
Hyundai Ex. 1023

PRACTICAL MINIMAL PERFltlr HASH FUNL"IrlONS FOR LARGE DATABASES

disc, or recorded on some other
device; in all cases it is desirable for
T to have (almost) no unused slots
and for us to be able to quickly find
the appropriate slot in T for any
given key k.

The retrieval problem is to locate
the record corresponding to a key
k ~ U or to report that no such rec-
ord exists. We do this by hashing,
i.e., applying a hash function h that is
computable in time proportional to
the size of the key k, and examining
the slot in T with address h(k). If
there are two keys kl, k2 E S such
that h(kl) = h(k2), then there is a col-
lision of k] and k2. Much effort is
expended in traditional work on
hashing in resolving collisions. Col-
lisions force more than one probe
(reading a slot) of T to access some
keys. I f h is a 1-1 function when re-
stricted to S, h is called a perfect hash
function (PHF) since there is no
need to waste time resolving colli-
sions. A PHF h allows retrieval of
records (objects) keyed from S in
one access, which is clearly optimal
in terms of time. For any form of
hashing, optimal space utilization is
attained when the hash table is fully
loaded, i.e., when a = 1; we use the
name minimal hash function for any
function with this property. The
best situation, then, is to have a
minimal perfect hash function
(MPHF) where a = 1 and there are
no collisions (so h is a 1-1 onto map-
ping when restricted to S.)

Related Work
Hashing has been a topic of study
for many years, both in regard to
practical methods and analytical
investigations [24]. Recently there
has been renewed interest in hash-
ing due to the development of tech-
niques suitable for dynamic collec-
tions [10]. A less extensive
literature has grown up, mostly
dur ing the last decade, dealing with
perfect hash functions; it is that
subarea we consider in this section.

Mapping to Integers
Given a key k from a static key set S
of cardinality n, selected from a
universe of keys U with cardinality

N, our object is to find a function h
that maps each k to a distinct entry
in the hash table T containing m
slots. Certainly function h must
map each key k to an integer. In the
simplest cases, keys are positive in-
tegers bounded above by N. This
situation was assumed, for exam-
ple, by Sprugnoli [35], Jaeschke
[23], and Fredman, Koml6s, and
Szemer6di [20].

We focus here, however, on the
more general case in which keys are
strings since integers can be repre-
sented as strings of digits or strings
of bytes, for example. The usual
approach is to associate integer val-
ues with all or some of the charac-
ters in the string, and then to com-
bine those values into a single
number . Chang [4] used four tables
based on the first and second letters
of the key. Cichelli [6] used the
length of the key and tables based
on the first and last letters of the
key. Note, however, that the length
of a key, its first letter, and its last
letter are sometimes insufficient to
avoid collisions; consider the case of
the words "woman" and "women"
in Cichelli's method.

Cercone et al. [3] enhance the
discriminating power of transfor-
mations from strings to integers by
generating a number of letter-to-
number tables, one for each letter
position. If the original keys are
distinct, numbers formed by con-
catenating fixed-length integers
obtained from these conversion
tables will be unique. In practice, it
often suffices to simply form the
sum or product of the sequence of
integers.

While in some schemes (e.g., [6])
the resulting integer is actually the
hash address desired, in most algo-
rithms, the hash function must fur-
ther map from the integer value
produced into the hash table.

Existence Proofs
o n e might ask if a MPHF h for a
given key set exists. Jaeschke [23]
proves this and indeed presents a
scheme guaranteed to find such a
function, though his method re-
quires exponential time in the

number of identifiers. Assuming
the task is to map a set of positive
integers {kb k2 kn} bounded
above by N without collisions into
the set of m indices of T, we also
have demonstrated a fast algorithm
to define a suitable, though very
large, PHF [17].

Another way to view this situa-
tion is to realize that perfect hash
functions are rare in the set of all
functions. Knuth [24] observes that
only one in 10 million functions is a
perfect hash function for mapping
the 31 most frequently used Eng-
lish words into 41 addresses. Our
task then can be viewed as one of
searching for rare functions, and of
specifying them in a reasonable
amount of space.

Space to Store PHF
Using an argument contributed by
Mehlhorn [26] (also see [25]), we
have shown an approximate lower
bound of ~1.4427 bits per key to
represent an arbitrary MPHF [17].
It is important to realize that this
cost is required for one-probe access,
no matter what scheme is em-
ployed. In addition to the lower
bound, Mehlhorn also gives a
method of constructing MPHFs of
size O(n) bits. However, the con-
struction requires exponential time
and therefore is not practical. A
more practical algorithm of
Mehlhorn [26] constructs MPHFs
of size O(n log2 n) bits.

It is more typical to state the size
of PHFs in terms of the number of
computer words used, each of
log2 n bits. T h e n Mehlhorn's lower
bound is ~(n/log2n) computer
words, and his practical upper
bound is O(n(log2 n))/(log2 n)) =
O(n) computer words. Our initial
algorithm achieves MPHF size of
less than O(n) computer words, and
our second algorithm approaches
the theoretical lower bound.

Classes of Functions
There are several general strategies
for f inding perfect hash functions.
The simplest one is to select a class
of functions that is likely to include
a number of perfect hash functions,

~ O 6 January 1992/Vol.35, No.1/COMMUNICATIONS OF THE ACM

and then to search for a MPHF in
that class by assigning different val-
ues to each of the parameters char-
acterizing the class.

Carter and Wegman [2] intro-
duced the idea of a class H of func-
tions that are universal2, i.e., where
no pair of distinct keys collide very
often. By random selection from H,
one can select candidate functions
and expect that a hash function
having a small number of collisions
can be found quickly. This tech-
nique has also been appl ied to dy-
namic hashing by Ramakrishna and
Larson [30].

Sprugnoli [35] proposes two
classes of functions, one with two
and the other with four parame-
ters, that each may yield a MPHF;
searching the paramete r values of
ei ther class is feasible only for very
small key sets. Jaeschke [23] sug-
gests a reciprocal hashing scheme
with three parameters that is guar-
anteed to find a MPHF, but it is
only practical when n -< 20. Chang
[5] proposes a method with only
one parameter , though its value is
likely to be very large, and requires
a function that assigns a distinct
pr ime to each key. However since
he gives no algori thm for that func-
tion, the method is only of theoreti-
cal interest. A practical algori thm
for f inding perfect hash functions
for fairly large key sets is described
in [7]. The authors illustrate the
trade-offs between time and size of
the hash function, but do not give
tight bounds on total time to find
PHFs or exper imental details for
very large key sets.

The "search-only" methods re-
fer red to may, if general enough,
and if enough time is allotted, di-
rectly yield a perfect hash function
when the r ight assignment of pa-
rameters is identified. However,
analysis of the lower bounds on the
size of a suitable MPHF suggests
that if pa ramete r values are not to
be virtually unbounded , then there
must be a modera te number of pa-
rameters to assign. Examining the
algorithms of Cichelli [6] and of
Cercone et al. [3] we see two impor-
tant concepts: using tables of values

as the parameters , and using a
mapping, order ing, and searching
(MOS) approach. While their tables
seem to be too small to handle very
large key sets, the MOS approach is
an impor tant contr ibution to the
field of perfect hashing.

In the MOS approach, the con-
struction of a MPHF is accom-
plished in three steps. First, the
Mapp ing step transforms the key
set from the original universe to a
new universe. Second, the Order -
ing step places the keys in a sequen-
tial o rde r that determines the o rde r
in which hash values are assigned to
keys. The Order ing step may parti-
tion the o rde r into subsequences of
consecutive keys. Such a subse-
quence is called a level, and the keys
of each level must be assigned their
hash values at the same time.
Thi rd , the Searching step at tempts
to assign hash values to the keys of
each level. I f the Searching step
encounters a level that it is unable
to accommodate, it backtracks,
sometimes to an earl ier level, as-
signs new hash values to the keys of
that level, and tries again to assign
hash values to later levels. Sager's
method is a good example of the
MOS approach.

Sager's Method and Improvement
Sager [31, 32] proposes a formali-
zation and extension of Cichelli's
approach. Like Cichelli, he assumes
that a key is a character string. In
the Mapping step, three auxiliary
hash functions are def ined on the
original universe of keys U

ho: U----~ {0 m - 1}
h]: U---~ {0 r - 1}
h2: U----){r 2 r - 1}

where r is a pa ramete r (typically
<-m/2) that ultimately determines
how much space it takes to store the
perfect hash function (i.e.,]h I = 2r).
These auxiliary functions compress
each key k into a unique identif ier

(ho(k),hl (k),h2(k))

which is a tr iple of integers in a new
universe of size mr 2. The class of
functions searched is

h(k) = (ho(k)
+g(hl(k)) + g(h2(k))) (mod m)

where g is the function whose val-
ues are selected dur ing the search.

Sager studies a graph that repre-
sents the constraints among keys.
Indeed, the Mapping step goes
from keys to triples to a special bi-
part i te graph, the dependency graph,
whose vertices are the h i0 and h20
values and whose edges represent
the keys. The two parts of the de-
pendency graph are the vertex set
{0 r - 1} and the vertex set {r,
. . . . 2r - 1}. For each key k, there
is an edge connecting hi(k) and
hz(k); that edge carries the label k.
See Figure 2.

In the Order ing step, Sager
employs an o rder ing heuristic
based on f inding short cycles in the
graph. This heuristic is called min-
cycle. At each iteration of the Or-
der ing step, the mincycle heuristic
finds a set of unselected edges in
the dependency graph that occur in
as many small cycles as possible.
The set of keys corresponding to
the set of edges constitutes the next
level in the order ing.

The re is no p roof given that a
min imum perfect hash function
can be found, but mincycle is very
successful on sets of a few hundred
keys. Mincycle takes O(m 4) time and
O(m 3) space, while the subsequent
Searching step usually takes only
O(m) time. The time and space re-
quired to implement mincycle are
the pr imary barriers to using Sag-
er's approach on larger sets.

Sager chooses values for r that
are propor t ional to m. A typical
value is r = m/2. In the case of mini-
mal perfect hashing (m = n), it re-
quires 2r = n computer words of
log2 n bits each to represent g. This
is somewhat more than Mehlhorn 's
lower bound of 1.4427n/log2 n
computer words. The ratio (2r/n)
must be reduced as low as possible,
certainly below 1. Our early work to
explore and improve Sager's tech-
nique led to an implementat ion,
with some slight improvements and
with extensive instrumentat ion
added on, described by Datta [9].

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, NoA 107

PRACTICAL MINIMAL PERFECt NASH FUNCTIONS FOR LARGE DATABASES

After fur ther investigation we de-
veloped a modif ied algori thm [16]
requir ing O(m 3) time. With this al-
gor i thm we were able to find
MPHF's for sets of over a thousand
words.

S u m m a r y o f R e l a t e d W o r k

Hashing has been used in many
applications and, with recent devel-
opment of dynamic hashing tech-
niques, has witnessed a resurgence
of interest [10]. However, most
dynamic hashing involves low load
values, on the o rde r of 0.6 to 0.9,
and requires resolution of colli-
sions. In most dynamic hashing
schemes, hash addresses identify
buckets or bins wherein a number
of records can be stored, and which
are usually only partially full. The
work of Gonnet and Larson does
improve upon the typical approach,
however, allowing high load fac-
tors, th rough the use of a small
amount of extra storage used in
buckets [21].

An examinat ion of previous
schemes for perfect hashing shows
that many are generally only appli-
cable to small sets, or require a pro-
hibitive amount of space to store.
Some approaches require input
keys to already be integers in some
restricted range, while others are
really two-level searches in which
extra storage in each bucket sup-
ports the second level of search. An
example is the work of Brain and
Tharp , which extends Cichelli's
approach, but still cannot handle
very large key sets [1].

The most competit ive alternative
to our approach comes from the
work of Fredman, Koml6s, and
Szem~rdi [20] and others who have
built on their work (e.g., [33]).
These methods assume a universe
that is the set of integers {1 PC}
in contrast to our assumption of
keys that are arbi t rary character
strings. Membership queries are
accommodated in constant time,
and the hash function requires n +
o(n) space. Construction takes ran-
dom expected time O(n). Our
bounds are tighter, and really prac-
tical algori thms for very large key

sets have for the first time been
demonst ra ted by our work•

Key Concepts of New
Algorithms
After careful analysis of Sager's al-
gor i thm [32] and our enhanced
version [16], Heath made three
crucial observations that serve as
the foundat ion of our new algo-
ri thms:

• It appears that we must exploit
randomness whenever possible.
We t rade a small probabili ty o f
failure for an outs tanding aver-
age case performance.

• The vertex degree distr ibution is
highly skewed. This can be ex-
ploited to carry out the Orde r ing
step in a much more efficient
manner .

• Assigning g values to a set of re-
lated words can be viewed as try-
ing to fit a pat tern into a partially
filled disk, where it is impor tant
to enter large pat terns while the
disk is only partially full.

These three insights allow our
new algori thms to obtain an Order -
ing in l inear expected time. Since
Mapping and Searching have ex-
pected time O(n), the time complex-
ity of our method is O(n) in the ex-
pected sense.

We consider each of these key
concepts in more detail in the next
three subsections. Because we are
primari ly concerned with min ima l
perfect hash functions, we assume
m = n and use only n. All results
easily generalize to the case m - n.

Randomness
Our first use of randomness is in
the Mapping step, in which a good
set of triples is obtained to serve as
identifiers for the original word
strings. Here it is essential that the
triples are distinct. Our technique is
essentially to obtain a r andom num-
ber (mod n) for each key, making
use of all of the information in the
key to give max imum discrimina-
tion. The pseudorandom number
genera tor we selected, to allow
machine independence and to en-
sure good behavior, is due to Park

and Miller [28]. The r andom inte-
gers generated by their r andom
number genera tor are between 0
and 2 ~l - 2. Now consider the use
of these r andom numbers to obtain
the desired triples. First, three ta-
bles (tableo, tablel, table2) of r andom
numbers are constructed, one for
each of the functions h0, hi, and h 2.
Each table contains one r andom
number for each possible character
at each position i in the key. Let a
key be the character string k = klk2
• . . ky. Then the triple is computed
using the following formulas:

ho(k) = tableoi(ki rood n

hi(k) = tableli(ki mod r

h2(k) = tablezi(ki mod r + r.

Assuming the triples (ho(k), hi(k),
h2(k)), k E S, are random, it is possi-
ble to derive the probabili ty that the
triples are distinct. Let t = nr 2 be
the size of the universe of triples.
The probabili ty of distinctness for n
triples chosen uni formly at r andom
from t triples is

t(t - 1) '"(t - n + 1)
p(n, t) =

t"
(t),
t n

By an asymptotic estimate from
Palmer [27],

p(n, t) = (t ' . exp{ n2 n~}
n 2t 6t 2

and for typical values of r =
cn/log2 n, where c is a constant,

p(n, t) --~ exp(n9(l°g2 n)2 ~ -

exp{ (l°g2 n)Z} = 1 (l°g2 n)2
2c2n 2c2n

so that p(n, t) goes to 1 quite rapidly
with n. We almost always find a suit-
able set of triples the first time, and
even have good success when h0, hi,
and h 2 are all de te rmined using
permuta t ions (different views) of
one r andom table.

Pearson [29] advances an alter-

1 0 8 January 1992/Vo1.35, No.1/COMMUNICATIONS OF THE ACM

native approach that might allow
smaller tables than our original
ones. We have exploited similar
methods to produce very small ta-
bles, that work with newer versions
of our algorithms.

Vertex Degree DiStribution
Our second key concept is that the
distribution of degrees of vertices
in the dependency graph is decid-
edly skewed, and indeed has a
number of interesting properties.
In particular, we show that in a ran-
dom dependency graph most verti-
ces have low degree. We exploit this
to obtain small levels in the order-
ing. Consider a particular vertex v
and the edges incident on it. The
probability that a particular edge
from edge set E is incident on v is
p = 1/r. Let X be the random vari-
able that equals the degree of v.
Then (see [11]), X is binomially dis-
tributed with parameters n and p.
Since the case of large n is of inter-
est, the Poisson approximation to
the binomial distribution applies:

e-a~d
P r (X = d) ~ d!

where A = n p = n/r. From the Pois-
son approximation, the expected
number of vertices of degree d is
given by

2 r P r (X = d) ~
d~

When r = n/2 (A = 2), the expected
number of vertices of degree 0, 1,
2, 3, and 4 are approximately 0.27r,
0.54r, 0.54r, 0.36r, and 0.18r, re-

spectively. The skewed distribution
of vertex degrees provides the in-
spiration for a new Ordering heu-
ristic. Instead o f ordering the edges
(keys) of the dependency graph as
mincycle does, the new heuristic
orders the vertices. Let vl, v2 ,
VZr be any ordering o f the vertices
of the dependency graph. For each
vi, there is a set of edges K(vi) that
go from vi to vertices earlier in the
ordering

K(vi) = {(vi, vj) e E/j < i}.

This set of edges represents a set o f
keys, and every key occurs in ex-
actly one K(vi). K(vi) may be empty,
but cannot be larger than the de-
gree of vi (it is often smaller). The
ordering of the set of keys into lev-
els is just the ordering of the non-
empty K(vi).

It is desirable to have levels that
are as small as possible and to have
all large levels early in the ordering.
This suggests that a vertex of larger
degree should be processed earlier
than a vertex o f smaller degree.
This also suggests that a vertex
whose K set is currently larger
should be chosen next in the order-
ing over a vertex whose K set is cur-
rently smaller. Finally, it is impera-
tive that the Ordering heuristic be

Method tO f ind per fec t hash func-
t ions

[MAPPING ~ ORDERING ""> SEARCHING]

D e p e n d e n c y Graph

able to choose the next vertex in the
ordering quickly and simply. The
new Ordering heuristic described
later evolved from these insights
gained by examining the skewed
distribution o f vertex degrees and
from the imperative of choosing
the next vertex quickly.

Fitting Into a DIsK
At each iteration of the Searching
step, one level of the ordering is to
be placed in the hash table. Each
level is the key set K(vi) correspond-
ing to a vertex vi. For purposes o f
illustration, assume that v i E { r ,
. . . . 2r - 1}. Each key k E K(vi) has
the same h~ value h~(k)= vi and,
therefore, will have the same g o h2
value g(h2(k))= g(vi). By assump-
tion, the g o h] value of k is already
selected. Since all h0 values are al-
ready defined, h(k) is determined
by the selection of g(vi). Consider
the sum of the two values already
known for k. Let

b(k) = ho(k) + g(h~(k)).

Then

h(k) = (b(k) + g(vi)) (mod n).

The b(k) values for all keys k E K(vi)
yield offsets from g(vi) (mod n) to
the hash values of the keys.

The set of b(k) values constitutes
a pattern (mod n). The pattern may
be viewed as being in a circle of n
slots and subject to rotation by the
amount g(vi). The hash table is
viewed as a disk with n slots, some
of which may already be filled. To
successfully assign hash values to
the keys in g(vi) , the Searching step

h 2

r

2 3

r + l

4 • • • r-2 r-1

r+2 r + 3 • • • 2 r - 2 2 r -1

COMMUNICATIONS OF THE ACM/January 1992/Voi.35, No.l 109

PRACTICAL MINIMAL PERFECT HASH FUNCTIONS FOR LARGE DATABASES

(add a vertex to the heap), and
deletema,x (select a vertex of maxi-
mum degree and remove it from
the heap). Each heap operation can
be accomplished in O(log n) time
(since r = O(n)). Because the vertex
degrees of a random dependency
graph are (mostly) small, there is an
optimization possible to speed the
heap operation. In this optimiza-
tion, VHFdkP is implemented as a
series of stacks and one bounded
size heap. Most vertices have de-
gree 1, 2, 3, or 4. One stack is pro-
vided for each degree, so that the
size of the heap is kept below a con-
stant. Usually, the heap V"EFdx~_P
contains all vertices of degree -> 5.
When a vertex w is to be added to
V~AP, the degree of w is checked.
If the degree is-<4, then w is
added to the appropriate stack;
otherwise, w is inserted in V~rI~kP.
All list operations take constant
time. The time for the Order ing
step is thus actually linear.

There is one issue not addressed
in Figure 4: the dependency graph
may not be connected. Typically,
the dependency graph consists of
one large connected component
and a number of smaller compo-
nents. By choosing vl as a vertex of
maximal degree, the algorithm is
almost certainly choosing vl in the
large component. Therefore, the
algorithm selects the large compo-
nent first. After that, it must pro-
cess the remaining components in
the same fashion. The algorithm
maintains a list of those vertices not

yet selected and can easily find an
unselected vertex of maximal de-
gree. Therefore, the Order ing step
is able to order all vertices of de-
gree > 0.

In a more recent implementa-
tion, we have refined the Order ing
step to take advantage of the cycle
structure of the graph [14,15]. In
each component , we identify any
maximal subtree that attaches to
the remainder of the component
through a single cut point. It is easy
to verify that each edge of such a
subtree can always be made to ap-
pear in a level of size 1. We identify
these subtrees in linear time and
place them at the end of the order-
ing. This improves the probability
of success for the Searching step.

The Searching Step
The Searching step takes the levels
produced in the Order ing step and
tries to assign hash values to the
keys, a level at a time. Assigning
hash values to K(vi) amounts to as-
signing a value to g(vi). To this end,
we define a hash table data struc-
ture

hash- table :
a r r a y [O..n - 1]

of record
key: integer;

assigned: boolean;
end

where key is the index to the key
that has hash value i, a n d ass igned
is a flag as to whether the hash
value i has been assigned to any key
yet.

T A B L E | .

Example: Set o f Words w i t h Associated ho. hi , h2 Values

Word ho-value hi-value h2-value

Asgard 2 0 5

ASh 3 0 5

Ashanti 0 2 3

Ashcroft 3 1 5

Ashe 5 1 3

Asher 1 1 3

When a value is to be assigned to
vertex[i] .g, there are usually sev-
eral choices for ve~ex[i] .g that
place all the keys in K(vi) into unas-
signed slots in hash-table. The
analysis and the empirical results
ment ioned earlier indicate that an
acceptable value for ver tex[i] .g
should be picked at random rather
than, for example, picking the
smallest acceptable value for ver-
t~x[i].g. In looking for a value for
vert~x[i].g, the Searching step uses
a random probe sequence to access
slots 0, . . . , n - 1 of hash-table,

Figure 5 gives the algorithm for
the Searching step. A random
probe sequence of length n is cho-
sen in step (3). The probe sequence
actually used in our implementa-
tion has only a weak claim to ran-
domness. That is, just a small
amount of randomness is sufficient
to make a good Searching step. At
the beginning of the Searching
step, the current implementat ion
chooses a set of 20 small primes (or
fewer if n is quite small) that do not
divide n. Each time (3) is executed,
one of the primes q is chosen at ran-
dom to be sl and is used as an incre-
ment to obtain the remaining sj, j >-
2. Thus, the random probe se-
quence is

0, q, 2q, 3q (n - 1)q"

A more robust random probe se-
quence would choose the increment
q at random from 0 n - 1 so
that the greatest common divisor of
q and n is 1. As we have stated, such
a robust sequence does not appear
to be necessary.

A detail omitted from Figure 5 is
the action taken when the Search-
ing step is unable to insert a level
into the hash table (fail in (7)). This
is such a rare occurrence that for a
large enough value of n and an
appropriate choice of r, it is very
unlikely to occur even once in the
execution of the algorithm. There-
fore, one reasonable response to
this rare event is to restart the algo-
ri thm from the beginning with new
random tables for h0, h], and h2.
Our current implementation actu-
ally uses a simple backtracking

1 ! 2 January 1992/%1.35, No.1/COMMUNICATIONS OF THE ACM

scheme. It assigns new g values to
earl ier vertices and then tries to
complete the g function for the en-
tire graph. More sophisticated
backtracking schemes are possible,
but, as we have stated, it is unclear
whether the added effort is justi-
fied.

Example
We illustrate our algori thm using a
key set of six words that has actually
been processed to yield a MPHF.
The set of words was drawn from
the initial port ion o f the Collins
English Dictionary [22]. The six
words with their h0, h], and h 2 val-
ues are given in Table 2. The h0, h],
and h2 functions are the auxiliary
hash functions found in the Map-
ping step.

From this assignment o f hi and
h 2 values, the bipart i te dependency
graph shown in Figure 6 is pro-
duced. Note that some vertices (1,
3, and 5) are quite "popular" while
vertex 4 is left out. Each word is as-
sociated with edges; there are two
pairs of words, (Asgard, Ash) and
(Ashe, Asher), that each have the
same endpoints. This is allowed
here, since the h0 values will allow
separation between words when the
final hash value is computed.

The Order ing step finds an
order for the vertices 0, 1, 2, 3, and
5 (those of degree > 0). The pro-
cess of selecting the o rde r is shown
in Figure 7. In Figure 7(a), an arbi-
trary vertex, 1, of maximum degree
(3) is selected to be vi; the result is
v] - - 1 . Next, in Figure 7(b), the
vertices 3 and 5 adjacent to vertex 1
are examined to find one of maxi-
mum degree; the arbi t rary selec-
tion of v2 = 5 has been made. In
Figure 7(c), the vertices 0 and 3
(each adjacent to one of the vertices
1 and 5) are examined; the selec-
tion v3 = 3 is made because vertex 3
has higher degree than vertex 0. In
Figure 7(d), vertices 0 and 2 are
examined; the selection v4 = 0 is
made because vertex 0 has higher
degree than vertex 2. Finally, in
Figure 7(e), the selection v5 = 2 is
m a d e .

The result of the Order ing step

is the vertex o rde r l, 5, 3, 0, 2. We
obtain an order ing of 4 levels,
shown in Table 3. Level i corre-
sponds to the set of keys K(Vi+l) for
vertex vi+l. Thus, level 2 corre-
sponds to the set o f keys K(v3) =
{Ashe,Asher}. The level sizes are
bounded above by the degree o f the
corresponding vertex and are typi-
cally smaller. For example, the de-
gree of v3 is 3 but IK(v3)l = 2.

The Searching step assigns g val-
ues to the vertices 1, 5, 3, 0, and 2,
in that order. The assignment pro-
cess is illustrated in Figure 8. The g
value for Vl = 1 is arbitrary; in Fig-
ure 7(a), the assignment g(vl) = 2
has been made. Vertex v2 = 5 is
next; K(v2) = {Ashcroft}. We know

h0(Ashcroft) = 3
g(hl(Ashcroft)) = g(vl) = 2.

In Figure 7(b), slot 1 has been se-
lected for Ashcroft. Therefore ,

g(v2) =

(h(Ashcroft) -
h0(Ashcroft) - g(hl(Ashcroft)))
(m o d 6) = (1 - 3 - 2)
(mod 6) = 2.

The next vertex is v3 = 3; K(v3) =
{Ashe, Asher}. We calculate

b(Ashe) = (h0(Ashe) + g(hl(Ashe)))
(rood 6) = (5 + 2) (rood 6) = 1

and

b(Asher) = (h0(Asher) +
g(hl(Asher))) (mod 6) = 3.

Therefore , this level gives a pat tern
{1,3} to fit into the hash table.
The re are, of course, many values
ofg(v3) that make the pat tern fit. In
Figure 7(c), the random value se-
lected is g(v3) = 3, which makes

h(Ashe) = (1 + 3) (mod 6) = 4

and

h(Asher) = (3 + 3) (mod 6) = 0.

The next vertex is v4 = 0;
K(v4) = {Ash, Asgard}. The pat tern
for this level is {4, 5}. The re is only
one value for g(v4) that fits this pat-
tern into the hash table. In Figure
7(d), the value g(v4) = 4 is selected,
which fits the pat tern in slots 2 and
3.

T A B L E 3 .

Example: Levels In t h e
Order ing

Size of Keys In
Level Level This Level

1 1 Ashcroft

2 2 AShe, Asher

3 2 Asgard, Ash

4 1 Ashanti

T A B L E 4 .

Example: ver t ices w i t h
C o m p u t e d g Values

vertex g value

0 4

1 2

2 2

3 3

4 2

5 2

T A B L E 5.

Example: Keys w i t h
COmputed Hash Addresses

Keys HaSh Address

Asgard 2

ASh 3

Ashanti 5

Ashcroft 1

Ashe 4

Asher 0

The last vertex is v5 = 2; K(v5) =
{Ashanti}. Slot 5 is the only one
remaining in the hash table. The
selection g(v5)-= 2 is necessary to
place Ashanti in slot 5.

The selected g values are sum-
marized in Table 4. Note that an
arbi t rary g value has been assigned

COMMUNICATIONS OFTHE ACM/January 1992/Vo1.35, No.l 113

PRACTICAL MINIMAL PERFECT HASH FUNCTIONS FOR LARGE DATABASES

to vertex 4, even though it was not
in the sequence of o rde red vertices,
because it is o f degree 0. In general,
the Searching step assigns an arbi-
t rary g value to each vertex of de-
gree 0 so that g (and, hence, h) is a
total function. No keys in the set S
will actually access the g value of a
vertex of degree 0.

The ult imate hash values for the
six keys are given in Table 5. As
required, the six hash values are
distinct (we have a perfect hash
function h), and the hash values are
all in range 0 - 5 (h is a min ima l per-
fect hash function).

Exper imenta l Results
To suppor t our claims regard ing
the theory and practice relat ing to
our approach to MPHF determina-
tion, we collected distr ibution data
regard ing the vertex degrees in
dependency graphs and level sizes
in the order ing. For a detai led dis-
cussion of these data, refer to [17].

A variety o f exper imenta l tests
have been made with versions of
Algor i thm 1, using ports to Apple
Macintosh, IBM PC compatible,
IBM PS/2, Cray XMP, and other
systems. A comparison for Macin-
tosh and Sequent Symmetry is
given in [17]. For consistency, we
focus below on timings using a Se-
quent Symmetry with 32MB of
main memory, runn ing on a single
(80386) processor runn ing at about
4 MIPS, repor t ing Unix "times()"
results.

Table 6 shows timings for each
phase of the algori thm, omitt ing
only time required to double check
that an MPHF has been found.
Total t ime is given, along with two
metrics for the size of the hash
function, which we here fix by se-
lecting r = 0.3n. First, since we
claim less than O(n) words/key is
required, words/key is fixed at 0.6.
Second, since O(n) bits/key is the
lower bound, we show bits/key.
Note that key set sizes are given as
successive powers o f 2, f rom 25
through 219 , so it is easy to see the
time required is O(n). By our selec-
tion, O(n) words/key is required; we
have also found that fewer words/

key are needed as the key set
size increases, suggesting < O(n)
words/key.

In summary, our algori thm pro-
cesses large key sets well, and while
there is some variation in process-
ing time because of the probabilistic
nature of the operat ions, with an
appropr ia te value for r the algo-
r i thm finds a MPHF with high
probability.

Large Key Sets
The largest sets of keys we have
been able to handle directly with
our initial a lgori thm are a collection
of over 420,878 French words and
a set of 2 ~9 = 524,288 names taken
from the Online Computer Library
Center (OCLC) catalog, since our
data structures have been tuned to
require a maximum of 9n compute r
words. Our Sequent has sufficient
pr imary memory for this to work
well. For the French words, the
graph used has r = .25n, so]h] re-
quired 0.5 words/key. The Order-
ing step was modif ied to use 12
stacks, one for each vertex degree
between 1 and 12. This modifica-
tion led to a fast Orde r ing time of
53 seconds, while the time for the
Searching step was 608 seconds.
The total time, including the Map-
ping step, for our algori thm to f ind
a MPHF for the 420,878 words was
812 seconds. For the OCLC keys,
total time was 763 seconds.

For very large key sets, the pri-
mary limitation on the efficiency of
our algori thm comes from the size
of main memory. I f little of the
dependency graph can fit in the
main memory of a virtual memory
machine, then swapping occurs
with a large propor t ion of the ref-
erences to the dependency graph.
This is because the graph is a ran-
dom one and, therefore, violates
the Principle of Locality.

To accommodate very large key
sets, we have modif ied the imple-
mentat ion of the Mapping step to
effectively part i t ion the depend-
ency graph into connected sub-
graphs of manageable size. With
the modif ied implementat ion, a
MPHF for a key set consisting of

1.2 million words was constructed
on the Sequent Symmetry. The
dependency graph was par t i t ioned
into 6 subgraphs of approximate ly
equal size. In one run r = .30n, so
]h] required 0.60 words/key. The
total t ime to construct the MPHF
was 4,804 seconds.

CD-ROM Versions
As stated earlier, one application
for our MPHF method is to im-
prove access time on CD-ROMs
where records addressed by single
keys are sought. We have p repa red
a demonst ra t ion of this for Virginia
Disc One [13]. In part icular, we
took a 130,198 word collection and
stored the g function and other
parameters , along with the word
strings cor responding to the hash
table, on the CD-ROM. Users can
ask for words in the Collins English
Dictionary [22] or in files we have
extracted f rom the AIList Digest
(distr ibuted over the Internet) , the
two sources for this set, and be told
instantly what hash value has been
assigned.

Algor i thm 2
Algori thm 1, developed in 1989
[17] and summarized earlier, has
O(n) time complexity and less than
O(n) words space complexity. An
extension of that algori thm, yield-
ing order -preserv ing minimal per-
fect hash functions, is discussed in
[14,15]. This deve lopment led to
fur ther work in Spring 1990, lead-
ing to Algor i thm 2, which has O(n)
t ime complexity and O(n) bits space
complexity [8]. An overview of this
method will be given.

Basic Concepts
Algori thm 2 still applies the con-
cept explained earlier, but adds
several addit ional insights. First, to
reduce the size of the hash function
to approach the theoretical lower
bound, the domain of g is taken as
{0, , r - 1 } where r =
[cn/log2n], and c is a constant typi-
cally less than 4. The class of hash
functions searched is:

114 January 1992/Vol.35, No.1/COMMUNICATIONS OF T H E A C M

(1)

(2)
(3)

(4)
(,5)

(6)

(7)

foriE [0...n-l] do

hash-table [i] . assigned = false

fori = 1 to t do

establ~h a random probe sequence So, s I Sn_ 1 for [0...n-l]

j--0

do

collision = false

i f v i E [O . . . r - - 1] then

for e a c h k E K (v i) do

h(k) = edge[k] .h 0 + vertex[edge[k] .h2] + Sj (mod n)

if hash-table [h (k)] . assigned then

collision = true

else

for each k q K(vi) do

h(k) = edge[k] .h 0 + vertex[edge[k] .hi] + Sj (modn)
if hash-table [h (k)] .assigned then

collision = true

if not collision then

for eachk E K (v i) do

hash-table [h (k)] . assigned = true

hash-table [h (k)] . key = k

else

j = j + 1

if j > n--i then

fail
while collision

h(k) =

{ (ho(k)g(h~(k))
g(h,(k))

+h2(k)g2(hl(k)) mo d n
if mark (h](k)) = 1
if mark(hi(k) = 0

where

ho: U ~ {0 n - 1}
hi: U ~ {0 r - 1}
h2: U ~ {0 n - 1}
g: {0 r - 1}---~ {0 n - 1}

mark: {0 r - 1} ~ {0, 1}.

Here , ho, hi a n d hz are r a n d o m
m a p p i n g funct ions as before, while
g and mark are parameters to be
de te rmined . Total space for these
funct ions is cn(1 + 1/log2n) bits, so
space is O(n) bits, typically < 4n
bits.

Second, the form o f h is such that
hi and h2 play very d i f fe ren t roles.
This means that there is no de-
pendency graph. Use of p r imary
m e m o r y is greatly reduced, allow-

+P'OURm+L+++ + + + ++++ ++ + + + +
The Searching Step

0 1 2

h2

3 4 5

+~.ouie s + +
Example: Dependency Graph

ing easier M P H F construct ions for
very large key sets.

Th i rd , quadra t ic hash ing is uti-
lized. This leads to the use of the
mark bits, and requires an extra
mult ipl icat ion in cases where the
mark bit is set. Yet the power of
quadra t ic hash ing allows smaller

MPHFs to be f o u n d very quickly.

o v e w i e w o f Steps
As in Algor i thm 1, Mapping , Or-
der ing, and Searching are re-
quired. This is no d e p e n d e n c y
graph, however, so O r d e r i n g and
Searching are simplified.

COMMUNICATIONS OF THE ACM/January 1992/VoL35, No.l 1 l S

PRACTICAL MINIMAL PIIII~PlI¢'I' H~iSN I~UNC'I'ION$ FOR LARGE DATABASES

0 1 2 0 1 2

3 4 5 3 4 5
(a) Vertex selected: 1 (b) Vertex selected: 5

Initialization Level: (1,5)

0 1 2 0 1 2

3 4 5 3 4
(c) Vertex selected: 3 (d) Vertex selected: 0

Level: (1,3), (1,3) Level: (0,5), (0,5)

0 1 2

3 4 5
(e) Vertex selected: 2

Level: (2,3)

The Mapp ing Step
The Mapping step is like the proce-
dure described earl ier but h0, hi,
and h2 are taken modulo n, r, and n,
respectively. The mark bits are set
as par t of this step, too (as per the
definit ion given below).

The O r d e r i n g Step
Orde r ing involves two passes
th rough the triplets (h0(k), hx(k),
h2(k)). In the first pass, hi values are
used to build a one dimensional
array A of l inked lists labeled 0 , . . .
, r - 1. The set of keys stored in
l inked list Ai, the i th record of A, 0 --<
i - < r - l is

K(Ai) = {k[h](k) = i}

The A_ array is

Example: Ordering Step

Example: Searching Step

0 1 2

1
2
3
4
5 3 4 5

(a) Vertex assigned: 1
Initialization: g(vl) = 2

0 1 2

1
2
3
4
5 3 4 5

(c) Vertex assigned: 3
Slots filled: {0,4}

0 1 2

1
2
3
4
5 3 4 5

(e) Vertex assigned: 2
Slot filled: {5}

0 1 2

1
2
3
4

(b) Verte4asslgned" : 5
Slot filled: {1}

0 1 2 ~ 0

2
3
4

5
(d) Vertex assigned: 0

Slots filled: {2,3}

[~ [stands for a slot open for fill;

stands for a slot filled in at current level;

[] stands for a slot that already has been filled.

1 1 6 January 1992/Vo1.35, No.1/COMMUNICATIONS OF T H E ACM

fn 's t~ey is the header for a singly
linked list of keys with hi(k) = i. de-
gree is the cardinality of K(Ai). g is

TOtal t i m e vs. key set size f o r Al-
g o r i t h m 2 using ex te rna l s to rage

Search t i m e vs. b i t s / k e y f o r Algo-
r i thm 2 using ex te rna l s to rage

20,000

the g value for Ai, which is assigned
later in the Searching step. m a r k is
set if [K(Ai)] > 1 and is reset if
IK(Ai)I- l. More formally

1 if IK(ai)l > I
mark(i) = 0 if IK(ai)l -< 1

The l~eya a r r a y is

keys: array [l..n] of record
he, hl, h2: integer;
nextkey: integer;
end

where nextkey points to the next
key in the linked list whose head is
given by fl.vstkey in the A array . In
the second pass for Ordering, a

15,000
"6"

10,000

0

5,000

0
0

50,000

= 2

, I I t I I
400,000 800,000 1,200,000

Key SetSize(n)

a r r a y [O..r - i] of record
firstkey: integer;
degree: integer;
g: integer;
mark : boolean;
end

40,000

A

~.~30,000

E

20,000

10,000

0
0

~ - ~ n = 524,288
~ n = 1,200,502

= = , ,766

10 20
Bits/key

30

number o f stacks equal to the maxi-
mum cardinality, MaxCard, of the
Ai are initialized. Each stack is as-
signed to store entries of a certain
size. For example, Stack[l] is as-
signed to store entries of the Ai
array of cardinality equal to 1, and
so on. The A i array is scanned and
all elements are pushed into their
corresponding stacks Stack
[Ai.degree]. For very large key sets,
these stacks are maintained on ex-
ternal storage.

The Searching Step
As explained earlier, the set of keys
k • K(Ai) constitute a pattern. The
Searching step determines an offset
g(i) that fits all elements of this pat-
tern in empty slots of the hash table
simultaneously. The Searching step
pops entries o f Ai from stacks and
assigns hash values to all keys in
K(Ai), in descending order of Ai. de-
gree. Thus, stacks for larger pat-
terns are processed before stacks
with smaller patterns. Since h(k) =
ho(k)g(i) + hz(k)g2(i), i = hi(k), as-
signing hash values to all keys in
K(Ai) is done by assigning a value to
g(i). This h(k) is a variation of quad-
ratic hashing and has the advantage
of eliminating both elementary and
secondary clustering in the hash
table. When all patterns of size
greater than 1 are processed, as-
signing the remainder of the pat-
terns of size 1 in A is done by setting
g to the addresses of the remaining
empty slots in the hash table using
the hash function h(k)= g(i). The
mark(hi(k)) function is used to dis-
tinguish which hash function has
been used to hash k.

Experimental ReSults
In Table 7, we exhibit the strengths
of Algorithm 2 in two different
ways. The second and third col-
umns give timing results for our
two algorithms under a uniform
space assumption of 0.6 words/key.
While Algorithm 1 is faster for
small key sets, Algorithm 2 proves
itself significantly faster for the
large key sets. The last five columns
show the results of pushing Algo-
rithm 2 to require as few bits as pos-

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.1 117

PRACTICAL MINIMAL PERFECT HASH FUNCTIONS FOR LARGE DATABASES

sible. The exper iments indicated by
these rows were conducted as fol-
lows: Lower and lower bits/key val-
ues were tr ied until Algor i thm 2
failed to f ind an MPHF consis-
tently. The time for those runs are

repor ted in Table 7. The run time
for n = 262144 is anomalous, indi-
cating that bits/key can actually be
pushed lower.

Algor i thm 2 is also capable of
running efficiently using external

1. Define tables of n-fields. Each field may be an integer, a string of maximum
length less than N, or a string of length without limit. MPHF indexing on
several fields may be specified.

2. Load each table with data. MPHF indexing is performed on fields defined
to be MPHF indexed. Duplication on field values can be handled.

3. Look up rows that have values for MPHF indexed fields that are equal to
query terms.

4. Retrieve a field value given row number and field name.

5. Retrieve a whole row of a table.

6. Delete/update a field value of a row.

Functions supported by DiCtionary Manager

T A B L E IS.

T i m i n g Resul ts f o r A l g o r i t h m 1

n bits/key Mapping Ordering Searching TOtal

32 3.0 0.37 0.02 0.03 0.42

64 3.6 0.75 0.03 0.07 0.85

128 4.2 0.60 0.05 0.08 0.73

256 4.8 0.97 0.05 0.18 1.20

512 5.4 1.23 0.08 0.35 1.67

1024 6.0 1.50 0.17 0.67 2.33

2048 6.6 2.42 0.30 1.67 4.38

4096 7.2 3.47 0.62 3.13 7.22

8192 7.8 5.53 1.27 5.92 12.72

16384 8.4 9.87 2.52 12.05 24.43

32768 9.0 18.78 5.05 24.62 43.45

65536 9.6 35.68 10.20 50.02 95.90

131072 10.2 69.70 20.15 101.08 190.93

262144 10.8 137.97 40.30 201.57 379.83

524288 11.4 275.25 81.23 406.58 763.07

Note: f o r a l l runs, Words/key = 0.6; N u m b e r o f S tacks = 12; Machine = S e q u e n t ; T i m e (CPU) is in
seconds.

storage when there is not sufficient
internal storage. T iming results for
some very large runs using external
storage are repor ted in Table 8.
Note that the dominan t contribu-
tion to time is the Searching step.
This time can be decreased dramat-
ically by a modest increase in the
bits/key values (see Figure 10).

Figure 9 illustrates the l inear
t ime complexity, giving total time
(generally dominated by Searching)
for various set sizes. Figure 10 illus-
trates that few bits/key are re-
quired, regardless o f set size, but
that t ime to find a MPHF increases
rapidly as the theoretical lower
bound on space is approached.

Appl ica t ions
As stated at the beginning of this
article, one of the most exciting
aspects o f this work is the wide
range of applications expected for
the MPHF scheme. T h e r e is utility
for MPHFs in regard to hypertext ,
hypermedia , semantic networks,
file managers, database manage-
ment systems, object managers, in-
format ion retrieval systems, com-
pilers, etc.

We have begun to exploit this
potential in a number of areas.
One, related to our work of build-
ing a large lexicon f rom machine-
readable dictionaries, is to construct
a general dict ionary manager able
to handle large keys set with associ-
ated fixed or variable-length rec-
ords. Our MPHF system has been
suitably embedded into a dict ionary
manager that can suppor t a variety
of functions as can be seen in Fig-
ure 11. A version of this has been
used in connection with an X.500
directory server implemented at
the VPI and SU Comput ing Cen-
ter.

We have in tegrated MPHF code
with a tree manager so large data
collections which are relatively
static can be slowly upda ted or ex-
tended. When a sufficient number
of changes (which are recorded in
the tree) have been made, the sys-
tem automatically empties the tree
and builds a new MPHF for the
current data.

118 January 1992/Vol.35, No.I /COMMUNICATIONS O F T H E A C M

T A S L l i 7.

Timing Results for A lgor i thm 2 using Internal M e m o r y

Algorithm 1 Algorithm 2 Near lowest bits/key
TOtals Totals achieved by Algorithm 2

(wordS/key (words/key
n = 0.6) = 0.6) bits/key Mapping Ordering Searching TOtal

32 0.10 2.18 2.28 2.15 0.02 0.02 2.19

1024 1.33 2.95 3.19 2.58 0.05 1.13 3.76

131072 189.28 98.93 3.24 58.18 7.43 14569.12 14634.73

262144 374.09 194.43 3.61 117.63 15.82 4606.75 4740.20

524288 808,34 383.57 3.60 228.10 34.43 1 4 1 2 9 . 8 7 14831.73

Note: fo r all runs, Machine = Sequent; Time (CPU) Is in seconds.

As work proceeds on newer algo-
ri thms and on our Large External
object-oriented Network Database
(LEND), available for licensing, we
will continue to apply our MPHF
schemes to suppor t a variety of
applications involving large seman-
tic networks, hypertext , hyper-
media, and other large object bases.
We believe significant benefits will
accrue involving CD-ROM, optical
disc, magnetic disk, and even pri-
mary memory-based retrieval.

This article gives theoretical and
exper imental validation of practical
new algorithms for f inding minimal
perfect hash functions, suitable for
key sets ranging in size from small
to very large (over a million). Re-
cent efforts have led to versions
requir ing time and space close to
theoretical lower bounds, and to
methods to identify order-preserv-
ing minimal perfect hash functions.
These algorithms are used for a
variety of applications, and should
be of value in many situations re-
quir ing single access for static key
collections.

Acknowledgments
We are grateful to Collins Publish-
ers for allowing us to work with the
machine-readable copy of the Col-
lins English Dictionary. Abraham
Bookstein a r ranged for us to obtain
the large French word list in use at
the ARTFL Project at the Univer-
sity of Chicago. Martin Dillon of

T A B L E 8 .

Timing Results for A lgor i thm 2 using External Storage

Near lowest bits/key
achieved by Algorithm 2

n bits/key Mapping Ordering Searching Total

524288 3.59 447.47 597.25 11476.13 12520.85

1200502 3.60 1 0 6 0 . 6 2 1432 .48 48118.00 50611.10

3875766 4.58 2 1 1 4 . 1 5 2955 .60 28243.25 33313.00

Note: Time ls in CPU seconds. Machine for first two rows is Sequent; machine for last row is
NeXT wi th 12M, 68030 processor, used because of large available disk for storing key set.

OCLC Inc. in Dublin, Ohio, ar-
ranged for us to obtain the name
file from their catalog records.
Nimbus Records has pressed vari-
ous versions of Virginia Disc One
that demonstra te our algori thm
runn ing on a PC with attached CD-
ROM drive.

R e f e r e n c e s

1. Brain, M.D., and Tharp, A.L. Near-
perfect hashing of large word sets.
Softw.--Prac. Exp. 19, 10 (1989), 967-
978.

2. Carter, J.L., and Wegman, M.N.
Universal classes of hash functions.J.
Comput. Syst. Sci. 18, 2 (1979), 143-
154.

3. Cercone, N., Krause, M., and Boates,
J. Minimal and almost minimal per-
fect hash function search with appli-
cation to natural language lexicon
design. Comput. Math. Appli. 9, 1
(1983), 215-231.

4. Chang, C.C. The study of an ordered

minimal perfect hashing scheme.
ACM 27, 4 (1984), 384-387.

5. Chang, C.C. Letter-oriented recipro-
cal hashing scheme. Inf. Sci. 38, 3
(1986), 243-255.

6. Cichelli, RJ. Minimal perfect hash
functions made simple. Commun.
ACM 23, 1 (1980), 17-19.

7. Cormack, G.V., Horspool, R.N.S.,
and Kaiserswerth, M. Practical per-
fect hashing. The Comput. J. 28, 1
(1985), 54-58.

8. Daoud, A.M. Efficient data struc-
tures for information retrieval sys-
tems. Dissertation proposal, Depart-
ment of Computer Science, Virginia
Polytechnic Institute and State Uni-
versity, July, 1990.

9. Datta, S. Implementation of a perfect
hash function scheme. Master's re-
port, Dept. of Computer Science,
Virginia Polytechnic Institute and
State University, 1988. Available as
Tech. Rep. TR-89-9.

10. Enbody, R.J., and Du, H.C. Dy-
namic hashing schemes. ACM Corn-

COMMUNICATIONS OF THE ACM]January 1992/Vol.35, No.1 119

PRACTICAL M I N I M A L PERFECT HASH FUNCTIONS FOR LARGE DATABASES

put. Surv. 20, 2 (1988), 85-113.

11. Feller, W. An Introduction to Probabil-
ity Theory and its Applications, Vol. 1.
John Wiley and Sons, N.Y., 1968.

12. Fox, E.A. Optical disks and CD-
ROM: Publishing and access. In An-
nual Review of Information Science and
Technology, Martha E. Williams, Ed.
ASIS/Elsevier Science Publishers
B.V., Amsterdam, Vol. 23, 1988,
85-124.

13. Fox, E.A. Virginia Disc One. CD-
ROM developed at Virginia Poly-
technic Institute and State Univer-
sity, published by VPI&SU Press,
and produced by Nimbus Records,
Ruckersville, Va, 1990.

14. Fox, E.A., Chen, Q., Daoud, A.M.
and Heath, L. Order-preserving
minimal perfect hash functions and
information retrieval, In Proceedings
of SIGIR '90, 13th International Con-
ference on R & D in Information Re-
trieval (Brussels, Belgium, Sept.
1990), 279-311.

15. Fox, E.A., Chen, Q., Daoud, A.M.
and Heath, L. Order-preserving
minimal perfect hash functions and
information retrieval, ACM Trans.
Inf. Syst. 9, 2 (1991).

16. Fox, E.A., Chen, Q., Heath, L. and
Datta, S. A more cost-effective algo-
rithm for finding perfect hash
functions. In Proceedings of the Sev-
enteenth Annual ACM Computer Sci-
ence Conference (Louisville, Ky, Feb.
1989), 114-122.

17. Fox, E.A., Chen, Q., and Heath, L.
An O(n log n) algorithm for finding
minimal perfect hash functions.
Tech. Rep. 89-10, Dept. of Com-
puter Science, Virginia Polytechnic
Institute and State University,
Blacksburg, Va, 1989.

18. Fox, E.A., Nutter, J.T., Ahlswede,
T., Evens, M. and Markowitz, J.
Building a large thesaurus for in-
formation retrieval. In Proceedings
of the Second Conference on Applied
Natural Language Processing, Austin,
Tex, Feb. 1988, 101-108.

19.

20.

21.

Fox, E., Wohlwend, R., Sheldon, P.,
Chen, Q. and France, R. Building
the CODER lexicon: The Collins
English Dictionary and its adverb
definitions. Tech. Rep. TR-86-23,
Dept. of Computer Science, Vir-
ginia Polytechnic Institute and State
University, Oct. 1986.

Fredman, M.L., Koml6s, J. and
Szemer6di, E. Storing a sparse table
with O(1) worst-case access time. J.
ACM 31, 3 (1984), 538-544.

Gonnet, G.L. and Larson, P. Exter-
nal hashing with limited internal
storage. J. ACM 35, 1 (1988), 161-
184.

22.

23.

24.

25.

26.

27.

28.

29.

Hanks, P., Ed. Collins English Dic-
tionary. William Collins Sons and
Co., London, 1979.

Jaeschke, G. Reciprocal hashing--a
method for generating minimal
perfect hash functions. Commun.
ACM 24, 12 (1981), 829-833.

Knuth, D.E. The Art of Computer Pro-
gramming, Vol. 3, Sorting and Search-
ing. Addison-Wesley Publishing
Co., Reading, Mass., 1973.

Mairson, H.G. The program com-
plexity of searching a table. In Pro-
ceedings of the 24th IEEE Symposium
on Foundations of Computer Science
(Tucson, Ariz., Nov. 7-9), 1983,
40-47.

Mehlhorn, K. On the program size
of perfect and universal hash func-
tions. In Proceedings of the 23d IEEE
Symposium on Foundations of Com-
puter Science (Chicago, Ill. Nov. 3-5,
1982), 170-175.

Palmer, E.M. Graphical Evolution:
An Introduction to the Theory of Ran-
dom Graphs. John Wiley & Sons,
N.Y., 1985.

Park, S.K. and Miller, K.W. Ran-
dom number generators: Good
ones are hard to find. Commun.
ACM 31, 10 (1988), 1192-1201.

Pearson, P.K. Fast hashing of vari-
able-length text strings. Commun.
ACM 33, 6 (1990), 677-680.

30. Ramakrishna, M.V. and Larson, P.
File organization using composite
perfect hashing. ACM Trans. Data-
base Syst. 14, 12 (1989), 231-263.

31. Sager, T.J. A new method for gen-
erating minimal perfect hashing
functions. Tech. Rep. CSc-84-15,
Dept. of Computer Science, Uni-
versity of Missouri-Rolla, Mo.,
1984.

32. Sager, T.J. A polynomial time gen-
erator for minimal perfect hash
functions. Commun. ACM 28, 5
(1985), 523-532.

33. Schmidt, J.P., and Siegel, A. On
aspects of universality and perfor-
mance for closed hashing. In Pro-
ceedings of the 21st ACM Symposium on
Theory of Computing (Seattle, Wash.,
May 15-17, 1989), 355-366.

34. Sedgewick, R. Algorithms. Addison-
Wesley Publishing Co., Reading,
Mass., 1988.

35. Sprugnoli, R. Perfect hashing func-
tions: A single probe retrieving
method for static sets. Commun.
ACM 20, 11 (1977), 841-850.

CR Categories and Subject Descrip-
tors: E2 [DATA]: Data Storage Repre-
sentations-Hash-table representations;
H.2.2 [Information Systems]: Physical
Design--Access methods

General Terms: Algorithms, Experi-
mentation, Performance

Additional Key Words and Phrases:
CD-ROM, hashing, minimal perfect
hash functions, perfect hash functions

About the Authors:
EDWARD A. FOX is an associate pro-
fessor in the Department of Computer
Science, and associate director for re-
search in the Computing Center, at Vir-
ginia Polytechnic Institute and State
University. His research covers algo-
rithms for hashing, methods and sys-
tems for information storage and re-
trieval, interactive digital multimedia
computing, libraries, and electronic
publishing.

LENWOOD S. HEATH is an assistant
professor in the Department of Com-
puter Science at Virginia Polytechnic

120 January 1992/Vo1.35, No.l/COMMUNICATIONS O F T H E A C M

Institute and State University. His re-
search covers algorithms for hashing,
graph embedding, and computational
geometry.

QI FAN CHEN is a Ph.D. candidate and
graduate research assistant in the De-
partment of Computer Science at Vir-
ginia Polytechnic Institute and State
University. His research covers algo-
rithms for hashing, as well as develop-
ment of an efficient object-oriented
database for graph-structured support
data to support information retrieval,
hypertext, and semantic network pro-
cessing.

A u t h o r s ' Presen t Address : Dept. of
Computer Science, 562 McBryde Hall
VPI&SU, Blacksburg, VA 24061-0106;
email: fox@vtopus.cs.vt.edu; foxea@
vtccl; heath@vtopus.cs.vt.edu; cheng@
vtopus.cs.vt.edu

AMJAD M. DAOUD is a Ph.D. candi-
date in the Department of Computer
Science at Virginia Polytechnic Institute
and State University and is employed by
the Computer Science Department at
Western Geophysical. His research cov-
ers algorithms for hashing, searching of
library catalogs, experimental retrieval
systems, and methods for improving the
performance of information retrieval
and optical disc systems. A u t h o r ' s Pres-
ent Address : Western Geophysical,
10,001 Richmond Ave., Houston TX
77042-4299; email: amjad@vtopus.
cs.vt.edu

*This work was funded in part by grants from
the National Science Foundation (Grant IRI-
8703580), the Virginia Center for Innovative
Technology (Grant INF-87-012), Nimbus
Records, OCLC, and the State Council of
Higher Education. AT&T and Apple Com-
puter have provided equipment used in some
of our experiments.

Permission to copy without fee all or part of
this material is granted provided that the
copies are not made or distributed for direct
commercial advantage, the ACM copyright
notice and the title of the publication and its
date appear, and notice is given that copying
is by permission of the Association for
Computing Machinery. To copy otherwise, or
to republish, requires a fee and/or specific
permission.

© ACM 0002-0782/92/0100-105 $1.50

(continued from page 22)
the distinction because they com-
bine characteristics associated with
hardware with others associated
with software. However, most of
these technologies can be classified
unambiguously for patent pur-
poses, either as software or as hard-
ware using the preceding criteria. A
few gray areas may remain, but
these are comparatively small, and
need not be an obstacle to solving
the problems patents pose for ordi-
nary software development. They
will eventually be treated as hard-
ware, as software, or as something
in between.

What YOU Can DO
One way to help eliminate software
patents is to join the League for
Programming Freedom. The
League is a grass-roots organization
of programmers and users oppos-
ing software patents and interface
copyrights. (The League is not op-
posed to copyright on individual
programs.) Annual dues for indi-
vidual members are $42.00 for
employed professionals, $10.50 for
students, and $21.00 for others. We
appreciate activists, but members
who cannot contribute their time
are also welcome. Contact the
League at:

• League for Programming Free-
dom
1 Kendall Square #143
PO Box 9171
Cambridge, MA 02139
o r tel. (617) 243-4091;
Email: {league@ prep.ai.mit.edu},

In the United States, you may also
help by writing to Congress. You
can write to your own representa-
tives, but it may be even more effec-
tive to write to the subcommittees
that consider such issues:

• House Subcommittee on Intellec-
tual Property
2137 Rayburn Bldg.
Wash., DC 20515

• Senate Subcommittee on Patents,
Trademarks and Copyrights
United States Senate
Wash., DC 20510

You can phone your representa-
tives at (202) 225-3121, or write to
them using the following addresses:

• United States Senate
Wash., DC 20510

• House of Representatives
Wash., DC 20515

Fighting Patents One by One
Until we succeed in eliminating all
patenting of software, we must try
to overturn individual software pat-
ents. This is very expensive and can
solve only a small part of the prob-
lem, but that is better than nothing.

Over turning patents in court
requires prior art, which may not
be easy to find. The League for
Programming Freedom will try to
serve as a clearing house for this
information, to assist the defend-
ants in software patent suits. This
depends on your help. If you know
about prior art for any software
patent, please send the information
to the League.

If you work on software, you can
help prevent software patents by
refusing to cooperate in applying
for them. The details of this may
depend on the situation.

Conclusion
Exempting software from the scope
of patents will protect software de-
velopers from the insupportable
cost of patent searches, the wasteful
struggle to find a way clear of
known patents, and the unavoida-
ble danger of lawsuits.

If nothing is changed, what is
now an efficient creative activity
will become prohibitively expen-
sive. To picture the effects, imagine
if each square of pavement on the
sidewalk had an owner, and pedes-
trians required a license to step on
it. Imagine the negotiations neces-
sary to walk an entire block under
this system. That is what writing a
program will be like if software pat-
ents continue. The sparks of crea-
tivity and individualism that have
driven the computer revolution will
be snuffed out.iprepared by Rich-
ard StaUman and Simson Garfinkle.

COMMUNICATIONS OF THE ACM/January 1992/Vol.35, No.l ! 2 1

