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PRACTICAL MINIMAL PERFltlr  HASH FUNL"IrlONS FOR LARGE DATABASES 

disc, or recorded on some other 
device; in all cases it is desirable for 
T to have (almost) no unused slots 
and for us to be able to quickly find 
the appropriate slot in T for any 
given key k. 

The retrieval problem is to locate 
the record corresponding to a key 
k ~ U or to report  that no such rec- 
ord exists. We do this by hashing, 
i.e., applying a hash function h that is 
computable in time proportional to 
the size of the key k, and examining 
the slot in T with address h(k). If  
there are two keys kl, k2 E S such 
that h(kl) = h(k2), then there is a col- 
lision of k] and k2. Much effort is 
expended in traditional work on 
hashing in resolving collisions. Col- 
lisions force more than one probe 
(reading a slot) of T to access some 
keys. I f h  is a 1-1 function when re- 
stricted to S, h is called a perfect hash 
function (PHF) since there is no 
need to waste time resolving colli- 
sions. A PHF h allows retrieval of 
records (objects) keyed from S in 
one access, which is clearly optimal 
in terms of time. For any form of 
hashing, optimal space utilization is 
attained when the hash table is fully 
loaded, i.e., when a = 1; we use the 
name minimal hash function for any 
function with this property. The  
best situation, then, is to have a 
minimal perfect hash function 
(MPHF) where a = 1 and there are 
no collisions (so h is a 1-1 onto map- 
ping when restricted to S.) 

Related Work  
Hashing has been a topic of study 
for many years, both in regard to 
practical methods and analytical 
investigations [24]. Recently there 
has been renewed interest in hash- 
ing due to the development of tech- 
niques suitable for dynamic collec- 
tions [10]. A less extensive 
literature has grown up, mostly 
dur ing  the last decade, dealing with 
perfect hash functions; it is that 
subarea we consider in this section. 

Mapping to Integers 
Given a key k from a static key set S 
of cardinality n, selected from a 
universe of keys U with cardinality 

N, our object is to find a function h 
that maps each k to a distinct entry 
in the hash table T containing m 
slots. Certainly function h must 
map each key k to an integer. In  the 
simplest cases, keys are positive in- 
tegers bounded above by N. This 
situation was assumed, for exam- 
ple, by Sprugnoli [35], Jaeschke 
[23], and Fredman,  Koml6s, and 
Szemer6di [20]. 

We focus here, however, on the 
more general case in which keys are 
strings since integers can be repre- 
sented as strings of digits or strings 
of bytes, for example. The  usual 
approach is to associate integer val- 
ues with all or some of the charac- 
ters in the string, and then to com- 
bine those values into a single 
number .  Chang [4] used four tables 
based on the first and second letters 
of the key. Cichelli [6] used the 
length of the key and tables based 
on the first and last letters of the 
key. Note, however, that the length 
of a key, its first letter, and its last 
letter are sometimes insufficient to 
avoid collisions; consider the case of 
the words "woman" and "women" 
in Cichelli's method. 

Cercone et al. [3] enhance the 
discriminating power of transfor- 
mations from strings to integers by 
generating a number  of letter-to- 
number  tables, one for each letter 
position. If  the original keys are 
distinct, numbers  formed by con- 
catenating fixed-length integers 
obtained from these conversion 
tables will be unique. In  practice, it 
often suffices to simply form the 
sum or product of the sequence of 
integers. 

While in some schemes (e.g., [6]) 
the resulting integer is actually the 
hash address desired, in most algo- 
rithms, the hash function must fur- 
ther map from the integer value 
produced into the hash table. 

Existence Proofs 
o n e  might ask if a MPHF h for a 
given key set exists. Jaeschke [23] 
proves this and indeed presents a 
scheme guaranteed to find such a 
function, though his method re- 
quires exponential time in the 

number  of identifiers. Assuming 
the task is to map a set of positive 
integers {kb k2 . . . . .  kn} bounded  
above by N without collisions into 
the set of m indices of T, we also 
have demonstrated a fast algorithm 
to define a suitable, though very 
large, PHF [17]. 

Another  way to view this situa- 
tion is to realize that perfect hash 
functions are rare in the set of all 
functions. Knuth  [24] observes that 
only one in 10 million functions is a 
perfect hash function for mapping 
the 31 most frequently used Eng- 
lish words into 41 addresses. Our  
task then can be viewed as one of 
searching for rare functions, and of 
specifying them in a reasonable 
amount  of space. 

Space to  Store PHF 
Using an argument  contributed by 
Mehlhorn [26] (also see [25]), we 
have shown an approximate lower 
bound of ~1.4427 bits per key to 
represent  an arbitrary MPHF [17]. 
It is important  to realize that this 
cost is required for one-probe access, 
no matter what scheme is em- 
ployed. In addition to the lower 
bound,  Mehlhorn also gives a 
method of constructing MPHFs of 
size O(n) bits. However, the con- 
struction requires exponential  time 
and therefore is not practical. A 
more practical algorithm of 
Mehlhorn [26] constructs MPHFs 
of size O(n log2 n) bits. 

It is more typical to state the size 
of PHFs in terms of the number  of 
computer  words used, each of 
log2 n bits. T h e n  Mehlhorn's lower 
bound is ~(n/log2n) computer  
words, and his practical upper  
bound is O(n(log2 n))/(log2 n)) = 
O(n) computer  words. Our  initial 
algorithm achieves MPHF size of 
less than O(n) computer  words, and 
our second algorithm approaches 
the theoretical lower bound.  

Classes of Functions 
There  are several general strategies 
for f inding perfect hash functions. 
The  simplest one is to select a class 
of functions that is likely to include 
a number  of perfect hash functions, 
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and then to search for a MPHF in 
that class by assigning different  val- 
ues to each of  the parameters  char- 
acterizing the class. 

Carter  and Wegman [2] intro- 
duced the idea of  a class H of  func- 
tions that are universal2, i.e., where 
no pair  of  distinct keys collide very 
often. By random selection from H, 
one can select candidate functions 
and expect  that a hash function 
having a small number  of  collisions 
can be found quickly. This tech- 
nique has also been appl ied to dy- 
namic hashing by Ramakrishna and 
Larson [30]. 

Sprugnoli  [35] proposes two 
classes of  functions, one with two 
and the other  with four parame- 
ters, that each may yield a MPHF; 
searching the paramete r  values of  
ei ther class is feasible only for very 
small key sets. Jaeschke [23] sug- 
gests a reciprocal hashing scheme 
with three parameters  that is guar- 
anteed to find a MPHF, but  it is 
only practical when n -< 20. Chang 
[5] proposes a method with only 
one parameter ,  though its value is 
likely to be very large, and requires 
a function that assigns a distinct 
pr ime to each key. However since 
he gives no algori thm for that func- 
tion, the method is only of  theoreti-  
cal interest. A practical algori thm 
for f inding perfect  hash functions 
for fairly large key sets is described 
in [7]. The  authors  illustrate the 
trade-offs between time and size of  
the hash function, but  do not give 
tight bounds on total time to find 
PHFs or  exper imental  details for 
very large key sets. 

The  "search-only" methods re- 
fer red  to may, if general  enough,  
and if enough time is allotted, di- 
rectly yield a perfect  hash function 
when the r ight  assignment of  pa- 
rameters  is identified. However,  
analysis of  the lower bounds on the 
size of  a suitable MPHF suggests 
that if pa ramete r  values are not to 
be virtually unbounded ,  then there 
must be a modera te  number  of  pa- 
rameters  to assign. Examining the 
algorithms of  Cichelli [6] and of  
Cercone et al. [3] we see two impor-  
tant concepts: using tables of  values 

as the parameters ,  and using a 
mapping,  order ing,  and searching 
(MOS) approach.  While their  tables 
seem to be too small to handle  very 
large key sets, the MOS approach is 
an impor tant  contr ibution to the 
field of  perfect  hashing. 

In the MOS approach,  the con- 
struction of  a MPHF is accom- 
plished in three steps. First, the 
Mapp ing  step transforms the key 
set from the original universe to a 
new universe. Second, the Order -  
ing step places the keys in a sequen- 
tial o rde r  that determines the o rde r  
in which hash values are assigned to 
keys. The  Order ing  step may parti- 
tion the o rde r  into subsequences of  
consecutive keys. Such a subse- 
quence is called a level, and the keys 
of  each level must be assigned their 
hash values at the same time. 
Thi rd ,  the Searching step at tempts 
to assign hash values to the keys of  
each level. I f  the Searching step 
encounters  a level that it is unable 
to accommodate,  it backtracks, 
sometimes to an earl ier  level, as- 
signs new hash values to the keys of  
that level, and tries again to assign 
hash values to later levels. Sager's 
method is a good example of  the 
MOS approach.  

Sager's Method and Improvement 
Sager [31, 32] proposes a formali- 
zation and extension of  Cichelli's 
approach.  Like Cichelli, he assumes 
that a key is a character  string. In  
the Mapping step, three auxiliary 
hash functions are def ined on the 
original universe of  keys U 

ho: U----~ {0 . . . . .  m -  1} 
h]: U---~ {0 . . . . .  r -  1} 
h2: U----){r . . . . .  2 r -  1} 

where r is a pa ramete r  (typically 
<-m/2) that ultimately determines 
how much space it takes to store the 
perfect  hash function (i.e., ]h I = 2r). 
These  auxiliary functions compress 
each key k into a unique identif ier  

(ho(k),hl (k),h2(k)) 

which is a tr iple of  integers in a new 
universe of  size mr 2. The  class of  
functions searched is 

h(k) = (ho(k) 
+g(hl(k)) + g(h2(k))) (mod m) 

where g is the function whose val- 
ues are selected dur ing  the search. 

Sager studies a graph that repre-  
sents the constraints among keys. 
Indeed,  the Mapping  step goes 
from keys to triples to a special bi- 
part i te graph,  the dependency graph, 
whose vertices are the h i0  and h20 
values and whose edges represent  
the keys. The  two parts of  the de- 
pendency graph are the vertex set 
{0 . . . . .  r - 1} and the vertex set {r, 
. . . .  2r - 1}. For  each key k, there  
is an edge connecting hi(k) and 
hz(k); that edge carries the label k. 
See Figure 2. 

In the Order ing  step, Sager 
employs an o rder ing  heuristic 
based on f inding short  cycles in the 
graph.  This heuristic is called min- 
cycle. At each iteration of  the Or- 
der ing  step, the mincycle heuristic 
finds a set of  unselected edges in 
the dependency  graph that occur in 
as many small cycles as possible. 
The  set of  keys corresponding to 
the set of  edges constitutes the next 
level in the order ing.  

The re  is no p roof  given that a 
min imum perfect  hash function 
can be found, but  mincycle is very 
successful on sets of  a few hundred  
keys. Mincycle takes O(m 4) time and 
O(m 3) space, while the subsequent 
Searching step usually takes only 
O(m) time. The  time and space re- 
quired to implement  mincycle are 
the pr imary barriers  to using Sag- 
er's approach on larger  sets. 

Sager chooses values for r that 
are propor t ional  to m. A typical 
value is r = m/2. In the case of  mini- 
mal perfect  hashing (m = n), it re- 
quires 2r = n computer  words of  
log2 n bits each to represent  g. This 
is somewhat more  than Mehlhorn 's  
lower bound  of  1.4427n/log2 n 
computer  words. The  ratio (2r/n) 
must be reduced as low as possible, 
certainly below 1. Our  early work to 
explore and improve Sager's tech- 
nique led to an implementat ion,  
with some slight improvements  and 
with extensive instrumentat ion 
added  on, described by Datta [9]. 
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After  fur ther  investigation we de- 
veloped a modif ied algori thm [16] 
requir ing O(m 3) time. With this al- 
gor i thm we were able to find 
MPHF's  for sets of  over a thousand 
words. 

S u m m a r y  o f  R e l a t e d  W o r k  

Hashing has been used in many 
applications and,  with recent devel- 
opment  of  dynamic hashing tech- 
niques, has witnessed a resurgence 
of  interest  [10]. However,  most 
dynamic hashing involves low load 
values, on the o rde r  of  0.6 to 0.9, 
and requires resolution of  colli- 
sions. In  most dynamic hashing 
schemes, hash addresses identify 
buckets or  bins wherein a number  
of  records can be stored, and which 
are usually only partially full. The  
work of  Gonnet  and Larson does 
improve upon  the typical approach,  
however, allowing high load fac- 
tors, th rough  the use of  a small 
amount  of  extra  storage used in 
buckets [21]. 

An examinat ion of  previous 
schemes for perfect  hashing shows 
that many are generally only appli- 
cable to small sets, or  require  a pro- 
hibitive amount  of  space to store. 
Some approaches  require  input  
keys to already be integers in some 
restricted range,  while others are 
really two-level searches in which 
extra  storage in each bucket sup- 
ports  the second level of  search. An 
example  is the work of  Brain and 
Tharp ,  which extends Cichelli's 
approach,  but  still cannot  handle 
very large key sets [1]. 

The  most competit ive alternative 
to our  approach  comes from the 
work of  Fredman,  Koml6s, and 
Szem~rdi [20] and others who have 
built on their  work (e.g., [33]). 
These  methods assume a universe 
that is the set of  integers {1 . . . . .  PC} 
in contrast  to our  assumption of  
keys that are arbi t rary character  
strings. Membership  queries are 
accommodated  in constant time, 
and the hash function requires n + 
o(n) space. Construction takes ran- 
dom expected time O(n). Our  
bounds  are tighter,  and really prac- 
tical algori thms for very large key 

sets have for the first time been 
demonst ra ted  by our  work• 

Key Concepts of New 
Algorithms 
After  careful analysis of  Sager's al- 
gor i thm [32] and our  enhanced 
version [16], Heath  made three 
crucial observations that serve as 
the foundat ion of  our  new algo- 
ri thms: 

• It appears  that we must exploit  
randomness  whenever  possible. 
We t rade a small probabili ty o f  
failure for an outs tanding aver- 
age case performance.  

• The  vertex degree  distr ibution is 
highly skewed. This can be ex- 
ploited to carry out  the Orde r ing  
step in a much more  efficient 
manner .  

• Assigning g values to a set of  re- 
lated words can be viewed as try- 
ing to fit a pat tern into a partially 
filled disk, where it is impor tant  
to enter  large pat terns while the 
disk is only partially full. 

These  three insights allow our  
new algori thms to obtain an Order -  
ing in l inear expected time. Since 
Mapping  and Searching have ex- 
pected time O(n), the time complex- 
ity of  our  method is O(n) in the ex- 
pected sense. 

We consider  each of  these key 
concepts in more  detail in the next 
three subsections. Because we are 
primari ly concerned with min ima l  
perfect  hash functions, we assume 
m = n and use only n. All results 
easily generalize to the case m - n. 

Randomness 
Our  first use of  randomness  is in 
the Mapping  step, in which a good 
set of  triples is obtained to serve as 
identifiers for the original word 
strings. Here  it is essential that the 
triples are distinct. Our  technique is 
essentially to obtain a r andom num- 
ber  (mod n) for each key, making 
use of  all of  the information in the 
key to give max imum discrimina- 
tion. The  pseudorandom number  
genera tor  we selected, to allow 
machine independence  and to en- 
sure good behavior,  is due to Park 

and Miller [28]. The  r andom inte- 
gers generated by their  r andom 
number  genera tor  are between 0 
and 2 ~l - 2. Now consider the use 
of  these r andom numbers  to obtain 
the desired triples. First, three ta- 
bles (tableo, tablel, table2) of  r andom 
numbers  are constructed,  one for 
each of  the functions h0, hi, and h 2. 
Each table contains one r andom 
number  for each possible character  
at each position i in the key. Let a 
key be the character  string k = klk2 
• . . ky. Then  the triple is computed  
using the following formulas:  

ho(k) = tableoi(ki rood n 

hi(k) = tableli(ki mod r 

h2(k) = tablezi(ki mod r + r. 

Assuming the triples (ho(k), hi(k), 
h2(k)), k E S, are random,  it is possi- 
ble to derive the probabili ty that the 
triples are distinct. Let t = nr 2 be 
the size of  the universe of  triples. 
The  probabili ty of  distinctness for n 
triples chosen uni formly at r andom 
from t triples is 

t(t - 1) '"(t  - n + 1) 
p(n, t) = 

t" 
(t), 
t n 

By an asymptotic estimate from 
Palmer [27], 

p(n, t ) =  ( t ' .  exp{ n2 n~} 
n 2t 6t 2 

and for typical values of  r =  
cn/log2 n, where c is a constant, 

p(n, t) --~ exp(  n9(l°g2 n)2 ~ - 

exp{ (l°g2 n)Z} = 1 (l°g2 n)2 
2c2n 2c2n 

so that  p(n, t) goes to 1 quite rapidly 
with n. We almost always find a suit- 
able set of  triples the first time, and 
even have good success when h0, hi, 
and  h 2 are  all de te rmined  using 
permuta t ions  (different  views) of  
one r andom table. 

Pearson [29] advances an alter- 
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native approach that might allow 
smaller tables than our  original 
ones. We have exploited similar 
methods to produce very small ta- 
bles, that work with newer versions 
of  our  algorithms. 

Vertex Degree DiStribution 
Our  second key concept is that the 
distribution of  degrees of  vertices 
in the dependency graph is decid- 
edly skewed, and indeed has a 
number  of  interesting properties. 
In particular, we show that in a ran- 
dom dependency graph most verti- 
ces have low degree. We exploit this 
to obtain small levels in the order- 
ing. Consider a particular vertex v 
and the edges incident on it. The  
probability that a particular edge 
from edge set E is incident on v is 
p = 1/r. Let X be the random vari- 
able that equals the degree of  v. 
Then  (see [11]), X is binomially dis- 
tributed with parameters n and p. 
Since the case of  large n is of  inter- 
est, the Poisson approximation to 
the binomial distribution applies: 

e-a~d 
P r ( X = d ) ~  d! 

where A = n p  = n/r. From the Pois- 
son approximation, the expected 
number  of  vertices of  degree d is 
given by 

2 r P r ( X  = d) ~ 
d~ 

When r = n/2 (A = 2), the expected 
number  of  vertices of  degree 0, 1, 
2, 3, and 4 are approximately 0.27r, 
0.54r, 0.54r, 0.36r, and 0.18r, re- 

spectively. The  skewed distribution 
of  vertex degrees provides the in- 
spiration for a new Ordering heu- 
ristic. Instead o f  ordering the edges 
(keys) of  the dependency graph as 
mincycle does, the new heuristic 
orders the vertices. Let vl, v2 . . . .  , 
VZr be any ordering o f  the vertices 
of  the dependency graph. For each 
vi, there is a set of  edges K(vi) that 
go from vi to vertices earlier in the 
ordering 

K(vi) = {(vi, vj) e E/j  < i}. 

This set of  edges represents a set o f  
keys, and every key occurs in ex- 
actly one K(vi). K(vi) may be empty, 
but cannot be larger than the de- 
gree of  vi (it is often smaller). The  
ordering of  the set of  keys into lev- 
els is just the ordering of  the non- 
empty K(vi). 

It is desirable to have levels that 
are as small as possible and to have 
all large levels early in the ordering. 
This suggests that a vertex of  larger 
degree should be processed earlier 
than a vertex o f  smaller degree. 
This also suggests that a vertex 
whose K set is currently larger 
should be chosen next in the order- 
ing over a vertex whose K set is cur- 
rently smaller. Finally, it is impera- 
tive that the Ordering heuristic be 

Method  tO f ind per fec t  hash func-  
t ions 

[ MAPPING ~ ORDERING ""> SEARCHING ] 

D e p e n d e n c y  Graph 

able to choose the next vertex in the 
ordering quickly and simply. The  
new Ordering heuristic described 
later evolved from these insights 
gained by examining the skewed 
distribution o f  vertex degrees and 
from the imperative of  choosing 
the next vertex quickly. 

Fitting Into a DIsK 
At each iteration of  the Searching 
step, one level of  the ordering is to 
be placed in the hash table. Each 
level is the key set K(vi) correspond- 
ing to a vertex vi. For purposes o f  
illustration, assume that v i E { r ,  
. . . .  2r - 1}. Each key k E K(vi) has 
the same h~ value h~(k)= vi and, 
therefore, will have the same g o h2 
value g(h2(k))= g(vi). By assump- 
tion, the g o h] value of  k is already 
selected. Since all h0 values are al- 
ready defined, h(k) is determined 
by the selection of  g(vi). Consider 
the sum of  the two values already 
known for k. Let 

b(k) = ho(k) + g(h~(k)). 

Then 

h(k) = (b(k) + g(vi)) (mod n). 

The b(k) values for all keys k E K(vi) 
yield offsets from g(vi) (mod n) to 
the hash values of  the keys. 

The  set of  b(k) values constitutes 
a pattern (mod n). The  pattern may 
be viewed as being in a circle of  n 
slots and subject to rotation by the 
amount  g(vi). The hash table is 
viewed as a disk with n slots, some 
of  which may already be filled. To 
successfully assign hash values to 
the keys in g(vi) , the Searching step 

h 2  

r 

2 3 

r + l  

4 • • • r-2 r-1 

r+2 r + 3  • • • 2 r - 2  2 r -1  
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(add a vertex to the heap), and 
deletema,x (select a vertex of maxi- 
mum degree and remove it from 
the heap). Each heap operation can 
be accomplished in O(log n) time 
(since r = O(n)). Because the vertex 
degrees of a random dependency 
graph are (mostly) small, there is an 
optimization possible to speed the 
heap operation. In  this optimiza- 
tion, VHFdkP is implemented as a 
series of stacks and one bounded  
size heap. Most vertices have de- 
gree 1, 2, 3, or 4. One stack is pro- 
vided for each degree, so that the 
size of the heap is kept below a con- 
stant. Usually, the heap V"EFdx~_P 
contains all vertices of degree -> 5. 
When a vertex w is to be added to 
V~AP, the degree of w is checked. 
If the degree is-<4,  then w is 
added to the appropriate stack; 
otherwise, w is inserted in V~rI~kP. 
All list operations take constant 
time. The  time for the Order ing 
step is thus actually linear. 

There  is one issue not addressed 
in Figure 4: the dependency graph 
may not be connected. Typically, 
the dependency graph consists of 
one large connected component  
and a number  of smaller compo- 
nents. By choosing vl as a vertex of 
maximal degree, the algorithm is 
almost certainly choosing vl in the 
large component.  Therefore,  the 
algorithm selects the large compo- 
nent  first. After that, it must pro- 
cess the remaining components in 
the same fashion. The  algorithm 
maintains a list of those vertices not 

yet selected and can easily find an 
unselected vertex of maximal de- 
gree. Therefore,  the Order ing step 
is able to order all vertices of de- 
gree > 0. 

In  a more recent implementa- 
tion, we have refined the Order ing 
step to take advantage of the cycle 
structure of the graph [14,15]. In  
each component ,  we identify any 
maximal subtree that attaches to 
the remainder  of the component  
through a single cut point. It is easy 
to verify that each edge of such a 
subtree can always be made to ap- 
pear in a level of size 1. We identify 
these subtrees in linear time and 
place them at the end of the order- 
ing. This improves the probability 
of success for the Searching step. 

The Searching Step 
The Searching step takes the levels 
produced in the Order ing step and 
tries to assign hash values to the 
keys, a level at a time. Assigning 
hash values to K(vi) amounts to as- 
signing a value to g(vi). To this end, 
we define a hash table data struc- 
ture 

hash- table :  
a r r a y  [O..n - 1] 

of record 
key: integer;  

assigned: boolean;  
end 

where key is the index to the key 
that has hash value i, a n d  ass igned  
is a flag as to whether the hash 
value i has been assigned to any key 
yet. 

T A B L E  | .  

Example:  Set  o f  Words w i t h  Associated ho. hi ,  h2 Values 

Word ho-value hi-value h2-value 

Asgard 2 0 5 

ASh 3 0 5 

Ashanti 0 2 3 

Ashcroft 3 1 5 

Ashe 5 1 3 

Asher 1 1 3 

When a value is to be assigned to 
vertex[i] .g,  there are usually sev- 
eral choices for ve~ex[ i ] .g  that 
place all the keys in K(vi) into unas- 
signed slots in hash-table. The  
analysis and the empirical results 
ment ioned earlier indicate that an 
acceptable value for ver tex[i] .g  
should be picked at random rather 
than, for example, picking the 
smallest acceptable value for ver-  
t~x[i].g. In  looking for a value for 
vert~x[i].g, the Searching step uses 
a random probe sequence to access 
slots 0, . . . , n - 1 of hash-table, 

Figure 5 gives the algorithm for 
the Searching step. A random 
probe sequence of length n is cho- 
sen in step (3). The  probe sequence 
actually used in our  implementa- 
tion has only a weak claim to ran- 
domness. That  is, just  a small 
amount  of randomness is sufficient 
to make a good Searching step. At 
the beginning of the Searching 
step, the current  implementat ion 
chooses a set of 20 small primes (or 
fewer if n is quite small) that do not 
divide n. Each time (3) is executed, 
one of the primes q is chosen at ran- 
dom to be sl and is used as an incre- 
ment  to obtain the remaining sj, j >- 
2. Thus,  the random probe se- 
quence is 

0, q, 2q, 3q . . . . .  (n - 1)q" 

A more robust random probe se- 
quence would choose the increment  
q at random from 0 . . . . .  n - 1 so 
that the greatest common divisor of 
q and n is 1. As we have stated, such 
a robust sequence does not appear 
to be necessary. 

A detail omitted from Figure 5 is 
the action taken when the Search- 
ing step is unable to insert a level 
into the hash table (fail in (7)). This 
is such a rare occurrence that for a 
large enough value of n and an 
appropriate choice of r, it is very 
unlikely to occur even once in the 
execution of the algorithm. There-  
fore, one reasonable response to 
this rare event is to restart the algo- 
ri thm from the beginning  with new 
random tables for h0, h], and h2. 
Our  current  implementation actu- 
ally uses a simple backtracking 
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scheme. It assigns new g values to 
earl ier  vertices and then tries to 
complete the g function for the en- 
tire graph.  More sophisticated 
backtracking schemes are possible, 
but, as we have stated, it is unclear  
whether  the added  effort  is justi-  
fied. 

Example 
We illustrate our  algori thm using a 
key set of  six words that has actually 
been processed to yield a MPHF. 
The  set of  words was drawn from 
the initial port ion o f  the Collins 
English Dictionary [22]. The  six 
words with their  h0, h], and h 2 val- 
ues are given in Table 2. The  h0, h], 
and h2 functions are the auxiliary 
hash functions found in the Map- 
ping step. 

From this assignment o f  hi and 
h 2 values, the bipart i te dependency  
graph shown in Figure 6 is pro-  
duced. Note that some vertices (1, 
3, and 5) are quite "popular"  while 
vertex 4 is left out. Each word is as- 
sociated with edges; there  are two 
pairs of  words, (Asgard, Ash) and 
(Ashe, Asher), that each have the 
same endpoints.  This is allowed 
here, since the h0 values will allow 
separation between words when the 
final hash value is computed.  

The  Order ing  step finds an 
order  for the vertices 0, 1, 2, 3, and 
5 (those of  degree  > 0). The  pro- 
cess of  selecting the o rde r  is shown 
in Figure 7. In  Figure 7(a), an arbi- 
trary vertex, 1, of  maximum degree 
(3) is selected to be vi; the result is 
v ] - - 1 .  Next, in Figure 7(b), the 
vertices 3 and 5 adjacent  to vertex 1 
are examined to find one of  maxi- 
mum degree;  the arbi t rary selec- 
tion of  v2 = 5 has been made. In 
Figure 7(c), the vertices 0 and 3 
(each adjacent to one of  the vertices 
1 and 5) are examined;  the selec- 
tion v3 = 3 is made because vertex 3 
has higher  degree  than vertex 0. In  
Figure 7(d), vertices 0 and 2 are 
examined;  the selection v4 = 0 is 
made because vertex 0 has higher  
degree  than vertex 2. Finally, in 
Figure 7(e), the selection v5 = 2 is 
m a d e .  

The  result of  the Order ing  step 

is the vertex o rde r  l,  5, 3, 0, 2. We 
obtain an order ing  of  4 levels, 
shown in Table 3. Level i corre- 
sponds to the set of  keys K(Vi+l) for 
vertex vi+l. Thus, level 2 corre- 
sponds to the set o f  keys K(v3) = 
{Ashe,Asher}. The  level sizes are 
bounded  above by the degree  o f  the 
corresponding vertex and are typi- 
cally smaller. For example,  the de- 
gree of  v3 is 3 but  IK(v3)l = 2. 

The  Searching step assigns g val- 
ues to the vertices 1, 5, 3, 0, and 2, 
in that order.  The  assignment pro- 
cess is illustrated in Figure 8. The  g 
value for Vl = 1 is arbitrary;  in Fig- 
ure 7(a), the assignment g(vl) = 2 
has been made. Vertex v2 = 5 is 
next; K(v2) = {Ashcroft}. We know 

h0(Ashcroft) = 3 
g(hl(Ashcroft)) = g(vl) = 2. 

In Figure 7(b), slot 1 has been se- 
lected for Ashcroft.  Therefore ,  

g(v2)  = 

(h(Ashcroft) - 
h0(Ashcroft) - g(hl(Ashcroft))) 
( m o d 6 ) = ( 1 - 3 - 2 )  
(mod 6) = 2. 

The  next vertex is v3 = 3; K(v3) = 
{Ashe, Asher}. We calculate 

b(Ashe) = (h0(Ashe) + g(hl(Ashe))) 
(rood 6) = (5 + 2) (rood 6) = 1 

and 

b(Asher) = (h0(Asher) + 
g(hl(Asher)))  (mod 6) = 3. 

Therefore ,  this level gives a pat tern 
{1,3} to fit into the hash table. 
The re  are, of  course, many values 
ofg(v3) that make the pat tern fit. In 
Figure 7(c), the random value se- 
lected is g(v3) = 3, which makes 

h(Ashe) = (1 + 3) (mod 6) = 4 

and 

h(Asher) = (3 + 3) (mod 6) = 0. 

The  next vertex is v4 = 0; 
K(v4) = {Ash, Asgard}. The  pat tern 
for this level is {4, 5}. The re  is only 
one value for g(v4) that fits this pat- 
tern into the hash table. In  Figure 
7(d), the value g(v4) = 4 is selected, 
which fits the pat tern in slots 2 and 
3. 

T A B L E  3 .  

Example:  Levels In t h e  
Order ing  

Size of Keys In 
Level Level This Level 

1 1 Ashcroft 

2 2 AShe, Asher 

3 2 Asgard, Ash 

4 1 Ashanti 

T A B L E  4 .  

Example:  ver t ices  w i t h  
C o m p u t e d  g Values 

vertex g value 

0 4 

1 2 

2 2 

3 3 

4 2 

5 2 

T A B L E  5.  

Example:  Keys w i t h  
COmputed  Hash Addresses 

Keys HaSh Address 

Asgard 2 

ASh 3 

Ashanti 5 

Ashcroft 1 

Ashe 4 

Asher 0 

The  last vertex is v5 = 2; K(v5) = 
{Ashanti}. Slot 5 is the only one 
remaining in the hash table. The  
selection g(v5)-= 2 is necessary to 
place Ashanti  in slot 5. 

The  selected g values are sum- 
marized in Table 4. Note that an 
arbi t rary g value has been assigned 
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to vertex 4, even though it was not 
in the sequence of  o rde red  vertices, 
because it is o f  degree  0. In general,  
the Searching step assigns an arbi- 
t rary g value to each vertex of  de- 
gree 0 so that g (and, hence, h) is a 
total function. No keys in the set S 
will actually access the g value of  a 
vertex of  degree  0. 

The  ult imate hash values for the 
six keys are given in Table 5. As 
required,  the six hash values are 
distinct (we have a perfect  hash 
function h), and the hash values are 
all in range 0 - 5  (h is a min ima l  per-  
fect hash function). 

Exper imenta l  Results 
To suppor t  our  claims regard ing  
the theory and practice relat ing to 
our  approach  to MPHF determina-  
tion, we collected distr ibution data 
regard ing  the vertex degrees in 
dependency  graphs and level sizes 
in the order ing.  For a detai led dis- 
cussion of  these data, refer  to [17]. 

A variety o f  exper imenta l  tests 
have been made with versions of  
Algor i thm 1, using ports  to Apple  
Macintosh, IBM PC compatible, 
IBM PS/2, Cray XMP, and other  
systems. A comparison for Macin- 
tosh and Sequent  Symmetry is 
given in [17]. For  consistency, we 
focus below on timings using a Se- 
quent  Symmetry with 32MB of  
main memory,  runn ing  on a single 
(80386) processor runn ing  at about  
4 MIPS, repor t ing  Unix "times()" 
results. 

Table 6 shows timings for each 
phase of  the algori thm, omitt ing 
only time required to double check 
that an MPHF has been found. 
Total  t ime is given, along with two 
metrics for the size of  the hash 
function, which we here fix by se- 
lecting r =  0.3n. First, since we 
claim less than O(n) words/key is 
required,  words/key is fixed at 0.6. 
Second, since O(n) bits/key is the 
lower bound,  we show bits/key. 
Note that key set sizes are given as 
successive powers o f  2, f rom 25 
through  219 , so it is easy to see the 
time required is O(n). By our  selec- 
tion, O(n) words/key is required;  we 
have also found that fewer words/ 

key are needed as the key set 
size increases, suggesting < O(n) 
words/key. 

In  summary,  our  algori thm pro-  
cesses large key sets well, and while 
there is some variation in process- 
ing time because of  the probabilistic 
nature  of  the operat ions,  with an 
appropr ia te  value for r the algo- 
r i thm finds a MPHF with high 
probability. 

Large Key Sets 
The  largest sets of  keys we have 
been able to handle directly with 
our  initial a lgori thm are a collection 
of  over 420,878 French words and 
a set of  2 ~9 = 524,288 names taken 
from the Online Computer  Library 
Center  (OCLC) catalog, since our  
data structures have been tuned to 
require  a maximum of  9n compute r  
words. Our  Sequent  has sufficient 
pr imary  memory  for this to work 
well. For the French words, the 
graph used has r = .25n, so ]h] re- 
quired 0.5 words/key. The  Order-  
ing step was modif ied to use 12 
stacks, one for each vertex degree  
between 1 and 12. This modifica- 
tion led to a fast Orde r ing  time of  
53 seconds, while the time for the 
Searching step was 608 seconds. 
The  total time, including the Map- 
ping step, for our  algori thm to f ind 
a MPHF for the 420,878 words was 
812 seconds. For the OCLC keys, 
total time was 763 seconds. 

For very large key sets, the pri- 
mary limitation on the efficiency of  
our  algori thm comes from the size 
of  main memory.  I f  little of  the 
dependency  graph can fit in the 
main memory  of  a virtual memory  
machine,  then swapping occurs 
with a large propor t ion  of  the ref- 
erences to the dependency  graph.  
This is because the graph is a ran- 
dom one and, therefore,  violates 
the Principle of  Locality. 

To accommodate  very large key 
sets, we have modif ied the imple- 
mentat ion of  the Mapping  step to 
effectively part i t ion the depend-  
ency graph into connected sub- 
graphs of  manageable  size. With 
the modif ied implementat ion,  a 
MPHF for a key set consisting of  

1.2 million words was constructed 
on the Sequent  Symmetry.  The  
dependency  graph was par t i t ioned 
into 6 subgraphs of  approximate ly  
equal size. In one run  r = .30n, so 
]h] required 0.60 words/key. The  
total t ime to construct the MPHF 
was 4,804 seconds. 

CD-ROM Versions 
As stated earlier,  one application 
for our  MPHF method  is to im- 
prove access time on CD-ROMs 
where records addressed by single 
keys are sought. We have p repa red  
a demonst ra t ion  of  this for Virginia 
Disc One [13]. In part icular,  we 
took a 130,198 word collection and 
stored the g function and other  
parameters ,  along with the word 
strings cor responding  to the hash 
table, on the CD-ROM. Users can 
ask for words in the Collins English 
Dictionary [22] or  in files we have 
extracted f rom the AIList  Digest 
(distr ibuted over the Internet) ,  the 
two sources for this set, and be told 
instantly what hash value has been 
assigned. 

Algor i thm 2 
Algori thm 1, developed in 1989 
[17] and summarized earlier,  has 
O(n) time complexity and less than 
O(n) words space complexity. An 
extension of  that algori thm, yield- 
ing order -preserv ing  minimal per- 
fect hash functions, is discussed in 
[14,15]. This deve lopment  led to 
fur ther  work in Spring 1990, lead- 
ing to Algor i thm 2, which has O(n) 
t ime complexity and O(n) bits space 
complexity [8]. An overview of  this 
method  will be given. 

Basic Concepts 
Algori thm 2 still applies the con- 
cept explained earlier,  but  adds 
several addit ional  insights. First, to 
reduce the size of  the hash function 
to approach  the theoretical lower 
bound,  the domain  of  g is taken as 
{0, , r - 1 }  where r =  
[cn/log2n], and c is a constant typi- 
cally less than 4. The  class of  hash 
functions searched is: 
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(1) 

(2) 
(3) 

(4) 
(,5) 

(6) 

(7) 

foriE [0...n-l] do 

hash-table [i] . assigned = false 

fori = 1 to t do 

establ~h a random probe sequence So, s I ..... Sn_ 1 for [0...n-l] 

j--0 

do 

collision = false 

i f v  i E [ O . . . r - - 1 ]  then 

for e a c h  k E K ( v i )  do 

h(k) = edge[k] .h 0 + vertex[edge[k] .h2] + Sj (mod n) 

if hash-table [h (k) ] . assigned then 

collision = true 

else 

for each k q K(vi) do 

h(k) = edge[k] .h 0 + vertex[edge[k] .hi] + Sj (modn) 
if hash-table [h (k) ] .assigned then 

collision = true 

if not collision then 

for eachk E K ( v i )  do 

hash-table [h (k) ] . assigned = true 

hash-table [h (k) ] . key = k 

else 

j = j + 1 

if  j > n--i then 

fail 
while  collision 

h(k) = 

{ (ho(k)g(h~(k)) 
g(h,(k)) 

+h2(k)g2(hl(k)) mo d  n 
if mark  (h](k)) = 1 
if  mark(hi(k) = 0 

where  

ho: U ~ {0 . . . . .  n - 1} 
hi: U ~ {0 . . . . .  r - 1} 
h2: U ~ {0 . . . . .  n - 1} 
g: {0 . . . . .  r -  1}---~ {0 . . . . .  n - 1} 

mark: {0 . . . . .  r -  1} ~ {0, 1}. 

Here ,  ho, hi a n d  hz are r a n d o m  
m a p p i n g  funct ions  as before,  while 
g and  mark are parameters  to be 
de te rmined .  Total  space for these 
funct ions  is cn(1 + 1/log2n) bits, so 
space is O(n) bits, typically < 4n 
bits. 

Second, the form o f h  is such that  
hi and  h2 play very d i f fe ren t  roles. 
This  means  that  there  is no  de- 
pendency  graph.  Use of  p r imary  
m e m o r y  is greatly reduced,  allow- 

+P'OURm+L+++ + + +  ++++ ++ + + + + 
The Searching Step 

0 1 2 

h2 

3 4 5 

+~.ouie  s + +  
Example: Dependency Graph 

ing  easier M P H F  construct ions  for 
very large key sets. 

Th i rd ,  quadra t ic  hash ing  is uti- 
lized. This  leads to the use of  the 
mark  bits, and  requires  an  extra  
mult ipl icat ion in cases where  the 
mark  bit is set. Yet the power  of  
quadra t ic  hash ing  allows smaller  

MPHFs  to be f o u n d  very quickly. 

o v e w i e w  o f  Steps 
As in Algor i thm 1, Mapping ,  Or-  
der ing,  and  Searching are re- 
quired.  This  is no  d e p e n d e n c y  
graph,  however,  so O r d e r i n g  and  
Searching are simplified. 
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0 1 2 0 1 2 

3 4 5 3 4 5 
(a) Vertex selected: 1 (b) Vertex selected: 5 

Initialization Level: (1,5) 

0 1 2 0 1 2 

3 4 5 3 4 
(c) Vertex selected: 3 (d) Vertex selected: 0 

Level: (1,3), (1,3) Level: (0,5), (0,5) 

0 1 2 

3 4 5 
(e) Vertex selected: 2 

Level: (2,3) 

The  Mapp ing  Step 
The  Mapping  step is like the proce- 
dure  described earl ier  but  h0, hi, 
and h2 are taken modulo  n, r, and n, 
respectively. The  mark  bits are set 
as par t  of  this step, too (as per  the 
definit ion given below). 

The  O r d e r i n g  Step 
Orde r ing  involves two passes 
th rough  the triplets (h0(k), hx(k), 
h2(k)). In the first pass, hi values are 
used to build a one dimensional  
array A of  l inked lists labeled 0 , . . .  
, r -  1. The  set of  keys stored in 
l inked list Ai, the i th record  of  A, 0 --< 
i - < r  - l is 

K(Ai) = {k[h](k)  = i} 

The  A_ array is 

Example: Ordering Step 

Example: Searching Step 

0 1 2 

1 
2 
3 
4 
5 3 4 5 

(a) Vertex assigned: 1 
Initialization: g(vl) = 2 

0 1 2 

1 
2 
3 
4 
5 3 4 5 

(c) Vertex assigned: 3 
Slots filled: {0,4} 

0 1 2 

1 
2 
3 
4 
5 3 4 5 

(e) Vertex assigned: 2 
Slot filled: {5} 

0 1 2 

1 
2 
3 
4 

(b) Verte4asslgned" : 5 
Slot filled: {1} 

0 1 2 ~ 0 

2 
3 
4 

5 
(d) Vertex assigned: 0 

Slots filled: {2,3} 

[ ~ [  stands for a slot open for fill; 

stands for a slot filled in at current level; 

[ ]  stands for a slot that already has been filled. 
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fn 's t~ey is the header for a singly 
linked list of  keys with hi(k) = i. de- 
gree is the cardinality of  K(Ai). g is 

TOtal t i m e  vs. key  set  size f o r  Al- 
g o r i t h m  2 using ex te rna l  s to rage  

Search t i m e  vs. b i t s / k e y  f o r  Algo- 
r i thm 2 using ex te rna l  s to rage  

20,000 

the g value for Ai, which is assigned 
later in the Searching step. m a r k  is 
set if [K(Ai)] > 1 and is reset if 
IK(Ai)I- l. More formally 

1 if IK(ai)l > I 
mark(i) = 0 if IK(ai)l -< 1 

The l~eya a r r a y  is 

keys: array [l..n] of  record 
he, hl, h2: integer;  
nextkey:  integer;  
end 

where nextkey points to the next 
key in the linked list whose head is 
given by fl.vstkey in the A array .  In 
the second pass for Ordering, a 

15,000 
"6" 

10,000 

0 

5,000 

0 
0 

50,000 

= 2 

, I I t I I 
400,000 800,000 1,200,000 

Key SetSize(n) 

a r r a y  [O..r - i ] of record  
firstkey: integer;  
degree: integer;  
g: integer;  
mark :  boolean; 
end 

40,000 

A 

~.~30,000 

E 

20,000 

10,000 

0 
0 

~ -  ~ n = 524,288 
~ n = 1,200,502 

= = , ,766 

10 20 
Bits/key 

30 

number  o f  stacks equal to the maxi- 
mum cardinality, MaxCard, of  the 
Ai are initialized. Each stack is as- 
signed to store entries of  a certain 
size. For example, Stack[l] is as- 
signed to store entries of  the Ai 
array of  cardinality equal to 1, and 
so on. The  A i array is scanned and 
all elements are pushed into their 
corresponding stacks Stack 
[Ai.degree]. For very large key sets, 
these stacks are maintained on ex- 
ternal storage. 

The Searching Step 
As explained earlier, the set of  keys 
k • K(Ai) constitute a pattern. The 
Searching step determines an offset 
g(i) that fits all elements of  this pat- 
tern in empty slots of  the hash table 
simultaneously. The Searching step 
pops entries o f  Ai from stacks and 
assigns hash values to all keys in 
K(Ai), in descending order  of  Ai. de- 
gree. Thus, stacks for larger pat- 
terns are processed before stacks 
with smaller patterns. Since h(k) = 
ho(k)g(i) + hz(k)g2(i), i = hi(k), as- 
signing hash values to all keys in 
K(Ai) is done by assigning a value to 
g(i). This h(k) is a variation of  quad- 
ratic hashing and has the advantage 
of  eliminating both elementary and 
secondary clustering in the hash 
table. When all patterns of  size 
greater than 1 are processed, as- 
signing the remainder of  the pat- 
terns of  size 1 in A is done by setting 
g to the addresses of  the remaining 
empty slots in the hash table using 
the hash function h(k)= g(i). The 
mark(hi(k)) function is used to dis- 
tinguish which hash function has 
been used to hash k. 

Experimental ReSults 
In Table 7, we exhibit the strengths 
of  Algorithm 2 in two different 
ways. The  second and third col- 
umns give timing results for our  
two algorithms under  a uniform 
space assumption of  0.6 words/key. 
While Algorithm 1 is faster for 
small key sets, Algorithm 2 proves 
itself significantly faster for the 
large key sets. The  last five columns 
show the results of  pushing Algo- 
rithm 2 to require as few bits as pos- 
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sible. The  exper iments  indicated by 
these rows were conducted as fol- 
lows: Lower and lower bits/key val- 
ues were tr ied until Algor i thm 2 
failed to f ind an MPHF consis- 
tently. The  time for those runs are 

repor ted  in Table 7. The  run  time 
for n = 262144 is anomalous,  indi- 
cating that bits/key can actually be 
pushed lower. 

Algor i thm 2 is also capable of  
running  efficiently using external  

1. Define tables of n-fields. Each field may be an integer, a string of maximum 
length less than N, or a string of length without limit. MPHF indexing on 
several fields may be specified. 

2. Load each table with data. MPHF indexing is performed on fields defined 
to be MPHF indexed. Duplication on field values can be handled. 

3. Look up rows that have values for MPHF indexed fields that are equal to 
query terms. 

4. Retrieve a field value given row number and field name. 

5. Retrieve a whole row of a table. 

6. Delete/update a field value of a row. 

Functions supported by DiCtionary Manager 

T A B L E  IS. 

T i m i n g  Resul ts  f o r  A l g o r i t h m  1 

n bits/key Mapping Ordering Searching TOtal 

32 3.0 0.37 0.02 0.03 0.42 

64 3.6 0.75 0.03 0.07 0.85 

128 4.2 0.60 0.05 0.08 0.73 

256 4.8 0.97 0.05 0.18 1.20 

512 5.4 1.23 0.08 0.35 1.67 

1024 6.0 1.50 0.17 0.67 2.33 

2048 6.6 2.42 0.30 1.67 4.38 

4096 7.2 3.47 0.62 3.13 7.22 

8192 7.8 5.53 1.27 5.92 12.72 

16384 8.4 9.87 2.52 12.05 24.43 

32768 9.0 18.78 5.05 24.62 43.45 

65536 9.6 35.68 10.20 50.02 95.90 

131072 10.2 69.70 20.15 101.08 190.93 

262144 10.8 137.97 40.30 201.57 379.83 

524288 11.4 275.25 81.23 406.58 763.07 

Note: f o r  a l l  runs, Words/key = 0.6;  N u m b e r  o f  S tacks  = 12; Machine = S e q u e n t ;  T i m e  (CPU) is in 
seconds. 

storage when there is not sufficient 
internal  storage. T iming  results for 
some very large runs using external  
storage are repor ted  in Table 8. 
Note that the dominan t  contribu- 
tion to time is the Searching step. 
This time can be decreased dramat-  
ically by a modest  increase in the 
bits/key values (see Figure 10). 

Figure 9 illustrates the l inear 
t ime complexity,  giving total time 
(generally dominated  by Searching) 
for various set sizes. Figure 10 illus- 
trates that few bits/key are re- 
quired,  regardless o f  set size, but  
that t ime to find a MPHF increases 
rapidly as the theoretical lower 
bound  on space is approached.  

Appl ica t ions  
As stated at the beginning of  this 
article, one of  the most exciting 
aspects o f  this work is the wide 
range of  applications expected for 
the MPHF scheme. T h e r e  is utility 
for MPHFs in regard  to hypertext ,  
hypermedia ,  semantic networks, 
file managers,  database manage-  
ment  systems, object managers,  in- 
format ion retrieval systems, com- 
pilers, etc. 

We have begun to exploit  this 
potential  in a number  of  areas. 
One, related to our  work of  build- 
ing a large lexicon f rom machine- 
readable  dictionaries, is to construct  
a general  dict ionary manager  able 
to handle  large keys set with associ- 
ated fixed or  variable-length rec- 
ords. Our  MPHF system has been 
suitably embedded  into a dict ionary 
manager  that can suppor t  a variety 
of  functions as can be seen in Fig- 
ure 11. A version of  this has been 
used in connection with an X.500 
directory server implemented  at 
the VPI and SU Comput ing  Cen- 
ter. 

We have in tegrated MPHF code 
with a tree manager  so large data 
collections which are relatively 
static can be slowly upda ted  or  ex- 
tended.  When  a sufficient number  
of  changes (which are recorded in 
the tree) have been made,  the sys- 
tem automatically empties the tree 
and builds a new MPHF for the 
current  data. 
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T A S L l i  7. 

Timing Results for  A lgor i thm 2 using Internal  M e m o r y  

Algorithm 1 Algorithm 2 Near lowest bits/key 
TOtals Totals achieved by Algorithm 2 

(wordS/key (words/key 
n = 0.6) = 0.6) bits/key Mapping Ordering Searching TOtal 

32 0.10 2.18 2.28 2.15 0.02 0.02 2.19 

1024 1.33 2.95 3.19 2.58 0.05 1.13 3.76 

131072 189.28 98.93 3.24 58.18 7.43 14569.12 14634.73 

262144 374.09 194.43 3.61 117.63 15.82 4606.75 4740.20 

524288 808,34 383.57 3.60 228.10 34.43 1 4 1 2 9 . 8 7  14831.73 

Note: fo r  all runs, Machine = Sequent; Time (CPU) Is in seconds. 

As work proceeds on newer algo- 
ri thms and on our  Large External 
object-oriented Network Database 
(LEND), available for licensing, we 
will continue to apply our  MPHF 
schemes to suppor t  a variety of  
applications involving large seman- 
tic networks, hypertext ,  hyper-  
media, and other  large object bases. 
We believe significant benefits will 
accrue involving CD-ROM, optical 
disc, magnetic disk, and even pri- 
mary memory-based retrieval. 

This article gives theoretical and 
exper imental  validation of  practical 
new algorithms for f inding minimal 
perfect  hash functions, suitable for 
key sets ranging in size from small 
to very large (over a million). Re- 
cent efforts have led to versions 
requir ing time and space close to 
theoretical lower bounds,  and to 
methods to identify order-preserv-  
ing minimal perfect hash functions. 
These algorithms are used for a 
variety of  applications, and should 
be of  value in many situations re- 
quir ing single access for static key 
collections. 
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(continued from page 22) 
the distinction because they com- 
bine characteristics associated with 
hardware with others associated 
with software. However, most of 
these technologies can be classified 
unambiguously for patent pur- 
poses, either as software or as hard- 
ware using the preceding criteria. A 
few gray areas may remain, but 
these are comparatively small, and 
need not be an obstacle to solving 
the problems patents pose for ordi- 
nary software development. They 
will eventually be treated as hard- 
ware, as software, or as something 
in between. 

What YOU Can DO 
One way to help eliminate software 
patents is to join the League for 
Programming Freedom. The 
League is a grass-roots organization 
of programmers and users oppos- 
ing software patents and interface 
copyrights. (The League is not op- 
posed to copyright on individual 
programs.) Annual  dues for indi- 
vidual members are $42.00 for 
employed professionals, $10.50 for 
students, and $21.00 for others. We 
appreciate activists, but members 
who cannot contribute their time 
are also welcome. Contact the 
League at: 

• League for Programming Free- 
dom 
1 Kendall Square #143 
PO Box 9171 
Cambridge, MA 02139 
o r  tel. (617) 243-4091; 
Email: {league@ prep.ai.mit.edu}, 

In the United States, you may also 
help by writing to Congress. You 
can write to your own representa- 
tives, but  it may be even more effec- 
tive to write to the subcommittees 
that consider such issues: 

• House Subcommittee on Intellec- 
tual Property 
2137 Rayburn Bldg. 
Wash., DC 20515 

• Senate Subcommittee on Patents, 
Trademarks and Copyrights 
United States Senate 
Wash., DC 20510 

You can phone your representa- 
tives at (202) 225-3121, or write to 
them using the following addresses: 

• United States Senate 
Wash., DC 20510 

• House of Representatives 
Wash., DC 20515 

Fighting Patents One by One 
Until we succeed in eliminating all 
patenting of software, we must try 
to overturn individual software pat- 
ents. This is very expensive and can 
solve only a small part of the prob- 
lem, but that is better than nothing. 

Over turning patents in court 
requires prior art, which may not 
be easy to find. The League for 
Programming Freedom will try to 
serve as a clearing house for this 
information, to assist the defend- 
ants in software patent suits. This 
depends on your help. If  you know 
about prior art for any software 
patent, please send the information 
to the League. 

If you work on software, you can 
help prevent software patents by 
refusing to cooperate in applying 
for them. The details of this may 
depend on the situation. 

Conclusion 
Exempting software from the scope 
of patents will protect software de- 
velopers from the insupportable 
cost of patent searches, the wasteful 
struggle to find a way clear of 
known patents, and the unavoida- 
ble danger  of lawsuits. 

If  nothing is changed, what is 
now an efficient creative activity 
will become prohibitively expen- 
sive. To picture the effects, imagine 
if each square of pavement on the 
sidewalk had an owner, and pedes- 
trians required a license to step on 
it. Imagine the negotiations neces- 
sary to walk an entire block under  
this system. That  is what writing a 
program will be like if software pat- 
ents continue. The sparks of crea- 
tivity and individualism that have 
driven the computer  revolution will 
be snuffed out.iprepared by Rich- 
ard StaUman and Simson Garfinkle. 
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