HRIRRRRERRENImE

US005664093A
United States Patent [(111 Patent Number: 5,664,093
Barnett et al. 1451 Date of Patent: Sep. 2, 1997
[54] SYSTEM AND METHOD FOR MANAGING 5,428,619 6/1995 Schwartz et al. ...cccvecrerreuncns 371120.1
FAULTS IN A DISTRIBUTED SYSTEM 5448722 9/1995 Lymneetal. ... 395/183.12
5452433 9/1995 Nihart et al. ... veeer 395/500
[75] Inventors: Bruce Gordon Barnett, Troy; John 5,539,877 7/1996 Winokur et al. ...c.ceeeneennes 395/183.02
Joseph Bloomer, Schenectady; Hsuan OTHER PUBLICATIONS
Chang, Clifton Park; Andrew Walter . . .
Crapo. Scotia; Michael James “Management Moving Toward A Unified View”, Distributed
Hartman. Clifton Park; Barbara Jean Networking, 8 pages. . .
i i niversity of Michigan, Future Computing Environment
Vivier, Niskayuna, all of N.Y. University of Michigan. Future C E
Monitoring, Team Final Report, Jul. 28, 1994., 25 pages.
(73] Assignee: General Electric Company, Primary Examiner—Robert W. Beausoliel, Jr.
Schenectady, N.Y. Assistant Examiner—Albert Decady
Attorney, Agent, or Firm—David C. Goldman; Marvin
[21] Appl. No.: 686,443 Snyder
[22] Filed: Jul. 25, 1996 [57] ABSTRACT
Related U.S. Application Data A system and method for managing faults in a distributed
) system. The fault management system includes a configu-
[63] Continuation of Ser. No. 364,567, Dec. 27, 1994, aban- ration manager that maintains configuration information of
doned. components used in the distributed system. A plurality of
[51] It CLS GO6F 11/34 measurement agents obtain performance information from
[52] US.Cl 395/183.07- 395/50 the components in the distributed system. A diagnostic
<3 F'eld fSearch 305/50 .54’183 01 system has a plurality of rules written according to the
58] . Field ol 395 /18302183073 64274 ‘27 4‘3 27‘ 4 5 configuration information stored therein. The diagnostic
o s ’ s b system is coupled to the configuration manager and each of
. the plurality of measurement agents and identifies faults
1561 References Cited occurring in the distributed system and provides solutions
U.S. PATENT DOCUMENTS for correcting the faults The diagnostic system receives the
. configuration information from the configuration manager
g‘igg’gé }%ﬁgg; %‘;‘:EM’S etal s gggﬁ:gg% and the performance information from the plurality of
5:247’664 9/1993 Thoflpsonetal ____________ 3057600 measurement agents and uses the configuration and perfor-
5263,157 11/1993 Janis — 395/600 mmance information with the plurality of rules to identify
5297262 3/1994 CoX etal. wmmrersrsesserserersrns 3951275 faults and provide solutions for the faults.
5,361,347 11/1994 Glider et al. . .. 371129.1
5402431 3/1995 Saadehetal. ..occeeernn. . 364/200 6 Claims, 4 Drawing Sheets
f 12 j 12
HOSTC HOST A HOST B

Configuration
Manager

Application
Process
A

Agent

Process

14

Application
Process
B

Application
Process
C

Application
Process
D

Agent
Process

24

247

Oracle Exhibit 1005, page 1

5,664,093

Sheet 1 of 4

Sep. 2, 1997

U.S. Patent

8l

[Ol

L SIa

03sid

v 18}j0Jju0) Xsig

g ISOH

0 sseoo0ld g ssedoid

JOV4HILNI ¥YHOMLIN

ot
. /
1sIa 0%sia L
V 46[[0A1u0 XsIa
o
V IS0
\ At
v SS900.d —v i
30V 4HILNI YHOMLIN \
€l

L

Oracle Exhibit 1005, page 2

en
=
= .
3 g ‘Ol4
e
(V9]
c4m (8569014 - $56001d ...“......mm.uogn._
- jueby ~ jueby - o Jueby
3
7
r~
=
=al
o
& a o) g v lebeuepy
W $S890.d S$S800.14 $S800.d $S820.d uoneinbiyuo)
\ uopeoddy / | uonedyddy [[Nyt |\ uogeoyddy / | uoneoyddy
» /) \
g LSOH V 1SOH ¥l O 1SOH

— 9¢
~—8¢

U.S. Patent

4

Oracle Exhibit 1005, page 3

U.S. Patent Sep. 2, 1997 Sheet 3 of 4 5,664,093

Service {Method
Connection
Process >
pid Socket
Queue Length
Route
Host o ,
CPU Load l
Swap Rate| Segment
Router Utiﬁzatipn
: Utilization [Bandwidth
Disk Controlier Error Rate Addr eris
O Rate ‘ Error Rate

Network Interface
Address Type |
Disk ‘ l

Protocol Media
Packets sent
Partition Packets Received
Mount Point Error Rate l
Usage
i Ethemnet FDD!_| [[Frame Relay
Directory
ane [1
I TCP ICMP| | UDP
| I "Fie |

Name Loopback T1

FIG. 3

Oracle Exhibit 1005, page 4

U.S. Patent

Problem
Reported
Here

Sep. 2, 1997

Sheet 4 of 4

Proce’ss/A

Disk
Controller
1

FIG. 4

5,664,093

Problem
Caused
Here

Process B

Disk
Controller

1 Resource

Limitation
Here

Oracle Exhibit 1005, page 5

5,664,093

1

SYSTEM AND METHOD FOR MANAGING
FAULTS IN A DISTRIBUTED SYSTEM

This application is a Continuation of application Ser. No.
08/364.567 filed Dec. 27, 1994, now abandoned.

BACKGROUND OF THE INVENTION

The present invention relates generally to system
management, and more particularly to a system for manag-
ing faults in a distributed system.

A distributed system is difficult to manage due to com-
plicated and dynamic component interdependencies. Man-
agers are used in a distributed system and are responsible for
obtaining information about the activities and current state
of components within the system, making decisions accord-
ing to an overall management policy, and performing control
actions to change the behavior of the components.
Generally, managers perform five functions within a distrib-
uted system, namely configuration, performance,
accounting, security, and fault management.

None of these five functions are particularly suitable for
diagnosing faults occurring in complex distributed systems.
Diagnosing fauits using manual management is time con-
suming and requires intimate knowledge of the distributed
system. In other management techniques such as SNMP, the
diagnosis of faults is difficult to obtain because relationships
between components within the distributed system are not
easily ascertained. Since relationships are hard to ascertain,
it is difficult to determine causes and effects, and thus
diagnose faults. Other approaches that have been used to
diagnose faults are with conventional expert systems.
However, conventional expert systems are too fragile since
their rules are inapplicable for changes occurring in the
configuration of the distributed system. In addition, the
conventional expert system is too general to enable autono-
mous control. For example, when an expert system attempts
to analyze a distributed application, the expert system is
aggravated because the distributed system is dynamic. Every
time a process starts up, it has a unique identification number
that changes with each execution. Therefore, the rules in the
expert system will no longer apply. Also, it is difficult to
isolate faults in a distributed environment because a resource
limitation on one system may cause a performance degra-
dation in another system, which is not apparent uniess one
is very familiar with the architecture of the distributed
application and how the components work together.

SUMMARY OF THE INVENTION

Therefore, it is a primary objective of the present inven-
tion to provide a management system that understands
abstract relationships between components (i.e., processes,
hosts, controllers, disks, connections) and has rules that are
written according to the abstract relationships.

A second object of the present invention is to provide a
management system that uses an diagnostic system that
understands the meta-model and model of the distributed
system and has rules based on the meta-model relationship.

Thus. in accordance with the present invention, there is
provided a fault management system for use in a distributed
system. The fault management system comprises a configu-
ration manager that maintains configuration information of
components used in the distributed system. A plurality of
measurement agents obtain performance information from
the components in the distributed system. A diagnostic
system has a plurality of rules written according to the
configuration information stored therein. The diagnostic

10

20

25

45

55

2

system is coupled to the configuration manager and each of
the plurality of measurement agents and identifies faults
occurring in the distributed system and provides solutions
for correcting the faults. The diagnostic system receives the
configuration information from the configuration manager
and the performance information from the plurality of
measurement agents and uses the configuration and perfor-
mance information with the plurality of rules to identify
faults and provide solutions for the faults.

‘While the present invention will hereinafter be described
in connection with a preferred embodiment and a system and
method of use, it will be understood that it is not intended
to limit the invention to this embodiment. Instead. it is
intended to cover all alternatives, modifications and equiva-
lents as may be included within the spirit and scope of the
present invention as defined by the appended claims.

BRIEF DESCRIPTION OF THE DRAWING

FIG. 1 is a schematic of a conventional distributed sys-
tem;

FIG. 2 schematic of the fault management system used in
the present invention;

FIG. 3 is an example of object model used by the fault
management system; and

FIG. 4 is an object diagram of the distributed system
shown in FIG. 2.

DETAILED DESCRIPTION OF THE PRESENT
INVENTION

FIG. 1 is a schematic of a distributed system 10. The
distributed system includes a plurality of host computers 12.
In FIG. 1, there are shown two host computers A and B, but
there may be more host computers. These computers are
preferably workstations or personal computers connected
together by a network 11 and a network interface 13. Each
of the host computers, A and B, each run several application
processes 14. In particular, host computer A runs process A
and host computer B runs processes B and C. In this
example, process A uses the services of process B on host
computer B. In addition, each host computer includes a disk
controller 16 and two disks (i.e., 0 and 1) 18. If process A on
host A is reporting a performance problem, it is very hard for
a conventional management system to isolate the cause of
the fault and provide a solution. For example, if the problem
occurring at process A is being caused by a problem at host
C, then it will be very difficult for the management system
to identify the fault because there is no apparent relationship
between processes A and C.

The present invention has recognized the problems asso-
ciated with the distributed system and has overcome these
problems with a fault management system which is shaded
in the schematic of FIG. 2. The fault diagnosis system
includes a configuration manager 22 that maintains configu-
ration information of components in hosts A and B. Host
computers A and B each run several application processes A
and B and C and D, respectively. A plurality of measurement
agents 24 obtain performance information from the compo-
nents and the processes in the hosts A and B. A diagnostic
system 26 having a plurality of rules written according to the
configuration information is coupled to the configuration
manager and each of the plurality of measurement agents
through lines 28 and 30, respectively. The diagnostic system
receives the configuration information from the configura-
tion manager and the performance information from the
plurality of measurement agents and uses the configuration

Oracle Exhibit 1005, page 6

5,664,093

3

and performance information with the plurality of rules to
identify faults and provide solutions for any faults. There are
several mechanisms which permit the diagnostic system to
ask the configuration manager and the measurement agents
for information. For example, there may be a coordinator
which the diagnostic system uses to communicate with the
configuration manager and the agents. The agents may in
turn talk to other agents if they need to abstract and
encapsulate information to the diagnostic system.

The configuration manager 22 contains configuration
information which specifies the model of the distributed
application. In particular, the configuration information
specifies what classes of components are required, the
instances needed, the interconnection or binding of inter-
faces and the allocation of software to hardware. An
example of an object model illustrating configuration infor-
mation that could be stored within the configuration man-
ager is shown FIG. 3. The object model was created by using

OMTool™, a graphical tool sold by Martin Marietta, but can

be generated by any graphical software that is capable of
producing object-oriented diagrams such as Paradigm
Plus™ and Software-Through-Picture’s IDE™. The baste
object-oriented diagram element is an object class, which
provides a description of a set of objects having a common
structure and behavior. In FIG. 3, the object class is drawn
as a box with two sections. The top section contains the
name of the object class. The bottom section contains a list
of attributes which are data values for the object class. In
FIG. 3, some of the object classes are process, host, disk,
network interface, media, segment. The object classes are
related in many different forms by relationships which are
portrayed in the object diagram with lines between the
object boxes. Symbols at one or both extremities of a
relationship line reflect how many objects of one object class
are associated with each object of another class. A line
ending with a solid circle means many (i.e. zero or more); a
line ending without a symbol means exactly one; and a line
ending in a circle means zero or one. There are four types of
relationships, generalization, aggregation, association, and
qualified association. Generalization segregates an object
class into subclasses and is designated by using a triangle
symbol. An aggregation is an assembly-component or a part
of relationship and is designated by a diamond symbol. An
association is a relationship of two or more independent
objects and is designated by a line. A qualified association
uses a qualifier as an attribute and is represented by a box.

In the object meta model of FIG. 3, each of the processes
within the distributed system may connect to zero or more
other processes. Also, each process uses one host, which
may have one or more disk controllers or network interfaces.
The disk controllers may have one or more disks, which may
have one or more partitions, which may have one or more
directories, which may have one or more files. The network
interface has one or more protocols which have subclasses
of TCP, ICMP, and UDP, which are standard protocols. Also,
the network interface has one media which could be chosen
from the subclasses of Ethernet, Loopback, FDDI, T1, and
Frame Relay. The media has exactly one segment which has
one or more routers and exactly one route, which has one
connection.

The diagnostic system 26 has the capability to understand
how components in object diagrams are related, but does not
know the individual instances or meta model of a particular
distributed system. For example, the diagnostic system
knows that the hosts have disk controllers and disk control-
lers have disks attached to them, processes require machines
to run on, and that some programs require other programs to

20

25

35

40

4

be running. This information on the meta-model can either
be stored in a rule base or learned by using a meta meta
model to query the configuration manager 22. Since the
diagnostic system knows what objects in the distributed
system are related, it can query the configuration manager so
that the meta model can be constructed dynamically. The
querying operation is performed by an inference engine 32.
The diagnostic system also includes a rule base 34 compris-
ing a plurality of rules for the various objects within the
distributed application. By using the abstract relationships
learned from the configuration manager and the rules from
the rule base, the diagnostic system is able to monitor
performance and diagnose several types of failures that are
reported from any of the plurality of measurement agents.
For example, if a service cannot be performed, then the
diagnostic system will find any malfunctioning component.
If a service has poor performance, then the rules will explain
how the various components affect the overall performance.
By examining the individual components, the diagnostic
system will use its rules to suggest improvements that will
increase performance. The solutions may include system
parameter tuning, application modifications, configuration
changes, load balancing, and suggestions of possible hard-
ware upgrades if needed.

As with the meta model, the diagnostic system 26 does
not have information about the static or dynamic model, but
can obtain all of the information from the configuration
manager 22 and the measurement agents 24. The static
model includes the different hardware components that are
important to the diagnostic system. The static model also
specifies the relationships between applications such as a
program (i.e., Client A) that requires another program (i.e.,
Server B). These relationships remain the same for a set of
specific applications. A different set of applications would
have a different static model. On the other hand, the dynamic
model understands the relationship between the static model
and the dynamic nature of applications running on a com-
puter. For example, every time an application runs on a
computer, it has different characteristics (i.e., process ID and
machine ID). The configuration manager understands how
the static and dynamic models are related. For example, the
configuration manager will know that the program Client A
is running on a machine B with process ID#314. It will also
know that program Server B is running on a machine C with
process ID#2310. Information on the static and dynamic
model can either be stored in a yule base or learned by
querying the configuration manager. Therefore, the fault
management system can be used to diagnose faults that
occur on either the hardware or applications.

In addition to obtaining information regarding abstract
relationships, the diagnostic system can query the measure-
ment agents 24 about individual objects. The agents use data
encapsulation to provide information related to any objects
that the diagnostic system is interested in. More specifically,
information that is actually derived from several other
sources may be combined and presented to the fault diag-
nosis system as belonging to an object that the diagnostic
system is interested in. By using abstractions and
encapsulation, it is possible for several different implemen-
tations to obtain the same information. This also allows
redundant methods so that the information can be retrieved
by more than one mechanism, which can be useful when
diagnosing a malfunctioning system. Upon receiving status
information from the measurement agents, the diagnostic
system then can query the configuration manager about any
component and its relationship with other components. In
turn, the configuration manager will specify one or more

Oracle Exhibit 1005, page 7

5,664,093

5

related components in response to the query. The diagnostic
system then can apply rules from its rule base and derive a
proper control action to be taken. One rule, for example,
might state that if the error rate of a network interface is
greater than 0.025%, then there is a hardware problem
associated with a network interface, or that the network may
be undergoing changes (i.e., cables being plugged and
unplugged).

The above procedure enables the diagnostic system to
determine causes and effects of a particular fauit by elimi-
nating other possible causes that are not applicable. Also,
this procedure can detect objects that may be a possible
cause for a fault, even if the object was not detected. In
addition, this procedure can be used in a “what-if” scenario
to diagnose faults. In particular, if an object fails, the
diagnostic system can determine what will break. Also, the
diagnostic system could be used to determine what fault will
cause a particular object to break. Another feature of the
present invention is that a probability analysis can be used
to determine a likely cause of a fault. By using a probability
analysis. the time necessary to diagnose a problem will be
reduced as will the number of measurements taken by the
agents.

The fault management system works as following for a
fault being reported from a particular application. Initially,
the fault is reported through the configuration manager 22 or
from a measurement agent 24. The components that may be
faulty are treated as objects. The diagnostic system 26 then
asks the configuration manager what classes of objects
depend from the application (i.e., process “X” connects to
process “Y”). Using its abstract model, the configuration
manager then reports that the application has certain pro-
cesses associated with it and that the processes may have a
certain type of connection. In addition, the configuration
manager finds any other applications or services being used.
The diagnostic system then asks for the explicit relationships
about the given fault. More specifically, the diagnostic
system queries about what process does this particular
application use; does it have any connections; which other
applications are there; and does it have to be functioning.
The configuration manager then returns the individual
objects that exist, if any. Also, the configuration manager
may state that it does not know how to obtain the desired
information. The fact that there is a relationship, but the
configuration manager does not know how to get this
relationship, is itself useful information to the diagnostic
system. Once a list of objects that are associated with the
fault are received, the diagnostic system can now query the
measurement agents 24 about the status of each instance of
an object. In addition, the diagnostic system can ask about
other objects that are required by the list of objects require.
This allows the diagnostic system to learn the relationships
between all components necessary for a functional system,
as well as the status of each component. Using the rules in
the rule base, the diagnostic system can identify perfor-
mance problems and provide solutions for overcoming faults
and sluggish performance of an application. The diagnostic
system enables faults to be determined reactively (i.e., after
a failure has occurred) or proactively (i.e., determine prob-
lems before they occur).

An example of the fault management system is illustrated
in FIG. 4, which shows an object diagram of the distributed
system in FIG. 2. This object diagram is simplified to
illustrate one problem that may occur and be solved by the
present invention. It does not show other objects such as
petwork interfaces, partitions. segments, media, etc. that
may cause faults. In this object model, process A is being run

25

30

35

40

45

50

65

6

on host A, which has a disk controller with two disks.
Processes B and C are being run on host B which also has
a disk controller with two disks. Also, process A is using the
services of process B on host B. In this example, a problem
is being reported at process A, but the problem is being
caused by process C on host B. There is no apparent
relationship between processes A and C.

In order to isolate the problem, the diagnostic system 26
queries the configuration manager 22 to learn the relation-
ship of the distributed system. Once the relationship is
known, it is possible to find out if process C is affecting the
performance of process A. Since the diagnostic system will
first learn of the problems of process A from a failure report,
it can investigate the resources on Host A. The diagnostic
system will learn that there is nothing out of limits on this
machine. Thus, the diagnostic system will conclude that an
external process is causing the performance problem. By
learning of the relationship between process A and B, the
diagnostic system can investigate Host B. In particular, it
might then learn that disk 1 on host B is over-utilized, and
that process B uses that disk. Then the diagnostic system can
ask the configuration manager what other processes are
using disk 1. It can then learn that process C also uses the
same disk as process B, and therefore the resource conflict
of process B and C are causing a performance degradation
on Process A. In addition, the diagnostic system can elimi-
nate faults related to non-essential resources. For instance,
disk 0 might also be over-utilized, but this is not important
unless the diagnostic system was trying to find an alternate
disk for process C for purpose of load balancing.

Since the model of the distributed system is maintained by
the configuration manager, and because the rules in the
diagnostic system apply to classes of components, it is
possible to introduce new component types, which require
new models and meta-models. This includes new computer
architectures (e.g. multiprocessor systems) as well as new
software architectures. Applications may contain services,
functions, and perform actions. These functions or actions
may depend on other functions or actions. If the actions
correspond to individual steps required in building a system,
then the diagnostic system can report why a step cannot be
performed, or why the performance may be unsatisfactory.
In this manner, rules can be developed that can solve
problems relating to workfiow, etc.

Since the rules apply to generic classes of objects, the
fault management system can analyze the performance of
any system that has the same abstract model or classes. A
model can be constructed that describes a generic computer
system. Rules can be constructed that analyze the perfor-
mance of a generic computer system. The configuration of
any computer can be learned because the information is
known to the computer. Therefore, this fault management
system can be used to analyze the performance of any
computer system, and make recommendations on ways to
improve the performance of the system, without requiring
any modifications of the rules.

It is therefore apparent that there has been provided in
accordance with the present invention, a system and method
for managing fauits in a distributed system that fully satisfy
the aims, advantages and objectives hereinbefore set forth.
The invention has been described with reference to several
embodiments; however, it will be appreciated that variations
and modifications can be effected by, a person of ordinary
skill in the art without departing from the scope of the
invention.

For example, the fault and performance analysis can be
customized to particular applications and provide precise

Oracle Exhibit 1005, page 8

5,664,093

7

isolation of the faulty component by adding additional
relationships in the abstract, or meta-model, and by adding
additional rules related to these new classes of components.
Therefore, this invention can identify performance problems
to a coarse level with little effort, and to a fine level with
additional customization.

In addition, the fault and performance analysis of the
present invention can be used for any system composed of
hardware and software components, and even abstract com-
ponents like actions, tasks, and deliverables. It can be
integrated into network management applications and
capacity planning tools. It can do load balancing and pre-
dictive fault analysis. In general it can be applied to any
distributed application on a computer network that needs to
react to changes in a dynamic or static environment.

The fault management system can also determine what
higher level components will be affected by out-of-
specification system components. In particular, if a particu-
lar disk must be replaced, then the fault management system
will determine what applications will be affected. If a system
has high performance disks and low performance disks, then
the fault management system will determine what is the
optimum configuration. Also, the fault management system
can determine whether the network needs to be reconfigured
and if so, how. This information can be used to make time
critical decisions and intelligent guesses. Each component
may have a value that indicates the probability of failure.
Even if the diagnostic system cannot find out precisely
which component is being used, as long as it knows the
component reporting the problem requires another
component, and other component used are working properly,
it can estimate the probability that any particular component
can cause the problem. Also, if the system knows that a
component is used during action A, but not during action B,
then if action B fails, that component is not the cause of the
problem.

‘We claim:

1. A fault management system for use in a distributed
system, comprising: :

a configuration manager maintaining configuration infor-
mation of components used in the distributed system,
the configuration information comprising an object-
oriented model describing relationships between the
components, wherein the object-oriented model main-
tains a list of the components as objects and an under-
standing of how the objects are related;

a plurality of measurement agents obtaining performance
information from the components in the distributed
system; and a diagnostic system coupled to the con-
figuration manager and each of the plurality of mea-
surement agents for identifying faults occurring in the
distributed system and providing solutions for correct-
ing the faults, the diagnostic system comprising a
knowledge base having a plurality of rules for the
components and an inference engine for applying the
tules to the performance information, the diagnostic
system receiving the configuration information from

15

35

45

50

55

8

the configuration manager and the performance infor-
mation from the plurality of measurement agents and
using the configuration and performance information to
identify faults and provide solutions for the fauits, the
diagnostic system identifying faults by querying the
configuration manager for the object-oriented model of
the components and using the model along with the
plurality of rules in the knowledge base to identify the
causes responsible for the fault and to provide a solu-
tions for correcting the faults, the diagnostic system
initiating the identification of faults at any location in
the object-oriented model.

2. The fault management system according to claim 1,
wherein, the object-oriented model comprises a static model
and a dynamic model.

3. The fault management system according to claim 1,
wherein the components comprise hardware components,
software components, actions, tasks, and operation results.

4. Amethod for managing faults occurring in a distributed
system with a fault mapagement system comprising a con-
figuration manager maintaining configuration information of
components used in the distributed system, a plurality of
measurement agents obtaining performance information
from the components in the distributed system, and an
diagnostic system coupled to the configuration manager and
each of the plurality of measurement agents for identifying
faults occurring in the distributed system and providing
solutions for correcting the faults, the method comprising
the steps of:

developing an object-oriented model describing relation-
ships between the components, wherein the object-
oriented model includes a list of the components as
objects and an understanding of how the objects are
related;

identifying the component where a fault is being reported;

querying the configuration manager to obtain the object-

oriented model describing the relationship of the
reported faulty component with other components in
the distributed system;

determining from the object-oriented model which com-

ponents may be responsible for the reported fault, the
determination of faults being initiated at any location in
the object-oriented model;

examining the components and applying rules within the

diagnostic system to the relationship described in the
object-oriented model to identify causes responsible for
the fault; and

providing solutions for correcting the fauits.

5. The method according to claim 4, wherein, the object-
oriented model comprises a static model and a dynamic
model.

6. The method according to claim 4, wherein the compo-
nents comprise hardware components, software
components, actions, tasks, and operation results.

L T T

Oracle Exhibit 1005, page 9

