
Hyundai Ex. 1019

C = { D i } = { (dil, • • • , diT) } (I)

A typical collection includes many terms and many
documents. Since most weights are zero, the col-
lection C can be represented by a very sparse
matrix.

Each document vector D can then be more com-
pactly represented by considering only the n terms
that are present (each called c k) and their
weights (Wk), as in:

D = (<Cl,Wl >, • • • , <Cn,Wn >) (2)

If the queries are indexed in the same fashion as
the documents, a correlation function such as the
cosine of the angle between the vectors can be
used. Thus, we compute the similarity of a par-
ticular document Dl to a given query Q j by:

T

(dik × q jk)
k=l

COS(Di'Q j) = (3)

T ~ T jk)2
k=l(dik)2 × ~ (q \ k=l

By generating a similarity coefficient between a
given query and each of the various documents in a
collection, it becomes possible to produce a
ranked list of documents, in decreasing order of
the query-document similarity [35].

i.~. EvolutioB of the Batch Version

By 1964, SMART was in operation on Harvard
University's IBM 7094 batch computer system. In
the late 1960's, operations were transferred to an
IBM 360/65. By 1974, the present IBM 370/168
batch version was completed at Cornell University.

~.~. Design and Effort toward On-Line Versions

SMART was originally intended for operation
in a time-sharing environment [37:p.3]. In 1964 a
preliminary design suited for such operation was
suggested [29], and implementation work began for
a version to run under M.I.T.'s CTSS [3]. In
1966, M.E. Lesk concluded that fully automatic
documentation centers were feasible with current
technology [21]. In 1970, a detailed design for a
IBM 360 based conversational system was prepared
[44]; later a partial implementation under the 370
TSO was undertaken.

Much of the more recent research by members
of the SMART group deals with issues relating to
on-line use. Clustered file organizations, where
"similar" vectors are stored nearby, can be effec-
tive for real-time identification of documents
relevant to a query [35:323-385]. An automatic
classification procedure constructs a tree struc-
ture, in which leaves are document vectors and
nodes are centroid vectors; each centroid is the
vector average of the nodes immediately below.
Given such a tree, a modified depth-first search
finds documents most similar to a query. Search-
ing proceeds top-down from the root; at each stage
the child of the current node with highest query-
centroid similarity is selected.

Feedback is also employed in automatic query
improvement methods as part of an iterative search
process [37]. After the system retrieves a small
number of documents, the user specifies which are
relevant. Based on that information, a modified
query is computed that generally performs better
than the initial one. The process can be repeated
a number of times so that many relevant documents
can be located with a minimum of user effort.

Since 1980, efforts have been made to devise
a time-sharing minicomputer version of SMART on
computers of the Cornell Computer Science Depart-
ment. A few key components of SMART were re-
programmed to allow experimentation on a PDP
11/60. Many projects are now underway using the
first of two planned VAX 11/780 computers.

~. Combinin~ Document and Database Retriev~l

As was suggested in the Introduction, methods
for combining document and database retrieval are
interesting and useful. Before the discussion of
my particular approach, two operational systems
and some proposed relational systems that do
include both document and database operations are
briefly described.

~.~. STAIRS

STAIRS/VS operates on IBM 370s in batch and
on-line modes. For each word of text in the data-
base, an inverted file entry contains pointers to
all document occurrences of that word. Document
texts are also stored and can be examined using a
BROWSE command [15].

Documents of interest can be identified by
Boolean SELECT queries using the inverted index,
or by standard database SEARCH queries dealing
with separate formatted fields. Using the SELECT
command, a portion of the collection can be iso-
lated with a request like 'PUBLISHER=MCGRAW-
HILL,ADDISON-WESLEY AND YEAR > 1975 t .

• .Z. FIRST

Robert Dattola designed FIRST at Xerox Cor-
poration on a Sigma 9 computer. It employs a vec-
tor space model (based on SMART ideas) for the
document retrieval portion and uses a CODASYL DBMS
for bibliographic information. The two components
are integrated and queries containing both types
of information can be processed. Optimal
retrieval paths are automatically selected; thus,
handling of broad bibliographic queries is by
clustered file search. Specific bibliographic
requests are satisfied by navigating through the
network data organization. Sequential ranking of
the selected documents follows, using a cosine
similarity function [I0].

~.~. ProPosals for Use of ~elational Systems

Relational systems handle database retrieval
tasks with operations on a single data structure
called a relation. Codd originally proposed the
relational algebra and the relational calculus to
express a desired data manipulation of one or more
relations non-procedurally [6]. The use of the
relational model may be more easily adapted to
document retrieval tasks than the network model
used in FIRST.

120

fan Macleod considers the use of the SEQUEL
relational language for handling both the biblio-
graphic database and content term aspects of an
information retrieval system called Mistral/ll
[24]. Robert Crawford describes further how the
relational model can be employed for document
retrieval purposes [8]. However, he feels that
for output processing, "factoring" is needed to go
beyond the normalization rules and allow printing
a repeating group that is stored as a number of
tuples. Crawford also uncovers a number of prob-
lems such as the handling of weighted retrieval,
where a special function must be provided to
enable ranking of documents against a query. An
appropriate solution is needed, such as a suitably
general extension to the relational model.

~• Extendin~ the Relational Model

At present, appropriate techniques for han-
dling combined document and database retrieval
tasks are not available. Consider the task of
indexing an abstract. Though an abstract can be
treated as one of the domains of a relation [8],
it is hard to do anything further with it.
Ideally, one would like to transform a document
relation DOC__REL (doc#, abstract) directly into an
equivalent relation such as ABS_REL(doc#,word#,
word), where "word~" gives the position of "word"
in the "abstract n.

Second, consider the problem of weighted
retrieval. The importance of a term (terns#) in a
document (dot#) can be measured by a real-valued
weight (dwt), as can the importance of a term in a
query (qwt). How does one apply a similarity
function to relation R (doc#,tern~,qwt,dwt) to get
S (doc#,sim) where "sim" is the cosine of the
query and document weight vectors?

Third, examine the difficulties that rela-
tional models have with other types of data. One
would like long strings like abstracts to be
printed in a reasonable fashion. Further, to
allow an array processor to access a specialized
form of document vectors, one needs to arrange the
data storage as a form of un-normalized relation,
so the array processor can easily manipulate large
blocks of the vector space [38]. Other special
data structures should likewise be integrated into
a relational file system so that separate access
methods are not required; examples are: graphics
lists for display processors, parse trees for
stored programs segments, and tries for efficient
dictionary searching.

Finally, consider the problems connected with
progrannning a depth-first clustered tree search
[33:224-242]• Tree handling primitives are the
natural tools to employ; they must be ineffi-
ciently simulated when using relational data
structures •

These issues are discussed in the following
subsections, and a p~ototype design of SMART along
the ideas of section 4.2 is given in section 5.

4.~. ~ A ~ ~nd A~Zs

To be truly effective, minicomputer operating
and database systems should have elegant and sim-
ple designs, like that of UNIX [28]. There is no
room for a proliferation of software tools or a
plethora of file and data handling methods. Much

as the relational model has streamlined thought on
database manipulation, the use of ADTs has sug-
gested that program development can proceed in an
orderly, modular fashion. Thus it seems wise to
apply concepts of ADTs to minicomputer design pro-
jects•

ADTs are encapsulations of operations and
data types• Thus, we think of arrays, queues, and
trees as abstractions for handling convenient
organizations of data. In programming languages
that handle ADTs, a module would exist for each
such type, and only the operations specified in
that module could be applied to elements of that
type [30, 14, 22, 12, 13, I].

Many relational database systems have been
developed (e.g. those described in [42] and [5]).
Though there are semantic problems with any record
oriented model [17], suggested solutions have been
proposed for the relational model [41, 7]. Based
on formal definitions as in [23], several program-
ming languages have been developed that manipulate
relations as a basic construct [39, 40]. Of par-
ticular interest, however, are languages such as
PLAIN [43] and RIGEL [31], which handle ADTs, have
relations as a data type, and are implemented on
minicomputers.

A•~. Relations and ADTs

Ledgard and Taylor point out that database
models and programming language handling of ADTs
are both attempts to handle data abstraction [20].
Paolini discusses how ADTs can be applied to some
issues of database research [27]. In this study,
ADTs and relations are combined in a general
fashion to provide a powerful tool for programming
and database manipulation.

First, an instantiation of an ADT (called an
ADTI or "abstract data type instance") may be
either temporary or permanent. %men the CREATE
command is used to bind a name to an initially
empty instance of a completely specified ADT, it
is necessary to indicate whether that ADTI should
be given permanent storage, lqle default policy
for relations is temporary allocation. Thus,
applicative expressions, where one operation is
applied to the results of another as in "SELECT(
PROJECT ...)", can be easily handled. An imple-
mentation on typical computers can use a backing
store for permanent and for large temporary
~d)Tl's. Some ADTIs could be implemented as
"views" in a more sophisticated implementation.

Just as record types can be defined in many
languages to include references to other record
types, relations should be able to have any
abstract data type for each domain• Thus, if we
define an abstract data type D_VEC for document
vectors, a corresponding ADTI might take the form
of a compressed vector like that of equation (2)
in section 2. A document collection would then be
compactly represented as a relation COLLDVEC(DOC~,
D_VEC).

Since relations are useful for many purposes,
general conversion operators (e.g. operators 4 and
5 of section 5.1) can be provided for transforming
data between the relational form and the form of
other ~DTs. The operators can refer to functions
pre-defined in a library or added later by users;
only a "to-relation" and a "from-relation" func-
tion would be needed for each high level ADT.

121

The above generalizations have many further
implications. Relations can be embedded in other
relations. Trees or networks of relations could
then be manipulated without the specialized system
mechanisms of [7]. With proper ADTs for texts,
one could easily go from collections of abstracts,
titles, and bibliographic items to vectors, rela-
tions, dictionaries, thesauri, and other con-
structs in a single integrated system, as illus-
trated by the examples of section 5.

One may object that such a scheme sounds
interesting, but could never be efficiently imple-
mented. Hence, after the utility of these propo-
sals is demonstrated in the next sections, issues
of implementation will be addressed in section
5.4.

~.~. Annlications of the Extended Model

Numerous applications are possible for the
generalized relational facility being proposed.
Two will be given here; a more detailed example
appears in sections 5.2 and 5.3.

First, consider a manufacturing facility that
constructs special entities, called assemblies,
from parts. Parts are sometimes made from other
parts. For engineering purposes, an "explosion"
or part tree is desirable, and should be graphi-
cally portrayed. Hence one might have an attri-
bute of an assembly called PART_TREE, of ADT TREE.
Though for most manipulation purposes the relation
ASSEMBLIES (ASSEMBLY~,PART~,SUBPART~ l) would be
adequate, conversion routines could change to and
from ASSEMBLIES and EXPLOSION (ASSEMBLY~,
PART_TREE).

Consider next a tracking station receiving
data from a spacecraft's TV camera. The informa-
tion might be stored in a relation PIC_ELEMENTS
(PIC~,XCOOR,YCOOR,COLOR,INTENSITY). However, an
image enhancement device or display system might
want direct reference to a formatted matrix P_MAT
for each given picture, so conversion would be
made toPIC_MATRIX (PIC~,P MAT).

~. Prototype pesi~n of ~MART

The wisest tactic to use in converting the
SMART system to another computer is to have a gen-
eral tool of the kind introduced in sections 4.2
and 4.3 above. Section 5.1 defines the operators
needed, 5.2 gives a sample schema appropriate for
an enhanced SMART system, and 5°3 describes how
some simple functions of SMART might be coded
using the defined operators. Finally, section 5.4
mentions some of the issues involved in an actual
implementation.

Throughout part 5, reference will be made to
a library application in which users might want to
find articles about information science occurring
in several different collections. The following
example and explanation describes a simplified
version of the more detailed schema specified in
section 5.2.

databases
I 1
] DATABASES
Icoll~ [subjects I collc
I

l 1 I lattice [cit-I I dv-I
I I group I I

.

I . , . I . . . I , . . I . . .
.

cit-I
I

[CITATION
Idoc_idl title I year
I

I%100011 Groups and I 1978
I [Group Theory [
I

I ... I ... I ...
..................................

dv-1
[................................

[DOCVEC
Idoc_id] d_vec
I

I%10001] <group,2>, <theory,l>
................................

i ... I ...
..................................

Assume that an instantiation "databases" of rela-
tion DATABASES (coll#,subjects,collc) contains the
entire store of data. "subjects" is of a type for
listing character strings which mention all the
subjects covered in a particular collection.
"colic" is a record of two relations containing
all the information in the collection. One such
relation, CITATION (doc_id, title, year, ...),
would have details for bibliographic identifica-
tion of documents with internal identifier
"doc_id"; a possible instantiation "c~t-l" is
shown above. Another relation, DOC VECS (doc_id,
d_vec), would describe documents by storing index-
ing information in document vector form under the
attribute "d_vec". The sample instantiation "dv-
I" shows a document vector where the actual word
stem is given instead of the concept number that
normally designates it.

Using this structure, a user could submit one
request to select each collection such that
"information science" is in "subjects". The same
query could then automatically search those col-
lections to find documents about particular topics
published in a certain range of years.

~.~. Ouerators

In describing the various operators, a two
stage approach is adopted. Some general charac-
teristics pertaining to all operators are given.
Then, the role of each class of operators is given
and the particular operators are defined.

Parameters are of a particular type, or have
their types passed by other parameters. No
attempt is made to strictly define each ADT, since
an axiomatic approach should be employed and that
is beyond the scope of this report. Some general
functions are introduced, and the ADT "relation",

122

along with operators that deal with it, is
described in particular.

Almost all the operators given here yield a
relation as a result. They can thus be used in an
applicative fashion. Though other constructs
would be needed to describe a full programming
language using these operators, the following
gives the high-level syntax of the subset being
described.

<PROGRAM> ::= { <STATEMENT> }+ .

<STATEMENT> ::= { <EXP> | }* <EXP> ;
where the | indicates that the value of
the previous expression is "piped" into
the following expression, in lieu of
its first argument (usually, RELI).
The output of such a "filter" can be
piped into a subsequent expression.
etc. The value of the statement is the
value of its last expression.

<EXP> ::= <OP_EXP> [GIVING <BOUNDNAME>]
where the optional clause allows bind-
ing of a name (previously specified by
a CREATE operation) to the result of
<OP_EXP>.

<OP_EXP> ::= <any_operator form_below>

Consider now the definitions of the various
types of operators. As is usual, braces followed
by the superscript * or + designate a number of
occurrences. Bold face braces indicate that a
decision must be made as to one of the possibili-
ties that are separated by "I"; note that "I" is
distinct from the ,|, used above. Brackets denote
optionality.

RELI and REL2 usually designate the name of a
relation. Except in cases like operators I-2
where such use would be illogical, RELn could
instead be replaced by the form "(<EXP>),.

ATTR designates an attribute name. FUN will
be used for a function, VAR for a variable, and
VAL for a value. XFILE is the typ~ of an external
name referring to an I/O device or backing store
file; defaults exist for input and output.

The first set of operators deals with defini-
tions and interactions relating to the language
and system environment.

(i) CREATE <RELI>
WITH ({ (<TYPE>:<ATTR>) }+)
[SURR <ATTR>] [PEEM]

creates an initially empty relation. The
SURR clause indicates that the relation
models entities that are defined even if
key values change. Thus, a surrogate
identifier would be useful for each indi-
vidual in a "person" relation if for some
reason the employee number key field had
to be re-numbered. The system generates
an internal identifier of type SURROGATE
whenever a tuple is added. The PERM
clause forces the relation to be held in
permanent rather than temporary storage.

(2) ENTERIN <RELI> FROM {
TUPLE { (<TYPE>:<VAL>) }+ I
INPUT [<XFILE>]]

enters either a single tuple or an exter-
nal file of tuples.

(3) OUTPUT <RELI> TO [<XFILE>]
[OUT_TRANS { (<FUN>:<ATTR>) }+]~
[HEADER { (<HDR DESCR> <ATTR>))]

outputs the entire contents of RELI to
the external file, where the standard
transformations specified in the defini-
tion of each attribute's ADT is automati-
cally employed unless overridden by ex-
plicit mention. Functionals like
"floatf" could be applied to parameters
specifying output width and number of
fractional places; thus "floatf(6,2)"
could be applied to a number like 12.3456
to yield " 12.34". Special operators
could print entire document vectors
spread over several lines. The HEADER
option overrides the default heading con-
tent and size for an attribute.

Other such operators would also be needed but are
omitted for the sake of brevity.

The second set of operators deal with ADT
conversions. They are very general and presume
that the actual transformations will be done by
functions. Those functions would employ various
relational operators and various operators on
other data types.

(4) COMBINE <RELI>
CHANGING ((<ATTR> }+)
INTO <ATT_TYPE>:<ATT_NAMB>
USING <FUN>

groups RELI by the attributes not given
in the list (as in Codd's PATT [7]) and
combines tuples in each group so a single
ADTI records the data of the chosen at-
tributes of tuples in the group. That
ADTI is named ATT_NAME in the result re-
lation and is of type ATT_TYPE; the
result relation has the remaining uncom-
bined attributes of RELI as well.
For example, in the expression
COMBINE relx CHANGING (term__id, t_freq)

INTO SF VECTOR:d vec
USING rel_to sfloat..vec

a function "rel_to_sfloat_vec" could con-
vert a group of tuples all having the
same document number (doc_id) but having
different concept (surrogate term_id) and
weight (floating t_freq) values into a
single tuple consisting of "doe_id" and
"d_vec" (a document vector consisting of
surrogate-floating pairs).

(5) EXPAND <RELI> YIELDING
({ <TYPE>:<ATTR> }+)
FROM [<TYPE>:] <ADTI_ATTR>
USING <FUN>

123

has the opposite effect of a COMBINE
operator: expanding a single tuple con-
taining the given ADTI to a group of tu-
pies with the same values on the other
attributes of the original relation. A
special function sfloat_vec_to_rel could
convert back a relation with attributes
doc_id and d_vec to one where d vec is
replaced by term_.id and t_freq.

These two operators are the key to having rela-
tions with non-simple domains.

The third set of operators covers the rela-
tional algebra:

(6) SELECT <RELI> WHERE
<BOOLEAN-VALUED-EXP-USING-ATTR-NAMES>

(7) PROJECT <RELI> OVER ({ <ATTR> }+)

(8) JOIN <RELI> WITH <REL2>
[WHERE <BOOLEAN-VALUED-JEXP>]

has JEXP denoting a join expression re-
lating an attribute A1 of RELI and an at-
tribute A2 of REL2; AI, A2 are over a
common domain. The WHERE clause can be
omitted to obtain the cross-product of
RELI and REL2.

(9) E_JOIN <RELI> WITH <REL2> OVER <ATTR>
[WHERE <ATTRI>=<ATTR2>]

(I0) DIVIDE <RELI> BY <REL2>

(11) SET_OP <RELI> { UNION I DIFF I INTERSECT
<REL2>

These algebraic operations follow standard termi-
nology.

The fourth set of operators facilitates mani-
pulation of domain and tuple entries:

(12) WIDEN <RELI> ADDING
({ <TYPE>:<ATTR> "<-" <VAL-EXP> }+)

(13) UPDATE <RELI> CHANGING
({ <ATTR> "<-" <VAL-EXP> }+)

These first two operate on a tuple at a time,
adding a new attribute or updating an existing one
with the value of the expression. That expression
is in reality an arbitrary function over con-
stants, variables, and the other attributes of the
tuple.

(14) SUMMARIZE <RELI> COMPUTING
({ <ATTR> [INITIAL <VA~-EXP>

UPDATING <VAL-EXP>] }-) yields a
relation made up of a single tuple with
the attributes listed. If the INITIAL
... UPDATING clause is absent for an at-
tribute, then that ATTR should have con-
stant value over all tuples. When it is
present, the clause prescribes an order-
independent computation over the given
domain, such as summing. Thus one could
project from the "citation" relation the
attribute "year", and sunrnarize those
values into an average by adding them to-
gether and then later dividing by the
cardinality of the relation.

The final set of operators includes some that
are handy for typical applications.

(15) SORT <RELI>
{ { ASC [DESC } ON <ATTR> }*

(16) UNIQ <RELI>
reduces the relation to have only dis-
tinct tuples (as in the formal definition
of relations).

(17) NUMBER <RELI> ADDING <TYPE>:<ATTR>
adds an attribute that gives the ordering
of the tuples, so that ATTR for the i-th
tuple has the value of the i-th element
of the domain of TYPE.

This set could easily be extended. Sorting and
handling of uniqueness are of critical importance.
The NUMBER command is simply suggested as an
alternative to requiring special syntax such as
using CURRENT, NEXT, PREVIOUS, FIRST, and LAST to
deal with tuple orderings.

Various other operators could be added to
these five sets. However, these seem to cover the
important cases, and there is adequate flexibility
to add special functions for other situations. A
complete language description would include simi-
lar groups for other ADTs, but that is beyond the
scope of this report. A general operator to apply
functions operating on any ADTs will suffice to
round out this version of the operator set.

(18) <FUN> ({ <ARGUMENT> }+)
is appropriate for arguments of type re-
lation and of other types.

The functions given in this section as operators
simply provide syntactic sugar to facilitate use.
Other, user defined functions, would be utilized
by employing the function application operation.

~.Z. SamPle Schema

A schema corresponds to definitions of newly
defined data types and an association of names
with types. Instead of giving type definitions
axiomatically as should be done, they are given
here descriptively. Some are in terms of already
defined types; the rest rely upon prose explana-
tion of the operators that would be applicable.
Some of the definitions are polymorphic; parame-
ters are employed to indicate the types of certain
elements that make up each such generalized compo-
site type.

Basic types of data include SURROGATE (system
generated identifier), INT (integer), FLOAT
(real), CHAR (single character), STRING (string of
characters), and BOOLEAN (TRUE or FALSE). ARRAYs,
RECORDs (as in PASCAL), LISTs (where one can
insert, read, and delete elements at any posi-
tion), and RELATIONs would be predefined composite
types.

Other composite types are built up from basic
or composite types. Since all bound names are
defined in CREATE operations, the language is
amenable to static type checking, and the type of
a bound name can be fully specified. Expressions
are type checked in advance, but operators are
polymorphic; thus the E_JOIN operator only

124

requires that RELI and REL2 are relations such
that their common ATTR has equality defined for it
- other aspects of the type structures of the
relations are immaterial.

The following ADTs are defined in terms of
the other data types:

41) STRING_LIST = LIST (STRING)
where strings can be added at the end of the
list or looked up.

42) TREE(POS,X) = tree with leaves of type X
that can be manipulated by operators for
tree creation, traversal, and modifica-
tion. Typically, X will be a record con-
taining a node type and an item number
for some item of data. P0S will only be
operated on by routines of this ADT; it
is a type for tree positions in the tree,
and allows several processes to simul-
taneously be searching the tree since
each can remember its own POS.

43) TRIE = tree-like data structure whose
branches are labelled with letters of the
alphabet, so STRINGs can be quickly added
and looked up.

(4) VECTOR(X,Y) = ARRAY (RECORD (X,Y))
where is_entry(X) indicates if a record
is present, add entry(X,Y) adds one, and
get_entry(X) returns the desired item of
type Y.

Our example will have entities for each collec-
tion, document, author, content term (either stem,
phrase, or thesaurus category), and publication.
The following data types are specialized for the
application in mind. It is presumed that they
were defined earlier by suitable CREATE state-
ments; here is a summary showing the type struc-
ture and binding of names. To eliminate confu-
sion, all bound names are given in lower case.

DATABASES:databases = RELATION (
SURROGATE:colI_id, STRING:coil_name,
STRING_LIST:subjects,
DB_CONTENTS:db_contents)

DB_CONTENTS = RECORD (ABSTRACTS:abstracts,
AUTHORS:authors,
CENTR01D_VECS:centroid_vecs,
CITATION:citation, CLUSTER:cluster,
DICTl0NARY:dictionary,DIRECTORY:directory,
DOC_NOS:doc_nos, DOC_VECS:doc_vecs,
SOURCE:source, STOP.WORDS:stop_words,
THESAURUS:thesaurus)

Q_COLLS:q_colIs = RELATION (INT:q_coll_no,
STRING:q_coll_author, Q_COLL:q_colI)

Q_COLL = RECORD (QUERIES:queries,
QUERY_VECS:query_vecs,
RELEVANCE_JUDGEMENTS:relevance_judgements)

ABSTRACTS = RELATION (SURROGATE:doc_id,
STRING:abstract)

AUTHORS = RELATION (SURROGATE:authorid,
STRING:authname)

CENTROID_VECS = RELATION (INT:centroid_no,
VECTOR(SURROGATE:cv_id,

FLOAT:cv_val):c_vec)

CITATION = RELATION (SURROGATE:authid,
SURROGATE:doc_id, SURROGATE:pub_id,
STRING:title, INT:vol, INT:no,
INT:start_page, INT:year)

CLUSTER = TREE(POS:node,
RECORD(INT:cent_or_doc,

INT:vec_no):c_val)
DICTIONARY = RELATION (SURROGATE:term_id,

STRING:stem)
DIRECTORY = RELATION (SURROGATE:author_id,

STRING:auth_name)
DOC_NOS = RELATION (SURROGATE:doc_id,

INT:doc_no)
DOC_VECS = RELATION (SURROGATE:doc_id,

VECTOR(SURROGATE:dv_id,
FLOAT:dv_val):d_vec)

SOURCE = RELATION (SURROGATE:pub_id,
STRING:publicationname,
STRING:publisher)

STOP_WORDS = TRIE
THESAURUS = RELATION (SURROGATE:th_catid,

SURROGATE:term_id,
FLOAT:prob_ofterm_in_cat)

QUERIES = RELATION (INT:q__no, STRING:query)
QUERY VECS = RELATION (INT:q_no,

VECTOR(SURROGATE:qv_id,
FLOAT:qv_val):q_vec)

RELEVANCE_JUDGMENTS = RELATION (INT:q_no,
INT:doc_no, BOOL:relevant?)

Definition of Search and Other 0Derations

Consider now various typical operations:

41) Dictionary creation by getting all words
from abstracts that are not in the stop
word list, stemming them, sorting them to
unique entries, and assigning surrogate
term numbers:

EXPAND abstracts
YIELDING (INT:word~, STRING:word)
FROM abstract USING text cracking
GIVING doc_words |

PROJECT OVER (word) |
SELECT WHERE NOT

(in_trie(word, stop_words)) |
UPDATE CHANGING (word <- stem(word)) |
SORT ASC ON word |
UNIQ |
WIDEN ADDING

(SURROGATE:term_id <- next_surr())
GIVING dictionary

(2) Indexing documents using "doc__words" and
edictionary" from (I), where frequency is
found by adding ones and vectors are formed
by "rel_to_sfloat_vec":
PROJECT doc_words OVER (doc id, word) |
SELECT WHERE

NOT(in trie(word, stop words)) |
UPDATE CHANGING (word <- stem(word)) |
WIDEN ADDING (FLOAT:freq <- 1.0) |
COMBINE CHANGING (freq) INTO FLOAT:t._freq

USING + |
E_JOIN WITH dictionary OVER stem |
PROJECT OVER (doc_id, term_id, t_freq) |
COMBINE CHANGING (term_id, t freq) INTO

VECTOR(SURROGATE,FLOAT):d_vec
USING rel to sfloat_vec
GIVING doc_vecs

125

(3) Indexing queries by word stems: as above,
but starting with "queries" and resulting
in "query_vecs"

(4) Ranking of all docs for each query by
computing the cross-product of doc and
query relations and then finding the cos
correlation of the vectors:
E_JOIN doc_vecs WITH doc_nos OVER doc_id |
PROJECT OVER (doc_no, d_vec)

GIVING dno_vecs |
JOIN WITH query_vecs |
WIDEN ADDING

(FLOAT:corr <- cos(d_vec, q_vec)) |
PROJECT OVER (q_no, doc no, corr) |
SORT DESC ON corr, ASC ON q no,

ASC ON doc_no GIVING ranking

(5) Selecting only the I0 top ranked docs.
for above queries by making the group of
results for a query into a relation that
can be ranked and selected from, and later
converting back to the original relation's
format. Note use of COMPILE, COMPOSE.:
COMBINE ranking

CHANGING (doc_no, corr) INTO
RELATION(INT:rank,INT:doc no,

FLOAT:corr):top_doc list
USING COMPILE(nSELECT WHERE RANK <= I0"

COMPOSE
"NUMBER ADDING INT:RANKn
COMPOSE group_to_rel)

EXPAND YIELDING (INT:doc no, FLOAT:corr)
FROM RELATION(INT:rank,INT:doc_no,

FLOAT:corr):top_doc_list
USING rel_to_group GIVING top_ranking

(6) Print document collection with standard
headings:
OUTPUT dno vecs

(7) Print the average correlation for the
results of (5):
PROJECT top_ranking OVER (corr) |
WIDEN ADDING (INT:count <- 1) |
SUMMARIZE COMPUTING

(count INITIAL 0 UPDATING count,
corr INITIAL 0.0 UPDATING corr) |

UPDATE CHANGING (corr <- corr/count,
count <- count/10) |

OUTPUT HEADER ("NO. OF QUERIES n count,
"AV. CORR. OF TOP i0 DOCS" corr)

(8) Construction of feedback queries by
positive feedback, so new query = (old
query) + (av. of tel. docs. of rank <= I0):
E_JOIN top_ranking

WITH relevance_judgements
OVER (q_no, doe_no) |

PROJECT OVER (q_no, doc_no) |
E_JOIN WITH doc_nos OVER (doc_no) |
PROJECT OVER (q_no, doc_id) |
E_JOIN WITH doc__vecs OVER (doc_id) |
PROJECT OVER (q__no, doc_vec) J
COMBINE CHANGING (doc_vec)

INTO (VECTOR(SURROGATE,FLOAT):av_vec
USING vec_average J

E JOIN WITH query_vecs OVER q_no J
UPDATE CHANGING

(av_vec <- vec_sum(av_vec, q_vec))

(9) Construction of feedback queries with
negative feedback: like (8) above, but use
set DIFF to get non-relevants of rank <=I0.

(I0) Centroid search via predefined function:
cent_search (query_vecs, cluster,

centroid_vecs, doc_vecs, doc._no)

~.~. Implementation

Parts of SMART have been implemented using
the C language [18] and features of the UNIX
operating system [28]. UNIX has been used else-
where as the basis on which to build a
programmer's workbench [16]; it is especially well
suited for program development. The command
language of UNIX lets one invoke commands via C-
like syntax, and enables "piping" the results of
one program (or command file) into another in
applicative fashion. Further, the C-shell command
language can be invoked from inside a C program.
The result is that many of the 18 operators of
section 5.1 have been implemented in part using
combinations of existing programs and procedures.
A side effect is that all programs are small and
require little main memory important charac-
teristics for minicomputer based systems. Let us
consider the current plans for completing a proto-
type implementation of SMART.

UNIX text files are used to store all rela-
tions. Only string data types are stored in those
files. Special characters are used, however, as
prefixes to strings of numbers to indicate that
they are surrogates. Following [7], there is an
entity relation to connect relation-surrogates
with actual file names. Other entity relations
are present for other data types. Basic data
types are coded into character strings, as are
some composite types. Special data types that are
manipulated by procedures are stored in internal
form in a separate file for such items; a surro-
gate will serve as key to the hashing function
that locates such entries. Routines already exist
to manipulate term vectors and Boolean query
strings; using surrogates to identify them will
enable those data types to be elements of other
types.

As long as only character strings are present
in relations, a number of programs can be easily
adapted to manipulate them. Operators 2-3, 6-7,
9, and 11-18 can thus be easily implemented, if
certain limitations are made on the functions and
expressions allowed. After a mechanism is pro-
grammed to create and keep descriptions of rela-
tions and special data types, operator 1 can be
coded and some of the above can be revised to
better meet their specifications. The rest of the
operators will require more development, but
(inefficient) first versions are not especially
difficult to devise.

Before widespread use is made of the system,
type checking logic must be added, so operations
will not accidentally be applied to data of the
wrong type. Several relations such as the follow-
ing will be accessed by the compiler to see what
is permissible:

126

TYPES (TYPE_NAME, NEEDS_SURROGATE?,
NEEDS_FILE?, USES_INT_FORM?)

TYPE_OPS (TYPE_NAME, OP_NAME, INFIX_USE?,
FUNCTION_TOUSE)

FUNCTIONS (FUN_NAME, CAN_OPTIMIZE_THROUGH?,
NO_OF_ARGS)

FUN._ARGS (FUN_NAME, ARG_NO, ARG_TYPE)
CONVERSIONS (TYPE_l, TYPE_2,

CONV_ FUN_FOR_I_TO_2)

One of the departmental VAX systems will be
employed for further research and experimentation,
while a production version of SMART can be made
available on the second VAX computer. The
thoroughly tested operational version can serve as
a retrieval system for users. Collections of
documents on computer and information science
could be made available and the members of the
Computer Science Department would be able to
access those files for academic and research pur-
poses.

~. Future Plans

Many interesting problems will remain after
the initial implementation is complete. They are
classifiable into the following areas.

~.I. ~an~ua~e Design

An axiomatic definition of all the operators
employed is certainly of use, so that each
system-defined ADT can be properly verified.
Since C does not even have all the basic types
being considered, effort is needed to define a
suitably general language that can be compiled
into C in an efficient manner. Of course, thought
will be given at that time to see if other higher
level language available under UNIX could be more
easily adapted to the desired purposes.

~.~. Data Or=anization

In System R, considerable care is taken to
compile data manipulation statements into effi-
cient access methods [5]. A reasonable implemen-
tation of SMART would have to progress beyond
utilizing only character string files for rela-
tions. Special routines would be needed to handle
relations and to allow rapid access through
(invisible) index files, especially where frequent
joins are needed. In this regard, we plan to
first examine other relational systems [31, 43]
implemented under UNIX, to see if they can be
properly generalized.

In any case, with the new operators included,
interesting questions arise on how optimization
can best be carried out. Further, there is need
to explore how clustering in relations can be per-
formed and how clustered orderings can be main-
tained in a dynamic environment. Finally, issues
of locking, backup, recovery, and distributed pro-
cessing are of interest when data types are viewed
through this new perspective. Schemas and ADTs
are interrelated, and so these problems must be
analyzed on a low level as well as on the usual
high level.

~.~. Application in Offic e Information Systems

As shown in [34], automatic information
retrieval methods work about as well as systems
where documents are carefully indexed by hand.

Einar Nodtvedt demonstrated that letters can be
analyzed and indexed By computer through methods
similar to those used for documents [26]; reason-
able retrieval performance results. At Cornell,
one collection of electronic mail has been
obtained. Typical user questions deal with combi-
nations of content issues and database issues, as
can be seen from the following edited versions of
lists submitted to me:

CATEGORIES

Urgent Items DEC Full Time Employees
Items Due Today DEC Part Time Employees
DEC Rented Software DEC purchased Software
DEC Hardware Budget General Expense Budget
DEC Software Incoming Correspondence
IBM Software Outgoing Correspondence

QUESTIONS

This letter: from whom, when sent, how urgent,
how many characters?

Person P: what mail (sent/received), what was
sent (since a given date), no. of letters
(sent/received)?

Date: no. and/or list of mail received
(answered/unanswered/total) since then,
between then and another data?

List of topics: which were mentioned during
dates, which authors discussed, which
letters were about (any/all) of them?

GreateSt no.: letters (to/from)?
How long: since received/sent to P,

since discussed topic T?

These and many other questions can be handled by
the combined database and document retrieval sys-
tem being described. Automatic storage and
retrieval of electronic mail and machine readable
correspondence seem to be ideal and practical
applications of the methods being discussed here.
They are an important component of any office
automation system.

~. Conclusions

Faced with the need to convert the SMART
information retrieval system to a VAX or PDP ii
minicomputer, expanding the concepts of ADTs to
the database realm provides a general solution.
An integrated language for handling ADTs must
include a set of operations for type "relation"
and for transforming between relations and other
types. Eighteen such operators are defined and
solutions for typical retrieval tasks are given
using those operators to manipulate a sample
schema. The command expressions employed provide
a handy user-oriented version of important func-
tions dealing with relations. A few simple com-
mands allow rapid conversion from the uniform view
characteristic of relational languages to the spe-
cialized data structures that are so much a part
of other approaches to abstraction.

Issues of implementation, language design,
and data organization are discussed in relation to
this proposal. A prototype system is under
development and a more efficient version should
provide a versatile database and document
retrieval facility for minicomputers. Perhaps
such a flexible tool will be part of the offlce of
the future.

127

RKrKRKNCK$

(1) Boehm, H., A. Demers, and J. Donahue. 1980.
An Informal Description of Russell (Technical
Report 80-430.) Ithaca, New York: Cornell
University Department of Computer Science.

(2) Borko, Harold and Charles L. Bernier. 1978.
Indexin~ ~ d ~ and Methods. New York:
Academic Press.

(3) Cane, Mark. 1964. Adapting SMART to the
M.I.T. Compatible Time-Sharing System.

Storage and Retrieval, (Scien-
tific Report No. ISR-8.) Ithaca, New York:
Cornell University Department of Computer
Science.

(4) Chamberlin, Donald D. 1976. Relational
Data-Base Management Systems. ACM
Surveys. 8:1.43-66.

(5) Chamberlin, D.D., M.M. Astrahan, W.F. King,
R.A. Lorie, J.W. Mehl, T.G. Price, M. Schkol-
nick, P. Griffiths Selinger, D.R. Slutz, B.W.
Wade, and R.A. Yost. 1981. Support for
Repetitive Transactions and Ad Hoc Queries in
System R. ACM Transactions on Database Svs-
tems. 6 : 1 . 7 0 - 9 4 .

(6) Codd, E .F . 1970. A R e l a t i o n a l Model of Data
f o r Large Shared Data Banks.
o f t h e ACM. 13 :6 .377-387 .

(7) Codd, E .F . 1979. Extending the Database
R e l a t i o n a l Model to Capture More Meaning.
ACM Transactions on Database ~,v~.
4:4,397-434.

(8) Crawford, Robert G. 1981. The Relational
Model in Information Retrieval. Journal of
the ~ ~ociety for Information Science.
32:1.51-64.

(9) Date, C.J. 1977. An Introduction to Database
~.V_~. Second Edition. Reading, Mas-
sachusetts: Addison-Wesley Publishing Com-
pany.

(i0) Dattola, Robert T. 1979. FIRST: Flexible
Information Retrieval System for Text. Jour-
nal of the ~erican Society for
Science. 30:1.9-14.

(Ii) Hall, Patrick A.V. and Geoff R. Dowling.
1980. Approximate String Matching. ACMCom-
Dutin~ Surveys, 12:4.381-402.

(12) Geschke, Charles M., James H. Morris Jr., and
Edwin H. Satterwaite. 1977. Early Experience
with Mesa. ~ of the ACM.
20:8.540-553.

(13) Gries, David and Narain Gehani. 1977. Some
Ideas on Data Types in High-Level Languages.
~ of the ACM. 20:6.414-420.

(14) Guttag, John. 1977. Abstract Data Types and
the Development of Data Structures.
catioBof the ACM. 20:6,396-404.

(15) IBM Corporation, 1979. Storage and Informa-
tion Retrieval System for Q~/VS (STAIRS/VS),
Program Reference Manual. (Publication
SH12-5400.) White Plains, New York: IBM Cor-
poration.

(16) Ivie, Evan L. 1977. The Progran~erts Work-
bench - A Machine for Software Development.
~d~%~oftheACM. 20:10.746-753.

(17) Kent, William. 1979. Limitations of Record-
Based Information Models. ACM Transactioq@
on Database ~.y/~. 4:1.107-131.

(18) Kernighan, Brian W. and Dennis M. Ritchie.
1978. The ~ ~ Lan~ua=e. Englewood
Cliffs, New Jersey: Prentice-Hall, Inc.

(19) Lacroix, Michel and Alain Pirotte. 1980.
Associating Types with Domains of Relational
Data Bases. Brodie, Michael L. and Stephen
N. Zilles, eds. Proceedings of Workshov on
Data Abstraction, Databases and Conceptual
Modellin2. Association for Computing
Machinery, Inc.

(20) Ledgard, Henry F. and Robert W. Taylor. 1977.
Two Views of Data Abstraction.
of the ACM. 20:6.382-384.

(21) Lesk, M. E. 1966. Design Considerations for
Time Shared Automatic Documentation Centers.

Storage and Retrieval. (Scien-
tific Report No. ISR-II.) Ithaca, New York:
Cornell University Department of Computer
Science.

(22) Liskov, Barbara, Alan Snyder, Russell Atkin-
son, and Craig Schaffert. 1977. Abstraction
Mechanisms in CLU. ~ of the ACM.
20:8.564-576.

(23) Lockemann, Peter C., Heihrich C. Mayr, Wolf-
gang H. Weil, and Wolfgang H. Wohlleber.
1979. Data Abstractions for Database Sys-
tems. ACM Transactions on Database ~ystems.
4:1.60-75.

(24) Macleod, I.A. 1979. SEQUEL as a Language for
Document Retrieval. Journal of the ~erican
Society for ~ Science. 30:5.243-
249.

(25) Michaels, Ann S., Benjamin Mittman, and C.
Robert Carlson. 1976. A Comparison of the
Relational and CODASYL Approaches to Data-
Base Management. ACM ~ ~urveys.
8:1.125-151.

(26) Nodtvedt, Einar. 1980. Information Retrieval
in the Business Environment. (Technical
Report 80-447.) Ithaca, New York: Cornell
University Department of Computer Science.

(27) Paolini, Paolo. 1980. Abstract Data Types
and Data Bases. Brodie, Michael L. and
Stephen N. Zilles, eds. Proceedings of
Workshop on Data Abstraction~ Databases and
Conceptual Modellin~. Association for Com-
puting Machinery, Inc.

(28) Ritchie, D.M. and K. Thompson. 1974. The
UNIX Time Sharing System. ~ of
the ACId. 17:7.365-375.

(29) Rocchio, Joseph J. 1964. Possible Time-
Sharing Organization for a SMART Retrieval
System. ~ Storage and ~etrieval.
(Scientific Report No. ISR-7.) Ithaca, New
York: Cornell University Department of Com-
puter Science.

(30) Rowe, Lawrence A. 1980. Data Abstraction
from a Programming Language Viewpoint. Bro-
die, Michael L. and Stephen N. Zilles, eds.
Proceedings of Workshop on Data Abstraction,
Databases and Conceotual Modellin~. Associa-
tion for Computing Machinery, Inc.

128

(31) Rowe, Lawrence A. 1980. Issues in the Design
of Database Programming Languages. Brodie,
Michael L. and Stephen N. Zilles, eds.
Proceedings of Workshop on Data Abstraction,
Databases and Conc~otual Modellin~. Associa-
tion for Computing Machinery, Inc.

(32) Salton, Gerard. 1968. ~
0r=anization and Retrieval. New York:
McGraw-Hill.

(33) Salton, Gerard, ed. 1971. The SMART
Retrieval ~ystem: ~ in
Document Processing. Englewood Cliffs, New
Jersey: Prentice-Hall, Inc.

(34) Salton, Gerard. 1972. A New Comparison
Between Conventional Indexing (Medlars) and
Text Processing (SMART). Journal of the

Society for ~ Science.
23:2.75-84.

(35) Salton, Gerard. 1975. ~
and Library Processin=. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc.

(36) Salton, Gerard. 1979. Suggestions for a Uni-
form Representation of Query and Record Con-
tent in Data Base and Document Retrieval.
(Technical Report 79-363.) Ithaca, New York:
Cornell University Department of Computer
Science.

(37) Salton, Gerard. 1980. The SMART System
1961-1976: Experiments in Dynamic Document
Processing, Ency~loDedia of ~ and

Science. 28.1-36.

(38) Salton, G. and D. Bergmark. 1980. Parallel
Computations in Information Retrieval.
(Technical Report 80-439.) Ithaca, New York:
Cornell University Department of Computer
Science.

(39) Schmidt, Joachim W, 1977. Some High Level
Language Constructs for Data of Type Rela-
tion. ACM Transactions on Database JSJL~.
2:3.247-261.

(40) Shopiro, Jonathan E. 1979. Theseus - A Pro-
gramming Language for Relational Databases.
ACM Transactions on Database ~L~.
4:4.493-517.

(41) Smith, John Miles and Diane C.P. Smith. 1977.
Database Abstractions: Aggregation. Co~uni-
cation of t h e ACM. 20:6.405-413.

(42) Todd, S.J.P. 1976. The Peterlee Relational
Test Vehicle - a system overview. IBM Svs.
i. 11:~.Z~-307.

(435 Wasseerman, Anthony I. 1980. The Extension
of Data Abstraction to Database Management.
Brodie, Michael L. and Stephen N. Zilles,
eds. Proceedin=s of Workshop on Data
Abstraction, Databases and Conceptual Model-
line. Association for Computing Machinery,
Inc.

(44) Williamson, D. and R. Williamson. 1970. A
Prototype On-Line Document Retrieval System.

Storage and Retrieval. (Scien-
tific Report No. ISR-18.) Ithaca, New York:
Cornell University Department of Computer
Sc ience ,

129

