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C = { D i } = { (dil, • • • , diT) } (I) 

A typical collection includes many terms and many 
documents. Since most weights are zero, the col- 
lection C can be represented by a very sparse 
matrix. 

Each document vector D can then be more com- 
pactly represented by considering only the n terms 
that are present (each called c k) and their 
weights (Wk), as in: 

D = ( <Cl,Wl >, • • • , <Cn,Wn > ) (2) 

If the queries are indexed in the same fashion as 
the documents, a correlation function such as the 
cosine of the angle between the vectors can be 
used. Thus, we compute the similarity of a par- 
ticular document Dl to a given query Q j by: 

T 

(dik × q jk ) 
k=l 

COS(Di'Q j) = (3) 

T ~ T jk)2 
k=l(dik)2 × ~ (q \ k=l 

By generating a similarity coefficient between a 
given query and each of the various documents in a 
collection, it becomes possible to produce a 
ranked list of documents, in decreasing order of 
the query-document similarity [35]. 

i.~. EvolutioB of the Batch Version 

By 1964, SMART was in operation on Harvard 
University's IBM 7094 batch computer system. In 
the late 1960's, operations were transferred to an 
IBM 360/65. By 1974, the present IBM 370/168 
batch version was completed at Cornell University. 

~.~. Design and Effort toward On-Line Versions 

SMART was originally intended for operation 
in a time-sharing environment [37:p.3]. In 1964 a 
preliminary design suited for such operation was 
suggested [29], and implementation work began for 
a version to run under M.I.T.'s CTSS [3]. In 
1966, M.E. Lesk concluded that fully automatic 
documentation centers were feasible with current 
technology [21]. In 1970, a detailed design for a 
IBM 360 based conversational system was prepared 
[44]; later a partial implementation under the 370 
TSO was undertaken. 

Much of the more recent research by members 
of the SMART group deals with issues relating to 
on-line use. Clustered file organizations, where 
"similar" vectors are stored nearby, can be effec- 
tive for real-time identification of documents 
relevant to a query [35:323-385]. An automatic 
classification procedure constructs a tree struc- 
ture, in which leaves are document vectors and 
nodes are centroid vectors; each centroid is the 
vector average of the nodes immediately below. 
Given such a tree, a modified depth-first search 
finds documents most similar to a query. Search- 
ing proceeds top-down from the root; at each stage 
the child of the current node with highest query- 
centroid similarity is selected. 

Feedback is also employed in automatic query 
improvement methods as part of an iterative search 
process [37]. After the system retrieves a small 
number of documents, the user specifies which are 
relevant. Based on that information, a modified 
query is computed that generally performs better 
than the initial one. The process can be repeated 
a number of times so that many relevant documents 
can be located with a minimum of user effort. 

Since 1980, efforts have been made to devise 
a time-sharing minicomputer version of SMART on 
computers of the Cornell Computer Science Depart- 
ment. A few key components of SMART were re- 
programmed to allow experimentation on a PDP 
11/60. Many projects are now underway using the 
first of two planned VAX 11/780 computers. 

~. Combinin~ Document and Database Retriev~l 

As was suggested in the Introduction, methods 
for combining document and database retrieval are 
interesting and useful. Before the discussion of 
my particular approach, two operational systems 
and some proposed relational systems that do 
include both document and database operations are 
briefly described. 

~.~. STAIRS 

STAIRS/VS operates on IBM 370s in batch and 
on-line modes. For each word of text in the data- 
base, an inverted file entry contains pointers to 
all document occurrences of that word. Document 
texts are also stored and can be examined using a 
BROWSE command [15]. 

Documents of interest can be identified by 
Boolean SELECT queries using the inverted index, 
or by standard database SEARCH queries dealing 
with separate formatted fields. Using the SELECT 
command, a portion of the collection can be iso- 
lated with a request like 'PUBLISHER=MCGRAW- 
HILL,ADDISON-WESLEY AND YEAR > 1975 t . 

• .Z. FIRST 

Robert Dattola designed FIRST at Xerox Cor- 
poration on a Sigma 9 computer. It employs a vec- 
tor space model (based on SMART ideas) for the 
document retrieval portion and uses a CODASYL DBMS 
for bibliographic information. The two components 
are integrated and queries containing both types 
of information can be processed. Optimal 
retrieval paths are automatically selected; thus, 
handling of broad bibliographic queries is by 
clustered file search. Specific bibliographic 
requests are satisfied by navigating through the 
network data organization. Sequential ranking of 
the selected documents follows, using a cosine 
similarity function [I0]. 

~.~. ProPosals for Use of ~elational Systems 

Relational systems handle database retrieval 
tasks with operations on a single data structure 
called a relation. Codd originally proposed the 
relational algebra and the relational calculus to 
express a desired data manipulation of one or more 
relations non-procedurally [6]. The use of the 
relational model may be more easily adapted to 
document retrieval tasks than the network model 
used in FIRST. 
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fan Macleod considers the use of the SEQUEL 
relational language for handling both the biblio- 
graphic database and content term aspects of an 
information retrieval system called Mistral/ll 
[24]. Robert Crawford describes further how the 
relational model can be employed for document 
retrieval purposes [8]. However, he feels that 
for output processing, "factoring" is needed to go 
beyond the normalization rules and allow printing 
a repeating group that is stored as a number of 
tuples. Crawford also uncovers a number of prob- 
lems such as the handling of weighted retrieval, 
where a special function must be provided to 
enable ranking of documents against a query. An 
appropriate solution is needed, such as a suitably 
general extension to the relational model. 

~• Extendin~ the Relational Model 

At present, appropriate techniques for han- 
dling combined document and database retrieval 
tasks are not available. Consider the task of 
indexing an abstract. Though an abstract can be 
treated as one of the domains of a relation [8], 
it is hard to do anything further with it. 
Ideally, one would like to transform a document 
relation DOC__REL (doc#, abstract) directly into an 
equivalent relation such as ABS_REL(doc#,word#, 
word), where "word~" gives the position of "word" 
in the "abstract n. 

Second, consider the problem of weighted 
retrieval. The importance of a term (terns#) in a 
document (dot#) can be measured by a real-valued 
weight (dwt), as can the importance of a term in a 
query (qwt). How does one apply a similarity 
function to relation R (doc#,tern~,qwt,dwt) to get 
S (doc#,sim) where "sim" is the cosine of the 
query and document weight vectors? 

Third, examine the difficulties that rela- 
tional models have with other types of data. One 
would like long strings like abstracts to be 
printed in a reasonable fashion. Further, to 
allow an array processor to access a specialized 
form of document vectors, one needs to arrange the 
data storage as a form of un-normalized relation, 
so the array processor can easily manipulate large 
blocks of the vector space [38]. Other special 
data structures should likewise be integrated into 
a relational file system so that separate access 
methods are not required; examples are: graphics 
lists for display processors, parse trees for 
stored programs segments, and tries for efficient 
dictionary searching. 

Finally, consider the problems connected with 
progrannning a depth-first clustered tree search 
[33:224-242]• Tree handling primitives are the 
natural tools to employ; they must be ineffi- 
ciently simulated when using relational data 
structures • 

These issues are discussed in the following 
subsections, and a p~ototype design of SMART along 
the ideas of section 4.2 is given in section 5. 

4.~. ~ A ~  ~nd A~Zs 

To be truly effective, minicomputer operating 
and database systems should have elegant and sim- 
ple designs, like that of UNIX [28]. There is no 
room for a proliferation of software tools or a 
plethora of file and data handling methods. Much 

as the relational model has streamlined thought on 
database manipulation, the use of ADTs has sug- 
gested that program development can proceed in an 
orderly, modular fashion. Thus it seems wise to 
apply concepts of ADTs to minicomputer design pro- 
jects• 

ADTs are encapsulations of operations and 
data types• Thus, we think of arrays, queues, and 
trees as abstractions for handling convenient 
organizations of data. In programming languages 
that handle ADTs, a module would exist for each 
such type, and only the operations specified in 
that module could be applied to elements of that 
type [30, 14, 22, 12, 13, I]. 

Many relational database systems have been 
developed (e.g. those described in [42] and [5]). 
Though there are semantic problems with any record 
oriented model [17], suggested solutions have been 
proposed for the relational model [41, 7]. Based 
on formal definitions as in [23], several program- 
ming languages have been developed that manipulate 
relations as a basic construct [39, 40]. Of par- 
ticular interest, however, are languages such as 
PLAIN [43] and RIGEL [31], which handle ADTs, have 
relations as a data type, and are implemented on 
minicomputers. 

A•~. Relations and ADTs 

Ledgard and Taylor point out that database 
models and programming language handling of ADTs 
are both attempts to handle data abstraction [20]. 
Paolini discusses how ADTs can be applied to some 
issues of database research [27]. In this study, 
ADTs and relations are combined in a general 
fashion to provide a powerful tool for programming 
and database manipulation. 

First, an instantiation of an ADT (called an 
ADTI or "abstract data type instance") may be 
either temporary or permanent. %men the CREATE 
command is used to bind a name to an initially 
empty instance of a completely specified ADT, it 
is necessary to indicate whether that ADTI should 
be given permanent storage, lqle default policy 
for relations is temporary allocation. Thus, 
applicative expressions, where one operation is 
applied to the results of another as in "SELECT( 
PROJECT ... )", can be easily handled. An imple- 
mentation on typical computers can use a backing 
store for permanent and for large temporary 
~d)Tl's. Some ADTIs could be implemented as 
"views" in a more sophisticated implementation. 

Just as record types can be defined in many 
languages to include references to other record 
types, relations should be able to have any 
abstract data type for each domain• Thus, if we 
define an abstract data type D_VEC for document 
vectors, a corresponding ADTI might take the form 
of a compressed vector like that of equation (2) 
in section 2. A document collection would then be 
compactly represented as a relation COLLDVEC(DOC~, 
D_VEC). 

Since relations are useful for many purposes, 
general conversion operators (e.g. operators 4 and 
5 of section 5.1) can be provided for transforming 
data between the relational form and the form of 
other ~DTs. The operators can refer to functions 
pre-defined in a library or added later by users; 
only a "to-relation" and a "from-relation" func- 
tion would be needed for each high level ADT. 
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The above generalizations have many further 
implications. Relations can be embedded in other 
relations. Trees or networks of relations could 
then be manipulated without the specialized system 
mechanisms of [7]. With proper ADTs for texts, 
one could easily go from collections of abstracts, 
titles, and bibliographic items to vectors, rela- 
tions, dictionaries, thesauri, and other con- 
structs in a single integrated system, as illus- 
trated by the examples of section 5. 

One may object that such a scheme sounds 
interesting, but could never be efficiently imple- 
mented. Hence, after the utility of these propo- 
sals is demonstrated in the next sections, issues 
of implementation will be addressed in section 
5.4. 

~.~. Annlications of the Extended Model 

Numerous applications are possible for the 
generalized relational facility being proposed. 
Two will be given here; a more detailed example 
appears in sections 5.2 and 5.3. 

First, consider a manufacturing facility that 
constructs special entities, called assemblies, 
from parts. Parts are sometimes made from other 
parts. For engineering purposes, an "explosion" 
or part tree is desirable, and should be graphi- 
cally portrayed. Hence one might have an attri- 
bute of an assembly called PART_TREE, of ADT TREE. 
Though for most manipulation purposes the relation 
ASSEMBLIES (ASSEMBLY~,PART~,SUBPART~ l) would be 
adequate, conversion routines could change to and 
from ASSEMBLIES and EXPLOSION ( ASSEMBLY~, 
PART_TREE). 

Consider next a tracking station receiving 
data from a spacecraft's TV camera. The informa- 
tion might be stored in a relation PIC_ELEMENTS 
(PIC~,XCOOR,YCOOR,COLOR,INTENSITY). However, an 
image enhancement device or display system might 
want direct reference to a formatted matrix P_MAT 
for each given picture, so conversion would be 
made toPIC_MATRIX (PIC~,P MAT). 

~. Prototype pesi~n of ~MART 

The wisest tactic to use in converting the 
SMART system to another computer is to have a gen- 
eral tool of the kind introduced in sections 4.2 
and 4.3 above. Section 5.1 defines the operators 
needed, 5.2 gives a sample schema appropriate for 
an enhanced SMART system, and 5°3 describes how 
some simple functions of SMART might be coded 
using the defined operators. Finally, section 5.4 
mentions some of the issues involved in an actual 
implementation. 

Throughout part 5, reference will be made to 
a library application in which users might want to 
find articles about information science occurring 
in several different collections. The following 
example and explanation describes a simplified 
version of the more detailed schema specified in 
section 5.2. 

databases 
I ................................ 1 
] DATABASES 
Icoll~ [ subjects I collc 
I ................................ 

l 1 I lattice [ cit-I I dv-I 
I I group I I 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

I . , .  I . . .  I , . .  I . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

cit-I 
I ................................ 

[ CITATION 
Idoc_idl title I year 
I ................................ 

I%100011 Groups and I 1978 
I [ Group Theory [ 
I ................................ 

I ... I ... I ... 
.................................. 

dv-1 
[ ................................ 

[ DOCVEC 
Idoc_id] d_vec 
I ................................ 

I%10001] <group,2>, <theory,l> 
................................ 

i ... I ... 
.................................. 

Assume that an instantiation "databases" of rela- 
tion DATABASES (coll#,subjects,collc) contains the 
entire store of data. "subjects" is of a type for 
listing character strings which mention all the 
subjects covered in a particular collection. 
"colic" is a record of two relations containing 
all the information in the collection. One such 
relation, CITATION (doc_id, title, year, ...), 
would have details for bibliographic identifica- 
tion of documents with internal identifier 
"doc_id"; a possible instantiation "c~t-l" is 
shown above. Another relation, DOC VECS (doc_id, 
d_vec), would describe documents by storing index- 
ing information in document vector form under the 
attribute "d_vec". The sample instantiation "dv- 
I" shows a document vector where the actual word 
stem is given instead of the concept number that 
normally designates it. 

Using this structure, a user could submit one 
request to select each collection such that 
"information science" is in "subjects". The same 
query could then automatically search those col- 
lections to find documents about particular topics 
published in a certain range of years. 

~.~. Ouerators 

In describing the various operators, a two 
stage approach is adopted. Some general charac- 
teristics pertaining to all operators are given. 
Then, the role of each class of operators is given 
and the particular operators are defined. 

Parameters are of a particular type, or have 
their types passed by other parameters. No 
attempt is made to strictly define each ADT, since 
an axiomatic approach should be employed and that 
is beyond the scope of this report. Some general 
functions are introduced, and the ADT "relation", 
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along with operators that deal with it, is 
described in particular. 

Almost all the operators given here yield a 
relation as a result. They can thus be used in an 
applicative fashion. Though other constructs 
would be needed to describe a full programming 
language using these operators, the following 
gives the high-level syntax of the subset being 
described. 

<PROGRAM> ::= { <STATEMENT> }+ . 

<STATEMENT> ::= { <EXP> | }* <EXP> ; 
where the | indicates that the value of 
the previous expression is "piped" into 
the following expression, in lieu of 
its first argument (usually, RELI). 
The output of such a "filter" can be 
piped into a subsequent expression. 
etc. The value of the statement is the 
value of its last expression. 

<EXP> ::= <OP_EXP> [GIVING <BOUNDNAME>] 
where the optional clause allows bind- 
ing of a name (previously specified by 
a CREATE operation) to the result of 
<OP_EXP>. 

<OP_EXP> ::= <any_operator form_below> 

Consider now the definitions of the various 
types of operators. As is usual, braces followed 
by the superscript * or + designate a number of 
occurrences. Bold face braces indicate that a 
decision must be made as to one of the possibili- 
ties that are separated by "I"; note that "I" is 
distinct from the ,|, used above. Brackets denote 
optionality. 

RELI and REL2 usually designate the name of a 
relation. Except in cases like operators I-2 
where such use would be illogical, RELn could 
instead be replaced by the form "( <EXP> ),. 

ATTR designates an attribute name. FUN will 
be used for a function, VAR for a variable, and 
VAL for a value. XFILE is the typ~ of an external 
name referring to an I/O device or backing store 
file; defaults exist for input and output. 

The first set of operators deals with defini- 
tions and interactions relating to the language 
and system environment. 

(i) CREATE <RELI> 
WITH ( { (<TYPE>:<ATTR>) }+ ) 
[SURR <ATTR>] [PEEM] 

creates an initially empty relation. The 
SURR clause indicates that the relation 
models entities that are defined even if 
key values change. Thus, a surrogate 
identifier would be useful for each indi- 
vidual in a "person" relation if for some 
reason the employee number key field had 
to be re-numbered. The system generates 
an internal identifier of type SURROGATE 
whenever a tuple is added. The PERM 
clause forces the relation to be held in 
permanent rather than temporary storage. 

(2) ENTERIN <RELI> FROM { 
TUPLE { (<TYPE>:<VAL>) }+ I 
INPUT [<XFILE>] ] 

enters either a single tuple or an exter- 
nal file of tuples. 

(3) OUTPUT <RELI> TO [<XFILE>] 
[OUT_TRANS { (<FUN>:<ATTR>) }+ ]~ 
[HEADER { (<HDR DESCR> <ATTR>) ) ] 

outputs the entire contents of RELI to 
the external file, where the standard 
transformations specified in the defini- 
tion of each attribute's ADT is automati- 
cally employed unless overridden by ex- 
plicit mention. Functionals like 
"floatf" could be applied to parameters 
specifying output width and number of 
fractional places; thus "floatf(6,2)" 
could be applied to a number like 12.3456 
to yield " 12.34". Special operators 
could print entire document vectors 
spread over several lines. The HEADER 
option overrides the default heading con- 
tent and size for an attribute. 

Other such operators would also be needed but are 
omitted for the sake of brevity. 

The second set of operators deal with ADT 
conversions. They are very general and presume 
that the actual transformations will be done by 
functions. Those functions would employ various 
relational operators and various operators on 
other data types. 

(4) COMBINE <RELI> 
CHANGING ( ( <ATTR> }+ ) 
INTO <ATT_TYPE>:<ATT_NAMB> 
USING <FUN> 

groups RELI by the attributes not given 
in the list (as in Codd's PATT [7]) and 
combines tuples in each group so a single 
ADTI records the data of the chosen at- 
tributes of tuples in the group. That 
ADTI is named ATT_NAME in the result re- 
lation and is of type ATT_TYPE; the 
result relation has the remaining uncom- 
bined attributes of RELI as well. 
For example, in the expression 
COMBINE relx CHANGING (term__id, t_freq) 

INTO SF VECTOR:d vec 
USING rel_to sfloat..vec 

a function "rel_to_sfloat_vec" could con- 
vert a group of tuples all having the 
same document number (doc_id) but having 
different concept (surrogate term_id) and 
weight (floating t_freq) values into a 
single tuple consisting of "doe_id" and 
"d_vec" (a document vector consisting of 
surrogate-floating pairs). 

(5) EXPAND <RELI> YIELDING 
( { <TYPE>:<ATTR> }+ ) 
FROM [<TYPE>:] <ADTI_ATTR> 
USING <FUN> 
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has the opposite effect of a COMBINE 
operator: expanding a single tuple con- 
taining the given ADTI to a group of tu- 
pies with the same values on the other 
attributes of the original relation. A 
special function sfloat_vec_to_rel could 
convert back a relation with attributes 
doc_id and d_vec to one where d vec is 
replaced by term_.id and t_freq. 

These two operators are the key to having rela- 
tions with non-simple domains. 

The third set of operators covers the rela- 
tional algebra: 

(6) SELECT <RELI> WHERE 
<BOOLEAN-VALUED-EXP-USING-ATTR-NAMES> 

(7) PROJECT <RELI> OVER ( { <ATTR> }+ ) 

(8) JOIN <RELI> WITH <REL2> 
[ WHERE <BOOLEAN-VALUED-JEXP> ] 

has JEXP denoting a join expression re- 
lating an attribute A1 of RELI and an at- 
tribute A2 of REL2; AI, A2 are over a 
common domain. The WHERE clause can be 
omitted to obtain the cross-product of 
RELI and REL2. 

(9) E_JOIN <RELI> WITH <REL2> OVER <ATTR> 
[WHERE <ATTRI>=<ATTR2>] 

(I0) DIVIDE <RELI> BY <REL2> 

(11) SET_OP <RELI> { UNION I DIFF I INTERSECT 
<REL2> 

These algebraic operations follow standard termi- 
nology. 

The fourth set of operators facilitates mani- 
pulation of domain and tuple entries: 

(12) WIDEN <RELI> ADDING 
( { <TYPE>:<ATTR> "<-" <VAL-EXP> }+ ) 

(13) UPDATE <RELI> CHANGING 
( { <ATTR> "<-" <VAL-EXP> }+ ) 

These first two operate on a tuple at a time, 
adding a new attribute or updating an existing one 
with the value of the expression. That expression 
is in reality an arbitrary function over con- 
stants, variables, and the other attributes of the 
tuple. 

(14) SUMMARIZE <RELI> COMPUTING 
( { <ATTR> [ INITIAL <VA~-EXP> 

UPDATING <VAL-EXP> ] }- ) yields a 
relation made up of a single tuple with 
the attributes listed. If the INITIAL 
... UPDATING clause is absent for an at- 
tribute, then that ATTR should have con- 
stant value over all tuples. When it is 
present, the clause prescribes an order- 
independent computation over the given 
domain, such as summing. Thus one could 
project from the "citation" relation the 
attribute "year", and sunrnarize those 
values into an average by adding them to- 
gether and then later dividing by the 
cardinality of the relation. 

The final set of operators includes some that 
are handy for typical applications. 

(15) SORT <RELI> 
{ { ASC [ DESC } ON <ATTR> }* 

(16) UNIQ <RELI> 
reduces the relation to have only dis- 
tinct tuples (as in the formal definition 
of relations). 

(17) NUMBER <RELI> ADDING <TYPE>:<ATTR> 
adds an attribute that gives the ordering 
of the tuples, so that ATTR for the i-th 
tuple has the value of the i-th element 
of the domain of TYPE. 

This set could easily be extended. Sorting and 
handling of uniqueness are of critical importance. 
The NUMBER command is simply suggested as an 
alternative to requiring special syntax such as 
using CURRENT, NEXT, PREVIOUS, FIRST, and LAST to 
deal with tuple orderings. 

Various other operators could be added to 
these five sets. However, these seem to cover the 
important cases, and there is adequate flexibility 
to add special functions for other situations. A 
complete language description would include simi- 
lar groups for other ADTs, but that is beyond the 
scope of this report. A general operator to apply 
functions operating on any ADTs will suffice to 
round out this version of the operator set. 

(18) <FUN> ( { <ARGUMENT> }+ ) 
is appropriate for arguments of type re- 
lation and of other types. 

The functions given in this section as operators 
simply provide syntactic sugar to facilitate use. 
Other, user defined functions, would be utilized 
by employing the function application operation. 

~.Z. SamPle Schema 

A schema corresponds to definitions of newly 
defined data types and an association of names 
with types. Instead of giving type definitions 
axiomatically as should be done, they are given 
here descriptively. Some are in terms of already 
defined types; the rest rely upon prose explana- 
tion of the operators that would be applicable. 
Some of the definitions are polymorphic; parame- 
ters are employed to indicate the types of certain 
elements that make up each such generalized compo- 
site type. 

Basic types of data include SURROGATE (system 
generated identifier), INT (integer), FLOAT 
(real), CHAR (single character), STRING (string of 
characters), and BOOLEAN (TRUE or FALSE). ARRAYs, 
RECORDs (as in PASCAL), LISTs (where one can 
insert, read, and delete elements at any posi- 
tion), and RELATIONs would be predefined composite 
types. 

Other composite types are built up from basic 
or composite types. Since all bound names are 
defined in CREATE operations, the language is 
amenable to static type checking, and the type of 
a bound name can be fully specified. Expressions 
are type checked in advance, but operators are 
polymorphic; thus the E_JOIN operator only 
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requires that RELI and REL2 are relations such 
that their common ATTR has equality defined for it 
- other aspects of the type structures of the 
relations are immaterial. 

The following ADTs are defined in terms of 
the other data types: 

41) STRING_LIST = LIST (STRING) 
where strings can be added at the end of the 
list or looked up. 

42) TREE(POS,X) = tree with leaves of type X 
that can be manipulated by operators for 
tree creation, traversal, and modifica- 
tion. Typically, X will be a record con- 
taining a node type and an item number 
for some item of data. P0S will only be 
operated on by routines of this ADT; it 
is a type for tree positions in the tree, 
and allows several processes to simul- 
taneously be searching the tree since 
each can remember its own POS. 

43) TRIE = tree-like data structure whose 
branches are labelled with letters of the 
alphabet, so STRINGs can be quickly added 
and looked up. 

(4) VECTOR(X,Y) = ARRAY (RECORD ( X,Y ) ) 
where is_entry(X) indicates if a record 
is present, add entry(X,Y) adds one, and 
get_entry(X) returns the desired item of 
type Y. 

Our example will have entities for each collec- 
tion, document, author, content term (either stem, 
phrase, or thesaurus category), and publication. 
The following data types are specialized for the 
application in mind. It is presumed that they 
were defined earlier by suitable CREATE state- 
ments; here is a summary showing the type struc- 
ture and binding of names. To eliminate confu- 
sion, all bound names are given in lower case. 

DATABASES:databases = RELATION ( 
SURROGATE:colI_id, STRING:coil_name, 
STRING_LIST:subjects, 
DB_CONTENTS:db_contents ) 

DB_CONTENTS = RECORD ( ABSTRACTS:abstracts, 
AUTHORS:authors, 
CENTR01D_VECS:centroid_vecs, 
CITATION:citation, CLUSTER:cluster, 
DICTl0NARY:dictionary,DIRECTORY:directory, 
DOC_NOS:doc_nos, DOC_VECS:doc_vecs, 
SOURCE:source, STOP.WORDS:stop_words, 
THESAURUS:thesaurus) 

Q_COLLS:q_colIs = RELATION ( INT:q_coll_no, 
STRING:q_coll_author, Q_COLL:q_colI) 

Q_COLL = RECORD ( QUERIES:queries, 
QUERY_VECS:query_vecs, 
RELEVANCE_JUDGEMENTS:relevance_judgements) 

ABSTRACTS = RELATION ( SURROGATE:doc_id, 
STRING:abstract) 

AUTHORS = RELATION ( SURROGATE:authorid, 
STRING:authname) 

CENTROID_VECS = RELATION ( INT:centroid_no, 
VECTOR(SURROGATE:cv_id, 

FLOAT:cv_val ):c_vec) 

CITATION = RELATION ( SURROGATE:authid, 
SURROGATE:doc_id, SURROGATE:pub_id, 
STRING:title, INT:vol, INT:no, 
INT:start_page, INT:year) 

CLUSTER = TREE(POS:node, 
RECORD(INT:cent_or_doc, 

INT:vec_no ):c_val ) 
DICTIONARY = RELATION ( SURROGATE:term_id, 

STRING:stem) 
DIRECTORY = RELATION ( SURROGATE:author_id, 

STRING:auth_name) 
DOC_NOS = RELATION ( SURROGATE:doc_id, 

INT:doc_no ) 
DOC_VECS = RELATION ( SURROGATE:doc_id, 

VECTOR(SURROGATE:dv_id, 
FLOAT:dv_val ):d_vec ) 

SOURCE = RELATION ( SURROGATE:pub_id, 
STRING:publicationname, 
STRING:publisher) 

STOP_WORDS = TRIE 
THESAURUS = RELATION ( SURROGATE:th_catid, 

SURROGATE:term_id, 
FLOAT:prob_ofterm_in_cat) 

QUERIES = RELATION ( INT:q__no, STRING:query ) 
QUERY VECS = RELATION ( INT:q_no, 

VECTOR(SURROGATE:qv_id, 
FLOAT:qv_val ):q_vec ) 

RELEVANCE_JUDGMENTS = RELATION ( INT:q_no, 
INT:doc_no, BOOL:relevant? ) 

Definition of Search and Other 0Derations 

Consider now various typical operations: 

41) Dictionary creation by getting all words 
from abstracts that are not in the stop 
word list, stemming them, sorting them to 
unique entries, and assigning surrogate 
term numbers: 

EXPAND abstracts 
YIELDING (INT:word~, STRING:word) 
FROM abstract USING text cracking 
GIVING doc_words | 

PROJECT OVER (word) | 
SELECT WHERE NOT 

( in_trie( word, stop_words ) ) | 
UPDATE CHANGING (word <- stem(word) ) | 
SORT ASC ON word | 
UNIQ | 
WIDEN ADDING 

( SURROGATE:term_id <- next_surr() ) 
GIVING dictionary 

(2) Indexing documents using "doc__words" and 
edictionary" from (I), where frequency is 
found by adding ones and vectors are formed 
by "rel_to_sfloat_vec": 
PROJECT doc_words OVER (doc id, word) | 
SELECT WHERE 

NOT( in trie( word, stop words ) ) | 
UPDATE CHANGING (word <- stem(word) ) | 
WIDEN ADDING (FLOAT:freq <- 1.0 ) | 
COMBINE CHANGING (freq) INTO FLOAT:t._freq 

USING + | 
E_JOIN WITH dictionary OVER stem | 
PROJECT OVER (doc_id, term_id, t_freq) | 
COMBINE CHANGING (term_id, t freq) INTO 

VECTOR(SURROGATE,FLOAT):d_vec 
USING rel to sfloat_vec 
GIVING doc_vecs 
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(3) Indexing queries by word stems: as above, 
but starting with "queries" and resulting 
in "query_vecs" 

(4) Ranking of all docs for each query by 
computing the cross-product of doc and 
query relations and then finding the cos 
correlation of the vectors: 
E_JOIN doc_vecs WITH doc_nos OVER doc_id | 
PROJECT OVER (doc_no, d_vec) 

GIVING dno_vecs | 
JOIN WITH query_vecs | 
WIDEN ADDING 

(FLOAT:corr <- cos(d_vec, q_vec) ) | 
PROJECT OVER (q_no, doc no, corr) | 
SORT DESC ON corr, ASC ON q no, 

ASC ON doc_no GIVING ranking 

(5) Selecting only the I0 top ranked docs. 
for above queries by making the group of 
results for a query into a relation that 
can be ranked and selected from, and later 
converting back to the original relation's 
format. Note use of COMPILE, COMPOSE.: 
COMBINE ranking 

CHANGING (doc_no, corr) INTO 
RELATION(INT:rank,INT:doc no, 

FLOAT:corr ):top_doc list 
USING COMPILE(nSELECT WHERE RANK <= I0" 

COMPOSE 
"NUMBER ADDING INT:RANKn 
COMPOSE group_to_rel) 

EXPAND YIELDING (INT:doc no, FLOAT:corr) 
FROM RELATION(INT:rank,INT:doc_no, 

FLOAT:corr):top_doc_list 
USING rel_to_group GIVING top_ranking 

(6) Print document collection with standard 
headings: 
OUTPUT dno vecs 

(7) Print the average correlation for the 
results of (5): 
PROJECT top_ranking OVER (corr) | 
WIDEN ADDING ( INT:count <- 1 ) | 
SUMMARIZE COMPUTING 

(count INITIAL 0 UPDATING count, 
corr INITIAL 0.0 UPDATING corr) | 

UPDATE CHANGING ( corr <- corr/count, 
count <- count/10 ) | 

OUTPUT HEADER ("NO. OF QUERIES n count, 
"AV. CORR. OF TOP i0 DOCS" corr) 

(8) Construction of feedback queries by 
positive feedback, so new query = (old 
query) + (av. of tel. docs. of rank <= I0): 
E_JOIN top_ranking 

WITH relevance_judgements 
OVER (q_no, doe_no) | 

PROJECT OVER ( q_no, doc_no ) | 
E_JOIN WITH doc_nos OVER (doc_no) | 
PROJECT OVER ( q_no, doc_id ) | 
E_JOIN WITH doc__vecs OVER (doc_id) | 
PROJECT OVER ( q__no, doc_vec ) J 
COMBINE CHANGING (doc_vec) 

INTO (VECTOR(SURROGATE,FLOAT):av_vec 
USING vec_average J 

E JOIN WITH query_vecs OVER q_no J 
UPDATE CHANGING 

( av_vec <- vec_sum( av_vec, q_vec ) ) 

(9) Construction of feedback queries with 
negative feedback: like (8) above, but use 
set DIFF to get non-relevants of rank <=I0. 

(I0) Centroid search via predefined function: 
cent_search ( query_vecs, cluster, 

centroid_vecs, doc_vecs, doc._no ) 

~.~. Implementation 

Parts of SMART have been implemented using 
the C language [18] and features of the UNIX 
operating system [28]. UNIX has been used else- 
where as the basis on which to build a 
programmer's workbench [16]; it is especially well 
suited for program development. The command 
language of UNIX lets one invoke commands via C- 
like syntax, and enables "piping" the results of 
one program (or command file) into another in 
applicative fashion. Further, the C-shell command 
language can be invoked from inside a C program. 
The result is that many of the 18 operators of 
section 5.1 have been implemented in part using 
combinations of existing programs and procedures. 
A side effect is that all programs are small and 
require little main memory important charac- 
teristics for minicomputer based systems. Let us 
consider the current plans for completing a proto- 
type implementation of SMART. 

UNIX text files are used to store all rela- 
tions. Only string data types are stored in those 
files. Special characters are used, however, as 
prefixes to strings of numbers to indicate that 
they are surrogates. Following [7], there is an 
entity relation to connect relation-surrogates 
with actual file names. Other entity relations 
are present for other data types. Basic data 
types are coded into character strings, as are 
some composite types. Special data types that are 
manipulated by procedures are stored in internal 
form in a separate file for such items; a surro- 
gate will serve as key to the hashing function 
that locates such entries. Routines already exist 
to manipulate term vectors and Boolean query 
strings; using surrogates to identify them will 
enable those data types to be elements of other 
types. 

As long as only character strings are present 
in relations, a number of programs can be easily 
adapted to manipulate them. Operators 2-3, 6-7, 
9, and 11-18 can thus be easily implemented, if 
certain limitations are made on the functions and 
expressions allowed. After a mechanism is pro- 
grammed to create and keep descriptions of rela- 
tions and special data types, operator 1 can be 
coded and some of the above can be revised to 
better meet their specifications. The rest of the 
operators will require more development, but 
(inefficient) first versions are not especially 
difficult to devise. 

Before widespread use is made of the system, 
type checking logic must be added, so operations 
will not accidentally be applied to data of the 
wrong type. Several relations such as the follow- 
ing will be accessed by the compiler to see what 
is permissible: 
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TYPES ( TYPE_NAME, NEEDS_SURROGATE?, 
NEEDS_FILE?, USES_INT_FORM? ) 

TYPE_OPS ( TYPE_NAME, OP_NAME, INFIX_USE?, 
FUNCTION_TOUSE ) 

FUNCTIONS ( FUN_NAME, CAN_OPTIMIZE_THROUGH?, 
NO_OF_ARGS ) 

FUN._ARGS ( FUN_NAME, ARG_NO, ARG_TYPE ) 
CONVERSIONS ( TYPE_l, TYPE_2, 

CONV_ FUN_FOR_I_TO_2 ) 

One of the departmental VAX systems will be 
employed for further research and experimentation, 
while a production version of SMART can be made 
available on the second VAX computer. The 
thoroughly tested operational version can serve as 
a retrieval system for users. Collections of 
documents on computer and information science 
could be made available and the members of the 
Computer Science Department would be able to 
access those files for academic and research pur- 
poses. 

~. Future Plans 

Many interesting problems will remain after 
the initial implementation is complete. They are 
classifiable into the following areas. 

~.I. ~an~ua~e Design 

An axiomatic definition of all the operators 
employed is certainly of use, so that each 
system-defined ADT can be properly verified. 
Since C does not even have all the basic types 
being considered, effort is needed to define a 
suitably general language that can be compiled 
into C in an efficient manner. Of course, thought 
will be given at that time to see if other higher 
level language available under UNIX could be more 
easily adapted to the desired purposes. 

~.~. Data Or=anization 

In System R, considerable care is taken to 
compile data manipulation statements into effi- 
cient access methods [5]. A reasonable implemen- 
tation of SMART would have to progress beyond 
utilizing only character string files for rela- 
tions. Special routines would be needed to handle 
relations and to allow rapid access through 
(invisible) index files, especially where frequent 
joins are needed. In this regard, we plan to 
first examine other relational systems [31, 43] 
implemented under UNIX, to see if they can be 
properly generalized. 

In any case, with the new operators included, 
interesting questions arise on how optimization 
can best be carried out. Further, there is need 
to explore how clustering in relations can be per- 
formed and how clustered orderings can be main- 
tained in a dynamic environment. Finally, issues 
of locking, backup, recovery, and distributed pro- 
cessing are of interest when data types are viewed 
through this new perspective. Schemas and ADTs 
are interrelated, and so these problems must be 
analyzed on a low level as well as on the usual 
high level. 

~.~. Application in Offic e Information Systems 

As shown in [34], automatic information 
retrieval methods work about as well as systems 
where documents are carefully indexed by hand. 

Einar Nodtvedt demonstrated that letters can be 
analyzed and indexed By computer through methods 
similar to those used for documents [26]; reason- 
able retrieval performance results. At Cornell, 
one collection of electronic mail has been 
obtained. Typical user questions deal with combi- 
nations of content issues and database issues, as 
can be seen from the following edited versions of 
lists submitted to me: 

CATEGORIES 

Urgent Items DEC Full Time Employees 
Items Due Today DEC Part Time Employees 
DEC Rented Software DEC purchased Software 
DEC Hardware Budget General Expense Budget 
DEC Software Incoming Correspondence 
IBM Software Outgoing Correspondence 

QUESTIONS 

This letter: from whom, when sent, how urgent, 
how many characters? 

Person P: what mail (sent/received), what was 
sent (since a given date), no. of letters 
(sent/received)? 

Date: no. and/or list of mail received 
(answered/unanswered/total) since then, 
between then and another data? 

List of topics: which were mentioned during 
dates, which authors discussed, which 
letters were about (any/all) of them? 

GreateSt no.: letters (to/from)? 
How long: since received/sent to P, 

since discussed topic T? 

These and many other questions can be handled by 
the combined database and document retrieval sys- 
tem being described. Automatic storage and 
retrieval of electronic mail and machine readable 
correspondence seem to be ideal and practical 
applications of the methods being discussed here. 
They are an important component of any office 
automation system. 

~. Conclusions 

Faced with the need to convert the SMART 
information retrieval system to a VAX or PDP ii 
minicomputer, expanding the concepts of ADTs to 
the database realm provides a general solution. 
An integrated language for handling ADTs must 
include a set of operations for type "relation" 
and for transforming between relations and other 
types. Eighteen such operators are defined and 
solutions for typical retrieval tasks are given 
using those operators to manipulate a sample 
schema. The command expressions employed provide 
a handy user-oriented version of important func- 
tions dealing with relations. A few simple com- 
mands allow rapid conversion from the uniform view 
characteristic of relational languages to the spe- 
cialized data structures that are so much a part 
of other approaches to abstraction. 

Issues of implementation, language design, 
and data organization are discussed in relation to 
this proposal. A prototype system is under 
development and a more efficient version should 
provide a versatile database and document 
retrieval facility for minicomputers. Perhaps 
such a flexible tool will be part of the offlce of 
the future. 
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