United States Patent
Rupp

O 0 0

US005321808A
{111 Patent Number:

{451 Date of Patent:

5,321,808
Jun. 14, 1994

[54] DUAL PROCESS DISPLAY SERVER
[75] Inventor: Lawrence E, Rupp, Loveland, Colo.
[73] Assignee: Hewlett-Packard Company, Palo

Alto, Calif.
[21] Appl. No.: 855,188
[22] Filed: Mar, 20, 1992
[51] Int. CLS GOGF 3/00
[52] US. Q. 395/164

{58] Field of Search 395/162-166;

340/721, 723, 747
[56] References Cited
U.S. PATENT DOCUMENTS
4,761,642 8/1988 HUNLIZINGET ...coverermsnsrnserernes 340/721

OTHER PUBLICATIONS

Rost et al,, “PEX: A Network-Transparent 3D Graph-
ics System,” IEEE Computer Graphics & Applications
pp. 14-26 (1989).

John Allen Smith, “The Multi-Threaded X Server,”

The Annual X Technical Conference, The X Resource

1, pp. 73-89, Winter 1992.
Primary Examiner—Robert L. Richardson

57 ABSTRACT

A dual process display server comprising a first mem-
ory; a second memory; a first process for receiving
requests from a client program, dispatching client re-
quests falling within a first prescribed category of re-
quests, storing in the first memory requests falling
within a second prescribed category of requests and
storing in the second memory messages associated with
requests stored in the first memory; and a second pro-
cess for retrieving messages from the second memory,
retrieving client requests from the first memory, and
dispatching requests retrieved from the first memory in
accordance with messages retrieved from the second
memory.

15 Claims, 7 Drawing Sheets

X CLIENT
PROGRAM

60~ DispATcHER

X SERVER
W/PEX
EXTENSIONS

SHARED
L MEMORY

PEX
PROCESS

DISPLAY
HARDWARE

16

Petitioner Microsoft - Ex. 1026

U.S. Patent ~ June 14, 1994 Sheet 1 of 7 5,321,808
Fig. 1(A)
PRIOR ART A
12
LA\
DISPATCHER "
X SERVER
W /PEX 16
EXTENSIONS Y
DISPLAY
HARDWARE
Fig. 1(B)
" APPLICATIONS PRIOR ART
\
X TOOLKIT
PEX CLIENT
INTERFACE XLIB
2
20 XIl PROTOCOL AND
(PEX PROTOCOL /" NETWORK
“““““““““““ INTERFACE
2%
T~ | PEX SERVER CORE X
EXTENSION SERVER
DISPLAY HARDWARE INTERFACE 25/_

Petitioner Microsoft - Ex. 1026

5,321,808

Sheet 2 of 7

June 14, 1994

U.S. Patent

1530034 LN31TY LX3N
LIYAY 0L SNUNL3Y

| NOILINAS NOISNILX3 X3d

NOILONNS @ NOISNILX3

/

0ISN3LX3

SINYINI
oo

NOILONAS ¢ 1S3Nn03Y

NOLLONRS | 1S3N03Y

VN

SIULNG
¢¢ _ 153no3y
1030104d X

-o - -

-~e - -

A
|

< NOILONRS ¥ NOISNILX3
o’

]

SR

—<a— NOILONA 0 15303

43HILYdSIA

™, 1SIn03

I

153n034 LN3IMD

/
2N
g 0

14V 4014
2 "bi4

Petitioner Microsoft - Ex. 1026

Sheet 3 of 7 5,321,808

June 14, 1994

U.S. Patent

£ b1 4

L4V ¥0lyd

NOILYY3d0 X3d 30
S1INS3Y HLIM YIHILVASIO
1530034-X 0L SNUNLY w

16

~¢——1 NOILONR4 ¢ 1S3N03Y X3d

~«—— NOILONNJ } 153003Y X3d

SINIITD
TV KOUd

S1S3n03Y X3d

404 Q35N

318vL J1NIS

————1 NOILONAA 0 15303y X3d

)

0S

A 153003y X3d

153003y X3d SN

YHOLVeSIO | I_

¢S

Petitioner Microsoft - Ex. 1026

U.S. Patent June 14, 1994

Sheet 4 of 7

5,321,808

X CLIENT
PROGRAM

LAN
64
HFS /64(1 620
53
5/ bispatcHer IR\
X SERVER
W /PEX Bl PEX
EXTENSIONS PROCESS
2%
66—
DISPLAY
HARDWARE
T~ 15

Petitioner Microsoft - Ex. 1026

5,321,808

Sheet 5 of 7

June 14, 1994

U.S. Patent

1S3y

VLIV 3HL ¥0d
INLLIVM 1NOHLIM
.553000S, 40
1S3y N§nL3Y

IN3I9 SIHL
- WO¥4 S1S3n03yY
co””| U3HLYNA ¥D018

Aadw3ay S
1S2793Y LWHL
FLVDIIANT
S] X
Y¥341N4 J18YUYAY SI SS3004d
AHOW3IW (Q3YVHS 2S—1 VALV 3HL HIND
y NI 153003y 1hd 1S3n03Y JH1 IN3NONI
5’ 1
ON
43HILV4SIO 1S3N0IY X3d
\\
09

1S3N0Y X3d SANIN

Petitioner Microsoft - Ex. 1026

Sheet 6 of 7 5,321,808

June 14, 1994

- U.S. Patent

YINE3S X WOYd
JOVSSIAN LXIAN
LIVAV 0L SNYNLY

9°b1 4
| snotownd
| 209SSIN &
e NOLLINNS 2 39VSSIM 0X3d JIRvL J1NS
] NOLLINN | 39NSSIH 034 Je —
—~—— NOLLINNS 0 39VSSIN 0Xad e |
|
g\ |
wavesle | _
™1 30vSSI X3d [©
w2y

dINYAS X WOH4 SFIVSSIN

¢8

Petitioner Microsoft - Ex. 1026

Sheet 7 of 7 5,321,808

June 14, 1994

U.S. Patent

b1 4

| NOILONNS 3IVSSIN ¢ XIdX (&

NOILONNS JIVSSIN | X3dX [&—

NOLLONNA 3OVSSIN 0 X3dX (&

o

378vV1 HILVdSId

153003y X3d

Y3HILY4SIC

209

153n03Y

|

1530034 INIIND

N\

[
ST1gYL HOLYASIO
153003y L3O X

Petitioner Microsoft - Ex. 1026

5,321,808

1
DUAL PROCESS DISPLAY SERVER

FIELD OF THE INVENTION

The present invention is generally related to the field
of computer graphics and is more particularly related to
a dual process display server for use in a network oper-
ating under an X/PEX Window regime.

BACKGROUND OF THE INVENTiON

The X Window System is a network-transparent
windowing system developed at the Massachusetts In-
stitute of Technology. X systems provide support for
window management operations, input and simple two-
dimensional (2D) graphics operations. The X Window
System, or X, has become a de facto industry standard
in the raster-graphics workstation marketplace because
it works well in the common computing environment
comprising a network of dissimilar workstations. How-
ever, despite its popularity X still has some shortcom-
ings. Its developers deliberately concentrated on solv-
ing the problems encountered in supporting window-
ing, input and simple 2D graphics output operations in
the heterogeneous network environment, and deferred
other difficult problems, such as providing direct sup-
port for three-dimensional (3D) graphics and image
processing.

PEX is an extension to the core X Window System
that provides 3D graphics support in an X environment.
PEX is designed to efficiently support 3D graphics
standards (PHIGS, GKS-3D, and the majority of the
proposed PHIGS + extension to PHIGS) in an X envi-
ronment.

The X Window System is a client/server system, as
shown in FIGS. 1(A) and 1(B). FIG. 1(A) schematically
depicts a computer network comprising a first worksta-
tion running an application program (X client program)
10, a local area network (LAN) 12, a single process X
Window display server with PEX extensions 14, and
display hardware 16.

FIG. 1(B) schematically depicts an X/PEX system
model comprising an application process, or client, 18,
an X/PEX communication protocol 20, a network in-
terface 22, an X server process 24 and a display hard-
ware interface 26. The X server process 24 contains a
core X server and any extensions. The X server process
continuously runs on the display system; it is responsi-
ble for receiving and executing requests from all client
processes and for reporting asynchronous events back
to any interested clients. Clients can establish a connec-
tion and send requests to any device on the network that
is executing an X server process. Communications be-
tween clients and servers are carried out using an exist-
ing interprocess communication protocol (e.g.,
TCP/IP, DECnet, or Unix sockets). The nature of the
information passed between clients and servers is
strictly defined by the X protocol specification and the
protocol specifications for any extensions.

The strict definition of the X communication proto-
col provides network transparency. If all client and
server processes strictly adhere to the protocol, a client
process on one machine can send requests to a server
process on any machine on the network, regardless of
the CPU, operating system or architecture of either of
the two machines. Similarly, a server process can exe-
cute requests issued by any client on the network, as
long as the requests conform to the X protocol. This can
make the fact that the two machines are connected via

20

25

30

35

45

50

55

60

65

2

a network “transparent” to the user. Client applications
can be written in such a way that they can access any X
server on the network without being rewritten, recom-
piled or relinked.

FIG. 1(B) shows how data flows from the application
down to the target display device. It is possible to build
either PHIGS/PHIGS+ or GKS-3D programming
interface libraries on top of PEX. An application can
make calls to PHIGS/PHIGS +, GKS-3D, Xlib and X
Toolkit libraries. These libraries in turn will format
PEX and X protocol request packets and send them to
the designated server process to be executed. The core
X server receives and dispatches all incoming requests
and hands PEX requests over to the PEX server exten-
sion to be processed. The X server and the PEX server
extension can issue commands that cause primitives to
be drawn on the display screen.

PEX operations obey the execution semantics defined
by X. These state the following:

1. Each request is considered atomic (indivisible).

2. There is no implied scheduling between requests

received via separate connections.

3. Requests received over a single connection are

executed in the order they are received.

Most X server implementations are single-threaded
and thus by definition follow the X execution semantics.
However, such PEX operations as structure traversal
and rendering may take considerable time to complete.
This can lead to unacceptable behavior from a client’s
point of view. For example, a client that initiates a struc-
ture traversal can monopolize the server’s ability to
process requests, effectively preventing another client
from doing simple text editing in another window. Mul-
ti-threaded servers may avoid this behavior by allowing
other requests to be processed while lengthy operations
are occurring. A connection will block if a request
requires access to a resource that is already engaged in
a lengthy operation. After the lengthy operation is com-
pleted the connection will unblock and the request will
be processed. For instance, if a client initiates a struc-
ture traversal and then reads back the pixels using a core
X request, the “read pixels” operation will not occur
until the traversal has completed. On the other hand, an
application performing lengthy rendering operations
and a text-editing application may be supported simulta-
neously if they are operating in independent windows
on the display.

The operation of a single process X/PEX display
server will now be explained with reference to FIGS.
1(A), 2 and 3.

Requests for X and PEX services originating from
the client program 10 are transmitted across the local
area network 12 and arrive at the server 14. The re-
quests, after being processed by the server, may result in
modification of server data structures, generation of
responses to the client program or changes to the ap-
pearance of the image on the display hardware screen.

FIG. 2 schematically depicts a system for dispatching
X Window requests. The system comprises a request
dispatcher 28 and a set of dispatch tables 30, e.g., one
table for each client connection. (Note that the X server
is structured such that there can be a unique dispatch
table for each client, however in most server implemen-
tations there is actually a single dispatch table that is
shared by all clients). Each table 30 comprises a first
part 32 containing a list of addresses of core X request
servicing functions 36 and a second part 34 containing a

Petitioner Microsoft - Ex. 1026

5,321,808

3
list of addresses of extension request servicing functions
38, 40, 42. In the exemplary system of FIG. 2, function
42 corresponds to a PEX extension request.

The dispatcher 28 sits idle, waiting for a client request
to arrive, when the server is not occupied with a re-
quest. When a request arrives, the client that originated
the request is identified and the specific protocol service
requested is determined. The identity of the client is
used to address the client’s dispatch table from the set of
tables 30. Once the request is identified and the address
of the request servicing function is determined, that
function is called and it performs operations required to
service the request. An error response message will be
sent to the client that originated the request if an error
is encountered while executing a request servicing func-
tion. When the request servicing function is finished
executing, control is returned to the request dispatcher
28 to await the next client request. Note that the display
server has a single thread of execution; once the request
servicing function is called, its execution continues to

" completion. Any messages sent back to the client,
whether in response to a request or due to an error, are
completed before returning to the request dispatcher 28.

FIG. 3 schematically depicts a system for dispatching
PEX requests. This system includes a PEX request
dispatcher 50 and a single table 52 of addresses of PEX
request servicing functions 54. The server’s single
thread of execution is directed to the PEX request dis-
patcher 50 whenever a client requests any type of PEX
extension operation, thereby invoking the PEX request
servicing function 42 (FIG. 2). The PEX request servic-
ing function 42 is invoked as a result of the request
dispatcher 28 recognizing the PEX extension request
and calling the PEX extension function 42.

The system of FIG. 3 further refines the client’s re-
quest to determine the particular PEX function that is
needed. A process similar to the one described above
for X request dispatching takes place at this level. The
PEX request servicing functions 54, like the X request
servicing functions 36 (FIG. 2), execute in a single
thread until completion, and then return controt to the
request dispatcher 28. The PEX functions may also
send messages back to the client.

A major shortcoming of prior art systems of the type
described above is that in such systems servicing of core
X and PEX requests is handled by a single software
process executing on the computer acting as the display
server. Request servicing functions are scheduled (dis-
patched) in the order in which the corresponding re-
quests arrive, with each request commanding the full
attention of the display server process until the request
has been fully serviced. This regime diminishes the
interactivity of the system because PEX requests typi-
cally require substantially more time to service than
core X requests.

SUMMARY OF THE INVENTION

Accordingly, a primary object of the present inven-
tion is to provide systems (e.g., servers) for efficiently
servicing client requests in an X Window or similar
environment while maintaining a high degree of in-
teractivity while servicing requests that require many
clock cycles to satisfy. A further object of the invention
is to provide a server that will be transparent to its
clients, in the sense that the clients will not be required
to do anything more than they already do when issuing
a request.

—

0

30

35

40

45

55

60

65

4

The present invention achieves these goals by provid-
ing a dual process display server comprising first and
second memories; a first process comprising means for
receiving requests from a client program, first request
dispatcher means for dispatching client requests falling
within a first prescribed category of requests, and sec-
ond request dispatcher means for storing in the first
memory requests falling within a second prescribed
category of requests and for storing in the second mem-
ory messages associated with requests stored in the first
memory; and a second process comprising means for
retrieving messages from the second memory, means
for retrieving client requests from the first memory, and
message dispatcher means for dispatching requests re-
trieved from the first memory in accordance with mes-
sages retrieved from the second memory.

Preferred embodiments of the invention further com-
prise a third memory, means associated with the second
process for storing messages in the third memory, and
second message dispatcher means associated with the
first process for retrieving messages from the third
memory and dispatching said messages. The second
request dispatching means may advantageously com-
prise means for carrying out the following steps in re-
sponse to the receipt of a request from a client: deter-
mining whether the second process is idle; enqueueing
the request if the second process is not idle; if the second
process is idle, storing the request in the first memory
and storing in the second memory a message indicating
that the request has been stored in the first memory; and
blocking further requests from that client.

Preferred embodiments of a server in accordance
with the invention are adapted to operate in an X Win-
dow environment. In such embodiments the said first
category encompasses core X Window requests and the
said second category encompasses PEX requests. In
addition, preferred embodiments comprise means for
unblocking a client that has issued a PEX request upon
the second process completing the servicing of that
PEX request.

An especially preferred application of the present
invention is in a computer graphics system. Such a
system comprises a local area network bus, a plurality
of computers each of which is coupled to said bus and
programmed to operate as an X Window System client
program, a raster display, and a dual process display
server (of the type described above) coupled to the bus
and the raster display.

The present invention also provides methods for
servicing client requests in a computer graphics system
operating in accordance with the X Window protocol.
Methods in accordance with the invention comprise the
following steps: receiving requests from a client pro-
gram into a first process; dispatching via said first pro-
cess client requests falling within a first prescribed cate-
gory of requests; storing in a first memory, via the first
process, requests falling within a second prescribed
category of requests; storing in a second memory, via
the first process, messages associated with requests
stored in the first memory; retrieving messages from the
second memory into a second process; retrieving client
requests from the first memory into the second process;
and dispatching, via the second process, requests re-
trieved from the first memory in accordance with mes-
sages retrieved from the second memory.

As mentioned above, a preferred application of the
present invention is in a network operating in accor-
dance with the X Window System. One of the impor-

Petitioner Microsoft - Ex. 1026

5,321,808

5

tant features of the present invention is that it provides
superior interactivity during the execution of PEX
functions. The way that the present invention achieves
this superiority is through double threading of the
server. One thread of execution is dedicated to handling
X (or core X) requests and another thread is dedicated
to handling PEX requests. This use of two separate
processes allows the server to continue to serve “nor-
mal” X clients while PEX clients are being served (e.g.,
while a large structure is being traversed). The underly-
ing operating system is responsible for allocating pro-
cessor cycles to the respective processes in equitable
time slices so that no X clients block due to a time-con-
suming request from a PEX client.

It should also be noted that, even with double thread-
ing, the PEX server (the “second process™) must still
preserve atomicity of requests for a particular client
(i.e., X and PEX requests for a particular client must be
serviced in the order they are received). This condition
is a requirement of the X protocol and any extension
placed on the X protocol, including the PEX protocol
extension. '

Although PEX requests are serviced by a dedicated
process, this detail of implementation is transparent to
client processes using the dual process server. All pro-
tocol requests, whether for X or PEX services, are first
received by the first, or X server, process. This process
detects PEX extension requests and passes those re-
quests on to the second, or PEX, process. To guarantee
atomicity of a client’s request stream, the server blocks
further processing of that client’s requests while a PEX
request is being serviced by the second process. Block-
ing is done without regard to the type of request follow-
ing the PEX request. To preserve the execution order
of a client’s request stream, the client’s X requests are
held until the servicing of a pending PEX request is
complete. If this were not done, X requests would be
able to outrun some of the more time-consuming PEX
requests. In addition, while a client with a pending PEX
request is blocked, the server continues to process non-
PEX requests from other clients.

In preferred embodiments, the first and second pro-
cesses communicate with each other via shared memory
and FIFO queues. The first process uses shared memory
to pass PEX requests and resource information to the
second process, and the second process uses shared
memory to pass messages back to the client. FIFO reg-
isters may also be used to coordinate asynchronous
operations of the first and second processes. Other fea-
tures and advantages of the present invention are de-
scribed below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1(A) schematically depicts a computer network
comprising a prior art single process X/PEX display
server.

FIG. 1(B) schematically depicts a prior art X/PEX
system model.

FIG. 2 schematically depicts a system for dispatching
X Window requests in accordance with the prior art.

FIG. 3 schematically depicts a system for dispatching
PEX requests in accordance with the prior art.

FIG. 4 schematically depicts a network comprising a
dual process X/PEX display server in accordance with
the present invention.

FIG. § is a flowchart depicting steps carried out by
the first process in dispatching PEX requests.

25

35

40

45

50

55

65

6

FIG. 6 schematically depicts a system for use by the
second process for dispatching messages from the first
process.

FIG. 7 schematically depicts a system for use by the
first process for dispatching both X protocol requests
from a client program and messages from the second
process.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

FIG. 4 schematically depicts a network comprising a
dual process X/PEX display server in accordance with
the present invention. This network, like the network of
FIG. 1(A), comprises an X client program 10, LAN 12
and display hardware 16; however, instead of the single
process display server 14 of the FIG. 1(A) network, the
present invention employs first and second processes 60,
62, first-in-first-out (FIFO) registers 64 and shared
memory (e.g., random access memory (RAM)) 66. The
X client program 10 generates requests as described
above. The requests are received by the X server (first
process) 60 and dispatched by a request dispatcher to an
appropriate request servicing function. The request
dispatcher is similar to the dispatcher 28 discussed
above in connection with FIGS. 1(A), 2 and 3, but it
includes a PEX request dispatcher 60a that is different
from the prior art PEX request dispatcher 50.

FIG. 5 depicts steps carried out by the PEX request
dispatcher 60z in dispatching PEX requests. When a
PEX request is received, rather than a second level of
dispatching taking place as in the prior art single pro-
cess server 14 (FIG. 1(A)), the requests are passed on to
the second process 62.

The PEX request dispatcher 60a first determines at
step S1 whether or not the second PEX request servic-
ing process 62 is idle (not busy). If the second PEX
request servicing process 62 is already operating on a
previously issued request from another client, the newly
arrived request is enqueued at step S2 and will await
servicing until the second process becomes available. If
the second process 62 is idle, at step S4 the request for
PEX 'services is put in memory buffer 66 (FIG. 4),
which is shared by the first and second processes 69, 62,
and at step S5 a message is sent from the first process 60
to the second process 62 via a FIFO register (or queue)
64q. This message may, e.g., indicate to the second
process 62 that a PEX request is present and ready for
processing.

Regardless of whether the second process 62 is pres-
ently idle (as determined at step S1), the requesting
client is blocked from further attention at step S3. When
a client is blocked, the request dispatcher will “ignore”
any further communications from that client; however,
the ignored requests are not discarded, but rather are
saved until that client is unblocked at a later time.
Blocking in this manner preserves atomicity of the re-
quest stream. This allows requests to be serviced in the
order in which they are received, and avoids out of
order execution of intermixed PEX and X requests.

After the request dispatcher has completed blocking
the requesting client, it immediately returns control to
the X server’s dispatcher (which is not specifically
shown in FIG. 4, but which is generally shown in FIG.
1(A)) and reports that the operation has been success-
fully completed. It does this without waiting for the
actual result of the operation. This is done so that the
first process 60 can continue to respond to requests that
may be present from other client programs.

Petitioner Microsoft - Ex. 1026

5,321,808

7

FIG. 6 schematically depicts a system for use by the
second process 62 for dispatching messages from the
first process 60. This figure specifically shows the pro-
cessing by the second process 62 of messages that are
received from the first process 60 via the communica-
tions FIFO 64a (FIG. 4). The system comprises a mes-
sage dispatcher 62a and a table 82 of addresses of mes-
sage servicing functions 84. The message dispatcher 62a
normally sits idle, waiting for messages to arrive.

Messages sent by the first process 60 to the second
process 62 include:

DISPATCH

INITIALIZE

RESET

REGISTERCODES

DESTROYWINDOW

FREECLIENTRESOURCES
When one of these messages arrives, a dispatch process
similar to that described above for X client requests
takes place. The appropriate message function is called;
this function responds in accordance with a prescribed
program for that message and then returns control to
the message dispatcher 62a. The message dispatcher 624
then returns to the state of waiting for a next message
from the first process 60.

The DISPATCH message causes the second process
62 to examine the PEX request that the first process 60
placed in the shared memory buffer 66 (FI1G. 4). The
appropriate PEX function is called to provide the
proper request services. This level of dispatching is
similar to that provided in the single process server of
the prior art, but in this case all of the PEX operations
are performed by the second process 62. This allows the
first process 60 to continue servicing X requests.

The INITIALIZE, RESET, and REGISTER-
CODES messages are used during startup and shut-
down of the second process 62. The DESTROYWIN-
DOW and FREECLIENTRESOURCES messages are
sent by the first process 60 to alert the second process 62
of the possible abnormal termination of client programs.

One issue that arises in connection with the dual
process server scheme of the present invention is how
to return messages to a client that originated a PEX
request. The resolution of this issue is made difficult by
the fact that the thread of execution in the first process
60, with respect to that PEX client, will typically have
been released by the time the message is to be sent to the
client. This is because the request dispatcher 60a will
have been reentered and led to believe that the re-
quested PEX operation was successfully completed,
when in fact it may not have actually begun yet. This
problem is solved through messages that are sent back
from the second process 62 to the first process 60.

The messages sent by the second process 62 to the
first process 60 include:

IDLE

WRITE

ERROR

EVENT

GETDRAWABLE

The IDLE message is sent to the first process 60 via
FIFO register 64b when the second process 62 is ready
to service new requests. The first process 60, upon re-
ceiving this message, unblocks the client that issued the
last request sent to the second process 62. The first
process 60 also checks for any client that has been en-
queued because its PEX request arrived while the sec-
ond process was busy. If such a client is found, that

15

20

25

30

40

45

55

65

8
client’s PEX request is passed to the second process 62
and a DISPATCH message is sent to FIFO register 644.
Any previously enqueued client is not unblocked at this
time. Unblocking will occur when the second process
62 sends an IDLE message to FIFO register 645 after
servicing the client’s PEX request.

The WRITE, ERROR and EVENT messages in-
struct the first process 60 to transmit response messages
back to the requesting client program. To the client
program these messages are indistinguishable from
those that would be generated in the single process
display server of the prior art. The GETDRAWABLE
message is used to determine characteristics of display
objects used by the second process 62. This information
is obtained as it is needed by the second process.

FIG. 7 schematically depicts a system for use by the
first process 60 for dispatching both X protocol requests
from a client program and messages from the second
process 62. This system includes the request dispatcher
602, a set of dispatch tables 70, each table containing a
list of addresses of client request servicing functions 36,
and a table 72 containing a list of addresses of message
servicing functions 74. The message servicing functions
74 service messages from the second process 62 (FIG.
4). FIG. 7 particularly shows the features of the first
process 60 that distinguish it from the single process 14
of the prior art single process server (FIGS. 1(A) and 2)
and that allow it-to respond to messages from the sec-
ond process 62. The basic dispatching mechanism of the
prior art is used, however in the present invention the
second process 62 appears to the first process 60 as a
special type of client program.

The second process’ “pseudo-client” dispatch table
72 contains addresses of the IDLE, WRITE, ERROR,
EVENT, and GETDRAWABLE service functions.
Service functions for the response messages (WRITE,
ERROR, EVENT) obtain data that is to be sent to the
originating client from both the FIFO register 646 and
the shared memory 66. The first process 60 responds to
GETDRAWABLE messages by placing the requested
information into the shared memory 66. It then indi-
cates to the second process (e.g., through the shared
memory) that the drawable information is available.

The foregoing description of exemplary embodi-
ments of the present invention is not intended to limit
the scope of protection provided by the following
claims, which describe the invention in accordance
with its true scope.

What is claimed is:

1. A dual process display server, comprising:

(a) a first memory;

(b) a second memory;

(c) a first process comprising means for
receiving requests from a client program, first request
dispatcher means for dispatching client requests falling
within a first prescribed category of requests, and sec-
ond request dispatcher means for storing in said first
memory requests falling within a second prescribed
category of requests and for storing in said second mem-
ory messages associated with requests stored in said first
memory; and

(d) a second process comprising means for retrieving

messages from said second memory, means for
retrieving client requests from said first memory,
and message dispatcher means for dispatching re-
quests retrieved from said first memory in accor-
dance with messages retrieved from said second
memory.

Petitioner Microsoft - Ex. 1026

5,321,808

9

2. A dual process display server as recited in claim 1,
further comprising a third memory, means associated
with said second process for storing messages in said
third memory, and second message dispatcher means
associated with said first process for retrieving messages
from said third memory and dispatching said messages.

3. A dual process display server as recited in claim 2,
wherein said second request dispatching means com-
prises means for carrying out the following steps in
response to the receipt of a request from a client:

(1) determining whether said second process is idle;

(2) enqueueing said request if said second process is
not idle;

(3) if said second process is idle, storing said request
in said first memory and storing in said second
memory a message indicating that said request has
been stored in said first memory; and

(4) blocking further requests from that client.

4. A dual process display server as recited in claim 3,
wherein said server is adapted to operate in an X Win-
dow environment, said first category encompasses core
X Window requests and said second category encom-
passes PEX requests.

5. A dual process display server as recited in claim 4,
further comprising means for unblocking a client that
has issued a PEX request upon said second process
completing the servicing of that PEX request.

6. A computer graphics system, comprising:

(a) a local area network bus;

(b) a plurality of computers each of which is coupled
to said bus and programmed to operate as an X
Window System client program;

(c) a raster display; and

(d) a dual process display server coupled to said bus
and said raster display, said dual process display
server comprising:

(1) a first memory;
(2) a second memory;
(3) a first process comprising means
for receiving requests from said client programs, first
request dispatcher means for dispatching client requests
falling within a first prescribed category of requests,
and second request dispatcher means for storing in said
first memory requests falling within a second prescribed
category of requests and storing in said second memory
messages associated with requests stored in said first
memory; and
(4) a second process comprising means for retriev-
ing messages from said second memory, means
for retrieving client requests from said first mem-
ory, and message dispatcher means for dispatch-
ing requests retrieved from said first memory in
accordance with messages retrieved from said
second memory.

7. A computer graphics system as recited in claim 6,
further comprising a third memory, means associated
with said second process for storing messages in said
third memory, and second message dispatcher means
associated with said first process for retrieving messages
from said third memory and dispatching said messages.

8. A computer graphics system as recited in claim 7,
wherein said second request dispatching means com-

w

10

20

25

30

65

10
prises means for carrying out the following steps in
response to the receipt of a request from a client:

(1) determining whether said second process is idle;

(2) enqueueing said request if said second process is
not idle;

(3) if said second process is idle, storing said request
in said first memory and storing in said second
memory a message indicating that said request has
been stored in said first memory; and

(4) blocking further requests from that client.

9. A computer graphics system as recited in claim 8,
wherein said first category encompasses core X Win-
dow requests and said second category encompasses
PEX requests.

10. A computer graphics system as recited in claim 9,
further comprising means for unblocking a client that
has issued a PEX request upon said second process
completing the servicing of that PEX request.

11. A method for servicing client requests in a com-
puter graphics system operating in accordance with an
X Window protocol, comprising the steps of:

(a) receiving requests from a client program into a

first process;

(b) dispatching via said first process client requests
falling within a first prescribed category of re-
quests;

(c) storing in a first memory, via said first process,
requests falling within a second prescribed cate-
gory of requests;

(d) storing in a second memory, via said first process,
messages associated with requests stored in said
first memory;

(e) retrieving messages from said second memory into
a second process;

(f) retrieving client requests from said first memory
into said second process; and

(g) dispatching, via said second process, requests
retrieved from said first memory in accordance
with messages retrieved from said second memory.

12. A method as described in claim 11, further com-
prising the steps of storing messages from said second
process in a third memory, and retrieving messages
from said third memory into said first process and dis-
patching said messages via said first process.

13. A method as described in claim 12, further com-
prising carrying out the following steps in response to
the receipt from a client of a message falling within said
second category:

(1) determining whether said second process is idle;

(2) enqueueing said request if said second process is
not idle;

(3) if said second process is idle, storing said request
in said first memory and storing in said second
memory a message indicating that said request has
been stored in said first memory; and

(4) blocking further requests from that client.

14. A method as described in claim 13, wherein said
first category encompasses core X Window requests
and said second category encompasses PEX requests.

15. A method as described in claim 14, further com-
prising the step of unblocking a client that has issued a
PEX request upon said second process completing the

servicing of that PEX request.
®* % ¥ ¥ %

Petitioner Microsoft - Ex. 1026

