reasons, very 
large stored tables might be "partitioned'' across several stored files-bu1 this fac1 
does not materially affect the discussions of the present appendix). A given stored 
table must be wholly contained within a single table i.")lace. 

• Each indeir space contailils exactly one Index (a B-tree). A given index must be 
wholly contained within a single index space. A given stored table and all of its 
associated indexes must be wholly contained within asingle database. 

Note: If a given stored table .has any indexes at all, then exactly one is the 
clustering index for that stored table. A Cillustering index is one for which the se­
quence defined by the index is the same as, or close to. the physical sequence (see 
Exercise A.6 in Appendix A): note. therefore, that "clustering" in DB2 refers spe­
cifically to intrafile clustering, not interlile clustering. Clustering indexes are ex­
ttemely imporwn for optimiution purposes-the DB2 optimizer will always rry 
to use a clustering index, if there is one, and if the sequence represented by that 
index is appropriate fer the user request under consideration. 

• Each stored record must be wholly contained wl1hin a single page; however, one 
stored table can be spread over several pages, and one page can contain stored 
records from several stored tables. As explained above. each stored recortl corre­
sponds to one row from one base table: however, agiven stored recordis not iden­
tical to the corresponding base table row. lnstead, it consislS of a byte string, made 
up of a stored record prefix (containing such information as the internal system 
Identifier for the stored Lable of which this stored record is a part) and a !>1!1 of 
stored fields. Eatb stored field, in tum. has {usually) a stored field prefix 
(containing such things as the data length, if the field is varying length) and an 
encoded fonn of the actual data value. Note: Stored data is encoded in such a 
manner that the IBM Systeni/360 (/370, /390, ... ) "compare logical" instruction 
CLC will always yield the appropriate response when applied to two values of the 
same SQL data type. For example, binary integers are stored with their sign bit 
reversed. 

lnternally. stored records are addressed by record ID or RlD. as discussed in 
Appendix A. 

• ln other word5, b""' Ulblcs ill DB2 "ph)'si<!illly exist,'" in the sense lhn! they !IJI vt n tlln:c!l •lor:i~e rcprcsen 
tntion-despitn the foc1 lhn4 ~triclly spcuking. phys1cnl ex.isreoee \,. 11n1 the Lli•lirJiul<h[ng chnrottcri•Uc of b;il;c 
!llblt• ln the nilnliom1J model, as explained io Chapt~ 3 ond 4. 
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8.3 System Components 

The internal structure of DB2 is qmte comple'X, as is only to be expected of a state-of­
t he-an system that provides aU of the functions typically found in a modem DBMS. 
The product thus contains a very large number of internal component.s. From a high­
level point of view, however, it can be reg;u-ded as having just four major components, 
each of which divides up into numerous subcomponents. The four major components 
are as follows: 

I. The system services component, which supports system operation, operator com­
munication. logging, andsimilar functions 

2. The locking services component. which provides the necessary controls for man­
aging concun:ent access to data 

3. The database services component, which supportS the ddinition, retrieval, and 
update of user and system data 

4. The distributed data facility component. which provides DB2's distributed 
database support 

Of these four component~. the one that is most directly relevant to the user is. of 
course, the database services comp<ment. We therefore concentrate here on that com­
ponent specifically. That component in turn divides into five prim;ipal subcomponent$, 
which we refer to as the Pretompiler, Bind. the Run Time Supen•i.mr, the StoredDa/a 
Mwwger, and the B1~ffer Mtmager (these terms are not always the ones used by IBM). 
Together. these components support (11) the preparation of application programs for 
execution and (b) the subsequent execution of those programs. The functions of the 
individual components. in ouUine, are as follows (refer to Fig. B.2): 

• The Precnmpiler is a preprocessor for application programs that contain embed­
ded SQLstatements. It collects those sta1ementslnto a Database Request Module 
CDBRM). replacing them in the original program by host language CALLs to the 
Run Time Supervisor. 

• The Bind component compiles one or more relmed DBRMs ro produce an appll· 
cation plan (i.e., executable code to implement the SQL statements in those 
DBRM:., including in particular caU~ to the Siored Data f\ltanager). Note: The func­
tions of the Bind component have been .significantJy extended since the 082 prod­
uct was fust released. We conrenr ourselves here with a description of the basic 
(original) functions only. 

• The Run Time Supervt'ior oversees SQL programs during their execution. When 
such a program requests some database operation, control goes first 10 the Run 
Time Supervii:;or, thanks 10 tbe CALL inserted by lhePrecompiler. The Run Time 
Supervisor then routes control fo the application plan. and the application plan in 
cum invokes cbeStored Data Manager to perform the required function. 

• T.he Stored Data Manager manages the ~tared database. retrieving and updating 
records as requested by application ptans. In other word.s. the Stored Data Manager 
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is the component respons.ible for the functions attributed to the file manager in 
Appendix A of tbis book. 11 invokes olher cOmponerui. as necessary to perform 
subsidiary functions sucb as Jocking, logging. sorting, etc .. during Lhe perfonnance 
of its basic task; in particular, it invokes the Buffer Manager (see below) 10 perfonn 
physkal 1/0 operations. 

• The BufTer Manager is the component responsible for physically transfening data 
pages between the disk and main storage: i.e., it perfonns the actual 110 operations. 
as indicated above. To use the terminolog¥ of Appendix A once again, just as the 
Stored Data Manager corresponds to the file manager. so lhe Buffer Manager cor­
responds to the disk mmia$.er. 

B.4 Detailed Control Flow 

Let us examine the ideas of the previous section in a IJnle more depth. Refer to Fig, B.2 
once again. That figure shows the major steps involved in the preparation and execution 
of a DB2 application. To fix our ideas, let us ~sume the oi:iginal program P is written 
in COBOL (we take COBOL for definitene~s; the overall process is of course essentially 
the same for other language.~) . The steps that program P must go through are as follows: 

I. Before P can be compiled by the regular COBOL compilec, it must first be pro­
cessed by the DB2 Precompiler. As explained above. the Precompiler is a prepro­
cessor for the OB2 application programming languages (C, COBOL, etc.). I~ 
function is to analyze a source program wciuen in one of those language$. strippio~ 
out the SQL statements it finds and replacing them by host language CALL state­
ments. Al execution time those CALLs will pas!> control to the Run Time Supervi­
sor. From the SQL statements it encou oters. the Precompiler constructs a Database 
Request Module (DBRM), which subsequently beeQmes input to the Bind compo­
nent Nore: The DBRM can be regarded as just an lntemal representation of the 
original SQL statements. lt doe~ nat consist of ex_ecutable code. 

2. Next, the modified COBOL program is compiled and link-edited in the nonnal 
way. Let 11$ agree 10 refer to the output from tbis step as "load.module P.'' 

3. Now we come lO the Bind s1ep. As already suggested, Bind is really an SQL com­
piler : It converts database requests (i.e .. SQL statements) into executable code. 
(What is more. ii is an oprimi<:ing compiler: The output from Bind is 001 just code, 
ii is optin1i-;:ed code. In DB2, in other words. the all-important optimizer compo­
nent is actually a subcomponent of Bind. We shall have a title more to say about 
optimization in the next section.) 

The input to Bind is a DBRM tor more likcly a set of sevecalDBRMs, if the 
onginal program involved several separately compiled procedures). The output 
from Bind- Le., the compiled code. which as already mentioned is caJJed an appli­
cMion plan-is stored away ln the DB2 catale>g, where it can be found when 
needed by the Run Time Supervisor. 
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4. Finally we come to execution time.Since the origmal program has effectively been 
broken into two pieces (load module and application plan). those two pieces must 
somehow be brought back together again at execution time. This is how it works 
(refer ro Fig. B.2). First, the load module Pis loaded into main memory: it starts to 
execute in the usual way. Sooner or later it reaches the first of the CALLs inserted 
by the Precompiler. Control goes to the Run Time S11pt>n•i,vor. The Run Time Su­
pervisor then retrieves the application plan from the <-acalog. loads it into main 
memory, and passes control JO it. The applicati~n plan 1n tum invokes the SU>red 
Data Manager, which performs the necessary operations on the actual stored data 
(invoking the Buffer Manager as necessary) and passe~ results back to the execut­
ing application as apprepriate. 

B.5 Compilation and Recompilation 

Our discussions so far have glossed over one extremely important point, which we now 
explain. First, as already indicated, DB2 1s a compiling ~y~tem: Database requests are 
compiled (by Bind) into intern.al fonn. By contrast. manv other sysrems-oertainly all 
prere1ational systems, to this writer's knowledge-are inrerpretfre in nature. Now, 
compilation is certainly advantageous from I.he point of view of performance; it will 
neady always yield bener run-lime perfoanance than will interpretation [B.101. How­
ever. it dees suffer from one significant drawback: It is possible that decisions made by 
the "compiler" (actua11y Bind) a/ compilation time are no longer valid qt execution 
time. The following simpleexample will serve to illustrate lhe problem: 

I . Suppose program P is compiled on Monday. and ilie optimizer decides to use an 
index-say index X.-in its access strategy for P. Then the application plan for P 
will include explicic references to X by name; in other words. the generated code 
will be tightly bound to (i.e., highly dependent on) the optimizer's choice of strat­
egy. 

2. On Tuesday, some suitably autb0ri2ed user issues the statement 

DRSP NIDEX :<_; 

3. On Wednesday. some suitably authorized user tries to execllte program P. What 
happens? 

What does happen is the following. When an index is dropped. DB2 examines the 
catalog to see which plans are dependent on thatlndex. Any such plans it finds it marks 
"invalid." When the Run Time Supervisor retrieves such a plan for execution. it sees 
the "invalid" marker, and therefore invoke,f Bind to pmd11re a 11ew pla11-i.e., to 
choose some different access strategy and then to recompile the oJ;iginal DBRM (which 
has been kept in che catalog) in accordance wii.h that new s1111tegy. Assuming the re­
compilation is successful. the new plan then replaces the old one. and the Run Time 
Supervisor continues with that l!lew plan. Thus the entire recompilation process is "trans­
parent to the user''; the only effect that might be observed is a slight delay in the execu-
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tion of cenamSQL statements (possibly some change in overall program pecfonnance 
also~ of course; the point is, however, that there should be.no effect on program logic). 

Note carefully that the automatic recompilation we are talking about here is an SQL 
recompilation, not a COBOL recompilation. It is not the COBOL program that is inval­
idated by the dropping of the indell, only the application plan associated with that program. 

We can now see how it is possible for programs to be independent of physical 
access structures-more specifically, how it is possible to create and drop (destroy) 
such strucnu:es without at the same time having to rewtite programs. As explained in 
Chapter 3, SQL statements such as SELECT and UPDATEnever include any explicit 
mention of such structures. Instead, they simply indicate what data the user is interested 
in; and it is DB2's responsibility- actually"Bind's responsibility-to choose a way of 
getting to that data. and to change to another way if lhe old way no longer works. We 
say that systems like DB2 provide a high degree of data independence (more specific­
ally, physical data independence, so called to distinguish it from logical data indepen­
dence, discussed in Chapter 17): Users and user programs are not dependent on the 
physicaLstructure of the stored data-even though this is a compjJing system. 

Nore: Dataindependence is easiet to provide in an inlel]lretive system, because the 
process of "compilation" and optimization is effectively repeated every time the pro­
gram is executed. But lhat repetition represents a significant overhead, of course, which 
is precisely why DB2 chose to go the compiling route. 

One further point concerning the foregoing: Our example was in terms of a 
dropped i11dex. and perhaps that is the commonest case in practice. However, a similar 
sequence of events occurs when otherobjects (not just indexes) are dropped. Thus. for 
example, dropping a base table will cause all plans that refer to that table to be flagged 
as invalid. Of course, the automatic recompilation will work in this case only if another 
table has been created with the same name as the old one by the time the recompilation 
is done (and maybe noleven then, if there are significant differences between the old 
table and the new one). 

Let us rerurn to the index case for a memem. Given the fact that DB2 does auto­
matic recompilations if an existing index is dropped, the reader might be wondering 
whether i~ wilJ also do such automatic recompjlations if a new index is created. The' 
answer is no. it will not, And the reason is that 1here can be no guarantee in such a case 
that recompiling will actually be profitable; recompilation might simply mean a lot of 
unnecessary work. (existing com pi led code Dll ght already be using, an optimum strat · 
egy). The situation is different with DROP-a progr-am will simply not work. if it relies 
on a nonemtent object (index or otherwise), so recompiling is mandatory in this case. 
Thus, if some user-typically the DB A-creates a new index, and suspects that some 
plan could now profitably be replaced, then he or she must expliciLly request that re· 
placemem by means of an explicit "REB LND" command."' Even then, of course. there 
is no guarantee that the new plan will in fact use the new tndex. 

• h ;, not ilTIP"""lblo thlll DB'.! mighl be CJC.tend(d in some future rclcu.se tt1 perform ou1<>t1mtic rebinds on 
irulcx cn:aticm as wdJ 
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We conclude this section by noting that SQL is always compiled in DB2. never 
interpreced, even when the statements in question are submitted interac1ively. ln other 
words, if the user enrers (say) a SELECT sta1ement at the terminal. then that statement 
will be compiled and an application plan generated for it; that plan will then be exe­
cuted: and finally, after execution bas completed. that plan will be discarded. Experi­
ments have indicated that, even in the interactive case. compilation almost always re­
sults in better overall performance than interpretation (B. I OJ. The advantage of 
compilation is that the actual pr~ess of physically accessing the required data is more 
efficient, since it is done by tailored. compiled code. The disadvantage. of course. is 
that there is a cost in doing the compilation. i.e., 1n producing tha~ compiled code in the 
first place. Bui the advantage almost always outweii;is the disadvantage, sometimes 
dramatic:ally so. 

B.6 Utilities and Related Matters 

In this section we take a brief l.ook at what is involved in controlling and managing-the 
day-to-day operation of a system like DB2 There are numerous administration and 
operational tasks that need to be perfonned. and the system prO\tides a variety of utility 
programs and similar tools to assist in those tasks. We briefly describe some of Lhe D'B2 
utilities in a little more detail in order to give a slightly clearer picture of the lcinds of 
functions that need to be performed by such utilities in general. We also offer a brief 
description of a few miscellaneous topics of a general ''utilities" naLUre. Please note. 
however, that our descriptions are very much simplified~ more details can be-found In 
reference [B.71. from which the following oulline descriptions have been extrllcled. 

• CHEC~ The CHECK u1ility is used ro perform certain checks on the stored 
data----'C.g .. to check that a given index is consistent with the table it indexes. or to 
check that a given table doe.~ not coni.ain any "dangling" foreign key references 
(i.e., foreign key values for which no corresponding row cxi~ in the 1nrget table; 
note thal such dangling references might occur as a result olf running the LOAD 
utility-see below-with referential integrity checking disabled). 

• COPY: The COPY utilily create~ a full or incremental backup copy (:m inrage 
copy) of a database or some portion thereof (see the discussion of MERGECOPY 
and RECOVER below). An lncremcntal capy is a copy of jU"-l the pages lha1 have 
been updated since the previous full or incremental copy was taken. 

• LOAD: The LOAD utility loads data from a sequeminl file into one or more stored 
tables within a specified daUt.base. The tables Jn question need nol be initially 
emply. Nole that LOAD can be run with either logging or refcrenual 111regrity 
checking disabled (or both. of course). 

• MERGECOPY: The MERGECOPY ulility merges a full copy and one or more 
incremental copies co produce an up-to-date full copy. or u sel of incremenlal cop­
ies to produce an up-to-date composite incremental oopy. 



TERADATA, Ex. 1014, p. 798

770 Appendixes 

• QUIESCE: The QUIESCE ulility is U$ed to quiesee operations (temporarily) on a 
specified collection of base rabies. The quiesced state corresponds to a single point 
in the log, so that the colle.ouon of tables can subseguently be recovered as a unit. 
ln particular. QUIESCE can be useful in, establishing a point of co11sistency for a 
colleCtion of tables that are related via referential constraints. thus ensuring that 
subseguem recovery to that point will restore the data to a consistent state (see the 
discussion of RECOVER below). 

• RECOVER: The RECOVER utility uses the most recent full copy, any subse­
guent incremental copies, and any subsequent log data to recover data after (e.g.) a 
media failure has occurred. RECOVER c:an also be used to perform poi/It-in-time 
recoi•ery by recovering from a specific image copy or recovering to a speci fie point 
in the log. 

• REORG: The REORG utlllty reorganizes a srored databa1>e or some portion 
thereof to reclaim wasted space and to reestablish clustering sequence (if applica­
ble). 

• RUNSTATS: The RUNSTATS utility computes certain specified statistics on 
specified stoced data (e.g., cardinality for a specified stored table). and writes those 
statistics to the system catalog. Bind uses such statistics in its process of optimiza­
tion (see Chapter 18). They can also be useful for determining when reorganization 
is necessary. RUNST ATS should tie elCecuted whenever a cable has been loaded, 
an index has been created, data has been reorganized. or generally whenever there 
has been a significant amount of update activity on some table. l t should then be 
followed by an appropriate set of application plan REBINDs. 

Explain 

EXPL*IN is a special SQL state men! that can be used to obtain intbrmation regarding 
the optimizer's choice of access strategy for a specified SQL query. (Note: EXPLAIN 
is not included in the SQL ~tandacd [8 lJ, but many SQL productS suppon it in one 
fotm or another.) The information provided includes indexe~ used, details of any sorts 
that will be needed, and-ii the specified query involves any joins-the order in which 
tables will be joined and the methods by which the mdividual joins will be performed 
(see Chapter 18). Such information can be useful for tuning exkting appbcaoons. also 
for determining how pro1ected applwuuons will pertoan. Here 1s an example: 

EXPLAIN PLAN FO~ 
SELECT S. Sf!', P Pit 
FROH S , P 
WllERi' S C"TT'i : P CTTY 

The output from l::XPLA IN is plcl.Ced 111 a ~pecml table in Lhe database called 
PLAN_ TABLE. The user can the11 mterrogate Lhilt table by means of ordrnary SQL 
SELECT stacements in order ro discover, tor example. whether a particular index is 
bemg used or whether 1.re<LLIO!J a Hew 111de x m1gh1lib\1w.e the need tor a sort. 
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Instrumentation Facility 

The 082 Instrumentation Facll!ty gathers system diagnostic inform11tion, system­
wide statistics. perfonnance information. and accounting and audit data. The infonna­
tion can subsequently be analyzed' by tbe 082 Performance Monitor to produce a 
variety ofreports, including Lhe following: 

• Oraphfoal summaries of accounting and system statistics data 

• Processing time infonnation.for SQL statement, Bind, utility. and command exe-
cution 

• 1/0 summaries 

• lnfonnation on locking efficiency (number of deadlocks. number of waits. etc.) 

• A detailed trace of SQL slatement execution 

Resource Limit Facility 

The DB2llesoutte Limit Facility is a "08 2 governor." lrs principal use is 10 allow the 
OBA to limit (on an individual user basis) the amount of :processor time that can be 
consumed during the execution of SQL data manipulation operations that are entered 
interactively. ff tbe specifi~d limit is exceeded. the offendlng operation is cancele.d. 

B.7 Summary 

We have presented a bcief overview of DB2 in order to give tbe reader some idea as to 
what is involved in a real relational implementarion. First we described the principal 
082 storage objects-datllbases, table and index spaces (analogous 10 the page sers 
of Appendix A), stored tables (analagous to the stored files of Appendix A) and in­
dexes (B-trees in DB2). A stored table is the stored version of a base cable; DB2-like 
most other relational products on the macket today-thus maps base tables to physical 
storage in a fairly direct manner, and so does not provide as much data independence as 
it really should (as discussed in Chapters 3 and 4). 

We then took a look at application program preparation and execution. First the 
Precompiler removes the SQL statementS from tlie program (replacing them by 
CALLs) and uses those SQL statemen1s to build a Database Request Module 
(Dl3RM). The program can then be compiled and link-edited in the usual way. The 
DBRM(s) for a given program are processed by Bind to produce un application 
plan-in effect, a compiled version of 1he original SQL statements (Bind can be 
thought of as an optimizing SQL compller). At run time, the CALLs inserted by the 
Precompiler cause control to go to the Run Time Supervisor. which invokes the 
Stored Data l\fanager (DB2'fi analog of tbeji/e r11miagerof Appendix A) to perfonn 
the desired ope.rations on the \IOred data. The Stored DaUl Manager in ium invoices the 
Butler Manager (DB2's analog of the disk mt111ager of Appendix A) to carry out the 
physical page 1/0' s. 
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We also discussed the faet that SQL requests are compiled, not inrerpreted, in 082, 
and explained bow DB2 performs automatic recompilation if necessitated by a 
change in lhe physical storage suucture- in particular, if an existing index is dropped. 

Finally. we gave a very brief overview of some of the most imponant DB2 utWtles 
(CHECK, LOAD, COPY, etc.). together with certain related facilities such as 
EXPLAIN. 

Exercises 

B.J Name the four major components ofDB2. 

B.2 Draw a diagram showing the overall process of program preparation and program execu-
tion In DB2. 

B.3 Explain how DB2 provides physical data independence. 

B.4 List the principal storage objects of DB2. 

B.S What is the maximum length in bytes of a DB2 Stored record? Note that !he maximum 
width of a base table is less than this figure; why is thi~? 

B.6 What is a clustering index? Why can a gi,ven stored table have a max.imum of one such 
index? What are the advantages of such an index? 

B.7 The DB2 Bind component includes the optimizer as an important subcomponent The 
optimizer is responsible for deciding on a strategy for implementing database requests 
(i.e .• SOL statements): in particular, it decides when and when not to make use of indexes. 
How does the opti:mirer know what indexes 'eitlst7 How does it know whether a given 
index is a clustering index? 

B.8 Bxplain EXPLAIN. 

References and Bibliography 

References [B.1-B.5] are the principal DB'2m311uals from IBM. References fB.8-B.10] arecon­
cemed with various aspects of System R. the prototype predecessor to DB2 and to IBM's other 
SQL products (In thL~ regard, see also references [8. U- 8.16] and 118.29~18.30]). Note: The 
reader should be aware that after several commercial releases of the producl, !he details of 
DB2's intemals--panicularly its eompilation and optimization mechanisms-have evolved 
considerably and no longer display much trace oC their SystemR origins, From a 082 perspec­
tive. therefore. the System R references are now primarily of historical interest. 

B.l IBM Corporation. IBM DATABASE 2 Version J General lriformiJJion IBM Form No. 
GC26-4373. 

B.2 IBM Corporation. IBM DATABASE 2 Version 3 Adminisrratirm G~ide (three volumes). 
IBM Porm No. SC26-4374. 

8.3 IBM Corporation. IBM DA'IABASE 2 Version 3 SQl Refer1mci:. IBM Form No. SC26, 
4380. 

B.4 IBM Corporation. IBM DATABASE 2 Versil1n 3 App/icatirm Programming and SQL 
Gui.th. IBM Forro No. SC26-4377. 



TERADATA, Ex. 1014, p. 801

Appendix B 082: A Relational Implementation 773 

B.S IBM Corporation. lBM DATABASE 2 Version 3 Command and Utiliry Reference. IBM 
Form No. SC26-4378. 

B.6 Various aulhors. /BM Sys. J. 23, No. 2 (DB2 Spedal Issue, 1984). 

A series of technical articles on bB2 as it was at first release. Topics discussed include: 

• DB2 under IMS 
• DB2 under TSO 

• Data recov.ery 
• 

• DB2 design, performance, and tuning (I lUO] 

• DB2 buffer management 

• The Query Management Facility QMF 

8 .7 C. J. Date and Colin J. White. A Guide lO l>B2 (4th edition). Reading. Mass.: Addison­
Wesley (1993). 
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B.9 Raymond A. Lorle and J. F . Nilsson "An Access Specifo::ilion Language for a Relauonal 
Data Base System." IBM J. R&.D. 23. No. 3 (May 1979) 
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·•canned transaction" 1.mvirnnment!t. (A "eanru:d tmnsnction" is a !limple applicutmn thnt 
accesse.o. only u small part of the database and h compiled pnur to execu1ion 1ime. It 
corresponds 10 what we called n planned reque.w in Chapter 2.) The measurements were 
taken on an IBM System 370 Modltl 158. ruonlng System R under the VM op<.,rating 
system. They are described as "prelirnmary"; with thb caveat. however. The paper $how~. 
among other lhmgs, thnt (a) onmpilaticm is ulmost ulway~ superior to interprelallun, l!ven 
for ad l:oc (interactive) c1ucrie~. and Ch) a \ystem li~e Sysicm R ii. capahlc of pl'OCe~smg 
several canned crnnsaccions a second. provided nppropno.te indexes cx1s1 m the database. 

Since this paper wai; 11rst publiNhcd, several relational producL~. including in panic• 
ular 082, have ac'11evcd perfonnanctl figu~ tlljll llfC comparable to the best ngure~ \lh• 
tained with w11• database ~ystelll, relauonn.I 01 otherwise. In panlcular. tnlnsaction rotes m 
the hundred' nnd even thl.lu~and~ of canned tnmM1c1io11~ per second hu'c bec:n demon­
strated. 
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Answers to Selected Exercises 

B. I The four major components of 082 are the system services, locking services, database 
services. and distributed data facility components. The database services component. in 
tum. divides into the Precompiler. Bind. Run Time Supervisor. Data Manager. and Buffer 
Manager components. 

8.4 The principal DB2 storage objects are databases. table spaces.lndex spaces, srored tabl.:s. 
and indexes. 

8.5 Sinre each stored [eeord must be wholly contained within a single page. the maximum 
length of aDB2 stored record is constrained by the page size (either 4K or 32K byies). The 
maximum wi,Plh of a base table is less than lhil! figure because the stored record includes 
cenaln <ionirol infonnation-e.g .. in the stored record prefix-that is concealed from the 
user. 

B.6 A clustering index is an index for which the physical sequence af !he ind&xeddata is the 
same as, or very close to, the logical sequence of that same data as represented by the index 
entries (see Appendix A). A given stored table c~ot have more than one such index be­
cause-by definition-that stored table can have only one physical sequence. The advan­
tage of a clustering index is tbal sequential 'access via the index will access each data page 
once only and will thus be as fast as possible. 

8 .7 Allsuah infollDalion is kept in the catalog. 
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C Logic-Based Systems 

• 

C. 1 Introduction 

A sigp:i:ficanl new tread has emerged within the database research community over the 
past few years. That trend is toward database systems that are based on logic. Ex­
pressions such as logic darabase, inferential DBMS, expert DBMS, ded11ctive DBMS. 
knowledge base. knowledge base management system ( KBMS), logic as a data model, 
recursive query proG'essing, etc .• etc., are now frequenUy encountered in the research 
literature. But it is oot always easy to relate such terms and the ideas they reptesent to 
familiar database tenns and concepts, nor to understand the mouvaaon underlying the 
research from a traditional database perspective. There 1s a clear need for an explana­
tion of all of this activity in terms of conventional database ideas and i>rinciples This 
appendix is an attempt to meet that need. 

Our aim is thus to explain what logic-based database systems are all about from the 
viewpoint of someone who is familjar with database technology but not neces$arily 
with logic per se As each new idea from logic is introduced. therefore we will explain 
it in conventional database terms, w.here possible or ap_propriate Of course we have 
discussed cenain ideas from logic in this book already. particularly in the chapter on 
relational calculus l Chapter 7). wlm.:h 11. directly b:u.ed on logu. Hn we' e1 theri:: ~ mo1 e 
w log1c-ba11ed sy$Lems tban JUSt the relational caJcuJu~. a1> we will ~ee 

The sLrUcrure of this appendix is as follows. Followrng this prehminar) back­
ground section. Secuon C.2 provides a bnef overview ot the stibJt:<:r. w1th a lmle his­
tory ~ccuom. C.311nd C.4 then provide an elemi.:ntary (and vt:ry much :.mlplified) rreat­
m..:nt ol pr<1[11).1'itim111l t:tlfculul and p1c1d1c .1111 caft·11lu ~ n:~111::cu vel y Nexi Set:11on C.5 
muoduces the so-called prouf-theuretll vtew ot a darabase. and ~ecuoo Cb builds on 
the ideas uf that "'ection to explw.n what 1~ meant by the term ded11~ 111 e DJJM:, Secuon 
C 7 tbell di~CU5~e!> MllllU approm .. hes to lht" prublt:m of ft!('Ul~ll'I! t/W!f) (!llJCh.llllf;l Jnd 
finally Secmon C.8 ofters a summary and a tew concluding renurrx.,. 
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C.2 Overview 

Research on the relationship be1weenda1abase lheory and logic goes backro.al leasnhe 
Late 1970s. if not earlier-see, for ex:ample, references [C.51, [C.71. and [C.13]. Hew­
ever, !he principal i;timulus for the recent considerable expansion of interest In the sub­
jeet seems lo have btien the publication in 1984 of a landmark paper by Reiter [C.151. 
In that paper. Reiter characterized the traditional perception of database systems as 
mOdel-theoretic-by which he meant, very loosely speaking, that (a) the database is 
seen as a set of explicit (i.e., base) rela1iens, each con raining a sec of explicit tuples. and 
(b) executing a query can be regarded as. evaluating some ~ecified formula(i.e_, trulh­
v.alued expression) over those explicit relations and tuples. (We will ex.plain the mean­
ing of the tean "model-theoretic'" a Linle more precisely in Sect.inn_ C.5.) 

Reiter then went on to argue that an alteD1i1tive proof-theoretic view was possible. 
and indeed preferable in certain respects. l'n that alternative view-again very loosely 
speaking-the database is seen as a set of axioms ("ground'" axioms, corresp<mding to 
domain values and tuples in base relatians. plus certain '"deductive" axioms, robe dis­
cussed), and executing a query is regarded as provin.g that some specified formula is a 
logical consequence of those axioms-in other words, proving that it is a theorem. 
(Again. we will explain the term "proof-lheoretic'" a little more precisely in Section_ 
C.5.) 

An example is in order. Consider the following query (ex.pressed in relational cal­
culus) against the usual suppliers-and-parts database: 

sex WHERE SPX . OTY > 250 

lo the ttaditional- i.e., model-theoretic-interpretation, we examine the shipment 
tuples one by one, evaluating the formula !•QTY> 250" for each one in turn; the query 
result then consists of just those shipment ruples for which the formula evaluates ro 
true. Jn the proof-theoretic interpretation. by contrast. we consider the shipment tuples 
(plus certain other items) as a.xioms of a certain " logical theqry" ; we then apply 
theorem-1Jrovingtechniques to determine for which possible values of the variable SPX 
rhe formula "'SPX.QTY > 250" is a logical consequence of those axioms within that 
theory. The query result then consists of just those particular values of SPX. 

Of course. this example is extremely simple-so simple, in fact, that the rellder 
might be having difficulty in seeing what the difference between the two interpretations 
really is. The point is, however. that the reasoning mechanism employed in !be at­
tempted proof (in the proof-theoreUc interpretation) can of course be much more so­
phisticated than our simple cltample is able to convey; indeed. it can handle certain 
problems that are beyond the capabilities of cla~sical relational systems, as we will see. 
Furthermore, the proof-theoretic interpretation carriei. with it an attractive set of addi­
tional features IC. t.:j]: 

• Representational uniformity: Tl becomes possible to define a database languag!! 
in which domain values, tuples in base relations. "deductive axiomi.." queries, and 
integrity constraints are all represented in essentially the same way. 
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• Operational uniformity: Proof theory provides a basis for a unified auack on a 
variety of apparently distinct problems, including query optimization (especially 
semantic optimization). integrity constraint enforcement, database design (depen~ 
dency theory), program correctness proofs. and other problems. 

• Semantic modeling: Proof theory also provides a good basis on which to define 
various.semantic modeling ex(ensions, such as event!;, type hierarchies. and certain 
types of entity aggregation. 

• ExtendedaepHcation: Fimftly. proof theory also provides a basis for dealinjl with 
certain issues that classical approaches have traditionally bad difficulty with-for 
example. disjunctive information (e.g., "Supplier S5 supplies ·either part Pl or:i;>art 
P2, but it is not known which"). 

Deductive Axioms 

We offer a brief and preliminary explanation of the concept. referred to a couple of 
times above, of a deductive axiom (also known as a rule of inference). BasiGally, a 
deductive axiom is a rule by which, given certaln facts, we are able to deduce additional 
facts. For example, gh(en the facts "Anne is the mother of Betty" and "Betty is the 
mother of Celia," there is an obvious deductive axiom that allows us to deduce that 
Anne is the grandmother of Ce:1ia. To jump ahead of ourselves for a moment, therefore, 
we might imagine a deductive DBMS in which the two gjven facis are represenred as 
tuples in a relation. as follows: 

MOTHERQF MOTltEIR DAIJGH'I'ER 

Anne. aeccy 
lletcy Celia 

These two facts would represent ground axioms for the system, Let us suppose also 
that the deductive axiom llas been formally stated to the system somehow, e.g. , as fol­
lows: 

IF MOTHEROF 
A!ilD 1.fi'.lTHEROF 

x, y ) 
y, z I 

TRE!ll URANOMOTHEROF I ;.;, z I 

(hypothetical and simplified syntax). Now the sys1em can apply the rule expressed in 
the deductive axiom to the data represented by the ground uxioms (in n manner to be 
explained in Section C.4) to deduce the result GRANDMOTHEROF (Anne.Celia). 
Thus, u!jers can ask queries such as ''Who is the grandmother of Celi~'r or "Wbo are 
the granddaughters of Anne?" (More precisely . I.hey can ask " Who is Anne the grand­
mother ot'l"-see Section C.4.) 

Let us now attempl to relate the foregoing ide~ to traditional database concepts. in 
b'adltionaJ terms. the deductive axi.om can be thought of as a 1•iew definition-for example: 

CREATE VIEW GRAI>;DMQTHEROF ;..s 
( MX. MOTHEjt AS GRANDMOTHEP. , MY, DAOGH1'E!l AS GAANODAllG!i'IE!I J 

WHERE: MX.. OADGH'l'~ = MY. HO'l'HE:R : 
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(here MX and MY are rupJe variables ranging over MOTHEROF). Queries such as the 
ones mentioned above can now be framed in tenns of this view: 

GX.GRANDMOTHER WHERE GX.GRANDDAUGH~ER: 'Celia• 

GX. GRANDDAUGHTe:R WJiEll<E GX. GRANDMOTHF.l< ; • Alme. 

(OX is a ruple variable ranging over GRANDMOTHEROF). 
So far, therefore, all we have really done is presented a different syntax and differ­

ent interpretation formated al that is already basically familiar. However, we willsee in 
later sections that there are in fact some si,goifican1 differences, not illustrated by the 
simple examples of the present section. between logic-based systems and more tradi­
tional DBMSs. 

C.3 Propositioiul Calculus 

ln 1his section and the next, we present a very brief introduction to some of the basic 
ideas of logic. The present section considers propositional calculus and Section C.4 
considers predicate calculus LC:.1-C.3]. We remark immediately. however, that so far 
as_ we are concerned, propositional caJculus is not all that important as an end in itself; 
the major aim of the present section is really to pave the way for an under!!t.anding of 
the next one. The aim of the two sections taken together is to provide a basis on which 
re;> build in the rest of the appendix. 

The reader is assumed to be familiar wil'.b the basic concepts of Boolean algebra. 
Por purposes of reference, we state certain laws of Boolean algebra that we will be 
needing later on: 

• Distributive laws: 

fANDlgOR hJ = 
f()R l9ANDhJ ~ 

• De Morgan's laws: 

f MD g 
f OR g 

OR f ANO b 
AND fOR h 

NOT I fANDg I = NOT f0R ~!OT g 
NOT ( i OR g I '= llOT f AND ~10'1" g 

Here.f. g, and hare arbitrary truth-valued expressions. 
Now we tum to logic per se. Logic can be defined as a formal method of reason­

ing. 13ecause it is formal. it can be used 10 perform formal tasks, such as testing the 
validity of an argument by examining just the structure of that argument as a sequence 
ofsteps (ie., without paying any attention t.o the meaning of those steps). Tn particular, 
of course, because it is fonnal, it cao be mechanized-Le., it can be programmed, and 
thus applied by the machine. 

Propositional calculus and predicate calculus are two special cases of logic in gen­
eral (in fact. the fonner is a subset of the latter). The term "caleulus." in tum, is just a 
general tenn that refers to any system of symbolic computation; in me particular cases 
at hand, the kind of computation invelved is the computation of the truth value (true or 
false) of certain formulas or expressions. Note: Naturally we assume throughout that 
we are dealing with two-valued logic only. 
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Terms 

We begin by assuming that we hav.e some collection of objects. called constants, about 
which we can make statement$ of yarious kinds. In datilbase parlance. these constants 
are the elements of the underlying domains. We define a term as a statement involving 
such constants that 

• Does not involve any quantifiers (see Section C.4), and 

• Either does not involve any logical connectives (see below) or is contained in pa­
rentheses. and 

• Evaluates unequivocally to either true or false. 

Foe example, "Supplier S L is located in London" and ''Supplier S2 is located in 
London" and "Supplier S l supplies part Pl" are all terms (they evaluate to true, false, 
and crue respectively, given our usuaJ sample data values). By contrast, "Supplier 
Sl supplies some pan p" is not a term, because it contains a quantifier ("some part 
p"). Another: counterexample: "Supplier S5 willsupply part Pl at some time in the 
future" is also not a term. because it does not evaluate unequivocally to either true 
or false . 

Formulas 

Next, we define the concept of a formula FormuJas of the propositional calculus­
more generally. of the predicate calculus (!lee the next section)--are used in database 
systems to represent the conditional expression that defines the resuJt of a query 
(among many other things). 

formula 
term 
NO'!' term 
cerm AND formula 
i:erm OR (ormLtla 

I cerm = Eormu.la 

• ·- acomic· formula 
I ( formula l 

Ponnulas are evaluated in accordance with the 1.ruth values of their constituent 
tenns and the usual truth tables for the connectives. Points arising: 

I. An aromicfonnulD is a tenn that involves no connectives and is not contained in 
parentheses. 

2. The symbol "=>" represencs the logical implication connective. The expression 
f ~ g is defined to be logically equivalent to che expression NOT /OR g. Note: We 
used "IF ... THEN ... ·• for this connective in Chapter 7 and el.sewbere in the 
body of lhe text 

3. We adopt the usual precedence rules for the connectives (NOT. then AND. then 
OR. then "=>) in order to allow us to redute the number of parentheses that the 
grammar would otherwise require. 
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Rules of Inference 

Now we come to the rules oflnferenceior lhe propositional calculus. Many such rules 
exist.Each such rule i$ a statement oftheform 

F £ = g 

(where the symbol ~can be read as "It Is a lways the case that"; 110te that we need 
some such symbol in order to be able to make metastatements, i.e., statements about 
statements). Here are some examples of inference rules: 

l . I=- ( £ AlllD g ) => f 

2. I= t = ( £ OR g ) 

3. F ( ( f => g ) ANO ( g => b l l => I { => h I 

4. I=- ( ! !\ND ( [ - !I ) ) - g 

Note: This one is particularly important. It is cailedi:he moduslJOnens rule. Informally, 
it says tbatif/is true andfimplies g. then g-mustbe true as well. For example, given 
the fact that each of the following (a) and (b ) is true-

( a) Ibave no money; 

(b) If I have no money then I will have to wash disbes; 

-then we can infer that (c) is true as well: 

(c) I w jll have to wash dishes. 

To continue with our inference rules: 

5. F ( ! => ( g => h ) ) => ( ( f AND g ) => b ) 

6. F ( ( 'f OR g ) AND ( NOT g OR h f ) => ( f OR h ) 

Note: This is another particularly important one. JLis.known as the resolutionrule. We 
will have more to say about it under "Proofs" below and again in Section C.4. 

Proofs 

We now have the necessary apparatus for dealing with formal proofs (in the context of 
the propositional ealcuJu~). The problem of proof js the problem of determining 
whether some given formula g (the conclusion) is a logical consequence of some given 
set of formulas f 1, fl, . .. fn (the premlses)*'- in symbols: 

t'l, r2 • .... to 1- g 

(read as '"g Is deducible from f 1, fl, ... fn" ; observe the use of another meta statement 
symbol, 1-). The basic method of proceeding is known as forward chaining. For.ward 
chaining consists of applying the rules oUnference repeatedly to the premises, and to 
formulas deduced from those premises. and to formulas deduced from those formulas, 
etc., etc., until the conc:lusion is deduced; in other words, the process "chainsiorward" 

1 Also spelled premis!les (singular p,.nlis.<). 
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from the premises to the conciusion. However, there are several variations on this basic 
theme: 

I . Adopting a premise: ff g is Qf the form p ~ q, adopt p as an additional premise 
and show that q is deducible from the given premises plus p. 

2. Backward chaining: Instead of trying to prove p ~ q, prove the contrapositive 
NOTq~NOTp. 

3. Reductio ad absurdum: lastead of trying 10 prove p ~ q directJy. assume that p 
and NOT q are both true and derive a contradiction. 

4. Resolution: This method uses the resolution inference rule (No. 6 in the list shown 
earlier). 

We discuss the resolution technique in some detail, since it is of wide applicability 
(in particular. it generalizes to the case of predicate calculus also. as we will see in 
SectioaC.4). 

Note first that the resolution rule is effectively a rule that allows us to cancel sub­
fonnulas; that is, given the two formulas 

f OR g and N0T q OR h 

we ean derive the simplified formula 

f bR h 

III particular. given/OR g and NOT g (i.e., taking Ii as true). we-can derive/ 
Observe, therefore. that the rule applies in general to a conjunction (AND) of two 

foonnlas, each of which is a disjunction (OR) of two formulas. III order to apply the 
resolution rule, therefore, we proceed as follows. (To make our discussion a little m ore 
concrete, we explain the process in 1erms of a specific example.) Suppose we wish to 
determine whether the following putative proof is in fact valid: 

A => ( B => C I , N0X D OR A, B f- D => C 

(where A. B, C, and Dare formulas). We start by adopting the negation of the conclu­
sion as an additional premise, and then writing each premise on a separate line. as fol­
lows: 

A~fB => C) 

NOT DORA 

B 
NOT(D=Cl 

Nore that these four lines are implicitly all "ANDed" togelher. We now convert 
each individual line to conjunctive normal form, i.e .. a fonn consisting of one or more 
fon:nulas all ANDed together. each individ11aJ formula contail\ing {possibly) NOTS and 
ORs but no ANDs (see Chapter 18). Of course. the second and third lines are already in 
this form. In order to convert the other two lines, we first eliminate all appearances of 
"~·· (using the definition of that connective in term:. of NOT and OR): we then apply 
the distributive laws and De Mo(gan's laws as necessary tsee the beginning of this 
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section). We also drop redundant parentheses and pairs of adjacent NOTs (which can­
cel out). The four lines become 

NOT A OR NOT B OR C 

NOT D OR A 
B 
D AND NOT C 

Next, any line tbatincludes any explicit ANDs weTeplace by a set of separate lines, 
one for each of theindividualfonilulas ANDed together (dropping the ANDs in the 
process). In the example. this step applies to the fourth line only. The premises now 
look like this: 

NOT A 0R NOT B OR C 
NOT DOR A 

Ii 
D 

NOT C 

Now we can stan to.apply theresolutioo rule. We choose a pair of lines that can be 
"resolved,'' i.e., a pair that contain (respectively) some particular formula and the nega­
tion of that formula. Let us choose the first two lines, which contain NOT A and A 
respectively. and resolve them, giving 

NOT D OR NQT B OR C 
B 

D 

NOT C 

(Note: We also need to keep the two original lines, in general, but in this particular 
example they will not be needed any more.) Now we apply the rule again, again choos­
ing the fust two lines (resolving NOT Band 8), giving 

NOT D OR C 

D 
NOT c 

We choose the first rwo lines again (NOT D and D): 

t 
NOT C 

And once again (C and NOT C); the fiaal result is the empty proposition (usually 
represented thus: 0). which represenls a contradiction. By reductio ad absurdum, there­
fore, the desired result is proved. 

C.4 Predicate calculus 

We now tum our auenlion to the predicate calculus. The big difference between prop­
ositional calculus and predicate calculus is that the latter allows fonnulas to contain 
quantifiers, which makes it very much more powerful and of very much wider applica­
bil.ity. Por example, the statemenc "Supplier SI supplies some part p" is not a legal 
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foanula in propositional calculus, but it is a legal fonmlla in predicate calculus. Bence 
predicate calculus provides us with a basis for expressing queries such as ''What parts 
are supplied by supplier SI?" or "Find suppliers who supply some part" or even "Find 
suppliers who do not supply any phrts at a11:• 

Predicates 

A predicate is a rntth-1•al11ed fi.!notion, i.e., a function that, given appropriate argu· 
ments, returns either true or false. For example, ">" is a predicate: the expression 
''>{x,y)"-more conventionally written "x > y''-retums true if the value of x is greater 
than lhe value of y and false othetwise. A predicate that takes n arguments is calle-0 an 
n-place predicate. A proposition--or for that matter a formula-in the sense of Section 
C.3 can be regarded as a zero-place predicate: [t has no argumenrs and evaluates to 
eiJher true or false, unconditionally. 

It is convenient to assume that the predicates"=",''>'', '2", etc., are builtin (i.e., 
they are pan of the formal system we are defining) and that expressions using them can 
be written in the conventional manner, but of course users should be able to define their 
own additional predicates as well. Indeed, that is the whole point. as we will quickly 
see: The fact is, in database terms. a user-defined predicate is nothing more nor less 
than a user-defined relation. The suppliers relation S. for example. can be regarded as 
a predicate with four argume111s (S#, SN AME, STATUS. and CITY). Furthermore, the 
expressions S(S I ,Slllith,20,Loodon) and S(S6, White,45,Rome) represent ''instances" 
or "invocations'· of that predicate that evaluate 10 true and false respectively (within the 
particular database that is represented by our usual sample set of values). Informally, 
we can regard such predicates-together with any applicable integrity constraints, 
which are also predicates-as defining what the corr~SPQnding relation "means," as 
explained in Pan D of this book. 

Well-Formed Formulas 

The next step is to extend the definition of "formula." Tn order to avoid confusion with 
the formulas of the previous section (which are actually a special case), we '!Vill now 
switch.to the term weU-formed formula (WPF, pronounced "weff") lha1 we finn intro­
duced in Chapter7. Here is a simplified syntax for WFFs: 

wtt : : = cerm 
NOT ( wff ) 

I Wff ) ANO I wfi I 
I wa J OR ( 1>1li J 
( wfl J = ( wf:.f ) 

I EXISTS variable ( "ct l 
I FORALL variable ( t~ff I 

Ce.rm ; : ~ I NOT I Pl edJcace r I argument ·<:ommdJ ist I l 

Pofots arising: 

I. A term is simply a possibly negated predicate ins1ance. Each org11.mlf11/ multL be a 
constant, a variable, or a function reference. where each argument Lo a function 
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reference in tum is a constl«lt or variable or function reference. The argument com­
malisr (and enclosing parentheses) are omitted for a zero-place predicaie. Nore: 
Functions are peanined in order to allow WFFs to include computational expres­
sions such as "+(x,y)'"-more conventionally written "x + y''-and so forth. 

2. As in Section C.3, we adopt the usual prece"dencerules for the connectives (NOT. 
then AND. then OR, then~) in order to reduce the number of parentheses that the 
grammar would otherwise require. 

3. The readeris as~omed to be familiar with the quantifiers EXISTS and FORALL. * 
4. De Morgan's laws can be generalized to apply to quantified WFFs, as follows: 

NOT f FORALL x ( t ) ) a EXISTS x ( NOT t I 
NOT I EXISTS X ( f > ) " FORALL x l NOT ( E I ) 

This point was also discussed in Chaprer 7. 
5. To repeat yet another point from Chapter 7: Wi(hin a given WFF. each occurrence 

of a variable is either [ree or j>ound. An occurrence of a variable is bound if (a) it 
is the variable immediately following a quantifier (the "quantified variable") or (b) 

it is within the scope of a quantifier and has the same name as the applicable quan­
tified variable. A variable occurrence Is free iI it is 1101 bound. 

6. A closed WFF is one that contains no free variable occummces. An open WFF is 
a WFF that is not closed. 

Interpretations and Models 

What do WFFs mean? In order to provide a formal answer to this question, we intro­
duce the notion of an interpretation. An interpretation of a WFF--or more generally 
of a set of WFFs-is defined as follows: 

• First. we specify a universe of discom:se over which the WFFs are to be interpre­
ted. In other words. -we specify a mapping between the permitted constants of the 
fonnal system (the domain values, in database tel'lllS) and objects in "the real 
world."cach individual conslant corresponds to precisely one element in the uni­
verse of discourse. 

• Second, we specify a meaning for each predicaie in terms of objects in the universe 
of discourse. 

• Third. we al~o specify a meaning for each function in terms of objects in the uni-
verse of discourse. 

Then the interpretation consists of the combination of the universe of discourse, plus 
the mapping of individual constants 10 objects in that universe, plus the defined mean­
ings for the predicates and functions with respect 10 that universe. 

By way of example. lee the universe of discourse be the set of integers 

• We nrc concerned here only wuh thlJfirst ortkr pred1ca1e calculus. wluch basically me:AAS that there nrc no 
pred1ca1C variables (i.e .• variobl!!-' whose value is • prcd1cute), and hence that predicate~ cannot themselves be 
subJcclCd to quantiuc~uon. See E;terc~o;e 7 ,9 m Chapter 7. 
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(0,1,2,3,4,5), let censtanlS such as "2" correspond lo elements of lbat universe in the 
obvious way, and let the predicate.">" be defined to have the usual meaning. (We could 
also define functions sucb as "+", "-", etc., if desired.) Now we can assign a truth value 
to WFFs such as the following, as Indicated: 

2 > l 
2 > 3 
EXISTS x I x > 2 ) 
FORAI.iL x I x > 2 ) 

- t::rue 
- 'Cal.se 
- true 
-'false 

Note, however, that other interpretations arei><>ssible. For example, we might spec­
ify the universe of discourse to be a set of security classifkation levels, as follows: 

dest roy before reading (l:evel 5 ) 
destroy after readl.ng I l e vel 4) 
t:op searet: 
secret 
confidential 
unclassified 

!level 3 ) 
I level 2) 

(l evel 1 ) 
(level 0 ) 

The predicate ''>" could now mean "more secure (ie., higher classification) than." 
Now, the reader will probably realize that the two possible interpretations just 

given are isomorphic-that is, it is possible to set up a one-to-one correspondence be­
tween them. and hence at a deep level the two interpretations are really one and the 
same. But it must be clearly understood that interpretations can ex:ist that are genuinely 
different in kind. For example, we might onee again take the universe of discourse to 
be the integers 0-5, but define tbe predicate ">" to mean eq1UJ1ily. (Of course. we would 
probably cause a lot of confuSion that way, bat at least we would be within our rights 
to do so.) Now the fust WFF above would evaluate to false instead of true, 

Another point that must be clearly understood is that two interpretations migllt be 
genuinely different in the foregoing sense and yet give the same troth vaJues for the 
given set ofWFFs. This would be the case with the two different definitions of">" in 
our example if the WFF .. 2 > i ·• were omitted. 

Note. incidentally, that all of the WFFs we have been discussing in this subsection so 
far have been ckJsed WFFs. The reason is that, given an interpre.tation, it is always possible 
to assign a truth value unambiguously to aclosed WFF. but the truth value of an open WFF 
will depend on the values assigned ro the free variables. For example, the open WFF 

x > 3 

is (obviously) true if the value of x is greater than 3 and false <>therwise (whatever 
"greater than" and "3" mean in the interpretation). 

Now we define a model of a WFF. or more generally or a set of(closed) WFFs, Lo 
be an interpretation for which all WFFs in the set are true. The two interpretations given 
above for the four WFFs 

~ > l 

2 > 3 
BlUS'tS JC x > 2 ) 
!'ORAL!. JC x > :? ) 
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in leans of the integers 0-5 were not models for 1hose WFFs, because some of the 
WFFs evaluated to false under that interpretation. By contraSt, the first interpretation 
(in which ">" was defined ··properly") would have been a model for the set ofWFFs 

2 > l 
) > 2 
£XISTS x ( x > 2 ) 
FORALJ.. x ( x > 2 OR NOT I x > 2 ) ) 

Nole finally that, since a given set of WFFs can admit of several interpretations in 
which all of lhe WFFs evaluate to true, it can therefore have several mQdels (in gen­
eral). Thus. a database can have several models (in general). since-in the model­
theoretic view-a database is basicall¥ a set ofWFFs. See Section C.5. 

Clausal Form 

Just as any proPQsitional calculus formula can be converted to conjunctive normaJ 
form, so any predicate calculus WFF can be converted to clausalfonn, wbicltcanbe 
regarded as an extended version of conjunctive normal form. One motivation for mak­
ing such a conversion is that (again) it allows us to apply the resolution rule in con­
structing or verifying proofs, as we Will see. 

The conversion process proceeds as follows (in outline; for more details. see refer­
ence [C.IOJ). We illusttate the steps by applying them to a sample WFF. namely 

l'ORALL x ( p ( x J AND EXISTS y ( FORALL z l q C y , z ) J ) ) 

Here p and q are predicates and x, y, and z are variables. 

1. Eliminate"~" symbols as in Section G.'.l. In our example, this first transformation 
has .no effect 

2. Use De Morgan's laws, plus the fact that two adjacent NOTs cancel out, to move 
NOTs so that they apply only to ceans. not to general WFFs. (Again this particular 
transformation has no effect in our particular example.) 

3. Convert the WFF to preoex normal form by moving all quantifiers to the front 
(systematically renaming, variables if necessary): 

FORALT. x I EXISTS y ( FORAL.L z ( p ( x ) AND q ( y, z l l I ) 

4. Note that an existentially quantified WFF such as 
EXISTSv(r(v)I 

is equivalent to the WFF 

r ( a ) 

for some (µnknowo) coostanl a; that is, the original WFF asserts that some such a 
does exist. we just don't know its value. Likewise, a WEF such as 

FOllALL u ! EXISTS v ( s ( u, v 1 ) ) 

is equivalent t-0 the WFF 

FORALL !J ( s r u, f ( u ) I ) 
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for some (unknown) function/ of the universally quantified variable u. The con­
stant a and the function /in these examples are known, respectively, as a Skolem 
constant and a Skolem functi,on* (where a Sk-0lem constant i s really just a Skolem 
function with no arguments). So the next step is to eliminate e llistenlial quantifiers 
by replacing the corresponding quanti fied variables by (arbitrary) Skolem func­
tions of all universally quantified variables that prece-de the quantifier in question 
in the WFF: .. 
FORAIJL x ( FORALL z ( p !. x I AND q ( f I x J • z J J l 

5. All variables are now uruvecsally quantified. We can therefore adopt a convention 
by which all variables are impliailly universally quantified and so drop the explicit 
quantifiers: 

pl x ) AND q ( f \ X ), z I 

6. Convert the WFF to conjunctive _noanal form, i.e., to a set of clauses all ANDed 
together, each elause involving possibly NOTs and ORs but no ANDs. ln our ex­
ample, the WFF is already in this fonn. 

7. Write each clause on a separate line and drop the ANDs: 

p ( x l 
q(f(x),z) 

This is the clausal fonn equivalent of tl!e original WFF. 

Note: Jt follows from the foregoing procedure that the general form af a WFF in 
clausal fonn is a set of clauses, each on a line ofits own. and each of the fonn 

NOT AL OR NOT A2 OR • • • OR NOT Am OR BL OR B2 OR . . . OR Bn 

where theA's andB's are all nonnegated tenns. We can rewrite such a clause, if we 
like. as 

Al AJqP A2 ~ . . • ANO .Am ~ Bl. OR .B2 OR • . . QR Sn 

[f there is at most one B (n : 0 or 1), the clause is called a Horn dause; + 

Using the Resolution Rule 

Now we are in a pQsition to see haw a logic-based database system can deal with que­
ries. We use the example from the end of Section C.2. First. we have a predicate 
MonIEROF, which takes two arguments, representing mother and daughter respec­
tively. and we are given the following !WO terms (predicate instances): 

I . MOTREROF I A11ne, Bet t;y l 

2. MOTHEROF l Betty, Ce-li.a J 

We are also given the following WFF (the "deductive axiom"): 

3. MOTHEROF [ x. y I AND MOTHEROF ( y, z I ~ GRANUMOTHEROF I x. :- 1 

• Alier the logician T. A. Skolem. 
I Afutr the logjolan A1'Md Hom. 
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(note lhat this is a Hom clause). In order to simplify the application of the resolution 
rule. let us rewrite the clause to eliminate the"~" symbol: 

4. NOT MOTHEROF ! x, y l OR NOT MOTHEROF I y, 2 ) OR GRANDMOTHEROF l x , z ) 

We now show how to prove that Anne is the grandmother ofCelia-i.e., how to answer 
the query "ls Anne Celia's grandmotherT' We begin by negating the conclusion thatis 
to be proved and adopting it as an additional premise: 

5 . .NOT GRANDMOTHEROF I Anne , Celia l 

Now, to apply the resolution rule, we must systematically substitute values for vari­
ables in such a way that we can find two clauses that contain, respectively, a WFF and 
its negation. Such substitution is legitimate because the variables are all implicitly uni­
versally quantified. and hence individual (nonnegated) WPFs must be true for each and 
every legal combinations of' values ofiheir variables. Note: The process offinding a set 
of substitutions that make two clauses resolvable in this manner is .known as imifica­
tion. 

To see how the foregoing wodcs in the case at hand. note first that lines 4 and 5 
contain the terms GRANDMOTHEROF(x,;:) and NOT GRANDMOTIIBROF(Anne, 
Celia), respectively. So we substitute Anne for x and Celia for z in line4 and resolve, 
to obtain 

6. NOT MOTHEROF ( Amia, y I OR i'l!JT Mo!I'BEROF ( y, Celia ) 

Line 2 contains MOTHEROF(Betty,Celia). So we substitute Betty for yin line 6 ao<I 
resolve. to obtain 

7. NOT M01lBEROF I Anne, Betty' ) 

Resolving line 7 and line I, we obtain the empty clause []: Contradiction. Renee the 
answer to the original query is "Yes. Anoe is Celia's grandmother." 

What about the quecy ''Who are lhe granddaughters of Anne?'' Observe first of all 
that the system does not know about granddaughters, it only knows about grandmoth­
ers. We could add another deductive axiom to the effect that z is the granddaughter of 
x if and only if x is the grandmother of z (no males are allowed in this database). Alter­
natively. of course, we could rephrase the question as "Who is Anne the grandmother 
of?" Let us consider this latter formulation. The premises are (to repeat) 

I. MOTREROF ( Anne. Betty 

2. MQll'f!EROF ( Betty, Ce Ha l 

3. t>jQll' MOTHEROF ( x , y 1 OR NQT MOTl'!ERO~ t y, z ) OR GRANOMOTHEROF ( x , z ) 

We introduce a fourth premise, as fonows: 

4. N!71' GRANDMOTJlEROF ( Anne. r- ) OR RES11[;'1' ( r ) 

Intuitively. this says that either Anne is not the grandmother of anyone, or alternatively 
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she is the grandmother. of some person r. We wish 10 discover the identity of all such 
pa89ns r, assuming Ibey ex.isl. W~ proceed as follows. 

First. substilUle Anne for x: and r for z and resolve lines 4 and 3, to obtain 
I 

5. NOT MOTHEROF ( Anne, y ) OR NOT MOTHEROF I y, z ) OR RESULT I z ) 

Next. substituie Betty for y and resolve lines 5 and I , to obtain 

6. NOT MOTHEROF ( Betty, z ) OR RESULT I z ) .. 
Now substilUte Celia for z and resolve lines 6 and 2, to obtain 

7. RESULT ( Celia l 

Hence Anne is the grandmother of Celia. 

Note: 1f we had been given an additional term. as follows-

MOTHEROE ( Betty. Delia ) 

--dlen we could have substituled Delia for z in. the final step (instead of Celia) 1U1d 
obtained 

RESULT ( Delia ) 

The user expects to see both names in the result, of course. Thus, the system needs to 
apply the unification and resolution process exhaustively to generate all possible result 
values. Details of this refinement are beyond the scope of the present discussion. 

C.5 A Proof-Theoretic View of Databases 

As explained in Section C .4, a clause is an expression of ihe form 

.U ANO A2 ANQ • • . ANO Am ~ Bl OR B2 OR . . • OR Sn 

where the A's aiid B's are all teans of theform 

:c \ xl, icZ , .. , x c; I 

(here r is a predicate and xi , x2, ... :a are the argumenis to that predicate). Following 
reference [C.12], we now consider a couple of important special cases of this general 
construe!. 

1. case 1: m = o. n = 1 

ln this case the clailse can be simplified to just 

=> Bl 

or in other words (dropping the implication symbol) to jus1 

r I xl, x2, .. . , x t: I 

for some predicate rand some set of argumentS :cl. x2, .... :ct. Jf lhex's are all con­
stants, the clause represenlS a ground axiom-Le .. it is a statement that is unequivo-
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cally true. In database tenns. such a statement correspandS to a tuple of some relation 
R*. The predicate r corresponds to lhe "meaning" of relation R, as explained elsewhere 
in this book. Foe example, in the suppliers-and-pans database, there is a relation called 
SP, th.e meaning of which is that the indicated supplier (S#) is supplying the indicated 
part (P#) in the indicated quantity (QTY). Note that this meaning corresponds to an 
open WFF, since it contains some free variables (S#, P#, and QTY). By contrast, the 
tuple CS I .Pl ,300)-io which the arguments ace ail constants-is a ground axiom er 
closed WFF that asserts unequivocally that supplier SI is supplying part Pl in a quan­
tity of 300. 

2. c-ase 2: m > 0, n = 1 

In this case the clause takes the focm 

A1 ANO A2 AND • • . ANIT AID => B 

which can be regarded as a deductive axiom; it gives a (partial) definition of the pred­
icate on the right-band side of the implication symboUn terms of those on the left (see 
the defmition of the GRANDMOTHER OF predicate earlier for an example). 

Alternatively, such a elause might be regarded as defining aaintegrity constraint. 
Suppose for the sake of the example that the suppliers relation S contains only two 
attn'butes, S# and CITY. Then the clause 

s ( s. (;l I ~ S ( s, c2 ) => cl ~ c2 

expresses the constraint that CITY is functionally dependent on S#. Note the use of the 
builtin predicate "=" in this example. 

As the foregoing discussions demonstrate, tuples in relations ('1ground axioms"). 
derived relations ("deductive axioms"), and integrity constraints can all be regarded as 
special cases of the general clause construct. Let us now try to see how these ideas can 
lead to the •·proof-theoreric'· view of a database mentioned in Section C.2. 

First, the traditional view of a database can be regarded as model-theoretic. By 
"traditional view" here. we simply mean a view in which the database is percei,ved as.a 
collection of explicitly named (base) relations, each containing a set of explicit tuples, 
together with an explicit set of integrity constraints that those tuples are not allowed to 

violate. It is this perception that can be characterized as ''model-theoretic." as we now 
ex.plain. 

• The underlying-domains contain values or constants that are supposed to stand for 
certain objects in the "real world" (more precisely, in some interpretation, in the 
sense of Section C.4). They thus correspond to the universe of discourse. 

• The base relations (more precisely, the base relation headi11gs) represent a set of 
predicates or open WFFs rhat are to be interpreted over that universe. For example. 
the heading of relation SP represents the predicate "Supplier S-# supplies part P# in 
quantity QTY." 

• Or IP nn elemem of a. domain, 
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• Each tuple in a given relation represents an instance of the corresponding predi­
cate: i.e .. it represents a proposition (a closed WFF-Jt contains no variables) that 
ts unequivocally true in the unJverse of discourse. 

• The integrity constraints are also closed WFFs, and they are interpreted over the 
same universe. Since the d ata does not (i.e .. must not!) violate the constraints, these 
constraint.~ necessarily evaluate ro true as well. 

• The tup les and the integrity~onstraints can together be regarded as the set of axi­
oms defining a certain logical theory (loosely speaking, a '"theory"' in logic is a set 
of axioms). Since those axioms are all true in the interpretation. then by definition 
tbar interpretation is a model of that logical theory, in tbe sense of Section C.4. 
Nor.e that, as pointed out in that section, the model might not be unique-that is, a 
given database might have several possible interpretations, all of which are equally 
valid from a logical standpoint. 

In the model-theoretic view, therefore, the "meaning" of the database is the model, 
in the foregoing sense of the tenn "model." And since there are many possible models, 
there are many possible meanings, at least in principle.• Furthenn.ore. query processing 
in the model-theoretic view is essentially a process of evaluating a certain open WFF to 
discover which values of the free variables in that WFF cause the WFF to evaluate to 
true within the model. 

So much f or the model-theoretic view. However, in order to be able to apply the 
rules of inference described in Sections C.3 and C.4, it becomes necessary Lo adopt a 
dJfferent perspective, one in which the database is explicitly regarded as a certain logi­
cal theory. Le .. as a set of axioms. The "meaning" of the database then becomes, pre­
cisely, the coUection of all true statements that can be deduced from the axioms using 
those axioms in alJ possible combinations-Le., it Is the sec of theorems that can be 
proved from those axioms. This is the proof-theoretic view. In this view. query evalu­
ation becomes a theorem-proving process (conceptua!Jy speaking, at any rate; in the 
interests of efficiency, h.owever, the system is likely to use mor,e conventional query 
processing techniques, as we wiU see lo Sec.don C.7). 

No1e: It follows from the foregoing paragraph that one difference between the 
m(>del-theoretic and proof-theoretic views (intuitively speaking) is t!iat, whereas a 
database can have many '"meanings"' in the model-theoret'ic view, it typica!Jy has pre­
cisely one "meaning" in rhe proof-theoretic view-except tha1 (a) as pointed out earlier, 
that onemeaning is rea!Jy the canonical meaning in tJ:ie model-theoretic case. and in any 
c.ase (b) the remark Lo the effect that there is only one meaning in the proof-theoretic 
case ceases to be trUe, in general, if the database includes any negative axioms [C.9-
C. IOJ. 

• However. If we assume thal the databll.\e lloc• not explichly cnnrain 1111)' ll>!!gatlve lnfonnatk>n (e.g .• a 
ptQposition of lhc fonn "'NOT S#(S9)," meaning that S9 ls not a suppllcr number). th"re will ~l•o he a "'minimol .. 
or ca11m1ical nl<'aning, which i.~ the inrencction or oil po~$1b\e modch IC.JO 1. In lhiset>Se. mCU'COvcr, Lhlll ~illlonlclll 
maaning, will be rhc •amc a.• the meonin.g llS<!ribcd lo the datttb:l!IC under the pioof-lhcoretlc View, to be cxplJu.nckl 
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The axioms for a ir,iven database(proof-theotetic view) can be infonnally summa­
rized as follows !C.15]: 

I. Ground axioms. corresponding to the elements of the domains and the tuples of the 
base relations. These axioms constitUte what is sometimes calle-0 the extensional 
database (EDB). 

2. A ··completion axiom"' for each relation. which states that no tuples of that relation 
exist other than those explicitly appearing in that relation.. These axioms corre­
spond to what is usually called the Closed World Assumption (CW A). which 
states that omission of a given tuple from a given relation implies that the proposi­
tion correspondin~ to that tuple is false. For example, the fact that the suppliers 
relation S does nol include the tuple (S6.White,45,llome) means that the proposi­
tion "'There exists a supplier S6 named White with status 45 located in Rome" is 
false. 

3. The '"unique name" axiom. which states that every constant is distinguishable from 
all the rest (i.e., has a unique name). 

4. The "domain closure" axiom, which states that no constants exist other than those 
in the daLabase domains. 

5. A set of axioms (essentially standard) to define lhe builtin predicate "=". These 
axioms are needed because the axioms in Nos. 2. 3, and 4 above each make use of 
the equality predicate. 

We conclude this section with a brief summary of the principal differences be­
tween the two perceptions (model-theoretic and proof-lheoretic). First of all. it has to 
be said thalfrom a purely pragmatic standpoint there might nol be very much difference 
al all!- at least in terms of present~day systems. However: 

a Nos. 2-5 in the list of axioms for the proof-theoretic view make explicit certain 
assumptions that are implicit in the notion of interpretation in the model-theoretic 
view l C.15]. Stating assumptions explicitly is generally a_good idea; furtheanore, 
it is necessary to specify those additional axioms expliciUy in order to be able to 
apply general proof techniques, such as the res0lution method described in Sec­
tions C.3 and C.4. 

a Note that the list of axioms makes no mention of integrity constraints. The reason 
for that omission is that (in the proof-theoretic view) adding such constraints con­
verts the system imo a deductive DBMS. See Section C.6. 

a The proof-theoretic view does enjoy a certain elegance that the model-theoretic 
view does not, inasmuch as it provide; a uniform perception of several constructs 
that are usually lhought of as more or less distinct: base data, queries, integrity 
constraints (the previous point notwithstanding), vlnual data (etc,). As a conse­
C:Juence, the possibTiity arises of more uniform interfaces and more uniform imple­
mentations. 

a The proof-theoretic view also provides a natural basis for Lreating certain problems 
that relational systems have traditionally always had difficulty with-disjunctive 
Information (e.g .. "Supplier S6 is Located In either Pa.Fis or Rome"), the derivation 
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of negative information (e.g., "Whe is TIOI a supplier?"), and recursive qu eries 
(see the next section}--tbough in this last case, at least, there is noTeason in prin­
ciple why a classical relational system could nor be extended appropriately to deal 
with such queries (a proposal for doing so can be found in reference LC.14}). We 
will have more to say regarding such matters in Sections C.6 and C. 7. 

• Finally, to quote Reiter [C.151. the proof-theoretic view "provides a correct treat­
ment of [extensions tol the relational model ro ineorporatemorereal world seman-.. 
tics" (including-~o repeat from Section C.2-events. type hierarchles, and certain 
kinds of entity aggregation). 

C.6 Deductive Database Systems 

A deductive DBMS is a DBMS that supports the proof-theoretic view of a database, 
and in particular is capable of deducing additional facts from the extensional database 
by applying specified deducth'e axioms or rules of Inference to those facts. The de­
ductive axioms, together with the integrity constraints (discussed below), form what is 
sometimes called the Intensional database (IDB). and the extensional database and the 
intensional database together constitute what is usually called the deductive database 
(not a very good !elm, since it is the DBMS. not the database, that oatrle$ our the de­
ductions). 

As just indicated, the ded'uctive axioms form one part of the intensional database. 
The other part coru;ists of addllionaJ axioms that represent integrity constraints (ie., 
rules whoseprimary pw:pose is to coru;train updates. though actually such rules can also 
be used in the deduction process to generate new facts). 

Let us see w hat the suppliers-and-parts database would look like in "deductive 
DBMS" form. First, there will be a set of ground axioms defining the legal domain 
values. Note: l n what fonows, we omit the (necessary) quotes surrounding string con­
stants purely for reasons of readabi1ity. 

5# 5.1 NAME Smich 'STATUS 5 ) CI'r'{ Lonc;lon ) 
5# 52 NAME Jarrns STATUS LO CITY Paris ) 

S # S3 NAME 8'.Lal<e STATUS 15 CITY Rome , 
5~ 54 NAflc: Clark ei;c. crrr i\t.hens ) 

5! SS NAME r Adams ec:c. 
s ~ 56 1'jAJ-!E ( White 

s~ S7 NAME t Nuc 
etc . N,\).!E ( ao.c 

NAME r Sc..rew 
&C . 

et:c . , etc .. etc . 

Nex;r, mere will be ground axioms for the tuples in 1he base relations: 

s ( S.l, Smith, 20 , London J 
S ( S2, Jones . 10. Par1a I 
et:c . 
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P ( ~1 . Nut. ~ed. 12, London_ I 
\3-l=C . 

SE' ( Sl, Pl , 300 ) 
etc . 

Appendixes 

Note: We are not seriously suggesting:lhat the excensional database wjlJ be created 
by explicitly listing all of the ground axioms as indicated above; rather, of course. tra­
ditional data defnition and data entty methods will be used. la other words, deductive 
D BMSs wm typically apply lheir deductians to conventional databa~s that already 
exist and have been constructed in the conventional manner. Note.however, that it now 
becomes more important than ever that the extensional database not violate any of the 
declared integrity constraintS!-because a database that does violate any such con­
straints represents (in logical teans) an inconsistent set of axioms, and ii is well known 
that absolutely any proposition whatsoever can be proved to be "rroe" from such a 
starting point (in other words, contradictions can be derived). For exactly the same 
reason, it is also import.ant that the stated set of integrity constraints be c0nsistent. 

Now for the intensional database. H ere -are the domain constraints: 

s ( S, sn. se, SC I ... Sj l s ) AND 
N'AME ( sn ) AND 
STATUS ( s~ ) AND 
CITY ( SC ) 

P ( p, pr!, p l. pw, pc J => P# ( p I AND 

ei:c. 

NAME ( pn I AND 
COLOR ( pl ) AND 
WE:ZGJIT ( _pw ) AND 

C'ITY(pc) 

Candidate key constraints: 

S ( s. snl, si:l, sc1 AND S ( s, sn2, st2, sc2 ) 
=> snl "' sn2 AND 

stl = st2 Jl..ND 

scl = sc2 
et'c. 

Foreign key constraints: 

SP ( s, p, q ) => S ( s, Sil, St , SC ) AND 
P ( p, pn, pl, pw, pc ) AND 
QT'l(q) 

And so on. Note: We assume for the sake of the exposition that variables appearing on 
the right-hand side of the implication symbol and not on the left (Sn, st, etc., i n the 
example) are existentially quantified. (AJI others are universally quantified. as ex­
plained in Section C.4.) Technically, we need same Skolem functions; sn, for example, 
should really be replaced by (say) SN(s), wbere SN is a Skolem function. 

Note, incidencally. that most of the constraints ~hown above are not pure clauses in 
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the sense of Section C.5. because the eight-band side is not just a disjunction of simple 
terms. 

Now let us add some more d~uctive axioms: 

s ( S, sn. sc, S C ) AND s~ > 15 = GOOD_ SOP l?LIERS ( s, s t , sc ) 

(compare the sample view definition in Chapter 17. Section L 7.1) . .. 
s ( sx. s;rn, sxt, SC I AND s ( sy, Sjll), syec, SC ) 

~ S$._COLOCM!ED I s x , sy ) 

S ( s, sn. st. c J AND P l p, pn , pl. pw, c ) 
= SP_COLOCATEO I s. p ) 

And soon. 
In order to make the example a little more interesting, Let us now extend the 

suppliers-and-parts database to incorporate a part struccure relation, showing which 
pans px contain which parts py as immediate (i.e. first-level) componencs. First a con­
straint to show that px and py must bothJdentify existing parts: 

~T_s'l'RilC'l'URE I px, py ) = P l px. xn. x l, xw, x c AND 
P r py, yn, y l, yw, ye J 

Some data values: 

E'ART_ STRUCTORE PJ. , 1?2 
PART_S'I'RUCTGRE Pl , P3 
PART_STRUCTORE P2, P 3 
PART_S'l'RYCTURE P2, P4 
etc. 

(Io practice PART_STRUCTURE would probably also have a "quantity" argument. 
showing how many py's ic takes to make a px, bur we omirlhis refinement for simplic­
ity.) 

Now we can add a pair of deductive axioms to explain whac itmeans forpartpx to 
contain part py as a component at any level: 

PART_ S'.l'RUCTORE I p x , py l ~ COMPONENTOF ( px , py ) 

PART_S'l'RUCTURE ( p x . pz AND CO!iPONENTOF I RZ. PY J 
= tOMPONENTOF" I px, .PJC I 

Lo other words, part py IS a component of part px (at some level) if it is either an 
immediate component of part px or an immediate component of some part p<.. that is in 
tum a component (at seme level) of part px. Note that the second axiom here is recur­
sive- it defines the COMPONENTOF predicate In teans of itself. Classical relational 
systems. by contrast, do not permit view definitions (or queries or integrity constraints 
or ... ) to be recursive in such a manner. This ability to suppon recursion is one of the 
most immediately obvious <tistioctions between deductive DBMSs and their classical 
counterparts-although, as mentioned in Section C.5 and also at earlier points in this 
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book. tfiere is no fundamental reason why the classical relational algebra should not be 
exiended to support an appropriate set of recursive operators. 

We will have more to say regarding this recursive capability in the next section. 

Data log 

From the foregoing discussion. it should be clear that one of the most directly visible 
portions of a deductive DBMS will be a language in which lhe deductive axioms (usu­
ally called rules) ('an be formulated. The best known example of such a language is 
called (by analogy with Prolog) Datalog IC.91. We present a brief discussion of 
Datalog in this subsection. Note: The emphasis in Datalog is on its descriptive power, 
not iu. computational power (as was aJso the case with the original relational model. 
incidflncally). Th~ objective is to define a language that ulcimately will have greater 
expressive power than conventional relational languages (C.9]. As a consequence, the 
stress in Dataiog-indeed. the stress throughout logic-based database systems in gen­
eral-is very heavily on query, not update, though it is possible. and desirable, to ex­
tend the language to support update also (see later). 

In irs simplest form, Datalog supports the formulation of rules as simple Hom 
clauses without functions. In Section C.4. we defined a Horn clause to be a WFF of 
either of the following two fcmns: 

Al AND A2 AUD 

(where the A's and B are nonnegated predicate instances involving only constants and 
variables). Following the SLyle of Prolog, however. Datalog actually writes the second 
of these the other way around: 

B <= Al AND .'\ .? AND . . • AND AJ1 

To be consistent with other publications in this area, therefore. we will do the same in 
what follows. In such a clause.Bis the rule head (or conclusion) and the A's are the 
role body (or premises or goal; each individual A is a subgoal). For brevity, the ANDs 
are oflen replaced by commas. A Datalogprogram is a set of suoh clauses separated 
in some conventional manner---e.g .. by semicolons (in this book, however. we will not 
use semicolons but instead will simply start each new clause on a new line). No mean­
ing attaches to the order of the clauses within such a program. 

Note that the entire "ded11ctivedutabase" can be regarded as a Datalog program in 
che foregoing sense. For example, we could Lake all of the axioms stated above for 
suppliers-and-partli (the ground axioms, the integrity constraints, and the deductive ax­
ioms). write them all in Dalalog style.. ~eparate lhem by semicolons or by writing them 
on separate lines. and the result would be a Datalog program. As noted earlier, how­
ever, the e.xtensional part of the databa.o;e will typically 11oc be created in such a fashion, 
but rather in some more conventional manner. Thus. the primary function of Datalog is 
to support Ille formulation of deductive axioms specifically. As already pointed our, 
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that function can be r~garded a11 an ex1ension of !he view definition mechanism found 
in conventional relalional DBMSs today. 

Da1alog can also be used as 
1
a query language (again, much like Prolog). For 

example, suppose we have been given the following Datalog definition of GOOD_ 
SUPPLIERS: 

GOOD_SUPl!LlERS ( s, s~. SC J <= s r S, s.n, st. S C ) ANO st > 1 5 

Efere are some typical queries agttinst GOOD _SUPPLfERS. 

1. Find aJJ good suppliers: 
? <= GOOD_!lOP Pf.JER!l t s. s ~. SC ) 

2. Find good suppliers in Paris: 
? <= OOOD_SlJP PLI ERS l s. st, Pans ) 

3 . Is supplier SI a good supplier? 
? <= eoClo_SOPPLrERS ( st, st, sc l 

And so on. In other words, a query in Datalog consists of a speeial rule with ahead of 
"?" and a body consisting of a single term that denotes the query result; the head "?" 
means {by convention) "Display." 

lt should be pointed out that. despite the fact that Datalog does support rec~on, 
!here ace quite a few features of conventional relational languages !bar Daralog in its 
original form does not support- scalar operations ("+", "-". etc.). aggregate operations 
(COUNT, SUM, etc.), sel difference (because clauses cannot be negated), grouping, 
etc. It also does not support attribute Tiaming (the significance of a predicate argument 
depends on its relative positicm). nor does it provide full domain support (i.e .. user­
defined data type support in the sense of Chapter 19). As noted earlier, it also does not 
provide any update operations, nor (as a special case of the laner-) does it support the 
declarative specification of foreign ke~ delete and update rules in the sense Of Chapter 
5 (DELETE CASCADES. etc.). 

Jn order to address some of the foregoing shortcomings, a variety of extensions to 
basic Da1alog have been proposed. Those extensioru; are intended lo provide the fol­
lowing features, among others: 

• Negative premises- for example: 
ss_COWCA1'ED I s.x. sy ) <= s I sx, sxn, sxt. sc l ANO 

S I S}'. syfl, syt, sc I AND 
NOT(sx-s.yl 

• Scalar fimctions (buillin and user-defined)-for example: 
P_WT_Hl_GAAMS ! p, pn, RJ, pg, pc ) = 

P I p, pn. p,l. pw. pc l JIND pg = pw • '2!i4 

In this example we have assumed thal the builLin function"*" (multiplica1ion) can 
be wrinen in conventional infix notatioTI. A more orthodox logic representation of 
the term following the AND would be ''=(pg,•(pw.454))". 

• Aggregate functions and grouping (somewhat along the lines of our rela1ional 
SUMMARIZE operalOr-see Chapter 6). Such opera1ors are necessary in order to 
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address (for example) what is sometimes called the grass requirements problem, 
which is the problem of finding. not only which parts py are componenrs of some 
part px at any level, but also how many py' s (at all levels) it takes ro make a px 
(natutally we are assuminghere that PART_STRUCTURE includes a QTY a~ 
bute). 

• Update operations: One approach to meeting this obvious requirement [C.JO}­
not the oilly one-;is based on the observation that in basic Datalog, any predicate 
in a ruJe head must be nonnegated, and that every tuple generated by the rule can 
be regarded as being "inserted" into the result relation. A p ossible extension would 
thus be to allow negated predicates in a rule head and to treat the negation as re­
questing the deletion (of pertinent tuples). 

• NonHom clauses in the rule pody,---:in other words, allow complete.ly general 
WFFs in the definition of rules. 

A survey of the foregoing ex:tensions, With examples, can be found in the book by 
Gardarinand Valduriez LC.IOI. which also discusses a variety ofDatalog implementa­
tion techniques. 

C.7 Recursive Query Processing 

As indicated in the previous !.-ection, one of the most notable features of deductive 
database systems is their support for recursion (recursive ruJe definitions, and hence 
recursive queries also). As a consequence of this fact, the past few ye.ars have seen a 
great deal of research into techniques for implementing such recursion-indeed. just 
about every database conference since L98.6 or so bas included one or more papers on 
the subject (see the References and Bibliography section at the end of this appendix). 
Since recursive query suppott represents a problem that typically has not existed in 
classical DBMSs. we discuss it briefly in the present section. 

By way of example, we repeat from Section C.6 the recursive aefinition of the 
"part structure" relation (for brevity, however, we .now abbreviate l>ART_STRUC­
TURE to P.S and COMPONENTOF to COMP; we also convert the definition to 
Datalog form). 

CO!>U' ( px, PY ) <= PS ( px, PY l 

COMP ( px. PY ) <= PS l px, pz I AND COMP l pz, PY J 

Here is a typical recursive query against this database("Explode part Pl"): 

? <= COMI? C Pl, PY > 

To return to the definition per se: The second ruJe in that definition-Le., the re­
cur~ive rule- is said to be linearly recursive beCause the predicate in the rule head 
appears just once in the rule body. As a mat!ter of fact, it would be possible to restate the 
definition in such a way that the recursion would not be Linear: 
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COMP ( px. PY I <= PS ( px, PY I 

COl!P ! px, PY <= COMI' ( px:, pz: ) AND COMP ( i:;z, PY l 

Jiowever, there is a general f~ling that linear recursiruuepcesents "the interesting 
case," in the sense that most recurSions that arise in practice are naturally lineru:, and 
furthermore there are known efficient techniques for dealing with the linear case 
[C.16). We therefore restrict our attention to ti near recursion for the remainder of this 
section. • 

Note: For completeness. we should point out that it is necessary to generalize the 
definition of "recursive role'' (and of linear recursion) to deal with more complex cases 
such as the following: 

P ( x, y ) <= Q I x, <: ) AND It ( ~. y l 
Q ( x. y J c:: E' { x. 2 J »ID s ( z, y J 

For brevity, we ignore such refinements here. The interested reader is referred to refer­
ence [C.16) for more details. 

As in classical (nonrecursive) query processing, the overaU problem of implement­
ing a given recursive query can be divided into two subproblems, namely (a) transform­
ing the original query into some equivalent but more efficient form and (b) actually 
executing the result of that ttansformation. The literature contains descriptions of a 
variety of attacks on both of these problems. Reference [C. I 6] provides an excellent 
survey, analysis, and comparison of published techniques as of about 1988. In the pres­
ent section, we briefly discuss some of the simpler techniques. We will illusttate them 
by showing their application to the query "Explode part Pl.'' using the following set of 
sample values for the PS relation (based on Fig. 4.4 from Chapter 4, but ignoring QTY 
_for simplicity): 

PS :2X l2Y 

1n P2 
E'l 123 
P2 123 
.22 P4 
1'3 E'S 
P4 PS 
P5 P6 

Unification and Resolution 

One possible approach, of course. is to use the standard Prolog techniques of unltlca· 
tlon and resolution, as described in Section C.4. In the example, this approach works 
as follows. The first premises are the deductive axioms, which look like this in conjunc­
tive nonnal form: 

l. NOT PS ( px, PY ) OR COMP ( px, PY I 

2. NOT PS I px, pz l OR N01' COMP ( pz, PY ) OR COt~P I px, PY I 

We construct another premi$e from the desired conclusion: 
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3. 1'lOT COMP ( 1'1. py ) OR RESULT ( py ) 

The ground axioms form the remaining premises. Consider, for example, the ground 
axiom 

4. PS ( Pl, P2 ) 

Substituting Pl for px and P2 for py inline 1. we can resolve lines I and 4 to yield 

5. COMP ( Pl. P2 ) 

Jiow substituting P2 for py in lil\e 3 and resolving lines 3 and 5, we obtain 

6. RESULT I 1?2 l 

So P2 is a comeonent of P l. An exactly analogous argument will show that P3 is 
also a companent of Pl. Now, of course, we have the additional axioms 
COMP(PJ.P2) and COMP(PL,P3); we can now apply the foregoing process recur­
sively to determine the complete part explosion. The details are left as an exercise 
for the reader. 

In practice, however, unification and resolution can be quite costly in perfonnance. 
It will thus often be desirable to find some more effieient strategy. The remaining sub­
sections below discuss some possible approaches to this problem. 

Naive Evaluation 

Naive evaluation [C.25] is probably the simplest approach of all. As the name sug­
gests. the algorithm is very simple-minded; it can most easily be explained (for our 
sample query) in teans of the following pseudocode. 

COMP : : PS : 
do until COMP reacl;les a • fixpo,int;• ; 

COMP 1 ~ COMP UfllIQN ( OOM'P ><. I'S ) : 
end : 
DISPLAY : : COMB WHERE PX = 'Bl' ; 

Relations COMP and DTSPLA Y (like relation PS) each have two attributes, PX 
and PY. Loosely speaking, the algorithm works by repeatedly forming an inteanediate 
result consisting of the union of the join of relation PS and the previous intermediate 
result, until that intermediate result reaches a ''fixpofntl'-i.e., until it ceases to grow. 
Note: The expression "COMP • PS" is shorthand for ·~om COMP and PS over 
COMP.PY and PS.PX and project the result over COMP.PX and PS.PY." For brevity, 
we ignore the attribute renaming operations that our dialect of the algebra wouJd re­
quire to make this work (see Chapter 6). 

Let us step through the algorithm with our sample set of data values. After the first 
iteration of the loop. the value of the expression COMP x PS is as shown below on the 
left and the resulting value of COMP is as shown below on the cight (with. tupJes added 
on this iteration flagged with an asterisk): 
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COMP x PS PX PY'. COMP 1'X PY 

Pl Pl Pl P2 

Pl P4 Pl P3 
Pl PS P2 P3 
P2 PS P2 P4 
PJ P6' in PS 
1'4 1'6 P4 PS 

PS P6 
Pl P4 
Pl PS 
P2 PS • 
~ P6 
P4 P6 

After the secoruUteration, they look like this: 

COMP x PS PX PY COMP PX PY 

Pl P3 .Pl P2 
m P4 t>l P3 

Pl PS P2 PJ 
P2 PS P2 P4 
1'3 P!i P3 PS 
P4 p~ 1'4 PS 
1'1 1'6 t'5 P6 
1"2 P6 Pl P4 

Pl l?S 

PZ PS 
E3 Pli 
P4 P6 

Pl 1?6 
P2 P6 

Note carefully that the computation_ of COMP )(PS in this second step repeats the 
entire computation of COMP)( PS from the first step but additionally computes some 
extra tuples (actually just two.extra ruples-(PI ,P6) and (P2,P6)-in the case at band). 
This is one reason why the naive evaluation algorithm is not very intelligent. 

After the third iteration, the value of COMP )( PS (after more repeated computa­
tion) turns out to be the same as on the previous iteration; COMP has thus reached a 
fixpoint, and we exiL from the loop. The final result is then computed as a restriction of 
COMP: 

COMP PX PY 

Pl l'2 
Pl Pl 
Pl P4 
Pl PS 
Pl Pf> 
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Another g]aringlnefficiency is now apparent: The algorithm has effectively com­
puted the explosion for every part-in fact,. it has computed the transitive closure of 
relation PS (see beJow)---'and has rhen thrown everything away again except for the 
tuples actually wanted. fn other words. again, a great deal of unnecessary work has 
been performed. 

A note regarding trarrsitive clbsure: The transitive closure of a binary relation 
R(X. YJ is a superset of R, defined as follows: The tuple (x,y) appears in the transjtive 
cl.osure of R if and only if it appears in R or there exists a sequence of values zl, 
z2 •... vi such that the tuples (x.zl), (~1. c;2), .. . (c;n,y) all appear in R. 

Note in conclusion thar the naive evalliation technictue can be regarded as an appli­
cation of forward chaining: Starting from the extensional database (i.e., the actual data 
values), it am:>lies the premises ofthedefinition (j.e., the rule body) repeatedly until the 
desired.resultis;obtained.Jn fact, the algotithmactualJy computes the minimal model 
for the Daralog program (see Sections C.5 and C.6). 

Seminaive Evaluation 

The first obvieus improvement to the naive evaluation algorithm is to avoid repeating 
the compurations of each step in the next step: uSelllinaive evaluation [C.28]. £n otber 
words, in each step we compute just the new tuples that need to· be appended on this 
particular iteration. Again we e"'plain the idea in terms of the "Explode part Pl " exam­
ple. P seudocode : 

NEW :~ PS : 

COMP : ~NEW ; 
do ~til NEW fs emjlty 

.NEW : = ( l'/EW x 1'5 !ffl'IUS COM!' 1 
COMP : = COMf' UN10N NEW ; 

end , 
DTSPBAY : : COMP WHERE PX = ' Pl ' ; 

Let us again step through the algorithm. On initial entty into the loop, NEW and 
COMP are both identical to PS: 

PX PY COMP .PX P¥ 

Pl P2 Pl P2 
Pl Pl ru Pl 
P:i P3 P2 P3 
B2 Pa P2 P4 
P3 PS P3 PS 
E'4 PS N PS 
I'S 1?6 1'5 E6 

At the end of the first iteration. they look like this: 
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NEW PX PY COMP PX PY 

Pl P4 Pl P2 
-Pl P5 i;>l 113 
E2 PS ' 1'2 P3 
P3 P6 P2 P4 
P4 P6' P3 PS 

Pol PS 
-PS P6 
Pl P4 
Pl PS 
P2 PS 
P3 P6 • 
N P6 

COMP is the same as h was at this srage under naive evaluation, and NEW is just the 
new tuples that were added to COMP on this iteration: note in particular that NEW does 
not include the tuple (Pl J>3) (compare the naive evaluation counterpart). 

At the end of the next iteration we have: 

NEW PJ! !'Y COMP PX PY 

Pl P6 1?1 B2 
Jl2 M Pl P3 

P2 P.l 
l'2 P4 
P3 PS 
B4 PS 
P5 P6 
Pl P4 
1'1 25 
l'2 PS 
P3 P6 
P4 P6 
Pl P6 
P2 P6 

The next iteration makes NEW empty. and so we leave the loop. 

Staitic Filtering 

Static filtering is a refinemen t on the basic idea from classical optimi1.ation theory of 
performing restrictions a.<; early as possible. It can be regarded as an application of 
backward chaining, in that it effectively uses information from the query (the conclu­
sion) to modify the rules (the premises). lt is also referred Lo as reducmg the set of 
relevam facts. in that it (again) uses information from the query to eliminate useless 
tuples in the extensional database right at the ouLSe1. The effect in terms of ourexample 
can be explained in terms of the following pseudocode: 
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NEW :: PS WHERE PX: 'Pl' : 
COMP :: NEW ; 

do unt.11 NEW Ls empty 
NEW : = ( NEW It. PS ) MIJ)IUS COMP 

.COMP : = COMP ONION NEW 
end : 
DISPLAY : = COMP ; 

Once again we step through lhe algorithm. On initial entry into the loop, NEW and 
COMP both look like this: 

NEW PX PY COMP PX PY 

Pl P2 Pl P2 
Pl P3 Pl P3 

At the end of the first iteration, they look like this: 

NEW PX PY COMP Pl! PY 

l'l P4 Pl P.2 
Pl PS Pl P3 

l?l. !?4 • 
Pl PS 

At the end of the nex.t jteration we have: 

COMP PX PY 

E'l P2 
E'l P3 
Pl Pll 
Pi PS 
Pl P6 

The next iteration makes NEW emjlty, and so we leave the loop. 
This concludes our brief introduction to recursive query processing strategies. Of 

course, many other approaches have been proposed in the literature, most of them con­
sidei;ably more sophisticated than the rather simple ones discussed above; however, 
there is insufficient space in a book of this nature to cover all of the background mate­
rial lb.at js needed for a proper understanding of those approaches. See references 
[C.16-C.43] for further discussion. 

C.8 Summary 

This beings us to the end of our shon introduction to che topic of database systems that 
are based on logic. The idea is still comparatively new, but it looks very interesting. 
Several potential advan~ges were identified at various points in the preceding sections. 
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Qne further advantage, not mentioned explicitly in the body of the appendix, is that 
logic could form the basis of a ge~uinely seamless integration between general-purpose 
programming languages and the database. In other words, instead of the "embedded 

\ 
data sublanguage" approach supported by most DBMS products today-an approach 
that is not particularly elegant, to say the least-the system could provitle a single 
logic-based language in which "data is data," regardless of whether it is kept in a shared 
database or Jocal to the application. (Of course, there are a number of obstacles to be 
overcome before such a goal can be achieved, not the least of which is to demonstrate 
to the satisfaction of the IT community at large that logic is suitable as a basis for a 
general-purpose programming language in the first place.) 

Quite apart from the foregoing possibility, it is certain that some applications, at 
least. willneedDatalog-style access-( or similar) to data stored in a shared database. The 
question thus arises: How exactly can such access be provided? There are two broad 
answers to this question, referred to generically as loose coupling and right coupling 
[C.1 ll. 
• The loose coupling approach consists essentially of taking an existing DBMS and 

an existing logic programming language system and providing a call interface be­
tween the two. In such an approach, the user is definitely aware of the fact that 
there are two distinct systems involved-database operations (e.g., SQL state­
menlS) must be executed to retrieve data beforeJogic opei:ations(e.g .• Prolognlles) 
can be applied to that data. This approach thus eertainly does not provide the 
"seamless integration" referred to above. 

• The tight coupling approach, by contrast, involves a proper integration of the 
DBMS and the logic programming system; in other words, the DBMS query lan­
guage includes direct support for the logical inferencing operations (etc.). Thus, the 
user deals with oneJanguage, not two. 

The pros and cons of the two approaches are obvious: Loose coupling is more 
straightforward to implement but is not so attractive from the user's point of view; 
conversely, tight coupling is harder to implement but is more anractive to the user. In 
addition, tight coupling is likely to perfonn bener (the scope for logic query optimiza­
tion is necessarily very limited in a Loose coupling system). For obvious reasons, how­
ever. I.be first commercial products (a few do exist) are based on loose coupling. 

Let us quickly review the major points of the material we have covered. We began 
with a brief tutorial on propositional calculus and predicate calculus, introducing the 
following concepts among others: 

• An ioterpTi!tatioo of a set of WFFs is lhe combination of (a) a universe of dis­
course, (b) a mapping from individual constants appearing in those WFFs to ob­
jects in that universe, and tc) a set of defined meanings for the predicates and func­
tions appearing in those WFFs . 

• A model for a set of WFFs is an interpretation for which aU WPFs in the set eval­
uate to rme. A given set of WFFs can have any number of models (in general). 

• A proof is the process of showing that some given WFF g (the conclusion) is a 
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logical consequence of some given set of WFFsf/,f2, .. . fa (ihe premises). We 
discussed one proof method,JmowAas resolution and uniOcatlon, in sqme detail. 

We then eiramined the proof-theoretic View of databases. ln sue.I) a view, the 
database is regarded as consisting of the com bination of an extensional database and 
an intensiona l database. The eidensional database contains ground axioms, i.e., the 
base data (loosely speaking); !he intensionaJ database eontains integrity constraints and 
deductive axioms,Le., views (again, loosely speaking). The "meaning" of the database 
then consists of the set of theorems that can be deduced from the axioms; executing a 
query ®comes (at least conceptually) a theorem-proving process. A deductive 
DBMS is a DBMS that s upports this proof-lheoretic view. We briefly de~bed 
Datalog, a user language for such a DB MS. 

One immediately obvious distinction between Datalog and traditional relational 
languages is that Datalog,.supports recursive axioms, and hence recursive queries­
though there is no reason why the traditional relational algebra and calculus should not 
be extended ro do likewise.* We discussed s:ome simple techniques for evaluating such 
queries. 

In conclusion: We opened this appendix by mentioning a number oftenns-"logic 
database," "inferential DBMS," "'deductive DBMS," etc., etc.-tbat are often met with 
nowadays in the research literature (and indeed in vendor advertising). Let us therefore 
close it by providing some definitions for those terms. We wam the reader, however. 
that there is not always a consensus on these matters, and different definitions can prob­
ably be found in other publieations. Following are the definitions preferred by thepres­
enr writer. 

• Recursive query processing: This is an easy one. RecuFSive query processing refers 
to the evaluation (and in particular optimization) of queries whose definition js 

intrinsically recursive. See Sectian C.7. 

• Knowledge base: This term is sometimes used to mean what we called the inten­
sional database in Section C.6-ie., Jt consists of the rules (the integrity con­
straintS and deductive axioms), as opposed to the base data, which constitutes the 
exrensional database. B ut then other writers use "knowledge base" to mean the 
combination of both the intensional and extensional databases (see "deductive 
database" below~xcept that, as reference [C.10] puts it, "a knowledge base 
often includes complex objects Las well as) classical relations." (See Pan VI of chis 
book for a discussion of ··complex objects . .,) Then again, the term bas another, 
more specific meaning altogether in natural lan~ge systems. II is probably bes! 
to avoid the term emirely. 

• Knowledge: Another easy one! Knowledge i.s what is in the knowledge 

• Ill lb.ls connccticm It is l.oreresti.ng to observe that IClational DBMSs need to be able to perform rc:eucswe 
proce .. i ng under lhcco\lcd< ru1ywa)', bc!caose the.catalog will contain ccrtam recursively structured mfolllUltn,m 
rc.g.. domain dcfimllons expressed in 1erms or othet domrun definitions. view defimtJons expressed in terms or 
other' icw detimuons. etc.). 
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base ... This definition thus redmies the problem of defining "knowledge" to a 
previously unsolved problem. 

• Knowledge base manageme11( system (KBMS): The software thar manages the 
knowledge base. The term is typically used as a synonym for deductive DBMS. 
q.v. 

• Deductive DBMS: A DBMS that suppons the proof-theoretic view of databases. 
and in panicular is capable of deducing additional information from the exren-

• 
sional database by applying inferentiaJ (i.e., deductive) rules tl'lat are stored in the 
intensional database. A deductive DBMS will almost certainly support recursive 
rules and so perform recursive query processing. 

Iii Deductive database: (D~recated teem.) A database that is managed by a deductive 
DBMS. 

• Expert DBMS: Synonym for deductive DBMS. 

• Expert database: (Deprecated tenn.) A database. that is managed by an expen 
DBMS. 

• lnferential DBMS: Synonym for deductive DBMS. 

• Logic-based system: Sy.non_ymfor deductive DBMS. 

• Logicdatabase: (Deprecate-d term.) Synonym for deductive database. 

• wgit as a data modi!/: A data model consists of objms, i11regtity rules. and oper­
ators. In a deductive DBMS, the objects, integrity rules, and operators are all rep­
resented in the same unifoan way, nameJy as axioms in a legic language such as 
DataJog; indeed, as explained in Section C.6, a database in such a system can be 
regarded, grecisely, as a logic program containing axioms of all three kinds. ln 
such a system, therefore, we might legitimately say that the abstract data model for 
the gyslem is logic itself. 

Exercises 

C.l Ose the ~esolution method LO see whether the following statemenis are walid in the propo­
sitional calculus: 

(a) A = B , C = B, D = ( A OR C ) • D I- 8 

(b) ( A = 1J ) AND ( C = D ) , ( 8 ~ E AND D => F' ) , 
NOT(EANDF),A :=> C I- NOT;\ 

(c) ( A OR B l :=> !!), D :=> NOT ( E OR F 1 , 
NOT ! B AND C AND E ) 1-

NO'l' ( G = NOT ( C Afll) H I ) 

C.2 Convert the followi ng WFFs to clausal form: 

!aJ FORALI. x F'OAALL y Ip I x. } ) ~ EXISTS :! (q x. z I 

(bl EXIS'l'S x I EXISTS y I :P x. } I => FOP.Al.L z (q x. Z I 

(Cl J;;XISTS x I EXJSTS y I R l x. y) => EUS'l'S z (q x. z I 
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CJ The following is 4 fairly standard example of a logic database: 

MAN 
WOMAN 
1'1AN 
MAN 
MAN 

PARENT 
l'AR~T 
PARENT 
PARENT 
PARENT 

Adam ) 
Eve j 
Cain l 
Abel J 
Enoch } 

Adam, Cain 
Adam, Abel 
E;ve, cain } 
Eve, Abel } 
Caln, Enoch ) 

.FATHER x, y ) <= PARENT 
MO'rHER x, y ) = PARENT 

x, y ) AND M.11.N ( x ) 
x, y ) AND WOMAN ( x ) 

SIBLING x, y <= PAR.E:NT ( z, x ) AND PARENT z, y ) 

.BRO'l'HER x, .Y <= SIBLING ( x , y ) AND MAN ( x 

SISTER ( x, y ) <= SIBLING ( x, y ) AND WOMAN ( x 

ANCESTOR ( x, Y ) <= PARENT ( x, y ) 

Appendixes 

ANCESTOR ( x, y J <= PAREN'T' ( x, z ) AND ANCESTOR ( z, ,}( ) 

Use the resolutlon method to answer the followjng queries: 

(a) Who is the motherof Cain? 

(b) Who are Cain's siblings? 

(c) Who are Cain:S brothers? 

(d) Who are Cain~s sisters? 

(e) Who are &och's ance.~tors? 

C.4 Define the tenns interpretation and model. 

C.S Write a set of Daialog axioms for the definitional portion (only) of the suppliers-pans-
projects database. 

C.6 Give Data1og solutions. wl)ere possible, to Exercises 6.1 ~.48. 

C.7 Give Datalog solutions. where possible. to Exercises 16.1-16.16. 

C.8 Complete (to your own satisfaction) the explanation given in Section C.7 of the unification 
and resolution implementation of the "Explode pan P l" query. 

References and Bibliography 

The field of logic-based systems has mushroomed within the Jast few years. Tiie following list 
represents a tiny fraclion of the literaLure currently available_ It is partially arranged into groups, 
as follows. PirsL. references [C.1-C. 9 j are books th~l either <1re devoted to the subject of logic.in 
general (particularly in 'II computing and/or datal)ase c:omext) or are collections of papers on 
logic-based dallJbasc systems specifically. References [C.IO-C.12] are tutorials, .as are the 
books by Ceri e1 al. jC.46] andDas [C.47J. References [C.14). jC.17-C.201, [C.30], and [C.49-
C.50'1 are concerned wU.h the Lmns:iLivc closure operation and iL~ hnplementation. References 
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[C.21-C.24] descrlbe an important recursive query processing technique called "magic sets" 
(and variations thereon). The remaining references are included principally to show just how 
much investigation is going on ill um field; they address a variety of aspects of the subject. and 
are presented for the most part without funher tommeni. 

C. l Robert R. Stoll Se1s, l..iJgic, and AXiomaric Theories. San Francisco, Calif.: W. H. Freeman 
and Company (1961 ). 

A good introduction to logic in general. 

Cl Zohar Manna and Richard Wajdinger. The l..iJgiJ:al Basis/or Computer Programming. Vol­
ume/: Deductive Reasoning (1985); Volume l/: Deductive Techniques 0990). Reading, 
Mass.: Addison-Wesley (1985. L990). 

c.J Peter M. D. Gray. Logic, Algebra and Oat abases. Chiohesrer, Engl and: Ellis.Horwood.Ltd. 
(1984). 

Contains a good gentle imroduction to propositional calculus and predicate calculus 
(among a number of other relevant topics) from a database (l9int of view. 

C.4 Adrian WaJker, Michael McCord, John F. Sowa. and Walter G. Wilson. K11owledge Sys­
tems and Prolog (2nd edition). :Reading, Ma.~s.: Addison-Wesley ( 1990). 
This book is about logic programming in general, not logic-based database systems specif­
ica1Jy, but it contains a great deal that is relevant to the .latter topic. 

C.S Herv~ Gallaire and Jack Minker. /.,()gic and Data Bases. New York. N. Y .: Plenum PuhliSh­
ing Corp. ( 1978). 

One of the first, if not rhe first, colleccions of papers in the field. 

C.6 Larry Kershberg (ed.). Expen Database Sy.~tems lProc. 1st lntemaiional Workshop on &­
pen Database Systems, Kiawah Wand, S.C.}. Menlo Park. Calif.: Benjamin/Cummings 
(1986). 

An excellent and thought-provoking collection of papers. Not all of them are directly re­
lated to l}le main subject of the present appendix. however. ln(leed. the titles of the sections 
betray a certain degree of confusion as to what the subject o.f "eillpert database systems" 
really is! Those titles-are as follows: 

t. Theory of knowledge bases 
2. Logic programming and databases 

3. Expert database system architectures. cools, and techniqul:l> 

4. Reasoninginexpendacabase systems 

5. Intelligent database access and interaction 

Tn addition. there is a keynote paper by John Smith on expen dambase systems, and reports 
from working groups on { 1 J knowledge base managernem systems. (2) logjc programmin& 
and databases. and (3) object-oriented database systems and knowledge systems. As 
Kershberg remarks in his prefilce. the expert database sy~tcm concept "connotes diverse 
definitions and decidedly different architectures:· 

C.7 Jack Minker (ed.). Fim11r/111im1.1 of Ded1u•1fl>e D1.1tab1.1.re.r tmd Logit• Pr/Jgr11mmi11g. San 
Mateo, Calif.: Morgan Kaufmann (1988). 

C.8 John Mylopoulos and Michael L Brodie (ed~.J. Retuiir1gs i11 J\rtiftt'ial lntllllige11ce a11il 
Databases. San Mateo, Calif.: Morgan Kaufmann C 1988). 

C.!> Jeffrey D. Ullman. DutaQase and K11awled1:e-81.1se Sy.11ems (two volumes). Roch ille, 
Md.: Computer Science Press ( 1988, 1989). 

Volume I of this two-volume work includes one (long) cbapler (out of a total of 10 chap-
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ters) that is entirely devoted to the logic- based approach. That chapter (which is the origin 
of Datalog. incidentally) includes a discu.™on of the relationship between logic and rela­
tional aJgebra, and another on relational calculus-botli domain and tuple versions-as a 
special case of the logic approach. Volume II includes five chapters (out of seven) on var­
ious aspects of logic-based systems. 

ClO Georges Gardarin and Patrick Valduriez. Relational Databases and Know(edge Bases. 
Reading, Mass. : Addison-Wesley (1989). 

Contains a chapter on deductive systems that (although tutorial in nature) goes into the 
underlying theory, optimization algorithms, etc., in much more detail than. the present 
appendix does. 

CU Michael Stonebraker. lntroduc:tion to "Integration of Knowledge and DaraManagemenL" 
In M. Stonebraker (ed.): /Uadings in Database Systems. San Mateo. Qillf.: Morgan 
Kaufmann (1988). 

c.12 Herv~ Gallaire, Jack Minker. and Jean-Marie Nicolas. "Logic and Databases: A Deduc­
tive Approach." ACM Comp. Surv. 16, No. 2 (June 1984). 

C.13 Veronica Dahl. "On Datilbase Systems Development through Logic." ACM TODS 7. No. 
I (March 1982). 

A good and clear description of the bas.ic ideas underlyi,ng logic-based d,atabase sys1ems, 
with examples taken from a Proleg-based prototype Implemented by Dahl in 1977. 

C.14 Rakesh Agrawal: "Alpha; An Extension of ReJational Algebra to Express a Oass of Re­
cursive Queries ... IEEE Transactions on Software Engineering I 4, No. 7 (July 1988). 

Proposes a new operator called alpha that supports the formulation of .. a large class of 
recursive queries" (actually a superset of linear recursive queries) while staying within the 
framework of conventional relational algebra (more orless; lhe operator aetuafly produces 
a non INF result, i.e .• a relation one of whose attdbutes is relation-valued. but then places 
bounds on how that result can be used in o(der to avoid having lo define a complete alge­
bra for suoh unnormalized relations). The contention is th.at lhe alpha operator is suffi­
ciently powerful to deal with most practiw problems involving recursion, while at the 
same lime being easier to implement efficiently than any completely general recursion 
mechanism would be; The paper gives several examples of the use of the proposed cper­
ator; in particular. it shows how lhe transitive closllre and ··gross requirements" problems 
~see reference [C.17) and Section C.6 respectiv-ely) can both easily behandled. 

RefetencC'[C. 191 describes some related work on implementation. Reference IC.ISi 
is also relevanL 

C.15 Raymond Reiter. "Towarc;ls a Logical Reconstruction of Relational Database Theory." ln 
On Conc:eptual Modelling: Perspectives from Anificial Tntelligence, Databases, and Pro­
gramming Languages (eds., Michael L. Brodie. John Mylopoulos, and Joachim W. 
Schmidt). New York. N.Y.: Springer-Verlag (t984). 

As mentioned in Section C.2, Reiter·s work was by no means the ftrSt in this area- many 
ri:Searchers had.investigated the relationship between logic and databases before (see. e.g,, 
references [C.5], [C.71 , and [C.13]). However. it seems to have been Reiter's "logical 
rcconstruetlon of relational theory'· that spurred much of the current activity and high 
degree of imeresl in the .field. 

C.16 Fran~ois BanciJhon and Raghu Ramakrishnan. "An Amateur's lntroduction to Recursive 
Query Processing Strategies." Proc. 1986 ACM SJGMOD {ntemational Conferi:nce on 
Management of Data, Washington. D.C. (May 1986). Republished in revised form in M. 
Stonebraker (ed.). Readings in Databast: Sysrems. San Mateo. Calif.: Morgan Kaufmann 
( 1988). Also republished in reference (C.8). 
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An excellent overview. The paper scans by observing that there is both a positivoand a 
negative side to all of Lhe research on the recursive query implementation problem. The 
positive side is that n.umerous techniques have been identified that do et least solve !be 
problem; the negBlive side is thal it is not Bl all clear how to choose the technique that is 
most appropriate in a given sinlation (in_ panicular. most or the techniques are presented 
in lhe literature with little or no discussion of petfoanance chara.cteristies). Then, after a 
section describing the basic ideas of logic databases, the paper gees on to descnl>e a num· 
ber of proposed algorithms-naive evaluation, seminaive evaluation, iterative query/sub­
query, recursive query/subquery, APEX, Prolog. Henschen/Naqvi. Abo-Ullman, Kifer-• Lozinskii, counting, magic sets. and generallzed magic sets. The paper compares these 
different approaches on the basis of application domain (i.e .• the class of problems to 
which the algorithm can be applied), performance, and ease of implementation. The paper 
also includes perfonnance figures (with comparative analysis) from testing the various 
algorithmS on a simple benchmark. 

C.17 Yannis :E. foanniais. "On the Computation of !be Transitive Closure of Relational Opera­
tors." Proc. 12th Torernational Conference on Very Large.Data Bases, Kyoto, .fapan (Au­
gust 1986). 

Transitive closure is an operation of fundamental importance in recursive query process­
ing fC.18]. This paper proposes a new algorithm (based on a ''divide and conquer" ap­
prilach) for implementing that operation. See also references (C.14J, L C.18-C.20], and 
[C.49-C.50]. 

C.18 H. V. Jagadisb. Rakesh Agrawal, and Linda Ness. "A Study of Transitive Closure as a 
Recursion Mechanism." Proc. 1987 ACM SI GM OD Jntemalional Conference on Man­
agement of Data. San Francisco. Calif. (May l 987). 

To quote from the abstract: "(This paper shows) that every linearly recursive query can be 
expressed as a transitive closure possibly preceded and followed by operations already 
available in relational algebra." The suggestion is that providing an efficient implementa­
tion of transitive closure is therefore sufficient as a basis forprov.iding an efficient imple­
mentation of linear recursio11 in:generaJ, and hlmce for making deductive DBMSs efficient 
on a large class of recursive problems. 

C.19 Ralcesh Agrawal and R. Jagadisll. "Direct Algorithms for Computing the Transitive Oo­
sure of Dalllbase 'Relations." l'roc. 13th fntemational Conference on Very Large Data 
Bases. Brighton. England (September 1987). 

Propose.~ a set of transitive closure algorithms that "do not view the problem as one of 
evaluating a recursion, but ratbl!r obtain the closure from first principles" (hence the tenn 
direct). The paper includes a useful summary of earlier work on other direct algorithms. 

C.20 Hongjtm Lu. "New Strategies for Computing the Transitive Closure of a Database Rela­
tion.'' Proc. 13th lntemational conference on Very Large Data Bases, Brighton, England 
(September 1987). 

More algorithms for transitive closure. Like reference (C.19), the paper also includes a 
useful survey of earlier ar~oaches 10 the problem. 

C.21 Fran~ois Bancilhon, Dav J Maier, Yehoshua Sagiv, and Jeffrey D. Ullman, "Magic Sets 
and Other Strange Ways to Implement Logic Programs.'' Proc. 5th ACM SJGMOD­
SIGACTSymposium on Principles of Database Systems (1986). 

The basic idea of "magic sets" is 10 introduce new selS of rules \magic rule.~'") dynami­
cally that are guaranteed to produce the same result as the original query but are more 
efficient. in the sense that they reduce the set of "relevant facts" (see Section C.7). The 
details are a liule complex. and beyond the scope of these notes; the reader is referred 19 
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the paper or to Bancilhon and Ramakrlshnan' s survey [C. 16'] or the books by Ullman 
(C.9( or Gardarin and Villduriez (C.10] for more explanation. We remark; b<iwever, thill 
numerous variations on the b.asic idea have been devised-see, e.g., references [C.22-
C.241 below. 

See also reference ll8.221 in Chapter JS. 

C.22 Catriel Beeri and .Raghu Ramakrishnan. "On the Power of Magic." Proc. 6th ACM 
Sl GMOD-SIGACT Symposium on l'rincrples of Database Systems (1987). 

C.23 Domenico Sacca and Carlo Zaniolo. "Magic CQunting Methods." Proc. 1987 ACM 
SlGMOD lntemalional Conference on Management of Data, San.Francisco, Calif, (May 
1987). 

C.24 Georges Gardarin. ''Magic Functions: A Technique to Optimiz.e Extended Datalog Recur­
sive Programs." Proc. 13th rntemational Conference on Very Large Data Bases, Brighton, 
England (September 1987). 

C.25 A. Aho and T.D. Ullman. "Unive~ality of Data Retrieval Languages." Proc. 6th ACM 
Symposium <>n Principles Gf Programming Languages. San Antonio, Texas (January 
1979). 

Given a .sequence of relations R, j{R), flft.R)), ... (where! is some fixed function), the 
least ftxpoint of tile sequence is defined IQ be-a.reJation.R* derived in accordance with the 
following naive evaluation algorithm (see Section C. 7): 

.q• : -= R i 

qo until R• stops Jjrowing 
R• ; ~ R" UNION f (R') : 

end ; 

This1)3per proposes tile addit,ion of a leastiixpoint operator to the relational algebra. 

c..26 Jeffrey D. Ullman. "Implementation of Logical Query Languages for Databases." ACM 
TODS JO. No. 3 (September 1985). 

Describes an important class of implementation techniques for possibly recursive queries. 
The tel:bniques are defined in. terms of ··eapture rules" on "rule/goal trees," w.bich are 
graph.~ that.represent 11 query strate._gy in te.nns of cla~ and predicates. The paper defiDC!l 
Several such ruJes--one that corresponds to the application of relational algebra operators, 
two more that correspond Ill forward and backward chaining respectively, and a "side­
ways" rule that allows results to be passed from one subgoal to another. Sideways infor­
mation passing lateF became the basis for the so-called magic seJ tecl;miques [C.2L-C.24J. 

C.1.7 Shalom Tsur and Carlo Zaniolo. "LDL: A.Logic-Based Data-Language'." Proc. 12th lnter­
nalional Conference on Very Large Dar,a l3aws. Kyoto, Japan (August 1986). 

L DL includes {I) sets as a primitive data object. (2) negation (based on set difference), (3) 
data: definition operations. and ( 4) update operations (for da~definitions, base relations, 
and derived relations-the lust of these not implemented al the time of publication of the 
paper). II is a pure logic language. (no ()rdering dependencies a:mong statements) and is 
compiled. not interpreted. 

See also the book by Naqvi and Tsur [C.451 on the same subject. 

C.28 Frao~ois Bancilhon.. "Naive Evaluation of Recursively Defined Relations." In M. Brodie 
and J. MylopouJos (eds.)'. 011 Knowledge Base Managemeril SystenM: Integrating 
Databa.w and Al Systenu. New York. N.Y.: Springer-Verlag (1986). 

C.29 Eliezer L Lozinskii. "A Problem-Oriented fnferentlal Database System." ACM TODS J / , 
No. 3 (September 1986). 

The source of the concept of "relevant facrs." The paper describe.~ a prototype system that 
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makes use of the extensional database co curb lhe otherwise very fast expans:ion of the 
search space that infeninlial technique-~ typically give rise lo. 

C.JO AmoaRosenlhal et al.. "Traversal Recursion: A Practical Approach to Supporting Recur­
sive Applications." Proc. 1986 ACM SlGMOD International Conference on Managemem 
of Data, Washlng\on. D.C. (June 1986). 

C.31 Georges Gardarin and Christophe de Maindreville. "Evaluation of Database Recursive 
Logic Programs as Recurrent Function Series." Proc. 1986 ACM SIG MOD International 
Conference on Management of Data. Washington, D.C. (June 1986) . .. 

C.32 Louiqa Raschid and Stanley Y. W. Su. "A Paraltel Processing Strategy for Evaluating 
Recursive Queries." Proc. l2lh International Conference on Very Large Data Bases, 
Kyoto. Japan (August 1986). 

C.33 Nicolas Spyratos. "The Partition Model: A Deductive Database Model." ACM TO.VS 12. 
No. I (March 1987). 

C..34 Jiawei Han and Lawrence J. Henschen. "Handlfng Redundancy i'n the Processing of Re­
cursive Queries." Proc. 1987 ACM Sl OMOD 1.mernational Conference on Management 
of Data, San Francisco. Calif. (May 1987). 

C.35 WeiningZhang andC. T. Yu. "A Net.~saf}' Condition for a Doubly Recursh•e Rule to be 
Equivalent to a Linear RecuraiveRule." Proc.1987 ACM SIGMODJnwnational Confer­
ence on Management ofDaia, San Francisco, Calif. (May 1987). 

C..36 Wolfgang Nejdl "Recursive Strategies for Answering Recursive Queries- The 
RQA/FQI Strategy." Proc. L3tb Jntemational Conference on Very Large Data Bases. 
Brighton, England (September 1987). 

C.37 Kyu-Young Whang and Sbamkant B. Nav.athe. "An Extended Di!ijun<itive Normal 
Form Approach for Optimizing Recursive Logic Queries in Loosely CoupledEnvi­
ronments." Proc. 13th International Conference on Very L8.fge Da1a Bases, Brighton, 
England (September 1987). 

C.38 Jeffrey P. l'faughton. "Compiling Separable Recursions." Proc. 1988 ACM SlGMOD In­
ternational Conference on Management of Data, Chicago; lJl (June 1988). 

C.39 Cheong Youn, UWrc:nce J. Henschen. and Jiawei Han. "Classification of Recursive For­
mulas in Deductive Databases."Proc. 1988 ACM SIGMOD lnternationaJ Conference on 
Management of Data, Chicago, Ill (June 1988). 

C.40 S. Ceri. G. Gottlob. and L. Lavazza. "Translation and Opttmization of Logic Querle~: The 
Algebraic Approach." Proc. 12th lnlemational Conference on Very Large Data Bases, 
Kyoto, Japan (August 1986). 

C.41 S. Geri and L. Tanca. "Oplimiuuion of Systems of Algebraic Equations for Evaluating 
Daialog Queries." Proc. l3tb ln1ernational Co11fe-rence on Very 4rge Data Bases. Brigh-
100. England (September 1987). 

C.42 Allen Van Gelder. "'A Message Pa$sing Framewofk for Logical Query Evaluntion." Proc. 
1986 ACM SIGMOD International Conference on Management ofUata. Washington, 
D.C. (June 1986). 

C.43 Ouri Wt>lfson and Avi Silberschatz. "Distributed ProceSl>ing of Logie Programs." Proc. 
1988 ACM SlG~OU International Conference on Monagcrncnl of Data, Chicago. Ill . 
(June 1988). 

C.44 Jeffrey F. Naughton et al . .. Efficient Evaluation of Right-. Left-, and Multi-Linear Rules:· 
Proc. 1989 ACM Sl GMOD Cnternalional Conference on Management of Data, Ponland, 
Ore. (June 1989). 
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C.45 Sluilni!ll Naqvi and Shalom Tsur. A Logical language for Data and Kni>wledge Bases. 
New York. N. Y.: Computer Science Press ( l989). 

An indepth. book-length presentation of the language LDL rc.:Z7l 
C.46 S. Ceri, G. Go!tlob, andL. Tanca. C:Cgic Programming and Databases. New York. N.Y.: 

Sprin.ger-Verlag (199()). 

C.47 Subrata Kumar Das. Deductil•e Databases and logic Programming. Reading, Mass.: 
Addison-Wesley ( 1992). 

C.48 Michael Kifer and Eliezer Lozinskii. "On Compile-Time Query Optimization in Deduc­
tive Databases by Means of Static Filtering." ACM TODS 15. No. 3(September1990). 

C.49 Rakesb Agrawal, Shaul Dar, and R. V. Jagadisb. "Direct Transitive Closure Algorithms: 
Design and Performance Evaluation." ACM TODS 15, No. 3 (September 1990). 

C.50 H. V. Jagadish. u A Compression Method Lo Materialize Transitive Closure." ACM TODS 
1'5, No. 4 (December 1990). 

Propose5 an indexing technique that allows the transitive closure of a given relation to be 
stored in compressed form, such that testing 10 see whether a given tuj!le appears in the 
closure can be done via a single table lookup followed by an index comparison. 

C.SJ Serge Abjteboul and Stephane Grumbach. "A Rule-Based Language with Functions and 
Sets." ACM TODS 16. No. l (March 1991). 
Describes a language oalJed COL ("complex object language")-an extension of 
Datalog.-that integrates the ideas of deductive andobject-orlenteddatabases. 

Answers to Selected Exercises 

C. I (a) and (b) are valid. (c) is not 

C.2 In the following. a, b, and c are Skolem constants and f is a Skolem 'function with two 
argumeQts. 

Ca) P x , y ~ q x, r < ;;:, y ) ) 

(b) p a, b ~ 9 a, z) 

(c) P a, b ~ q a, c ) 

C.6 In accordam:e with our usual practice, we have numbered the following ~lutions as 
C.6.n. where 6.n is 1he'Tlumber of the original exercise In Chapter 6. 

C.6.J.3 ? C= J j, jn, jc ) 

C.6.14 7 = J j, jn, Ilondon 

C.6.JS RES ( s ) = S'PJ ( S, p, .n ) 
? =RES ( s ) 

C.6.L6 ? = SEJ ( s, p, j, q) AND 300 5 q AND q!> 750 

C.6. 17 ~ES cpl, pc ) ~ P { p, pn, pl, w, pc J 
? -.= RES ( pl , pc l 

C.6.18 RES ( s, p, j ) = S ( s, sn, st:, c ) AND 
P ( p , pn, pl, w, c) AND 
J ( j, jn, c ) 

? ¢:: RES ( s, p, j ) 
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C.6.19-C.6.20 Canno1 be done without nega1ion. 

C.6.21 RES I p ) c:: SPJ ( s. p, j, q ) AND 
S ( s, sn, sc, London I 

? c:: RES(p) I 

C.6.ll RES I p I c:: SPJ I s. p, J, q l AND 
s ( s, sn, SC, London I 
J ( j, jn, London I 

? c:: RES ( Pl • 

AND 

C.6.23 Res ( cl, c2 I c:: SPJ s, p , j, q I AND 
s I s, sn, st. cl l AND 
J ( j, Jn , c2 ) 

? c:: RES ( cl. c2 ) 

C.6.24 RES ( p ) c:: SPJ ( s, p. j, q I AND 
s I s, sn, st, c I AND 
J I j, '"· c 

? c:: R£S ( p l 

C.6.25 Cannot be done wilhou1 negation. 

C.6.26 RES ( pl, p2 l c:: SPJ s, pl, jl, ql I AND 
SPJ ( s, p2, j2, q2 l 

? c:: RES ( pl, p2 I 

C.6.27-C.6.JO Cannoc be done wilhout grouping and aggregate functions . 

C .6.31 RES I jn I c:: J I J, ;n, JC > AND 
SPJ ( Sl. p, J. q I 

? c:: RES ( jn ) 

C .6.32 RES I pl ) c:: p ( p , pn, pl, w, pc I ANO 
SPJ ( Sl, p. j, q ) 

? c:: RES pl ) 

C.6.33 RES I p I c:: p ( p, pn, pl. w, pc l AND 
SPJ ( s. p, ], q ) AND 
J ( j, jn, London I 

? c:: RES I p ' 

C.6.34 RES ( j I c:: SPJ ( s. p, j, q) AND 

SPJ ( Sl, p, j2, q2 l 
? c:: RES ( j ) 

C.6.35 RES ( s l c:: SPJ I s. p. j, q ) ANO 
SPJ ( s2, p, )2. q2 J AND 
SPJ C s2. p2. jJ. q3 ) AND 
p ( p2, pn. Red, .... c I 

? c:: RES ( s ) 

C.6.36 RES I s ) c:: S s, sn, sc, c ) AND 

s Sl, snJ, stJ, cl J AND st~ scl 
? c:: RES ( s I 

C.6.37-C.6.39 Cannol be done wilhou1 grouping and aggregate func1iort\. 

C.6.40-C.6.44 Canr-.01 be done w11hou1 negation 

C.6.45 RES I l c:: s, sn, st, c > 

RES ( c ) c:: P ( p, pn, pl. w, c 

815 
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RES ( c ) = J ( j, jn, c l 
? =lIBS (c) 

c.6.46 RES ( p = SPJ 
s { 

= SPJ 
J ( 

s, J;J, j, .<ii ) AND 
s, sn , s t , London ) 
( s, p, j, q ) AND 
j, j n , Lon&n ) 

RES ( p 

? RES ( p ) 

C.4.47...,C.4.48 Cannot be done without negation. 

Appendixes 

C.7 We show the constraints as conventional implications instead of in the "backward"' 
Datalog style. We have numbered them C. 7 .n, where 16.n is the ntunber of the original 
exercise in Chapter J 6. 

C.7.1 CITY Lon don ) 
CITY Paris ) 
CITY Rome ) 
CITY Atbens ) 
CITY Oslo ) 
CITY Stockho]Jq 
CITY Mad r i d J 
CITY Ams ter dam 

s S", sn,, st, c ~ CITY c 
1' p, pn , pc, p w, c ) ~ CITY c 
J j, j n , c ) ~ CITY c 

C.7.2 p p, pn, Red , p w, pc ) ~ pw < 5 0 

C.7.3 Cannot be done without negation. 

C.7.4 s sJ. , snl , s cl , At h ens :J'iND 
s ( s2, sn2, s t:2, At: hen s ~ s 1 = s2 

C.7.5-C.7.6 Cannot be done without groupil)g and aggn:igatefulictions. 

C.7.7 J j, J'n , c = s ( oS. sn, s t , c ) 

c .1;s J j , . Jn , c ~ SPJ ( s, p , j, lil J AND 
s { s , sn, SI:°, c ) 

C.7.9 p ( pl , jl>n1, pll, pwl, pal ) ~ 

? l p2, 1m2. Red, p w2, pc2 ) 

C.7.10 Cannot be done without grouping and aggregate functions. 

C.7.U Cannot be done without negation. 

C.7.12 P ( pl, prtl, pll, pwl, pcl ) ~ 
P ( p2, ~n2, Red, -ew2, pc2 ) AND pw2 < Sil 

C.7.13 Cannot be done (thiS is a transition constraint). 

C. 7.14-C.7.lS Cannot be done without grouping and aggregate functions. 

C.7.16 Cannot be done (this is n transition constraint). 
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D 

ACID 
ACM 
ADT 

AK 
ANSI 

ANSUSPARC 

BCNF 
BCS 
BLOB 

BNF 
CACM 

CAD/CAM 
CASE 

coo 
CIM 
CK 
CODASYL 

CPU 

cs 
DA 

DB/DC 
DBA 
DBMS 
DBRM 

DBTG 

Abbreviations 
and Acronyms 

• 

atomicity/consistency/isolation/durability 

Association for Computing Machinery 
abstract data type 

alternate key 

American.National Standards Institute 
literally, ANSl7Systems Planning and Requirements Committee; 

used to refer to the three-level database sy.stemarchitecture 
described in Chapter 2 

Boyee/Codd normal form 
British Computer Society 
basic (or binary) large object 

Backus/Naur form or Backus normal form 
Communicatians of the ACM (ACM publication ) 

computer-aided design/computer-aided.manufacturing 
computer-aided software engineering 

class-defining object 
computer-integrated manufacturing 

candidate key 
literally. Conference on D ata Systems Languages; used to refer to 

certain prerelational (network) systems such as IDMS 

central processing unit 
cursor stability (DB2) 

data administrator 

database/data communications 

database administrator 
database management system 
databaserequest module (DB2) 

literally.Data Base Task Group; used interchangeably with 
CODASYL 
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DB2 

DC 
DDB 
DDBMS 
DDL 
DES 

DK/NF 
Dlll 
DML 
DRDA 
DSL 
DUW 
E/R 

EDB 
EKNF 
EMVD 
FD 
FK 
110 
IDB 
IDMS 
IMS 
IND 
INGRES 
INGRES/STA~ 

IRDS 
lS 
ISO 
IT 
lX 

JD 
LAN 
mLS 
MVD 
NF~ 

OID 
00 
OODB 
OOPL 

IBM DATABASE 2 
data communications 
distributed daW>ase: 
distributed DBMS 
data definition language 
Data Encryption Standard 
domain-key normal form 
Data Language/T (IMS) 

data manipulation language 
Distributed RelationalUatabllse Architecture (IBM) 
data sublanguage 
distributed unit of work 
entity/relationship 
extensional database 
elementary key .normal form 
embeddedMVD 
functional dependence 
foreign key 
input/output 
intensional database 
Integrated Database Management System 
Information Management System 
inclusion dependence 
Interactive Graphics and Retrieval System 
distributed version of INGRES 
l.nfocmation Resource Dictionary Systems 
intent shared (lock). also information system$ 
lotematiooal Organization:for Standardization 
information technology 
intent exclusive (lock) 
j oin dependence 
local area network 
multilevel secure 
multivalued dependence 
"NP squared" = non I NF 
object ID 
object-oriented or objecc-orientation 
object-oriented database 
object-oriented programming language 

Appendixes 
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Appendix D Abbreviations and Acronyms 

OSI 
OSQL 

PJ/NF 
PK 
I>RTV 
QBE 

QMF 
QUEL 
It• 
RAID 
RDA 
ROB 
RDBMS 
RID 
RM/T 
RMNL 
RM/V2 

RPC 

RR 
RUW 
RVA 

s 
SAG 

SDD-1 

STGMOD 

SIX 
SPARC 

SQL 
SQL/DS 

SQU92 
TCB 

TCP/IP 
TIO 
TODS 

u 
unk 

UNK 
uow 

Open Systems Interconnection 
ObjectSQL 

projection-joll\nonnal fonn 
primary key 

Peterlee Relational Test Vehicle 
Query-By- Example 

Query ManagementFacility 
Query Language (INGRES) 
"R star" (distributed versiQD of System R) 

redundant array of inexpensive disks 
Remote Data Access 
relational database 

relational DBMS 
(stored) recordID 

relationalmode.l/fasmania 

relationalmodelNersion I 
relational modelN~rsion 2 
remote prQCedure call 

repeatable read (DB2) 
remote unit of we ek 
relation-vaJued attribute 

shared (lock} 
SQL Access Group 
System for Distributed Databases - L 
Special fnterest Group on Management of D ata (ACM special 

.interest group) 
shared intent exclusive (lock) 
see ANSJ/SP ARC 

(originally} Structured Query Language 
SQLJData System 

the current ISO/ ANSI SQL standard 
Trusted Co mputing Base 
Ti:ansmissi on Control ProtocoJ/Intemet Protocol 
(stored) tuple ID 
Transactions on Database Systems (ACM publication) 
update (lock) 
unknown (truth value) 

unknown (null) 
u nit of work 

819 
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VLDB Very Large Data Bases (annual conference) 
VSAM Virtual Storage Access Method (IBM) 
WAL write-ahead log 
WAN wide area network 
WFF well-formed fonnula 
WORM write-once/read-many-times 
WYSIWYG what you see is what you get 
x exclusive (lock) 
X3H2 ANSI database committee 

lNF first normal form 
2NF second normal form 
2PC two-phase commit 
2PL two-phase locking 
2VL two-valued logic 
3GL third generation language 
3VL three-valued logic 
3NF third nonnal fonn 
4GL fourth generation language 
4NF fourth normal fonn 
4VL four-valued logic 
5NF fifth normal fonn (same as PJINF) 
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Abileboul, Serge, 684, 814 
Abrial, Jean Raymond. 366 
abstract data type 

stt data type, domain 
abstract syntax tree 

see query tree 
access methods, 7 l2ff 
access path selection, 507 
ACID properties, 379 
active domain, 102 
Adachi, S .. S3 I 
Adiba. Michel E., 494, 626 
Adleman, L .• 428. 437 
adopting a premise, 781 
11gent. 604 
aggregate function 

relational algebra, 162 
relational calculus, 20 I 
SQL,229 

.. 

Agrawal. Rakesh, 565. 810, 81l.814 
Abo, Alfred v .. 330, 339, 812 
alerter 

SN triggered procedure 
ALL (SQL) 

see duplicates 
all-or-any condition (SQL). 242 
Allen, Frank W .. 366 
ALPHA 

see DSL ALPHA 
ALTER DOMAIN (SQL). 222 
ALTER TABLE (SQL), 89, 224 
alternate key, 115 
Altman, Edward B .. 749 
American National Standard.~ lnStiwte 

see ANSl 
anchor point. 735 
Andersen. Erika. 568 

ANSI.65 
ANSUSPARC, 28. 50 
ANSUSPARC architecture. 28ff 

vs. SQL, 72 
ANS1/X3,50 
ANS1/X3/SPARC Study Group on Data 

Base Management Sy~'lelllS 
see ANSJ/SPARC 

Anton, Jeff, 67 
APPEND (QUEL), 424 
application plan (D'.82), 764, 766 
application preparation (DB2), 764ff 
application programmer, 7 
ARlES,389 
arity 

see degree 
Annstrong, W. W., 275, 281. 282. 339, 340 
Armstrong'i; axioms, 275, 282 
Arya. Manish, 565 
Ashenhurs1, Robert L .. 73 
assertion (SQL) 

see CREA TE ASSERTION 
as.~ignmenr (relational) 

$ee relational assignment 
association (RM{f), 367 
associative emi ty (RMIT) 

see ~ssociation (RM/f) 
associativity, 149 
Astrahan. Morton M •. 255, 256. 749 
Alk.lnson, Malcolm P .. 684, 704 
a1omicity 

relations. 305 
scalar values. 55, 93. 547ff 
i.ransactions.376,379 

uuribute, 79. 87 
relation-valued 56'0ff 

n1tribu1e integrity (metanllc), 130 
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audit lrilil, 422 
authentication 

see password 
authority 

see privilege 
authorization 

see security 
auwmatic navigation 

see navigation 
availability, 598 
AVG 

s&? aggregate function 
axiom (database). 776 

B-tree. 729ff 
backend, 42 
backward chaining. 781 
Badal. B. Z .. 4S1 
Bancilhon, Pran~ois, 704, &JO, 811. 8L2 
Banerjee. J .. 684 
Barnes, G.Micbael, 749 
Bamsley,Mlchael F .. 757 
base relation 

see relation 
base table. 62 
Batory, Don S .. 526, 750 
Bayer, Rudolf. 4.IO. 729, 750 
BCNF. 290. 306, 313 
Beckley, D. A •• 756 
Beech, David. 705 
Beeri, Catriel. 330. 339, 812 
BEGIN DECLARE SECITON (SQL). 246 
BEGIN TRANSACTION, 377 
Bell, David, 623 
Bentley, J. L .. 756 
Bernstein, Philip A .. 3J 5, 386, 41l, 457. 

495.623, 624 
bill or materials. 12, 208. 212 

see also pans explosion, recursive queries 
binacy relation 

see degree 
Bind (DB2), 764. 766 
Bitton, Dina. 528, 529 
Bjork, L. A., 386 
Bjomersredl, Anders, 684 
Blasgen, JVlichaei W., 256, 41 I, 527 
Blaustein, Barbara T., 457 
block 

see p1,1ge 
body (relation), 87 
Bonner. Anthony, 684 
Booch, Grady, 649 

Boral, Haran. 529 
bound variable, 189~ 192 
Boyce, Raymond F., 256 
Boyce/Codd normalfuan 

5eeBCNF 
Breitbart. Yuri, 624 
Brodie, Michael L .. 809 
Brosda. Volken, 340 
brute force 

see join implementation 
bucket, 751 
Buff, H. W .. 4,94 
Buffer Manager (DB2), 766, 767 
13uneman, 0. Peter, 458. 684 

C+.+o.684 
caching, 6.74 
caJcuJus, 778 
candidate key, l l 2ff, 452 

and nulls, L24 
inherita,nee, see inheritance 
SQL, 223 

Index 

Cannan. Stephen, 255 
canonical form, 505 
cardinality, 79, 87 
Carlson, C. Rohen, 340 
Cartesian product, 141, 147 

extended, 147 
Casanova. Marco A., 283. 495 
CASCADE (SQL). 222, 224, 225, 433, 

454 
eASeADES 

see foreign key ruJes 
CASE (SQL), 244 
Casey. R. G .. 283 
CAST CSQL). 244 
catalog. 60. 74, 106 

distributed, 608 
00,681 
SQL, see Information Schema 

Caitell. R. G. G., 649, 674. 684. 705 
Ceri, Stefano, 458, 624, 8 14 
Chamberlin, DonaW D .. 255, 256. 458, 

495,565, 773 
Chang, C. C .. 627 
Chang, C. L., 208 
Chang, ElJis. 684 
Chang, H. K.. 751 
Chang, Philip Yen-Tang, 530 
characteristic (RMff). 367 
characteristic entity (RM/T) 

stt characteristic (RMff) 
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chase. 339 
CHECK option (SQL). 490 
checking lime, 440 
checkpoint. 380 
Chen. Peter Pin-Shan. 348, 351, 355.'362. 

366.367,370 
Cheng. Josephine M .. 535 
Chiang. T. C.. 754 
Chignell, Mark, 650 
Cbristodoulakis. Stavros. 756 
chronological sequence, 723 
ciphenext. 427 
Clarice. Edmund M .• 457 
class 

see object class 
class-defining object. 636 
class hierarchy 

see lype hierarchy 
classification level, 425 
clausal form. 782 
clearance level, 425 
Clea,·eland. J. Craig, 565 
Clemons, Ede K.. 458 
client 

su client/server 
client/server. 42ff. 616ff 

SQL. 618 
CLOSE Clll'SOr (SQL). 250 
closed WFF. 784 
Closed World Assumption 

see CWA 
closure 

attributes, 277 
FDs. 275 

• 

relalional algebra, 54, 14lff. 467. 513 
clustering. 674, 716 

inter-file. 717 
intra-file. 716 

clu.<itering index 
DB2. 763 
Set also index 

Codd. Edgar F, passim 
Codd's reduction algorithm. 197ff 
coercton, 54 S 
collection object. 643 
collision. 735 
colhs1on chain, 735 
combined index 

ue index 
Comer, Doughc.. 750 
commahsi <BNF). 91 
command-drhc:n mterface. 8 

comment CSQLJ. 228 
COMMIT.376 

SQL.384 
commit point. 377 
commutativity. 149. 5 10 
compensating transaction. 387 
compilauoo CDB2), 767 
complex object 

.ruobject 
composire domain 

see domain 
compression. 740 

differential, 742 
fracral, 757 
front. 742 
hierarchic. 743 
rear. 742 

conceptual database design 
see database design 

conceptual DDL. 35 
conceptual record. 34 
conceptual schema. 35 
conceptual view. 34 
conceprual/intemal mapping, 36 
conclusion (proof), 780 
conc11171!11Cy,391If 

distributed. 612 
conditional expression (SQL). 24 1 ff 
configuration. 671 
COnJURCl, 51 1 
conjunctive normal form, Sil. 781 
CONNECT (SQL). 618 
connection trap. 12. 332, 346 
consistency (transacuon). 379 

see t11.vo Inconsistency. integrity 
constraint 

see Integrity constraint 
constructor function. 549 
containment hierarchy. 638 
controlled redundancy 

see redundancy 
convoy, 411 
Coordinator, 383 
Copeland. George. 667 
cost formula. 506 
COUNT 

see aggregate funcuon 
cover (FD\), 2711 

im:ducibh.:. sre 1rreducib11ity 
Cox. Brad J .• 649 

823 

CREATE ASSERTION <SQLJ. 454 
CRBA TE BASE RELATION. 84. 90-91 
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CREATE DOMAIN. 83. 548, 551 
SQL, 22l 

CREA TE INTEGRITY'RULE1 443 
CREATE SECURITY RULE. 4 L9 
CREATE SNAPSHOT, 489 
CRBATE TABLE (SQLl, 65, 223 
CREATE VIEW. 62, 470 

SQL,68,490 
criterion for update acceptability. 97. 168 
Croi>, Richard A., 386 
cs 

see isolation level 
cursor (SQL). 248 
cimor stability 

see isolation level 
CWA, 792 

D$1. 0. J. , 64-9 
Dahl. Veronica, 810 
Daniels. D., 624 
DAPLEX. 706 
Dar. Shaul. 814 
Darwen, Hugh A. C .. 103. l04, l32, 133, 

142. 174. 175. 2-09, 255, 276, 281. 
284.495,565,589 

Das. Subrata Kumar, 814 
data administ:riltor, 13 
data communications. 4L 
data communications manager 

see DC manager 
data compression 

see compression 
data definition language 

seeDDL 
data dictionacy 

see dictionary 
data encryption 

.tee encryption 
Data Encryption Standard 

see DES 
data fragmentalioa 

see fragmentation 
data independence, l6ff 

DB2, 768 
logical, 468 
00,636 
physical, 468 
see also encapsulaLion 

Dam Independent Accessing Model 
see DIAM 

data integral.ion, 6 
data manipullltion language 

seeDML 

data model, l 03, 34.8 
data i;>rotection 

Index 

see coacurrency, integrity. recovery. s~ 
curicy 

data (eplication 
see replloation 

data repository 
see dictionary 

data sharing. 6 
datJi sublanguage 

seeDSL 
Data Sublanguage ALPHA 

see DSL ALPHA 
data type, 543ff 

abstract. 543 
SQL.221 
user-defined. 543 
see also domain 

database. 2. 9ff 
advantages. 13-14. 
DBZ. 762 

database/data communications system 
see DB/DC sys1em 

database adminislratoJ: 
see DBA 

database design, 268ff 
conceptual, 37 
lofilcal, 37 
physical. 37 

database management system 
se~DBMS 

database manager 
see DBMS 

database predicate. 4 50 
daiabase procedure. I 22 

see also stored procedure; triggered pro­
cedure 

database programming languages, 669ff 
Oa1abase Request Module (DB2) 

see DBRM (DB2) 
daialia.se statistics, 5 13 

Oll2, 513- 514 
INGRES.514 

database system. 2, 4ff 
Datalag. 796ff 
Date, C. J., passim 
Davies, C. T .. Jr., 387, 390 
Dayill. Umesllwar" 495 
DB manager 

see DBMS 
DB/DC syStem. 42 
DBA. 14. 37ff 
DBMS, 7, 39.ff 
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DBMS independence. (J05 
DBRM (082). 764. 766 
DB2, 132. 133, 384, 386. 388, 403, 500, 

507' 526. 535, 592, 76lff 
components, 764 

DB2 Distributed Data Facility. 896 
DC manager, 41, 383 
DDBMS.595 
DDL,33 
de Maindreville, Christophe, 813 • 
de Maine. P. A. D .. 753 
DeMorgan's Laws, 778 
deadlock, 398 

global, 613 
DECLARE CURSOR (SQL). 249 
decryption 

see encryption 
deductive axiom, 777, 793, 802 
deductive database. 807 
deductiveDBMS, 793 
DEE 

see TABLE_DEE and TABLE_DUM 
defaull values, 128, 591 

SQL. 221, 223 
deferred checking (SQL). 455 
DEFINE INTEGRITY (QUEL). 459 
DEFINE ~RMIT (QUEL), 424 
degree, 79,87,89 

ElR,353 
degre1;1 of consistency 

see isolation level 
DELETE, 167 

CURRENT (SQL), 250 
embedded (SQL). 248 
SQL,67, 235 

delete rule 
see foreign key rules 

DeJobel, Claude, 283. 340. 344 
DeMichiel, Linda. 565 
Denning, Dorothy E .. 435 
Denning, Peter J .. 435 
dense index 

see index 
dependency 

see FD. lND. JD. MVD 
dependency diagram 

see FD diagram 
dependency preseFYation 

see FD preservation 
dependency theory. 338 
dependent(FD).273 
derived relation 

see relation 

derived rable, 62 
DES, 428. 435 
descriptor. 61 
designation (RM!f), 367 
designative entity (RMfl) 

see designation (RMIT) 
DESTROY BASE RELATION, 91 
DESTROY DOMAIN, 84, 551 
DESTROY SECURITY RULE, 420 
DESTROY SNAPSHOT, 489 
DESTROYVIEW. 471 
detachment 

see query decomposition 
DETECT (OPAL), 663 
determinant (FD). 273 
De Wirt, David J., 528. 529 
D.IAM. 749 
dictionary, 40, 365 

see also catalog 
differe~ce.141, 146 

SQL, see EXCEPT 
differential compression 

see compression 
differential file. 754 
Diffie, W., 428, 436 
digital search tree 

see trie 
digital signature, 430 
dite<!taccess(index). 725 
direct bash 

see hashing 
direct invocation (SQL). 68 
dirty react, 407 
DlSCONNECT (SQL), 618 
discretionary access control, 4 l 7ff 
disjunctive iQforrnacion. 792 
disk directory, 720 
disk manager, 713-714 
disk table of conten1s 

see disk directory 
D1STINCT (SQL), 227 

aggregate functions. 229 
disuibuU!d daUlbase, 48. 593ff 

fundamental principle, 596 
distributed DBMS 

see DDBMS 
Di~tributed fNGRES , 596, 624ff 
distributed processing, 44-45 

825 

Distributed Relational Database Arcbitec· 
1ure 

see DRDA 
distnbuted request (DRDA), 623 
distributed unit of work (DRDA), 623 
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distri butioo independence, 621 
distribllliVity, 778 
divide, 141 , 155 

see see also generalized divide 
DIVIDEBY 

see divide 
DJVIDE8Y PER, 176' 
division/remainder (hash), 733 
DKINK,337 
DML.33 
Dodd, M., 751 
domain, 79, 8Jff. 543ff 

as data type, 85 
composite, 550 
relation-valued. 560ff 
simple, 550 
SQL,220 

domain calculus. I 86, 203ff 
domain check override. 544 
domain variable, 186. 203 
domain-key normal fmm 

see DK/NF 
double index 

see indelt' 
DRDA. 619, 622 
DROP ASSERTION(SQL), 454 
DROP DOMAIN (SQL), 2'22 
DROP TABLE (SQL), 225 
DROP VIEW (SQL). 491 
DSL,33 

loosely coupled, 33 
tightly coupled, 33 

DSLALPRA, 185, 212 
dlliil-mode principle, 244 
DUM 

see T ABLE_DEE and T ABLE_DUM 
dllmp. 382 
dump/restore, 382 

see also unload/reload 
duplicares, 92, I 04 

SQL. 222, 227, 234 
and lhree-valued logic, 575ff 

dllrability (liansaction), 379 
dynamic hashing 

see bashing 
dynamic SQL, 250ff 

E-relalion {RMff), 349 
FJR diagram JO--J l,355ff 
E/R model. 347ff 
EDB. 792 
elementary k~y normal form. 316 

-ems. MBigaret A., 684 
Elmasri. Ramez, 368. 749 
embedded MVD 

seeEMVD 
embedded SQL. 68, '244ff 

and lhree-valued logic. 585 
EMVD,341 
encapsulation, 548, 630. 635. 690 
Encama~ao. J.. 756 
encryptlon.426 

public-key, 428ff 
encryption key. 427 
end user, 8 
entity, 10,349,350,351 

vs. relationship. 12, 69, 363 
entity dassification {RM!f). 367 
entity integril)' (metarole). 124 
entity subtype 

see subtype 
entity SllpCrtype 

see subtype 
entity/telatiqnsflip diagram 

see E/R diagram 
entity/relationship model 

see E/R model 
Epstein, ~obert S .• 536, 624 
eqoijain, 154 
escalation 

see lock escalation 
escrow lacking, 413 
EswarlPl, Kapali P., 412, 458, 459, 527 
Evens, M. W .. 756 
EXCEPT (SQL), 234 
exclusive IQCk 

seeX lock 
EXEC SQL, 245 
EXECUTE (SQL). 251 
existential quantifier 

.reeEXISTS 
EXlSTS.190 

SQL, 232 
lhree-valued logic, 574 

expert database; 807 
expert DBMS, 807 
EXPLAIN (DB2), 770 
explicit dynamic variable, 644 
extend, 160 
cxrendable hashing 

see hashing 
extendable system. 708 
extended Canesian product 

see Cartesian product 

Index 



TERADATA, Ex. 1014, p. 855

Index 

extensional database 
seeEDB 

external DDL. 34 
extemalrecord, 34 
external schema, 34 
external view, 34 
extemal/conceprual mapping, 36 
extemaUextemal mapping. 37 

.. 
Fagin, Jlonald, 283. 284, 327, 328, 329, 

332, 333. 334. 335. 339, 34(),341, 
342, 344. 436, 752 
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s s~ SHAME I STA'l'IJS =y SP Sll p~ O'l'Y 

S1 Smirh 2Q London Sl el 300 
S2 Jones lP PaLJ.S Sl P2 200 
S3 Blake 30 Paris Sl P3 40() 
54 Clar Jc 20 London 51 P4. 200 
55 Ad.ams 30 Athens Sl P5 10() 

Sl P6 100 
52 Pl 300 

p p~ PNAME COLOR WEIGHT CITY 52 p2 400 
Pl Nllt Red 12 Londort S.3 P2 200 

1'2 Boll:: Green 17 Paris S4 P2 200 
54 P4 JOO 
54 11$' 401) 

P3 Screw Blue 17 Rome 
P4 Screw R<?d 14 London 
P5 Cam Blue ll Parl.sc 

P6 Cog Red HJ London 

The suppliers-and-parts database (sample valuiis) 
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-
s s• SNAKE STATUS CITY SPJ SI Pl J I OTY 

Sl smith 20 London St Pl Jl 200 
S2 Jones 10 Paris Sl Pl J' 700 
Sl Blake 30 Paris S2 Pl Jl 400 

S' Clark 20 London S2 Pl J2 200 

SS ~ 30 Athens S2 Pl J3 200 
S2 Pl J4 500 
S2 Pl J5 600 

p Pl PNAME C:OLOR WEIGHT CITY S2 P3 J6 400 

Pl Nut Red 12 London S2 Pl J7 800 

P2 Bolt Green 17 Paris sa PS J2 100 

Pl screw Blue 17 Rome 53 P3 .:u 200 

P4 Screw Red 14 London SJ P4 J2 soo 
PS Cam Blue 12 Paris S4 P6 J3 300 

P6 Cog Red 19 t.ondon S4 P6 J7 300 
SS P2 J2 200 
SS Pl J4 100 

J JI JNAME CITY SS po; JS 500 

Jl Sorter Paris SS PS J7 100 

Jl Display Rome S5 P6 J2 200 

J3 OCR Athena SS Pl J4 100 

J4 Console Athens SS PJ J4 200 

JS RAID London SS P4 J4 800 

J6 EDS Oslo SS PS J4 400 

J7 Tape London SS P6 J4 500 




