
United States Patent
Cohn

[19]

[54] NON-OVERLAPPING TILING APPARATUS
AND METHOD FOR MULTIPLE WINDOW
DISPLAYS

(75) Inventor: Robert M. Cohn. Cambridge. Mass.

[73] Assignee: Galileo Fnunes, Inc., Cambridge,
Mass.

[21] Appl. No.: 531,644

[22] Filed: Sep. 20, 1995

[51) Int. Cl.6
.. G06F 3/H

[52J U.S. Cl. .. 395/342
[58J Field of Search 3951155-161,

3951326-358; 3451119-120; 348/564-568

[56] References Cited

U.S. PATENT DOCUMENrS

4,961,070 10/1990 Maher et aI 3451119
5,060,170 10/1991 Bourgeois et at 395/157
5,146,335 9/1992 Kim et aI 3481564
5,371,847 12/1994 Hargrove __ 3951157
5,390.295 211995 Bates 3951157
5,487,143 111996 Southgate 395/157
5,561,757 10/1996 Southgate 3951157

mHER PUBLICATIONS

Cohen et at.. "Automatic Strategies in the Siemens KI'L
Tiled Window Manager". IEEE. pp. 111-119. 1988.
Myers. "A Taxonomy of Window Manager User Interfaces".
IEEE. pp. 65-84. Sep. 1988.

.;,;' 24
/ . /

II.~IIIIIIIIIIII
[11]

[45]

USOO5712995A

Patent Number:

Date of Patent:

5,712,995
Jan. 27, 1998

Cohen et aI .• "Constraint-Based Tiled Windows". IEEE. pp.
2-11. Nov. 1984.

Primary EXaminer-John E. Breene
Attorney, Agent, or Firor-Wolf. Greenfield & Sacks. P.e.

[57J ABSTRACT

A user interface provides a non-overlapped tiling mecha­
nism for management of windows or panes. The non­
overlapped tiling mechanism provides independent manipu­
lation of panes and partitions between panes. and creates
arrays of partitions from an array of panes in a tiled area. The
partition arrays include whole partitions. segments. and
combinations of segments. The various types of partitions
can be managed and manipulated to e1fect resizing. reposi­
tioning and adjustment of multiple panes simultaneously.
The mechanism provides free form and arbitrary arrange­
ment of panes in configurations which do not require or
necessarily exhibit any particular symmetry. any parent­
child relationship. or any other fixed relationship among
panes. The mechanism also provides for ad hoc addition.
deletion and hiding of panes. Additionally. application
regions can be freely associated and displayed with any of
the panes. and associations between application regions and
panes can be changed.

7S Claims, 18 Drawing Sbeets

'//
/ ~

11

MS _ SURFCAST _000006090

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 1 of 18 5,712,995

40 30 41 ,-'
47

33 31

46 43
13

32 44

Fig. 1

(2

10 n
21 20\

l/23
'\

2()6 V 29

12 24/ 13
14 15

Fig. 2

.hl 10 n
51 52 2~ "-27

r'
~50 60 62

N
28..1 13

Fig. 3 Fig. 4

MS _ SURFCAST _000006091

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 2 of 18 5,712,995

140
100

DISPLAY

./
130

120 125

Fig. 5

200

150

151 APPLICATION t-------+-l

211

APPLICATION t-----I--l
152

• 212
•

Fig. 6

MS _ SURFCAST _000006092

Petitioner Microsoft - Ex. 1021

u.s. Patent

272

271

273

Jan. 27, 1998

'21

Fig.7A

V23

'i1

Fig. 78
l/23

'21 l/24

Fig.7C

230

284

260

210

283

Sheet 3 of 18 5,712,995

~1

Fig.7D
/20

~5

Fig.7E
/20

~5 '26

Fig.7F

/200
, 264 266

275

276

277

285

Fig. 8

MS _ SURFCAST _000006093

Petitioner Microsoft - Ex. 1021

:;;;:

I~
C
;;0
"'Tl
()
~
(J)

I~
a
a
a
a
0)
a
~

215 - PANE
340 Self Ref
341 TIJerRef
342 Name
343 BorderFlags
344 PaneFJaQs
345 TenanfWindow
346 PaneModelRef
347 redExterlor
348 rectlnferior
349 redTItle
350 rectNormal
351 MlnWldth
352 MlnHelghf
353 MaxWidth
354 MaxHeight
355 TmpMlnWidfl
356 TmpMinHelgl t
357 TmpMaxWidt h
358 Tmj!MaxHeig ht

Fia~ 9 '--

205 - TILER
301 Name
302 SaveAsName
303SeifRef
304 ParentRef
305 TIlerModelRef
306 FrameWindow
307 ClientWindow
308 TabBarWindow
309 ToolBarWlndow
310 StatusBarWindow
311 fWlndowExists
312 flnitlollzed
313 tTabBarShown
314 fPositioned
315 flsOrphan
316 TIlerType
317 MainPaneRef
318 CurrentPaneRef
319 layoufMode
320 MaxPaneRef
321 redClient
322 reetExtent
323 XScroll
324 YScroll
325 WndPlace
326 VertPartltlonCount
327 VertPartitionArray
328 HorzPartitlonCount
329 HorzPartitlonArray
330 CrossPartitionCount
331 CrossPartitionArray
332 PaneCount
333 PaneArray

240 - EDGE
370 Position
371 Start
372 End
373 Flags

230 - PARTmON
;;. 360 Edge

361 Pickup Red
362 Movement

250 - CROSS PARTITION
I- ~ 380 VertPos

381 HorzPos
I-- 382 VertPartitionlndex

383 HorzPartifionlndex
384 Reef

r+-

r--

L!
• rJ'). .
~ a

~
~
'""" i

~
!
~

Sa
'""" 00

Ul
':...I
I-'
N
~

\C
\C
Ul

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 5 of 18 5,712,995

410 411

431 421 432

430 433 412

414-
210

424 422

423

413

Fig. 10

<;
1T

1L 1R
1 (210)

19
~

<; <;
2T 3T

2 (211) 2R 3 (212) 3R 2L 3L

28 38
'. '.....

Fig. 13

MS _ SURFCAST _000006095

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 6 of 18 5,712,995

700 I""\... USER TAKES ACTION AFFECTING LAYOUT,
e.g., PARTITION SELECTION, APPLYING

PREDEFINED LAYOUT, RESIZING TILER, etc.

701 ""'- DISPATCH TO APPROPRIATE FUNCTION
FOR HANDLING SELECTED ACTION.

702 ',," DIRECT MODIFICATION OF INTERNAL PANE
POSITIONS (EXTERIOR RECTS) & BORDER

FLAGS BY MODIFYING FUNCTION.

TILER ADJUSTMENTS: ADJUST TILER
703

~"" EXTENT AND PANES TO FIT DISPLAY AREA;
SCROLLING ADJUSTMENTS.

704 .~ REBUILD PARTITION ARRAYS BASED ON
NEW PANE POSITIONS & REPLACE
EXISTING PARTITIONS. (SEE Fig. 12)

70 5"\. REPOSITION AND REDISPLAY PANE
CONTENTSITENANT WINDOWS.

70 6 DISPLAY NEW PARTITIONS.

707 WAIT FOR USER INPUT.

Fig. 11

MS _ SURFCAST _000006096

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 7 of 18 5,712,995

520

530

540 RETURN TO CALLER

Fig. 12

-------------------------------------~ , ,
I

-------------------------------.

501

502 -"--

503 "--

504 "--

505 "'-

506 """'-

507 "--

508 """'-

509

I
I

BuildPartitionArrayO
subroutine

ALLOCATE EDGE ARRAYS - NEAR
(LEFTITOP)' FAR (RIGHT/BOTTOMI

AND MATCHED.

~
ASSEMBLE INITIAL, UNMATCHED

EDGES - FILL NEAR & FAR
UNMATCHED EDGE ARRAYS.

* MOVE TILER BORDER EDGES TO
MATCHED EDGE ARRAY.

~
MATCH REMAINING NEAR AND
FAR EDGES, MOVE TO MATCHED

EDGE ARRAY.

~
CONVERT MATCHED EDGES TO

WHOLE & SEGMENT PARTITIONS.

~
CREATE FLANKING SEGMENT

PARTITIONS.

~
BUILD MULTI-SEGMENT

PARTITIONS.

~
RETURN TO CAllER.

MS _ SU RFCAST _000006097

Petitioner Microsoft - Ex. 1021

u.s. Patent lan. 27, 1998 Sheet 8 of 18 5,712,995

540 541 542 543
Near Edges Far Edges Matched Edges Partitions

II (BORDER) 2R UNTERIOR)

2L (BORDER) lR (BORDER)

3l (INTERIOR) 3R (BORDER)

Fig. 14A
540 ID 542 543

Near Edges Far Edges Matched Ed~es Partitions

3l (INTERIOR) 2R !INTERIOR) 1l (BORDER)

2lIBORDER)

lR (BORDER)

3R (BORDER)

Fig. 14B
540 M1 ~ 543

Near Edges Far Edges Matched Edges Partitions

ll(BORDER)

2lIBORDER)

3l+2R (INTERIOR)

lR (BORDER)

3R (BORDER)

Fig. 14C
MQ 541 542 543

Near Edges Far Edges Matched Edges Partitions

llIBORDER) lL (SEGMENT)

2llBORDERI 2lISEGMENT)

3L+2R (INTERIOR) lL+2l (COMPOSITE WHOLE)

lR (BORDER) 3L+2R (UNITARY WHOLE)

3R (BORDER) lR (SEGMENT)

3R (SEGMENT)

lR+3R (COMPOSITE WHOLE)

Fig. 140

MS _ SURFCAST _000006098

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 9 of 18 5,712,995

540 M1 542 543
Near Edges Far Ed~es Matched Ed~es Partitions

11 (BORDER) 1B lINTERIOR)

2T (INTERIOR) 2B (BORDER)

3T IINTERIOR) 3B [BORDER)

Fig.1SA
540 M1 542 543

Near Edges Far Edges Matched Edges Partitions

2T (INTERIOR) 18 (INTERIOR) 11 (BORDER)

3T (INTERIOR) 2B (BORDER)

3B (BORDER)

Fig. 15B

540 541 ~ ~
Near Edges Far Edges Matched Edges Partitions

IT (BORDER)

1B+2T+3T (INTERIOR)

28 (BORDER)

3B (BORDER)

Fig. 15C

540 541 542 543
Near Edges Far Edges Matched Edges Partitions

1T {BORDER} 1T (UNITARY WHOLE)

1B+2T+3T (INTERIOR) 1B+2T+3T (UNITARY WHOLE)

2B (BORDER) 28 (SEGMENT)

3B {BORDER) 38 (SEGMENT)

2B+3B (COMPOSITE WHOLE)

Fig. 15D

MS _ SURFCAST _000006099

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998

SET NEAR EDGE COUNTER = 0; 601
SET EXTENDING:: FALSE

MAKE LOCAL 604
COpy OF EDGE

FIND
MATCHING

EDGE
?

605

YES

SET EXTENDING = TRUE

607

INCREMENT COUNTER

Sheet 10 of 18 5,712,995

608

RETURN TO CALLER

EXTEND PREVIOUS EDGE
ILOCAL COpy) BY

COMBINING WITH
CURRENT EDGE

AOD EDGE TO
MATCHED EDGE ARRAY

SET EXTENDING =
FALSE

Fig. 16A

609

610

611

MS_SURFCAST _000006100

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 11 of 18 5,712,995

SET FAR EDGE COUNTER = 0;
SET EXTENDING = FALSE

MAKE LOCAL COpy
OF CURRENT FAR EDGE.

NEAR
AND FAR

£DGESMATCH
?

636

SET EXTENDING = TRUE;
INCREMENT COUNTER.

631

632
/605

EXTEND PREVIOUS EDGE
WITH CURRENT EDGE.

COMBINE NEAR AND
FAR EDGES & INSERT
IN MATCHED EDGE

ARRAY; REMOVE NEAR
& FAR EDGES FROM

UNMATCHED ARRAYS;

Fig. 168

638

NO MATCH FOUND:
RETURN TO CALLER

640

NO MATCH FOUND:
RETURN TO CALLER

641

642
643

SUCCESS:
RETURN TO CALLER

MS_SURFCAST _000006101

Petitioner Microsoft - Ex. 1021

u.s. Patent

721

723

722

'/
;-:

761

710

771

Jan. 27, 1998 Sheet 12 of 18

Fig. 17

763 762

712
726 765

728 713

766

727 714

770 769

Fig. 18

5,712,995

11
./

729
732

730

733

734

731

MS_SURFCAST _000006102

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 13 of 18 5,712,995

VERTICAL PARTITION ARRAY

PARTITION TYPE REMARKS

721 SEGMENT COEXTENSIVE WITH lEFT EDGE OF 710

722 SEGMENT COEXTENSIVE WITH lEFT EDGE OF 711

723 COMPOSITE WHOLE INCLUDES 721, 722

726 SEGMENT INCLUDES LEFT EDGES OF 712 AND 713,
AND RIGHT EDGE OF 710

727 SEGMENT COEXTENSIVE WITH RIGHT EDGE OF 711
AND LEFT EDGE OF 714

728 COMPOSITE WHOLE INCLUDES 726, 727

732 MUlTI-SEGMENT INCLUDES 729, 730

734 MULTI-SEGMENT INCLUDES 730, 731

729 SEGMENT COEXTENSIVE WITH RIGHT EDGE OF 712

730 SEGMENT COEXTENSIVE WITH RIGHT EDGE OF 713

731 SEGMENT COEXTENSIVE WITH RIGHT EDGE OF 714

733 COMPOSITE WHOLE INCLUDES 729, 730, 731

Fig. 19A

MS_SURFCAST _000006103

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 14 of 18 5,712,995

HORIZONTAL PARTITION ARRAY

PARTITION TYPE REMARKS

761 SEGMENT COEXTENSIVE WITH TOP EDGE OF 710

762 SEGMENT COEXTENSIVE WITH TOP EDGE OF 712

763 COMPOSITE WHOLE INCLUDES 761, 762

765 FLANKING SEGMENT COEXTENSIVE WITH BonOM EDGE OF
712, TOP EDGE OF 713 AND WHOLE
PARTITION 764

764 UNITARY WHOLE COEXTENSIVE WITH 765

767 SEGMENT COEXTENSIVE WITH SOnOM EDGE OF
710 AND TOP EDGE OF 711

766 SEGMENT COEXTENSIVE WITH SOnOM EDGE OF
713, TOP EDGE OF 714

768 COMPOSITE WHOLE INCLUDES 766, 767

771 SEGMENT COEXTENSIVE WITH SOnOM EDGE OF 711

769 SEGMENT COEXTENSIVE WITH BOnOM EDGE OF 714

770 COMPOSITE WHOLE INCLUDES 771, 769

Fig. 19B

CROSS PARTITION ARRAY

PARTITION TYPE REMARKS

772 CROSS PARTITION INCLUDES WHOLE PARTITIONS 728, 764

773 CROSS PARTITION INCLUDES WHOLE PARTITIONS 728, 768

Fig. 19C

MS_SURFCAST _000006104

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 15 of 18 5,712,995

851 853 ~
805/ 804 f814 811

l-J ?"
802

801
806/ lI8D7

854 855 856 803

Fig.20A Fig.20D

844
/84 5

~ 851 852 /

805/ ~O4
/

806/ 807/
~t-854 855 856 846

802 812 811

801 807 801

803 855 856

Fig.20B Fig.20E

851

851 V 804 852 815 852

804

801
857

843
1\.805 ~11

--..f-
[[806 V 807 I--

r---808
842 _v 854 855 856 856

Fig.20C 854 855

Fig.20F

MS_SURFCAST _000006105

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 16 of 18

Fig.21A

Fig. 21 B

Fig. 21 C

860~870

861
862

871
872

/ 870 , -----, ,---------'j ---, 1------1

: :: 874 : I :
I 875

I

I ,
I II - I I , , , :--ti: : -----_ ...

, ' , ,
I "

: :876:

rn ' , , "

873 : .---------: : :
-.: 877 ,: '

" - " ' , I I I I I

, : 1 _________ 1 (____ ~

, , f'-------, , ,

0,
, , , , , , ,

j I I
I I I

878
I ,

I I I , , , - I
I , I I 1 _____ • I -- ______ 1

872

5,712,995

1/ 871
V

MS_SURFCAST _000006106

Petitioner Microsoft - Ex. 1021

u.s. Patent Jan. 27, 1998 Sheet 17 of 18 5,712,995

891

890

892
894

893 Fig.22A

894 Fig. 228

992

\ ~ A 994 f\ 995 1\ 996 / ./ Fig.23A

997

Fig. 238

MS _ SU RFCAST _000006107

Petitioner Microsoft - Ex. 1021

U.S. Patent Jan. 27, 1998 Sheet 18 of 18 5,712,995

'~
1----1--1- Title ·.1 790

79
79
79

2------
,....- DID CDIJ DID DIIJ o:rn V

3J

79 4------'

5---79
79 6-....

,----797

798 ,---

V

v

"'-
r---

I
778

777

779

l~
4

~ '\ /\ A

Fig.24A

778

777

782/
779 780 \.... 776

Fig. 248

778

777 I"- 776

782/
779 [ao

Fig.24C

778

777 V 780

782 J 779 - f-"
~7 76 ... ~

~
781

Fig. 240

780

/

776

777

782

Fig. 24E 779

776

782

779

Fig.24F

MS_SURFCAST _000006108

Petitioner Microsoft - Ex. 1021

1
NON-OVERLAPPING TILING APPARATUS
AND METHOD FOR MULTIPLE WINDOW

DISPLAYS

BACKGROUND OF THE INVENTION

1. Field of the Invention

5,712,995
2

A not entirely successful alternative to overlapped win­
dow interfaces has been non-overlapping tiled interfaces in
which multiple windows are displayed in a single plane in
such a way that no overlapping of windows occurs. Here. a

5 display area is occupied by a set of rectangular regions or
windows and may be separated by partitions. The windows
are often referred to as panes or may also be referred to as

The present invention relates to display systems, includ- tiles, screens and panels, among other terms. The partitions
ing computer displays, with multiple application windows or between the panes are effectively shared border areas and
panes. More particularly, the present invention relates to the 10 may not always be visible in a non-overlapping tiled inter-
management. manipulation, arrangement. creation and dele- face. They may also be referred to as splitters or splitbars
tion of non-overlapping panes in a display system. among other terms. Typically, the entire display area is fully

2. Discussion of the Related Art occupied by a combination of panes alone or in combination
Over the last several years computer user interfaces and with partitions, such that no gaps or other subregions of the

software applications have undergone much change. Early display area exist.
character-based user interfaces. such as that of DOS. pro- 15 Single-plane tiling interfaces can reduce or eliminate
vided environments in which software application programs many of the difficulties of the overlapped window interfaces.
would be run serially, one application at a time, with each The non-overlapping tiled interfaces prevent windows from
application using the entire display. More recently, graphical being obscured and hidden by overlapping windows and
user interfaces (Gills), such as that of Microsoft Windows, provide the user various means for simultaneous resizing

20 and arranging of multiple windows. One of the most com-
have become common. providing environments in which mon means for doing so is by manipulation of the partitions
multiple software applications run simultaneously, sharing between panes, allowing the user to adjust the edges of
portions of the display. multiple panes at the same time.

Sharing of a display area among several applications or While providing these advantages over overlapped win-
application regions is typically accomplished by dividing the 25 dow interfaces. however, other disadvantages are introduced
display area into multiple rectangular regions or windows by existing single-plane tiling interfaces. In particular. the
which can have various sizes and positions. In environments general free-form arrangement capabilities found in the
such as Microsoft Windows version 3.1, the individual overlapped window interfaces are not available in existing
windows are allowed to overlap other windows such that single-plane tiling mechanisms. Instead, existing single
certain windows will be obscured by or hidden behind 30 plane tiling interfaces impose various sorts of restrictions
foreground windows. This often presents users the problem and constraints on number of panes. arrangement. relative
of trying to find and move between the various windows and symmetry, sizing, positioning. ordering and manipulation of
applications. Additionally, because each window must be panes. Additionally, existing non-overlapping tiling mecha-
sized. positioned and arranged on an individual basis, it is nisms are limited in their ability to provide mechanisms for
often difficult. inexpedient and inefficient to arrange and 35 convenient assignment and reassignment of application win-
organize convenient layouts of multiple windows. As the dows to panes.
number of windows and applications increases, these prob- Such limitations stem largely from the fact that in over-
lems become increasingly significant. lapped window interfaces, individual windows can be

Sharing of a display area among multiple applications or resized and repositioned without affecting placement and
application regions is not only a concern in the implemen- 40 sizing of other windows. as windows are allowed to overlap.
tation of operating systems, but is often a concern in the Non-overlapped tiling mechanisms, on the other hand. are
implementation of application programs. A well known concerned with avoiding overlapping of windows and there-
example of this can be found in Microsoft's "Program fore may automatically resize or reposition neighboring
Manager" included in Windows version 3.1. This program windows when any individual window is resized or reposi-
adheres to Microsoft's widely used "Multiple Document 4S tioned. Such adjustment of non-overlapping neighboring
Interface" specification (MDI). in which a parent window windows is not easily generalized and presents many diffi-
contains multiple overlapping child windows. In the case of culties for generalized arrangements and configurations of
the Program Manager, each of the child windows contains windows. As a result. existing single plane tiling mecha-
collections of icons which can be selected to start other nisms introduce various kinds of constraints and limitations
programs. 50 in configuration, manipulation and modification of tiled

Because there tend to be large numbers of windows. and window layouts. As a consequence of this restrictiveness.
because the child windows are resized and repositioned such existing mechanisms and interfaces are in many
individually, other windows are frequently overlapped, regards more limiting and confining than the overlapped
resulting in their being obscured and sometimes lost. Users window interfaces.
commonly struggle with sizing and arranging of the child 55 FIG. 1 depicts an example of a pane configuration which
windows so that each child window can be quickly located could be implemented using a Single plane tiled interface.
and conveniently accessed. This is very often inconvenient Such a configuration or layout of panes can be created by
for the user, if not frustrating, particularly when there are various existing mechanisms. A screen or display area 1 is
many child Windows to be arranged. divided into four panes 10, 11. 12, 13 by a horizontal

This problem is widespread and designers and implement- 60 partition 21. and a vertical partition 241. The screen contain-
ers of user interfaces have long struggled to find alternatives ing the panes of a tiled interface may be termed a parent
to and methods for dealing with the awkwardness and window or a tiler. The individual panes may contain or be
difficulty of arranging multiple windows in an overlapped associated with application windows, regions or objects
window interface. While various alternatives have been which may be termed pane tenants or tenant windows,
attempted, none has been entirely successful, and this long- 65 applications or objects. among other terms.
felt problem has to date remained unsolved by existing Partition 20 includes two segment partitions 23. 24 and
methods. partition 21 includes two segment partitions 25, 26. Whole

MS_SURFCAST _000006109

Petitioner Microsoft - Ex. 1021

5,712,995
3

partitions, such as partitions 20, 21 may include (that is, be
co-located with, so as to include the area of) multiple aligned
segment partitions. While whole partitions may be
co-located with segment partitions, (e.g., 20 is co-located
with 23 and 24), the whole and segment partitions are
regarded, managed and manipulated as separate entities by
the present invention. Existing non-overlapped tiling
mechanisms, however, do not have the ability to separately
manage segment and whole partitions, that is, the joined
segments. Instead, they operate either exclusively on whole
partitions or exclusively on segment partitions.

Whole partitions. such as 20, 21. may include multiple
segment partitions and be termed composite whole parti­
tions. Other whole partitions, termed unitary whole
partitions. such as 21t of FIG. 2, are neither comprised of
smaller segments nor are elements of a larger composite
whole partition.

4
Spreadsheet programs such as "Microsoft Excel version

5" use such whole-partition mechanisms to divide a spread­
sheet into paned viewing areas (by selecting the Window­
Split menu option). Here, the rows and columns from
disparate portions of the spreadsheet are placed into separate
panes. A layout of four panes can be had, separated by two
whole partitions and arranged in quadrants similar to the
arrangement of FIG. 1. Alternatively. a layout of two panes
can be arranged, separated either by a single vertical or a

10 single horizontal partition.
Whole-partition mechanisms are limited in a number of

ways. Generally there are no manipulable exterior or border
partitions. Partition movement may be restricted in various
ways by different implementations of such mechanisms.
Pane layouts generally cannot be altered in an ad hoc

15 fashion. Instead, only a certain set of pre-defined layouts is
available. These layouts are pre-programmed by the appli­
cation with certain fixed pane symmetries. Because of this
inflexibility the user is restricted from arranging the panes
for maximum convenience.

In FIG. 1, the whole partitions 30, 31, 32 and 33 are
situated with the tiler's borders and are each composite
whole partitions having multiple segment partitions. Parti- 20

tion 30 includes. that is, is co-located with. segment parti­
tions 48, 41; partition 31 includes segment partitions 42, 43;
partition 32 includes segment partitions 44, 45: and partition

Other limitations stem from the fact that segment parti-
tions are not individually managed or manipulable. Because
only whole partitions can be manipulated, adjusting the edge
of any single pane causes an entire whole partition to be
adjusted. In ram. this results in the resizing and repositioning 33 includes segment partitions 46. 47.

Border or exterior partitions, such as 30-33, 40-47 are
situated with the tiler's border or frame. Interior partitions,
such as 20. 21 and 23-26 are not situated with the tiler's
frame. Cross partitions provide for simultaneous manage­
ment and manipulation of both a horizontal and vertical
partition. For instance, a cross partition 22 may be imple­
mented at the intersection of 20, 21.

While the various partitions may be coextensive with or
substantially aligned with the edges of individual panes, in
this discussion pane edges are treated as separate geometric
entities. and are simply the sides of a pane.

Existing single-plane tiling mechanisms demonstrate
various degrees of capability and limitations in functionality.
They can be best understood by separating them into three
categories of functionality: (1) whole-partition mechanisms;
(2) multi-level mechanisms; and (3) edge-based mecha­
nisms.

Whole-Partition Mechanisms

Whole-partition mechanisms are characterized by layouts

25 of all panes abutting the whole partition-namely, an entire
row or column and adjacent rows or columns. The effect of
this is to greatly restrict the user's ability to individually size
and position particular panes without impacting the size and
position of many, if not all. other panes in the configuration.

30 Further, because only whole partitions can be adjusted, the
relative symmetry between panes remains static and cannot
be changed.

Another important limitation of whole-partition mecha­
nisms is that panes cannot be created or deleted individually

35 or in an ad hoc fasbion. Instead, entire whole partitions must
be created and removed. resulting in the creation and
removal of columns or rows of abutting panes to one side of
the partition. For instance, in an implementation of the
configuration of FIG. 1 by a whole-partition mechanism no

40 pane can be individually deleted. Instead, if the user wished
to delete pane 10. either of the whole partitions 20 or 21
would be required to be deleted as an entirety. Pane 10 could
be deleted by remOving partition 20, but this would result in
the unwanted deletion of pane 12. Alternatively, pane 10

45 could be deleted by removing partition 11, but this would
result in the unwanted deletion of pane 11. If the user then
wanted to recreate pane 11. this could only be accomplished,
using the whole-partition mechanism. by restoring the
removed partition and reestablishing a quadrant layout simi-

in which whole partitions extend entirely across the display
area. The pane cOnfigurations are generally in rows and
columns of one or more panes. and exhibit matrix or
spreadsheet-style symmetry. Whole-partition mechanisms
generally provide the ability to manipulate and maneuver
whole partitions only and do not provide management or
manipulation of segment partitions. As an example. the pane
configuration of FIG. 1 could be created and managed by a
whole-partition mechanism Panes 10, 11, 12, 13 would be
adjustable and resizable only by manipulation of whole 55

partitions 20, 21. Because segment partitions are not sepa­
rately managed by whole-partition mechanisms, segment
partitions 23. 24, 25, 26 would not be able to be separately
manipulated. This limitation results in causing all panes to

50 lar to that of FIG. 1.

Multi-Level Mechanisms

Multi-level mechanisms address some of the shortcom­
ings of the whole-partition mechanisms. In particular, new
panes can be added in a non-rnatrixed fashion. This is done
by creating new levels of rnatrixed panes inside an area
occupied by a single pane at a higher or parent level.

FIG. 3 depicts a configuration which could be created by
a multi-level mechanism Here. a parent window is divided
into a left and right area by partition SO. The right area
includes the single pane 52. The left area includes pane 51,
which is further subdivided by partition 60 into two second­
level panes 61 and 62. At a first level. panes 51 and 52 are
separated by whole partition SO within the bounds of the
parent window. At a second or child level within the bounds
of pane 51, panes 61 and 62 are separated by whole partition
60.

be resized whenever either of the whole partitions 20, 21 is 60

manipulated. For instance. if pane 10 were widened by
moving whole partition 20 to the right, pane 12 would also
be widened and both 11 and 13 would additionally be
narrowed. Because of basic limitations such as these, whole­
partition mechanisms lack the more general facility to alter 65
the relative symmetry and arrangement of panes and parti­
tions.

Petitioner Microsoft - Ex. 1021

5,712,995
5

The configuration shown in FIG. 2 could also be created
using a multi -level mechanism. The screen 2 includes a main
window separated into four panes 11-13 as in FIG. 1. Pane
13 has been further subdivided at a lower level by partition
~ into two panes 14, 15. Partition 29 can be moved to adjust
the sizes of panes 14, 15 without changing the higher level
panes 10-13. Furthermore. additional partitions might be
configured at the same level to create a matrix of panes
within pane 13. Each partition extends entirely across the
next higher level pane in the vertical or horizontal direction.

Unlike a whole-partition mechanism, a multi-level
mechanism can be constructed such that the requirements of
matrix can be worked around to give the user alternative
layout options. However, while the multi-level mechanism
improves on some of the shortcomings of the whole­
partition mechanisms, it does not do so in a general way. and
many significant limitations remain resulting in inflexible
mechanisms. Generally there is no provision for manipu­
lable exterior (border) partitions. Different layouts can be
constructed only if pre-programmed in the software. and no
ad hoc mechanisms are provided for generalized creation,
deletion and fiexible placement of panes and partitions.

Whole-partition mechanisms may provide the ability to
simultaneously manipulate both horizontal and vertical par­
titions. For instance. in the configuration of FIG. 1. the user
might be able to simultaneously manipulate both partitions
20 and 21 by selecting cross partition 22 at the intersection
between the two partitions. Existing multi-level mechanisms
are often unable to provide this capability for partitions at
different levels. even when intersecting. Thus. a single
horizontal partition (21 in FIG. 2) at a first level cannot be
manipulated at the same time as a lower level vertical
partition (2' in FIG. 2).

6
Multi-level mechanisms can somewhat increase the fiex­

ibility of whole-partition mechanisms by relaxing matrix
symmetry requirements. Once created at a given level.
however. the symmetric organization of panes remains static

5 and unchangeable at that level. For instance, in the multi­
level configuration of FIG. 1 just discussed, panes 10 and 11
are separated by partition 23 and are together managed at a
child level. The child level's area is bounded at the top by
the parent window's boundary, and at the bottom by whole

10 partition 21. neither of which can be separated into seg­
ments. As a consequence. panes 10 and 11 must always have
vertically equivalent positions. and will always be symmet­
ric in this regard. Pane symmetry will be preserved and
inflexible on either side of any existing partition. and there

15 is no automatic mechanism for altering this.

Multi-level mechanisms furthermore restrict the range of
motion of panes and partitions at lower levels. Because a
lower level mechanism is bounded by the partitions and
boundaries of a higher level. the lower level's panes and

20 partitions are confined within those boundaries. For
instance, a multi-level mechanism may be used for the
configuration of FIG. 2, in which panes 14 and 15 are
managed at a child level and separated by partition 29. also
at the child level. The child level's bounds are those of pane

25 13, that is. whole partition 21 at the top, whole partition 2t
on the left. and the parent window's boundaries at the right
and bottom. Neither of the panes 14, 15 can be resized or
repositioned outside these bounds. and movement of parti­
tion ~ is similarly confined. It is only by altering the child

30 level's boundaries that any further movement of 14, 15 or 2'
can occur.

Edge-Based Mechanisms

A single configuration or pane layout can be formed using 35 The text editor software "Brief" (version 3.1) provides an
different mechanisms. However. the functionality. manipu- example of a third existing mechanism for non-overlapped
lation capabilities and limitations differ depending on how tiling interfaces. the edge-based mechanism. Unlike the
the layout was created with either single or multi-level whole-partition and multi-level mechanisms, this mecha-
mechanisms. For example. the configuration of FIG. 1 can nism provides for movement of individual pane edges only
be created in a variety of ways. With a whole-partition and does not provide for management of either composite
mechanism, the layout includes a vertical partition 20 and a 40 whole partitions or cross partitions.
horizontal partition 21. None of the segments 23, 24, 25. 26 Were the configuration of FIG. 1 to be implemented by an
are individually managed or manipulable. edge-based mechanism. the interlace's capabilities and limi-

The same layout can be obtained in a multi-level mecha- tations would be significantly different from those of either
nism using a single horizontal partition 21 at a first level. and 45 a whole-partition or multi -level implementation of the same
two distinct partitions 23. 24 at a second level. In the single configuration. As edge-based mechanisms deal exclusively
level mechanism. the vertical partition 20 can be manipu- with the individual edges of panes. only the segment parti-
lated so as to horizontally resize all panes 11-13 simulta- tions 23. 24. 25 and 26 would be managed or manipulable.
neously. However, in the multi-level mechanism, the two Because the edge-based mechanisms have no ability to
vertical partitions 23. 24 cannot be joined or manipulated 50 combine and manage multiple aligned segment partitions as
together. That is, multi-level mechanisms have no capability composite whole partitions. neither of the whole partitions
to join separate segment partitions such as 23, 24 for 26, 21 would be managed or manipulable
simultaneous management or manipulation. The difference in behavior and functionality is significant.

Thus. movement of partition 24 would only resize the The configuration of FIG. 4 could be obtained by moving
lower panes 12, 13, and would not simultaneously manipu- 55 segment partition 23 of FIG. 1 to the left to form partition
late partition 23 so as to resize the upper panes 10, 11. 27, and by moving segment partition 24 to the right to form
Additionally. the horizontal partition 21 can only be manipu- partition 28. This configuration has altered the relative
lated as a whole in either mechanism. Since the horizontal symmetry between panes 10 and 12 and between panes 11
partition is at the first level. it cannot be separated into and 13. Alternatively, either of the two horizontal segment
distinct partitions 25, 26. 60 partitions 25. 26 could have been moved. creating a com-

Thus, the existing mechanisms have neither the ability to pletely different layout By providing manipulation of seg-
separate a single partition into segments so as to be managed ment partitions. edge-based mechanisms provide for finer
and manipulated individually nor to join individual aligned control of layouts. dynamic pane symmetry, and the ability
partitions so as to be managed and manipulated as a whole. to create ad hoc configurations.
The effect of this is to significantly constrain the range of 65 Known edge-based mechanisms have Significant
movement of panes and to limit the user's ability to conve- limitations. however. including the inability to join or con-
niently and arbitrarily resize and reposition panes. solidate segment partitions into Whole partitions. Thus.

Petitioner Microsoft - Ex. 1021

5,712,995
7

neither partition 28 nor 21 of FIG. 1 would be implemented,
managed or manipulable by such an edge-based mechanism.
Becau se of this. there is no means for resizing an individual
pane while maintaining its relative symmetry with surround­
ing panes. Also, while whole-partition mechanisms com­
monly provide for simultaneous manipulation of both hori­
zontal and vertical partitions. known edge-based
mechanisms do not do so. That is, edge-based mechanisms
do not implement cross partitions, such as 22, and vertical
and horizontal partitions, such as 20. 21. cannot be simul- 10

taneously moved.
Known examples of edge-based mechanisms exhibit

other important limitations. Wherever a single pane edge is
not evenly aligned with one or more opposite edges of other
panes, partition movement is not implemented. Thus, in a 15

configuration such as that of FIG. 4, the horizontal partition
21 is not manipulable. This results in the inability to
vertically resize any of the panes. In effect. various layouts
cause panes to become locked or positionally frozen in one
or more dimensions.

Known edge-based mechanisms also limit the range of
movement of partitions, such that a partition's movement is
confined to the area of the surrounding panes. For example,

20

in an edge-based implementation of FIG. 2. partition 29
cannot be moved to the left of partition 24. Known edge- 25

based are not implemented for graphical user interfaces, nor
are they fully responsive to mouse or pointer device manipu­
lation. They fail to p!'ovide manipulation of border parti­
tions. They fail to include the ability to scroll panes when
their combined extent exceeds the display width of the 30

parent window.
Thus, while edge-based mechanisms provide seemingly

greater flexibility in arrangement of the pane layout than
either the whole-partition or multi-level mechanisms. they
suffer from a number of flaws and limitations. 35

While the various existing mechanisms show a wide
variety of capabilities, one desirable capability which is not
found in the prior art is the ability to install a non- over­
lapped tiling interface upon a pre-existing overlapped win- 40

dow interface. That is, the existing mechanisms lack the
ability to take over the window placement control of an
overlapped window interface so as to convert it to a single­
plane tiling interface with the existing windows of the
original interface. Rather. existing single-plane tiling inter- 45

faces must be explicitly developed and independently started
and no means exists for transferring window control from an
overlapped. window interface to a non-overlapping single­
plane mechanism.

A number of limitations and deficiencies are apparent in 50

both overlapped and existing non-overlapped interfaces.
Overlapped window interfaces cause windows to be
obscured or lost. and make it difficult for the user to navigate
among multiple windows, thereby restricting the user's
ability to effectively operate and interact with the computer. 55

While overlapped mechanisms provide free-form
arrangement. they fall short in not providing convenient
organization or multiple windows.

Existing single-plane tiled interfaces. on the other hand.

8
cation windows. This desire has long been apparent but
remains unsolved by known art.

Therefore. a need exists for a non-overlapping single­
plane tiled user interface which eliminates the restrictiveness
of existing single-plane tiled interfaces. In particular, such a
single-plane tiled interface:

1 could provide greater free-form arrangement of panes;
1 could provide management and manipulation of both

segment partitions and whole partitions;
1 could allow discrete selection of segment partitions and

whole partitions;
1 might not require panes to be arranged with any

particular symmetry;
1 could provide for ad hoc creation. deletion and hiding

of panes on an individual basis;
1 might not restrict or limit partition movement;
1 could provide for simultaneous movement of both

vertical and horizontal partitions;
I could permit any individual pane to be resized in either

the vertical or horizontal dimension without regard to
the layout or configuration of the tiler;

I could be able to collapse panes to a minimum width or
height in order to facilitate resizing of other panes and
movement of other partitions;

1 could allow scrolling for arrangements of panes where
the panes' extent exceeds the display area of the tiler;

I could provide for auto-alignment of partitions;
1 could provide for arrangement of panes in certain

predefined and convenient configurations;
1 could be able to save and restore particular layouts of

panes;
1 could conveniently associate and reassociate applica­

tions and application regions with particular panes; and
1 could be able to be installed as a non-native interface in

a pre-existing, already-running overlapped window
interface so as to control window positioning.

SUMMARY OF THE INVENTION

The deficiencies of existing interfaces are substantially
overcome by the present invention which provides an inter­
face for management and manipulation of non-overlapping
windows. According to one aspect of the invention, a user
interface includes multiple non-overlapping panes separated
by partitions. which are individually moveable so as to effect
resizing or movement of abutting panes. The configuration
or layout of panes does not require or necessarily exhibit any
particular symmetry. any parent-child relationship. or any
other fixed relationship among panes. Multiple aligned
segment partitions can be selected for simultaneously resiz­
ing adjacent panes. Intersecting vertical and horizontal par­
titions can be selected together for simultaneous resizing of
panes in two dimensions. Partitions may be formed of
multiple segment partitions which are substantially aligned.
Segment partitions. cross partitions and whole partitions
may be distinctly displayed and discretely selected.

According to another aspect of the invention. any pane
may be resized in any dimension without regard to the layout
or configuration of panes. Partition movement is not
restricted by the dimensions of the surrounding panes.
Instead. surrounding panes may be automatically adjusted in
size or location, or collapsed to a minimum size and repo-

do not allow overlapping windows to obscure or hide any of 60

the other panes. However, while existing non-overlapped
mechanisms provide organization and arrangement of mul­
tiple windows, they variously lock or freeze symmetries
between panes. pane sizing and manipulation alternatives,
and fail to provide general free-form manipulation. 65 sitioned so as to accommodate such movement. Such col­

lapsing and repositioning of panes occurs successively such
that extreme movement of a particular partition may cause

Software users have long desired a method for convenient
organization and unimpeded arrangement of multiple appli-

MS_SURFCAST_000006112

Petitioner Microsoft - Ex. 1021

5,712,995
9

a neighboring pane to be collapsed and repositioned and this
may in turn cause one of its neighboring panes to be
collapsed and repositioned, etc.

10
FIG. 18 illustrates a tiler configuration according to the

present invention.

According to a further aspect of the invention. the inter­
face may include multiple sets of pane configurations. Pane 5

configurations may also be created to extend beyond the
display area's boundaries, with scrolling in either the ver­
tical or horizontal dimensions.

FlGS. I!tA-19C illustrate partition arrays for the configu­
ration of FIG. 18.

FIGS. 2DA-2DF illustrate partition movement.
FIGS. 21A-21C illustrate visible and non-visible panes in

a tiler configuration.
FIGS. 22A-22B illustrate pane deletion.

According to another aspect of the invention, tenant
application regions. windows or objects can be associated 10

with any panes in the interface, or alternatively. panes may

FIGS. 23A-23B illustrate the use of tabs according to the
present invention.

FlGS. 24A-24F illustrate operations of the present inven­
tion in connection with alterations of tiler display dimen­
sions.

be untenanted. Tenant application regions can also be moved
from one pane to another. Panes may be hidden and auto­
matically resized to predefined configurations. Additionally,
the interface can be integrated with existing interfaces to 15

provide additional functionality.
DmAllEDDES~ONOF~D

EMBODIMENTS
According to another aspect of the present invention, the

features of tilers, panes and partitions can be altered. Title
bars. function buttons. background, text, partitions and par- 20

tition pickup or selection regions can be varied in size, color
and appearance.

Referring now in detail to the drawings wherein like
reference numerals represent like elements. there is illus­
trated in FlG. 5, computer hardware IDO for implementation
of a preferred embodiment of the present invention. The
computer hardware 180 includes a central processing unit
(CPU) 110 for executing program instructions. The program
instructions may include one or more application programs
and instructions representing the interface of the present
invention. The CPU may include more than one processor

With these and other objects. advantages and features of
the invention that may become apparent, the nature of the
invention may be more clearly understood by reference to 25

the following detailed description of the invention, the
appended claims and the several drawings attached hereto. operating simultaneously. The program instructions and data

used in executing the instructions are stored in a memory
13D connected to the CPU 11D, which may include one or

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of a first non-overlapping pane
cOnfiguration.

FIG. 2 is an illustration of a second non-overlapping pane
configuration.

FIG. 3 is an illustration of a third non-overlapping pane
configuration.

FIG. 4 is an illustration of a fourth non-overlapping pane
configuration.

FIG. 5 is an illustration of computer hardware for which
the interface of the present invention may be implemented.

FIG. (; illustrates operation of the interface of the present
invention in conjunction with applications and other inter­
faces.

FIGS. 7 A-7F illustrate different processes for forming the
configuration of FIG. 1.

FIG. 8 illustrates a configuration of panes in an interface
according to an embodiment of the present invention.

FIG. 9 illustrates data structures in conjunction with an
embodiment of the present invention.

FIG. ID illustrates dimensions of a pane.
FIG. 11 is a block flow diagram of the layout modification

process.
FIG. 12 is a block flow diagram of a process for creating

30 more of RAM, ROM, magnetic disk.. magnetic tape. cache
memory. or other memory storage device. A user inputs
information to manipulate the interface or operate applica­
tions tbrough a keyboard 12D or pointing device 125 such as
a mouse connected to the CPU lID. Information is output on

35 a display 14D for communication to the user. The present
invention relates to an interface which defines the presen­
tation of the information on the display 140. The invention
is not limited to software implementations nor is it limited
to displays for general purpose computers. It could also be

40 applied, for example, to an audio-visual device or a televi­
sion set for simultaneous display of different programs in
non-overlapping panes.

FlG. (; illustrates the operation of the interface 2DO of the
present invention in connection with applications ISO. 151.

45 152, which are associated with panes 210, 211, 212, respec­
tively. The interface 20t controls the position. size and
appearance of the panes and correlates application regions to
the display regions defined by the panes. Additionally, other
interfaces 170 may also be operating simultaneously in

50 connection with different applications 160. These interfaces
may be hidden or may occupy certain portions of the display
14D. Thus. the non-overlapping interface lBD can be coor­
dinated with existing systems.

partition arrays. 55

FIG. 13 is an expanded view of panes and pane edges in
the configuration of FIG. 8.

Pane and Partition Manipulation

FIGS. 14A-14D illustrate the operation of work arrays in
creating a vertical partition array for the configuration of
FIG.8.

FIGS. 15A-15D illustrate the operation of work arrays in
creating a horizontal partition array for the configuration of
FIG.8.

FIGS. 16A and 16B are block flow diagrams of the
process for matching edges.

FIG. 17 is another embodiment of the configuration of
FIG. 1.

The interface 2DD of the present invention permits the
creation. management and manipulation of panes. whole
partitions, segment partitions and cross partitions unre­
stricted by and without requiring any fixed pane layout or

60 symmetry. By way of example, the configuration of panes
shown in FIG. 1 could be created using the interface 200.
However, unlike existing mechanisms, each whole partition
and each segment partition can be individually managed by
the present invention and can be discretely selected and

65 manipulated by the user.
Whole partitions 20, 21 can each be moved to resize all

panes horizontally or vertically. respectively. Additionally.

Petitioner Microsoft - Ex. 1021

5,712,995
11 12

could be generated in one or two steps by adding partitions
20 and 21 either individually or both at once. to divide the
tiler into the quadrants of FIG. 1.

Many other different series of steps and intermediate

segment partitions 23. 24. 25.26, which are co-located with
20,21. can be separately managed by the present invention
and can be individually selected and manipulated to resize
only the abutting panes. Thus. when segment partition 23 is
moved. only the upper panes 10. 11. are affected. and the
lower panes 12. 13 are not altered. When segment partition
25 is moved, only the left-hand panes 10 and 12 are adjusted.
and the right-hand panes are unaffected.

The present invention may also provide management of
cross partitions. such that a cross partition 22. formed at the
intersection of partitions 20. 21 can be manipulated to resize
panes in both the horizontal and vertical directions simul­
taneously. Further. all of the exterior whole partitions 30-33
and all of the exterior segment partitions 40-47, can be
managed by the invention and can be selected and manipu­
lated by the user. According to one embodiment of the
invention. when such exterior partitions are moved toward
the interior of the tiler, new panes are automatically created.

5 configurations could be used to create the configuration of
FIG. 1. Unlike existing systems. though, the functionality of
the interface is not affected by the method or sequence of the
configuration's creation. Regardless of the creation
sequence, when the present invention is used to implement

10 the configuration of FIG. 1, not only can the two composite
whole partitions 20, 21 be individually managed for display,
selection and manipulation, but the segment partitions 23,
24, 25, 26. cross partition 22 and all the exterior partitions
30-33 and 4D-47 can also be individually managed.

15 Wh:~='::~=s: ;~~e7:~~~ti~;;:~
whole partitions 20 and 21 only; existing edge-based mecha­
nisms provide for manipUlation of segment partitions 23, 24.
25 and 26 only; and existing multi-level mechanisms pro­
vide for manipulation of one whole and two segment par-Manipulation of whole partitions. segment partitions or

cross partitions is also not restricted by other partitions. For
example, in the configuration of FIG. 2. partition 29 can be
moved to the left past partition 24. In such a movement,
partition 24 is consequently moved to accommodate the
manipulation of partition 29. Alternatively, when partition
29 is moved to the left, the whole partition 20 can be
consequently moved to accommodate the movement.
Additionally. means exist for selecting whether whole or
segment partitions are consequently moved. Further, if there
were additional partitions and panes to the left of partition
20, they would also be automatically moved to accommo­
date the movement of partition 29.

20 titions only. depending on the configuration of a predefined
layout-either the partitions 20. 2S and 26, or the partitions
21, 23 and 24.

The present invention may in part be distinguished from
existing mechanisms by its ability to simultaneously manage

25 both segment and composite whole partitions. The invention
may also in part be distinguished from existing mechanisms
by the range of movement. sizing and adjustment it affords
to particular sets of panes.

In the four quadrant configuration of FIG. 1. any pane can
30 be adjusted with either a horizontally opposite or a vertically

opposite pane, such that no other panes are affected. Addi­
tionally any pane can be collectively adjusted with the other
three panes (including the diagonally opposite pane) either
vertically or horizontally. Thus, pane 10 may be adjusted

Movement of cross partitions is also unconstrained. For
instance, movement of the cross partition 22 at the intersec­
tion of 20 and 21 or movement of the cross partition at the
intersection of 21 and 29 of FIG. 2 would cause automatic
shifting and consequent movement of both horizontal and
vertical partitions and automatic resizing of other panes to
accommodate the movement. Thus. the interface 200 per­
mits completely independent manipulation of whole. seg- 40

ment and cross partitions so as to effect convenient free-form
sizing and positiOning of panes, unconstrained by and with­
out regard to fixed layouts or symmetries.

35 with pane 11 only. without affecting the bottom panes 12, 13,
by manipulation of segment partition 23. Pane 10 may also
be adjusted with pane 12 only. without affecting the right
hand panes 11, 13, by manipulation of segment partition 25.

Any particular pane layout can be arrived at through any
number of different individual adjustments. manipulations 45

and sequences of prior arrangements of panes and partitions.
The capabilities of the interface, however. are not restricted
by the sequence of steps used to create a given layout. and
manipulation alternatives are the same for equivalent layouts

Pane 10 may also be adjusted either horizontally or verti­
cally along with all the other three panes by manipulating the
whole partitions 20, 21 respectively, or alternatively, by
manipulating cross partition 22.

Existing art is variously limited according to this under­
standing of the present invention. Whole-partition mecha­
nisms are able to adjust all four panes at once, but are unable
to provide means for adjusting either 1D and 11 only or 10
and 12 only. Multi-level mechanisms are able to provide
means for adjusting all four panes collectively, and are also
able to provide means for adjusting 10 and 11 only, or 1D and
12 only, but not both sets. Edge-based mechanisms are able

no matter how arrived at.
50 to adjust 10 and 11 only, or 10 and 12 only. but have no

means for adjusting all panes collectively. For example, the configuration in FIG. 1 can be created
from a single-paned tiler, as illustrated in FIGS. 7 A-7C, by
adding a horizontal partition 21, adding a first vertical
segment partition 23. and adding a second vertical segment
partition 24 aligned with segment partition 23 to create 55

partition 21.

Alternatively, as illustrated in FIGS. 7D-7F. the configu­
ration couId also be created by first adding a horizontal
partition 21. Next, the addition of a vertical partition 20
causes the extent of 21 (of FIG. 1) to be reduced (to form 60
partition 25) and creates a single right-hand pane encom­
passing the area of panes 11, 13. Finally, the addition of a
horizontal partition 26 causes the creation of another pane,
and brings partitions 25 and 26 into alignment such that 25
and 26 are segment partitions and together create the com- 65
posite whole partition 21 as illustrated in FIG. 16F. In
another alternative sequence, the configuration of FIG. 1

In addition to the above capabilities. the present invention
may also provide implementation of cross partitions for
simultaneous management and manipulation of both hori­
zontal and vertical partitions, as well as exterior whole and
segment partitions. 30-33 and 4D-47. Further, the present
invention can provide for the ad hoc creation and removal of
panes and partitions. The present invention can provide such
capabilities for any number of panes and partitions, in any
non-overlapped configuration without regard to and without
being restricted by any fixed or predefined symmetry,
parent-child or other special relationship between individual
panes.

Data Structures

FIG. 8 shows a configuration for three panes 210, 211,
212 of the interface 200 which will be used in describing the

Petitioner Microsoft - Ex. 1021

5,712,995
13

structure and operation of the interrace 200. FIG. 9 illus­
trates the data structures for describing and controlling the
panes and partitions between panes in a preferred embodi­
ment of the present invention. The tiler data structure 205
defines a pane configuration in the interface. More than one
tiler 205 may be created and used simultaneously. Tilers may
be included in or fonn conventional overlapped and non­
overlapped windows which can be managed with other
windows and incorporated into other overlapped or non­
overlapped interfaces. Each tiler defines a specific dynami- 10

cally changeable pane configuration and includes identifiers,
flags and data 301-333 for representing the tiler on the
display. Such information may include a name 301 for the
tiler and references to the screen and tiler dimensions 321,
322 and scrolling 323, 324. More particularly, the tiler 15

structure includes vertical and horizontal partition arrays
327.329, a cross partition array 331 and a pane array 333.

The pane array 333 includes one or more pane data
structures 215 in an array format. The pane data structure
215 includes: a pane name 340; a reference 341 to the tiler 20

205 to which the pane belongs; a reference 345 to the tenant
application object associated with the pane; and rectangular
dimensions of the pane's exterior extent 347. interior extent
348, and title bar 349. The rectangular dimensions of a
normal position 350 for the pane is also part of the data 25

structure. The normal position 350 is used when the pane is
changed from a maximized. minimized or hidden state back
to a nonna! position. Two sets of flags indicate attributes of
the pane. Border flags 343 indicate whether the edges ot the
pane are situated with the tiler's borders. Pane flags 344 30

indicate whether the pane is maximized, shown, hidden, a
principal pane tor the tiler or an initial predefined pane.

The rectangular dimensions of a pane 210 are illustrated

14
coordinate tor horizontal lines. The start value 371. and end
value 372, correspond to top and bottom end points for
vertical lines and left and right end points for horizontal
lines. A set of flags 373 are used to define the location of the
edge relative to a pane (top, left. right, bottom) or tiler
border. When an edge data structure 240 is contained or
referenced by a partition data structure 230, the flags 373
may also serve to define partition attributes or types of
partitions, such as whole, segment or multi-segment parti­
tions.

The cross partition array 331 defines intersections
betWeen partitions. Cross partitions are used for simulta­
neous movement of horizontal and vertical partitions. The
cross partition data structure 250 includes the position 380,
381; indices to the intersecting horizontal and vertical par­
titions 382, 383 in the corresponding horizontal and vertical
partition arrays 327,329; and a pickup and display rectangle
384.

Pane Layout Modification Cycle

A tiler of the present invention includes a layout of
non-overlapped panes which can be altered by the user in
various ways to effect a new layout. Layout alterations may
be done successively and in a sequence or cycle of steps.

FIG. 11 is a block flow diagram which indicates the major
steps in a layout modification sequence. At step 700. the user
initiates an action which affects the layout of panes in the
tiler. Such an action may include partition movement. pane
creation, deletion or hiding. resetting of partition parameters
such as thickness, auto-alignment or other attributes. or
rearranging the layout to one of several predefined layouts or
layout styles, among others. At step 701, handling of the
initiated action is dispatched to the appropriate handling
function, such as a partition manipulation function or a pane
arrangement function. At step 702, the handling function
dJrectly alters the external rectangles 347 (the position
within the tiler) and border flags of affected panes. For
example, when the user has finished repOSitioning a

in FIG. 10. The exterior rectangle dimensions 347 define a
rectangle 410 with the position ot the tour sides or edges 35

411-414 of the pane. Panes of a tiler are maintained in
non-overlapping fashion by co-locating sides of exterior
rectangles 411-414 of adjacent panes. Alternatively, addi­
tional buffer areas and gaps between panes may also be used, 40 partition, the function bandlingpartition movement modifies

the external rectangles of panes on either side of the repo­
sitioned partition.

or certain portions of panes may be allowed to overlap
without causing substantial overlapping of pane contents.

The interior rectangle dimensions 348 define a rectangle
420 for an application window with the position of the four
sides 421-424. A title bar rectangle 430 may be cut out of 45

the interior rectangle. As shown in FIG. 8, the title bar may
include the title 260 as well as various other function buttons
261-266. Function buttons can be used to penonnfunctions,
such as selection of a specific application to be placed in and
associated with a pane; application-specific options and 50
menus; maximizing. minimizing or hiding a pane; and
resetting a pane to a normal position.

Partitions between panes are defined by the partition data
structure 230. This data structure is identical for vertical and
horizontal partitions, which are maintained in separate 55

arrays 327, 329 of the tiler 205. The partition data structure
230 includes an edge definition 360, a pickup and display
rectangle 361 and a movement amount 362 which can be
used during partition manipulation. The pickup rectangle
corresponds to a hotspot or mouse-sensitive area which can 60

be used for selection and display of a partition. Partition
display areas may be situated in the spaces between interior
rectangles 348 of adjacent panes.

At step 703. adjustments are made to accommodate a
tiler's extent to its display area. Step 703 may further include
resetting of the tiler's scrolling parameters to provide
scrolled access to portions of the tiler's extent outside the
visible display area. At step 704, and as shown in greater
detail in FIG. 12. the vertical. horizontal and cross partition
arrays of the tiler, 327, 32'.331, are entirely rebuilt based
on the new pane positions and parameters and replace all
prior partitions. Once new partition arrays have been
constructed. the pane tenants, that is, the application win­
dows or application regions residing within the panes. are
repositioned and redisplay ed, as indicated at step 705. At
step 706, the newly built partitions themselves are displayed,
At step 707. the system waits for new user input which may
cause additional layout modification by a variety of means
and thus, re-execution of the sequence starting at step 700.

Throughout the layout modification cycle, the contents of
a tiler's pane array 333 remain constant, except when new
panes are added to the tiler or when existing panes are
deleted. When a pane is hidden, a flag 344 is cleared to
indicate that it is no longer shown. rather than removing the
pane from the pane array. While the pane array's contents While the edge data structure 240 may correspond to the

edge of a pane. it is also used to define various other edges
and lines. It includes a line's position or location 370, which
corresponds to the x coordinate for vertical lines and the y

65 remain relatively static, the contents of the vertical. hori­
zontal and cross partition arrays, 327, 329. 331. are rebuilt
(step 704) with every modification to the tiler's layout.

Petitioner Microsoft - Ex. 1021

5,712,995
15

In a preferred embodiment, the operation of the interface
relies on exact alignment and matching of pane edges.
Because of this. any slight change in alignment and location
of pane edges may require reanalysis and reconstruction of
partition arrays. Thus, the partition arrays are discarded and 5

new partition arrays are constructed after any partition
movement, rearrangement, deletion, hiding, showing or
resizing of panes within the tiler, swapping of pane
positions. alteration of partition thickness. changing of auto­
alignment parameters, minimum pane width or height, or 10

other partition, pane or tiler attributes. Reconstruction of the
partition arrays also occurs after the tiler is resized. its
contents are scrolled, predefined layouts are applied.
application-specific actions are performed, a tab bar or other
auxiliary frame windows are shown or hidden, and various 15

other modifications which affect the layout.

Construction of Partition Arrays

16
for implementation of various kinds of user interface
devices. In the present invention. these user interface
devices are also termed partitions. but in the following
discussion it should be clear from the context whether the
data structure or the user interface device is indicated. Such
partition user interface devices may be selectable and
manipulable by the user so as to alter the pane configuration.
The invention, however. does not require such user interface
devices. nor do partitions necessarily have to be visible.
Instead, various alternative methods can be used to effect
modifications to pane layouts.

There is little difference in the method for building
vertical and horizontal partitions. Because of this, the same
partition construction subroutine 501 can be used in separate
passes-vertical edges are considered in a first pass (step
500), and horizontal edges in a second pass (step 510).
Alternatively. separate routines could be used for the vertical
and horizontal passes, which could then operate sequentially
or concurrently.

So as to be able to use common terms for the construction
The present invention provides manipulation of non­

overlapping panes. According to an embodiment of the 20

invention. pane manipulation can be effected by reference to
and manipulation of partitions aligned with the panes. Par­
tition arrays 31:1.329.331 are constructed and maintained to
afford such movement and manipulation of panes.

of both vertical and horizontal partitions, the terms near edge
and far edge are used to represent opposing edges of a pane.
Near edge means the left edge of a pane for vertical edge
analysis and the top edge for horizontal edge analysis. Far

25 edge means the right edge when performing vertical edge
analysis and the bottom edge when performing horizontal
edge analysis. These terms are arbitrary and for convenience
only. FIG. 13 illustrates the edges of the panes 210,211. 212
used to form partitions. The panes 210. 211. 212 are respec-

The process of constructing partition arrays, which is
invoked at step 704 of FIG. 11. is illustrated in FIG. 12. At
the point at which the actions of FIG. 12 are executed,
modification to the tiler's layout has occurred (steps 700,
701). the external rectangles 347 of the panes have been
modified (step 702) and adjustments to the tiler's extent
have taken place (step 703). At step SOO of FIG. 12. the
vertical partition array is created, followed by creation of the
horizontal partition array (step 510). At step 520. cross
partitions are formed by examining the intersections of the
vertical and horizontal partitions and are stored in an array.
At step 530. the tiler's previous partition arrays are dis­
carded and are replaced by the new partition arrays. and the
partition construction process concludes at step 540. by
returning to the caller. Subsequent processing, as shown in
FIG. 11, causes repositioning and redisplay of pane tenants
(step 705). and redisplay of the newly built partitions (step
706) before awaiting the next layout-modifying action (step
707).

30 tively referenced as 1. 2, and 3, with corresponding edges
referenced as r. t, b. for left, right. top and bottom edges. For
the vertical pass, the left edges 11, 21, 31 are near edges. and
the right edges 11; 21; 3r are far edges. For the horizontal
pass, the top edges Ia: 2t, 3t are near edges. and the bottom

The construction of partition arrays is centered on the
identification of which combinations of pane edges are
aligned so as to allow them to be jointly managed as
partitions. 1hls process is called edge matching and seeks to
identify the smallest groupings of edges that can be managed
and manipulated together. In effect, this results in the iden­
tification of the smallest groupings of panes which can be
moved or resized together.

A pane edge is a simple geometric entity representing one
of the four sides of a pane. A partition, though, is more
complex and may represent a correlation of panes and their
edges. While a single pane edge may be used to form one or
more partitions. partitions may also be composed of multiple
pane edges. For instance, the right edge of pane 10 in FIG.

35 edges 1b, lb, 3b are far edges.
The creation of partitions involves determining which

edges are to be used in forming a partition. so as to be
members of the partitions. An edge is considered to be a

40 member of a partition if the edge is aligned with the partition
and its extent is contained by and fully included within the
partition's extent. A pane itself is considered to be a member
of a partition if one of its edges is a member of the partition.

Because border (exterior) partitions are situated at the
45 tiler's borders. they are not between panes, and have mem­

ber panes to one side only. Border partitions are therefore
formed simply from the edges of panes which are situated at
one of the tiler's borders or frame. Because of this. border
partitions are not fonned from combinations of both near

50 and far edges. but instead are formed near edges exclusively
or from far edges exclusively.

Interior partitions. on the other hand, are situated between
panes. such that there are one or more member panes to each
side of an interior partition. Stated differently. an interior

55 partition is formed by a combination of at least one near
edge and at least one far edge of different panes. The
creation of interior partitions. then. involves finding a com­
bination of near edges which is coextensive with a combi-

1 may be used in the formation of segment partition 23.
composite whole partition 20 and cross partition 22. In 60

contrast. composite whole partition 20 aggregates four
edge~e left edges of panes 11 and 13 and the right edges

nation of far edges.
At step 502, a series of work arrays are created for use in

the edge matching and partition construction process. As
illustrated in FIG. 14A, these work arrays include arrays for
near edges 540, far edges 541, matched edges 542 and
partitions 543. At step 503. edge data structures representing
the near and far edges of each of the panes are created and
placed in the appropriate array. This is done by iterating

of panes 10 and 12.
A partition, moreover. can be managed by the interface as

a data structure which may be moveable and alterable, and 65
which may have different kinds of characteristics and func­
tionality. As a data structure. it may further provlde the basis through all shown panes in the tiler. identifying the near and

MS _ SU RFCAST _000006116

Petitioner Microsoft - Ex. 1021

5,712,995
17

far edges of each pane's exterior rectangle 347, and building
corresponding edge data structures for each such edge.

Each of the near edge. far edge and matched edge work
arrays. are maintained in sorted order. They are ordered first
by the edge position or location (the x coordinate for vertical
edges and the y coordinate for horizontal edges), and sub­
ordered by the start of the edge's extent (the top for vertical
edges and the left for horizontal edges). FIGS. 14A-14D
illustrate the contents and operation of these work arrays in
creating vertical partitions for the pane cOnfiguration of FIG.
8. The parenthetical information in FIGS. 14A-14D is to
help distinguish types of edges and partitions.

The near and far edge arrays are first assembled and
initialized at step 503, and as shown in FIG. 14A. Once this
has been done, the edge matching process (steps 504 and
505) begins. Because there are no corresponding opposite
edges or panes for exterior (border) edges, all exterior edges
are considered automatically matched and are moved (step
504) out of the near and far edge arrays into the matched
edge array in sorted order as shown in FIG. 14B. After step
504 is complete, only interior edges remain in the near and
far edge arrays.

Matching of interior edges is the process of finding
combinations of near edges which are aligned and have the
same extent as a combination of far edges (step 50s). In the
example, the process is simple because the near edge 31 and
the far edge Zr are aligned with each other and both have the
same extent. These two edges are combined to form a single
edge data structure 240 with the common location and extent
of the two edges so matched. This matched edge data
structure (designated 3/+2r) is then moved into the matched
edge array as shown in FIG. 14C. At this point all near and
far edges have been moved from the initial near and far edge
arrays into the matched edge array.

As pane edges are maintained in alignment with either a
tiler border or with one or more edges of other panes, the
edge matching process will always find a combination of
edges such that all edges will eventually be matched Exte­
rior edges, those aligned with the tiler's borders, are auto­
matically matched with themselves. All interior edges, in
some combination, will be able to be matched with one or
more opposite edges. After completion of step 50S. the
matched edge array represents the smallest or atomic group­
ings of edges which can be managed and moved together
while preserving non-overlapped tiling and rectangularity of
aligned panes.

The next step in the partition construction process (step
506) is to build initial partitions from combinations of one
or more matched edges as stored in the matched edge array
at the completion of step 50s. There are three basic types of
partitions which are initially formed:

unitary whole partitions, which are formed from matched
edges which are not extended by any other matched
edges;

composite whole partitions. which are built from two or
more matched edges which are aligned and extend each
other, and are the largest combination of aligned edges
which can be manipulated together; and

segment partitions. which are segments of a composite
whole partition and are formed from the individual
matched edges which have been used to form compos­
ite whole partitions.

Matched edges represent the smallest groupings of pane
edges which can be moved together. Partitions may be
formed from either single matched edges, or from combi­
nations of matched edges. For instance. the matched edges

18
1l and 21 can be combined to form the composite whole
partition 11+21, so as to be moved together. Because these
two matched edges can both also be moved individually.
they can additionally be used to fonn the individual segment

5 partitions II and ZL
The process of constructing partitions from matched

edges involves iterating through the matched edge array to
identify which matched edges extend other matched edges.
An edge. a matched edge or a partition is considered

10 extended by another when the two are aligned (such that
vertical entities have the same x coordinate and horizontal
entities have the same y coordinate) and when the extent of
one begins where the other ends.

Those matched edges. such as 31+Zr, which are not
1S extended by others. will be used to form unitary whole

partitions. Those matched edges. such as It and Zl. which are
extended by others, can be joined to form composite whole
partitions. Additionally. when matched edges are so joined
or composited, they are individually used to form segment

20 partitions. Thus. because matched edges 11 and 21 extend
each other. the composite whole partition ll+Zl can be
formed. as well as the two individual segment partitions 11
and ZI. These segment partitions are. in a sense. child
partitions of a parent composite whole partition.

25 FIG. 14D shows the contents of the partition array 543
after construction of initial partitions from matched edges.
In addition to the partitions II. Zl and II+Zl. matched edge
31+Zr, which is not extended by any other matched edge.
forms the unitary whole partition 3/+2r only. Because

30 matched edges lr and 3r extend each other, they can be used
to form composite whole partition lr+3r as well as the
individual child segment partitions lr and 3r.

As each partition is formed. it is placed in sorted order in
the partition work array S43 such that whole and segment

35 partitions are stored together. In one embodiment. the ver­
tical and horizontal partition arrays may be maintained in an
order which simplifies the partition lookup process. Parti­
tions are first ordered by their position or location-the x
coordinate for vertical partitions and the y coordinate for

40 horizontal partitions. Within a group of partitions at the same
location. the partitions are subordered by type. with multi­
segment partitions first, segment partitions next and whole
partitions last. A group of same-type partitions at a given
location is further subordered by the start of the partitions'

45 extent. Alternative orderings may also be used.
After completion of the vertical partition construction

pass (step SOt). steps SOZ-5D9 are repeated for the horizon­
tal pass (step 510). FIGS. 15A-lSD illuslrate the contents of
the work arrays 540-543 during the horizontal pass for the

50 configuration of FIGS. 8 and 13. At step 503. the top and
bottom pane edges are inserted into the near and far edge
arrays, 540 and 541 respectively (FIG. 15A). The border
edges are then moved from the near and far edge arrays to
the matched edge array 54Z at step 504 (FIG. 15B). At step

55 505, the remaining interior edges are matched and moved to
the matched edge array 542 (FIG. 15C).

Unlike the vertical pass, however. as shown in FIG. 15C,
there is no simple one-ta-one matching of interior near and
far edges. Instead, the combination of the two near edges Zt

60 and 3t. which extend each other. are in combination coex­
tensive with the far edge lb. When a set of near edges is
found to be coextensive with a set of far edges. the near and
far edges, in combination. are considered to be matched.
Because the combined extent of Zt and 3t is the same as the

65 extent of Ib, the three edges together are matched (ll*Zt+
3t). A single edge data structure Z40 is then formed with the
common position and the entire extent of the three indi-

Petitioner Microsoft - Ex. 1021

5,712,995
19

vidual edges, and is placed in the matched edge array, as
shown in FIG. 15C.

When a one-to-one matching of coextensive near and far
edges is not found. as in this instance. extending edges must
be successively combined until a set of one or more com­
bined near edges is found to be coextensive with a set of one
or more combined far edges. Once all near and far edges are
combined to form matched edges, partition data structures
can be constructed.

The process for the successive combination is illustrated
in the block flow diagrams in FIGS. 16A and 16B. Data is
initialized at step 601. At the first iteration (no extension in
step 603), a local copy of the edge information is made at
step 614, and then an attempt is made to find a match at step
60S. Step 60s is further illustrated in FIG. 16B, discussed
below. If a matching edge is not found, then the edge must
be extended (step (06) and the process is repeated. For the
second iteration (yes in step 603). the local copy of the
previously considered edge is extended by the next succes­
sive edge (step 609), and then a match is again attempted
(step 60s). Because edges are ordered by location and
subordered by extent. edges which extend each other will be
found at successive locations in the edge arrays. When a
match is found. the edges, as extended, are added to the
matched edge array at step 610 (or alternatively. at step 642
of FIG. 16B). The process is repeated until all edges have
been matched.

FIG. 16B illustrates the process of finding a combination
of far edges to match a near edge or extended near edges.
Given a near edge or group of extended near edges as an
input parameter, the process looks for a single far edge or a
group of extended far edges which are coextensive with the
near edge parameter. As with the process illustrated in FIG.
16A. the edge matching process selects an edge by making
a local copy (step (35) on the first iteration. i.e .. not
extending at step 634. or extending a current edge with the
previous local copy of an edge (step (41). Prior to extending
an edge, the system determines whether the edges extend
each other and can be combined (step (39). Because edges
which extend each other must be successive entries in the
edge array. at step 639. if the two edges do not extend each
other, then no match has been found and the process returns
to the caller at step 60s.

At step 636. the near edge parameter and the local copy
of the far edge are compared. If the combination of near
edges is coextensive with the combination of far edges, then
they are combined to form a matched edge. This is done at
step 642 (or alternatively at step 610 of FIG. 16A) by
creating a new edge data structure with the common position
and extent and inserting it in sorted order into the matched
edge array. After creating the matched edge the function
returns to the caller (step (43) and subsequent edges are
considered. If the combination of edges does not match (step
(37), then the far edge is extended, if possible, and a new
comparison is made in the next iteration.

As shown in FIG. ISB. once the border edges are auto­
matically matched and moved into the matched edge array,
the interior edges It. 3r and Ib remain to be matched. First
a local copy of near edge It would be made (step 604) and
an attempt made to match it In attempting to match edge 2t,

20
made (step (35) and compared with the local copy of the
extended near edge. In this case, the edges match, and are
combined and moved into the matched array in sorted order.

As with the vertical pass. after all the edges have been
matched, partitions are formed from each matched edge and
combinations of matched edges as illustrated in FIG. ISD. In
this case, unitary whole partition It will be formed; matched
edge Ib+2t+3t, is not extended by any other matched edge
and forms a single unitary whole partition only; and lastly,

10 matched edges 2b and 3b extend each other and can be
combined to form both the composite whole partition 2b+3b
and the two individually manipulable segment partitions 2b
and 3b. The horizontal partition construction pass has then
considered six pane edges, formed four matched edges and

15 five partitions. of which there are two unitary whole parti­
tions (It and 1b+2t+3t). one composite whole partition
(2b+3b) and two segment partitions (2b and 3b).

Once the vertical and horizontal partition construction
passes have been completed. cross partitions are constructed

20 by examining the intersections of the vertical and horizontal
partitions. When an intersection is found. a crOss partition
data structure is created in the cross partition array 331. with
references 382, 383 to the particular intersecting vertical and
horizontal partitions (step 520). A cross partition so con-

25 structed provides the user the ability to manipulate both the
vertical and horizontal partitions simultaneously. In a pre­
ferred embodiment. only interior whole partitions are
included in determining cross partitions, and exterior parti­
tions and segment partitions are ignored. Of course, cross

30 partitions could be used to permit simultaneous manipula­
tion of any perpendicularly intersecting partitions. In the
case of the layout of FIG. 8. only one intersection of whole
interior partitions exists-the intersection the vertical parti­
tion 31+2r and the horizontal partition lb+2t+3t.

35 Once all partitions have been created, the tiler's previous
partition arrays are discarded and replaced with the newly
created arrays (step 530). Subsequent processing causes
pane tenants to be repositioned (step 70s). and new parti­
tions to be displayed (step 706). Partition construction is

40 invoked in many di1ferent circumstances, and only certain
panes may need to be moved or redrawn for any particular
situation. For instance. if partition 274 (FIG. 8) were to be
moved. only panes 211 and 212 would be repositioned. and
pane 210 would remain unchanged. PositiOning of pane

45 contents involves allocating space within the pane's exterior
rectangle for partition display, the title bar (if shown) and the
pane's tenant window. A pane's exterior rectangle frames all
of the component areas of the pane and each edge of the
exterior rectangle may be directly aligned with other panes'

50 edges or the tiler's border.
While a partition user interface device may appear to be

between individual panes. in one embodiment. they are
displayed within the exterior rectangles of the panes on
either side of a partition. As shown in FIG. 10. partitions

55 may be depicted in the space between the exterior rectangle
410 and the interior rectangle 420. Thus. a partition's edge
definition 360 corresponds to a line of a given location and
extent. and the partition's pickup or display rectangle 361
define a display area which may overhang abutting panes.

60 Additionally, because segment, whole and cross partitions
may be co-located. they will share the same display area,
though they are able to be distinctly displayed according to
one aspect of the invention. Such distinct display is shown

a local copy of far edge 1b would be made at step 635. Since
the edges do not match (step (36) and there are no more far
edges (step (33). the process retwns to step 606 to extend
the near edge. Since there is another near edge (step 603).
the local copy of the near edge is extended to include both 65

It and 3t (step 609) and an attempt is made to match the
extended near edge. A local copy of the first far edge is again

in FIG. 17 and discussed below.
The process for repositioning pane contents is straight­

forward. The partition display areas are first subtracted from
the exterior rectangle. This is based on user-contigurable

Petitioner Microsoft - Ex. 1021

5,712,995
21

parameters for partition display thickness. By setting parti­
tion thickness to O. partitions can be hidden. Because interior
partitions may straddle two or more panes. half of the
partition thickness can be allotted from the pane(s) on one
side of the partition and half can be allotted from the pane(s)
on the other side. If the title bar is shown separately from the
tenant window. an area is allotted at the top, and the
remaining pane space is reserved for the tenant window, that
is. the application window or region associated with the
pane. The title bar may alternatively be not showlL, be shown
elsewhere, or be included as part of the tenant application
window. Once the pane space has been divided. the tenant
window is repositioned, and the title bar and partitions are
redisplayed. In a preferred embodiment. whole partitions are
drawn first with a user-configurable color and style. Segment
and cross partitions which will overlap whole partitions are
then drawn on top of portions of the whole partitions.

Discrete Access and Display of Co-located
Partitions

An important aspect of the interface is its ability to
distinctly display multiple co-located partitions so as to
allow them to be distinguished from each other. and so that
a user may discriminate among them for individual selec­
tion. FIG. 17 depicts the configuration of FIG. 1, but now
with the details of segment. cross and whole partition pickup
regions shown. A piclrup region is a hotspot or area which
is individually responsive to a mouse or other pointing
device partition selection. Such piclrup regions may be
specially colored or have other distinctive display features.
and may also be indicated by other means, such as by
modifying the pointing device's cursor when it is located
over the pickup regions. The mouse sensitivity area and the
display area of a pickup region are usually the same.
However, in situations in which partitions are not visible, or
have reduced thickness, so as to make ordinary pointing
device selection difficult, the sensitivity region may extend
beyond the display area. In this way, partitions may be more
easily accessed without unnecessarily occupying display
space.

As with FIG. 1, FIG. 17 illustrates four panes 10-13
separated by two composite whole partitions 28, 21. Also
shown are shaded segment and cross partition pickup
regions. which correspond to the like numbered segment and
cross partitions of FIG. 1. Segment partitions 23. 24. which
are together coextensive with 241, are displayed on top of 20.
but so as to be individually distinguished from 21, and so as
to be individually selectable. Similarly, the pickup regions
corresponding to cross partition 22 and segment partitions
25, 26 are distinctly displayed.

Pickup regions represent and provide selection of entire
partitions. Thus, when the pickup region 23 is selected by
the pointer device, the entire segment partition coextensive
with the right edge of pane 11 is selected. When the pickup
region 24 is selected, the entire segment partition coexten­
sive with the right edge of pane 12 is selected. Similarly,
while cross partition 22 is co-located with the whole parti­
tions 28, 21, the cross partition's piclrup region allows it to
be individually accessed. selected and manipulated. When
selected, the entire cross partition, including both 28 and 21
is selected.

Because manipulation of whole partitions tends to be
done more frequently than manipulation of segment
partitions, a generally larger pickup region is reserved for
whole partitions. This larger pickup region includes the
remaining unshaded areas, that region of the partition exc1u-

22
sive of segment or cross partition pickup regions. In order to
select the whole partition 241 then, the pointing device is
positioned over one of the unshaded areas of that partition.
that is, any portion of whole partition 20 excluding the

5 segment and cross partition pickup regions It. 21 and 22.

A chief advantage of this ability to provide individual
display of and access to multiple co-located partitions is that
it allows the interface to manage multiple kinds of partitions
and present them to the user for alternative kinds of manipu-

10 lation.

Ranking Segment Partitions and Multi-Segment
Partitions

The discussion of the process of partition construction has
15 so far covered the initial creation of segment. whole and

cross partitions. TWo other types of partitions are also
created in later steps: flanking segment partitions (at step
507) and multi-segment partitions (at step 508). The process
is illustrated with respect to the more complex arrangement

20 of panes shown in FIG. 18.
A flanking segment partition is a segment partition which

has the same location and extent as a corresponding unitary
whole partition. The manipulation of a flanking segment

25 partition, however, di1fers from that of the unitary whole
partition when moved beyond an adjacent partition. In one
embodiment, when a unitary whole partition is moved
beyond a next partition, it will cause consequent movement
of the next whole partition, so as to accommodate movement

30 of the first partition. When a segment or flanking segment
partition is instead moved. other segment partitions will be
selected for consequent movement. Such consequent parti­
tion movement is discussed more fully in a later section.

For example, in FIG. 18. a unitary whole partition 764 is
35 coextensive with a flanking segment partition 765. When the

unitary whole partition 764 is moved downward past the
next partition. the composite whole partition 768. including
segment partitions 766 and 767. will be consequently moved
as pane 713 is collapsed to a minimum height. Movement of

40 partition 768, in turn. results in the additional resizing and
repositioning of panes 710 and 711 as well as 712-714, and
thus causes modification to all five panes of the configura­
tion. When, instead. flanking segment partition 765 is moved
downward past the next partition and to similarly cause

45 collapsing of pane 713. only segment partition 766 will be
consequently moved, and both panes 718. 711 will be
unaffected.

Flanking segment partitions have the same behavior.
functionality and appearance as other segment partitions,

so and in a sense, are artificial segment partitions, created
primarily to provide this sort of partition manipulation. They
are formed by a di1ferent prooess than that described earlier
for other segment partitions. In one embodiment. this pro­
cess involves examining candidate unitary whole partitions.

55 For each such candidate, a search is done to find out whether
parallel neighbor segment partitions exist-iliese would be
the segment partitions which the flanking segment partitions
would cause to move. Such neighbor segment partitions
must be interior partitions. must be a nearest neighbor to the

60 candidate partition, and must have an extent which fully
includes the extent of the candidate partition. If such a
neighboring parallel segment partition is found. a flanking
segment partition is formed. n is given the same location and
extent as the candidate unitary whole partition and placed in

65 the appropriate partition array. If no such neighboring seg­
ment partitions are found. no flanking segment partition is
added.

Petitioner Microsoft - Ex. 1021

5,712,995
23

A multi-segment partition is a joining of two or more
segment partitions to form a separately managed and
manipulable partition. Multi-segment partitions behave and
are manipulated like single segment partitions and provide
simultaneous movement and manipulation of two or more 5
segment partitions. The purpose of multi-segment partitions
is to provide additional and alternative manipulation of the
tiled layout. Because of this. in a preferred embodiment.
multi-segment partitions are not built if there is a coexten­
sive whole partition-such a whole partition would provide 10

the same manipulation capabilities, and there would be no
utility in creating the additional multi-segment partition.
Instead. the extent of multi-segment partitions is always less
than the extent of a co-located composite whole partition. In
one embodiment, multi-segment partitions may be created 15

for combinations of two border segment partitions only.
However. multi-segment partitions could be created for any
number or type of segments.

Multi-segment partitions are constructed at step 508 after
formation of the initial whole and segment partitions. and 20

after formation of flanking segment partitions. They are built
by iterating through the partition work array 543. and for
each segment partition. looking for another segment parti­
tion which extends the first segment partition. Once found,
the two segment partitions are composite to form a candidate 25

multi-segment partition. A search of the partition array is
then done to determine whether a coextensive whole parti­
tion exists. If no such coextensive whole partition is found.
the candidate multi-segment partition is added to the parti­
tion array. Otherwise the candidate multi-segment partition 30

is discarded. as it would duplicate the operation of the whole
partition.

As an example. in FIG. 18. segments 729. 730 and 731 are
on the right border of the tiler and are coextensive with the
right edges of panes 712. 713 and 714. respectively. Whole 35

partition 733 is a combination of all three of these segments.
Segments 729 and 730 can be combined to form a multi­
segment partition 732 which is not coextensive with the
whole partition 733. Similarly. segments 730 and 731 can be
combined to form a multi-segment partition 734 also not 40

coextensive with 733.

24
As the mouse is moved. the cross. vertical and horizontal

partition arrays are searched to determine which partition's
pickup region, if any. is located at the current mouse
position. If the search results in a partition being found at the
current mouse position. an appropriate cursor. correspond­
ing to the located partition. may be shown. When the user
presses the mouse button to select a partition. the same
lookup process is used to identify the selected partition.

In one embodiment. when a search for a partition at a
given location is performed, the cross partition array 331 is
searched first. effectively giving cross partitions precedence
over all other partitions. If no cross partition is found at the
location, the vertical partition array 327 is next searched,
followed by a search of the horizontal partition array 329.
Because of the ordering which places multi-segment and
segment partitions ahead of whole partitions in the vertical
and horizontal partition arrays, multi-segment and segment
partitions are selected ahead of and are given precedence
over co-located whole partitions. In effect. the segment
partitions' smaller pickup regions are excluded from the
larger pickup region of co-located whole partitions. A whole
partition's pickup region then, can be maintained as a single
rectangle. 361. with excluded segment partition pickup
regions given precedence in the lookup process. Thus. when
the mouse is situated over segment partition 23's pickup
region. the associated segment partition is selected ahead of
the co-located pickup region of whole partition 20.

In a preferred embodiment, the user can perform partition
movement by positioning the mouse over one of the parti­
tion pickup regions, selecting the partition with the left
mouse button. dragging the partition to new tentative loca­
tions with the mouse button held down, and finally. reposi-
tioning the partition at the desired location by releasing the
mouse button. While being dragged. none of the partition
locations change, but the new partition location is drawn on
the tiler as a tracking partition to give the user feedback.
Such tracking partitions are not true partitions in the sense
of separating panes. and no corresponding partition data
structures are allocated. Instead. they are just graphic rep­
resentations of where the partition being moved would be
placed were the mouse to be released. Rather than allocating
and creating partition data structures 230, tracking partition
display can be derived from existing partitions by reference
to the movement field 362. This movement amount repre­
sents a partition's current location relative to its original

FIG. 19A illustrates the contents of the vertical partition
array for the cOnfiguration of FIG. 18; FIG. 19B illustrates
the contents of the horizontal partition array for the con­
figuration of FIG. 18; and FIG. 19C illustrates the contents
of the cross partition array for the configuration of FIG. 18.

45 location at the beginning of the partition movement opera-
tion. .

Pane and Partition Movement
FIG. lOA illustrates a configuration with movement of a

tracking partition. Segment partitions 80S and 806 are
Once all partitions have been created and displayed and coextensive with the right edges of panes 851 and 854

the pane tenants have been positioned. the user is able to 50 respectively. and together are coextensive with composite
manipulate the various partitions to effect new layouts. whole partition 804. Segment partition 805 has been
Partition movement may be accomplished using a pointing selected and moved to the right. resulting in the display of
device such as a mouse. Alternatively, other methods, the tracking partition 841. Once the partition is placed, the
including keyboard. programmatic and indirect methods. configuration is redrawn as illustrated in FIG. 20B.
could be used for selecting partitions to be moved and for 5S With the release of the mouse button. the concluding steps
indicating the direction and extent of movement of partition movement are performed. Pane edges which

When the user positions the mouse over a partition. an were aligned with moved partitions are moved to their new
appropriate cursor may be displayed indicating the partition locations. This is done by applying the amount of movement
type (segment. whole. multi-segment or cross partition) and stored in the partitions' movement field 362 to the panes'
the partition direction (vertical or horizontal). A particular 60 exterior rectangles 347. thereby resizing and relocating the
partition can be selected for movement by selecting it with panes. Once all panes have been adjusted (step 702). tiler
the pointing device. such as by pressing the left mouse size and scrolling adjustments are made (step 703). new
button. Because various types of partitions have overlapping partition arrays are constructed based on the new pane
extents. but need to be individually selected, managed and locations (step 704), and the remaining steps of the layout
manipulated. each type of partition may be assigned and 6S manipulation sequence are perfonned (705-707).
displayed as a pickup region (e.g., 22-26 of FIG. 17) to As a partition is dragged to new tentative locations. it
allow the user to uniquely select a particular partition. causes tentative resizing of panes on either side of the

MS _ SU RFCAST _000006120

Petitioner Microsoft - Ex. 1021

5,712,995
2S

partition. The tentative repositioning of the partition is
stored in the movement field 362. but is not applied to panes
or partitions until the user has completed the movement
operation. for instance. by releasing the mouse button. When
this occurs. the mount of movement stored in the movement
field 362 is applied to the edges of exterior rectangles for
panes abutting the partition. In the example of FlO. 20A,
when partition SOS is moved to the right, the right edge of
pane 851 and the left edge of pane 852 will be shifted by the
movement amount. This causes pane 851 to increase in size,
and pane 852 to decrease. Once the panes have been
repositioned, new partition arrays are constructed and
replace the old partition arrays, according to the process
described above.

After building the new partition arrays, the tiler is redrawn
and redisplayed with the new configuration, as illustrated in
flO. 20B. Partition S85 has been moved to create new
partition 812. While the configurations of FlGS. 2GA and
2GB are fairly similar in appearance, they will be internally
represented by substantially different partitions. For
example, the composite whole partition 804, formed from
partitions 805 and 806, does not exist in flO. 2GB since the
partitions S12, S06 are not aligned Where 805 and 806 were
segment partitions in FlO. 20A, S12 and 806 are unitary
whole partitions in flO. 20B. The interior horizontal parti­
tions have changed with the replacement of a composite
whole and two segment partitions by a unitary whole
partition. Additional cross partitions have been created and
a flanking segment partition has been removed.

In simations where partition movement exceeds the width
or height of an abutting pane, other partitions may be also
caused to move. That is, when a partition on one side of a
pane is moved so as to reduce the pane's width or height
below a configurable minimum, the partition on the pane's
opposite side may be automatically moved. The pane is
collapsed. and may be entirely repositioned as partitions on
opposite sides are moved. This collapsing of panes and
automatic consequent movement of opposite partitions
occurs successively-as panes are collapsed by partition
movement and cause opposite partitions to move, continued
movement of these opposite partitions may cause other
panes to collapse and other opposite partitions to be moved,
and so on.

26
partition is tentatively moved, the amount of movement is
stored in the partition's movement field 362. and the result­
ant width and height of abutting panes is calculated. These
calculated pane dimensions are then tested. and if they are

5 reduced below a minimum. consequent movement of parti­
tions on the opposite side of the pane is triggered. Movement
of these consequently moved partitions can be performed
recursively or successively. and can in turn trigger other
consequent partition movement. Minimum pane dimensions

10 can be determined on a per-pane, per-tiler, global, or other
basis.

A pane can be bounded on any side by co-located segment
and whole partitions. Thus, when consequent partition
movement occurs. the interface can select among these

1S partitions to determine which is to be moved. When partition
movement reduces a pane to a minimum dimension, a search
can be done to find partitions aligned with the pane's
opposite side. As the search can result in finding co-located
segment and whole partitions, preference can be given to

20 one type of partition over another.

This can be done based on the type of the movement­
initiating partition. When a segment partition initiates
movement. other segment partitions can be given prece­
dence over whole partitions for consequent partition move-

25 ment When the movement-initiating partition is a whole
partition. the opposite may occur, and segment partitions can
be ignored.

To return to the example of FIO. 2GC. partition 807 is a
30 unitary whole partition. When it is selected for movement

and moved sufficiently to the left, it causes pane 855 to be
collapsed to a minimum width and the consequent move­
ment of a partition on the collapsed pane's opposite side.
Because a whole partition initiated the movement, the whole

35 partition 804, which includes both segments S05 and 806 is
selected instead of segment partition 806 only. The tracking
partitions 842 and 843 indicate the result of such movement.

Alternatively, a flanking segment partition S08, coexten­
sive with 807 can be selected to initiate partition movement.

40 When pane 855 is then collapsed to a minimum width, the
segment partition 806 is given precedence over the whole
partition 804 because a segment partition initiated the move·
ment. In this case, segment partition 806 is moved separately
from the whole partition. and in effect, is detached from the A simple example of this is shown in FIG. 20C which

illustrates movement of unitary whole partition 807 to the
left past composite whole partition S04, causing its conse­
quent movement. As partition 807 is tentatively moved to
the left, its movement is indicated by tracking partition 842.
and causes tentative resizing of panes 855 and 856 on either
side of the partition. Once tracking partition 842 is moved to 50
the left, closer to partition 804 than the minimum width of
855, partition 804 is consequently moved left, so as to
maintain the minimum width of 855. Partition St4' s move­
ment is indicated by tracking partition 843. The panes are
not resized nor are new partitions created until movement is 55
completed, that is, when the mouse button is released. H
tracking partition 842 were moved back to the right prior to
releasing the mouse button. tracking partition 843 would
also move to the right until it arrived at its original position.
FIO. 20C illustrates movement of whole partition 807. 60

which causes the whole partition 804 to be moved.
Alternatively. a flanking segment partition 808, located at
the same position as partition S07. could be selected. which
would have caused only segment partition 806 to be moved
without affecting partition 804.

45 whole partition. The end result of this is that in this latter
case. neither pane 851 nor pane 852 are modified, whereas
in the former case, both were resized.

Any movement-initiating segment partition. and not just
flanking segment partitions. may be used to effect such
movement Thus, if the exterior composite whole partition
801 (co-located with both segment partitions SOl and S.3)
were to be moved to the right. it would cause movement of
whole partition S04. Were segment partition 803 moved to
the right it would cause consequent movement of segment
partition 806. Additionally. while the examples show con­
sequent movement of segment partitions having the same
extent as the movement-initiating partitions. this is not
required.

Cross partitions effectively operate to move both a verti­
cal partition and horizontal partition referenced by indices
382,383 into the tiler's vertical and horizontal arrays 327,
329. Cross partition movement has the same behavior and
effect as the simultaneous movement of the horizontal and
vertical partitions referenced by the cross partition. As an

65 example. if the cross partition referencing partitions 804 and
811 in FlG. lOA were to be moved down and to the right. it
would have the same effect as moving the composite whole

Consequent partition movement applies to any number of
successive partitions, for all partitions of a tiler. As a

MS _ SU RFCAST _000006121

Petitioner Microsoft - Ex. 1021

5,712,995
27

partition 804 right and moving 811 down. at the same time.
As with movement of individual partitions. successive par­
titions in both the horizontal and vertical directions will also
be consequently moved to maintain minimum pane widths
and heights.

Partitions may also be moved beyond the borders of the
tiler. This may have the effect of increasing the internal
extent of the tiler. but not its display width or height. If a
tiler's extent is increased beyond its display dimensions, a
vertical or horizontal scroll bar may be used with the tiler.
to permit scrolling of the tiler to access to all portions of the
panes.

Finally. an additional aspect of the invention implements
auto-alignment or snap-in-place partitions. When a partition
is moved into substantial alignment with another partition,
the partition can be adjusted to be actually aligned, prior to
resizing the panes and recreating the partitions. Auto­
alignment calculations can be implemented in various ways.
The position of a moved partition can be compared with
existing partitions to detennine potential alignment and to
adjust the moved partition as necessary. Alternatively. user­
configured x and y alignment parameters can be used to
define a set of valid positions and effect grid-alignment of
partitions.

When the user releases the mouse button at the end of the
partition movement process. the appropriate alignment cal­
culation is perfonned and applied to the moved partition.
This results in the partition being moved to the calculated
coordinate and to appear to snap into place. Use of this
feature allows partitions to be easily brought into alignment
with other partitions so as to be joined into whole partitions.
Because the alignment parameters are configurable, this
feature may be effectively disabled or tuned to the specific
user requirements.

Alternative Pane Manipulation

The preceding discussion is chiefly concerned with par­
tition movement and manipulation. It should be kept in
mind. though, that the end result of partition movement is a
modified layout of panes and their contents. While direct
manipulation of partition user interface devices provides a
convenient way to modify pane layouts. there are various
other ways by which pane layouts may be changed. Alter­
native methods may involve entirely di:lferent user interface
devices.

Both partition and alternative user interface devices may
be used to operate internal mechanisms of the sort described
here to effect alterations of pane layouts. These mechanisms
may involve internal representations similar to the partition
data structure 230.

The distinction between partitions as user interface
devices and as data structures is meaningful. As user inter­
face devices. partitions may be visually depicted in a number
of ways. Co-located partitions (e. g .. segments and composite
wholes) may be distinctly displayed so as to be distinguished
from each other. Further. as user interface devices. partitions
may be selectable by use of a mouse or other means, and
co-located partitions may be discriminated among so as to
be discretely selectable.

Such display and selection properties are characteristics
of a user interface device. In a preferred embodiment.
implementation of partition user interface devices is based
on a partition data structure 230. In alternate embodiments,
however. such partition user interface devices may be based

28
For instance. FIGS. 21A-21C illustrate an example appli­

cation which appears to contain no panes or partitions at all.
In FIG. 21A neither partitions nor untenanted panes are
shown, and tenanted panes are allowed to blend with the

5 tiler's background. Because of this, the application, as
shown in FIG. 21A, appears to contain only three graphic
objects 860. Sfil and 862. apparently freely positioned in a

, containing window.

FIG. 2IB shows the internal workings of the application
10 of FIG. 21A. in which the same three objects 860.861,862

are actually tenant application objects of panes 870, 871,
872. FIG. 21B may also represent an application in which
tenanted panes 870-872 are visible. In FIG. llC, the panes
870-872 are shown to be situated among a set of non-visible

15 untenanted panes 873, 874. 875, 876.877, 878 which serve
as buffer areas.

Though the panes and partitions of the application of FIG.
2lA are not readily apparent.. the application objects 860.
861. 861, may be moved according to aspects and features

20 of the present invention. The pane layout. moreover. may be
manipulated without resort to partition user interface
devices. Thus, in FIG. lIB, the panes 87~72 may be
directly selected. Alternatively. in FIG. 21A. the same panes
may be indirectly selected by selection of the tenant appli-

25 cation objects 8(i0--862. In either case, once the panes are
selected, the pane layout can be altered by direct movement
of the panes. Such movement may rely on layout alteration
mechanisms described previously and on additional parti-

30 tion management methods discussed below.
As described so far. consequent partition movement has

only been concerned with maintaining minimum pane
dimensions. Certain applications. however. may require that
panes not exceed a maximum dimension. This can be

35 accomplished by other consequent partition movement
methods. In particular, where a minimum pane size may be
a threshold for causing consequent partition movement
ahead of the direction of movement. in an opposite way, a
maximum pane size may be a threshold for activation of

40 trailing partitions. behind the direction of movement.
Ordinary partition movement may cause a pane to be

expanded by moving a forward partition and leaving the
pane's opposite rear edge anchored. The pane is thereby
increased in width or height as the distance between the

45 edges grows. As continued movement of the forward edge
increases the pane's size to a maximum.. the rear edge may
be consequently moved, so as to maintain the pane's maxi­
mum dimension.

Such consequent movement may be applied to the rear
50 edge in various ways. The edge may be moved with an

aligned segment or whole partition, termed a trailing parti­
tion. If a trailing partition is a border partition. continued
movement may be disabled, or may cause new panes to be
automatically created as is caused by movement of other

55 border partitions. Such automatically created panes are
typically untenanted panes. such as 873-878 of FIG. 2Ie.
and may be configured to be not be visible. Alternatively, the
edge may be separately repositioned. apart from other par­
tition movement. so as to cause either a new pane or empty

60 region to be created behind it, without causing movement of
trailing partitions.

on other internal representations. Conversely. pane layout
alteration mechanisms of the sort described here may be 65

implemented in the absence of such partition user interface
deVices.

As with other consequent movement, trailing partitions
may successively affect other panes by expanding them to a
maximum size and causing other trailing partition move­
ment. Trailing partition movement may also be used in other
circumstances. such as for dragging outer or scrolled-off
panes into the display area as discussed later.

MS _ SU RFCAST _000006122

Petitioner Microsoft - Ex. 1021

5,712,995
29 30

automatically deleted. By using this feature. applications
such as that of FIGS. 21A-21C. may automatically create
untenanted panes by movement of trailing border partitions.
and automatically eliminate those panes as they are coI-

s lapsed during partition and pane movement.

Maximum pane dimensions may also be used to assign a
fixed or static size to a pane. by giving them the same
minimum and maximum dimensions. In this way. a pane's
width or height will neither exceed nor fall below a given
size. These values can be stored in fields 351-354, or in
various other ways, including on a per-tiler basis, in global
variables. or obtained on an as-needed basis from applica- Pane Creation
tion callbacks. Movement of a statically sized pane in any New panes can be created and added to the tiler in a
direction causes similar movement of both forward and rear number of dilferent situations including: when initializing
partitions, as minimum and maximum dimensions are main- 10 and first creating a tiler with a pre-defined arrangement;
tained. Panes may also be given a temporary fixed size when restoring or reapplying a particular pane configuration:
which can be stored in the temporary sizing fields 355-358. when redisplaying a hidden pane; when incorporating an
Temporary fixed pane movement may be used when a pane. external window into a tiler; in response to an application-
rather than a partition. is directly selected and moved. specific action; in response to a direct user request; and in

In the configuration of FIGS. 21A and 21B. for instance, 15 other situations.
pane 871 may be selected for direct movement by various A pane is added to the tiler within the processing of the
means. including selection of the tenant object 861. Because pane layout modification cycle as shown in FIG. 11. At steps
no single partition has been selected. all edges of the pane 7~ and 701. the tiler layout is altered and a new pane is
are moved together. This can be done by assigning the created by allocating a pane data structure 215 and inserting
pane's current width and height as temporary minimum and 20 it in the tiler's pane array 333. Alternatively. when redis-
maximum dimensions. Then. by joint movement of any playing a hidden pane. allocation of a new pane data
bounding vertical and any bounding horizontal partition (as structure is not performed and instead a flag 344 is set
internal data structures, rather than as user interface indicating that the pane is now shown. At step 702. the
devices). the other edges will be consequently moved either function handling the pane creation instantiates the new
ahead of the direction of movement or behind. Simultaneous 25 pane's location (as stored in the exterior rectangle 347) and
movement of bounding horizontal and vertical partitions in modifies the locations of existing panes to accommodate the
this manner. is. in effect. little dilferent than cross partition newly added pane within the tiler. The rest of the cycle. steps
movement. and may be similarly implemented. 703-707. occurs as descnbed earlier.

An additional feature permits sets of panes to be selected In one embodiment. partition manipulation can provide a
for joint static-sized movement. For instance, in FIG. 2IA. 30 direct means for the user to easily create new panes at 11In
the tenant objects 860-862 may be selected together for joint time and in an ad hoc fashion. Selection of an exterior
movement, resulting in simultaneous movement of the con- partition with any mouse button or selection of an interior
taining panes 870-872. These panes can be jointly moved partition with the right mouse button causes partition move-
using various methods. One such method is to determine a ment to be done in pane creation mode. Other means for
bounding rectangle for all selected panes and then give all 35 entering into pane creation mode may also be used. such as
panes inside the bounding rectangle temporary static sizes. holding down a special key. selecting menu options or
In this case. a bounding rectangle would include not only others. Once this mode is entered into. subsequent partition
panes 870--372, but also the non-visible panes 876-878. all movement causes a new pane rectangle to be outlined for
of which would be given temporary fixed dimensions: 40 placement of a new pane. When the mouse button is

Movement of the set of panes can then be accomplished released. a new pane is created and located in the rectangle
by movement of a horizontal and a vertical partition data described on one side by the movement-initiating partition
structure bordering any of the panes. in a way similar to the and on the other side by the tracking partition. The peIpen-
method for single pane direct movement. This can be done dicular dimension of the new pane rectangle is defined by
by virtue of the fact that all the panes in the set are 45 the extent of the movement-initiating partition.
temporarily locked in a fixed relationship. and any move- Any exterior or interior partition can be used to outline a
ment of one will affect the others in the set. Alternative new pane rectangle and create a pane, whether a whole.
group movement methods can also be used. segment or multi-segment partition. In one embodiment.

It is possible, using these methods, to implement tilers in cross partitions would not be used for pane creation pur-
which all but untenanted panes are static-sized (if all panes 50 poses though they can serve as well as other partitions to
are static-sized. movement would be frozen). In such a delineate new pane rectangles for creation and placement of
configuration, untenanted panes are the only panes which new panes within the tiler.
are resizable and in effect may provide fiexible buffer Using FIG. lOA as an example. selection of the segment
regions around the other fixed-sized panes. Such untenanted partition 805 with the right mouse button automatically
buffer panes may be automatically created by movement of 55 causes pane creation mode to be entered. Partition move-
trailing border partitions and by other means. FIG. 21C ment occurs in a similar way to that described earlier. As the
illustrates a possible configuration for an implementation of mouse is moved to the right. a tracking partition 841 is used
this sort. to indicate a new tentative position. As the tracking partition

In such an application. though. direct movement of static- is moved, a tentative new pane rectangle is described. and
sized panes may result in the automatic creation of many 60 may additionally be displayed if so desired and configured
untenanted buffer panes. Automatic pane deletion. which is by the user. In this example. the new pane rectangle is
generally used only for untenanted panes, can provide a way bounded on the left by the movement-initiating partition
to remove extra panes. Automatic pane deletion can be 805. and is bounded on the right by the tracking partition
implemented by giving certain panes (e.g .• automatically 841. The vertical extent of the new pane rectangle is
created untenanted panes) a minimum width and minimum 65 equivalent to the extent of 805. that is, bounded on the top
height of zero. When these panes are then reduced to a zero by the tiler's top border and bounded on the bottom by the
width or height by pane and partition movement, they can be horizontal whole partition 811.

MS _ SU RFCAST _000006123

Petitioner Microsoft - Ex. 1021

5,712,995
31

Unlike partition movement in simple movement mode
(non-pane creation mode), when the mouse button is
released, the movement-initiating partition is not relocated.
Instead. a new pane is created and instantiated with the
tentative rectangle described by the partition movement.
Additional attributes of the pane. such as flags. interior
rectangle dimensions, and title bar dimensions, will initially
be set to default values when created.

Once the new pane is created and positioned. other panes
are adjusted to accommodate the newly created pane. TIlls
can be done by reducing the width or height of the panes
which neighbor the tracking partition in the direction of
movement. Additionally. consequent movement of other
partitions may also be applied to panes as in simple move­
ment. In this case, as shown in FIG. 20D, pane 852 is
reduced in width by the amount of movement. a new pane
853 is created, and all other panes remain unaltered. With
creation of new panes, existing panes can be displaced from
their relative positions in the tiler, and no longer be situated
on the tiler borders. Because of this, existing panes may also
require modification of their border flags and other
attributes. As with other layout modifications, pane creation
takes place within the layout modification cycle of FIG. 11,
and after creation and repositioning of panes (step 702). the
remaining steps (703-707) are performed.

Partition movement in pane creation mode is not
restricted in any way, and partitions and panes are equiva­
lently manipulable in both pane creation and simple move­
ment modes. In particular, consequent partition movement
may occur in which panes may be automatically collapsed to
their minimum width or height. and their opposite partition
may be automatically shifted. As with simple movement
mode. automatic pane collapsing and shifting occurs suc­
cessively.

32
edges of 211 and 212 are together coextensive with partition
202). In such a case. an auxiliary segment partition can be
created to facilitate creation of additional panes. Such an
auxiliary segment partition would be coextensive with the
top edge of pane 211. but movement of this partition
ordinarily would be disabled except when in pane creation
mode. When enabled for creation of a new pane. movement
of the partition into the space of pane 211 causes a new pane
rectangle to be described with a horizontal extent equivalent

10 to that of the top edge of 211. Movement in the opposite
direction. into the space of pane 210, causes partition 202 to
be used to describe a new pane rectangle.

There are many other alternative methods for effecting
creation of new panes. New panes can be created program-

15 matically based on application-specific or user-configured
parameters. New panes may be created based on particular
pre-defined layouts or based on grid definitions consisting of
particular numbers of rows and columns of panes. Multiple
new panes may be added simultaneously, in rows or

20 columns, or in other arrangements. New panes also may be
created based on direct movement of individual pane edges
rather than partitions, thereby providing users a wider range
of pane creation options and finer control of the pane
creation process.

25 Another alternative method is to frame new pane rect-
angles directly without other reference to any existing
partitions or panes. Instead, by first clicking at a given point
within the tiler and then dragging the mouse to describe a
new pane rectangle, a pane can be placed anywhere within

30 the tiler. Existing panes which intersect the new pane
rectangle. can then be automatically adjusted so as to
accommodate its fitting into the tiler. This can be done by
moving the edges of intersecting panes into alignment with
the newly added rectangle. In a like manner, a free-floating

35 window may be placed or docked against any of the exterior
or interior partitions, and in so doing, outline a new pane
rectangle. The free-floating window can then be associated
with a new pane created within this rectangle and thereby be
included into the tiler.

FIG. 20E. which is based on the layout of FIG. 20A.
illustrates pane collapsing and consequent movement in
pane creation mode. The figure depicts movement of the
border composite whole partition 801 to the right, past both
partitions 804 and 807. Because the tentative movement of 40

partition 801 would cause the resizing of panes 851, 854 and
855 to widths below minimum. the opposite partitions, 804
and 807 are also tentatively moved. The resulting tracking
partitions 844, 845, 846 originate from and correspond
respectively to the partitions 801. 804, 807. and indicate 45

their tentative positions.

Pane Removal and Deletion

A pane can be removed from a tiler either by deleting the
pane, hiding it or by minimizing it (displaying it as an icon
or in another fonn). When a pane is deleted. the tenant
application window or object is deleted or deslroyed and the

Because partition 801 is an exterior partition. its move­
ment is automatically performed in pane creation mode.
During movement. the rectangle defined by the area between
the movement-initiating partition Sf1 and the corresponding
tracking partition 844 describes the tentative new pane
rectangle. TIris tentative rectangle may also be displayed in
reverse video, outlined as a rectangle. or displayed in other
appropriate ways.

When the mouse button is finally released, a new pane
layout is effected. as shown in FIG. 2OF. The configuration
includes a new pane 857 located in the tentative pane
rectangle between partition 801 and the newly added unitary
whole partition 815 which corresponds to the final position
of tracking partition 844. Panes 851, 854 and 855 have been
collapsed to their minimum widths and shifted right to the
new locations indicated. The left edges of panes 852 and 856
have been shifted right. also reducing the width of those
panes. though not to a minimum.

Additional partitions may also be created for special
pwposes. For instance. in FIG. 8. the top edge of pane 211
is not coextensive with an individual partition (rather, the top

pane data structure 215 is deallocated and removed from the
tiler's pane array 333. When panes are hidden or minimized.
the pane data structure is not deallocated and is not removed

50 from the pane array. Instead. a pane-shown :flag 344 is
cleared in the pane data slructure 215 to indicate that the
pane is not shown, and is hidden or minimized. When the
pane-shown flag is clear, the pane is ignored during recre­
ation of the partition arrays and the tenant application

55 window or region is hidden.
When a pane is removed from the tiler by deletion. hiding

or minimizing, the remaining panes may be resized to
accommodate the space vacated by the removed pane such
that there are no gaps in the tiler. The space vacated by the

60 removed pane can be used to grow other panes in the tiler.
Various pane configurations present di1ferent options for
assigning the removed pane's space to other panes, and
various methods can be used to determine which panes
should acquire portions of the vacated space. Such methods

65 may be to reallocate the space evenly among surrounding
panes. to divide the space based on the proportional sizes of
surrounding panes, to reposition the panes so that their edges

MS _ SU RFCAST _000006124

Petitioner Microsoft - Ex. 1021

5,712,995
33

would come into alignment with other partitions, to auto­
matically reconfigure the tiler in a predefined configuration
or to reallocate the space in other ways.

Various methods may be used to preserve the configura­
tion as much as possible and limit it alteration. This can be
done, for instance, by finding a neighboring pane having an
edge that is coextensive with an edge of the removed pane.
If such a neighboring pane is found, the removed pane's
space is assigned to this neighboring pane.

For example, in FIG. 20D, if pane 852 were to be
removed. pane 853 would acquire the removed pane's
vacated space because the right edge of pane 853 is coex­
tensive with the left edge of pane 852. The resulting pane
configuration would be similar to that shown in FIG. 20A
with pane 853 being substituted for 852. This would be done
simply by modifying pane 853's exterior rectangle 347, so
that the exterior rectangle'S right coordinate would be equal
to the removed pane's right coordinate. Pane 853's border
flags 343 would also be modified to reflect the fact that it was
now a right tiler border. Once the pane has been removed
and its vacated space has been transferred to other panes, the
partition arrays are reconstructed, the panes are repositioned
and the new partitions are displayed.

Other configurations of surrounding panes present differ­
ent options for transferring of the removed pane's space. For
example, in FIG. 2OD, if pane 853 were to be removed, both
panes 851 and 852 would be suitable candidates to acquire
the vacated space because both panes have edges coexten­
sive with edges of the removed pane. In such a case, a
number of di1Ierent things could be done. Either of the two
neighboring panes could acquire the space, or both of the
neighboring panes could acquire the space divided evenly or
based on their proportional sizes or based on application
rules.

In a preferred embodiment, only a single pane acquires
the vacated space when there are two or more neighboring
panes which have edges coextensive with the edges of a
removed pane. The selection of which pane among several
choices should acquire the removed pane's space is done by
precedence rules. Precedence is given first to panes above
the removed pane. then to panes below, then to panes to the
left and finally to panes to the right. By giving the space to

34
coextensive with the right edge of pane 857, and when pane
857 is removed. both 851 and 854 may acquire the vacated
space by each growing to the left. In the event that no single
pane can be assigned the vacated space, and there is more

5 than one combination of multiple panes which could be
assigned the space, the same precedence rules given earlier
are used. Combinations of panes above the removed pane
would be given highest precedence to acquire the vacated
space, with combinations below, to the left and to the right

10 having lesser precedence.
There are still other pane configurations in which no

single pane or group of panes has an edge or composite edge
which is coextensive with one of the edges of the pane being
removed For instance, in FIG. 22A, were pane 892 to be

15 removed. no combination of surrounding pane edges is
coextensive with one of the removed pane's edges. Instead.
using the top, bottom, left, right precedence rules, a search
can be performed to find a pane which simply borders the
pane being removed, without being coextensive. That pane

20 can then be grown so as to acquire all of the removed pane' s
space. In such cases, additional panes may have to be
reduced in size to accommodate the growth of the acquiring
pane. This is the case when pane 892 of FIG. 22A is
removed. The pane above 892, pane 891. is selected to

25 acquire the vacated space. Because 891 borders 894 in
addition to the deleted pane 892, growth of 891 causes pane
894 to be reduced in size. The resulting pane configuration
is shown in FIG, 22B.

In such configurations, if the growth of one pane would
30 cause another pane to be reduced to less than its minimum

width or height, alternative panes can be selected to acquire
the vacated space. In the situation where any growth of a
neighboring pane would cause at least one other pane to be
reduced to below a minimum dimension. other pane con-

35 figuration modifications of various sorts can always be made
to allot the removed pane's space to other panes in the tiler.

Finally, when only a single pane is visible in the tiler,
removal or deletion of that pane can be handled in various

40 ways. depending on application requirements. In such a
case, removal or deletion can be simply disabled; removal
can cause the tiler itself to be deletoo; an untenanted pane or
other default pane can replace the removed pane; or other
hidden panes can replace the removed pane. a single pane only. the alteration of the pane configuration is

kept to a minimum. While the precedence rules are arbitrary, 4S
by using such a standard sequence of preferential selection, Pane Contents

a consistent behavior is presented to the user. Other methods
may be employed to provide the user freer control over
which panes acquire the deleted pane's space. In this case,
when pane 853 of FIG. 2tD is removed, pane 851 would 50
acquire all of the vacated space because panes to the left are
given precedence over panes to the right. The resulting
layout would be that shown in FIG. lOB. Similarly, if pane
854 of FIG. 20D were to be removed, panes 851 and 855
would both have edges coextensive with edges of the 55
removed pane. In this case, the same precedence rules would
cause pane 851 to acquire the vacated space because panes
to the top have precedence over panes to the right.

A neighboring pane which has an edge coextensive with
an edge of the removed pane may not exist in some 60

configurations. For example. if pane 857 of FIG. 20F were
to be removed. no such single neighboring pane exists. A
situation of this sort may be handled by searching for a
group of two or more panes which have extendable edges
such that the combination of two or more edges are coex- 6S

tensive with one of the edges of the pane being removed. In
this case, the left edges of panes 851 and 854 together are

Application regions and objects can be placed. sized and
used in panes in a variety of ways. In a preferred
embodiment, applications are associated with panes through
the tenant window field 345 of the pane data structure 215.
Applications or application regions may also be associated
with and contained by panes through other means, such as
by pointers or references to application objects, via appli­
cation callbacks or through auxiliary application data. A
pane may also exist in an untenanted state, or may be
tenanted by an empty or stub tenant window. In such cases
a pane may appear to not exist-that is, a pane may appear
as a gap between other panes.

Ordinarily, when a pane is created, a tenant window or
other application content is assigned to the pane for display
and containment by the pane. Depending on the reason for
and mode of pane creation and also depending on the
sequence of application or user steps taken to create the
pane, a tenant window or application mayor may not be
immediately associated with the pane. For instance. when a
saved or predefined layout is restored, new panes may be
created containing specific tenant windows. In other

MS _ SU RFCAST _000006125

Petitioner Microsoft - Ex. 1021

5,712,995
35

situations, such as when a new pane is created by partition
movement, an additional step may need to be taken by the
user to assign a pane tenant or application contents to the
pane. Alternatively, a user may fust select an application
object and then enter pane creation mode to outline a new
pane. When the new pane is then created. the pre-selected
application object is automatically associated with the pane.

A default new tenant window can be registered by an
application. When a new pane is then created with no
specified tenant, the default tenant window can be created 10

immediately and directly associated with the pane. Lacking
such an application-defined default tenant, the pane can
remain untenanted The user can then, or at a later time,
select a particular tenant or application object to be placed
into the pane. This can be done. for instance, by pressing title 15

bar button 261 which activates a popup menu for selection
of the tenant. Alternatively. a tenant may be associated with
a pane by selecting a tab or menu item, or by other means.
Such association of a tenant with a pane can be effected at
any time (except when disabled or prevented by the current 20

application), allowing the user to easily configure applica­
tions within the panes of a tiler.

Applications can be distributed among panes and associ­
ated with panes in a variety of different ways. For example,
the present invention can be used with database applications 25

for simultaneously displaying lists of records, fields of a
selected record in the list. and graphs, calendars and multi­
media images relating to the records or fields of a selected
record. each in an associated pane. Alternatively. panes can
be used for entirely distinct applications such as word 30

processing. calendars and games. A tiler of the present
invention can contain any number of panes and partitions.
and there is no fixed maximum number of panes and
partitions. As a result. the present invention could be used
for a spreadsheet with each pane corresponding to a spread- 35

sheet cell. Such a spreadsheet application could permit ad
hoc alteration of cell, row and column arrangement. sizing
and symmetry for a variety of purposes.

An application can be connected or associated with a pane 40

by maintaining references to the application in the pane data
structure 215. Such references may be pointers. handles or
indices to windows, data structures. callback functions or
application objects. In a preferred embodiment. the tenant
window field 34S provides a simple way of associating a 45

tenant application's window handle with a pane of the
invention.

Since the association of pane and tenant can be simply
maintained, applications can easily be reassociated with and
moved among various panes. For example, an initially 50

untenanted pane may have an application associated with it
by the user's selecting a particular application from a popup
menu or other means. The selected application would then
be created and its window handle or object pointer inserted
into the tenant window field 34S so as to associate it with the 55

pane and so that it would be contained by the pane. If the
user then wished to associate another application with the
pane, a new application could then be selected and created
using similar means. The first application would then be
either hidden or deleted or otherwise removed from asso- 60
ciation with the pane. The new window handle or applica­
tion object would then re-instantiate the pane's tenant win­
dow field in order to associate the new application with the
same pane.

36
new pane containers and redisplaying both. This has the
effect of causing two individual pane tenants to change
locations. Exchange of pane tenant locations can also be
accomplished without altering the association between a
pane data structure and its tenant. This can be done by the
alternate method of exchanging the positions or exterior
rectangles 347. of the two panes, and redisplaying as above.

Drag-Drop Methods
Swapping of pane contents and positions can be further

facilitated by using the commonly known drag-drop method.
In this case. a fust, or source pane can be selected by
pressing and holding the mouse button while over the title
bar area, and beginning to move the mouse while the button
remains held down. This initiates the drag operation which
continues while the mouse button is held down and until the
mouse button is released, which effects the drop operation.
The drop may also be aborted by pressing the escape key or
by other means. Other means may also be used to select a
pane for drag-drop operations. such as by holding down the
shift or other special key while selecting the pane. Such
other means of initiating drag-drop may be necessary in
situations where the title bar is not visible, or for other
reasons.

As the mouse is moved with the button held down, the
drag operation continues. As the mouse is positioned over
other panes, or target panes, which can accept a dropped
pane, a special drag-drop cursor is displayed or other user
feedback is given to indicate that a drop can occur. When
located over the source pane or other pane which, for
application or other reasons cannot accept the dropped pane.
a special cursor or other user feedback can be shown
indicating that a drop operation cannot be done. Once the
user locates the cursor over a chosen target pane with which
the source pane is to be exchanged, the mouse button is
released. effecting the drop. The tenant windows of the two
panes can then be exchanged by exchanging the contents of
the tenant window fields 345, adjusting and resi2ing the
tenant windows and redisplaying as described above.
Alternatively, the same end result may be accomplished by
exchange of the exterior rectangle dimensions 347 of the
two panes. and recreating the partitions.

Drag-drop swapping of panes (or drag-swap). provides an
extremely convenient mechanism for the user's arranging of
panes in a non-overlapped tiled layout. Similar application­
specific drag-drop operations can also provide additional
convenience in creating and distributing particular pane
tenants such that multiple panes have related contents. For
instance. a tenant application showing a monthly calendar in
a source pane, may allow a particular day to be selected for
a drag-drop operation. When dropped on an untenanted or
other target pane, a new daily calendar tenant window can be
created and inserted into the target pane, showing the hours
and appointments for that day. If the target pane were
tenanted, that pane could be either destroyed or hidden based
on application requirements.

Additionally, drag-drop operations might include outlin­
ing of new pane rectangles. In such a case, a source object
could be selected a new pane rectangle could then be
outlined, and upon completion, a new pane would be created
and the selected object dropped into it

Drag-swap operations are not limited to the panes of a
single tiler. A pane may be selected in one tiler and swapped
with a pane of a second tiler. Another configurable feature of
the present invention can provide for automatic deletion of

Pane contents can also be easily exchanged simply by
swapping the contents of the tenant window field 34S of two
panes. adjusting the individual tenant windows to fit in their

65 untenanted or empty panes when drag-swapped with any
other. This further facilitates layout management and
manipulation.

MS _ SU RFCAST _000006126

Petitioner Microsoft - Ex. 1021

5,712,995
37 38

Drag-drop or other methods may be used to perform other Using less common techniques. however. the invention
reassociation of panes with tilers. One such use of drag-drop may automatically install a non-overlapped tiling inteIface
is to provide a method for ''tearing off' one or more panes in an application explicitly designed for use with an over-
from source tilers. This can be done by selecting a pane or lapped windowing system. and not intentionally designed or
a set of panes and dragging it to an area outside the tiler. 5 developed for use with a single plane non-overlapped tiling
Panes torn off in this way may be caused to be no longer system. That is, an application which does not natively use
associated with their containing tilers. a non-overlapping interface, can be taken over and have a

For instance. new tilers can be automatically created when non-native non-overlapping interface installed by the inven-
the mouse button is released and the tom-off panes are tion. Further, the automatically installed non-native inteIface
dropped. The torn-off panes can then be removed from the 10 may correspond to the interface 2M of the invention.
source tilers and reassociated with the newly created tilers. Such a non-native non-overlapped interface can be
Alternatively, the panes can remain un deleted in the source installed in an application by aSSociating windows of the
tilers, and duplicated in the new tilers. When the torn-off application with panes of the non-native interface. and by
panes are attached to new tilers in such a way, various redirecting the window procedures to procedures of the
approaches may be used for automatically arranging the invention. Such redirection can be accomplished by what is
panes, including using the panes' current relative 15 commonly called subclassing or hooking in the Microsoft
arrangement, or using automatic arrangement according to Windows environment. Other mechanisms for redirecting
layout guidelines or styles, as described below. handling of window events exist in other operating systems.

Through such redirection, window events and messages
Torn-off panes may also be simply deleted, hidden or relating to moving, sizing, display, mouse activity and other

minimized, and not associated with any new tiler. Still 20 inteIface concerns. can be intercepted for pre-processing and
another alternative method is to delete the torn-off panes post-processing.
from their tilers, but without destroying the pane tenants. Subclassing is performed by installing a new window
That is, the tenant windows or application objects remain procedure, or subclass function. (e.g., one implemented by
active. even though the panes are deleted. In such a case, the the present invention). in an existing application window.
pane tenants may be reassociated with the inteIface of an 25 This causes all messages intended foc the subclassed appli-
overlapping window system. so as to be free-floating. Such cation window to be first routed to the subclass function.
a usage of the tear-off feature can be useful in an application Some selected set of the messages is handled by the subclass
which allows windows to be freely attached to and detached function and the messages can be forwarded, in a perhaps
from tilers of the present invention. modffied state, to the original window procedure. As most

Such tearing off of panes may also be used in conjunction 30 messages are forwarded on to the original window
with pane sets. Panes may be marked for selection, and procedure, most of the application's original functionality is
multiple panes may be selected to fonn particular pane sets. maintained. and the application is augmented rather than
Various application-specific operations may be perfonned subverted. Thus. a non-overlapping tiling interface can be
on such pane sets. As well. a pane set can be arranged using added to an application with little other effect Foc applica-
similar methods as are used for general tiler layout 35 tions which consist of many individual windows the advan-
arrangement. or all panes in a pane set may be hidden, tages of non-overlapping tiling can be significant.
deleted or minimized. Pane sets can also be drag-swapped In one embodiment. a non-native nOD-overlapping tiling
with other pane sets in the same or in other tilers. inteIface of the present invention is automatically installed

While tenant windows can be easily associated with and in Windows 3.1 MDI (Multiple Document InteIface) appli-
separated from panes of the present invention, there are 40 cations. These applications, including the Program Manager
certain practices which should be adhered to by the tenant and File Manager, have been implemented for use with
windows. As is obvious. the tenant windows should remain overlapped window inteIfaces. and have not been not been
within the pane's space, and should be responsive to move- intentionally designed for use with non-overlapped inter-
ment and adjustment of the pane. Additionally, the tenant faces. However. by associating the applications' windows
window's border and title bar areas should ideally be 45 with panes and tilers of the non-overlapped interface. and by
displayed in conformance with the other panes of the tiler redirecting the applications' window procedures to subclass
and the user's configuration. Tenant windows may also be functions of the invention. the applications can be automati-
required to provide certain user inteIface features and cally given a non-overlapped tiling inteIface.
devices such as being responsive to drag-drop initiation. An MDI application typically includes MDI child
responding to drag-drop events, and implementing various 50 windows, an MDI client window. which is the direct parent
title bar buttons. of the child windows. and an MDI frame window which is

In order to provide conformance of appearance, behavior the parent of the MOl client window. When the non-
and functionality among panes. an embodiment of the overlapped tiling inteIface is installed, several things occur:
present invention may provide library functions. These a tiler 205 is created; its client window field 307 is instan-
library functions can provide a relatively simple way to 55 tiated with the MDI client window; its frame window field
build applications. or application objects or windows which 3f6 is instantiated with the MDI frame window; panes 215.
can reside as tenants of any of a tiler's panes. corresponding to MDI child windows, are allocated and

stored in the pane array 333; the panes' tenant window fields
Attachment to Existing Overlawed Window 345 are instantiated with the MOl child window handles;

InteIfaces 60 subclass routines are installed for MDI frame. client and
The interface of the present invention can be incorporated

into an application in a conventional manner, such as by
calling library functions provided in an embodinIent of the
invention. Such incorporation of the interface into an appli­
cation is done explicitly and by design during the applica­
tion's development. Such an application may also condi­
tionally enable or disable a non-overlapped tiling inteIface.

child windows; panes are automatically arranged according
to a saved layout or layout style (step 702); scrolling
parameters are initialized and partition arrays are created
(steps 703, 704); and the remaining steps 70~707 of the

65 layout modification sequence are peIformed.
Once the subclass functions have been installed. they

receive the rerouted window messages. While most types of

MS _ SU RFCAST _000006127

Petitioner Microsoft - Ex. 1021

5,712,995
39

messages can be ignored and simply f01warded to the
original window procedure, certain messages are trapped
and acted upon. For the most part, these are messages which
allow the user interface to be appropriately displayed, to
handle sizing. movement and other state messages and
notifications, and to respond to mouse, keyboard and other
input messages.

Partitions can be displayed and implemented between
panes by handling the MOl client window's WMYAINT
message. Standard display and behavior of child window
sizing borders can be altered by handling many of the
non-client messages such as WM_NCPAINT.
WM~CCALCSIZE, WM~CHIITEST and others.

For example, when a mouse click occurs in the border
regions of MOl child windows, overlapped window sizing
and movement would normally occur. To alter this native
behavior, the MOl child window subclass function can trap
the WM_NCLB UTfONOOWN message which occurs
when the left mouse button is pressed in a border or other
non-client area of a window. Rather than forwarding the
message to the original window procedure, the non­
overlapped tiling interface's partition movement routine can
be invoked. Pane and partition painting, cursor display and
various other window events can be similarly handled.

When MOl child windows are created and destroyed by
the application, corresponding pane data structures 215 are
added to and deleted from the tiler's pane array 333. The
WM_MOICREPITE message is used to request creation of
an MOl child window. When this message is received by the
subclass function, the following steps occur: a pane data
structure 215 is allocated; the message is forwarded to the
original window procedure; the original window procedure
creates a new MDI child window and returns the new

40
Such layout styles may also be termed functional layouts,
and can be applied to variable numbers of panes in variably
sized tiler areas, such that pane placement may be relative
rather than fixed. Such functional layouts are methods for

5 reapportioning a tiler's space among its panes and are
distinct from saved and restored layouts which generally
deal with explicit configurations.

Layout styles might include simple distribution of panes
in vertical or horizontal bands; T layouts, in which a

10 specified number of panes are placed in horizontal bands at
the top area of the tiler and remaining panes are distributed
in vertical bands beneath it; inverted T layouts which are
upside-down T layouts; E or inverted E layouts which are T
layouts rotated 90 degrees; and matrix layouts in which

15 panes are distributed in a grid of rows and columns of
approximately equal size. For any given layout style, there
may be any number of variations. For example, in the matrix
layout style, one variation might give preference to greater
numbers of rows than columns. In another variation of the

20 matrix layout style, when the number of panes cannot be
conveniently divided into rows and columns, a first or last
row or column might contain fewer or more panes than other
rows or columns.

Because such functional layouts are function generated,
25 there is an no limit to the variety of layouts that can be

generated Layout-generating functions might be geared
toward application considerations and rules; might be sen­
sitive to the tiler's dimensions, number of panes or preferred
dimensions for particular panes; might consider the location

30 of certain partitions; might manage particular orderings of
panes; or might involve methods for dynamic pane arrange­
ment based on various formulas, user preferences or patterns
of use.

window handle to the subclass function; the subclass func- 35 Layout generating functions operate by reapportioning
tion associates the new window with the new pane by the tiler's area to each visible pane in some established,
instantiating the pane's tenant window field 345; the new function-specific pattern, and resetting the panes' exterior
MDI child window's subclass function is installed; the new rectangles, 347, to create new pane locations. These func-
pane is positioned in the tiler by various methods; and the tions may also give each pane appropriate border flags 343,
remaining steps of the pane modification cycle of FIG. 11 4() and other attributes as necessary. A further consideration
are executed. when applying layout styles. is that pane edges may be

In somewhat the reverse, pane deallocation occurs on required to be positioned in conformance with partition
receipt of a WM~CDESI'ROY message which indicates auto-alignment features.
that a window is about to be destroyed. When received by As with other layout modifications, layout-generating
the MDI child's subclass function, the subclass is 45 functions operate within the context of the pane layout
uninstalled, the pane data structure is discarded, the partition modification cycle of FIG. 11. The user selects a particular
arrays are rebuilt and the message is forwarded to the arrangement method from a popup menu or through other
original window procedure for completion of the standard means (step 700); the appropriate arrangement function is
destroy window processing. dispatched (step 701); the arrangement takes place by appro-

For applications such as the Program Manager, which 50 priate division of the tiler's space, reassignment of panes to
may ordinarily have large numbers of overlapped windows, the generated positions and modification of pane border
the advantages of the non-overlapped interface can be :flags as just described (step 702); and the remaining steps of
significant, particularly because users very often find it both the cycle occur as discussed earlier (steps 783-707).
necessary and difficult to conveniently arrange and rearrange Arrangement functions can also be used with an auto-
the child windows. By manipulating the partitions of the 55 matic arrangement facility which may be enabled at various
tiler. users are able to easily organize and manage arrange- stages of the layout's evolvement. In particular. if automatic
ments of multiple windows; easily find windows; add and arrangement is enabled. when panes are deleted or otherwise
delete windows as needed; and conveniently place the removed from the tiler. the current layout style can be
windows for their special purposes. Additionally, because reapplied for the changed number of panes. Similarly, layout
the installation of the non-native interface occurs without the 60 styles or guidelines can be automatically applied when a
need for software modification by the application provider. new pane is added through an application or other action,
the features can be readily made available to the user. where no new pane rectangle is given for placement of the

Pane Arrangement Methods

Panes may be arranged in various predefined configura- 65

tions. This may be done by functions which create new pane
layouts according to particular layout guidelines or styles.

new pane. For instance, a multimedia encyclopedia appli­
cation might provide a button for showing a drawing related
to a particular entry. When the button is pressed, a new pane
is created and can be automatically positioned according to
the current layout style, or by layout-generating callback

MS _ SU RFCAST _000006128

Petitioner Microsoft - Ex. 1021

5,712,995
41

functions. In like manner, when a pane is deleted or hidden,
the layout-generating function can be automatically reap­
plied. Automatic arrangement can also be used at other times
and can be enabled and disabled by the user as desired.

A maximized layout is a layout in which a single pane is
displayed and occupies the tiler's entire display area while
all other panes are hidden. A half-maximized layout. an
example of which is shown in FIG. 23A, has two panes
which together occupy the tiler's display area. with remain­
ing panes hidden. This figure also depicts a set of tabs 1»93,
994,995,996, grouped in a tab bar 992. The tabs and tab bar
are not considered part of the tiler proper, but are auxiliary
user interface devices for selection and activation of hidden
and inactive panes as discussed below.

42
methods for variable numbers of panes. In contrast, the save
and restore layout functions generally operate only with the
numbers of panes in the tiler when stored, and most often use
the absolute pane poSitions of the stored layout rather than

5 relative positioning.

A series of layouts can be tracked and stored over time to
provide a layout history. The layout history can be config­
ured by the user or the application to include any arbitrary
maximum number of layouts, and can be stored in a file or

10 other storage and restored in the same or in a later session.
By using the layout history, any previous layout can be
re-obtained by the user or application. Particular layouts can
also be named or otherwise identified by the user to facilitate
later access. Further, by selecting series of previous or

15 succeeding layouts in the layout history, undo-layout and
redo-layout functions can be provided. Panes present in one
layout which are not present in another layout can be hidden
or deleted, and later redisplayed or recreated as needed.

In the half-maximized layout, the left-hand pane can
contain the tiler's main tenant window and the right-hand
pane position can be occupied by secondary panes which
can be successively viewed by selection of tabs or other
means. The main tenant window can be defined by the
application implementing the tiler and can be obtained by 20

the main pane reference handle or pointer, 317. Such a pane
configuration allows, for example, a database browsing
window as a navigator or main window, and auxiliary
windows displaying related records and data.

depending on application requirements.

Virtual Pane Types

A pane in a non-overlapped tiled interface generally
describes a visible region of a display area. This sense of a
pane can be extended to further include the notion of virtual Title bar button 266 provides a convenient way to rear­

range the tiler in the maximized layout, causing the pane to
which the title bar belongs to be maximized, and remaining
panes to be hidden. Button 265, similarly. can be used to
produce a half-maximized layout. Button 264 restores the
previous non-maximized layout as will be discussed below.
The remaining title bar buttons are 263, which causes the
pane containing the button to be minimized or hidden; UI,
which activates a popup menu for redisplaying a hidden
pane or selecting a new pane tenant; and 262, which
activates a popup menu containing tenant application
options. Such title bar buttons may be di1ferently configured
and used for other purposes, and other means may be used
for accessing the functions implemented by each of these
title bar buttons.

When pane layouts are modified, an extra copy of each
pane's location is stored in the pane's normal rectangle 350.
This extra copy is not made when the layout is in either the
maximized or half-maximized layouts, but only when in a
normal, non-maximized layout. When the layout is later in
one of the maximized layouts, the previous normal layout
can be restored by pressing button 264 or by oilier means.
That is, each pane's exterior rectangle 347, is re-instantiated
with the contents of its normal rectangle, 350, hidden pane
tenants are redisplayed, and the rest of the layout modifi­
cation cycle of FIG. 11 (steps 703-7fT1), is then executed.

Tiler layouts can additionally be saved and restored by
writing a layout to a file or other storage when the tiler is
closed, and reading the layout back from storage when the
tiler is reopened Pane content and tenant information can be
saved along with such saved layout information. This pro­
vides the convenience of being able to return the layout to
where the user left off when last working with the tiler. This
capability may also be used at other points in the tiler's
lifetime to apply various predefined layouts to current pane
arrangements. Such predefined layouts or templates may be
defined by the system, the application, or may be configured
by the user. The applying of such a layout again takes place
within the pane layout modification cycle of FIG. l1--once
the layout of panes is applied, partition construction and
remaiuing steps of the cycle are executed.

The save and restore layout features are distinct from the
layout-generating functions which implement arrangement

25 or non-visible regions or panes. Various sorts of virtual
panes may be distinguished including scrolled-off or outer
panes, untenanted or empty panes, hidden panes, minimized
panes and inactive panes.

30 Scrolled-off or outer panes are panes which are fully or
partially outside the tiler's display area. These may be
contained. however. within the tiler's internally maintained
extent, 322. Such outer panes may be brought back into view
by scrolling, dragging, or by other mechanisms which adjust

35 the tiler's extent or display area.
Untenanted panes are a second sort of virtual or non­

visible pane. Such panes may have no active tenant window
or application object associated with them. or alternatively.
they may be associated with a stub or empty tenant window.

40 Depending on display parameters, such untenanted or empty
panes may not necessarily be visible. and may appear as
gaps between other panes or appear to be part of. or
otherwise undistinguishab1e from the tiler's background
area. Such untenanted panes may be used in conjunction

45 with hidden partitions to provide applications the appear­
ance of free-form arranging and positioning of application
objects, as shown in FIGS. 2IA-21C.

Hidden and minimized panes are other kinds of virtual
panes. Both hidden and minimized panes may be variously

50 referenced and accessed by popup menus, tabs or other user
interface devices. Minimized panes additionally may be
displayed as icons or in other forms. When a pane is hidden
or minimized. it is removed from the display area of the tiler
and remaining visible panes may be adjusted to occupy its

55 vacated area. The hidden or minimized pane's data structure
215, however. is not deallocated. and remains present in the
tiler's pane array 333. A pane-shown flag 344 is cleared. the
tenant window is hidden. and the pane's exterior rectangle
347 may also be nulled out. Other fields of the pane's data

60 structure 215 remain unchanged and the pane generally
remains associated with its tenant. The hidden or minimized
pane and its associated tenant may be redisplayed later in its
prior location or in other locations.

Inactive panes are another type of virtual pane. These are
65 tenant windows or application objects which have been

registered with or are otherwise known to the system and
which can be activated by invoking registered callback

MS _ SU RFCAST _000006129

Petitioner Microsoft - Ex. 1021

5,712,995
43

functions, sending creation request messages or through
other means. Inactive panes can be displayed, selected and
activated through the use of menus, tabs. icons and other
devices.

When an inactive pane is activated, several steps may be 5

performed, including: creation of a new pane data structure,
215; creation of the registered tenant window or application
object by calling a registered callback function or other
means; association of the tenant window with the pane data
structure; positioning of the pane in an area of the tiler by 10

setting the pane exterior rectangle 347; and making the
tenant window visible within the pane. The area which the
new or activated pane is to occupy can be allotted from the
tiler's area by layout-generating functions as discussed
above; by acquiring a portion of the area of one or more 15

panes currently present in the tiler; by removing one or more
panes from the tiler and replacing them with the new pane;
by growth of the tiler; or by other means.

44
the bottom right comer; by appropriating space from the
current pane to accommodate the new pane; or by growing
the tiler in a particular direction to accommodate the new
pane.

In that tabs present the user a set of choices, they are
similar in functionality and usage to menu items and push
buttons. Because of this, all of the functionality and uses
discussed in relation to tabs can also be implemented with
various sorts of menus and buttons, and with other methods
for presenting choices to the user. For instance. by selecting
title bar button 261. a popup menu is displayed and may
present the same choices as are presented by a set of tabs.
Such a menu may also be displayed through other means
such a right mouse button click in a given pane's area.

Tiler Sizing and Scrolling

FIG. 14A depicts an exploded view of a tiler 795. con­
tained by a tiler parent window 798, belonging to an
example application. The tiler includes the panes 777-780.

Selection and Placement of Panes in a Tiler 20 The tiler is also shown in FIGS. 14B-14F. removed from the
AG. 23A illustrates a layout in which certain panes ,". parent window. In these diagrams. the tiler's visible display

991 are shown and others are hidden, minimized or inactive. area 776, also termed its client rectangle, is additionally
A set of tabs. 993. 994. 995. 996. are grouped in a tab bar shown in an exploded form. The client rectangle is stored in
992. These tabs represent and provide access to particular the tiler data structure's client rectangle field 321. A tiler of
panes. including the hidden, minimized and inactive panes. 25 the present invention may be used in conjunction with such
Variable numbers of tabs may be used, as needed, and may a containing tiler parent window as 790. or may be used with
be arranged in various alternative ways including those various other sorts of tiler parent windows or, alternatively.
shown in FIG. 23B. in which two sets of tabs 997. 998 are may be used independently of any tiler parent window.
displayed. While the tabs in FIG. 23A reside outside the 30 A tiler parent window 790 may also include various other
tiler's area. the tabs in FIG. 23B reside inside the area of the auxiliary windows or regions such as a title bar 791, a frame
individual panes, and alternatively may reside elsewhere 792 (which may also be termed the tiler parent window's
within the tiler's space. Tabs may be selectively hidden. client rectangle). tool bars 793. 794 containing various
shown. or conditionally shown in connection with particular application buttons, a horizontal scroll bar 796. a tab bar 797
layouts (e.g .. for maximized and half-maximized layouts). 35 and a status bar 798. Various other auxiliary windows may

By selecting one of the tabs 993-996, a shown pane, such also be used, such as rulers, additional tool bars. vertical
as pane 991. can be hidden and an alternative pane, refer- scroll bars. particular application windows and others. All of
enced by the tab, can be made visible in its place. This can these auxiliary windows are typically placed in various fixed
be accomplished by clearing the pane-shown flag. 344 in or configurable locations within a frame 792, and the
pane 991; hiding pane 99l's tenant window; setting the 40 remaining area can be given over to a tiler 795. As such
replacement pane's pane-shown flag; instantiating the auxiliary windows are resized. repositioned, added or
replacement pane's exterior rectangle 347 and border flags removed, the containing application may automatically
343 with the exterior rectangle and border flags of pane 991; resize other auxiliary windows and the tiler.
and finally, completing the layout modification cycle to A tiler's display area may be resized by direct modifica-
recreate the partitions and display the panes by executing the 45 tion by the user or in various indirect ways. When a
remaining steps 703-7(Y'f of FIG. 11. containing tiler parent window such as 790 is directly

Tab selection may be used in any configuration of panes resized by the user, the component auxiliary windows and
to effect display of virtual and other panes referenced by a the tiler may also be resized. Also, as the user adds or
given tab. In a preferred embodiment, tab selection may removes auxiliary windows, the application may adjust the
cause the tab-referenced pane to replace the current or active 50 allotment of space among auxiliary windows and the tiler so
pane. If the referenced pane is already visible, it may simply that the tiler's dimensions may be altered.
be made the current or active pane without changing When a tiler is resized. several methods may be used to
position, or, alternatively, its position may be swapped with reapportion the changed display area among contained
that of the active pane. Alternatively, panes at certain defined panes. Panes may be clipped or cut off and grown as needed,
positions may be designated for replacement. For example, 55 they may be proportionally resized andlor provided with
in a half-maximized layout. the pane at the right-hand pane scroll bars to give access to other portions of the tiler.
position may be designated for replacement so that the FIG. 24C shows the same arrangement of panes as FIG.
left-hand pane, containing the main window, is unchanged. 14B. but with a reduced display area 776. In simple cases.
Other layout-specific or application-specific rules might also right and bottom border panes may be clipped so that their
be used for designating the pane to be replaced. 60 right edges are aligned with the right edge of the tiler's

Other alternative methods may be used for tab selection of display area or client rectangle 321. as shown in FIG. 24C.
panes. For instance. rather than replacing a given pane, a Bottom border edges can be similarly clipped so as to be
tab-referenced pane can be simply added to the tiler along aligned with the bottom edge of the tiler's display area.
with the currently displayed panes. Positioning of the newly Thus. because the display area has been reduced in width.
added pane might be done in any number of ways. including: 65 panes 778 and 780 are clipped to fit the tiler display area
by automatic arrangement by a layout-generating function; 776. This can be done by modifying the pane's exterior
by positioning the new pane at a predefined location, e.g., rectangles 347.

MS_SURFCAST _000006130

Petitioner Microsoft - Ex. 1021

5,712,995
45

This method of clipping keeps the use of scroll bars and
the alteration of partition locations to a minimum. Such
simple clipping. however. can't always be done because one
or more border panes may be reduced to less than the
minimum width or height.

Because of the minimum pane width and height
constraints, where such clipping would otherwise reduce a
pane to less than its minimum width or height. the pane is
clipped only so far as that minimum. As shown in FIG. 24D.
when the tiler's display area is sufficiently reduced, simple
clipping would cause pane 780 to be reduced below a
minimum width. As a result. pane 780 is only partially
clipped and is not able. using this method, to be fit into the
display area of the tiler. In consequence. the tiler's extent.
which is the combined extent of all panes in the tiler's
layout, will at times exceed the display area.

FIG. 24D also illustrates a horizontal scroll bar 781 which
can be used when the tiler's extent exceeds the display area.
Horizontal and vertical scroll bars can provide access to
portions of the layout which would otherwise be inacces­
sible. When the tiler is grown or the layout is modified so as
to allow the extent to be fit into the display area, the scroll
bars can be eliminated. Panes located fully or partially
outside the visible display area are considered outer or
scrolled-off panes. as distinct from a hidden pane. While
scroll bars (and other methods) may be used to bring such
outer panes into view. hidden panes cannot be brought into
view in this manner and must be explicitly redisplayed by a
user or application action.

When a window (such as a tiler) is resized. it is also
repositioned. so that at least one of its borders are relocated.
In a preferred embodiment. however. the same clipping
process occW's regardless of which tiler border is reposi­
tioned. While the tiler's origin (top left comer) may be
moved, all pane origins remain unchanged relative to the
tiler's origin.

46
In the examples previously discussed, panes positioned

outside the tiler's display area. or "outer panes." are
accessed by scrolling of the tiler extent and the use of scroll
bars. Outer panes may also be accessed by alternative

5 methods which can be configW'ed for use in the present
invention. Rather than using scroll bars for access to outer
panes, partition movement can be used to cause such panes
to be dragged onto the display area, as well as dragged off
as described earlier.

10 Using the drag-on method of pane and partition
movement. partition 782 of FIGS. 24D and 24E can be
moved to the left so as to drag or bring outer panes 778. 771)
and 780 back into the display area. In contrast to other
partition movement methods, in drag-on partition

15 movement. partitions of outer panes. such as 783. 784,
which are on the side away from movement. do not remain
anchored. Instead, those outer partitions trail the movement
of the movement-initiating partition (782) such that entire
panes are brought into the display area. Thus. drag-on

20 movement of partition 782 of FIG. 24E to the left. causes
trailing movement of outer or trailing partitions 783. 784.
which in tW'n causes panes 778. 771) and 780 to be brought
back into the display area 776. as shown in FIG. 24F.

When the drag-on method is used. a partition such as 782
25 of FIGS. 24D and 24E. which is aligned with the edges of

outer panes, may be termed a ''fronting partition." Such
fronting partitions may be any sort of whole, segment or
cross partition. and may be specially displayed to indicate
that there are outer panes which can be accessed by their

30 manipulation. Other methods may also be used to indicate
the presence of outer panes. Once all of the panes have been
fully dragged into the display area. fW'ther movement left of
the fronting partition 782 may cause the panes directly
aligned with the fronting partition to be expanded.

35 Alternatively, tiler border panes may be expanded. or expan­
sion of panes may be done proportionately as they are
dragged onto the display area.

Using a method similar to clipping. when tilers are resized
larger. right and bottom border panes are grown to fit the tiler Additional Aspects and Features
extent. Specifically, if the tiler display area 776 of FIG. 24D 4() There are a variety of other possible aspects and featW'es
were adequately increased. pane 780 would become visible of the present invention. These featW'es and those already
and the sizes of panes 778 and 780 would be increased to described may be varied. modified. altered. adapted and
obtain layouts as sbown in FIGS. 24C and 24B. configmed for specific application purposes.

A tiler's extent may also be altered by pane and partition User and application preferences. parameters and
movement which can cause collapsing and shifting of panes 45 defaults. can be set and altered for specific panes. tilers and
such that panes are positioned outside the visible display application configurations. Such values as tiler display
area of the tiler. For example. the movement of partition 782 features. partition widths. partition visibility, visibility of
of FIGS. 24B and 24C to the right may cause panes 778.779 untenanted panes, minimum and maximum pane widths and
and 780 to be collapsed to their minimum widths and shifted beights, appearance or color of partitions and pickup
right. Once these panes have reached their minimum width, so regions, pickup region expansion, the use of title bars and
further movement canses them to be pushed outside of the title bar content and formats, can be set and adjus~d for
tiler display area. This may result in configurations similar specific panes or partitions. Additionally, individual pane
to those shown in FIGS. 24D and 24E in which various edges and partitions may be individually configmed for
panes have been moved outside the tiler's display area 776. various display characteristics.

Pane sizing. scrolling and clipping calculations are always 55 All of the foregoing values and attributes can be modified
performed in the context of the pane layout modification at installation time, at run time. or during development of
cycle of FIG. 11, and are performed at step 703, which may particular applications. Such preference, parameter and
further include initialization of scroll bars and scrolling default values may be stored on per-pane. per-partition.
variables. Because the tiler sizing calculations are based per-tiler and per-system bases, or other individual or group
upon both the tiler's extent and its display area, whenever 60 bases. or alternatively. may be obtained through callback
either is modified, these calculations have to be performed functions or other means.
again. Moreover, as the tiler's extent is the sum of the extent The tilers of the present invention can operate as over-
of the panes. any modification to the layout may also cause lapping windows in conjunction with other overlapping
modification of the tiler extent, and require sizing and windows of an overlapped window interface. Tilers may
scrolling recalculation. As a result, the tiler sizing and 65 additionally be embedded as pane tenants of other tilers of
scrolling calculations have to be incoxporated into the layout the present invention or in other non-overlapping systems to
modification cycle. produce multiple levels of tilers.

MS_SURFCAST _000006131

Petitioner Microsoft - Ex. 1021

5,712,995
47

Other methods can be used for displaying, distinguishing,
discriminating among, selecting and activating co-located
partitions than those already described. These could include
the use of variously displayed hotspot or pickup regions,
popup menus. push buttons, keyboard and mouse button
combinations, title bar selection. as well as other user
interface devices and mechanisms. Other methods than
partition movement may be used to effect the movement,
sizing and adjusting of particular panes. Panes may be
directly selected alone or in combination with other panes,
and may be directly manipulated. resized. repositioned or
adjusted. Mechanisms of the invention may also be used to
effect pane movement without resizing, and may be used in
non-overlapped interfaces in which gaps between panes are
permitted.

48
6. The tiling system of claim S. wherein a second appli­

cation region is associated with said second pane, said tiling
system further comprising means for associating said second
application region with said first pane when said first appli-

5 cation region is associated with said second pane.
7. The tiling system of claim 2. further comprising means

for creating an additional pane from a portion of at least one
of said plurality of pa1les.

8. The tiling system of claim 7. wherein the means for
10 creating a new pane include first means for defining an area

for placement of the additional pane by movement of at least
one partition.

9. The tiling system of claim 8, wherein the means for
creating a new pa1le include second means for defining an

15 area for placement of the additional pane by simultaneous
movement of the at least one partition and at least one other
partition aligned with the at least one partition.

Various combinations of modifiable and configurable fea­
tures and functionality provide for a wide range of uses,
appearances, expressions and behavior of the present inven­
tion. Other special functionality may be made available and
used in conjunction with the invention, including explicit 20

pane sizing, direct pane selection and movement, maximum
and fixed pane dimensions, movement of static-sized panes.
selection of pane sets and groups, and automatic creation
and deletion of panes for various purposes.

10. The tiling system of claim 2. further comprising:
means for removing a first pane from said plurality of

panes; and
means for resizing at least one pane of said plurality of

panes which is adjacent to said first pane to include an
area defined by said first pane.

11. The tiling system of claim 2. further comprising
25 aligning means for moving a first partition which is within

a range of a second partition so as to align the first and
second partitions.

Finally, the present invention may be used in and adapted
for use with a wide range of applications. including
spreadsheet, database, multimedia, network, graphics.
desktop, and window management applications as well as in
graphic user interface (GUI) operating systems and many
other applications.

12. The tiling system of claim 11, wherein said aligning
means includes means for altering said range.

30 13. The tiling system of claim 11. further comprising:
Having thus described at least one illustrative embodi­

ment of the invention, variations, alterations and modifica­
tions will be readily apparent to persons of skill in the art.
Such variations, alterations, and modifications are consid­
ered to be part of and encompassed by the invention. 35

Accordingly, the invention is not limited except as to the
claims appended hereto.

What is claimed is:

a plurality of predefined partition positions; and
wherein said aligning means includes means for moving

said first partition into alignment with one of said
plurality of predefined partition positions.

14. The tiling system of claim 2, further comprising
parallel moving means for moving at least one partition
which is parallel to the at least two partitions having a
common end so as to maintain a predetermined dimension

1. A tiling system comprising:
a plurality of non-overlapping panes. wherein a pane can

be situated adjacent to more than one pane along an
edge in a first direction, and wherein a pane can be
situated adjacent to more than one pane along an edge
in a second direction transverse to the first direction;

40 for at least one of said plurality of panes, when one of the
at least two partitions having a common end is moved.

a plurality of partitions adjacent said plurality of panes,
wherein at least two of the plurality of partitions have
a common end;

means for moving one of the partitions having a common
end; and

means for simultaneously moving the at least two parti­
tions baving a common end.

2. The tiling system of claim 1, wherein the at least two
partitions having a common end are aligned.

3. The tiling system of claim 2. further comprising:
means for jointly displaying partitions which are aligned;

and
means for displaying at least one of the aligned partitions

distinctly from the partitions which are aligned.

15. The tiling system of claim 2 further comprising means
for associating application regions of another interface with
respective ones of said plurality of panes.

45 16. The tiling system of claim 1, wherein the at least two
partitions having a common end are transverse.

17. The tiling system of claim 16, further comprising
parallel moving means for moving at least one partition
parallel to a first one of the transverse partitions and at least

50 one partition parallel to a second one of the transverse
partitions so as to maintain a predetermined dimension of at
least one of the plurality of panes when the transverse
partitions are moved

18. The tiling system of claim 1, further comprising
55 partition creating means for creating said plurality of parti­

tions based upon said plurality of non-overlapping panes.
19. The tiling system of claim 18, wherein said partition

creating means includes:

4. The tiling system of claim 2, further comprising means 60
for simultaneously moving at least two partitions which are
positioned in directions transverse to each other.

edge means for identifying edges of said plurality of
panes;

matching means for detennining coextensive edges of
adjacent panes; and

S. The tiling system of claim 2, wherein a first application
region is associated with a first pane, said tiling system
further comprising means for disassociating the first appli- 65

cation region from the first pane and associating the first
application region with a second pane.

partition means for identifying coextensive edges of adja­
cent panes as partitions of said plurality of partitions.

20. The tiling system of claim 19, wherein said matching
means includes:

means for identifying common edges of adjacent panes;

MS_SURFCAST _000006132

Petitioner Microsoft - Ex. 1021

5,712,995
49

means for determining whether identified common edges
are coextensive; and

means for iteratively expanding edges to include aligned
edges of separate panes when common edges are not
coextensive.

21. The tiling system of claim IS, further comprising
partition set creating means for creating sets of aligned
partitions of the plurality of partitions.

22. The tiling system of claim 1. further comprising
parallel moving means for moving at least one partition 10
which is parallel to one of the at least two partitions having
a common end so as to maintain a predetermined dimension
for at least one of said plurality of panes, when one of the
at least two partitions having a common end is moved.

23. A method for manipulating panes in a non- IS

overlapping tiling system comprising the steps of:
defining a plurality of non-overlapping panes, wherein a

pane can be sitnated adjacent to more than one pane
along an edge in a first direction, and wherein a pane
can be situated adjacent to more than one pane along an 20
edge in a second direction transverse to the first direc­
tion;

defining a plurality of partitions adjacent to said plurality
of panes;

defining at least one first set of aligned partitions includ- 25

ing at least two partitions which are aligned
selecting one partition from a first set of aligned parti­

tions; and
changing a position of said selected partition so as to

manipulate at least one of the plurality of panes. 30

24. The method of claim 23 further compriSing the step of
defining at least one second set of aligned partitions includ­
ing at least two partitions which are aligned and which
transverse to at least one first set of partitions.

25. The method of claim 23, wherein a first application 35

region is associated with a first pane and a second applica­
tion region is associated with a second pane, the method
further comprising the steps of associating said first appli­
cation region with said second pane and associating said
second application region with said first pane when said first 40
application region is associated with said second pane.

26. The method of claim 23. further comprising the steps
of:

removing a first pane from said plurality of panes; and
resizing at least one pane of said plurality of panes which 4S

is adjacent to said first pane to include an area defined
by said first pane.

27. A method for manipulating panes in a non­
overlapping tiling system comprising the steps of:

defining a plurality of non-overlapping panes;
defining a plurality of partitions adjacent to said plurality

of panes;
defining at least one first set of aligned partitions includ­

ing at least two partitions which are aligned;
displaying the plurality of partitions; and
jointly displaying the at least one first set of aligned

partitioDS distinctly from the plurality of partitions.
28. The method of claim 27, wherein the step of defining

50

55

a plurality of non-overlapping panes includes the step of 60
defining a plurality of panes wherein a pane can be situated
adjacent to more than one pane aloDg an edge in a first
direction, and wherein a pane can be situated adjacent to
more than one pane along an edge in a second direction
transverse to the first direction. 65

29. A tiling system having a plurality of non-overlapping
panes comprising:

50
means for selectively coupling at least two of the plurality

of panes which are adjacent in a first direction such that
the at least two panes can be jointly manipulated in a
second direction transverse to the first direction when
coupled and individually manipnlated in the second
direction when not coupled; and;

wherein the means for selectively coupling includes:
a first individually selectable control for coupled

manipulation of the at least two panes; and
a plurality of second individually selectable controls,

each corresponding to one of the at least two panes,
for uncoupled manipulation of the corresponding
pane.

30. The tiling system of claim 29, further comprising:
second means for selectively coupling at least two of the

plurality of panes which are adjacent in the second
direction such that the at least two panes can be jointly
manipulated in the first direction when coupled and
individually manipulated in the first direction when not
coupled;

wherein the second means for selectively coupling
includes:
a third individually selectable control for coupled

movement of the at least two panes adjacent in the
second direction; and

a plurality of fourth individually selectable controls.
each corresponding to one of the at least two panes
adjacent in the second direction, for uncoupled
movement of the corresponding pane.

31. The tiling system of claim 29. further comprising:
means for displaying the panes, the first individually

selectable control and the plurality of second individu­
ally selectable conlrols.

32. The tiling system of claim 31, wherein the first
individually selectable control and the plurality of second
individually selectable controls are simultaneously and dis­
tinctly displayed.

33. The tiling system of claim 31, wherein the first
individually selectable control and plurality of second indi­
vidually selectable controls are pickup regions.

34. The non-overlapping tiling system of claim 29, further
comprising means for manipulating panes.

35. The tiling system of claim 29. wherein a first appli­
cation region is associated with a first pane, said tiling
system comprising means for disassociating the first appli­
cation region from the first pane and associating the first
application region with another one of said plurality of
non-overlapping panes.

36. The tiling system of claim 35, wherein a second
application region is associated with said other pane, said
tiling system further comprising means for associating said
second application region with said first pane when said first
application region is associated with said other pane.

37. The tiling system of claim 29. further comprising
means for creating an additional pane from a portion of at
least one of said plurality of panes.

3S. A tiling system having a plurality of non-overlapping
panes comprising:

means for selectively coupling at least two of the plurality
of panes which are adjacent in a first direction such that
the at least two panes can be jointly manipulated in a
second direction transverse to the first direction when
coupled and individually manipulated in the second
direction when not coupled; and

means for selectively coupling at least two of the plurality
of panes which are adjacent in the second direction

MS_SURFCAST _000006133

Petitioner Microsoft - Ex. 1021

5.712,995
51 52

such that the at least two panes can be jointly manipu- 46. The tiling system of claim 43. wherein a pane can be
lated in the first direction when coupled and individu- situated adjacent to more than one pane along an edge in a
ally manipulated in the first direction when not first direction, and wherein a pane can be situated adjacent
coupled; to more than one pane along an edge in a second direction

means for selectively coupling a first pane, at least one 5 transverse to the first direction.
second pane adjacent the first pane in the first direction. 47. A system for creating partitions adjacent panes in a
and at least one third pane adjacent the first pane in the tiling system having a plurality of panes. a first set of aligned
second direction such that the first pane. the at least one edges of a first set of the panes. and a second set of aligned
second pane, and the at least one third pane can be edges of a second set of the panes which is adjacent to 1be
jointly manipulated in the first and second directions 10 first set of panes, wherein the second set of aligned edges is
when coupled. aligned with the first set of aligned edges, the system

39. A tiling system having a plurality of non-overlapping comprising:
panes, wherein a pane can be situated adjacent to more than
one pane along an edge in a first direction. and wherein a means for iteratively expanding a first subset of the first
pane can be situated adjacent to more than one pane along set of aligned edges;
an edge in a second direction transverse to the first direction. 15 means for iteratively expanding a second subset of the
the tiling system comprising: second set of aligned edges;

means for selectively coupling at least two of the plurality means for determining whether the first subset is coex-
of panes which are adjacent in a first direction such that tensive with the second subset; and
the at least two panes can be jointly manipulated in a 20 means for identifying coextensive subsets as partitions.
second direction transverse to the first direction when 48. The system of claim 47. wherein a pane can be
coupled and individually manipulated in the second situated adjacent to more than one pane along an edge in a
direction when not coupled.

wherein the means for selectively coupling includes: first direction, and wherein a pane can be situated adjacent
a first individually selectable control for coupled to more than one pane along an edge in a second direction

25
transverse to the first direction.

manipulation of the at least two panes; and
a second individually selectable control for uncoupled 49. The tiling system of claim 47, further comprising

manipulation of at least one of the at least two panes. partition set creating means for creating sets of aligned
4D. The tiling system of claim 39. further comprising partitions.

means for selectively coupling at least two of the plurality of SO. A non-overlapping tiling system comprising:
panes which are adjacent in the second direction such that 30 a plurality of non-overlapping panes. wherein a pane can
the at least two panes can be jointly manipulated in the first be situated adjacent to more than one pane along an
direction when coupled and individually manipulated in the edge in a first direction, and wherein a pane can be
first direction when not coupled. situated adjacent to more than one pane along an edge

41. A tiling system comprising: in a second direction transverse to the first direction;
a plurality of non-overlapping panes. wherein a pane can 35 a plurality of partitions adjacent to said plurality of panes;

means for selecting one of a single partition and a set of
aligned partitions including said single partition as a
movement partition; and

be situated adjacent to more than one pane along an
edge in a first direction, and wherein a pane can be
situated adjacent to more than one pane along an edge
in a second direction transverse to the first direction;

means for associating at least one application region with
at least one of said plurality of panes;

means for changing an association of a first application
region from an association with a first one of said
plurality of panes to an association with a second one
of said plurality of panes.

42. The tiling system of claim 41, further comprising
means for changing an association of a second application
region associated with said second pane to an association
with said first pane when the association of the first appli­
cation region with the first pane is changed.

43. A tiling system comprising:
a plurality of non-overlapping panes;

means for moving the movement partition.
40 51. The tiling system of claim SO, wherein the means for

selecting includes at least one first individually selectable
control for selecting the single partition and at least one
second individually selectable control for selecting the set of
aligned partitions including the single partition.

45 52. The tiling system of claim 51. further comprising:
means for simultaneously and distinctly displaying the at

least one first individually selectable control and the at
least one second individually selectable control.

53. An apparatus for manipulating panes in a tiling system
50 having a plurality of non-overlapping panes comprising:

a plurality of partitions adjacent said plurality of panes;
means for jointly displaying partitions which are aligned; 55

first manipulation means for simultaneously moving a
first edge which is an edge of a first pane and a second
edge which is an edge of a second pane and which
extends the first edge;

and
means for displaying at least one of the aligned partitions

distinctly from the partitions which are aligned.
44. The tiling system of claim 43. wherein the display

means displays each of the partitions in the set of aligned 60

partitions distinctly from the set of aligned partitions.
45. The tiling system of claim 44, further comprising:
means for seleding one of a single partition and a set of

aligned partitions including said single partition; and

second manipulation means for moving the first edge
without moving the second edge;

third manipulation means for simultaneously moving a
third edge. which is an edge of the first pane transverse
to the first edge. together with one of the first edge, the
second edge, and a fourth edge which extends the third
edge; and

fourth manipulation means for moving the third edge
without moving the first, second and fourth edges.

means for moving the selected one of a single partition
and set of aligned partitions so as to manipulate at least
one pane.

65 54. The tiling system of claim 53 further comprising
means for associating application regions of another inter­
face with respective ones of said plurality of panes.

MS_SURFCAST _000006134

Petitioner Microsoft - Ex. 1021

5,712,995
53

55. A tiling system comprising:
a plurality of non-overlapping panes;
a plurality of partitions adjacent said plurality of panes;

and
aligning means for aligning a first partition with a second S

partition when said first partition is within a range of
said second partition; and

wherein the aligning means includes means for altering
said range.

56. The tiling system of claim 55, wherein a pane can be 10

situated adjacent to more than one pane along an edge in a
first direction, and wherein a pane can be situated adjacent

54
first parallel moving means for moving a partition parallel

to the aligned partitions and moving one of the aligned
partitions so as to maintain a predetermined dimension
for at least one of said plurality of panes; and

second parallel moving means for moving the partition
parallel to the aligned partitions and moving the aligned
partitions so as to maintain a predetermined dimension
for at least one of said plurality of panes.

63. A tiling system comprising:
a plurality of non-overlapping panes;
a plurality of partitions adjacent said plurality of panes,

wherein at least two of the plurality of partitions are
transverse; to more than one pane along an edge in a second direction

transverse to the first direction.
57. A tiling system comprising:

15 parallel moving means for moving a first transverse
partition, a second transverse partition, at least one
partition parallel to the first transverse partition and at
least one partition parallel to the second transverse
partition so as to maintain a predetermined dimension

a plurality of non-overlapping panes;
a plurality of partitions adjacent said plurality of panes;

and
aligning means for aligning a first partition with a second 20

partition when said first partition is within a range of
said second partition; and

wherein said aligning means includes:
a plurality of predefined partition positions; and
means for locating a partition into alignment with one 25

of said plurality of predefined positions.
58. The tiling system of claim 57, wherein a pane can be

situated adjacent to more than one pane along an edge in a
first direction, and wherein a pane can be situated adjacent
to more than one pane along an edge in a second direction 30

transverse to the first direction.
59. A tiling system comprising:
a plurality of non-overlapping panes;
a plurality of partitions adjacent to said plurality of panes,

wherein at least two of the plurality of partitions are 35

aligned; and
means for creating an additional pane including:

of at least one of the plurality of panes.
64. A computer system comprising:
a processor for executing program steps; and
a display connected to the processor; and
a set of program steps to be executed on the processor

which generate a tiling system on the display. the tiling
system including:
a plurality of non-overlapping panes, wherein a pane

can be situated adjacent to more than one pane along
an edge in a first direction. and wherein a pane can
be situated adjacent to more than one pane along an
edge in a second direction transverse to the first
direction;

a plurality of partitions adjacent to said plurality of
panes, wherein at least two of the plurality of parti­
tions have a common end;

means for moving one of the partitions having a
common end; and

means for simultaneously moving the at least two
partitions having a common end. first means for defining an area for placement of the

additional pane by movement of one partition of the
aligned partitions; and

40 65. A tiling system comprising:

second means for defining an area for placement of the
additional pane by movement of the one partition
and at least one other of the aligned partitions.

60. A tiling system having a plurality of non-overlapping
panes and a plurality of partitions adjacent to the panes, the 45
system comprising:

means for moving at least one partition to define an area
between an initial position and a final position of the at
least one partition; and

means for creating an additional pane in the area such that 50
one of the panes is situated adjacent to more than one
pane along an edge in a first direction and one of the
panes is situated adjacent to more than one pane along
an edge in a second direction transverse to the first
direction. 55

61. A tiling system comprising:
a plurality of non-overlapping panes;

a plurality of non-overlapping panes. wherein a pane can
be situated adjacent to more than one pane along an
edge in a first direction. and wherein a pane can be
situated adjacent to more than one pane along an edge
in a second direction transverse to the first direction.
and wherein at least one of the panes is a tenanted pane
with which an application region is associated. and at
least one of the panes is an untenanted pane with which
no application region is associated; and

means for displaying each application region at a position
corresponding to an associated tenanted pane and for
displaying each untenanted pane as an empty pane.

66. The tiling system of claim 65. further comprising
means for associating an application region with the at least
one untenanted pane.

67. The tiling system of claim 66. further comprising
means for exchanging application region associations
between a first pane and a second pane.

a plurality of partitions abutting said plurality of panes;
and

means for creating an additional pane including means for
defining an area for placement of the additional by
moving a partition between two adjacent panes.

68. The tiling system of claim 65, wherein an application
60 region is associated with a tenanted pane. the system further

comprising:

62. A tiling system comprising:
a plurality of non-overlapping panes;
a plurality of partitions adjacent said plurality of panes,

wherein at least two partitions are aligned;

means for associating the application region with an
untenanted pane.

69. The tiling system of claim 68. further comprising
65 means for removing an association of the tenanted pane and

the application region so that the tenanted pane becomes an
untenanted pane.

MS_SURFCAST _000006135

Petitioner Microsoft - Ex. 1021

5,712,995
55

70. The tiling system of claim 65, further comprising
means for removing an association of the tenanted pane and
the application region so that the tenanted pane becomes an
untenanted pane.

71. The tiling system of claim 70. wherein one of the first 5
pane and second pane is an untenanted pane having a null
application region association.

72. A tiling system having a plurality of non-overlapping
panes comprising:

means for selectively coupling at least two of the plurality 10

of panes which are adjacent in a first direction such that
the at least two panes can be jointly manipulated in a
second direction transverse to the first direction when
coupled and individually manipulated in the second
direction when not coupled; and 15

means for selectively coupling at least two of the plurality

56
a second individually selectable control for uncoupled

manipulation of the at least two panes.
73. The tiling system of claim 72, further comprising:
means for manipulating the plurality of partitions and the

at least one set of aligned partitions. wherein displayed
partitions and displayed aligned partitions are controls
for selecting one of the partitions or sets of aligned
partitions to be manipulated.

74. A non-overlapping tiling system comprising:
a plurality of non-overlapping panes;
a plurality of partitions adjacent to said plurality of panes,

wherein the plurality of partitions include at least one
set of aligned partitions including at least two partitions
which are aligned;

means for displaying the plurality of partitions; and
means for jointly displaying the at least one set of aligned

partitions distinctly from the plurality of partitions.
75. The tiling system of claim 74, wherein a pane can be

of panes which are adjacent in the second direction
such that the at least two panes can be jointly maoipu­
lated in the first direction when coupled and individu­
ally manipulated in the first direction when not
coupled;

wherein the means for selectively coupling includes:

20 situated adjacent to more than one pane along an edge in a
first direction, and wherein a pane can be situated adjacent
to more than one pane along an edge in a second direction
transverse to the first direction.

a first individually selectable control for coupled
manipulation of the at least two panes; and * * * * *

MS_SURFCAST _000006136

Petitioner Microsoft - Ex. 1021

