IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLORADO

NATIONAL OILWELL VARCO, L.P.)
Plaintiffs,))
vs.) 1:03-cv-02579-RPM
PASON SYSTEMS USA, CORP.,))
Defendants.)

TRIAL TO JURY - DAY 6 TRANSCRIPT OF PROCEEDINGS

Proceedings held before the HONORABLE RICHARD P.

MATSCH, U. S. District Judge for the District of Colorado,

beginning at 9:01 a.m. on the 3rd day of November, 2008, in

Courtroom A, United States Courthouse, Denver, Colorado.

APPEARANCES

For the Plaintiffs:

Jane Michaels, Esq.
Guy Matthews, Esq.
Ryan T. Bergsieker, Esq.
Holland & Hart, LLP-Denver
555 17th Street, #3200
Denver, Colorado 80201

Robert M. Bowick, Jr., Esq. Matthews, Lawson, Bowick & Al-Azem, PLLC 2000 Bering Drive, #700 Houston, Texas 77057

Proceedings recorded by electronic sound recording; transcript produced by transcription service.

- 1 manually set a set point in the servo controller exactly the
- 2 same as you would set a set point in the autodriller. You
- 3 turn a little knob and adjust the parameters as you want.
- 4 You didn't literally move a brake.
- 5 Q So let's talk about the components of this rig. You had
- 6 various sensors on the rig, I'm sure?
- 7 A Yes, there were sensors all over the rig.
- 8 Q And what types of sensors? What parameters were you
- 9 sensing?
- 10 A Well, there were various things. We sensed the hook
- 11 load. From that we were able to measure the weight on bit.
- 12 We would sense the rotational speed of the drill string. We
- 13 would sense the torque required to rotate the drill string,
- 14 the mud pump flow right of the strokes that -- how fast the
- 15 pump was running, what we call the standpipe pressure, that
- 16 is the pressure of the mud as it was going downhole. Then
- 17 there were a whole host of rig help sensors and other things
- 18 that we sense to make sure that the rig itself was operating
- 19 properly.
- 20 Q Now, you mentioned the standpipe pressure. Is that also
- 21 commonly referred to as the drilling fluid pressure?
- 22 A Pardon me?
- 23 Q I'm sorry. You mentioned the standpipe pressure.
- 24 A Yeah.
- 25 Q Was that also commonly referred to as the drilling fluid

- 1 pressure?
- 2 A Yeah, yeah.
- 3 Q So you sensed the drilling fluid pressure?
- 4 A Yes. It simply was the pressure of the drilling mud at
- 5 the rig floor level as it was being pumped down the drill
- 6 string, through the mud motor, and through the bit.
- 7 Q Now, you also mentioned a device called the servo
- 8 controller?
- 9 A Yes.
- 10 Q Could you explain to the ladies and gentlemen of the
- 11 jury what a servo controller is?
- 12 A A servo controller is used in a lot of different
- 13 applications, but basically it's a device where the user can
- 14 set a parameter that they want to keep constant and maintain.
- 15 There is some parameter that is measured, and this piece of
- 16 electronics compares those two and it outputs a control
- 17 signal that is in use to control (inaudible).
- 18 Most commonly the thing you might think about is
- 19 the cruise control in your car. You drive down the road,
- 20 your speed is at 50 miles and hour; you set the cruise
- 21 control on. That as the user set that he wants to drive at
- 22 50 miles an hour. The cruise control has a measure of the
- 23 actual speed of the car. That's why if you're going up a
- 24 hill and the car slows down, then it accelerates the car and
- 25 it drives faster. Or if you're going down a hill, it might

- 1 be the opposite to slow the car down. It's exactly the same
- 2 thing; it's just a computer--I mean it's not a computer, but
- 3 it's an electronic box that has these input parameters and
- 4 output parameters that you wire up to control whatever you
- 5 would like to control.
- 6 Q And so depending on the input parameter, the servo
- 7 controller would input a signal and then output a separate
- 8 signal?
- 9 A Yes.
- 10 Q And it would be a command signal--
- 11 A Yes.
- 12 Q --would be output from the servo? And that servo
- 13 controller could take inputs from weight on bit?
- 14 A Yes.
- 15 Q And pressure?
- 16 A Yes.
- 17 Q And Torque?
- 18 A Yes.
- 19 Q And whatever else you were monitoring and wished to
- 20 control at the time, right?
- 21 A That's correct.
- 22 Q And let's talk about the hoisting system right now. You
- 23 mentioned before you had a hydraulic snubbing unit, so that
- 24 was just for purposes of advancing the drill string, correct?
- 25 A That's correct.

- 1 the low side, switch to pressure control, and increase the
- 2 knob to apply a little bit more pressure, depending on what
- 3 he wanted. Typically he might want 200 psi differential
- 4 pressure above bottom pressure. Once you set that, the servo
- 5 controller would advance the drill string in order to
- 6 maintain constant surface and standpipe pressure.
- 7 Q Now, this servo controller, was this something that you
- 8 actually built yourself?
- 9 A No, it is not.
- 10 Q It was commercially available?
- 11 A Yes.
- 12 Q And why did you choose to use a servo controller?
- 13 A Well, that was just sort of an obvious piece of
- 14 equipment. I mean that's what it was made for is basically
- 15 if you want to control something that -- that can be controlled
- 16 by an electrical signal and you have a measurement of what it
- 17 is that you want to control, that is the--I mean that's just
- 18 what the piece of equipment you would use for that.
- 19 Q So if we're controlling by fluid pressure, I would like
- 20 you to walk the ladies and gentlemen of the jury through how
- 21 pressure could control the advancement of the drill string
- 22 when it was the sole parameter? If the pressure increased,
- 23 what would happen?
- 24 A If the pressure increased, that would indicate that the
- 25 motor is putting out more torque, maybe more torque than you

- 1 would want, so it would reduce the rate that the drill string
- 2 was being advanced.
- 3 Q And if the pressure decreased?
- 4 A That means the torque was less than you desired and it
- 5 would increase the rate of advancement of the drill string.
- 6 Q And what if the pressure increased a little?
- 7 A It would decrease the rate of advancement a little bit.
- 8 Q And what if the pressure increased a lot?
- 9 A It would decrease the rate of advancement more.
- 10 Q And then vice versa. So if the pressure decreased a
- 11 little?
- 12 A It would increase the advancement a little bit.
- 13 Q And if the pressure decreased a lot?
- 14 A It would increase the advancement a lot.
- 15 Q So was the output signal of the servo controller
- 16 continuous and proportionate--
- 17 A Yes.
- 18 Q --to the corresponding input signal of pressure?
- 19 A Yes.
- 20 Q Now, Mr. Warren, in 1985, 1986, when you were working on
- 21 this rig, when did the project end? When did your work on
- 22 this project end?
- 23 A Well, I worked--in that particular project, we continued
- 24 to work on that test rig basically as long as I was working
- 25 at Amoco on various projects. I'm not sure exactly when we

- l would say the high speed project ended. Sort of there was no
- 2 fixed end. It involved other things that we were doing, but
- 3 probably within two years or so after 1986 we were pretty
- 4 much focusing on something other than high speed drilling.
- 5 We were focusing on the bit itself.
- 6 Q And did any patents issue from this project?
- 7 A Yes, there were a number of patents related to bits and
- 8 that kind of thing. There was one patent that related to rig
- 9 equipment that had to do with a hydraulic system for a
- 10 conventional rig that came out of this project.
- 11 Q But you didn't patent the actual automated control
- 12 system that you developed on this experimental rig, correct?
- 13 A No, we did not.
- 14 Q Did you publish your findings?
- 15 A Yes, we did.
- 16 MR. LACIS: Mr. Mason, if we could bring up Exhibit B-24
- 17 for the witness's eyes only.
- 18 Q (by Mr. Lacis) Mr. Warren, are you familiar with this
- 19 document?
- 20 A Yes. That is the paper that was published that
- 21 described the control system on the rig.
- 22 Q And it is entitled "Field Experiences With Computer
- 23 Controlled Drilling"?
- 24 A Yes.
- 25 Q And you're one of the authors, correct?

IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF COLORADO

NATIONAL OILWELL VARCO, L.P.)
Plaintiffs,))
vs.) 1:03-cv-02579-RPM
PASON SYSTEMS USA, CORP.,))
Defendants.)

TRIAL TO JURY - DAY 7 TRANSCRIPT OF PROCEEDINGS

Proceedings held before the HONORABLE RICHARD P.

MATSCH, U. S. District Judge for the District of Colorado,

beginning at 9:02 a.m. on the 4th day of November, 2008, in

Courtroom A, United States Courthouse, Denver, Colorado.

APPEARANCES

For the Plaintiffs:

Jane Michaels, Esq.
Guy Matthews, Esq.
Ryan T. Bergsieker, Esq.
Holland & Hart, LLP-Denver
555 17th Street, #3200
Denver, Colorado 80201

Robert M. Bowick, Jr., Esq. Matthews, Lawson, Bowick & Al-Azem, PLLC 2000 Bering Drive, #700 Houston, Texas 77057

Proceedings recorded by electronic sound recording; transcript produced by transcription service.

Brett - Cross

- 1 A Yeah.
- 2 Q And it was an on/off.
- 3 A Right.
- 4 MR. RALEY: In fact if I could just approach the chart,
- 5 Your Honor?
- 6 THE COURT: Sure.
- 7 MR. RALEY: Thank you, Your Honor.
- 8 Q (by Mr. Raley) Mr. Brett, you lump Le Compte, Dillon,
- 9 Miller, Garrett, and Varney all together.
- 10 A They all--I lump them together because they have that
- 11 similar on/off type nature to them.
- 12 Q They all have the on/off nature, which you just
- 13 testified is different than the Bowden 142.
- 14 A I agree.
- 15 Q Thank you. I think that you've said for these four that
- 16 are the on/off, if the error is big enough it will either
- 17 hold back or let go, put the pressure back on target.
- 18 A Right.
- 19 Q It's not a continuous--the automatic drillers at issue
- 20 in this case, the Bowden 142 and the Pason, the evidence has
- 21 been move the brake handle continuously up or down.
- 22 A That's right.
- 23 Q Would it be kind of like when you're driving the car,
- 24 the steering wheel, you're just always kind of adjusting to
- 25 keep it straight?

Brett - Cross

- 1 A Similar to that--
- 2 Q Thank you.
- 3 A --in continuous mode, yeah. Pason and Bowden are like
- 4 that.
- 5 Q Thank you, sir. Hobhouse, it's sort of an on/off with a
- 6 twist. I believe you described it's a little or a lot.
- 7 A Right, so there's two steps.
- 8 Q There's a two-step on/off.
- 9 A Yeah.
- 10 Q But it's still not the continuous--
- 11 A That's right.
- 12 Q --brake handle or steering wheel that you see in the
- 13 Bowden 142 or in the Pason auto driller, correct?
- 14 A Right.
- 15 Q Thank you. Young, you mentioned that in direct
- 16 examination--
- 17 A Yes.
- 18 Q --correct? I believe I heard you say that it does not
- 19 use pressure to increase or decrease the rate of release.
- 20 A What he described there did not use pressure--
- 21 THE COURT: We're having a little trouble hearing you.
- 22 THE WITNESS: Yeah, what he described there did not use
- 23 pressure.
- 24 Q (by Mr. Raley) It uses weight on bit, correct?
- 25 A And a couple other things.