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DECLARATION OF PROFESSOR TODD C. MOWRY, PH.D. 

 

I, Prof. Todd C. Mowry, Ph.D., declare as follows: 

 

 

I. Background and Qualifications 

 

(1) My name is Todd Mowry.  I am a Professor at Carnegie Mellon 

University in the Computer Science Department.  I have studied and practiced in 
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the field of computer science for almost 20 years, and have been a professor of 

computer science since 1993. 

(2) I received my Doctor of Philosophy (Ph.D.) degree in the field of 

Electrical Engineering from Stanford University in 1994.  I received my Masters of 

Science (M.S.) degree in Electrical Engineering from Stanford University and my 

Bachelor of Science (B.S.) degree in Electrical Engineering from the University of 

Virginia. 

(3) Upon receiving my Ph.D. degree, I joined the faculty of the University 

of Toronto in the Department of Electrical and Computer Engineering and the 

Department of Computer Science as an Assistant Professor.  I relocated and was 

promoted to the rank of Associate Professor (initially without tenure) at Carnegie 

Mellon University in 1997, was promoted to tenured Associate Professor in 2002,  

and I was promoted to the rank of full Professor in 2008.  I was the Associate 

Department Head for Faculty of the Computer Science Department from 2009-

2010. 

(4) Since becoming a faculty member in 1993, I supervised the research 

of 11 Ph.D. dissertations in the field of computer science, and along with my 

graduate students, published over 60 technical publications in scientific journals or 

conferences in the field of computer science and 20 technical reports published at 
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Carnegie Mellon University and the University of Toronto.  In addition to Ph.D. 

dissertations, I have also supervised several graduate student‟s Master‟s theses.   

(5) As part of my research, I focus on monitoring computer systems as 

they run to diagnose bugs and other functionality problems.  In fact, I have 

published a number of papers on this topic. 

(6) I am a member of several professional organizations including the 

Institute of Electrical and Electronics Engineers (IEEE) and the Association of 

Computing Machinery (ACM).  I am an Associate Editor of ACM Transactions on 

Computer Systems (TOCS).  I received a Sloan Research Fellowship and the TR35 

Award from MIT's Technology Review. 

(7) I have served as a consultant for Intel Corporation, Silicon Graphics, 

Inc., SandCraft, Inc., and IBM. 

(8) A copy of my latest curriculum vitae, which describes in further detail 

my qualifications, responsibilities, employment history, honors, awards, 

professional associations, distinguished lectures, and publications is attached to 

this declaration as Appendix A-1. 

(9) I have reviewed U.S. Patent No. 5,944,839 (“the „839 patent,” Ex. 

1001) to Henri J. Isenberg.  I have also reviewed the publications cited in the 

footnotes of this declaration and referenced in the inter partes review petition 

submitted herewith. 
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II. The Person of Ordinary Skill in the Relevant Field in the Relevant 

Timeframe 

 

(10) I have been informed that “a person of ordinary skill in the relevant 

field” is a hypothetical person to whom an expert in the relevant field could assign 

a routine task with reasonable confidence that the task would be successfully 

carried out.  I have been informed that the level of skill in the art is evidenced by 

prior art references.  The prior art discussed herein demonstrates that a person of 

ordinary skill in the art, at the time the „839 patent was filed, was aware of several 

different computer maintenance tools that used a set of sensors in combination 

with a case base type knowledge database to diagnose and solve computer 

problems. 

(11) Based on my experience, I have an understanding of the capabilities 

of a person of ordinary skill in the relevant field.  I have supervised and directed 

many such persons over the course of my career. 

 

III. State of the Art as of 1997 

 

(12) Case-based reasoning (CBR) is an AI problem-solving technique that 

originated with Roger Schank and his Ph.D. students in the mid-1980s at Yale 

University.  According to Schank, “A case-based reasoner solves new problems by 
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adapting solutions that were used to solve old problems.”
1
  The key word in this 

quote is “adapting.”  In contrast with rule-based reasoning, which performs a 

scripted action for a rule whenever the specific conditional test for that rule is 

satisfied, the motivation behind case-based reasoning is to take a more flexible and 

adaptive approach to problem-solving that draws upon analogies to earlier 

solutions of related (but somewhat different) problems.  The proponents of case-

based reasoning argue that drawing upon analogies to solve problems corresponds 

well to how humans solve problems, i.e., by recalling situations that remind them 

of their current problem, and by attempting to adapt the previous solution to the 

current circumstances. 

(13) Rather than storing a set of “rules,” a case-based reasoning system 

stores a set of “cases” to capture its previous experiences.  Cases are descriptions 

of diagnostic situations that typically include a set of symptoms, a description of 

the failure and its cause, and also a repair strategy for fixing the problem. 

(14) In addition to the use of analogies, another key feature of case-based 

reasoning is that it adapts its set of cases over time based upon the success or 

failure of its attempts to solve problems.  For example, if an existing case can be 

successfully adapted to solve a new problem, the description of that case may be 

                                                      
1 Riesbeck, C. K., et al. Inside Case-Based Reasoning. Hillsdale, NJ: L. Erlbaum Assoc. Inc., 

1989.  
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further generalized.  In contrast, if adapting existing cases fails to solve the 

problem, then further specialization may be required, including possibly creating a 

new case.  This learning process where the set of cases are adapted over time is 

fundamental to case-based reasoning. 

(15) By 1997, case-based reasoning had become a mature research area 

that was being actively explored by dozens of research groups around the world.  

In fact, there was so much published work on CBR by the early 1990‟s that 

multiple survey articles were published on this topic: Kolodner
2
 and Aamodt.

3
  The 

latter of these two articles cites 75 papers on CBR.  The Aamodt survey paper also 

describes “The CBR Cycle” in Section 3.3 and Figure 1, which is the basic 

structure of nearly all CBR systems, and which has been cited numerous times. 

                                                      
2
 Kolodner, J. L. “An introduction to case-based reasoning.” Artificial Intelligence Review, 

6(1):3–34, March 1992. 
3
 Aamodt, A., et al. “Case-based reasoning: Foundational issues, methodological variations, and 

system approaches.” AI Communications, 7(1):39-59, March 1994. 
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(16) Conferences and workshops were also being created that were 

devoted entirely to CBR: the 1st European Workshop on CBR (EWCBR)
4
 began in 

1993, and the 1st International Conference on CBR (ICCBR)
5
 began in 1995. 

 

IV. The „839 Patent  

 

(17) The „839 patent is generally directed to a tool for performing 

automatic maintenance, i.e., trouble-shooting, of a computer system.  In order to 

automatically trouble-shoot the computer system, the maintenance tool collects 

information about the behavior of the computer system it is monitoring using 

                                                      
4
 Wess, S., et al. Topics in case-based reasoning: First European Workshop, EWCBR-93, 

Kaiserslautern, Germany, November 1-5, 1993, Selected Papers. London, UK: Springer, 1994. 

 
5
 Veloso, M. M., et al. Case-Based Reasoning Research and Development: First International 

Conference, ICCBR-95, Sesimbra, Portugal, October 23-26, 1995, Proceedings. London, UK: 

Springer, 1995. 
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software routines called “sensors,” and then diagnoses the problem and 

recommends a likely solution through the combination of an artificial intelligence 

(“AI”) engine and a “knowledge database.” (Ex. 1001 at 1:57-59). 

(18) The features of the trouble-shooting tool described in the „839 patent 

correspond in a straightforward way to conventional case-based reasoning systems 

at that time.  In particular, after one of the sensors in the „839 patent detects a 

problem, it activates the AI engine. (Ex. 1001 at 1:61-64).  The AI engine then 

attempts to draw analogies between the current problem and the set of cases that it 

has stored in its knowledge database to see whether a previous case suggests a 

likely solution to the current problem related to trouble-shooting the computer 

system. (Id. at 1:65 – 2:1).   

(19) In the course of attempting to diagnose the problem, the AI engine 

may determine, based upon information stored in matching cases, that additional 

information is required to accurately diagnose the problem, in which case it may 

activate additional sensors to collect more information about the monitored system. 

(Ex. 1001 at 2:5-8).  If a likely solution to the problem is determined, then the AI 

engine will attempt to perform the repair. (Id. at 2:9-11). 

 

V.      Claim Interpretation 

(20) In proceedings before the USPTO, I understand that the claims of an 

unexpired patent are to be given their broadest reasonable construction in view of 
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the specification from the perspective of one skilled in the art.  I have been 

informed that the „839 patent has not expired.  In comparing the claims of the „839  

patent to the known prior art, I have carefully considered the „839 patent and the 

„839 file history based upon my experience and knowledge in the relevant field.  In 

my opinion, the claim terms of the „839 patent are used in their ordinary and 

customary sense as one skilled in the relevant field would understand them except 

for those terms specifically addressed in the following paragraphs. 

“Sensors” 

(21) The „839 patent describes the sensors as follows: “[t]he sensors 112 

are software programs that gather information from the computer system 300. (See, 

e.g., Ex. 1001 at 3:16-17).” 

(22) Accordingly, under the broadest reasonable construction, the term 

“sensors” should be interpreted as including different aspects of the same software 

program or different components of the same application. 

“Artificial Intelligence (AI) Engine” 

(23) The term “AI engine” should be interpreted as including, under the 

broadest reasonable construction, a different aspect of the same software program 

as the “sensors” discussed above in paragraph 22.  Both the sensors and the AI 

engine are different components of the same software program or different 

components of the same application. 
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(24) Although the prior art references discussed below, such as Gurer, 

Allen „218, and Barnett, may describe the “sensors” as being separate components 

from the “AI engine,” both the sensors and the AI engine are pieces of software, 

and the real distinction between them is functionality.  The sensors interact with 

the system that they are monitoring to collect information, and the AI engine 

reasons about the likely diagnosis of the problem and the likely solution.  Hence, 

under the broadest reasonable construction, it would be obvious to a skilled artisan 

that the software that performs the sensor functionality and the software that 

performs the AI engine functionality might be integrated within the same larger 

software application such that the distinction in functionality between the sensors 

and the AI engine is no longer existent.  

 

VI.     Discussion of Relevant Patents and Articles 

GURER 

(25) I have reviewed the relevant patents and articles listed below, and 

based on this review, contributed to developing the claim charts comparing each 

element of claims 1, 2, 6, 8, 14, 15 and 17 of the „839 patent to the appropriate 

disclosures from the various prior art references in the petition from the 

perspective of one skilled in the art. 

(26) An Artificial Intelligence Approach to Network Fault Management 

published by Gurer et al. (“Gurer,” Ex. 1003) describes a system that uses case-
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based reasoning to automatically diagnose and correct faults in a computer network 

that it is monitoring.  The raw input to the system is a set of “alarms” which are 

produced by either the element manager software on a particular network element 

(e.g., an ATM switch) when it notices a hard error (e.g., a link is down), or through 

software that performs statistical analysis of the network when it notices a 

statistical error (e.g., performance degradation due to congestion). (Id. at 1:30-34).  

Since a given network problem might trigger a large number of alarms, these raw 

alarms are first passed through either a Neural Network or a Bayesian Belief 

Network to filter and correlate the alarms before they are passed into the case-

based reasoning system, thereby reducing the amount of noise in the input before 

fault identification begins. (Id. at 2:1-4).  Figure 1 of Gurer illustrates the fault 

management process described above. (Id. at 2). 
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(27) As illustrated in Figure 3 below, Gurer further describes how the case-

based reasoning system uses its library of cases, i.e., knowledge database, to 

determine a likely solution to the problem, which potentially involves deciding that 

the sensors should collect more information regarding the state of the network, and 

how the gathered information is stored in the knowledge database in the form of 

new cases. (Ex. 1003 at 7:1-10).  
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(28) Gurer discloses that “[a]utomation of network management activities 

can benefit from the use of artificial intelligence (AI) technologies, including fault 

management, performance analysis, and traffic management. Here we focus on 

fault management, where the goal is to proactively diagnose the cause of abnormal 

network behavior and to propose, and if possible, take corrective actions.” (See Ex. 

1003 at 1:11-14). 

(29) In the words of Gurer, “Today‟s high speed, heterogeneous networks 

represent a complex and data intensive environment . . .” (Ex. 1003 at 1:10).  The 

network elements in those types of sophisticated networks included processors and 

memory for handling the complex and data-intensive nature of the network. 

Processors were needed to execute software to manage the network elements, and 

memory was needed both to execute the software and to store the network packets.  

In addition, the case-based reasoning system that is described by Gurer would 
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necessarily be implemented as a large and sophisticated piece of software.  In order 

to execute the software, a processor is necessary in order to perform the 

instructions in the software.  In addition, both the software instructions and any 

data values that are accessed by the software must be stored in memory.  Hence, 

consistent with the preamble of claim 1 of the „839 patent reciting “[a] tool for 

automatically maintaining a computer system having a processor and a memory,” 

it would be clear to a person of ordinary skill in the art that the system described by 

Gurer requires a computer system containing both a processor and a memory. 

(30) Further, Gurer discloses a knowledge database (“case library”) 

holding a plurality of cases describing potential computer problems and 

corresponding likely solutions.  “Case-based reasoning is based on the premise that 

situations recur with regularity.  Studies of experts and their problem solving 

techniques have found that experts rely quite strongly on applying their previous 

experiences to the current problem at hand.  CBR can be thought of as such an 

expert that applies previous experiences stored as cases in a case library.  Thus, the 

problem-solving process becomes one of recalling old experiences and interpreting 

the new situation in terms of those old experiences.” (Ex. 1003 at 6:35-39). 

(31) The structure of case-based reasoning (CBR) systems was well-known 

at the time of the Gurer invention.  As further described by Gurer, case-based 

reasoning is “[a] symbolic AI technology” that operates on a case library. (Ex. 
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1003 at 6:24).  Hence, consistent with claim 1 of the „839 patent which recites, in 

part, “a knowledge database stored in the memory and holding a plurality of cases 

describing potential computer problems and corresponding likely solutions,” it 

would be clear to a person of ordinary skill in the art that the software necessary to 

implement this symbolic AI technology, i.e., case-based reasoning, must be stored 

in the memory of a computer system, and also its knowledge database, i.e., the case 

library, must also be stored in the memory of the computer system. 

(32) Gurer also discloses a plurality of sensors, or alarms, adapted for 

gathering data about the computer system, storing the data in the knowledge 

database, and detecting whether a computer problem exists from the data and the 

plurality of cases.  “The first step in fault management is to collect monitoring and 

performance alarms.  Typically alarms are produced by either managed network 

elements (e.g., ATM switches, customer premise equipment) or by a statistical 

analysis of the network that monitors trends and threshold crossings.  Alarms can 

be classified into two categories, physical and logical, where physical alarms are 

hard errors (e.g., a link is down), typically reported through an element manager, 

and logical alarms are statistical errors (e.g., performance degradation due to 

congestion).” (Ex. 1003 at 1:30-34). 

(33) In addition, “[a]larm filtering is a process that analyzes the multitude 

of alarms received and eliminates the redundant alarms (e.g., multiple occurrences 
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of the same alarm).  Alarm correlation is the interpretation of multiple alarms such 

that new conceptual meanings can be assigned to the alarms, creating derived 

alarms.  Faults are identified by analyzing the filtered and correlated alarms and by 

requesting tests and status updates from the element managers, which provide 

additional information for diagnosis.” (Ex. 1003 at 2:1-5). 

(34) “The more complex processes of fault management include alarm 

filtering and correlation, fault identification, and correction.  Many of these 

functions involve analysis, correlation, pattern recognition, clustering or 

categorization, problem solving, planning, and interpreting data from a knowledge 

base that contains descriptions of network elements and topology.” (Ex. 1003 at 

3:2-4). 

(35) Figure 1 of Gurer illustrated above in paragraph 26 clearly refers to 

multiple sensors, including those that collect both “physical alarms” and “logical 

alarms.” (Ex. 1003 at 2).  These alarms are gathered by pieces of software that are 

either (i) the “element manager” for a network element which reports “physical 

alarms” or (ii) the statistical analysis software that detects “logical alarms.” (Id. at 

1:30-34).  Hence, consistent with claim 1 of the „839 patent which recites, in part, 

“a plurality of sensors stored in the memory and executing on the processor and 

adapted for gathering data about the computer system, storing the data in the 

knowledge database, and detecting whether a computer problem exists from the 
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data and the plurality of cases,” it would be clear to a person of ordinary skill in the 

art that the instructions for executing these sensors would be stored in a memory 

and would execute on a processor, since this is how software is executed.  It is also 

clear that the collected alarms must be stored somewhere in the memory, so that 

they can be passed into the filtering and correlating mechanism and on to the case-

based reasoning system.  Moreover, Gurer also talks about storing the results of 

tests, i.e., when the CBR system decides that additional information is needed from 

a sensor in order to diagnose the problem, in the knowledge database in the form of 

a new case: “[t]he value of the tests (i.e., useful, not useful), the steps taken, any 

circuitous paths or dead-ends taken, and the success of the analysis should be 

stored into a new case.  This information, in addition to contextual information, 

comprise a new case which is then indexed into the case library.” (Id. at 8:6-8). 

(36) Gurer also discloses an AI system executing in response to detection 

of a computer problem.  Gurer discloses “[a]utomation of network management 

activities can benefit from the use of artificial intelligence (AI) technologies, 

including fault management, performance analysis, and traffic management.  Here 

we focus on fault management, where the goal is to proactively diagnose the cause 

of abnormal network behavior and to propose, and if possible, take corrective 

actions . . . AI technologies may be used to automate the fault management 
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process, in particular neural networks (NNs) and case-based reasoning (CBR).” 

(Ex. 1003 at 1:11-16). 

(37) Further, Gurer discloses that “[a]nother area of fault management 

where AI technologies can have a positive impact, is fault correction.  CBR 

systems, ESs [Expert Systems], or intelligent planning systems can develop plans 

or courses of action that will correct a fault that has been identified and verified.” 

(Ex. 1003 at 3:27-29). 

(38) As discussed above in paragraph 31, Gurer discloses that case-based 

reasoning (CBR) is “[a] symbolic AI technology.” (Ex. 1003 at 6:24).  At the time 

the invention was made, it was well known that symbolic artificial intelligence 

(AI) technology and case-based reasoning, in particular, was implemented through 

software that executed on a computer system, where the computer system would 

have at least a memory and a processor.  Hence, consistent with claim 1 of the „839 

patent which recites, in part, “an AI engine stored in the memory and executing on 

the processor in response to detection of a computer problem and [the AI engine] 

utilizing the plurality of cases to determine a likely solution to the detected 

computer problem,” it would be clear to a person of ordinary skill in the art that the 

AI engine would necessarily be stored in a memory of a computer system.   

(39) Gurer also discloses that “CBR problem solving can be depicted as a 

five-step process, as shown in Figure 3[, illustrated above in paragraph 27]:                   
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(1) retrieval, (2) interpretation and adaptation, (3) evaluation and repair,                        

(4) implementation, and (5) evaluation and learning.  The first step is retrieving 

cases that best match the current situation or case.  Thus it is crucial to use an 

appropriate indexing method, such as decision trees or nearest neighbor matching.  

Once a case is retrieved, it must be interpreted and then adapted.  The 

interpretation process is a simple comparison between the retrieved cases and the 

current case.  Adaptation is a complicated, domain-dependent process that uses 

rules to adapt the current case to the problem situation and propose an initial 

solution, based on the similarities and differences . . . ” (Ex. 1003 at 7:1-6). 

(40) Further, the „839 patent discloses that “[q]uestions belong to one or 

four categories: Yes/No; Numeric; Text; and List.  Yes/No questions are those that 

have Yes or No answers.  Numeric questions are those having answers that are 

integers.  Text questions have textual answers.  Finally, List questions have 

answers selected from a list of legal answers.” (See Ex. 1001 at 3:52-57). 

(41) Hence, consistent with the disclosure of the „839 patent and claim 2 

which recites, in part, “wherein each case comprises: at least one question asking 

about a particular aspect of the computer system that can be answered by the data 

gathered by the plurality of sensors,” it would be clear to a person of ordinary skill 

in the art that the “decision trees” used in the CBR problem solving process of 
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Gurer would include at least one question about a particular aspect of the computer 

system. 

(42) Claim 6 of the „839 patent is similar to claim 1 discussed above 

except that it is broader in scope.  Claim 6 is not limited to a knowledge database 

holding a plurality of cases.  Accordingly, it would be clear to a person of ordinary 

skill in the art that the discussion of claim 1 applies correspondingly to claim 6. 

(43) Consistent with claim 8 of the „839 patent which recites, in part, 

“wherein the determining step comprises the substeps of: inferring the likely 

solution to the problem from questions, actions, and rules contained in a 

knowledge database,” Gurer discloses that “CBR problem solving can be depicted 

as a five-step process: (1) retrieval, (2) interpretation and adaptation, (3) evaluation 

and repair, (4) implementation, and (5) evaluation and learning.  The first step is 

retrieving cases that best match the current situation or case.  Thus it is crucial to 

use an appropriate indexing method, such as decision trees or nearest neighbor 

matching.  Once a case is retrieved, it must be interpreted and then adapted.  The 

interpretation process is a simple comparison between the retrieved cases and the 

current case.  Adaptation is a complicated, domain-dependent process that uses 

rules to adapt the current case to the problem situation and propose an initial 

solution, based on the similarities and differences.  The next step is an evaluation 

and repair cycle where the proposed solution is evaluated through comparisons to 
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cases with similar solutions or through simulation, and the solution is modified 

accordingly.  After the CBR system has found its best solution, the solution is 

implemented and the results are evaluated. (Ex. 1003 at 7:1-10). 

(44) Further, claim 8 of the „839 patent also recites, in part, “wherein the 

AI engine utilizes the selected ones of the plurality of sensors to gather information 

when the knowledge database lacks information necessary to answer a question.”  

Gurer discloses that “[t]he filtering and correlation of alarms is the first step of 

fault diagnosis.  The second step involves further analysis and identification of the 

exact cause of the alarms, or the fault.  This process is an iterative one where alarm 

data are analyzed and decisions are made whether more data should be gathered, a 

finer grained analysis should be executed, or problem solving should be performed. 

Gathering more data can consist of sending tests to network elements or requesting 

network performance data.” (Ex. 1003 at 6: 18-22).  Gurer also notes earlier that 

“[t]ypically alarms are produced by . . . network elements (e.g., ATM switches, 

customer premise equipment).” (Id. at 1: 30-31). 

(45) Gurer further discloses that “[g]athering more data can consist of 

sending tests to network elements or requesting network performance data.” (Ex. 

1003 at 6:18-22).  Gurer notes earlier that “[t]ypically alarms [or sensors] are 

produced by . . . network elements (e.g., ATM switches, customer premise 

equipment).” (Id. at 1:30-31).  Further, “[f]aults are identified by analyzing the 
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filtered and correlated alarms and by requesting tests and status updates from the 

element managers, which provide additional information for diagnosis.” (Id. at 

2:4-5). 

(46) The logical alarms described by Gurer involve performing statistical 

analysis of the network behavior.  Hence, consistent with claim 14 of the „839 

patent which recites, in part, “wherein the detecting step comprises the steps of: 

periodically activating selected ones of the plurality of sensors to gather 

information about the computer system,” and similarly claim 17 which recites, in 

part, “wherein the sensing step comprises the substep of: periodically activating at 

least one sensor to gather information about the computer system,” it would be 

clear to a person of ordinary skill in the art that the sensor that performs this 

statistical analysis must be periodically activated in order to recognize the logical 

alarms.  In addition, Gurer describes how the CBR system determines that 

additional information is needed from the networks elements in order to diagnose a 

problem, which implies that selected sensors would be activated to collect this 

information.  “After receiving the filtered and correlated alarms, the CBR system 

attempts to identify what information would further the diagnosis of the fault.  The 

CBR system needs to decide on its own what additional tests need to be made on 

the network elements and what granularity of NN to use to further analyze the 

data.” (Ex. 1003 at 8:1-3). 
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(47) Claim 15 of the „839 patent is similar in scope to claim 1 discussed 

above in with the only differences being (1) claim 1 recites a tool whereas claim 15 

recites a program storage device for automatically maintaining a computer system, 

and (2) the limitation reciting “sensing information about the computer system by 

at least one sensor” in claim 15 versus a plurality of sensors in claim 1.  It would 

be clear to a person of ordinary skill in the art that the method of Gurer may be 

readily executed on a computer readable storage medium.  Further, the distinction 

between the terms “at least one sensor” and “a plurality of sensors” is merely one 

of form.  Accordingly, the discussion of claim 1 applies correspondingly to claim 

15. 

(48) Thus, in my opinion, Gurer teaches each element of claims 1, 2, 6, 8, 

14, 15 and 17 of the „839 patent or the minor modifications required would have 

been easily achieved by those skilled in the art. 

ALLEN „218 

 

(49) U.S. Patent No. 5,586,218 to Allen (“Allen „218,” Ex. 1004) describes 

a case-based reasoning tool that includes a sensor, an AI engine, and a knowledge 

database containing cases, where one of the three motivating uses of the tool is to 

automatically perform preventative maintenance on office equipment, e.g., 

printers, photocopiers, etc. (See FIG. 5 of Allen „218, entitled “Knobots In 

Diagnosis and Repair”). (Ex. 1004 at 1:51 – 2:3).   

Oracle Exhibit 1007



 24 

 

(50) If the case-based reasoning tool described in Allen „218 determines 

that it needs additional information to diagnose the problem, a “queries message 

119” is generated to request this additional information from the monitored system. 

(Id. at 4:56-60).  Depending on the success or failure of the tool in repairing the 

problem, the set of cases in the knowledge database is updated accordingly based 

upon this “reinforcement.” (Id. at 4:28-39, 6:28-41). 

(51) Further, Allen „218 discloses “[a] software agent [101] which 

performs autonomous learning in a real-world environment, implemented in a 

case-based reasoning system and coupled to a sensor for gathering information 

from . . . its environment.” (See Ex.1004 at Abstract). 

(52) Although the language in the Allen „218 patent refers to a single 

“sensor,” the preventative maintenance example illustrated in FIG. 5 above in 

paragraph 49 refers to the sensor providing multiple “readings” as input to the AI 

engine.  Allen „218 further discloses “[t]he features message 110 may comprise 
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sensor readings from the device 501 . . .” (Ex. 1004 at 8:3-4).  To monitor a device 

as complex as a printer or photocopier, a large number of different features within 

these computer systems would need to be monitored.  It appears that while the 

inventor of the „839 patent chose to describe separate sensors collecting different 

types of information from the monitored system, the inventor of the Allen „218 

patent instead chose to refer to a single “sensor” as collecting this wide array of 

different information.  A skilled artisan would recognize that Allen „218 is simply 

using “sensor” to refer collectively to the comprehensive set of sensing 

functionality, which can be selectively activated using a “queries message 119.” 

(Ex. 1004 at 4:56-60).   

(53) Hence, consistent with claim 1 of the „839 patent which recites, in 

part, “a plurality of sensors stored in the memory and executing on the processor 

and adapted for gathering data about the computer system, storing the data in the 

knowledge database, and detecting whether a computer problem exists from the 

data and the plurality of cases,” and similarly claim 6 which recites, in part, 

“utilizing, by the AI engine, selected ones of a plurality of sensors to gather 

information about the computer system,” it would be clear to a person of ordinary 

skill in the art that Allen „218 does teach the equivalent of activating a particular 

sensor among a plurality of sensors by virtue of a “queries message” describing 

exactly what information it would like the collective “sensor” functionality to 
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collect.  Allen „218‟s “sensor” undoubtedly contains separate subroutines devoted 

to collecting different types of information from the monitored system, and these 

individual subroutines could be viewed as a plurality of “sensors.”  In any event, it 

would be clear to a skilled artisan that a plurality of “sensors” claimed in the „839 

patent could be trivially substituted for the collective “sensor” in Allen „218. 

(54) Allen „218 also discloses that “[t]he case database 205 may comprise 

its current set of cases 126, each of which may comprise a features element 301, 

which may generally indicate when the case 126 may be useful, and an action 

element 302, which may indicate the action 105 to take and an evaluation 303 of 

that action.” (Ex. 1004 at 6:11-15). 

(55) Further, the „839 patent discloses that “[q]uestions belong to one or 

four categories: Yes/No; Numeric; Text; and List.  Yes/No questions are those that 

have Yes or No answers.  Numeric questions are those having answers that are 

integers.  Text questions have textual answers.  Finally, List questions have 

answers selected from a list of legal answers.” (See Ex. 1001 at 3:52-57). 

(56) With case-based reasoning, the cases are structured such that each 

case contains at least one conditional test or “question” regarding the state of the 

current problem that is being diagnosed.  The state of the current problem is 

gathered through sensor readings.  Hence, consistent with the disclosure of the 

„839 patent and claim 2 which recites, in part, “wherein each case comprises: at 
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least one question asking about a particular aspect of the computer system that can 

be answered by the data gathered by the plurality of sensors,” it would be clear to a 

person of ordinary skill in the art that by virtue of using a case-based reasoning 

system, as described by Allen „218, each case would necessarily contain at least 

one question regarding a particular aspect of the system that it is monitoring that 

can be answered by data provided by sensor input. 

(57) Allen „218 also discloses activating an AI engine (“software agent 

101”) in response to the problem detection.  “A software agent 101[, or AI engine,] 

may be embedded in an environment 102 so that the agent 101 may receive a 

stimulus 103 from the environment 102 by receiving a stimulus message 104, and 

may perform an action 105 which affects the environment 102 by sending an 

action message.” (Ex. 1004 at 3:56-60). 

(58) Further, Allen „218 discloses several explicit metrics that are stored 

and updated in the knowledge database to enable the AI engine to reason about the 

likelihood of a potential solution being successful.  In particular, the “matching 

module 401” shown in Figure 4 below is described as generating a “match table 

402.” (Ex. 1004 at 7:14-15).   
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“The match table 402 may comprise a set of cases 126 (or indices of cases 126), 

each having a match quality value 403, the accuracy value 304 of that case 126, 

and the utility value 305 of that case 126.” (Id. at 7:21-24).  The purpose of this 

information is to help the AI engine choose a good solution amongst its set of cases 

and to maximize the likelihood of solving the problem effectively.   

(59) Allen „218 also describes having the “evaluation module 306” adjust 

utility values based upon the “reinforcement,” i.e., the success or failure of 

previous actions in solving the problem. (Ex. 1004 at 6:28-32).  “In a preferred 

embodiment, the evaluation module 306 may alter the utility value 305 of each 

case 126 by adding the reinforcement 114 and the utility value 305 of the case 126 

which is the "best match" for the next action.” (Id. at 6:42-42).  Hence, consistent 

with claim 6 of the „839 patent which recites, in part, “determining, by the AI 

engine, a likely solution to the problem from the gathered information,” it would 
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be clear to a person of ordinary skill in the art that Allen „218 teaches determining, 

by the AI engine, a likely solution to the problem from the gathered information. 

(60) As discussed above in paragraph 51, Allen „218 discloses “[a] 

software agent [101] which performs autonomous learning in a real-world 

environment, implemented in a case-based reasoning system and coupled to a 

sensor for gathering information from . . . its environment.” (See Ex.1004 at 

Abstract).  Further, Allen „218 discloses “[a] behavior module 118 may receive the 

motives message 117, the features message 110 and the reward message 113, and 

may generate a queries message 119, which may comprise software objects 107 

which describe a request 120 by the agent 101 for further information.” (Id. at 

4:56-60). 

(61) Hence, consistent with claim 8 of the „839 patent which recites, in 

part, “wherein the AI engine utilizes the selected ones of the plurality of sensors to 

gather information when the knowledge database lacks information necessary to 

answer a question,” it would be clear to a person of ordinary skill in the art that, at 

least for reasons similar to those discussed above in paragraph 53, Allen „218 does 

teach the equivalent of activating a particular sensor among a plurality of sensors 

by virtue of a “queries message” describing exactly what information it would like 

the collective “sensor” functionality in Allen „218 to collect.    
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(62) Additionally, Allen „218 explicitly discusses the fact that the sensor 

gathers information from its environment, which, in the case of the preventative 

maintenance example illustrated in Figure 5 in paragraph 49 above, is the computer 

system within the office equipment, e.g., printer, photocopier, that it is monitoring. 

(Ex. 1004 at 7:51-52).  Allen „218 describes that the purpose of this example tool 

is “to anticipate failures of the device 501 so that preventative maintenance may be 

performed so as to reduce failures and to increase meantime-between-failure.” (Id. 

at 7:67-8:3).   

(63) Hence, consistent with claim 14 of the „839 patent which recites, in 

part, “wherein the detecting step comprises the steps of: periodically activating 

selected ones of the plurality of sensors to gather information about the computer 

system,” and similarly claim 17 which recites, in part, “wherein the sensing step 

comprises the substep of: periodically activating at least one sensor to gather 

information about the computer system,” it would be clear to a person of ordinary 

skill in the art that because preventative maintenance requires that a system be 

monitored regularly and in advance of failure, this implicitly requires that the 

sensor(s) be periodically activated to assess the current health of the monitored 

system.  In addition, the fact that the AI engine described by Allen „218 may 

generate a “queries message 119” to request additional information in order to 
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diagnose a problem represents an additional example of periodically activating a 

selected sensor. (Ex. 1004 at 4:56-60). 

(64) Claim 15 of the „839 patent is similar in scope to claim 1 discussed 

above with the only differences being (1) claim 1 recites a tool whereas claim 15 

recites a program storage device for automatically maintaining a computer system, 

and (2) the limitation reciting “sensing information about the computer system by 

at least one sensor” in claim 15 versus a plurality of sensors in claim 1.  It would 

be clear to a person of ordinary skill in the art that the method of Gurer may be 

readily executed on a computer readable storage medium.  Further, the distinction 

between the terms “at least one sensor” and “a plurality of sensors” is merely one 

of form.  Accordingly, the discussion of claim 1 applies correspondingly to claim 

15. 

(65) Thus, in my opinion, Allen „218 teaches each element of claims 1, 2, 

6, 8, 14, 15 and 17 of the „839 patent or the minor modifications required would 

have been easily achieved by those skilled in the art. 

BARNETT 

 

(66) U.S. Patent No. 5,664,093 to Barnett et al. (“Barnett,” Ex. 1005) 

describes a rule-based artificial intelligence (AI) engine that uses a plurality of 

sensors and a knowledge database to identify faults and propose solutions to those 

faults in a distributed computer system.  As illustrated in Figure 2 of Barnett, the 
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AI engine is depicted by reference numeral (26), which the specification refers to 

as the “diagnostic system,” in combination with the inference engine (32), the 

plurality of sensors are the multiple nodes, each labeled “agent process” (24) or 

referred to as the “measurement agents” in the specification, and the knowledge 

database is labeled “rule base” (34). (Ex. 1005 at 2:58-64, 4:8-10). 

 

 

 

 

 

 

 

 

 

(67) In addition, the AI engine described by Barnett also uses a 

“configuration manager” (22) to model abstract relationships between components 

in the distributed system. (Ex. 1005 at 6:8-10).  If the AI engine in Barnett decides 

that it needs additional information to diagnose the fault, it can query its sensors, 

i.e., measurement agents (24), to obtain that information. (Id. at 4:51-52, 5:48-50). 

(68) Barnett discloses that “[t]he diagnostic system receives the 

configuration information from the configuration manager and the performance 
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information from the plurality of measurement agents and uses the configuration 

and performance information with the plurality of rules to identify faults and 

provide solutions for the faults.” (Ex. 1005 at 2:4-9).  Barnett, however, is silent on 

the subject of what happens when its rule-based AI engine fails to determine a 

likely solution to the fault. 

(69) Although rule-based systems do not automatically update their rules 

when they fail, Barnett does teach that the precision of the AI engine can be 

improved by adding additional rules. (Ex. 1005 at 7:1-6).  Hence, consistent with 

claim 6 of the „839 patent which recites, in part, “when a likely solution cannot be 

determined, saving a state of the computer system.,” it would be clear to a person 

of ordinary skill in the art that in order for the programmer or user to understand 

how and when these additional rules should be added, a state of the computer 

system should be saved when the AI engine fails to determine a likely solution, so 

that the programmer or user can later determine the context when the failure took 

place.  Since actions such as this are implemented via rules in a rule-based system, 

it would be natural and obvious to a skilled artisan to add a rule to the rule base 

that states that when a likely solution cannot be found, such a state of the computer 

system should be saved. 

(70) In addition, U.S. Patent No. 5,581,664 to Allen (“Allen „664,” Ex. 

1006) describes a case-based reasoning system where “[i]n the case-matching step 
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202 or in the best-case step 203, the inference engine 111 may determine that there 

is no case 105 [or solution] which is a good match for the case template 312.  The 

inference engine 111 may create a new case 105 which partly or fully copies the 

case template 312, and may ask the user 119 . . . what the prescribed action 309 for 

the case 105 should be . . . The inference engine 111 may also add new cases 105 

to the case base 104 without asking the user 119.  When the inference engine 111 

determines that there is no case 105 which is a good match for the case template 

312, it may invoke a rule 103 or a procedural structure 117 which creases a new 

case 105 . . .” (Id. at 8:21-36).  

(71) A skilled artisan would be motivated to combine the teachings of 

Barnett and Allen „664 because the case-based reasoning system described by 

Allen „664, which is smoothly integrated into a rule-based reasoning system, could 

be easily substituted for the rule-based AI engine described in Barnett.  It would be 

clear to a skilled artisan at that time that Allen „664‟s hybrid case-based/rule-based 

approach would provide advantages over Barnett‟s simple rule-based approach, 

e.g., it could handle cases that did not match specific rules, it could learn and adapt 

its strategies over time, etc., which were well-documented in the many articles that 

had been published at that time on case-based reasoning.  Hence this “upgrade” of 

the AI engine from rule-based to a hybrid case-based/rule-based approach would 

be an obvious step for improving Barnett‟s system. 
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(72) Consistent with claim 8 of the „839 patent which recites, in part, 

“wherein the determining step comprises the substeps of: inferring the likely 

solution to the problem from questions, actions, and rules contained in a 

knowledge database,” Barnett discloses “[t]he querying operation is performed by 

an interference engine 32.  The diagnostic system also includes a rule base 34 

comprising a plurality of rules for the various objects within the distributed 

application.  By using the abstract relationships learned from the configuration 

manager and the rules from the rule base, the diagnostic system is able to monitor 

performance and diagnose several types of failures that are reported from any of 

the plurality of measurement agents.” (Ex. 1005 at 4:6-14). 

(73) Further, claim 8 of the „839 patent also recites, in part, “wherein the 

AI engine utilizes the selected ones of the plurality of sensors to gather information 

when the knowledge database lacks information necessary to answer a question.”  

Barnett discloses that “the diagnostic system 26 does not have information about 

the static or dynamic model, but can obtain all of the information from the 

configuration manager 22 and the measurement agents 24.” (Ex. 1005 at 4:25-28). 

Barnett further discloses “[t]here are several mechanisms which permit the 

diagnostic system to ask the configuration manager and the measurement agents 

for information.  For example, there may be a coordinator which the diagnostic 

system uses to communicate with the configuration manager and the agents.  The 
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agent may in turn talk to other agents if they need to abstract and encapsulate 

information to the diagnostic system.” (Id. at 3:2-9). 

(74) Further, Barnett discloses that “the fault and performance analysis of 

the present invention can be used for any system composed of hardware and 

software components, and even abstract components like actions, tasks, and 

deliverables.  It can be integrated into network management applications and 

capacity planning tools.  It can do load balancing and predictive fault analysis.  In 

general it can be applied to any distributed application on a computer network that 

needs to react to changes in a dynamic or static environment.” (Ex. 1005 at 7:7-

15). 

(75) Barnett also teaches that as part of diagnosing a fault, the AI engine 

can decide to activate specific sensors, i.e., measurement agents (24), to collect 

more information about the state of the computer system.  (Ex. 1005 at 4:50-52, 

5:47-50).  Hence, consistent with claim 14 of the „839 patent which recites, in part, 

“wherein the detecting step comprises the steps of: periodically activating selected 

ones of the plurality of sensors to gather information about the computer system,” 

it would be clear to a person of ordinary skill in the art that that the diagnostic 

system of Barnett would periodically activate at least one of the measurement 

agents (24) to gather information about the computer system, i.e., performance 

information related to the components in the distributed system, particularly when 
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the fault and performance analysis of Barnett is integrated into network 

management applications and capacity planning tools and can do load balancing 

and predictive fault analysis.  Further, the decision regarding which specific 

sensors to activate is informed by the information on abstract relationships between 

components that is stored in the configuration manager. (Id. at 5:41-44).   

(76) Thus, in my opinion, Barnett teaches each element of claims 6, 8 and 

14 of the „839 patent or the minor modifications required would have been easily 

achieved by those skilled in the art. 

 

VII.    Miscellaneous Matters 

(77) I have been informed that a patent claim can be found unpatentable as 

obvious where the differences between the subject matter sought to be patented 

and the prior art are such that the subject matter as a whole would have been 

obvious at the time the invention was made to a person having ordinary skill in the 

relevant field.  I understand that an obviousness analysis involves a consideration 

of (1) the scope and content of the prior art; (2) the differences between the 

claimed invention and the prior art; (3) the level of ordinary skill in the pertinent 

field; and (4) secondary considerations of non-obviousness.   

(78) For my efforts in connection with the preparation of this declaration I 

have been compensated at my standard hourly rate for this type of consulting 
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August, 2012

Contact Information
Computer Science Department Phone: (412) 268-3725
Carnegie Mellon University Fax: (412) 268-5576
5000 Forbes Avenue Email: tcm@cs.cmu.edu
Pittsburgh, PA 15213 URL: http://www.cs.cmu.edu/~tcm

Education
Ph.D. in Electrical Engineering, Stanford University, March 1994.

• Thesis: “Tolerating Latency Through Software-Controlled Data Prefetching.”

• Supervisors: Anoop Gupta and Monica Lam.

M.S. in Electrical Engineering, Stanford University, June 1989.

B.S. in Electrical Engineering with Highest Distinction, University of Virginia, May 1988.

Academic Appointments

7/08–Present: Professor, Computer Science Department (with a courtesy appointment in the De-
partment of Electrical and Computer Engineering), Carnegie Mellon University.

8/09–6/10: Associate Department Head for Faculty, Computer Science Department

7/97–6/08: Associate Professor, Computer Science Department (with a courtesy appointment in
the Department of Electrical and Computer Engineering), Carnegie Mellon University.

12/93–6/97: Assistant Professor, Department of Electrical and Computer Engineering (with a
courtesy appointment in the Department of Computer Science), University of Toronto.

9/89–11/93: Graduate Research Assistant, Stanford University.

Honors and Awards

• Second Place, Audience Choice Award for Best Demo (for Claytronics) at the Intel Developers
Forum, 2006. (Chosen among several hundred demos of Intel’s latest research and technology.)

• SCS Doctoral Dissertation Award co-won by Angela Demke Brown (Ph.D. advisee), 2005.

• Most Thought-Provoking Idea Award (for Claytronics), the Wild and Crazy Idea Session IV
held at ASPLOS-XI, 2004.

• Best Paper Award, the 20th International Conference on Data Engineering (ICDE), 2004.

• SCS Doctoral Dissertation Award co-won by J. Gregory Steffan (Ph.D. advisee), 2003.

• Runner-Up for Best Paper Award, the ACM SIGMOD Conference, 2001.

• Alfred P. Sloan Research Fellow, 1999-2001.

• TR100 Award (awarded by MIT’s Technology Review magazine to the top 100 most promising
young innovators in science and technology), 1999.

• Best Paper Award, the Second Symposium on Operating Systems Design and Implementation,
1996.

• IBM Faculty Development Awards, 1996, 1997, 1998, 2000, 2001, 2002, 2003.

• Arthur Samuel Thesis Award (awarded by the Stanford Computer Science department to the
top two Ph.D. theses in a given year), 1994.
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Doctoral Thesis Supervision

Student Thesis Title (or Topic) Graduation Date

Chi-Keung Luk Optimizing the Cache Performance of Non-Numeric Ap-
plications. (Nominated for the ACM Thesis Award by the
University of Toronto Department of Computer Science.)

January, 2000

J. Gregory Steffan Hardware Support for Thread-Level Speculation. (Co-
winner of the SCS Doctoral Dissertation Award.)

April, 2003

Antonia Zhai Compiler Optimization of Value Communication for
Thread-Level Speculation.

January, 2005

Angela Demke Brown Explicit Compiler-based Memory Management for Out-
of-core Applications. (Co-winner of the SCS Doctoral
Dissertation Award.)

May, 2005

Christopher Colohan Applying Thread-Level Speculation to Database Trans-
actions.

November, 2005

Shimin Chen Redesigning Database Systems in Light of CPU Cache
Prefetching.

December, 2005

Amit Manjhi Increasing the Scalability of Dynamic Web Applications March, 2008

Olatunji Ruwase Dynamic Monitoring of Device Driver Code December, 2012
(expected)

Michelle Goodstein Dynamic Monitoring of Parallel Software May, 2013
(expected)

Vivek Seshadri Multicore Cache Hierchies May, 2014
(expected)

Gennady Pekhimenko Monitoring to Confirm Software Patch Safety May, 2015
(expected)

Masters Thesis Supervision
NOTE: these students were all at the University of Toronto.

Student Thesis Title (or Topic) Graduation Date

Matthew Lam Multicast Support in Mesh Networks July, 1996
Robert Ho Doacross Parallelism in Single-Chip Multiprocessors September, 1996
Angela Demke Compiler-Inserted I/O Prefetching for Out-of-Core Ap-

plications
January, 1997

Gregory Steffan The Potential for Thread-Level Data Speculation January, 1997
Charles Chan Prefetching in Networks of Workstations February, 1998
Adley Lo Multithreading in Networks of Workstations February, 1998
Antonia Zhai A Compiler Algorithm for Scheduling Non-Numeric Code

with Explicitly Forwarded Data on a Speculative Multi-
processor

September, 1998

Daniel Sladic Exploiting Fast Comunication in Single-Chip Multipro-
cessing

September, 1998

Sherwyn Ramkissoon Software-Controlled Multithreading January, 1999
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Teaching Experience

Graduate Courses Taught

Course Instructor
Number Title Year Enrollment Rating

15-740 Computer Architecture 2012 60 N/A
2009 35 3.90/5.00, 4.45/5.00
2007 26 4.33/5.00
2001 31 4.48/5.00
2000 28 4.46/5.00
1999 26 4.58/5.00

15-745 Optimizing Compilers for Modern Architectures 2012 39 4.09/5.00
2011 22 4.86/5.00
2003 23 4.74/5.00
2003 23 4.74/5.00
2001 14 4.56/5.00

15-740 Basic Computer Systems 1998 27 4.47/5.00

ECE1755S Parallel Computer Architecture 1997 6 N/A
1996 12 N/A
1995 15 N/A
1994 9 N/A

ECE1760S HW/SW Tradeoffs in High-Performance 1996 8 N/A
Computing 1995 12 N/A

ECE1753F Optimizing Compilers 1994 20 N/A

(NOTE: The University of Toronto does not collect course or instructor ratings for graduate courses.)

Undergraduate Courses Taught

Course Instructor
Number Title Year Enrollment Rating

15-213 Intro to Computer Systems 2012 230 4.35/5.00
2007 147 4.06/5.00
2000 140 3.91/5.00
1999 144 4.34/5.00

15-418/ Parallel Computer Architecture and Programming 2011 26 4.29/5.00
2008 14 4.20/5.00

15-495 2004 16 3.92/5.00
2002 23 4.80/5.00
2002 14 4.56/5.00

15-347 Computer Architecture 1998 116 3.85/5.00

CSC372S Microprocessor Software 1997 54 6.0/7.0
1996 13 6.2/7.0
1995 32 5.5/7.0

ECE540F Optimizing Compilers 1996 34 5.68/7.0
1995 35 5.44/7.0
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45(1), January 2011.

• Shimin Chen, Michael Kozuch, Phillip B. Gibbons, Michael Ryan, Theodoros Strigkos, Todd
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• Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. In-
crementally parallelizing database transactions with thread-level speculation. In ACM Trans-
actions on Computer Systems (TOCS), 26(1), February 2008.

• Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Improving Hash
Join Performance through Prefetching. In ACM Transactions on Database Systems, 32(3):1-32,
September 2007.

• Christopher B. Colohan, Anastasia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. CMP
Support for Large and Dependent Speculative Threads. In IEEE Transactions on Parallel and
Distributed Systems, 18(8):1041-1054, August 2007.

• J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai and Todd C. Mowry. The STAM-
Pede Approach to Thread-Level Speculation. In ACM Transactions on Computer Systems,
23(3):253-300, August 2005.

• Seth Copen Goldstein, Jason Campbell and Todd C. Mowry. Programmable Matter. In IEEE
Computer, 38(6):99-101, June 2005.

• Angela Demke Brown, Todd C. Mowry and Orran Krieger. Compiler-Based I/O Prefetching
for Out-of-Core Applications. In ACM Transactions on Computer Systems, 19(2):111-170,
May 2001.

• Chi-Keung Luk and Todd C. Mowry. Architectural and Compiler Support for Effective In-
struction Prefetching: A Cooperative Approach. In ACM Transactions on Computer Systems,
19(1):71-109, February 2001.

• Todd C. Mowry and Chi-Keung Luk. Understanding Why Correlation Profiling Improves the
Predictability of Data Cache Misses in Nonnumeric Applications. In IEEE Transactions on
Computers, 49(4), April 2000.

• Chi-Keung Luk and Todd C. Mowry. Automatic Compiler-Inserted Prefetching for Pointer-
Based Applications. In IEEE Transactions on Computers, 48(2), February 1999.

• Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. Informing
Memory Operations: Memory Performance Feedback Mechanisms and their Applications. In
ACM Transactions on Computer Systems, 16(2):170-205, May 1998.

• Todd C. Mowry. Tolerating Latency in Multiprocessors through Compiler-Inserted Prefetch-
ing. In ACM Transactions on Computer Systems, 16(1):55-92, February 1998.
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• Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-Controlled Prefetch-
ing in Shared-Memory Multiprocessors. In Journal of Parallel and Distributed Computing,
12(2):87-106, 1991.

Refereed Conference Papers

• Michelle L. Goodstein, Shimin Chen, Phillip B. Gibbons, Michael A. Kozuch, and Todd C.
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Parallel Monitoring. In Proceedings of the 21st International Conference on Parallel Architec-
tures and Compilation Techniques (PACT-2012), September 2012.

• Vivek Seshadri, Onur Mutlu, Todd C. Mowry, and Michael A. Kozuch. The Evicted-Address
Filter: A Unified Mechanism to Address Both Cache Pollution and Thrashing. In Proceedings
of the 21st International Conference on Parallel Architectures and Compilation Techniques
(PACT-2012), September 2012.

• Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Todd C. Mowry, Phillip B. Gibbons,
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sion Mechanism for On-Chip Caches. In Proceedings of the 21st International Conference on
Parallel Architectures and Compilation Techniques (PACT-2012), September 2012.

• Olatunji Ruwase, Shimin Chen, Phillip Gibbons, and Todd C. Mowry. Decoupled Lifeguards:
Enabling Path Optimizations for Dynamic Correctness Checking Tools. In Proceedings of
the ACM SIGPLAN 2010 Conference on Programming Language Design and Implementation
(PLDI), June 2010.

• F. Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. Decoupling Con-
tention Management from Scheduling. In Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2010),
March 2010.

• Michelle Goodstein, Evangelos Vlachos, Shimin Chen, Phillip B. Gibbons, Michael Kozuch,
and Todd C. Mowry. Butterfly Analysis: Adapting Dataflow Analysis to Dynamic Parallel
Monitoring. In Proceedings of the Fifteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2010), March 2010.

• Evangelos Vlachos, Michelle Goodstein, Michael Kozuch, Shimin Chen, Babak Falsafi, Phillip
B. Gibbons, and Todd C. Mowry. ParaLog: Enabling and Accelerating Online Parallel Moni-
toring of Multithreaded Applications. In Proceedings of the Fifteenth International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS 2010),
March 2010.

• Amit Manjhi, Charles Garrod, Bruce M. Maggs, Todd C. Mowry, Anthony Tomasic. Holistic
Query Transformations for Dynamic Web Applications. In Proceedings of the 2009 IEEE 25th
International Conference on Data Engineering (ICDE), March-April 2009.

• Daniel J. Dewey, Michael P. Ashley-Rollman, Michael DeRosa, Seth Copen Goldstein, Todd
C. Mowry, Siddhartha S. Srinivasa, Padmanabhan Pillai, and Jason Campbell. Generalizing
metamodules to simplify planning in modular robotic systems. In Proceedings of the IEEE/RSJ
2008 International Conference on Intelligent Robots and Systems (IROS), September 2008.

• Lei Li, Wenjie Fu, Fan Guo, Todd C. Mowry, and Christos Faloutsos. Cut-and-stitch: efficient
parallel learning of linear dynamical systems on SMPs. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), August
2008.

• Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B. Gibbons, Todd
C. Mowry, Michael Ryan, Olatunji Ruwase, and Evangelos Vlachos. Flexible Hardware Accel-
eration for Instruction-Grain Program Monitoring. In Proceedings of the 35th Annual Inter-
national Symposium on Computer Architecture (ISCA), June 2008.
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• Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran, Shimin Chen,
Michael Kozuch, and Michael Ryan. Parallelizing dynamic information flow tracking. In
Proceedings of the 20th Annual ACM Symposium on Parallel Algorithms and Architectures
(SPAA), June 2008.

• Brian Kirby, Burak Aksak, James Hoburg, Todd C. Mowry, and Padmanabhan Pillai. A
Modular Robotic System Using Magnetic Force Effectors. In Proceedings of the IEEE/RSJ
2007 International Conference on Intelligent Robots and Systems (IROS), October 2007.

• Michael Ashley-Rollman, Seth Goldstein, Peter Lee, Todd C. Mowry, and Padmanabhan Pillai.
Meld: A Declarative Approach to Programming Ensembles. In Proceedings of the IEEE/RSJ
2007 International Conference on Intelligent Robots and Systems (IROS), October 2007.

• Amit Manjhi, Phillip B. Gibbons, Anastassia Ailamaki, Charles Garrod, Bruce M. Maggs,
Todd C. Mowry, Christopher Olston, Anthony Tomasic, and Haifeng Yu. Invalidation Clues for
Database Scalability Services. In Proceedings of the 2007 IEEE 23rd International Conference
on Data Engineering (ICDE), pages 316-325, April 2007.

• Michael De Rosa, Peter Lee, Seth Goldstein, Jason Campbell, Padmanabhan Pillai, and Todd
C. Mowry. Distributed Watchpoints: Debugging Large Multi-Robot Systems. In Proceedings
of the 2007 IEEE International Conference on Robotics and Automation (ICRA), pages 3723-
3729, April 2007.

• Benjamin D. Rister, Jason Campbell, Padmanabhan Pillai, and Todd C. Mowry. Integrated
Debugging of Large Modular Robot Ensembles. In Proceedings of the 2007 IEEE International
Conference on Robotics and Automation (ICRA), pages 2227-2234, April 2007.

• Shimin Chen, Phillip Gibbons, Michael Kozuch, Vasileios Liaskovitis, Anastassia Ailamaki,
Guy Blelloch, Babak Falsafi, Limor Fix, Nikos Hardavellas, Todd C. Mowry and Chris Wilk-
erson. Scheduling Threads for Constructive Cache Sharing on CMPs. In Proceedings of 18th
ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages 105-115, June
2007.

• Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael Kozuch, Todd C. Mowry, Radu
Teodorescu, Anastassia Ailamaki, Limor Fix, Gregory R. Ganger, Bin Lin, and Steven W.
Schlosser. Log-Based Architectures for General-Purpose Monitoring of Deployed Code. In
Proceedings of the Workshop on Architectural and System Support for Improving Software
Dependability (ASID), held with ASPLOS XII, October 2006.

• Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. Tol-
erating Dependences Between Large Speculative Threads Via Sub-Threads. In Proceedings of
the 33rd Annual International Symposium on Computer Architecture (ISCA), pages 216-226,
June 2006.

• Amit Manjhi, Anastassia Ailamaki, Bruce M. Maggs, Todd C. Mowry, Christopher Olston, and
Anthony Tomasic. Simultaneous Scalability and Security for Data-Intensive Web Applications.
In Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data,
pages 241-252, June 2006.

• Vasileios Liaskovitis, Shimin Chen, Phillip B. Gibbons, Anastassia Ailamaki, Guy E. Blelloch,
Babak Falsafi, Limor Fix, Nikos Hardavellas, Michael Kozuch, Todd C. Mowry, and Chris
Wilkerson. Parallel Depth First vs. Work Stealing Schedulers on CMP Architectures. In
Proceedings of 18th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
August 2006.

• Brian Kirby, Jason Campbell, Burak Aksak, Padmanabhan Pillai, James F. Hoburg, Todd
C. Mowry, and Seth Copen Goldstein. Catoms: Moving Robots without Moving Parts. In
Proceedings of the Twentieth National Conference qon Artificial Intelligence (AAAI), pages
1730-1731, July 2005.
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• Christopher Olston, Amit Manjhi, Charles Garrod, Anastassia Ailamaki, Bruce M. Maggs,
and Todd C. Mowry. A Scalability Service for Dynamic Web Applications. In Proceedings of
the Second Biennial Conference on Innovative Data Systems Research (CIDR), pages 56-69,
January 2005.

• Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. Op-
timistic Intra-Transaction Parallelism on Chip Multiprocessors. In Proceedings of the 31st
International Conference on Very Large Data Bases (VLDB), pages 73-84, September 2005.

• Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Inspector Joins.
In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB), pages
817-828, September 2005.

• Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry. Compiler Op-
timization of Memory-Resident Value Communication Between Speculative Threads. In Pro-
ceedings of the 2007 International Symposium on Code Generation and Optimization (CGO),
pages 39-52, March 2004.

• Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons and Todd C. Mowry. Improving Hash
Join Performance through Prefetching. In Proceedings of the 20th International Conference
on Data Engineering (ICDE), pages 116-127, April 2004. (This paper received the Best Paper
Award.)

• Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan and Todd C. Mowry. Compiler
Optimization of Scalar Value Communication Between Speculative Threads. In Proceedings of
the Tenth International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X), October 2002.

• Shimin Chen, Philip B. Gibbons, Todd C. Mowry and Gary Valentin. Fractal Prefetching
B+-Trees: Optimizing Both Cache and Disk Performance. In Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, June 2002.

• J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai and Todd C. Mowry. Improving
Value Communication for Thread-Level Speculation. In Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture (HPCA), February 2002.

• Shimin Chen, Philip B. Gibbons and Todd C. Mowry. Improving Index Performance through
Prefetching. In Proceedings of the 2001 ACM SIGMOD International Conference on Manage-
ment of Data, pages 235-246, May 2001. (This paper received the Runner-Up for Best Paper
Award.)

• Angela Demke Brown and Todd C. Mowry. Taming the Memory Hogs: Using Compiler-
Inserted Releases to Manage Physical Memory Intelligently. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implementation (OSDI 2000), pages 31-44, Oc-
tober 2000.

• J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai and Todd C. Mowry. A Scalable
Approach to Thread- Level Speculation. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 1-12, June 2000.

• Todd C. Mowry and Sherwyn R. Ramkissoon. Software-Controlled Multithreading Using
Informing Memory Operations. In Proceedings of the Sixth International Symposium on High-
Performance Computer Architecture, January, 2000.

• Chi-Keung Luk and Todd C. Mowry. Memory Forwarding: Enabling Aggressive Layout Opti-
mizations by Guaranteeing the Safety of Data Relocation. In Proceedings of the 26th Annual
International Symposium on Computer Architecture (ISCA), pages 88-99, May 1999.

• Chi-Keung Luk and Todd C. Mowry. Cooperative Prefetching: Compiler and Hardware Sup-
port for Effective Instruction Prefetching in Modern Microprocessors. In Proceedings of the
31st Annual International Symposium on Microarchitecture, pages 182-193, December 1998.
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• J. Gregory Steffan and Todd C. Mowry. The Potential for Using Thread-Level Data Spec-
ulation to Facilitate Automatic Parallelization. In Proceedings of the Fourth International
Symposium on High-Performance Computer Architecture, pages 2-13, February, 1998.

• Charles Chan, Adley Lo, and Todd C. Mowry. Comparative Evaluation of Latency Tolerance
Techniques for Software Distributed Shared Memory. In Proceedings of the Fourth Inter-
national Symposium on High-Performance Computer Architecture, pages 300-311, February,
1998.

• Todd C. Mowry and Chi-Keung Luk. Predicting Data Cache Misses in Non-Numeric Ap-
plications Through Correlation Profiling. In Proceedings of the 30th Annual International
Symposium on Microarchitecture, pages 314-320, December 1997.

• Todd C. Mowry, Angela K. Demke and Orran Krieger. Automatic Compiler-Inserted I/O
Prefetching for Out-of-Core Applications. In Proceedings of the Second Symposium on Oper-
ating Systems Design and Implementation (OSDI ’96), pages 3-17, October 1996. (This paper
received the Best Paper Award.)

• Chi-Keung Luk and Todd C. Mowry. Compiler-Based Prefetching for Recursive Data Struc-
tures. In Proceedings of the Seventh International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 222-233, October 1996.

• Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum and Monica S.
Lam. Compiler- Directed Page Coloring for Multiprocessors. In Proceedings of the Seventh
International Conference on Architectural Support for Programming Languages and Operating
Systems, pages 244-255, October 1996.

• Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. Informing
Memory Operations: Providing Memory Performance Feedback in Modern Processors. In
Proceedings of the 23rd Annual International Symposium on Computer Architecture, pages
260-270, May 1996.

• Todd C. Mowry, Monica S. Lam and Anoop Gupta. Design and Evaluation of a Compiler Al-
gorithm for Prefetching. In Proceedings of the Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 62-73, October 1992.

• Anoop Gupta, John Hennessy, Kourosh Gharachorloo, Todd Mowry, and Wolf-Dietrich Weber.
Comparative Evaluation of Latency Reducing and Tolerating Techniques. In Proceedings of the
18th Annual International Symposium on Computer Architecture, pages 254-263, May 1991.

• Anoop Gupta, Wolf-Dietrich Weber, and Todd Mowry. Reducing Memory and Traffic Require-
ments for Scalable Directory-Based Cache Coherence Schemes. In Proceedings of International
Conference on Parallel Processing, pages 312-321, August 1990.

Technical Reports

• Evangelos Vlachos, Michelle Goodstein, Michael Kozuch, Shimin Chen, Babak Falsafi, Phillip
B. Gibbons, Todd C. Mowry, and Olatunji Ruwase. Parallel LBA: Conherence-based Paral-
lel Monitoring of Multithreaded Applications. Carnegie Mellon University Technical Report
CMU-CS-09-108, March 2009.

• Michelle Goodstein, Evangelos Vlachos, Shimin Chen, Phillip Gibbons, Michael Kozuch, and
Todd C. Mowry. The Butterfly Model: Theoretical Foundations. Carnegie Mellon University
Technical Report CMU-CS-08-170, February 2009.

• Amit Manjhi, Anastassia Ailamaki, Bruce M. Maggs, Todd C. Mowry, Christopher Olston, and
Anthony Tomasic. Simultaneous Scalability and Security for Data-Intensive Web Applications.
Carnegie Mellon University Technical Report CMU-CS-06-116, March 2006.

• Charles Garrod, Amit Manjhi, Anastassia Ailamakiii, Phil Gibbons, Bruce Maggs, Todd
Mowry, Christopher Olston, and Anthony Tomasic. Scalable Consistency Management for
Web Database Caches. Carnegie Mellon University Technical Report CMU-CS-06-128, July
2006.
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• Amit Manjhi, Phillip B. Gibbons, Anastassia Ailamaki, Charles Garrod, Bruce M. Maggs,
Todd C. Mowry, Christopher Olston, Anthony Tomasic, and Haifeng Yu. Invalidation Clues
for Database Scalability Services. Carnegie Mellon University Technical Report CMU-CS-06-
139, July 2006.

• Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. Sup-
porting Large Speculative Threads for Databases and Beyond. Carnegie Mellon University
Technical Report CMU-CS-05-109, July 2005.

• Christopher B. Colohan, Anastassia Ailamaki, J. Gregory Steffan, and Todd C. Mowry. Op-
timistic Intra-Transaction Parallelism on Chip Multiprocessors. Carnegie Mellon University
Technical Report CMU-CS-05-118, March 2005.

• Shimin Chen, Anastassia Ailamaki, Phillip B. Gibbons, and Todd C. Mowry. Improving Hash
Join Performance through Prefetching. Carnegie Mellon University Technical Report CMU-
CS-03-157, October 2003.

• Shimin Chen, Phillip B. Gibbons, Todd C. Mowry, and Gary Valentin. Fractal Prefetching B+-
Trees: Optimizing Both Cache and Disk Performance. Carnegie Mellon University Technical
Report CMU-CS-02-115, March 2002.

• Spiros Papadimitrious and Todd C. Mowry. Exploring Thread-Level Speculation in Software:
The Effects of Memory Access Tracking Granularity. Carnegie Mellon University Technical
Report CMU-CS-01-145, July 2001.

• Shimin Chen, Phillip B. Gibbons and Todd C. Mowry. Improving Index Performance through
Prefetching. Carnegie Mellon University Technical Report CMU-CS-00-177, December 2000.

• J. Gregory Steffan, Christopher B. Colohan and Todd C. Mowry. Extending Cache Coherence
to Support Thread-Level Data Speculation on a Single Chip and Beyond. Carnegie Mellon
University Technical Report CMU-CS-98-171, December 1998.

• Todd C. Mowry and Sherwyn R. Ramkissoon. Software-Controlled Multithreading Using
Informing Memory Operations. Carnegie Mellon University Technical Report CMU-CS-98-
169, October 1998.

• Chi-Keung Luk and Todd C. Mowry. Compiler and Hardware Support for Automatic Instruc-
tion Prefetching: A Cooperative Approach. Carnegie Mellon University Technical Report
CMU-CS-98-140, June 1998.

• J. Gregory Steffan, Christopher B. Colohan and Todd C. Mowry. Architectural Support for
Thread-Level Data Speculation. Carnegie Mellon University Technical Report CMU-CS-97-
188, November 1997.

• Todd C. Mowry and Chi-Keung Luk. Predicting Data Cache Misses in Non-Numeric Applica-
tions Through Correlation Profiling. Carnegie Mellon University Technical Report CMU-CS-
97-175, September 1997.

• J. Gregory Steffan and Todd C. Mowry. The Potential for Thread-Level Data Speculation
in Tightly-Coupled Multiprocessors. University of Toronto Technical Report CSRI-TR-350,
February 1997.

• Chi-Keung Luk and Todd C. Mowry. Predicting Data Cache Misses in Non-Numeric Appli-
cations Through Correlation Profiling. University of Toronto Technical Report CSRI-TR-359,
February, 1997.

• Mark Horowitz, Margaret Martonosi, Todd C. Mowry, and Michael D. Smith. Informing
Loads: Enabling Software to Observe and React to Memory Behavior. Stanford University
Technical Report CSL-TR-95-673, July 1995.

• Todd C. Mowry. Tolerating Latency Through Software-Controlled Data Prefetching. Technical
Report CSL-TR-94-628, Stanford University, June 1994.

Patents Held
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• Todd C. Mowry. U.S. Patent 7,127,586: Prefetching hints. Issued October, 2006.

• Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. U.S. Patent 6,772,179: System and
method for improving index performance through prefetching. Issued August, 2004.

• Todd C. Mowry. U.S. Patent 6,240,488: Prefetching hints. Issued May, 2001.

• Todd C. Mowry. U.S. Patent 5,732,242: Consistently specifying way destinations through
prefetching hints. Issued March, 1998.

• Todd C. Mowry and Earl A. Killian. U.S. Patent 5,696,958: Method and apparatus for
reducing delays following the execution of a branch instruction in an instruction pipeline.
Issued December, 1997.

Distinguished Lectures

2/7/08: “Pario: the Next Step Beyond Audio and Video”, University of Toronto, Department of
Electrical and Computer Engineering Distinguished Lecture Series.
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Professional Activities

Professional Societies

• Member of the Institute of Electrical and Electronics Engineers (IEEE)

• Member of the Association of Computing Machinery (ACM)

Industrial Employment

5/04–6/07: Intel Corporation, Pittsburgh, Pennsylvania: Director of the Intel Research Pitts-
burgh Lab.

6/89–11/93: Silicon Graphics, Inc., Mountain View, California (formerly MIPS Computer
Systems, Sunnyvale California): Computer Architect (part-time).

Consulting

7/07–2/11: Intel Corporation, Pittsburgh, Pennsylvania: Research Advisor.

8/96–4/04: SandCraft, Inc., Santa Clara, California: Member of the Technical Advisory
Board.

1/96–4/04: IBM, Toronto: Visiting Scientist.

12/93–12/96: Silicon Graphics, Inc., Mountain View, California: Computer Architecture
Consultant.
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University Committee Work and Other Service Activities

Committee Work

• Faculty Hiring Committees:

– Computer Science Department: 2008, 2010.

– Computer Systems Area: 2000, 2001, 2002, 2003, 2004.

• Chair of the Computer Science Department Head Selection Committee, 2007.

• CSD Ph.D. Admissions Committee, 2001, 2002, 2003.

• School of Computer Science Council, 2001-2004.

• Carnegie Mellon University Faculty Senate (Presidential Appointeee), 2000-2001.

• Computer Systems Area Advocate, 2000-2004.

• Doctoral Review Committee, 1998-2004.

• ACM Thesis Award Nomination Committee, 1999.

Journal, Conference and Workshop Organization

• Associate Editor, ACM Transactions on Computer Systems, 2001-present.

• Program Chair of the International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), 2011.

• Sponsorship Chair, International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2010.

• Member of the ISCA program committee, 1998, 2000, and 2011.

• Member of the ASPLOS program committee, 2000, 2004.

• Member of the ASPLOS external review committee, 2012.

• Co-Program Chair (with John Shen) of the International Conference on Parallel Archi-
tectures and Compilation Techniques (PACT), 2001.

• Member of the International Symposuim on Microarchitecture program committee, 1998.

• Member of the Workshop on Architectural and System Support for Improving Software
Dependability (ASID) program committee, 2005.

• Member of the Workshop on Memory System Performance (MSP) program committee
(in conjunction with PLDI), 2002 and 2004.

• Member of the IBM CASCON program committee, 1995, 1996, 1997.

• Member of the First SUIF Workshop Program Committee, 1996.

• Organized the CASCON 97 workshop on Compiler Optimization, 1997.

• Initiated and organized the 1st Toronto / Rochester Workshop on Shared-Memory Mul-
tiprocessors, 1994.

Miscellaneous

• Organizing the Computer Systems faculty lunches, 1999-2008, 2009-present.

• Organized the Computer Systems seminar series in the CMU CS department, 1998-2001.
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Artificial Intelligence Review 6, 3-34, 1992. 

An Introduction to Case-Based Reasoning* 

Janet L. Kolodner** 

College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280, 
U.S.A. 

Abstract. Case-based reasoning means using old experiences to understand and 
solve new problems. In case-based reasoning, a reasoner remembers a previous 
situation similar to the current one and uses that to solve the new problem. Case­
based reasoning can mean adapting old solutions to meet new demands; using old 
cases to explain new situations; using old cases to critique new solutions; or 
reasoning from precedents to interpret a new situation (much like lawyers do) or 
create an equitable solution to a new problem (much like labor mediators do). This 
paper discusses the processes involved in case-based reasoning and the tasks for 
which case-based reasoning is useful. 

Key Words: Case-based reasoning, problem-solving, experience 

A host is planning a meal for a set of people who include, among others, several 
people who eat no meat or poultry, one of whom is also allergic to milk 
products, several meat-and-potatoes men, and her friend Anne. Since it is 
tomato season, she wants to use tomatoes as a major ingredient in the meal. As 
she is planning the meal, she remembers the following: 

I once served tomato tart (made from mozzerella cheese, tomatoes, Dijon mustard, basil, and 
pepper, all in a pie crust) as the main dish during the summer when I had vegetarians come for 
dinner. It was delicious and easy to make. But I can't serve that to Elana (the one allergic to 
milk). 

I have adapted recipes for Elana before by substituting tofu products for cheese. I could do 
that, but I don't know how good the tomato tart will taste that way. 

She decides not to serve tomato tart and continues planning. Since it is summer, 
she decides that grilled fish would be a good main course. But now she 
remembers something else. 

Last time I tried to serve Anne grilled fish, she wouldn't eat it. I had to put hotdogs on the grill 
at the last minute. 

This suggests to her that she shouldn't serve fish, but she wants to anyway. She 
considers whether there is a way to serve fish that Anne will eat. 

I remember seeing Anne eat mahi-mahi in a restaurant. I wonder what kind of fish she will eat. 
The fish I served her was whole fish with the head on. The fish in the restaurant was a fillet 
and more like steak than fish. I guess I need to serve a fish that is more like meat than fish. 
Perhaps swordfish will work. I wonder if Anne will eat swordfish. Swordfish is like chicken, 
and I know she eats chicken. 
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4 JANET L. KOLODNER 

Here she is using examples and counterexamples of a premise (Anne doesn't eat 
fish) to try to derive an interpretation of the premise that stands up to scrutiny. 

The hypothetical host is employing Case-Based Reasoning (CBR) (e.g., 
Hammond 1989c, Kolodner 1988a, Riesbeck and Schank 1989) to plan a meal. 
In case-based reasoning, a reasoner remembers previous situations similar to 
the current one and uses them to help solve the new problem. In the example 
above, remembered cases are used to suggest a means of solving the new 
problem (e.g., to suggest a main dish), to suggest a means of adapting a solution 
that doesn't quite fit (e.g., substitute a tofu product for cheese), to warn of 
possible failures (e.g., Anne won't eat fish), and to interpret a situation (e.g., why 
didn't Anne eat the fish, will she eat swordfish?). 

Case-based reasoning can mean adapting old solutions to meet new de­
mands; using old cases to explain new situations; using old cases to critique new 
solutions; or reasoning from precedents to interpret a new situation (much like 
lawyers do) or create an equitable solution to a new problem (much like labor 
mediators do). 

If we watch the way people around us solve problems, we are likely to 
observe case-based reasoning in use all around us. Attorneys are taught to use 
cases as precedents for constructing and justifying arguments in new cases. 
Mediators and arbitrators are taught to do the same. Other professionals are 
not taught to use case-based reasoning, but often find that it provides a way to 
solve problems efficiently. Consider, for example, a doctor faced with a patient 
who has an unusual combination of symptoms. If he's seen a patient with similar 
symptoms previously, he is likely to remember the old case and propose the old 
diagnosis as a solution to his new problem. If proposing those disorders was 
time-consuming previously, this is a big savings of time. Of course, the doctor 
can't assume the old answer is correct. He/she must still validate it for the new 
case in a way that doesn't prohibit considering other likely diagnoses. Neverthe­
less, remembering the old case allows him to generate a plausible answer easily. 

Similarly, a car mechanic faced with an unusual mechanical problem is likely 
to remember other similar problems and to consider whether their solutions 
explain the new one. Doctors evaluating the appropriateness of a therapeutic 
procedure or judging which of several are appropriate are also likely to 
remember instances using each procedure and to make their judgements based 
on previous experiences. Problem instances of using a procedure are particu­
larly helpful here; they tell the doctor what could go wrong, and when an 
explanation is available explaining why the old problem occurred, they focus the 
doctor in finding out the information he needs to make sure the problem won't 
show up again. We hear cases being cited time and again by our political leaders 
in explaining why some action was taken or should be taken. And many 
management decisions are made based on previous experience. 

Case-based reasoning is also used extensively in day-to-day common-sense 
reasoning. The meal planning example above is typical of the reasoning we all 
do from day to day. When we order a meal in a restaurant, we often base 
decisions about what might be good on our other experiences in that restaurant 
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CASE-BASED REASONING 5 

and those like it. As we plan our household activities, we remember what 
worked and didn't work previously, and use that to create our new plans. A 
childcare provider mediating an argument between two children remembers 
what worked and didn't work previously in calming such situations, and bases 
her suggestion on that. 

In general, the second time solving some problem or doing some task is 
easier than the first because we remember and repeat the previous solution. We 
are more competent the second time because we remember our mistakes and go 
out of our way to avoid them. 

The quality of a case-based reasoner's solutions depends on four things: 
• the experiences it's had, 
• its ability to understand new situations in terms of those old experiences, 
• its adeptness at adaptation, and 
• its adeptness at evaluation. 

The less experienced reasoner will always have fewer experiences to work 
with than the more experienced one. But, as we shall see, the answers given by a 
less experienced reasoner won't necessarily be worse than those given by the 
experienced one if he is creative in his understanding and adaptation. Any 
programs we write to automatically do case-based reasoning will need to be 
seeded with a representative store of experiences. Those experiences (cases) 
should cover the goals and subgoals that arise in reasoning and should include 
both successful and failed attempts at achieving those goals. Successful attempts 
will be used to propose solutions to new problems. Failed attempts will be used 
to warn of the potential for failure. 

The second, that of understanding a new problem in terms of old experiences 
has two parts: recalling old experiences and interpreting the new situation in 
terms of the recalled experiences. The first we call the indexing problem. In 
broad terms, it means finding in memory the experience closest to a new 
situation. In narrower terms, we often think of it as the problem of assigning 
indexes to experiences stored in memory so that they can be recalled under 
appropriate circumstances. Recalling cases appropriately is at the core of case­
based reasoning. 

Interpretation is the process of comparing the new situation to recalled 
experiences. When problem situations are interpreted, they are compared and 
contrasted to old problem situations. The result is an interpretation of the new 
situation, the addition of inferred knowledge about the new situation, or a 
classification of the situation. When new solutions to problems are compared to 
old solutions, the reasoner gains an understanding of the pros and cons of doing 
something a particular way. We generally see interpretation processes used 
when problems are not well understood and when there is a need to criticize a 
solution. When a problem is well understood, there is little need for interpretive 
processes. 

The third, adaptation, is the process of fixing up an old solution to meet the 
demands of the new situation. Eight methods for adaptation have been identified. 
They can be used to insert something new into an old solution, to delete 
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something, or to make a substitution. Applying adaptation strategies straight­
forwardly results in competent but often unexciting answers. Creative answers 
result from applying adaptation strategies in novel ways. 

One of the hallmarks of a case-based reasoner is its ability to learn from its 
experiences, as a doctor might do when he caches a hard-to-solve problem so 
that he can solve it easily another time. In order to learn from experience, a 
reasoner requires feedback so that it can interpret what was right and wrong 
with its solutions. Without feedback, the reasoner might get faster at solving 
problems but would repeat its mistakes and never increase its capabilities. Thus, 
evaluation and consequent repair are important contributors to the expertise of 
a case-based reasoner. Evaluation can be done in the context of the outcomes 
of other similar cases, can be based on feedback or can be based on simulation. 

I. REASONING USING CASES 

There are two styles of case-based reasoning: problem solving and interpretive. 
In the problem solving style of case-based reasoning, solutions to new problems 
are derived using old solutions as a guide. Old solutions can provide almost­
right solutions to new problems and they .can provide warnings of potential 
mistakes or failures. In the example above, cases suggest tomato tart as a main 
dish, a method of adapting tomato tart for those who don't eat cheese, and a 
type of fish that Anne will eat. A case also warns of the potential for a failure -
Anne won't eat certain kinds of fish. 

In the interpretive style, new situations are evaluated in the context of old 
situations. A lawyer, for example, uses interpretive case-based reasoning when 
he uses a series of old cases to justify an argument in a new case. But interpre­
tive CBR can also be used during problem solving, as we saw the host in our 
initial example do when trying to justify serving swordfish to a guest known not 
to like some kinds of fish. 

As we shall see, both styles of case-based reasoning depend heavily on a case 
retrieval mechanism that can recall useful cases at appropriate times, and in 
both, storage of new situations back into memory allows learning from experi­
ence. The problem solving style is characterized by heavy use of adaptation 
processes to generate solutions and interpretive processes to judge derived 
solutions. The interpretive style uses cases to provide justifications for solutions, 
allowing evaluation of solutions when no clear-cut methods are available and 
interpretation of situations when definitions of the situation's boundaries are 
open-ended or fuzzy. We will show examples of both kinds of· case-based 
reasoning in this section and discuss the applicability of both. 

1.1. CBR and Problem Solving 

The host in the initial example used problem solving case-based reasoning to 
propose tomato tart as the main dish and to suggest a means of adapting it to 
suit the guest allergic to milk products. Also as part of the problem solving 
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process, she used a remembered case to anticipate that one of the guests would 
not eat fish, causing her to plan around that problem. 

Problem solving case-based reasoning is useful for a wide variety of problem 
solving tasks, including planning, diagnosis, and design. In each of these, cases 
are useful in suggesting solutions and in warning of possible problems that 
might arise. 

1.1.1. CBR for design 
We can view the meal planning example as a kind of design problem. In design, 
problems are defined as a set of constraints, and the problem solver is required 
to provide a concrete artifact that solves the constraint problem. Usually the 
given constraints underspecify the problem, i.e., there are many possible solu­
tions. Sometimes, however, the constraints overconstrain the problem, i.e., there 
is no solution if all constraints are fulfilled. In that case, solving the problem 
requires respecifying the problem so that the most important constraints are 
fulfilled and other are compromised. 

Consider, for example, the meal planner in the initial example. She must 
satisfy the likes and dislikes of her guests, must keep the meal inexpensive, must 
make the meal hearty, and must use tomatoes. In addition, she must make the 
main and side dishes compatible with each other, must not repeat major ingre­
dients across dishes, must make the appetizer complement the rest of the meal, 
etc. Many different meals would do this. For example, vegetarian lasagne would 
work as a main dish if one tray were made with tofu instead of cheese. And any 
number of side dishes and appetizers would complement it. Several other pasta 
dishes would also suffice as main dishes, each with any number of side dishes 
and appetizers to complement it. A combination of main dishes, one of which 
would satisfy the meat-and-potatoes people, another the vegetarians, etc., and 
complementary side dishes and appetizers would also work. With so many 
options, where should the planner begin? 

Suppose now that this meal planner remembers a meal she served to a large 
group of people. It was easy to make in large quantities, inexpensive, hearty, 
and used tomatoes. In that meal, she served antipasto, lasagne, a large green 
salad, and garlic bread. Only this time, she has vegetarians corning for dinner 
and one guest is allergic to milk products. The lasagne can be adapted to better 
fit the new situation by taking out the meat. The antipasto can be adapted by 
substituting tuna for the meat. This will satisfy all constraints except the one 
specifying that one guest doesn't eat dairy products. The meal can be further 
adapted such that in one tray of lasagne, tofu cheese substitute is used instead 
of cheese. This adaptation of the old menu is now suitable for the new situation. 

This is an example of an underconstrained problem. The constraints provide 
guidelines but don't point the reasoner toward a particular answer. In addition, 
the search space is huge, and while there are many answers that would suffice, 
they are sparse enough within the search space that standard search methods 
might spend a long time finding one. Furthermore, the problem is too big to 
solve in one chunk, but the pieces of the problem interact with each other in 
strong ways. Solving each of the smaller pieces of the problem in isolation and 
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putting it all bcrck together again would almost always violate the interactions 
between the parts. 

For these kinds of problems, which I like to call hardly decomposable, cases 
can provide the glue that holds a solution together. Rather than solving the 
problems by decomposing them into parts, solving for each, and recomposing 
the parts, as can be done with nearly-decomposable problems, a case suggests 
an entire solution, and the pieces that don't fit the new situation are adapted. 
While considerable adaptation might be necessary to make an old solution fit a 
new situation, this methodology is almost always preferable to generating a 
solution from scratch when there are many constraints and when solutions to 
parts of problems cannot be easily recomposed. In fact, engineering and 
architectural design is almost entirely a process of adapting an old solution to fit 
a new situation or merging several old solutions to do the same. 

Solving a problem by adapting an old solution allows the problem solver to 
avoid dealing with many constraints, and keeps it from having to break the 
problem into pieces needing recomposition. For example, the compatibility of 
the main and side dishes is never considered while solving the problem since 
the old case provides that. Nor are ease of preparation, expense, or heartiness 
considered in generating a solution. The old case provides solutions to those 
constraints also. The problem is never broken into parts that need to be recom­
posed. Rather, faulty components are corrected in place. 

The other major role of cases in design, as for all problem solving tasks, is to 
point out problems with proposed solutions. When the meal planner remembers 
the meal where Anne didn't eat fish, it is warned of the potential that its 
proposed solution will fail. 

Several problem solvers have been built to do case-based design. JULIA 

(Kolodner 1987, Hinrichs 1988, Hinrichs 1989) plans meals, and the examples 
shown above are all among those JULIA has solved. CYCLOPS (Navinchandra 
1988) uses case-based reasoning for landscape design. KRITIK (Goel1989, Goel 
and Chandrasekaran 1989) combines case-based with model-based reasoning 
for design of small mechanical assemblies. It uses case-based reasoning to 
propose solutions and uses the model to verify its proposed solutions, to point 
out where adaptation is needed, and to suggest adaptations. 

At least one design problem solver is being put to use in the real world. 
CLAVIER (Barletta and Hennessy 1989) is being used at Lockheed to lay out 
pieces made of composite materials in an oven to bake. The task is a apparently 
a black art, i.e., there is no complete causal model of what works and why. 
Pieces of different sizes need to be in particular parts of the oven, but the size 
of some pieces and density of a layout might keep other pieces for heating 
correctly. The person who was in charge of layout kept a card file of his 
experiences, both those that worked and those that didn't. Based on those 
experiences, CLAVIER can place pieces in appropriate parts of the oven and 
avoid putting pieces in the wrong places. It works as well as the expert whose 
experiences it uses, and is thus useful to Lockheed when the expert is unavail­
able. CLAVIER almost always uses several cases to do its design. One provides 
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an overall layout, which is adapted appropriately. The others are used to fill in 
holes in the layout that adaptation rules by themselves cannot cover. 

One can also look at mediation as a kind of design in which the problem 
specification is overconstrained rather than underconstrained. In mediation, two 
adversaries have conflicting goals. It is impossible to fulfill the entire set of goals 
of either side. The role of the mediator is to derive a compromise solution that 
partially achieves the goals of both adversaries as well as possible. 

In solving overconstrained problems, the design specifications must be 
respecified while solving the problem. When overconstrained problems are 
solved by constraint methods, many different ways of relaxing constraints must 
usually be attempted before settling on a set that work. When case-based 
reasoning is used, a close solution to the constraint relaxation problem is 
provided by the remembered case, and it is adapted. MEDIATOR (Simpson 
1985, Kolodner and Simpson 1989), the earliest case-based problem solver, 
solved simple resource disputes, e.g., two children wanting the same candy bar 
or two faculty members wanting to use the copy machine at the same time. 
PERSUADER (Sycara 1987) solved labor management disputes. In generating 
solutions to new labor-management disputes, PERSUADER first applied parame­
ter adjustment strategies to the best old solution it remembered to make 
relatively easy changes in an old contract, the kind that must be made all the 
time, e.g., cost of living adaptations. This resulted in a ballpark solution. It then 
applied special purpose critics to evaluate the ballpark solution in order to 
identify more specialized problems with an old contract, e.g., to recognize 
whether or not the company could afford the contract. It then adapted the 
ballpark solution appropriately either by using an adaptation strategy suggested 
by another case, or by applying another specialized set of critics. Finally, it used 
another special purpose set of critics to adapt the solution in order to com­
pensate for any changes that upset the equity of the old solution. 

In almost all design problems, more than one case is necessary to solve the 
problem. Design problems tend to be large, and while one case can be used to 
solve some of it, it is usually not sufficient for solving the whole thing. In 
general, some case provides a framework for a solution and other cases are 
used to fill in missing details. In this way, decomposition and recomposition are 
avoided, as are large constraint satisfaction and relaxation problems. 

1.1.2. CBR for planning 
Planning is the process of coming up with a sequence of steps or schedule for 
achieving some state of the world. The state that must be achieved may be 
designated in concrete terms, as in e.g., designating the end state for the Tower 
of Hanoi problem (configure the game board such that diskl is on top of disk2 
is on top of disk3 and all are on peg3) or describing the end result of making a 
delivery (the box labeled 'Klein' should be on the Klein driveway). Or it can be 
designated in terms of constraints that must be satisfied, as in e.g., scheduling 
the gates at an airport (each flight should be assigned a gate, no two flights 
should be at a gate at once, no on-time flight should have to wait for a gate, ... ). 
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In the first case, the end product of the planning process is a set of steps. In the 
second, the end product is a schedule or state of the world, but a planning 
process must be used to create it. 

An early case-based planner was CHEF (Hammond 1989a). CHEF created 
new recipes based on those it already knew about. For example, in creating a 
recipe that combined beef and broccoli, it remembered its recipe for chicken 
and snow peas and adapted that recipe appropriately. First, beef was substituted 
for chicken and broccoli for snow peas. Then, the set of steps used to create 
chicken and snow peas was fixed. Since beef has no bone, the deboning step 
was deleted. Since broccoli takes longer to cook than snow peas, the time 
designation was changed in the step where the vegetable was cooked. 

There are many problems that must be dealt with in planning. First is the 
problem of protections. Good plans are sequenced, whenever possible, such 
that late steps in the plan don't undo the results of earlier steps and so that 
preconditions of late steps in the plan are not violated by the results of earlier 
steps. (See Charniak and McDermott (1985) for an excellent explanation of 
these problems.) This requires that the effects of plan steps be projected into 
the future (the rest of the plan). Second is the problem of preconditions. A 
planner must make sure that preconditions of any plan step are fulfilled before 
scheduling that plan step. Thus, planning involves scheduling steps that achieve 
preconditions in addition to scheduling major steps themselves. These two 
problems together, when solved by traditional methods, require considerable 
computational effort. As the number of plan steps increases, the computational 
complexity of projecting effects and comparing preconditions increases expo­
nentially. 

Case-based reasoning deals with these problems by providing plans that have 
already been used and in which these problems have already been worked out. 
The planner is required only to make relatively minor fixes in those plans rather 
than having to plan from scratch. A recipe, for example, provides an ordering of 
steps that plans for and protects preconditions of each of its steps. 

Case-based reasoning also suggests solutions to more complex planning 
problems. (See Marks, Hammond, and Converse (1989) for a nice explanation 
of these problems.) For example, in the real world, the number of goals compet­
ing for achievement at any time is quite high, and new ones are formed in the 
normal course of activity. If we try to achieve each one independently of the 
others, then planning and execution time are at least the sum of achieving each 
one, and probably more because of interactions. If a planner can notice the 
possibility of achieving several goals simultaneously or in conjunction with each 
other, this complexity can be cut significantly. Case-based reasoning provides a 
method for doing this. Previously-used plans are saved and indexed by the 
conjunction of goals they achieve. If the conjunct of goals is repeated, the old 
plan that achieves them together can be recalled and repeated. 

Another set of complexities that crop up in planning come from dealing with 
the relationship between planning and execution in a realistic way. While the 
traditional view of planning, as suggested above, was that a planner would 
create a plan (sequence of steps) to be executed later, the newer view of 
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planning says that planning and execution must be combined. That is, we cannot 
expect a well-thought-out sequence of steps to work when executed in the real 
world. There are several reasons for this. First, it is unrealistic to think that all 
knowledge needed to plan well is known at the start of planning - we often find 
things out as we go along, and some things we never know for sure. Second, the 
world is unpredictable. Unexpected interruptions crop up (e.g., a fire alarm 
rings in the middle of doing some task). Agents who were unknown at the time 
of planning change things in an unexpected way (e.g., someone buys all the nails 
of a particular kind that you needed for your plan and they are unavailable). 
And we can't predict the actions of known agents all the time (e.g., someone 
else in the family got hungry for chocolate and ate the chocolate chips you were 
planning to use in your baking). In general, conditions in the world can change 
between coming up with a plan and carrying it out. 

This requires that our planners be able to put off at least some planning until 
execution time when more is known and that they be able to do execution-time 
repairs on already-derived plans that cannot be carried out. In addition, if the 
planner can anticipate execution-time problems, fewer repairs will have to be 
done at execution time. 

Case-based reasoners are addressing many of these issues. PLEXUS (Alterman 
1988), a program that knows how to ride a subway, is able to do execution-time 
repairs by adapting and substituting semantically-similar steps for those that 
have failed. For example, when riding the New York subway, having ridden 
BART in the past, PLEXUS expects to find a machine to buy a ticket from. When 
it doesn't see one, it finds another plan that would achieve the same purpose as 
buying a ticket from a machine. It does this by finding an appropriate sibling or 
close cousin of the violated plan step in its semantic network. It attempts to 
substitute another ticket-buying plan it knows about, buying tickets from a 
cashier (as is done to get into the movies). It adapts that plan by substituting 
token for ticket, since it is a token that is necessary in the New York subway. 

CHEF (Hammond 1989a) addresses the problem of anticipating problems 
before execution time by learning from its problematic experiences. When 
problems happen at execution time, CHEF attempts to explain them and then to 
figure out how they could be repaired. It stores its hypothesized repair in 
memory, and indexes the case by features that are likely to predict that the 
problem will recur. Before it begins plan derivation, it looks for failure situa­
tions and uses any it finds to anticipate the problems they point out. Later, it 
uses the repaired failure situations to suggest a plan that will avoid the problem 
it has anticipated. Once, for example, CHEF created a strawberry souffle by 
modifying a receipt for a vanilla souffle. When it made the strawberry souffle, 
the souffle did not rise. It explained the failure to rise as an imbalance in the 
amount of leavening and liquid with too much liquid. Since one way to get rid 
of extra liquid is to pour it off, it hypothesized that had it poured off the extra 
liquid created when the strawberries were pulped, the souffle would have risen. 
It indexed the whole case as a souffle with fruit. The next time it attempted to 
make a souffle with fruit, it remembered this case before attempting planning, 
warning it of the potential for an imbalance between liquid and leavening. 
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During planning, the repaired strawberry souffle recipt suggested pouring off 
the liquid created by pulping the fruit. 

Other case-based planners address other of these problems. TRUCKER (Ham­
mond 198 9t>) is an errand running program that keeps track of its pending 
goals and is able to take advantage of opportunities that arise that allow it to 
achieve goals earlier than expected. MEDIC (Turner 1989) is a diagnosis pro­
gram. It is able to reuse previous plans for diagnosis but is flexible enough in its 
reuse to be able to follow up on unexpected turns of events. Thus, if it is 
tracking down a pulmonary complaint and the patient offers information about 
a heart condition that it had not known about previously, MEDIC analyzes which 
is . more important to follow up. If it turns out the heart problem is more 
important, MEDIC will interrupt its current diagnosis plan and move to the 
more appropriate one, and will return to the original one if appropriate later. 
EXPEDITOR plans the events in the life of a single parent who must deal with 
kids and work. It caches its experiences achieving multiple goals by interleaving 
them. While it is slow in its initial planning, it gains competence over time as it 
is able to reuse its plans. Finally, the CSI BATTLE PLANNER (Goodman 1989) 
shows how cases can be used to criticize and repair plans before they are 
executed. 

1.1.3. CBRfordiagnosis 
In diagnosis, a problem solver is given a set of symptoms and asked to explain 
them. When there are a small number of possible explanations, one can view 
diagnosis as a classification problem. When the set of explanations cannot be 
enumerated easily, we can view diagnosis as the problem of creating an explana­
tion. A case-based diagnostician can use cases to suggest explanations for 
symptoms and to warn of explanations that have been found to be inappro­
priate in the past. The following example is from an early case-based reasoning 
project called SHRINK (Kolodner and Kolodner 1987), designed to be a psy­
chiatric diagnostician. 

A psychiatrist sees a patient who exhibits clear signs of Major Depression. The patient also 
reports, among other things, that she recently had a stomach problem that doctors could find 
no organic cause for. While random complaints are not usually given a great deal of attention 
in psychiatry, this time the doctor is reminded of a previous case in which he diagnosed a 
patient for Major Depression who also complained of a set of physical problems that could 
not be explained organically: Only later did he realize that he should also have taken those 
complaints into account; he then made the diagnosis of Somatization Disorder with Secondary 
Major Depression. Because he is reminded of the previous case, the psychiatrist hypothesizes 
that this patient too might have Somatization Disorder with Depression secondary to that and 
follows up that hypothesis with the appropriate diagnostic investigation. 

Here the doctor uses the diagnosis from the previous case to generate a hy­
pothesis about the diagnosis in the new case. This hypothesis provides the 
doctor with a reasoning shortcut and also allows him to avoid the mistake made 
previously. In addition, the hypothesis from the previous case causes him to 
focus his attention on aspects of the case that he would not have considered 
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otherwise: the unexplainable physical symptoms associated with Somatization 
Disorder. 

Of course. one cannot expect a previous diagnosis to apply intact to the new 
case. Just as in planning and design. it is often necessary to adapt an old 
diagnosis to fit a new situation. CASEY (Katon 1988) was able to diagnosis heart 
problems by adapting the diagnoses of previous heart patients to new patients. 

For example. when CASEY was trying to diagnose a patient Newman, it was 
reminded of another patient David. While both shared many symptoms, there 
were also differences between them. Newman. for example. had calcified heart 
valves and syncope on exertion. while David did not. CASEY adapted the 
diagnosis for David to account for these differences. Newman's aortic valve 
calcification was inserted as a additional evidence for aortic valve disease, his 
syncope was inserted as additional evidence for limited cardiac output, and 
mitral valve disease was added to the diagnosis. 

CASEY is a relatively simple program built on top of an existing model-based 
diagnostic program. When a new case is similar to one it has seen previously, it 
is several orders of magnitude more efficient at generating a diagnosis than is 
the model-based program (Koton 1988). And. because its adaptations are based 
on a valid causal model. its diagnoses are as accurate as those made from 
scratch based on the same causal model. 

Cases are also useful in diagnosis in pointing the way out of previously­
experienced reasoning quagmires. While this normally happens as a side effect 
of SHRINK's and CASEY's reasoning. PROTOS (Bariess 1989) is designed to 
ensure that this happens in an efficient way. PROTOS diagnoses hearing dis­
orders. In this domain. many of the diagnoses manifest themselves in similar 
ways. and only subtle differences differentiate them. A novice is not aware of 
the subtle differences: experts are. PROTOS begins as a novice, and when it 
makes mistakes. a 'teacher' explains its mistakes to it. As a result, PROTOS learns 
these subtle differences. As it does. it leaves difference pointers in its memory 
that allow it to move easily from the obvious diagnosis to the correct one. In 
one problem it worked on. for example PROTOS thought that its new case was 
an instance of cochlear-age. When it examined the most prototypical case of 
cochlear-age. however. it was not a very good match. However, it there was a 
difference link labeled notch-at-4k connecting that case to another case whose 
diagnosis was cochlear-age-and-noise. Since the new case had the feature notch­
at-4k. it followed that link. found a case very similar to its new one. and was 
able to make a valid diagnosis first time around. 

Generating a diagnosis from scratch is a time-consuming task. In almost all 
diagnostic domains. however. there is sufficient regularity for a case-based 
approach to diagnosis generation to provide efficiency. Of course, the diagnos­
tician cannot assume that a case-based suggestion is the answer. The case-based 
suggestion must be validated. Often. however, validation is much easier than 
generation. In those kinds of domains. case-based reasoning can provide big 
wins. 
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1.1.4. CBRforexplanation 
Explaining anomalies is prevalent in all of our problem solving and under­
standing activities as people. If we read in the paper about a plane crash, we try 
to explain why it happened. If we fail at something we are doing, we try to 
explain what went wrong so we won't repeat it. If we hear of someone doing 
something unexpected, we try to explain it. Explanation has been called the 
credit assignment problem and the blame assignment problem, depending on 
whether one is explaining a success or a failure. In general, it is the problem of 
zeroing in on or identifying what was responsible for something that happened. 
It is a problem that the AI world has been grappling with for some time. 

A case-based approach to explanation (Schank, 1986) says that one can 
explain a phenomenon by remembering a similar phenomenon, borrowing its 
explanation, and adapting it to fit. The SWALE (Kass and Leake 1988) program 
does just that. When it hears that Swale, a racehorse in the prime of its life, died 
in its stall, it remembers several similar situations, each of which allows it to de­
rive an explanation for the Swale case. When it remembers Jim Fixx dying of a 
heart attack after a run, it considers whether Swale had just been out for a run 
and if he had a heart condition that his owners had been unaware of. When it 
remembers Janis Joplin, it considers whether Swale was taking illicit drugs. 
Some explanations it can derive in this way are more plausible than others and 
some require more adaptation than others. For example, in considering the 
Janis Joplin explanation, it must also come up with someone who wanted Swale 
to have the drugs (Joplin wanted them herself, but a horse can't) and a reason 
why that person would want Swale to have the drugs. This requires quite a bit 
more inference than an explanation based on the Jim Fixx experience. 

Thus, case-based explanation requires a retrieval mechanism that can retrieve 
similar cases, an adaptation mechanism that must be quite creative, and a 
validation mechanism that can decide if a proposed explanation has any merit. 

1.2 Interpretive CBR 

Interpretive case-based reasoning is a process of evaluating situations or solu­
tions in the context of previous experience. It takes a situation or solution as 
input, and its output is a classification of the situation, an argument supporting 
the classification or solution, and/ or justifications supporting the argument or 
solution. It is useful for: situation classification, evaluation of a solution, argu­
mentation, justification of a solution, interpretation, or plan, and projection of 
effects of a decision or plan. 

Supreme Court justices use interpretive case-based reasoning when they 
make their decisions. They interpret a new case in light of previous cases. Is this 
case like the old one? How is it the same? How is it different? Suppose we 
interpret it in some way, what are its implications. Lawyers use interpretive 
case-based reasoning when they use cases to justify arguments. 

People on the street use interpretive case-based reasoning every day. The 
child who says, 'But you let sister do it', is using a case to justify his/her argu­
ment. Managers making strategic decisions base their reasoning on what's been 
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true in the past. And we often use interpretive case-based reasoning to evaluate 
the pros and cons of a problem solution. An arbitrator, for example, who has 
just come up with a salary for a football player, might look at other players with 
similar salaries to judge if this new salary is consistent with other salary deci­
sions. A battle planner might look at battles where strategies similar to the one 
he has just chosen were used to project the effects of his chosen strategy. 

Interpretive case-based reasoning is most useful for evaluation when there 
are no computational methods available to evaluate a solution or position. 
Often, in these situations, there are so many unknowns that even if computa­
tional methods were available, the knowledge necessary to run them would 
usually be absent. A reasoner who uses cases to help evaluate and justify 
decisions or interpretations is making up for his lack of knowledge by assuming 
that the world is consistent. 

We briefly discuss three tasks where interpretive case-based reasoning is 
useful: justification, interpretation, and projection. In justification, one shows 
cause or proof of the rightness of an argument, position, or solution. In inter­
pretation, one tries to place a new situation in context. Projection means 
predicting the effects of a solution. All of these tasks share the common thread 
of argumentation. Some cases will support one interpretation or effect. Others 
will support a different one. The reasoner must compare and contrast the cases 
to each other to finally come up with a solution. 

1.2.1. Justification and adversarial reasoning 
Adversarial reasoning means making persuasive arguments to convince others 
that we or our positions are right. Lawyers argue adversarially on a day to day 
basis. So do the rest of us as we try to convince others of our position on some 
issue. We also argue adversarily with ourselves when trying to convince our­
selves of the quality or utility of some solution we have just derived. In making a 
persuasive argument, we must state a position and support it, sometimes with 
hard facts and sometimes with valid inferences. But often the only way to justify 
a position is by citing relevant previous experiences or cases. 

The American legal system is a case-based system. There are many rules, but 
each has terms that are underspecified and many contradict each other. The 
definitive way of interpreting laws is to argue based on cases. Law thus provides 
a good domain for the study of adversarial reasoning and case-based justifica­
tion. Much of the work in this area is in the legal domain (Rissland 1983, Bain 
1986, Ashley 1987, 1988, Branting 1989,). 

HYPO (Ashley, 1988, Rissland and Ashley 1987) is the earliest and most 
sophisticated of the case-based legal reasoners. HYPO's methods for creating an 
argument and justifying a solution or position has several steps. First, the new 
situation is analyzed for relevant factors. Based on these factors, similar cases 
are retrieved. They are positioned with respect to the new situation. Some 
support it and some are against it. The most on-point cases of both sets are 
selected. The most on-point case supporting the new situation is used to create 
an argument for the proposed solution. Those in the non-support set are used 
to pose counter-arguments. Cases in the support set are then used to counter 
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the counter-arguments. The result of this is a set of three-ply arguments in 
support of the solution, each of which is justified with cases. An important side 
effect of creating such arguments is that potential problem areas get highlighted. 

Consider, for example, a non-disclosure case that HYPO argued.1 John Smith 
had developed a structural analysis program called NIESA while an employee of 
SDRC. He had generated the idea for the program and had been completely re­
sponsible for its development. When joining SDRC, he had signed an Employee 
Confidential Information Agreement in which he agreed not to divulge or use 
any confidential information. Upon leaving SDRC, he went to work for EMRC 
as VP for engineering. Eleven months later, EMRC began marketing a structural 
analysis program called NIESA. Smith had used his development notes from 
SDRC's NIESA program in developing the new program. SDRC had disclosed 
parts of the NIESA code to some fifty customers. Now, SDRC is suing John Smith 
for violations of the non-disclosure agreement. 

HYPO is arguing for the defendant (SDRC). It uses the factors present in this 
case to pose a set of questions that must be answered: Did disclosure of NIESA 
code to 50 customers annul John Smith's non-disclosure agreement? Did the 
fact that Smith was the sole developer annul the non-disclosure agreement? 
Several cases are recalled, and an argument is made based on Midland-Ross v. 
Sunbeam that, since the plaintiff disclosed its product information to outsiders, 
the defendant should win a claim for trade secrets misappropriation. However, 
a counter-argument can be created based on differences between the two cases. 
In the Midland-Ross case, there was disclosure to many more outsiders, and the 
defendant received something of value for entering into the agreement. This 
point can be supported by Data General v. Digital Computer, where the 
plaintiff won, even though it had disclosed to more outsiders than in the 
Midland-Ross case. However, a rebuttal is made based on that case. In that case 
the defendant won because the disclosures were restricted. In this case, dis­
closure was to the sole developer of the new product. 

We see similar argumentation and justification in day-to-day argumentation. 
For example,2 we would expect an almost-thirteen year old who is told by his 
parents that he cannot to go see a midnight showing of Little Shop of Horrors to 
use all the cases at his disposal to plead his case. If his friend, who is already 13, 
is allowed to see it, he will cite that case in his favor. If his sister has been 
allowed to go at midnight to see it, he will cite that. And as his parents give their 
arguments, he will use other cases to counter those. 

In general, cases are useful in constructing arguments and justifying positions 
when there are no concrete principles or only a few of them, if principles are 
inconsistent, or if their meanings are not well-specified. 

1.2.2. Classification and interpretation 
Is swordfish a fish Anne will eat or isn't it? This is the interpretive question the 
reasoner in the example at the beginning of this chapter must face. In general, 
interpretation in the context of case-based reasoning means deciding whether a 
concept fits some open-ended or fuzzy-bordered classification. The classifica­
tion might be derived on the fly (e.g., types of fish Anne will eat) or it might be 
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well-known but not well-defined in terms of necessary and sufficient conditions. 
Many of the classifications we assume are defined are classifications of the 
open-ended variety. For example, we assume that a vehicle means a thing with 
wheels used for transportation. but when a sign says 'No vehicles in the park'. it 
is probably not referring to a wheelchair or a baby stroller. both of which fit our 
simple definition. Making such distinctions is much of what lawyers are asked to 
do everyday. Similarly, when a physician must determine if someone is schizo­
phrenic or an audiologist must determine if someone has a particular hearing 
disorder, the recognition process is fraught with ambiguity. There are many 
ways schizophrenia can show itself. and necessary and sufficient conditions 
don't say how to deal with the borderline cases. And. as we see in the swordfish 
example, we are called on to do interpretive reasoning quite often as we do our 
everyday common-sense tasks. 

One way a case-based classifier works is to ask whether the new concept is 
enough like another one known to have the target classification. PROTOS 

(Bareiss, 1989), which diagnoses hearing disorders, works like this.3 Rather 
than classifying new cases using necessary and sufficient conditions, PROTOS 

does classification by trying to find the closest matching case in its case base to 
the new situation. It classifies the new situation by that case's classification. To 
do this, PROTOS keeps track of how prototypical each of its cases is and what 
differentiates cases within one classification from each other. It first chooses a 
most likely classification, then chooses a most likely matching case in that class. 
Based on differences between the case it is attempting to match and the new 
situation, it eventually zeros in on a case that matches its new one well. 

When no case matches well enough. it is sometimes necessary to consider 
hypothetical situations. Much of the work on this type of interpretation comes 
from the study of legal reasoning. Suppose, for example, that a lawyer must 
argue that his client was not guilty of violating a nondisclosure agreement 
because the only one he disclosed to was not technically competent to copy it. 
There may be several cases that justify this argument. To test it, one might 
create hypothetical cases that go beyond the real cases in testing boundaries. 
One might propose a situation where the person disclosed to was not technical 
but was president of a company with technical personnel. Another hypothetical 
might be one in which the person disclosed to was not technicaL but his wife, 
who he disclosed to, was. Interpretation based on hypothetical cases helps in 
fine-tuning an argument for or against a particular interpretation. 

This is what HYPO (Rissland 1986, Ashley 198 7) does. HYPO is the earliest 
and most sophisticated of the interpretive case-based reasoners. HYPO uses 
hypotheticals for a variety of tasks necessary for good interpretation: to redefine 
old situations in terms of new dimensions, to create new standard cases when a 
necessary one doesn't exist, to explore and test the limits of reasonableness of a 
concept, to refocus a case by excluding some issues, to tease out hidden 
assumptions, and to organize or cluster cases. HYPO creates hypotheticals by 
making 'copies' of a current situation that are stronger or weaker than the real 
situation for one side or the other. This work is guided by a set of modification 
heuristics that propose useful directions for hypothetical case creation based on 
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current reasoning needs. HYPO's strategies for argumentation guide selection of 
modification heuristics. For example, to counter a counterexample, one might 
propose variations on a new situation that make it more like the counterexample. 

When a concept is being created on the fly, interpretation requires an 
additional step: derivation of a set of defining features for a category. For 
example, to decide if Anne will eat swordfish, one must first attempt to charac­
terize what makes a fish Anne will eat acceptable. Otherwise, the basis for 
comparing swordfish to other fish she will eat cannot be known. Mahi-mahi, a 
fish she has eaten, is meat-like. Trout, which she won't eat, looks like fish. These 
are the dimensions we need to use in determining if swordfish is in the category. 
It is easy for us to determine what those dimensions are, but getting a computer 
to do it automatically is a challenge equivalent to the credit assignment problem. 

1.2.3. Projecting effects 
Projection, the process of predicting the effects of a decision or plan, is an 
important part of the evaluative component of any planning or decision making 
scheme. When everything about a situation is known, projection is merely a 
process of running known inferences forward from a solution to see where it 
leads. More often, however, in real-world problems, everything is not known 
and effects cannot be predicted with accuracy based on any simple set of 
inference rules. 

Consider, for example, a battlefield commander who must derive a strategy 
for an upcoming battle. Doctrine provides a set of rules for doing battle, and 
they can be used to create a first approximation of a battle plan. But doctrine 
gives rules for situations in general, not for particular situations in which the 
troops are tired, the strategies of the enemy commander are well-known, it's 
been raining for a week, or the mountains are shaped in a way that allows a trap 
to be laid. In battlefield planning, as in many other situations, the little details of 
a situation are important to the worthiness of a plan. There are many details 
that could be attended to, and only some are important. And, as in other 
adversarial situations, it is impossible to know everything about the other side, 
predict all of their strategies, or predict all of their reactions or counterplans. 
Yet a good plan must be created, and it must be evaluated based on projected 
effects. 

Cases provide a way to projecting effects based on what has been true in the 
past. Cases with similar plans that were failures can point to potential plan 
problems. If a previous plan similar to the currently proposed one failed 
because the troops were too tired, for example, the commander is warned to 
evaluate whether his troops are too tired, and if so, knows to fix his strategy to 
take that into account. He might change the plan so that tiredness will not be a 
factor, give his troops a rest, or get fresh troops in for the battle. Cases with 
similar plans that were successes give credence to the current plan. In addition, 
when parts of a plan are targeted for evaluation, cases can help with that. The 
effects of using a particular kind of trap, for example, can be evaluated by 
recalling another case where a similar trap was used. 

Automated use of cases for projection has not been a focus of case-based 
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reasoning research, but aid to a person doing projection is being addressed. 
CSI's BATILE PLANNER (Goodman, 1989) is a case-retrieval system whose 
interface is set up to allow a person to use cases to project effects. A student 
commander can propose a solution plan to the system. The BA TILE PLANNER 
retrieves the best-matching cases that use a similar plan and divides them into 
successful and failure situations. The person can examine the cases, use them to 
fix his plan, and then attempt a similar evaluation of the repaired plan. Or, the 
person can use the system to do a sensitivity analysis. By manipulating the 
details of his situation and looking at the changes in numbers of wins and losses 
(in effect, asking a series of 'what-if questions), he can determine which factors 
of the current situation are the crucial ones to repair. 

Projection is one of the most important bottlenecks facing the planning 
community today. A real-world planner must be able to project effects of plan 
steps to interleave tasks with each other, to plan late steps in a plan before 
earlier ones are executed, and to set up contingencies. Case-based reasoning has 
much to contribute to solving this problem, but effort so far has gone into 
helping a person use cases to do projection, and little effort has gone into 
automating the projection process to date. 

1.2.4. Interpretive case-based reasoning and problem solving 
Much work on interpretation has centered on the law domain and has looked at 
justifying an argument for or against some interpretation of the law. One should 
not walk away from this discussion, however, with the impression that case­
based interpretation is merely for interpretive problems. On the contrary, it has 
much usefulness as part of the evaluative or critical component of problem 
solving and decision making whenever strong causal models are missing. 
Though there has been little work in the area, the processes involved in inter­
pretative case-based reasoning have the potential to play several important roles 
for a problem solver. First, if the framework for a solution is known, or if 
constraints governing it are known, these methods could be used to choose 
cases that would provide such a solution. Second, argument creation and 
justification result in knowledge of what features are the important ones to 
focus on. Knowing where to focus is important in problem solving also. Third, a 
side effect of HYPO's methods is that it can point out which features, if they 
were present, would yield a better solution. It does this by keeping track of 
near-miss dimensions and creation of hypothetical cases. A problem solver 
could use such information to inform its adaptation processes. Finally, interpre­
tive methods can be used to predict the usefulness, quality, or results of a 
solution. 

2. CBR AND LEARNING 

Case-based reasoning is a methodology for both reasoning and learning. A case­
based reasoner learns in two ways. First, it can become a more efficient reasoner 
by remembering old solutions and adapting them rather than having to derive 
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answers from scratch each time. If a case was adapted in a novel way, if it was 
solved using some novel method, or if it was solved by combining the solutions 
to several cases, then when it is recalled during later reasoning, the steps 
required to solve it won't need to be repeated for the new problem. Second, a 
case-based reason becomes more competent over time, deriving better answers 
than it could with less experience. One of case-based reasoning's fortes is in 
helping a reasoner to anticipate and thus avoid mistakes it has made in the past. 
This is possible because it catches problem situations, indexing them by features 
that predict its old mistakes. Remembering such cases during later reasoning 
provides a warning to the reasoner of problems that might come up, and the 
reasoner can work to avoid them. 

Within AI, when one talks of learning, it usually means the learning of gener­
alizations, either through inductive or explanation-based means. While the 
memory of a case-based reasoner notices similarities between cases and can 
therefore notice when generalizations should be formed, inductive formation of 
generalizations is responsible for only some of the learning in a case-based 
reasoner. Case-based reasoning achieves much of its learning in two other ways: 
through the accumulation of new cases and through the assignment of indexes. 
New cases give the reasoner more familiar contexts for solving problems or 
evaluating situations. A reasoner whose cases cover more of the domain will be 
a better reasoner than one whose cases cover less of the domain. One whose 
cases cover failure as well as successful instances will be better than one whose 
cases cover only successful situations. New indexes allow a reasoner to fine tune 
its recall apparatus so that it remembers cases at more appropriate times. 

That is not to say that generalization is not important. Indeed, the cases a 
case-based reasoner encounters give it direction in the creation of appropriate 
generalizations, i.e., those that can be useful to its task. How can that work? 
When several cases are indexed the same way and all predict the same solution 
or all can be classified the same way, the reasoner knows that a useful gener­
alization can be formed. In addition, the combination of indexes and predicted 
solution or classification also give the reasoner guidance in choosing the level of 
abstraction of its generalizations. Some case-based reasoners use only cases, 
others use a combination of cases and generalized cases. Even when a case­
based reasoner does not use generalizations to reason, they are useful in helping 
the reasoner organize its cases. And, one can think of the generalization process 
as a way of evolving useful rules from cases that a rule-based reasoner could 
use. Rules could be used when they matched cases exactly, while cases would be 
used when rules were not immediately applicable. 

3. PROCESSES AND ISSUES 

The traditional view of reasoning in both artificial intelligence and cognitive 
psychology has been that the reasoner is handed a problem, and by composing 
and instantiating abstract operators, he is able to solve it. As the examples have 
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shown, the case-based reasoning paradigm takes a different approach. Rather 
than viewing reasoning as primarily a composition process, we view it as a 
process of remembering one or a small set of concrete instances or cases and 
basing decisions on comparisons between the new situation and the old in­
stance. 

As we have seen, cases are used in two very different ways during reasoning. 
They provide ballpark solutions that are adapted to fit a new situation, and they 
provide concrete evidence for or against some solution that drives a criticism or 
evaluation procedure. Case-based reasoning is thus a process of 'remember a 
case and adapt its solution' or 'remember a case and evaluate the new one based 
on its outcome'. 

The two styles of case-based reasoning arise through emphasis on one or the 
other of the two uses of cases. In problem solving situations, we tend to empha­
size the use of cases to propose solutions; in interpretive situations (e.g., law), 
we tend to emphasize using cases for criticism and justification. As our exam­
ples above show, however, the two styles are not completely disjoint. We use 
interpretive methodologies to criticize and justify a solution to a problem. And 
one might need to answer questions (solve problems) in order to interpret a 
situation. 

The major processes shared by reasoners that do case-based reasoning are 
case retrieval and case storage (also called memory update). In order to make 
sure that poor solutions are not repeated along with the good ones, case-based 
reasoners must also evaluate their solutions. 

The two styles of case use, however, each require that different reasoning be 
done once cases are retrieved. In problem solving CBR, a ballpark solution to 
the new problem is proposed by extracting the solution from some retrieved 
case. This is followed by adaptation, the process of fixing an old solution to fit a 
new situation, and criticism, the process of evaluating the new solution before 
trying it out. In interpretive CBR, a ballpark interpretation or desired result is 
proposed, sometimes based on retrieved cases, sometimes imposed from the 
outside (as when a lawyer's client requires a certain result). This is followed by 
justification, the process of creating an argument for the proposed solution, 
done by a process of comparing and contrasting the new situation to prior 
cases, and criticism, the process of justifying the argument, done by generating 
hypothetical situations and trying the argument out on those. 

These steps are in some sense recursive. The criticize and adapt steps, for 
example, often require new cases to be retrieved. There are also several loops in 
the process. Criticism may lead to additional adaptation, so might evaluation. 
And when reasoning is not progressing well using one case, the whole process 
may need to be restarted from the top with a new case chosen. Figure 1 
summarizes their relationship. 

As we've shown in our examples, case-based reasoning is a natural reasoning 
process in people, and it has the potential to alleviate many of the complexity 
problems plaguing the AI endeavor. In order to build systems, however, there 
are several issues that must be addressed, many of them the same ones we must 
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Fig. 1. The case-based reasoning cycle. 

address to explain the reasoning people do. In the following sections, we give a 
short overview of each step and discuss the issues that must be addressed to 
explain it and make it work well on the computer. 

3.1. Case Retrieval 

Remembering is the process of retrieving a case or set of cases from memory. In 
general, it consists of two substeps: 
• Recall previous cases. The goal of this step is to retrieve "good" cases that 

can support reasoning that comes in the next steps. Good cases are those that 
have the potential to make relevant predictions about the new case. Retrieval 
is done by using features of the new case as indexes into the case base. Cases 
labeled by subsets of those features or by features that can be derived from 
those features are recalled. 

• Select the best subset. This step selects the most promising case or cases to 
reason with from those generated in step 1. The purpose of this step is to 
winnow down the set of relevant cases to a few most-on-point candidates 
worthy of intensive consideration. Sometimes it is a appropriate to choose 
one best case, sometimes a small set is needed. 
One problem here is that sometimes two cases need to be judged similar 

even though they share few surface features. Football and chess strategies, for 
example, have much in common though the concrete features of the games are 
dissimilar. One is played on a board, the other on a field, one has pieces, the 
other people, one has teams competing with each other, the other individuals. 
What they have in common is more abstract features, shared by competitive 
games. There are two sides in opposition, each wants to win, each wants the 
other side to lose, both games involve planning and counterplanning, both 
involve positions on a playing field, though it is an actual field with people for 
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football and a board with pieces for chess. Nevertheless, you might expect a 
football expert who knows how to plan a fork to notice a potential fork situa­
tion in a chess game he is playing and to plan a set of moves based on that. One 
way to deal with this problem is to use more than just the surface representation 
of a case for comparison. Cases must also be compared at more abstract levels 
of representation. The issue we must address is which of the abstract ways of 
representing a case are the right ones to use for comparisons (Birnbaum and 
Collins 1988, Collins 1987). 

Another problem is that a new situation and a case might share some 
derivable features while not sharing surface features. In predicting who will win 
a battle, for example, the ratio of defender strength to attacker strength is 
predictive but neither defender strength nor attacker strength by itself is. Cases 
need to be judged similar based on the ratio (a derived feature) rather than the 
individual values (surface features). Similarly in diagnosis. It is often the hy­
pothesized disorders or conditions (derived features) that need to be compared 
in two cases to judge a current situation and previous case similar rather than 
the symptoms the patients manifest (surface features). The issue here is to come 
up with a way of generating derived features for cases in an efficient way. We 
need guidance in generating derived features because some are expensive to 
derive, and even if all were cheap. it would be expensive to generate all possible 
derived features of a case. 

And of course we need to derive fast retrieval algorithms for massive 
libraries of cases (Kolodner 1984, 1988b ). 

These problems comprise what we have called the indexing problem. 
Broadly, the indexing problem is the problem of retrieving applicable cases at 
appropriate times (despite all the problems cited above). In general, it has been 
addressed as a problem of assigning labels, called indexes, to cases that desig­
nate under what conditions each case can be used to make useful inferences. 
These labels have been treated much like indexes in a book. Old cases are 
indexed by those labels, one uses a new situation as a key into that index and 
traverses appropriate indexing paths to find relevant cases. Researchers are 
working on specifying what kinds of indexes are most useful, designating 
vocabularies for indexes, creating algorithms and heuristics for automating 
index choice, organizing cases based on those indexes, searching memory using 
those indexes, and choosing the best of the retrieved cases. The tension between 
using indexes to designate usefulness and direct search while at the same time 
not allowing them to overly dominate what can be recalled is one of the most 
important issues in case-based reasoning. 

3.2. Proposing a Ballpark Solution 

In this step, relevant portions of the cases selected during retrieval are extracted 
to form a ballpark solution to the new case. In problem solving, this step 
normally involves selecting the solution to the old problem, or some piece of it, 
as a ballpark solution to the new one. In interpretation, this step involves 
partitioning the retrieved cases according to the interpretations or solutions they 
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predict and, based on that, assigning an initial interpretation to the new prob­
lem. Alternatively, the initial interpretation might be given (as when a lawyer 
needs to argue for his/her client). In that situation, there is no need for this step. 

For example, a problem solver attempting to plan a meal focuses on the meal 
plan of a recalled case and uses it as its ballpark solution. Or, if it is attempting 
to derive some piece of a meal plan, it focuses on the analogous piece in the old 
case. Thus, when JULIA is trying to design an easy-to-prepare and cheap meal 
for 20 people, if it remembers a meal where antipasto salad, lasagne, broccoli, 
and spumoni were served, that solution will be the ballpark solution after this 
step. When it is trying to choose a main dish, if it is reminded of the same case, 
lasagne (its main dish) will be its ballpark solution. 

An interpretive program, in this step, decides which of the possible inter­
pretations to begin reasoning with. PROTOS, for example, in this step uses a 
coarse evaluation function to distinguish which of the many possible interpreta­
tions proposed by the recalled cases is closest to its new case. HYPO, on the 
other hand, has its desired result given to it. Thus, its work doesn't actually 
begin until the next step. 

There are several issues that arise in constructing a ballpark solution. First is 
the question of how appropriate portions of an old case can be selected for 
focus. An old case could be quite large, and it is important that the parts of it 
with no relevance to the new situation don't get in the way. On the other hand, 
it is possible that seemingly unrelated parts of an old case can provide guide­
lines. The best answer we have to this problem so far is twofold: First, the goals 
of the reasoner determine where to focus in the old case. The reasoner focuses 
attention on that part of the old case that was relevant to achieving the rea­
soner's current goal in the past. Thus, if the reasoner is trying to derive a 
solution, focus is on the previous solution. If the reasoner is trying to derive a 
particular part of a solution, focus is on that part of the solution in the previous 
case. If the reasoner is trying to interpret a situation, its classification in the old 
case is the focus. Second, the internal structure of the old case, especially the 
dependencies between different parts of the case, tell the reasoner how to 
expand focus in relevant ways. Thus, when the reasoner focuses on the solution 
or classification in an old case, those features of the case that led to selection of 
that solution or classification are also in focus. 

Another issue has to do with how much work to do in this step before 
passing control to adaptation or justification processes. Often there are rela­
tively easy and automatic, some would say common-sense, adaptations that can 
be made in an old solution before it undergoes the scrutiny of harder adaptation 
processes. For example, in labor mediation, adjustment of salary and other 
benefits based on cost of living is an expected adjustment. Such adjustments 
might also be made to old interpretations before creating arguments for them. 
Especially in interpretive reasoning, easy adjustments in this step before harder 
reasoning kicks in may be more advantageous than making adjustments after 
arguments have been mounted. This way, argumentation is based on a more 
realistic solution. 

A third issue has to do with choice of an interpretation in interpretive 
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reasoning. In programs that have been written to date, either the interpretation 
the program starts with is given or it is chosen doing a coarse evaluation of the 
alternatives. If one can get to the 'right' answer no matter where one starts, then 
choice of a first alternative is merely an efficiency issue. However, if all alterna­
tives are not connected in some way, initial choice of a first alternative might 
impact accuracy. Thus, where to begin in doing interpretation is a real issue. 

3.3. Adaptation 

In problem solving CBR, old solutions are used as inspiration for solving new 
problems. Since new situations rarely match old ones exactly, however, old 
solutions must be fixed to fit new situations. In this step, called adaptation, the 
ballpark solution is adapted to fit the new situation. There are two major steps 
involved in adaptation: figuring out what needs to be adapted and doing the 
adaptation. 

Issues in adaptation arise from both steps. We start by considering adapta­
tion itself. For any particular domain or task, we can come up with a set of 
adaptation strategies or heuristics. We can implement those and create a 
working system. This is rather ad hoc, however. One big question we must 
address is whether there is a general set of adaptation strategies that we can 
start with for any domain and that provide guidelines for defining specialized 
adaptation strategies. Taking the meat out of a recipe to make it vegetarian is a 
strategy specific to recipe adaptation, for example, but it is a specialization of a 
more general strategy that we call delete secondary component. This strategy 
states that a secondary component of an item can be deleted if it performs no 
necessary function. For each type of adaptation strategy, we must also designate 
the knowledge necessary for its application. 

Also important in adaptation is methodologies for noticing inconsistences 
between old solutions and new needs and, based on that, choosing what should 
be adapted. Some of the bookkeeping methods developed elsewhere in AI (e.g., 
reason-maintenance, constraint propagation) are useful here, but are used in 
much different ways than in their original formulations. 

3.4. Justification and Criticism 

In these steps, a solution or interpretation is justified, often before being tried 
out in the world. When all knowledge necessary for evaluation is known, one 
can think of this step as a validation step. However, in many situations, there 
are too many unknowns to be able to validate a solution. We can criticize 
solutions using all of the techniques of interpretive case-based reasoning. One 
way is to compare and contrast the proposed solution to other similar solutions. 
This requires a recursive call to memory processes in order to retrieve cases 
with similar solutions. For example, if there is an already-known instance of a 
similar situation failing, the reasoner must consider whether or not the new 
situation is subject to the same problems. Alternatively, if there is an already­
known instance of a similar situation but the problem situations are very 
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different, the reasoner might consider whether the new situation was solved in a 
fair way. For example, in contract negotiations, a mediator might come up with 
a salary proposal and before proposing it look to see what other workers have 
similar salaries and whether the proposed salary fits current precedents. 

We might also propose hypothetical situations to test the robustness of a 
solution. Yet another way to criticize a solution is to run a simulation (coarse or 
high fidelity) and check the results. 

Criticism may require retrieval of additional cases and may result in the need 
for additional adaptation, this time called repair. 

Major issues here include strategies for evaluation using cases, strategies for 
retrieving cases to use in interpretation, evaluation, and justification; the genera­
tion of appropriate hypotheticals and strategies for using them; and the assign­
ment of blame or credit to old cases. 

3.5 Evaluation 

In this step, the results of reasoning are tried out in the real world. Feedback 
about the real things that happened during or as a result of executing the 
solution are obtained and analyzed. If results were as expected, further analysis 
is not necessary in this step, but if they were different than expected, explana­
tion of the anomalous results is necessary. This requires figuring out what 
caused the anomaly and what could have been done to prevent it. Explanation 
can sometimes be done by case-based reasoning. 

This step is one of the most important for a case-based reasoner. It gives it a 
way of evaluating its decisions in the real world, allowing it to collect feedback 
that enables it to learn. Feedback allows it to notice the consequences of its 
reasoning. This in tum facilitates analysis of its reasoning and explanation of 
things that didn't go exactly as planned. This analysis, in tum, allows a reasoner 
both to anticipate and avoid mistakes it has been able to explain sufficiently and 
to notice previously unforeseen opportunities that it might have a chance to 
reuse. 

Evaluation is the process of judging the goodness of a proposed solution. 
Sometimes evaluation is done in the context of previous cases, sometimes it is 
based on feedback from the world, sometimes it is based on a mental or real 
simulation. Evaluation includes explaining differences (e.g., between what is 
expected and what actually happens), justifying differences (e.g., between a 
proposed solution and one used in the past), projecting outcomes, and compar­
ing and ranking of alternative possibilities. The result of evaluation can be 
additional adaptation, or repair, of the proposed solution. 

3.6. Memory Update 

In this step, the new case is stored appropriately in the case memory for future 
use. A case is comprised of the problem, its solution, plus any underlying facts 
and supporting reasoning that the system knows how to make use of, and its 
outcome. The most important process that happens at this time is choosing the 
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ways to 'index' the new case in memory. Indexes must be chosen such that the 
new case can be recalled during later reasoning at times when it can be most 
helpful. It should not be over-indexed, since we would not want it recalled 
indiscriminately. This means that the reasoner must be able to anticipate the 
importance of the case to later reasoning. Memory's indexing structure and 
organization are also adjusted in this step. 

This problem shares all of its issues with the first: we must choose appro­
priate indexes for the new case using the right vocabulary, and we must at the 
same time make sure that all other items remain accessible as we add to the 
case library's store. 

4. APPLICABILITY OF CASE-BASED REASONING 

4.1 Range of Applicability and Real- World Usefulness 

We start by considering why a doctor, or anybody else trained in the practice of 
making logical decisions, would make case-based inferences. After all, the 
doctor is trained to use facts and knowledge, and case-based reasoning looks 
like it is based on hearsay. The answer is simple. The doctor is trained to 
recognize disorders in isolation and to recognize common combinations of 
disorders. He also knows the etiology of disorders, i.e., how they progress. But 
he cannot be trained to recognize every combination of disorders, and the 
knowledge he has of disease processes is time consuming to use for generation 
of plausible diagnoses. If he has used his knowledge of disease process to solve 
a hard problem once, it makes sense to cache the solution in such a way that it 
can be reused. That is, once he has learned to recognize a novel combination of 
disorders, if he remembers that experience, he will be able to recognize it again, 
just as he recognizes more common combinations, without the difficult reason­
ing necessary the first time. The logical medical judgment comes in later in 
deciding whether or not the patient does indeed have the proposed set of 
diseases. 

Similarly, we can't expect a computer program to be seeded with all the 
possible combinations of problems it might encounter. Nor can we expect it to 
have efficient algorithms for generating plausible solutions from scratch all the 
time. A model-based trouble shooting system, for example, might know very 
well how something functions. That doesn't necessarily mean that it can gener­
ate solutions to problems easily, especially when more then fault could be 
possible at any time. Similarly, while a causal model may be helpful in verifying 
a design, it may not provide enough information to be able to generate designs 
in underconstrained or overconstrained situations. Just as case-based reasoning 
provides a way for people to generate solutions easily, it also provides a way for 
a computer program to propose solutions efficiently when previous similar 
situations have been encountered. This doesn't mean that causal reasoning is 
without merit. On the contrary, it must play the role that the medical doctor's 
logic plays after a solution is proposed. The causal-model-based system needs to 
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work along with the case-based system to identify changes that must be made in 
an old solution, to ensure valid adaptations, and to verify proposed solutions. 
Indeed, CASEY (Koton 1988) and KRITIK (Goel and Chandrasekaran 1989) do 
just that, CASEY for the task of heart failure diagnosis and KRITIK for design of 
simple mechanical objects. 

So case-based reasoning is useful to people and machines that know a lot 
about a task and domain because it gives them a way of reusing hard reasoning 
they've done in the past. It is equally useful, however, to those who know little 
about a task or domain. Consider, for example, a person who has never done 
any entertaining yet has to plan the meal specified in the introduction. His own 
entertaining experience won't help him. But if he has been to dinner parties, he 
has a place to start. If he remembered meals he'd been served under circum­
stances similar to those he has to deal with, he could use one of those to get 
started. For example, if he could generate a list of large dinner parties he has 
attended, he could, for each one, figure out whether it was easy to make and 
inexpensive, and when he remembered one, adapt it to fit. 

Case-based reasoning is also useful when knowledge is incomplete and/or 
evidence is sparse. Logical systems have trouble dealing with either of these 
situations because they want to base their answers on what is well-known and 
sound. More traditional AI systems use certainty factors and other methods of 
inexact reasoning to counter these problems, all of which require considerable 
effort on the part of the computer and none of which seem intuitively very 
plausible. Case-based reasoning provides another method for dealing with 
incomplete knowledge. A case-based reasoner makes assumptions to fill in 
incomplete or missing knowledge based on what his experience tells him, and 
goes on from there. Solutions generated this way won't always be optimal, or 
even right, but if the reasoner is careful about evaluating proposed answers, the 
case-based methodology gives him a way to generate answers easily. 

While the advantages of case-based reasoning are easily evident when an old 
solution is fairly close to that needed in the new case, case-based reasoning also 
can provide advantage even if the old solution is far from what is needed. There 
are two possibilities. Those features of the remembered case that must be ruled 
out in the new situation can be added to its description and a new case recalled, 
or the recalled case can be used as a starting point for coming up with a new 
solution. When there is considerable interaction between the parts of a solution, 
then even if large amounts of adaptation are required to derive an acceptable 
solution, it may still be easier than generating a solution from scratch. And the 
case provides something concrete to base reasoning on. For many people, this is 
a preferred reasoning style. 

4.2. Advantages of CBR 

Case-based reasoning provides many advantages for a reasoner. 
• Case-based reasoning allows the reasoner to propose solutions to problems 

quickly, avoiding the time necessary to derive those answers from scratch. 
The doctor remembering an old diagnosis or treatment experiences this benefit. 
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While the case-based reasoner has to evaluate proposed solutions like any 
reasoner does, it gets a head start on solving problems because it can generate 
proposals easily. There is considerable advantage in not having to redo time­
consuming computations and inferences. This advantage is helpful for almost all 
reasoning tasks, including problem solving, planning. explanation, and diagnosis. 
Indeed, evaluation of CASEY (Koton 1988) shows two orders of magnitude 
speedup when a problem had been seen in the past. 
• Case-based reasoning allows a reasoner to propose solutions in domains that 

he/she/it doesn't understand completely. 
Many domains are impossible to understand completely, often because much 
depends on unpredictable human behavior. e.g .. the economy. Others nobody 
understands yet, e.g., how some medications and diseases operate. Other times. 
we simply find ourselves in situations that we don't understand well, but in 
which we must act anyway, e.g .. choosing which graduate students to accept into 
a program. Case-based reasoning allows us to make assumptions and predic­
tions based on what worked in the past without having a complete under­
standing. 
• Case-based reasoning gives a reasoner a means of evaluating solutions when 

no algorithmic method is available for evaluation. 
Using cases to aid in evaluation is particularly helpful when there are many 
unknowns, making any other kind of evaluation impossible or hard. Instead, 
solutions are evaluated in the context of previous similar situations. Again. the 
reasoner does his/her evaluation based on what worked in the past. 
• Cases are particularly useful for use in interpreting open-ended and ill-

defined concepts. 
As stated above, this is one use attorneys put cases to extensively. Bur it is also 
important in everyday situations. In the example above. cases were used to 
determine what was included in the concept 'fish Anne won't eat'. The perform­
ance of PROTOS (Bareiss 1989) in classifying hearing disorders when little 
information is known shows that a case-based methodology for interpretation 
can be more accurate that a generalization-based method when classifications 
are ill-defined. PROTOS is significantly more capable and accurate than classifi­
cation systems based on more traditional classification methods. 
• Remembering previous experiences is particularly useful in warning of the 

potential for problems that have occurred in the past. alerting a reasoner to 
take actions to avoid repeating past mistakes. 

How can this work? Remembered experiences can be successful or failure 
episodes, i.e., situations in which things did not tum out exactly as planned. 
Consider again the reasoner trying to plan a meal. He/she can be helped 
considerably, for example, if he/she remembers a meal that was supposed to be 
easy-to-prepare and inexpensive and instead was hard to make because some of 
the ingredients were hard to obtain in manufactured form and had to be made 
from scratch. The reasoner is warned, by this case, to avoid those ingredients or 
to make sure they are available before committing to a menu. 
• Cases help a reasoner to focus its reasoning on important parts of a problem 

by pointing out what features of a problem are the important ones. 
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What was important in previous situations will tend to be important in new 
ones. Thus, if in a previous case, some set of features was implicated in a failure, 
the reasoner focuses on those features to insure that the failure will not be 
repeated. Similarly, if some features are implicated in a success, the reasoner 
knows to focus on those features. Such focus plays a role in both problem 
solving and interpretive case-based reasoning. In interpretive case-based reason­
ing, justifications and critiques are built based on those features that have 
proven responsible for failures and successes in the past. An attorney, for 
example focuses on those aspects of a new situation that mattered in previous 
cases. In problem solving, a reasoner might attempt to adapt his solution so that 
it includes more of what was responsible for previous successes and less of what 
was responsible for failures. 

4.3. Pitfalls 

Of course, there are also pitfalls in using cases to reason. A case-based reasoner 
might be tempted to use old cases blindly, relying on previous experience 
without validating it in the new situation. A case-based reasoner might allow 
cases to bias him/her/it too much in solving a new problem. And, often people, 
especially novices, are not reminded of the most appropriate sets of cases when 
they are reasoning (Holyoak 1985, Gentner 1989). People do find case-based 
reasoning a natural way to reason, however. The endeavor of explaining the 
proc~sses involved in case-based reasoning might help us to learn how to teach 
people to reason better using cases. In addition, the case memory technology we 
develop might allow us to build decision aiding systems that augment human 
memory by providing the appropriate cases while still allowing the human to 
reason in a natural and familiar way. And we can make sure our programs 
avoid this type of behavior. 

5. COGNITNE MODEL OR METHODOLOGY FOR BUILDING EXPERT SYSTEMS? 

In case-based reasoning a model of people, or is it a methodology for building 
intelligent systems? We've been somewhat schizophrenic about this issue up to 
now, sometimes referring to people doing case-based reasoning, sometimes 
referring to machines that use the method to reason. Case-based reasoning is 
both, and explorations in case-based reasoning have been of both the ways 
people use cases to solve problems and the ways we can make machines use 
them. 

5 .1. Case-Based Reasoning and People 

There is much evidence that people do, in fact, use case-based reasoning in 
their daily reasoning. Some of that evidence is hearsay - we have observed it. 
Other evidence is experimental. Ross (Ross 1986, Ross 1989), for example, has 
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shown that people learning a new skill often refer back to previous problems to 
refresh their memories on how to do the task. Research conducted in our lab 
shows that both novice and experienced car mechanics use their own experi­
ences and those of others to help them generate hypotheses about what is 
wrong with a car, recognize problems (e.g., a testing instrument not working), 
and remember how to test for different diagnoses (Lancaster and Kolodner 
1988, Redmond 1989). Other research in our lab shows that physicians use 
previous cases extensively to generate hypotheses about what is wrong with a 
patient, to help them interpret test results, and to select therapies when several 
are available and none are understood very well (Kolodner, unpublished). We 
have also observed architects and caterers recalling, merging, and adapting old 
design plans to create new ones. 

The programs we build are an attempt to understand the processes involved 
in reasoning in a case-based way. There are several important potential applica­
tions of an understanding of the way people solve problems in a natural way. 
First, we might build decision aiding systems for people that can help them 
retrieve cases better. Psychologists have found that people are comfortable 
using cases to make decisions but don't always remember the right ones. The 
computer could be used as a retrieval tool to augment people's memories. 
Second, we might create teaching strategies and build teaching tools that teach 
based on good examples. H people are comfortable using examples to solve 
problems and know how to do it well, then one of our responsibilities as 
teachers might be to teach them the right ones. Third, if we understand which 
parts of this natural process are difficult to do well, we can teach people better 
how to do case-based reasoning. One criticism of using cases to make decisions, 
for example, is that it puts unsound bias into the reasoning system, because 
people tend to assume an answer from a previous case is right without justifying 
it in the new case. This tells us that we should be teaching people how to justify 
case-based suggestions and that justification or evaluation is crucial to good 
decision making. If we can isolate other problems people have in solving 
problems in a case-based way, then we can similarly teach people to do those 
things better. 

5.2. Building a Case-Based Reasoner 

As a method for building intelligent reasoning systems, case-based reasoning 
has appeal because it seems relatively simple and natural. While it is hard to get 
experts to tell you all the knowledge they use to solve problems, it is easy to get 
them to recount their war stories. In fact, several people building expert systems 
that know how to reason using cases have found it easier to build case-based 
expert systems than traditional ones (Barletta and Hennessy 1989, Goodman 
1989). A big problem in reasoning in expert domains is the high degree of 
uncertainty and incompleteness of knowledge involved. Case-based reasoning 
addresses those problems by having the reasoner rely on what has worked in 
the past. Case-based systems also provide efficiency. While we find first-princi-
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pies problem solving systems spending large amounts of time solving their 
problems from scratch, case-based systems have been found to be several 
orders of magnitude faster (Koton 1988). 

There are several different kinds of case~based reasoning systems one might 
build. At the two extremes are fully~automated systems and retrieval~only 

systems. Fully automated systems are those that solve problems completely by 
themselves and have some means of interacting with the world to receive 
feedback on their decisions. Retrieval-only systems work interactively with a 
person to solve a problem. They act to augment a person's memory, providing 
cases for the person to consider that the person might not be aware of himself, 
but the person will be responsible for hard decisions. Then there is the whole 
range of systems in between, some requiring more on the part of the person 
using the system, some requiring less. 

There are also several purposes one might create a case-based reasoning 
system to serve. We might want it to solve problems, to suggest concrete 
answers to problems, to be suggestive without providing answers (i.e., to give 
abstract advice), or to just act as a database that can retrieve partially~matching 
cases. Much as has been the case with database systems, we can foresee case­
based systems interacting with a person or another program. Interacting with a 
person, we can see an executive doing strategic planning asking for cases to help 
in deriving or evaluating a solution. The CSI Battle Planner (Goodman 1989) 
provides this type of capability now for battle planning. Or, we can imagine a 
tutoring system that accesses a library of examples to use in teaching. 

What is required for the simplest of systems is a library of cases that coarsely 
cover the set of problems that come up in a domain. Both success stories and 
failures must be included. And, the cases must be appropriately indexed. This 
library, along with a friendly and useful interface, provides augmentation for 
human memory. And automated processes can be built on top of it incre~ 
mentally. 

NOTES 

• This article is excerpted from Case-Based Reasoning by Janet Kolodner, to be published by 
Morgan-Kauf;nann Publishers, Inc. in 1992. 

** This work was partially funded by DARPA under Contract No. F49620-88-C-0058 monitored 
by AFOSR, by NSF under Grant No. IST-8608362, and by ARI under Contract No. MDA-
903-86-C-173. Address correspondence to the author at the College of Computing, Georgia 
Institute of Technology, Atlanta, GA 30332-0280, email: jlk@cc.gatech.edu. 

1 Thanks to Kevin Ashley for the example. 
Example due to Kevin Ashley (Ashley, 1989). 

3 In a previous section, we presented PROTO as a problem solving system. Here we present it as 
an interpretive system. PROTOS' task, diagnosis, includes aspects of both uses of cases. It inter­
prets open-ended concepts (classifications) using a case-based classification algorithm, and it 
uses an indexing scheme based on differences to avoid previously-made diagnostic mistakes. 
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Case-based reasoning is a recent approach to problem
solving and learning that has got a lot of attention over
the last few years. Originating in the US, the basic idea
and underlying theories have spread to other continents,
and
we are now within a period of highly active research in
case-based reasoning in Europe, as well. This paper gives
an overview of the foundational issues related to case-
based reasoning, describes some of the leading methodo-
logical approaches within the field, and exemplifies the
current state through pointers to some systems. Initially, a
general framework is defined, to which the subsequent
descriptions and discussions will refer. The framework is
influenced by recent methodologies for knowledge level
descriptions of intelligent systems. The methods for case
retrieval, reuse, solution testing, and learning are summa-
rized, and their actual realization is discussed in the light
of a few example systems that represent different CBR
approaches. We also discuss the role of case-based meth-
ods as one type of reasoning and learning method within
an integrated system architecture.

1. Introduction

Over the last few years, case-based reasoning
(CBR) has grown from a rather specific and iso-lated
research area to a field of widespread interest.
Activities are rapidly growing - as seen by the in-
creased rate of research papers, availability of
commercial products, and also reports on applica-
tions in regular use. In Europe, researchers and ap-

plication developers recently met at the First Euro-
pean Workshop on Case-based reasoning, which took
place in Germany, November 1993. It gath-ered
around 120 people and more than 80 papers on scien-
tific and application-oriented research  were
presented.

1.1. Background and motivation.

Case-based reasoning is a problem solving para-
digm that in many respects is fundamentally differ-ent
from other major AI approaches. Instead of re-lying
solely on general knowledge of a problem domain, or
making associations along generalized relationships
between problem descriptors and conclusions, CBR is
able to utilize the specific knowledge of previously
experienced, concrete problem situations (cases). A
new problem is solved by finding a similar past case,
and reusing it in the new problem situation. A second
important difference is that CBR also is an approach
to incre-mental, sustained learning, since a new
experience is retained each time a problem has been
solved, making it immediately available for future
prob-lems.

This paper presents an overview of the field, in
terms of its underlying foundation, its current state-of-
the-art, and future trends. The description of CBR
principles, methods, and systems is made within a
general analytic scheme. Other authors have recently
given overviews of case-based rea-soning (Ch. 1 in
[51], Introductory section of [18], [36,61]). Our
overview differs in four major ways from these
accounts: First, we initially specify a general
descriptive framework to which the subse-quent
method descriptions will refer. Second, we put a
strong emphasis on the methodological issues of case-
based reasoning, and less on a discussion of suitable
application types and on the advantages of CBR over
rule-based systems. (This has been taken very well
care of in the documents cited above).  Third, we
strive to maintain a neutral view of existing CBR ap-
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proaches, unbiased by a particu-lar 'school'1. And
finally, we include results from the European CBR
arena, which unfortunately  have been missing in
American CBR reports.

What is case-based reasoning? Basically: To solve
a new problem by remembering a previous similar
situation and by reusing information and knowledge of
that situation. Let us illustrate this by looking at some
typical problem solving situations:

- A physician - after having examined a particu-lar
patient in his office - gets a reminding to a patient
that he treated two weeks ago. Assum-
ing that the reminding was caused by a similarity of
important symptoms (and not the patient's hair-
color, say), the physician uses the diagnosis and
treatment of the previous patient to determine the
disease and treatment for the patient in front of
him.

- A drilling engineer, who have experienced two
dramatic blow out situations, is quickly re-minded
of one of these situations (or both) when the
combination of critical measurements matches
those of a blow out case. In particular, he may get a
reminding to a mistake he made during a previous
blow-out, and use this to avoid repeating the error
once again.

- A financial consultant working on a difficult credit
decision task, uses a reminding to a pre-vious case,
which involved a company in simi-
lar trouble as the current one, to recommend that
the loan application should be refused.

1.2. Case-based problem solving.

As the above examples indicate, reasoning by re-
using past cases is a powerful and frequently app-lied
way to solve problems for humans. This claim is also
supported by results from cognitive psychological
research. Part of the foundation for the case-based
approach, is its psychological plau-sibility. Several
studies have given empirical evi-dence for the
dominating role of specific, pre-viously experienced
situations (what we call cases) in human problem
solving (e.g. [53]). Schank [54] developed a theory of
                                                  

1Our own experience from active CBR research over the
last 5 years started out from different backgrounds and
motivations, and we may have developed different views to some
of the major issues involved. We will give examples of our
respective priorities and concerns related to CBR research as
part of the discussion about future trends towards the end of the
paper.

learning and reminding based on retaining of
experience in a dynamic, evolving memory2 structure.
Anderson [6] has shown that people use past cases as
models when learning to solve problems, particularly
in early learning. Other results (e.g. by W.B. Rouse
[75]) indicate that the use of past cases is a
predominant problem solving method among experts
as well. Studies of problem solving by analogy (e.g.
[16,22]) also shows the frequent use of past experience
in solving new and different problems. Case-based
reasoning and analogy are sometimes used as
synonyms (e.g. in [16]). Case-based reasoning can be
considered a form of intra-domain anal-
ogy. However, as will be discussed later, the main
body of analogical research [14,23,30] has a differ-ent
focus, namely analogies across domains.

In CBR terminology, a case usually denotes a
problem situation. A previously experienced situation,
which has been captured and learned in such way that
it can be reused in the solving of future problems, is
referred to as a past case, previous
case, stored case, or retained case. Correspond-ingly, a
new case or unsolved case is the description of a new
problem to be solved. Case-based reasoning is - in
effect - a cyclic and integrated process of solving a
problem, learning from this
experience, solving a new problem, etc.

Note that the term problem solving is used here in a
wide sense, coherent with common practice within the
area of knowledge-based systems in general. This
means that problem solving is not necessarily the
finding of a concrete solution to an application
problem, it may be any problem put forth by the user.
For example, to justify or criti-cize a solution
proposed by the user, to interpret a problem situation,
to generate a set of possible so-lutions, or generate
expectations in observable data are also problem
solving situations.

1.3. Learning in Case-based Reasoning.

A very important feature of case-based reason-ing
is its coupling to learning. The driving force behind
case-based methods has to a large extent come from
the machine learning community, and case-based
reasoning is also regarded as a subfield of machine

                                                  
2The term 'memory'  is often used to refer to the storage

structure that holds the existing cases, i.e. to the case base. A
memory, thus, refers to what is remembered from previous
experiences. Correspondingly, a reminding is a pointer structure
to some part of memory.
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learning3. Thus, the notion of case-based reasoning
does not only denote a particular reasoning method,
irrespective of how the cases are acquired, it also
denotes a machine learning paradigm that enables
sustained learning by updating the case base after a
problem has been solved. Learning in CBR occurs as a
natural by-product of problem solving. When a
problem is successfully solved, the experience is
retained in order to solve similar problems in the
future. When an attempt to solve a problem fails, the
reason for the failure is identified and remembered in
order to avoid the same mistake in the future.

Case-based reasoning favours learning from ex-
perience, since it is usually easier to learn by retaining
a concrete problem solving experience than to
generalize from it. Still, effective learning in CBR
requires a well worked out set of methods in
order to extract relevant knowledge from the expe-ri-
ence, integrate a case into an existing knowledge
structure, and index the case for later matching
with similar cases.

1.4. Combining cases with other knowledge.

By examining theoretical and experimental results
from cognitive psychology, it seems clear that human
problem solving and learning in general are processes
that involve the representation and utili-zation of
several types of knowledge, and the com-bination of
several reasoning methods. If cognitive plausibility is a
guiding principle, an architecture  for intelligence
where the reuse of cases is at the centre, should also
incorporate other and more general types of knowledge
in one form or another. This is an issue of current
concern in CBR research [67].

The rest of this paper is structured as follows: The
next section gives a brief historical overview
of the CBR field. This is followed by a grouping of
CBR methods into a set of characteristic types, and a
presentation of the descriptive framework which will
be used throughout the paper to discuss CBR methods.
Sections 4 to 8 discuss representation is-sues and
methods related to the four main tasks of case-based
                                                  

3The learning approach of case-based reasoning is sometimes
referred to as case-based learning. This term is sometimes also
used synonymous with example-based learning, and may
therefore point to classical induction and other generalization-
driven learning methods. Hence, we will here use the term case-
based reasoning both for the problem solving and learning part,
and explicitly state which part we talk about whenever
necessary.

reasoning, respectively. In section 9 we look at CBR in
relation to integrated architectures and multistrategy
problem solving and learning. This is followed by a
short description of some fielded applications, and a
few words about CBR development tools. The
conclusion part briefly summarizes the paper, and
point out some possi-
ble trends.

2. History of the CBR field

The roots of case-based reasoning in AI are found
in the works of Roger Schank on dynamic memory and
the central role that a reminding of earlier situations
(episodes, cases) and situation patterns (scripts,
MOPs) have in problem solving and learning [54].
Other trails into the CBR field have come from the
study of analogical reasoning [22], and - further back -
from theories of concept formation, problem solving
and experiential learning within philosophy and psy-
chology (e.g. [62,69,72]). For example, Wittgenstein
observed that ‘natural concepts’, i.e., concepts that are
part of the natural world - such as bird, orange, chair,
car, etc. - are polymorphic. That is, their instances
may be categorized in a variety of ways, and it is not
possible to come up with a useful classical definition
in terms of a set of necessary and sufficient features
for such concepts. An answer to this problem is to
represent a concept extensionally, defined by its set of
instances - or cases.

The first system that might be called a case-based
reasoner was the CYRUS system, developed by Janet
Kolodner [33, 34], at Yale University (Schank's
group). CYRUS was based on Schank's dynamic
memory model and MOP theory of prob-lem solving
and learning [54]. It was basically a question-
answering system with knowledge of the various
travels and meetings of former US Secre-tary of State
Cyrus Vance. The case memory model developed for
this system has later served as basis for several other
case-based reasoning systems (in-cluding
MEDIATOR [59], PERSUADER [68], CHEF [24],
JULIA [27], CASEY [38]).

Another basis for CBR, and another set of models,
were developed by Bruce Porter and his group [48] at
the University of Texas, Austin. They initially
addressed the machine learning problem of concept
learning for classification tasks. This lead to the devel-
opment of the PROTOS system [9], which emphasized
integrating general domain knowledge and specific
case knowledge into a unified representation structure.
The combination of cases with general domain
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knowledge was pushed further in GREBE [12], an
application in the domain of law. Another early
significant contribution to CBR was the work by
Edwina Rissland and her group at the University of
Massachusetts, Amhearst. With sev-eral law scientists
in the group, they were inter-
ested in the  role of precedence reasoning in legal
judgements [52]. Cases (precedents) are here not used
to produce a single answer, but to interpret a situation
in court, and to produce and assess argu-ments for
both parties. This resulted in the HYPO system [10],
and later the combined case-based
and rule-based system CABARET [60]. Phyllis Koton
at MIT studied the use of case-based reason-ing to
optimize performance in an existing knowledge based
system, where the domain (heart fail-ure) was
described by a deep, causal model. This resulted in the
CASEY system [38], in which case-based and deep
model-based reasoning was com-bined.

In Europe, research on CBR was taken up a little
later than in the US. The CBR work seems to have
been stronger coupled to expert systems develop-ment
and knowledge acquisition research than in the US.
Among the earliest results was the work on CBR for
complex technical diagnosis within the MOLTKE
system, done by Michael Richter to-gether with Klaus
Dieter Althoff and others at the University of
Kaiserslautern [4]. This lead to the PATDEX system
[50], with Stefan Wess as the
main developer, and later to several other systems and
methods [5]. At IIIA in Blanes, Enric Plaza
and  Ramon López de Mántaras developed a case-
based learning apprentice system for medical diag-
nosis [46], and Beatrice Lopez investigated the use of
case-based methods for strategy-level reasoning [39].
In Aberdeen, Derek Sleeman's group studied the use of
cases for knowledge base refinement. An early result
was the REFINER system, developed
by Sunil Sharma [57]. Another result is the IULIAN
system for theory revision by Ruediger Oehlman [44].
At the University of Trondheim, Agnar Aamodt and
colleagues at Sintef studied the learning aspect of CBR
in the context of knowl-edge acquisition in general,
and knowledge main-tenance in particular. For
problem solving, the combined use of cases and
general domain knowl-edge was focused [1]. This lead
to the development
of the CREEK system and integration framework [2],
and to continued work on knowledge-intensive case-
based reasoning. On the cognitive science
side, early work was done on analogical reasoning by
Mark Keane, at Trinity College, Dublin, [29], a group

that has developed into a strong environment for this
type of CBR. In Gerhard Strube's group at the
University of Freiburg, the role of episodic knowledge
in cognitive models was investigated in the EVENTS
project [66], which lead to the group''s current
research profile of cognitive science and CBR.

Currently, the CBR activities in the United States
as well as in Europe are spreading out (see, e.g.
[8,19,20,28], and the rapidly growing number of
papers on CBR in almost any AI journal). Germany
seems to have taken a leading position in terms of
number of active researchers, and several groups
of significant size and activity level have been
established recently. From Japan and other Asian
countries, there are also activity points, for example in
India [71]. In Japan, the interest is to a large ex-ent
focused on the parallel computation approach to CBR
[32].

3. Fundamentals of case-based reasoning  
methods

Central tasks that all case-based reasoning meth-
ods have to deal with are to identify the current
problem situation, find a past case similar to the new
one, use that case to suggest a solution to the current
problem, evaluate the proposed solution, and update
the system by learning from this experi-ence. How this
is done, what part of the process is focused, what type
of problems drives the methods, etc. varies
considerably, however. Below is an at-tempt to
classify CBR methods into types with roughly similar
properties in this respect.

3.1. Main types of CBR methods.

The CBR paradigm covers a range of different
methods for organizing, retrieving, utilizing and
indexing the knowledge retained in past cases. Cases
may be kept as concrete experiences, or a set of
similar cases may form a generalized case. Cases may
be stored as separate knowledge units, or splitted up
into subunits and distributed within the knowledge
structure. Cases may be indexed by a prefixed or open
vocabulary, and within a flat or hierarchical index
structure. The solution from a previous case may be
directly applied to the
present problem, or modified according to differ-ences
between the two cases. The matching of
cases, adaptation of solutions, and learning from an
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experience may be guided and supported by a deep
model of general domain knowledge, by more shallow
and compiled knowledge, or be based on an apparent,
syntactic similarity only. CBR meth-ods may be purely
self-contained and automatic, or they may interact
heavily with the user for support and guidance of its
choices. Some CBR method assume a rather large
amount of widely distributed cases in its case base,
while others are based on a more limited set of typical
ones. Past cases may be retrieved and evaluated
sequentially or in parallel.

Actually, "case-based reasoning" is just one of a set
of terms used to refer to systems of this kind. This has
lead to some confusions, particularly since case-based
reasoning is a term used both as a gen-eric term for
several types of more specific ap-proaches, as well as
for one such approach. To some extent, this can also
be said for analogy rea-soning. An attempt of a
clarification, although not resolving the confusions, of
the terms related to case-based reasoning are given
below.

Exemplar-based reasoning. The term is derived
from a classification of different views to concept
definition into "the classical view", "the proba-bilistic
view", and "the exemplar view" (see [62]).  In the
exemplar view, a concept is defined exten-sionally, as
the set of its exemplars. CBR methods that address the
learning of concept definitions (i.e. the problem
addressed by most of the research in machine
learning), are sometimes referred to as exemplar-
based. Examples are early papers by Kibler and Aha
[31], and Bareiss and Porter [48]. In this approach,
solving a problem is a classifica-tion task, i.e., finding
the right class for the unclas-sified exemplar. The class
of the most similar past case becomes the solution to
the classification problem. The set of classes
constitutes the set of possible solutions. Modification
of a solution
found is therefore outside the scope of this method.

Instance-based reasoning. This is a specializa-tion
of exemplar-based reasoning into a highly syn-tactic
CBR-approach. To compensate for lack of guidance
from general background knowledge, a relatively large
number of instances are needed in order to close in on
a concept definition. The representation of the
instances are usually simple (e.g. feature vectors),
since the major focus is on studying automated
learning with no user in the loop. Instance-based
reasoning labels recent work by Kibler and Aha and
colleagues [7], and serves to distinguish their methods
from more knowledge-intensive exemplar-based

approaches (e.g. Protos' methods). Basically, this is a
non-generalization approach to the concept learning
problem ad-dressed by classical, inductive machine
learning methods.

Memory-based reasoning. This approach em-
phasizes a collection of cases as a large memory, and
reasoning as a process of accessing and searching in
this memory. Memory organization and access is a
focus of the case-based methods. The utilization of
parallel processing techniques is a characteristic of
these methods, and distinguishes this approach from
the others. The access and stor-age methods may rely
on purely syntactic criteria, as in the MBR-Talk
system [63], or they may at-tempt to utilize general do-
main knowledge, as the work done in Japan on massive
parallel memories [32].

Case-based reasoning. Although case-based
reasoning is used as a generic term in this paper,
the typical case-based reasoning methods have some
characteristics that distinguish them from the other
approaches listed here. First, a typical case is usually
assumed to have a certain degree of rich-ness of
information contained in it, and a certain complexity
with respect to its internal organization. That is, a
feature vector holding some values and a
corresponding class is not what we would call a
typical case description. What we refer to as typi-
cal case-based methods also has another charac-teristic
property: They are able to modify,  or adapt, a re-
trieved solution when applied in a different problem
solving context. Paradigmatic case-based methods also
utilizes general background knowl-edge  -  although its
richness, degree of explicit re-resentation, and role
within the CBR processes varies. Core methods of
typical CBR systems bor-row a lot from cognitive
psychology theories.

Analogy-based reasoning. This term is some-times
used, as a synonym to case-based reasoning, to
describe the typical case-based approach just
described [70]. However, it is also often used to
characterize methods that solve new problems
based on past cases from a different domain, while
typical case-based methods focus on indexing and
matching strategies for single-domain cases. Re-search
on analogy reasoning is therefore a subfield concerned
with mechanisms for identification and utilization of
cross-domain analogies [23, 30]. The major focus of
study has been on the reuse of a past case, what is
called the mapping problem: Finding a way to transfer,
or map, the solution of an identified analogue (called
source or base) to the present problem (called target).
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Throughout the paper we will continue to use the
term case-based reasoning in the generic sense, al-
though our examples, elaborations, and discussions
will lean towards CBR in the more typical sense. The
fact that a system is described as an example of some
other approach, does not exclude it from being a
typical CBR system as well. To the degree that more
special examples of, e.g., instance-based, memory-
based, or analogy-based methods will be discussed,
this will be stated explicitly.

3.2. A descriptive framework.

Our framework for describing CBR methods and
systems has two main parts:

- A process model of the CBR cycle
- A task-method structure for case-based reasoning

The two models are complementary and represent
two views on case-based reasoning. The first is a
dynamic model that identifies the main subprocesses of
a CBR cycle, their interdependencies and products.
The second is a task-oriented view, where a task
decomposition and related problem solving methods
are described. The framework will be used in
subsequent parts to identify and discuss important
problem areas of CBR, and means of dealing with
them.

3.3. The CBR cycle

At the highest level of generality, a general CBR
cycle may be described by the following four pro-
cesses4:

1. RETRIEVE the most similar case or cases
2. REUSE the information and knowledge in that case

to solve the problem
3. REVISE the proposed solution
4. RETAIN the parts of this experience likely to be

useful for future problem solving

A new problem is solved by retrieving  one or more
previously experienced cases, reusing the
case in one way or another, revising the solution based
                                                  

4As a mnemonic, try "the four REs".

on reusing a previous case, and retaining the new
experience by incorporating it into the exist-ing
knowledge-base (case-base). The four proc-esses each
involve a number of more specific steps, which will be
described in the task model. In fFg. 1, this cycle is
illustrated.

An initial description of a problem (top of Fig. 1)
defines a new case. This new case is used to RE-
TRIEVE a case from the collection of previous cases.
The retrieved case is combined with the new case -
through REUSE - into a solved case, i.e. a proposed
solution to the initial problem. Through the REVISE
process this solution is tested for success, e.g. by being
applied to the real world environment or evaluated by
a teacher, and repaired if failed. During RETAIN, use-
ful experience is retained for future reuse, and the case
base is updated by a new learned case, or by
modification of some existing cases.

As indicated in the figure, general knowledge
usually plays a part in this cycle, by supporting the
CBR processes. This support may range from very
weak (or none) to very strong, depending on the type
of CBR method. By general knowledge we here mean
general domain-dependent knowledge, as opposed to
specific knowledge embodied by cases. For example,
in diagnosing a patient by re-trieving and reusing the
case of a previous patient,
a model of anatomy together with causal relation-ships
between pathological states may constitute
the general knowledge used by a CBR system. A
set of rules may have the same role.

3.4. A hierarchy of CBR tasks

The process view just described was chosen in
order to emphasize on CBR as a cycle of sequential
steps. To further decompose and describe the four top-
level steps, we switch to a task-oriented view, where
each step, or subprocess, is viewed as a task that the
CBR reasoner has to achieve. While a process-oriented
view enables a global, external

Oracle Exhibit 1007 - Appendix A4 page 6



Aamodt and Plaza: Case-Based Reasoning    AICOM Vol. 7 Nr. 1   March 1994
                                                                                                                                                                                                                                                                                                            

7

RETRIEVE

R
EU

SE

R
E

TA
IN

Problem

New 
Case

Retrieved 
Case

General 
Knowledge

Previous 
Cases

Suggested 
Solution

Solved 
Case

Learned 
Case

REVISE

Tested/ 
Repaired 
Case

Confirmed 
Solution

New 
Case

Fig. 1. The CBR Cycle

view to what is happening, a task oriented view is
suitable for describing the detailed mechanisms from
the perspective of the CBR reasoner itself. This is
coherent with a task-oriented view of knowledge level
modeling [73]. At the knowledge level, a system is
viewed as an agent which has goals, and means to
achieve its goals. A system de-scription can be made
from three perspectives: Tasks, methods and domain
knowledge models. Tasks are set up by the goals of the
system, and a task is performed by applying one or
more meth-ods. For a method to be able to accomplish
a task, it needs knowledge about the general
application do-main as well as information about the
current prob-lem and its context. Our framework and
analysis approach is strongly influenced by knowledge
level modeling methods, particularly the Components
of Expertise methodology [64.65].

The task-method structure we will refer to in
subsequent parts of the paper is shown in Fig. 2.
Tasks have node names in bold letters, while meth-ods
are written in italics. The links between task nodes
(plain lines) are task decompositions, i.e., part-of
relations, where the direction of the rela-tionship is
downwards. The top-level task is prob-lem solving

and learning from experience and the method to
accomplish the task  is case-based rea-soning
(indicated in a special way by a stippled ar-row). This
splits the top-level task into the four major CBR tasks
corresponding to the four proc-esses of Fig.1, retrieve,
reuse, revise, and retain. All the four tasks are
necessary in order to perform the top-level task. The
retrieve task is, in turn, partitioned in the same manner
(by a retrieval method) into the tasks identify (relevant
descriptors), search (to find a set of past cases), initial
match (the relevant descriptors to past cases), and
select (the most similar case).

All task partitions in the figure are complete, i.e.
the set of subtasks of a task are intended to be suffi-
cient to accomplish the task, at this level of de-
scription. The figure does not show any control
structure over the subtasks, although a rough
sequencing of them is indicated by  having put ear-lier
subtasks higher up on the page than those that follow
(for a particular set of subtasks). The actual control is
specified as part of the problem solving method. The
relation between tasks and methods (stippled lines)
identify alternative methods ap-plicable for solving a
task. A method specifies the algorithm that identifies
and controls the execution of subtasks, and accesses
and utilizes the knowl-edge and information needed to
do this. The meth-ods shown are high level method
classes, from which one or more specific methods
should be cho-sen. The method set as shown is
incomplete, i.e. one of the methods indicated may be
sufficient to solve the task, several methods may be
combined, or there may be other methods that can do
the job. The methods shown in the figure are task
decom-position and control methods. At the bottom
level of the task hierarchy (not shown), a task is solved
directly, i.e. by what may be referred to as task
execution methods.

 3.5. CBR Problem Areas

As for AI in general, there are no universal CBR
methods suitable for every domain of application. The
challenge in CBR as elsewhere is to come up with
methods that are suited for problem solving and
learning in particular subject domains and for par-
ticular application environments. In line with
the task model just shown, core problems addressed

Oracle Exhibit 1007 - Appendix A4 page 7



Aamodt and Plaza: Case-Based Reasoning    AICOM Vol. 7 Nr. 1   March 1994
                                                                                                                                                                                                                                                                                                            

8

pr
ob

le
m

 s
ol

vi
ng

 a
nd

  
le

ar
ni

ng
 fr

om
 e

xp
er

ie
nc

e

re
tr

ie
ve

re
us

e 
re

ta
in

id
en

tif
y 

fe
at

ur
es

 

in
iti

al
ly

 
m

at
ch

 
co

lle
ct

 
de

sc
ri

pt
or

s 

in
fe

r 
de

sc
ri

pt
or

s 

in
te

rp
re

t 
pr

ob
le

m
 

ca
lc

ul
at

e 
si

m
ila

rit
y 

ex
pl

ai
n 

si
m

ila
rit

y  

fo
llo

w
 

di
re

ct
 

in
de

xe
s 

se
ar

ch
 

ge
ne

ra
l 

kn
ow

le
dg

e 

se
ar

ch
 

in
de

x 
st

ru
ct

ur
e 

co
py

 

re
vi

se
 

co
py

 
so

lu
tio

n

m
od

ify
 

so
lu

tio
n 

m
et

ho
d 

m
od

ify
 

so
lu

tio
n 

 

ev
al

ua
te

 
in

 re
al

 
w

or
ld

 

ex
tr

ac
t 

in
de

x 

in
te

gr
at

e 
ex

tra
ct

 
re

le
va

nt
 

de
sc

rip
to

rs

up
da

te
 

ge
ne

ra
l 

kn
ow

le
dg

e

ex
tra

ct
 

so
lu

tio
ns

 

ad
ju

st
 

in
de

xe
s

de
te

rm
in

e 
in

de
xe

s 

re
ru

n 
pr

ob
le

m
 

ge
ne

ra
liz

e 
in

de
xe

s 
ex

tra
ct

 
so

lu
tio

n 
m

et
ho

d 

ad
ap

t 

ev
al

ua
te

 
in

 m
od

el

se
ar

ch
 

se
le

ct
 

ex
tra

ct
 

ju
st

ifi
ca

tio
ns

 
ev

al
ua

te
 

by
 te

ac
he

r ev
al

ua
te

  
so

lu
tio

n
re

pa
ir

 
fa

ul
t

Fi
gu

re
 2

.  
A

 ta
sk

-m
et

ho
d 

de
co

m
po

si
tio

n 
of

 C
B

R

ca
se

-b
as

ed
 re

as
on

in
g

us
e 

 
se

le
ct

io
n 

cr
ite

ria el
ab

or
at

e 
 

ex
pl

an
at

io
ns

se
lf-

 
re

pa
ir us

er
- 

re
pa

ir
co

py
 

so
lu

tio
n 

m
et

ho
d 

Oracle Exhibit 1007 - Appendix A4 page 8



Aamodt and Plaza: Case-Based Reasoning    AICOM Vol. 7 Nr. 1   March 1994
                                                                                                                                                                                                                                                                                                            

9

by CBR research can be grouped into five areas. A set
of coherent solutions to these problems constitutes a
CBR method:

• Knowledge representation
• Retrieval methods
• Reuse methods
• Revise methods
• Retain methods

In the next five sections, we give an overview of the
main problem issues related to these five areas, and
exemplify how they are solved by some exist-ing
methods. Our examples will be drawn from the six
systems PROTOS, CHEF, CASEY, PATDEX,
BOLERO, and CREEK. In the recently published
book by Janet Kolodner [37] these problems are
discussed and elaborated to substantial depth, and
hints and guidelines on how to deal with them are
given.

4. Representation of Cases

A case-based reasoner is heavily dependent on the
structure and content of its collection of cases - often
referred to as its case memory. Since a problem is
solved by recalling a previous experience suitable for
solving the new problem, the case search and matching
processes need to be both effective and reasonably
time efficient. Further, since the experience from a
problem just solved has to be retained in some way,
these requirements also apply to the method of inte-
grating a new case into the memory. The
representation problem in CBR is primarily the
problem of deciding what to store in a case, finding an
appropriate structure for describing case contents, and
deciding how the case memory should be organized
and indexed for effective retrieval and reuse. An
additional problem is how to integrate the case
memory structure into a model of general domain
knowledge, to the extent that such knowledge is
incorporated.

In the following subsection, two influential case
memory models are briefly reviewed: The dynamic
memory model of Schank and Kolodner, and the
category-exemplar model of Porter and Bareiss5.

                                                  
5Other early models include Rissland and Ashley's HYPO

system [52] in which cases are grouped under  a set of domain-
specific dimensions, and Stanfill and Waltz' MBR model,
designed for parallel computation rather than knowledge-based
matching.

4.1. The Dynamic Memory Model

As previously mentioned, the first system that may
be referred to as a case-based reasoner was Kolodner's
CYRUS system, based on Schank's dynamic memory
model [54]. The case memory in this model is a hierar-
chical structure of what is called 'episodic memory
organization packets' (E-MOPs [33,34]), also referred
to as generalized episodes [38]. This model was
developed from Schank's more general MOP theory.
The basic idea is to organize specific cases which
share similar properties under a more general structure
(a generalized episode - GE). A generalized episode
contains three different types of objects: Norms, cases
and indices. Norms are features common to all cases
indexed under a GE. Indices are features which
discriminate between a GE's cases. An index may
point to a more specific generalized episode, or
directly to a case. An index is composed of two terms:
An index name and an index value.

Fig. 3  illustrates this structure. The figure
illustrates a complex generalized episode, with its
underlying cases and more specific GE. The entire
case memory is a discrimination network where a node
is either a generalized episode (containing the norms),
an index name, index value or a case.  Each index-
value pair points from a generalized episode to another
generalized episode or to a case. An index value may
only point to a single case or a single generalized
episode. The indexing scheme is redundant, since there
are multiple paths to a particular case or GE. This is
illustrated in the figure by the indexing of case1.

When a new case description is given and the best
matching is searched for, the input case structure is
'pushed down' the network structure, starting at the
root node. The search procedure is similar for case
retrieval as for case storing. When one or more fea-
tures of the case matches one or more features of a
GE, the case is further discriminated based on its
remaining features. Eventually, the case with most
features in common with the input case is found6.
During storing of a new case,

                                                  
6This may not be the right similarity criterion, and is

mentioned just to illustrate the method. Similarity criteria may
favour matching of a particular subset of features, or there may
be other means of assessing case similarity. Similarity
assessment criteria can in turn can be used to guide the search -
for example by identifying which indexes to follow first if there
is a choice to be made.
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norms: The norms part of a generalized 
episode contain abstract general 
information that characterize the 
cases organized below it 
------------------------------

indices:

index1

value1

case1

index2

value2

index3

value3 value4

case3

GENERALIZED EPISODE 2

norms:       Norms  of cases 1, 2, 4 
                ---------------------- 

indices:

index4

value5

case2

index5

value6

case4

GENERALIZED EPISODE 1

index1

value1

case1

Fig.  3: Structure of cases and generalized episodes.

then discriminated by indexing them under different
indices below this generalized episode. If - during the
storage of a case - two cases (or two GEs) end up
under the same index, a new generalized episode is
automatically created. Hence, the memory structure is
dynamic in the sense that similar parts of two case
descriptions are dynamically generalized into a GE,
and the cases are indexed under this GE by their dif-
ference features.

A case is retrieved by finding the GE with most
norms in common with the problem description.
Indices under that GE are then traversed in order to
find the case which contains most of the additional
problem features. Storing a new case is performed in
the same way, with the additional process of
dynamically creating generalized episodes, as
described above. Since the index structure is a
discrimination network, a case (or pointer to a case) is
stored under each index that discriminates it from
other cases. This may easily lead to an explosive
growth of indices with increased number of cases.
Most systems using this indexing scheme therefore put
some limits to the choice of indices for the cases. In
CYRUS, for example, only a small vocabulary of

indices is permitted.
CASEY stores a large amount of information in its

cases. In addition to all observed features, it retains the
causal explanation for the diagnosis found, as well as
the list of states in the heart failure model for which
there was evidence in the patient. These states, referred
to as generalized causal states,  are also the primary
indices to the cases.

The primary role of a generalized episode is as an
indexing structure for matching and retrieval of cases.
The dynamic properties of this memory organization,
however, may also be viewed as an attempt to build a
memory structure which integrates knowledge from
specific episodes with knowledge generalized from the
same episodes. It is therefore claimed that this
knowledge organization structure is suitable for
learning generalized knowledge as well as case specific
knowledge, and that it is a plausible - although
simplified - model of human reasoning and learning.

4.2. The category & exemplar model

The PROTOS system, built by Ray Bareiss and
Bruce Porter [9,49], proposes an alternative way to
organize cases in a case memory. Cases are also
referred to as exemplars. The psychological and
philosophical basis of this method is the view that 'real
world', natural concepts should be defined
extensionally.  Further, different  features are assigned
different importances in describing a case's
membership to a category. Any attempt to generalize a
set of cases should - if attempted at all - be done very
cautiously. This fundamental view of concept
representation forms the basis for this memory model.

The case memory  is embedded in a network
structure of categories, semantic relations,cases, and
index pointers. Each case is associated with a
category. An index may point to a case or a category.
The indices are of three kinds: Feature links pointing
from problem descriptors (features) to cases or
categories (called remindings), case links pointing
from categories to its associated cases (called
exemplar links), and difference links pointing from
cases to the neighbour cases that only differs in one or
a small number of features. A feature is, generally,
described by a name and a value. A category's
exemplars are sorted according
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Feature-1 Feature-2 Feature-3 Feature-4 Feature-5

Category-1

Exemplar-1 Exemplar-2

strongly prototypical 
 exemplar

weakly prototypical  
exemplar

difference (feature-1 feature-4)

difference (feature-2)

 Fig.  4: The Structure of Categories, Features and Exemplars

to their degree of prototypicality in the category.
Fig. 4 illustrates a part of this memory structure,

i.e. the linking of features and cases (exemplars) to
categories. The unnamed indices are remindings from
features to a category.

Within this memory organization, the categories are
inter-linked within a semantic network, which also
contains the features and intermediate states (e.g.
subclasses of goal concepts) referred to by other terms.
This network represents a background of general
domain knowledge, which enables explanatory support
to some of the CBR tasks. For example, a core
mechanism of case matching is a method called
'knowledge-based pattern matching'.

Finding a case in the case base that matches an
input description is done by combining the input
features of a problem case into a pointer to the case or
category that shares most of the features. If a remind-
ing points directly to a category, the links to its most
prototypical cases are traversed, and these cases are
returned. As indicated above, general domain
knowledge is used to enable matching of features that
are semantically similar. A new case is stored by
searching for a matching case, and by establishing the
appropriate feature indices. If a case is found with
only minor differences to the input case, the new case
may not be retained or the two cases may be merged
by following taxonomic links in the semantic network.

5. Case Retrieval

The Retrieve task starts with a (partial) problem
description, and ends when a best matching previous
case has been found. Its subtasks are referred to as
Identify Features, Initially Match, Search, and Select,

executed in that order.  The identification task basi-
cally comes up with a set of relevant problem
descriptors, the goal of the matching task is to return a
set of cases that are sufficiently similar to the new case
- given a similarity threshold of some kind, and the
selection task works on this set of cases and chooses
the best match (or at least a first case to try out).

While some case-based approaches retrieve a
previous case largely based on superficial, syntactical
similarities among problem descriptors (e.g. the
CYRUS system [33], ARC [46], and PATDEX-1 [50]
systems), some approaches attempt to retrieve cases
based on features that have deeper, semantical
similarities (e.g. the PROTOS [9], CASEY [38],
GREBE [12], CREEK [3], and MMA [47] systems).
Ongoing work in the FABEL project, aimed to develop
a decision support system for architects, explores vari-
ous methods for combined reasoning and mutual
support of different knowledge types [21]. In order to
match cases based on semantic similarities and relative
importance of features, an extensive body of general
domain knowledge is needed to produce an explanation
of why two cases match and how strong the match is.
Syntactic similarity assessment - sometimes referred to
as a "knowledge-poor" approach - has its advantage in
domains where general domain knowledge is very
difficult or impossible to acquire. On the other hand,
semantical oriented approaches - referred to as
"knowledge-intensive"7 - are able to use the contextual

                                                  
7Note that syntactic oriented methods may also contain a lot

of general domain knowledge, implicit in their matching
methods. The distinction between knowledge-poor and
knowledge-intensive is therefore related to explicitly represented
domain knowledge. Further, it refers to  generalized domain
knowledge, since cases also contain explicit knowledge, but this
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meaning of a problem description in its matching, for
domains where general domain knowledge is available.

A question that should be asked when deciding on a
retrieval strategy, is the purpose of the retrieval task.
If the purpose is to retrieve a case which is to be
adapted for reuse, this can be accounted for in the re-
trieval method. Approaches to 'retrieval for adaptation'
have for example been suggested for retrieval of cases
for design problem solving [15], and for analogy
reasoning [17,45].

5.1. Identify Feature

To identify a problem may involve simply noticing
its input descriptors, but often - and particularly for
knowledge-intensive methods - a more elaborate
approach is taken, in which an attempt is made to
'understand' the problem within its context. Unknown
descriptors may be disregarded or requested to be
explained by the user. In PROTOS, for example, if an
input feature is unknown to the system, the user is
asked to supply an explanation that links the feature
into the existing semantic network (category
structure). To understand a problem involves to filter
out noisy problem descriptors, to infer other relevant
problem features, to check whether the feature values
make sense within the context, to generate expectations
of other features, etc. Other descriptors than those
given as input, may be inferred by using a general
knowledge model, or by retrieving a similar problem
description from the case base and use features of that
case as expected features. Checking of expectations
may be done within the knowledge model (cases and
general knowledge), or by asking the user.

5.2. Initially Match

The task of finding a good match is typically split
into two subtasks: An initial matching process which
retrieves a set of plausible candidates, and a more
elaborate process of selecting the best one among
these. The latter is the Select task, described below.
Finding a set of matching cases is done by using the
problem descriptors (input features) as indexes to the
case memory in a direct or indirect way. There are in
principle three ways of retrieving a case or a set of
cases: By following direct index pointers from problem
features, by searching an index structure, or by
searching in a model of general domain knowledge.

                                                                               
is  specialized (specific) domain knowledge.

PATDEX implements the first strategy for its diagnos-
tic reasoning, and the second for test selection. A
domain-dependent, but global similarity metric is used
to assess similarity based on surface match. Dynamic
memory based systems takes the second approach, but
general domain knowledge may be used in combination
with search in the discrimination network. PROTOS
and CREEK combines one and three, since direct
pointers are used to hypothesize a candidate set which
in turn is justified as plausible matches by use of
general knowledge.

Cases may be retrieved solely from input features,
or also from features inferred from the input. Cases
that match all input features are, of course, good
candidates for matching, but  - depending on the
strategy - cases that match a given fraction of the
problem features (input or inferred) may also be re-
trieved. PATDEX uses a global similarity metric, with
several parameters that are set as part of the domain
analysis. Some tests for relevance of a retrieved case is
often executed, particularly if cases are retrieved on
the basis of a subset of features. For example, a simple
relevance test may be to check if a retrieved solution
conforms with the expected solution type of the new
problem. A way to assess the degree of similarity is
needed, and several 'similarity metrics' have been
proposed, based on surface similarities of problem and
case features.

Similarity assessment may also be more
knowledge-intensive, for example by trying to
understand the problem more deeply, and using the
goals, constraints, etc. from this elaboration process to
guide the matching [3]. Another option is to weigh the
problem descriptors according to their importance for
characterizing the problem, during the learning phase.
In PROTOS, for example, each feature in a stored
case has assigned to it a degree of importance for the
solution of the case. A similar mechanism is adopted
by CREEK, which stores both the predictive strength
(discriminatory value) of a feature with respect to the
set of cases, as well as a feature's criticality, i.e. what
influence the lack of a feature has on the case solution.

5.3. Select

From the set of similar cases, a best match is
chosen. This may have been done during the initial
match process, but more often a set of cases are
returned from that task. The best matching case is
usually determined by evaluating the degree of initial
match more closely. This is done by an attempt to gen-
erate explanations to justify non-identical features,
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based on the knowledge in the semantic network. If a
match turns out not to be strong enough, an attempt to
find a better match by following difference links to
closely related cases is made. This subtask is usually a
more elaborate one than the retrieval task, although the
distinction between retrieval and elaborate matching is
not distinct in all systems. The selection process
typically generate consequences and expectations from
each retrieved case, and attempts to evaluate
consequences and justify expectations. This may be
done by using the system's own model of general
domain knowledge, or by asking the user for con-
firmation and additional information. The cases are
eventually ranked according to some metric or ranking
criteria. Knowledge-intensive selection methods
typically generate explanations that support this
ranking process, and the case that has the strongest
explanation for being similar to the new problem is
chosen. Other properties of a case that are considered
in some CBR systems include relative importance and
discriminatory strengths of features, prototypicality of
a case within its assigned class, and difference links to
related cases.

6. Case Reuse

The reuse of the retrieved case solution in the
context of the new case focuses on two aspects: (a) the
differences among the past and the current case and
(b) what part of retrieved case can be transferred to the
new case. The possible subtasks of Reuse are Copy
and Adapt.

6.1. Copy

In simple classification tasks the differences are
abstracted away (they are considered non relevant
while similarities are relevant) and the solution class of
the retrieved case is transferred to the new case as its
solution class. This is a trivial type of reuse. However,
other systems have to take into account differences in
(a) and thus the reused part (b) cannot be directly
transferred to the new case but requires an adaptation
process that takes into account those differences.

6.2. Adapt

There are two main ways to reuse past cases8: (1)
reuse the past case solution (transformational reuse),
and (2) reuse the past method that constructed the
solution (derivational reuse). In transformational reuse
the past case solution  is not directly a solution for the
new case but there exists some knowledge in the form
of transformational operators {T} such that applied to
the old solution they transform it into a solution for the
new case. A way to organize this T operators is to
index them around the differences detected among the
retrieved and current cases. An example of this is
CASEY, where a new causal explanation is built from
the old causal explanations by rules with condition-
part indexing differences and with a transformational
operator T at the action part of the rule.
Transformational reuse does not look how a problem
is solved but focuses on the equivalence of solutions,
and this is one requires a strong domain-dependent
model in the form of transformational operators {T}
plus a control regime to organize the operators
application.

Derivational reuse looks at how the problem was
solved in the retrieved case. The retrieved case holds
information about the method used for solving the
retrieved problem including a justification of the op-
erators used, subgoals considered, alternatives
generated, failed search paths, etc. Derivational reuse
then reinstantiates the retrieved method to the new case
and "replays" the old plan into the new context
(usually general problem solving systems are seen here
as planning systems). During the replay successful
alternatives, operators, and paths will be explored first
while filed paths will be avoided; new subgoals are
pursued based on the old ones and old subplans can be
recursively retrieved for them. An example of
derivational reuse is the Analogy/Prodigy system [70]
that reuses past plans guided by commonalties of goals
and initial situations, and resumes a means-ends
planning regime if the retrieved plan fails or is not
found.

7. Case Revision

When a case solution generated by the reuse phase
is not correct, an opportunity for learning from failure
arises. This phase is called case revision and consists
of two tasks: (1) evaluate the case solution generated
                                                  

8We here adapt the distinction between transformational and
derivational analogy, put forth in [16].
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by reuse. If successful, learn from the success (case
retainment, see next section), (2) otherwise repair the
case solution using domain-specific knowledge or user
input.

7.1. Evaluate solution

The evaluation task takes the result from applying
the solution in the real environment (asking a teacher
or performing the task in the real world). This is
usually a step outside the CBR system, since it - at
least for a system in normal operation - involves the
application of a suggested solution to the real problem.
The results from applying the solution may take some
time to appear, depending on the type of application.
In a medical decision support system, the success or
failure of a treatment may take from a few hours up to
several months. The case may still be learned, and be
available in the case base in the intermediate period,
but it has to be marked as a non-evaluated case. A
solution may also be applied to a simulation program
that is able to generate a correct solution. This is used
in CHEF, where a solution (i.e. a cooking recipe) is
applied to an internal model assumed to be strong
enough to give the necessary feedback for solution
repair.

7.2. Repair fault

Case repair involves detecting the errors of the
current solution and retrieving or generating
explanations for them. The best example is the CHEF
system, where causal knowledge is used to generate an
explanation of why certain goals of the solution plan
were not achieved. CHEF learns the general situations
that will cause the failures using an explanation-based
learning technique. This is included into a failure
memory that is used in the reuse phase to predict
possible shortcomings of plans. This form of learning
moves detection of errors in a pot hoc fashion to the
elaboration plan phase were errors can be predicted,
handled and avoided. A second step of the revision
phase uses the failure explanations to modify the
solution in such a way that failures do not occur. For
instance, the failed plan in the CHEF system is
modified by a repair module that adds steps to the plan
that will assure that the causes of the errors will not
occur. The repair module possesses general causal
knowledge and domain knowledge about how to
disable or compensate causes of errors in the domain.
The revised plan can then be retained directly (if the

revision phase assures its correctness) or it can be
evaluated and repaired again.

8. Case Retainment - Learning

This is the process of incorporating what is useful
to retain from the new problem solving episode into the
existing knowledge. The learning from success or
failure of the proposed solution is triggered by the out-
come of the evaluation and possible repair. It involves
selecting which information from the case to retain, in
what form to retain it, how to index the case for later
retrieval from similar problems, and how to integrate
the new case in the memory structure.

8.1. Extract

In CBR the case base is updated no matter how the
problem was solved. If it was solved by use of a
previous case, a new case may be built or the old case
may be generalized to subsume the present case as
well. If the problem was solved by other methods, in-
cluding asking the user, an entirely new case will have
to be constructed. In any case, a decision need to be
made about what to use as the source of learning.
Relevant problem descriptors and problem solutions
are obvious candidates. But an explanation or another
form of justification of why a solution is a solution to
the problem may also be marked for inclusion in a new
case. In CASEY and CREEK, for example, explana-
tions are included in retained cases, and reused in later
modification of the solution. CASEY uses the previous
explanation structure to search for other states in the
diagnostic model which explains the input data of the
new case, and to look for causes of these states as
answers to the new problem. This focuses and speeds
up the explanation process, compared to a search in
the entire domain model. The last type of structure that
may be extracted for learning is the problem solving
method, i.e. the strategic reasoning path, making the
system suitable for derivational reuse.

Failures, i.e. information from the Revise task, may
also be extracted and retained, either as separate
failure cases or within total-problem cases. When a
failure is encountered, the system can then get a
reminding to a previous similar failure, and use the
failure case to improve its  understanding of - and
correct - the present failure.

8.2. Index
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The 'indexing problem' is a central and much
focused problem in case-based reasoning. It amounts
to deciding what type of indexes to use for future
retrieval, and how to structure the search space of
indexes. Direct indexes, as previously mentioned, skips
the latter step, but there is still the problem of
identifying what type of indexes to use. This is
actually a knowledge acquisition problem, and should
be analyzed as part of the domain knowledge analysis
and modeling step. A trivial solution to the problem is
of course to use all input features as indices. This is
the approach of syntax-based methods within instance-
based and memory-based reasoning. In the memory-
based method of CBR-Talk [63], for example, relevant
features are determined by matching, in parallel, all
cases in the case-base, and filtering out features that
belong to cases with few features in common with the
problem case.

In CASEY, a two-step indexing method is used.
Primary index features are - as referred to in the
section on representation - general causal states in the
heart failure model that are part of the explanation of
the case. When a new problem enters, the features are
propagated in the heart failure model, and the states
that explain the features are used as indices to the case
memory. The observed features themselves are used as
secondary features only.

8.3. Integrate

This is the final step of updating the knowledge
base with new case knowledge. If no new case and
index set has been constructed, it is the main step of
Retain. By modifying the indexing of existing cases,
CBR systems learn to become better similarity
assessors. The tuning of existing indexes is an
important part of CBR learning. Index strengths or
importances for a particular case or solution are
adjusted due to the success or failure of using the case
to solve the input problem. For features that have been
judged relevant for retrieving a successful case, the
association with the case is strengthened, while it is
weakened for features that lead to unsuccessful cases
being retrieved. In this way, the index structure has a
role of tuning and adapting the case memory to its use.
PATDEX has a special way to learn feature relevance:
A relevance matrix links possible features to the
diagnosis for which they are relevant, and assign a
weight to each such link. The weights are updated,
based on feedback of success or failure, by a connec-
tionist method.

In knowledge-intensive approaches to CBR,

learning may also take place within the general
conceptual knowledge model, for example by other
machine learning methods (see next section) or through
interaction with the user. Thus, with a proper interface
to the user (whether a competent end user or an expert)
a system may incrementally extend and refine its
general knowledge model, as well as its memory of
past cases, in the normal course of problem solving.
This is an inherent method in the PROTOS system, for
example. All general knowledge in PROTOS is
assumed to be acquired in such a bottom-up
interaction with a competent user.

The case just learned may finally be tested by re-
entering the initial problem and see whether the system
behaves as wanted.

9. Integrated approaches

Most CBR systems make use of general domain
knowledge in addition to knowledge represented by
cases. Representation and use of that domain
knowledge involves integration of the case-based
method with other methods and representations of
problem solving, for instance rule-based systems or
deep models like causal reasoning. The overall
architecture of the CBR system  has to determine  the
interactions and control regime between the CBR
method and the other components. Note that the type
of integration we address here involves case based
reasoning as a core part of the target system's
reasoning method, and does not include case-oriented
approaches for acquiring general domain knowledge
(e.g. [74]). For instance, the CASEY system integrates
a model-based causal reasoning program to diagnose
heart diseases. When the case-based method fails to
provide a correct solution CASEY executes the model-
based method to solve the problem and  stores the
solution as a new case for future use. Since the model-
based method is complex and slow, the case-based
method in CASEY is essentially a way to achieve
speed-up learning. The integration of model-based
reasoning is also important for the case-based method
itself: the causal model of the disease of a case is what
is retrieved and reused in CASEY.

An example of integrating rules and cases is the
BOLERO system [40]. BOLERO is a meta-level
architecture where the base-level is composed of rules
embodying knowledge to diagnose the plausible
pneumonias of a patient, while the meta-level  is a
case-based planner that, at  every moment, is  able to
dictate which  diagnoses are  worthwhile to consider.
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Thus in BOLERO the rule-based level contains
domain knowledge (how to deduce plausible diagnosis
from patient facts) while the meta-level contains
strategic knowledge (it plans, from all possible goals,
which are likely to be successfully achieved). The
case-based planner is therefore used to control the
space searched by the rule-based level, achieving a
form of speed-up learning. The control regime between
the two components is interesting: the control passes to
the meta-level whenever some new information is
known at the base level, assuring that the system is
dynamically able to generate a more appropriate
strategic plan. This control regime in the meta-level
architecture assures that the case-based planner is
capable of reactive behaviour, i.e. of modifying plans
reacting to situation changes. Also the clear separation
of rule-based and case-based methods in two different
levels of computation is important: it clarifies their
distinction and their interaction.

The integration of CBR with other reasoning
paradigms is closely related to the general issue of
architectures for unified problem solving and learning.
These approach is a current trend in machine learning
with architectures such as Soar, Theo, or Prodigy.
CBR as such is a form of combining problem solving
(through retrieval and reuse) and learning (through
retainment). However, as we have seen, other forms of
representation and reasoning are usually integrated
into a CBR system and thus the general issue is an
important dimension into CBR research. In the
CREEK architecture, the cases, heuristic rules, and
deep models are integrated into a unified knowledge
structure. The main role of the general knowledge is to
provide explanatory support to the case-based
processes [3], rules or deep models may also be used
to solve problems on their own if the case-based
method fails. Usually the domain knowledge used in a
CBR system is acquired through knowledge
acquisition in the normal way for knowledge-based
systems. Another option would be to also learn that
knowledge from the cases. In this situation it can be
learnt in a case-based way or by induction. This line of
work is currently being developed in Europe by sys-
tems like the Massive Memory Architecture and
INRECA [41]. These systems are closely related to the
multistrategy learning systems [42]: the issues of
integrating different problem solving and learning
methods are essential to them.

The Massive Memory Architecture (MMA) [47] is
an integrated architecture for learning and problem
solving based on reuse of case experiences retained in
the systems memory. A goal of MMA is understanding

and implementing the relationship between learning
and problem solving into a reflective or introspective
framework: the system is able to inspect its own past
behaviour in order to learn how to change its structure
so as to improve is future performance. Case-based
reasoning methods are implemented by retrieval
methods (to retrieve past cases), a language of
preferences (to select the best case) and a form of
derivational analogy (to reuse the retrieved method into
the current problem). A problem in the MMA does not
use one CBR method, since several CBR methods can
be programmed for different subgoals by means of
specific retrieval methods and domain-dependent
preferences. Learning in MMA is viewed as a form of
introspective inference, where the reasoning is not
about a domain but about the past behaviour of the
system and about ways to modify and improve this
behaviour. This view supports integration of case-
based learning as well as of other forms of learning
from examples, like inductive methods, which are also
integrated into the MMA and combined with case-
based methods.

10. Example applications and tools

As a relatively young field, CBR can not yet brag
about a lot of fielded applications. But there are some.
We briefly summarize two of these systems, to
illustrate how CBR methods can successfully realize
knowledge-based decision support systems.

10.1. Two Fielded Applications

At Lockheed, Palo Alto, the first fielded CBR
system was developed. The problem domain is
optimization of autoclave loading for heat treatment of
composite materials [26]. The autoclave is a large
convection oven, where airplane parts are treated in or-
der to get the right properties. Different material types
need different heating and cooling procedures, and the
task is to load the autoclave for optimized throughput,
i.e. to select the parts that can be treated together, and
distribute them in the oven so that their required
heating profiles are taken care of. There are always
more parts to be cured than the autoclave can take in
one load. The knowledge needed to perform this task
reasonably well used to reside in the head of a just a
few experienced people. There is no theory and very
few generally applicable schemes for doing this job, so
to build up experience in the form of previously
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successful and unsuccessful situations is important.
The motivation for developing this application was to
be able to remember the relevant earlier situations.
Further, a decision support system would enable other
people than the experts to do the job, and to help
training new personnel. The development of the system
started in 1987, and it has been in regular use since the
fall 1990. The results so far are very positive. The cur-
rent system handles the configuration of one loading
operation in isolation, and an extended system to
handle the sequencing of several loads is under testing.
The development strategy of the application has been
to hold a low-risk profile, and to include more
advanced functionalities and solutions as experience
with the system has been gained over some time.

The second application has been developed at
General Dynamics, Electric Boat Division [13].
During construction of ships, a frequently re-occurring
problem is the selection of the most appropriate
mechanical equipment, and to fit it to its use. Most of
these problems can be handled by fairly standard
procedures, but some problems are harder and occur
less frequently. These type of problems - referred to as
"non-conformances" - also repeat over time, and
because regular procedures are missing, they consume
a lot of resources to get solved . General Dynamics
wanted to see whether a knowledge-based decision
support tool could reduce the cost of these problems.
The application domain chosen was the selection and
adjustment of valves for on-board pipeline systems.
The development of the first system started in 1986,
using a rule-based systems approach. The testing of
the system on real problems initially gave positive
results, but problems of brittleness and knowledge
maintenance soon became apparent. In 1988 a
feasibility study was made of the use of case-based
reasoning methods instead of rules, and a prototype
CBR system was developed. The tests gave optimistic
results, and an operational system was fielded in 1990.
The rule-base was taken advantage of in structuring
the case knowledge and filling the initial case base. IN
the fall of 1991 the system was continually used in
three out of four departments involved with
mechanical construction. A quantitative estimate of
cost reductions  has been made: The rule-based system
took 5 man-years to develop, and the same for the
CBR system (2 man-years of studies and experimental
development and 3 man-years for the prototype and
operational system). This amounts to $750.000 in total
costs. In the period December 90 - September 91
20.000 non-conformances were handled. The cost re-
duction, compared to previous costs of manual

procedures, was about 10%, which amounts to a
saving of $240.000 in less than one year.

There are many any other applications in test use or
more or less regular use. A rapidly growing
application type is "help desk systems" [36,58], where
basically case-based indexing and retrieval methods
are used to retrieve cases, which then are viewed as
information chunks for the user, instead of sources of
knowledge for reasoning9. Such a system can also be a
first step towards a more full-fledged CBR system.

10.2. Tools

Several commercial companies offer shells for
building CBR systems. Just as for rule-based systems
shells, they enable you to quickly develop applications,
but at the expense of flexibility of representation,
reasoning approach and learning methods. In [25] Paul
Harmon reviewed four such shells: ReMind from
Cognitive Systems Inc., CBR Express/ART-IM from
Inference Corporation, Esteem from Esteem Software
Inc., and Induce-it (later renamed to CasePower) from
Inductive Solutions, Inc. The first three of these were
reviewed more thoroughly by Thomas Schult for the
German AI journal [56]. The example of CBR
Express and ART-IM is typical, since many vendors
offer CBR extensions to an existing tool. On the
European scene Acknosoft in Paris offers the shell
KATE-CBR as part of their CaseCraft Toolbox, Isoft,
also in Paris, has a shell called ReCall. TechInno in
Kaiserslautern has S3-Case, a PATDEX-derived tool
that is part of their S3 environment for technical
systems maintenance.

As an example of functionality, the ReMind shell
offers an interactive environment for acquisition of
cases, domain vocabulary, indexes and prototypes.
The user may define hierarchical relations among at-
tributes and a similarity measure based on them.
Indexing is done inductively by building a decision tree
and allowing the user to graphically edit the
importance of attributes. Several retrieval methods are
supported: (1) inductive retrieval matching the most
specific prototype in a prototype hierarchy, (2) nearest
neighbour retrieval, and (3) SQL-like template
retrieval. Case adaptation is based on formulas that
adjust values based on retrieved vs. new case

                                                  
9A gradual transition from such a system, starting with some

help desk and information filtering [74] functions, and moving to
an advice-giving case-based decision support tool, is the
approach taken in a system currently being specified for the
Norwegian oil industry [43].
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differences. ReMind also has the capability of
representing causal relationships using a qualitative
model. The first commercial products appeared in
1991 including Help-Desk systems, technical
diagnosis, classification and prediction, control and
monitoring, planning, and design applications. ReMind
is a trade mark of Cognitive Systems Inc. and was
developed with the DARPA support.

ReCall is a CBR system trademark of ISoft, a Paris
based AI company, and applications include help desk
systems, fault diagnosis, bank loan analysis, control
and monitoring. Retrieval methods are a combination
of methods (1) and (2) in ReMind, but offer standard
adaptation mechanisms such as vote and analogy, and
a library of adaptation methods.

The KATE-CBR tool, named CaseWork, integrates
an instance-based CBR approach within a tool for
inductive learning of, and problem solving from,
decision trees. The inductive and case-based methods
can be used separately, or integrated into a single
combined method. There are editor facilities to
graphically build parts of the case/index structure, and
to generate user dialogues. The tool has incorporated
initial results on integration of case-based and
inductive methods from the INRECA project [41].

Some academic CBR tools are freely available, e.g.
by anonymous ftp, or via contacting the developers.10

11. Conclusions and Future trends

Summarizing the paper, we can say that case-based
reasoning (CBR) puts forward a paradigmatic way to
attack AI issues, namely problem solving, learning,
usage of general and specific knowledge, combining
different reasoning methods, etc. In particular we have
seen that CBR emphasizes problem solving and
learning as two sides of the same coin: problem
solving uses the results of past learning episodes while
problem solving provides the backbone of the
experience from which learning advances. The current
state of the art in Europe regarding CBR is
characterized by a strong influence of the USA ideas
and CBR systems, although Europe is catching up and
provides a somewhat different  approach to CBR,
particularly in its many activities related to integration
of CBR and other approaches and by its movement
toward the development of application-oriented CBR

                                                  
10 Protos, for example, is available from the University of

Texas, and code for implementing a simple version of dynamic
memory, as described in [51], is available from the Institute of
Learning Sciences at Northwestern University.

systems.
The development trends of CBR methods can be

grouped around four main topics: Integration with
other learning methods, integration with other
reasoning components, incorporation into massive
parallel processing, and method advances by focusing
on new cognitive aspects. The first trend, integration
of other learning methods into CBR, forms part of the
current trend in ML research toward multistrategy
learning systems. This research aims at achieving an
integration of different learning methods (for instance
case-based learning and induction as is done in the
MMA and INRECA systems) into a coherent
framework, where each learning method fulfills a
specific and distinct role in the system. The second
trend, integration of several reasoning methods aims at
using the different sources of knowledge in a more
thorough, principled way, like what is done in the
CASEY system with the use of causal knowledge.
This trend emphasizes the increasing importance of
knowledge acquisition issues and techniques in the
development of knowledge-intensive CBR systems,
and the European Workshop on CBR showed a strong
European commitment towards the utilization of
knowledge level modeling in CBR systems design.

The massive memory parallelism trend applies
case-based reasoning to domains suitable for shallow,
instance-based retrieval methods on a very large
amount of data. This direction may also benefit from
integration with neural network methods, as several
Japanese projects currently are investigating [32].  By
the fourth trend, method advances from focusing on
the cognitive aspects, what we particularly have in
mind is the follow-up of work initiated on creativity
(e.g. [55]) as a new focus for CBR methods. It is not
just an 'application type', but a way to view CBR in
general, which may have significant impact on our
methods.

The trends of CBR applications  are clearly that
we initially will see a lot of help desk applications
around. This type of systems may open up for a more
general coupling of CBR - and AI in general - to in-
formation systems. The use of cases for human
browsing and decision making, is also likely to lead to
increased interest in intelligent computer-aided
learning, training, and teaching. The strong role of
user interaction, of flexible user control, and the drive
towards total interactiveness of systems (of
'situatedness', if you like) favours a case-based
approach to intelligent computer assistance, since
CBR systems are able to continually learn from, and
evolve through, the capturing and retainment of past
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experiences.
Case-based reasoning has blown a fresh wind and a

well justified degree of optimism into AI in general and
knowledge based decision support systems in
particular. The growing amount of ongoing CBR
research - within an AI community that has learned
from its previous experiences - has the potential of
leading to significant breakthroughs of AI methods and
applications.
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