PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : (11) International Publication Number: WO 99/26127
GOGF 3/00, 3/14, 15/16 Al . o

(43) International Publication Date: 27 May 1999 (27.05.99)

(21) International Application Number: PCT/US98/24280 | (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,

(22) International Filing Date: 13 November 1998 (13.11.98) GH, GM, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC,

LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX,
NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ,
(30) Priority Data: T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
08/970,357 14 November 1997 (14.11.97) US (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
(71) Applicant: AVESTA TECHNOLOGIES, INC. [US/US]; 2 LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
Rector Street, New York, NY 10006 (US). CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(72) Inventors: KOSTES, Robert; 248 Warren Street, Brooklyn,
NY 11201 (US). MARZEC, Marc, J.; 301 East 79th Street, | Published

New York, NY 10021 (US). With international search report.
Before the expiration of the time limit for amending the
(74) Agents: FITZPATRICK, Joseph, M. et al.; Fitzpatrick, Cella, claims and to be republished in the event of the receipt of
Harper & Scinto, 30 Rockefeller Plaza, New York, NY amendments.

10112-3801 (US).

(54) Title: SYSTEM AND METHOD FOR DISPLAYING MULTIPLE SOURCES OF DATA IN NEAR REAL-TIME

502
> ol
MAIN VIEW]~ [=]=]]
File Edit Drowse View Go Favortes Help/]
fn 1mE00/R o
so4a OOonog
506 | MONTAGE VIEW B=]E]
45080
7 A e
sose/ Y
N N
 soad U s08e

(57) Abstract

A display system receives data from one or more data sources, via a server, and displays the data from one or more of the sources,
selected by a user. The user can have multiple sources active at once, and can preferably display data from at least two of the active
sources simultaneously. At least one portion of the display can be subdivided by the user at will, and at being displayed can be dragged
and dropped into any of the resulting "panes". In addition, various applications can if desired be run simultaneously in respective panes
(508a—508¢), regardless of whether those applications are part of a predefined suite of applications, or not.

Petitioner Microsoft - Ex. 105 1

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
iIE
iL
IS
T
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Treland

Israel

Tceland

Ttaly

Japan

Kenya

Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
TD
TG
TJ
™
TR
TT
UA
UG
us
Uz
VN
YU
VAL

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

Petitioner Microsoft - Ex

1051

WO 99/26127 PCT/US98/24280

TITLE

SYSTEM AND METHOD FOR DISPLAYING
MULTIPLE SOURCES OF DATA IN NEAR REAL-TIME

BACKGROUND OF THE INVENTION

Field of the Invention

This invention is in the field of computer system
displays. 1In particular, the present invention relates to
a system and method for displaying, in near real-time,
data published from various computer systems and networks,
such as the Internet.

Description of Related Art

The availability of powerful computer systems and networks
has yielded the ability to transmit and receive a large
volume of data, such as news and financial market data,
from many various sources. Often, this data is critical
to business operations and decision-making. For example,
a stock trader may wish to obtain, almost instantaneously,

news and financial data regarding a certain company or

Petitioner Microsoft - Ex. 1051

WO 99/26127 PCT/US98/24280

group of companies, input that data to a financial
software application, and make a trading decision based on
its output. This requires a computer application that can
obtain and display voluminous data from various data
sources quickly and efficiently. Preferably, this
application should also allow its user to filter out
undesired information or expand desired information, as
well as support the execution of other applications
therein.

Commercial applications exist that display news, financial
data and other information on computers that the
applications’ backers say has been "pushed" (see below for
a discussion of this term) from various Internet sources,
such as CNN, CNNfn, Time, Reuters, PR Newswire,
Sportsticker and Accuweather, as well as local newspapers.
For example, one application displays news headlines,
stock information, industry updates, global weather,
sports scores, etc., dynamically across the computer’s
screen. To obtain the information, the user executes the
application and requests a download of the latest
information. That information is then retrieved from the
various Internet sources. The computer screen displays
window buttons, each representing a different source, for
example, CNN or Weather. The user selects a channel by
clicking on the desired button, causing another window to
display several lines of information, such as news
headlines, related to the selected channel. The user may
then select a single headline, and the full news story
will be shown in a third window.

Another application is also said to use "push" technology,
in which data is broadcast to home computers via the
Internet, cable TV systems or even over-the-air signals.
In this application, information is grabbed by the

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

computer at predictable or non-peak times, then stored on
the computer’s hard disk for later browsing, thus getting
around slow modem connections. Although this technology
does not actually speed up the modem connection, the
overall browsing experience appears to be faster, because
the information can be fetched more quickly from the

computer’s hard disk.

A third application also allows a computer client to
receive information from various sources, such as Dow
Jones, Reuters, Bridge, financial exchanges, the Internet,
or an intranet, through either a market data platform
connector, a direct data feed connector or a web
connector. Prior to reaching the client computer, the
data may pass through and be processed by application
servers that provide financial analytics, messaging,
financial modeling and graphing, which add value to the
data. The client computer displays the financial data in
a page of multiple windows, where each window may be

resized and morphed and each page may be user-composed.

(It should be noted that none of the above-described
applications is admitted to be prior art with respect to
the present invention simply by being mentioned in this
Background section.)

As is evident from the foregoing, the loosely-defined
notion of "pushed" content as a panacea to information
overload has received remarkable attention. While the
rhetoric behind this technology has been impressive,
current product offerings have done little to solve any
real business problems. The marketplace has so far failed
to deliver useful and usable applications that address
specific user needs. Moreover, a closer look at popular

so-called "push" products reveals fundamental weaknesses_

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99726127 PCT/US98/24280

in areas such as timeliness of content delivery,
information presentation, network utilization, and

application management, as follows.

First, information delivery to the above applications is
not nearly as efficient or effective as it could be, even
in the case where data is supposedly "pushed" from the
source to the computer. This is because those
applications that use so-called "push" technology are
using nothing more than a timed pull. In other words, the
data server is contacted periodically (typically no more
than once an hour) or upon client request, and once
connected, the client is responsible for downloading the
updated newsfeed. In many cases, particularly when
changes occur frequently and to a wide range of data, this
a hugely inefficient data distribution method, wasting
network bandwidth, because (1) much information is
automatically pulled to the computer that is not desired
by the user and never looked at, and (2) when information
is updated, entire pages of information are required to be
re-pulled, instead of just the incremental changes. 1In
regard to timeliness, a timed pull system is also
ineffective, because of the inability to receive near-

real-time information.

In addition, even once the data has been received by the
client, the display thereof is also inefficient and
ineffective. Commercial displays are inefficient because
of the presence of unnecessary icons and toolbars, which
waste critical screen "real estate", and because the
multiple windows, if available, overlap or underlap each
other. Those displays are also less effective than could
be desired, because they do not provide the functionality
required by the user to process the data simply and
quickly. For example, none of the current displays allow

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

a user to create easily and quickly a subwindow of desired
dimension, and then run an application in that subwindow
using data dragged and dropped into the window from a

selected channel.

For the foregoing reasons, there is a need for a display
system that avoids these problems, by making efficient use
of screen space, and that permits a user to subdivide
screen space into subwindows as the user sees fit, and
allows the user to run applications in those subwindows,
even where the applications selected by the user are not

all from a single suite of applications.
SUMMARY OF THE INVENTION

Accordingly, one objective of the present invention is to
address some of the above-described problems, by providing
an efficient and effective display to permit a user to see
data from a variety of sources quickly and easily, and use
that data, if desired, in the user’s or a third party’s
application.

Another objective is to provide a display which permits
the user to create efficient subwindows, or "panes",
quickly and easily, in which the user may drag and drop
data from a selected data channel or run a desired
application therein.

A display system receives data from one or more data
sources, via a server, and displays the data from one or
more of the sources, selected by a user. The user can
have multiple sources active at once, and can preferably
display data from at least two of the active sources
simultaneously. At least one portion of the display can
be subdivided by the user at will, and at being displayed

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

can be dragged and dropped into any of the resulting
"panes". In addition, various applications can if desired
be run simultaneously in respective panes, regardless of
whether those applications are part of a predefined suite

of applications, or not.
BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the present
invention can best be understood by reference to the
detailed description of the preferred embodiments set
forth below, taken in conjunction with the drawings, in
which:

Figures 1-4 depict four arrangements in which the present

invention can be utilized.

Figure 5 is a view of an example of a display provided by
the present invention.

Figures 6A and 6B are diagrams illustrating certain
aspects of the process of using the display system of the
present invention.

Figure 7 is a diagram illustrating certain aspects of the
handling of data obtained by the display system of the

present invention.

Figure 8 illustrates the model/view paradigm used in the
preferred version of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The present invention, together with other inventions
developed by the assignee hereof, represents a shift

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

towards just-in-time information delivery. As an
efficient and standards-based applications suite, those
inventions provide (among other things) a ubiquitous,
pPlatform-independent interface to real-time information,
such as financial data and news. This accomplishes
efficient, just-in-time information delivery from the
information source to the client computer via a
publish/subscribe architecture and a true push server,
thus offering unparalleled access to intranet, extranet,
and Internet information.

In the publish/subscribe architecture developed by the
assignee of the present invention, the various information
sources, most likely under a contractual agreement with
the push server, constantly publish and broadcast data to
the push server, using any desired communication method.
The client computer subscribes to desired types of
information available from the push server. The
subscribed information, and only the subscribed
information, is sent from the server to the client. 1In
summary, published information is pushed from the source
to the server, and a subset thereof is passed on from the
server to the client. Since data is constantly being
pushed to the server and the client, timed pulls are not
required of them. Thus, the data is always fresh, and the
user does not have to wait a long time for an information
download. Moreover, because only data that is desired and
subscribed to by the user is communicated from the server
to the client computer, the bandwidth required for the
communication link between the client and server is
significantly reduced. Of course, a certain amount of
data in the form of subscription requests must be
communicated from the client to the server, slightly

increasing bandwidth requirements, but this increase is

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

much smaller than the reduction in bandwidth realized by

not communicating unwanted information.

In addition, as soon as new data is published by any of
the sources, it is sent to the server, which in turn
transmits the new data to the subscribing clients. This
provides for extremely rapid receipt of new information.
Importantly, only changes in the data are transmitted
(that is, if the new data published by the source is
different only in some respects from the data already sent
by the server to the client from that source, then the
server does not transmit those portions which have not
changed). As a result, redundant network traffic is
significantly reduced, which in turn greatly reduces
bandwidth between the source and the server, and between
the server and the client. In summary, because the push
server is a true event-driven system rather than a timed-
pull server, information is delivered almost
instantaneously, making network usage extremely efficient.

Using a push server also permits the automatic update of
the client application software. For example, when
existing netchannels (described below) need to be updated,
or new netchannels become available and need to be added,
the push server can push the new binary code required to
accomplish these tasks directly to the client computer.
The push server also supports server-side storage and
retrieval of user preferences. This means that a user’s
profile can be referred to the server, and the data for
that user customized accordingly, regardless of what
computer the user employs to connect to the network.

Users can log in while travelling or at home and utilize
an identical desktop of applications and netchannels. The
push server also can be used to manage server-based

alerts. A user-specified alert (such as a stock price

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

warning) may also be stored on the push server, which in
turn will cause the dispatching of a page or an e-mail
message if the conditions of the user-specified alert are
met. The push server may also specify the schema of its
various data sources in real-time via XML. This enables
the use of a generic client application software component
to receive arbitrary data from the push server.

Several versions of such a publish/subscribe architecture
are described below. In a first version, an industry-
specific extranet, as shown in Figure 1, is established to
provide a common information and communication network to
constituent organizations. Data sources such as market
data, historical data and news headlines directly feed
into a push server located centrally in the extranet.
Individual clients, such as the one shown in Firm A’s
intranet, subscribe to events generated by the extranet
push server, thus eliminating the need for an in-house
push server. An open API will enable the clients to
subscribe to information provided by the push server.
This API will handle security and entitlements for all
data feeds. The individual client shown in Firm A is part
of an intranet also having access to firm enterprise
information. The push server may also support an
interface to internal enterprise information which allows
firm-wide data to appear as another data feed to client.
Thus, the client software application of the present
invention may display the pushed extranet information or
the enterprise information or both, as will be described
in more detail below.

In a second version, the push server may reside inside an
enterprise’s intranet for those firms whose requirements
demand such, for example, Firm B shown in Fig. 2. The
firm configures the internal push server in-house, which

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 10 -

serves clients directly. External sources feed directly
into the internal push server via direct links (such as
the market data) or feed indirectly via the Internet.

In a third version, shown in Fig. 3, a private push server
is made accessible to the client via the Internet. 1In
this version, there is no internal push server. Built-in
authentication ensures that the push server on the
Internet is accessed by authorized users only. To
traverse Internet firewalls, the well-known technique of

HTTP (Hypertext Transfer Protocol) tunneling is supported.

The present invention itself is directed to a display
system that is particularly well suited for use with the
push server arrangements outlined above. The display
system, however, is not limited to use with such a push
server. Thus, as shown in Fig. 4, the present invention
can also be utilized when no push server is available.
The client accesses the data source on the Internet by a
dial-up or direct-connection. While this arrangement does
not offer the benefits of a dedicated push server, the
user still obtains the advantages of the display
capability of the present invention, as is described in

more detail below.

Overview of the Display
For this description, a knowledge of object-oriented

programming, and of Java™, is assumed. In particular,
familiarity and proficiency with Sun’s Java™ programming
language, such as version 1.1.4, released October, 1997,

is assumed.
Before a full description of the display, definitions and

brief descriptions of several elements thereof will be

provided.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 11 -

Channel: As the term is used herein, a channel is a
concentration of data from a resource such as a web
server, together with user-defined display preferences,
such as display colors or data filters.

Channel Selector: The channel selector is the central
control center of the display, and contains several icons
and buttons that can be used to perform various tasks.
Montage: The montage view is a portion of the display
provided by the present invention, and is implemented
preferably as a JavaBean container for JavaBean-compliant
components. The montage view makes it easy for the user to
manage two or more applications running concurrently, and
provides an attractive and effective alternative to
conventional windowing environments. This is attributable
to the fact that montage applications are displayed in the
montage in easily configured, neatly organized areas,
called "panes", rather than in the conventional
overlapping, often obscured windows.

NetChannel: A netchannel is a JavaBean that can be
configured to display virtually any type of dynamic
content, and is also designed to support certain messaging
capabilities, such as email and paging services. 1In the
preferred embodiment, up to two visible netchannels may be
displayed at once, and the user may have additional
netchannels active at a given time.

The display is generated and controlled by software stored
in and executed by the client computer. The display of
the present invention, as shown in Fig. 5, includes two
important components: the main view 500 and the montage
view 506. The main view is a small floating frame for
displaying information, information selection buttons, and
application management. The main view contains a "channel
selector" 502, and panels 5041, 504b for viewing
"netchannels", which each display continuously updated

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 12 -

information from specific data sources. In the preferred
embodiment, two netchannels can be displayed
simultaneously, but the invention is not limited to this
number. The main view is preferably displayed above the

montage view.

The channel selector 502 is the control portion of the
display, and is preferably disposed in the center of the
main view. It provides graphical controls, such as
virtual buttons 510 and 512 for selecting which

netchannels are displayed, and for configuring the system.

Netchannels are capable of presenting virtually any type
of dynamic content, including stock quotes, news headlines
and special alerts. For example, one netchannel might
display breaking business headlines from a major news
source, while another could be used to display firm
announcements relating to a specific business unit. A
user might even subscribe to a netchannel configured to
monitor alerts received from an enterprise computer

management systen.

Users may have multiple active netchannels, up to two of
which may be visible at any one time in the preferred
embodiment. All of this is possible because in the
present invention, the source of the information is
unimportant; all data is packaged into a consistent
interface, as described below. Each netchannel has its
own individual settings that allow the user to customize

the delivered content based on personal preferences.

In the preferred embodiment, netchannels go beyond the
passive display of consumer information. A complete set
of alerting capabilities is also provided. These

capabilities provide users with the ability to specify

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280

various forms of notification based on any number of
business events. For example, pop-up dialogs can be
displayed if a competitor is mentioned in a newsfeed. A
message can also be sent to a user’s pager if, say, a
stock falls below a certain threshold. Further, a user
might click on an interesting news headline in a
netchannel and view the full text of the article in a
browser. This capability provides an even higher level of
targeted data delivery -- the most critical events are
dispatched with utmost priority.

Although netchannels are suitable for line-oriented
information, some information and applications require
screen-oriented information. For this, the present
invention provides the montage view 506. Rather than
floating each stand-alone application in its own window,
the montage view contains a two-dimensional segmentable
workspace in which applications can be placed. Users can
subdivide this portion of the screen into rectangular
segments 5081 - 508e, or "panes," of sizes appropriate to
their particular needs. Panes can be resized by dragging
their edges, and applications running in neighboring panes
are resized accordingly. Each pane of the montage can
contain a different application; applications can be added
to and removed from the montage dynamically. Furthermore,
if the user wishes, a particular arrangement of panes, and
the particular selection of applications running in them,
can be stored. During any subsequent use of the display
system of the invention, the user can scroll through the
stored montages. In this way, identical application
layouts can be preserved from one session to the next.

The montage view 506 makes it easy to manage numerous

applications running concurrently. Since there are no
overlapping windows or obscured screens, this view offers.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 14 -

an attractive alternative to traditional windowing
environments. Moreover, as shown, valuable screen space
within the montage view is not wasted with the traditional
title bars and sizing controls of application windows, or
because of underlapping windows.

In use, data retrieved from the extranet, intranet or
internet is first buffered, and the desired information is
then extracted from what has been received. The client
then calls the display application, which generates the
main view of the display and the montage view. The
creation of the main view includes creating one or more
netchannels and the virtual control buttons. Creation of
the montage view includes the creation of any panes the
user may desire. (As mentioned, those panes may be ones
designed by the user now, or may be ones the user has
designed at some time in the past and stored, and has
instructed be used again at this time.)

More specifically, and as indicated in Fig. 6A, when the
user launches the display application, he or she is
presented with a menu of existing netchannels as governed
by entitlement, corresponding to contractual agreement
with the channel data provider. The user may activate
them or select only some for activation, and may deselect
others, by means of the virtual controls provided in the
main view. Up to two of the selected netchannels (in the
preferred embodiment) may then be selected for display.

As shown in Fig. 6B, the user also may launch the montage
view, using a virtual control in the channel selector for
this purpose. If this has been done, the user may then
optionally scroll through stored montage views that have
been used previously. If the user finds one that he
wishes to display, he activates it, and it is displayed.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 15 -

If none is found, or if the user does not scroll through
the stored montage views, then the user creates a new
montage, by splitting the montage view (if desired),
subidviding it as convenient, and using any portion of the
resulting arrangement for, e.g., the enlargement of data
being displayed on one of the netchannels, or to run an
application.

Implementation of the Preferred Embodiment
One important feature of the invention is that the

preparation of the data to be viewed is, conceptually and
in fact, handled separately from the creation of the
actual display views that the user sees in using the
present embodiment. For this purpose, the netchannels are
architected in software according to a Model/View
paradigm. By segregating the data itself (the model) from
its visual representations (the view), information can be
presented in various forms depending on the user’s
preferences or needs. As will be appreciated from the
following description, a single model may feed several
views simultaneously. Each unique data source requires
its own model. For example, models are available which
gather information from particular web sites. As
mentioned above, the present invention preferably also
provides a generic model, that interfaces with the push
server (if one is used). The client software application
of the present invention stores all of these models in a
"model repository". Once a model for a given data source
is placed in the repository, it may be used by any
netchannel which requires it.

The preferred embodiment utilizes a predefined object
framework including Model, View, and Channel classes.
According to the principles of object orientation,

concrete implementations of channels (i.e., individual

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 16 -

objects of the class channel) "inherit" from these
predefined objects and implement channel-specific behavior
where appropriate.

In more detail, a channel consists of several discrete
parts. Each of these parts, while separate in function,
contributes to a complete channel. Emphasis has been
placed on creating a "clean" system architecture which
separates the actual data representation of information
from the visual display of information. This "Model-View"
architecture allows the same information to be viewed in
numerous ways, and enables a single source of data to feed
multiple different views.

The first component of a channel is the Model class. Each
channel utilizes at least one model. The model contains
code for physically retrieving data of a particular kind
from a particular'source. Preferably, provision is made
for both "push" and "pull" data retrieval. A particular
model may, for example, be one that parses information
from a given web site on the Internet, or a site on a
corporate intranet, at a specified interval, or may be one
that responds to dynamic events generated by a push
engine. In addition to storing code for processing
information, models also store user preferences
information. A model that receives stock quotes, for
example, will store the portfolio of stocks the user is
interested in tracking. Model classes are implemented as
"Observable" classes. "Observable" objects, as is well
known in the art, are a type of object which generates
events that may be observed, or processed, by arbitrary
"Observer" objects. (This pattern allows models to
generate events when new information is delivered without
"knowing" anything about the objects that are interested
in receiving these events.)

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 9926127 PCT/US98/24280
- 17 -

The second channel component is the View class. This
class specifies the "look and feel" of a particular
channel for display purposes. It contains instructions
defining which specific graphical components, such as
stock tickers or scrolling headline displays, should be
used to present the channel’s data. Implementations of
several graphical components, or "widgets," which are
programmed to respond to events from model classes, are
also included. These widgets are the "observers" in the
observer-observable pattern. This means that a widget can
register as an observer of a model class, thus receiving
events when data is changed and automatically updating its
display.

The final channel component 1is the Channel class, which is
the "glue" that binds the model and view components
together. The channel class defines a default name for
the netchannel and provides some other basic information
such as which channel models the netchannel uses.
Additionally, the channel class is responsible for
actually registering each widget in that netchannel’s view

as an observer of those models.

Once all the pieces of a channel are bundled together, a
user can subscribe to the channel and view its
information. For "pull" channels, the container
coordinates the refreshing of a channel by scheduling
routine updates. Where a capability of handling pushed
information is provided, incoming push events are also

directed to appropriate "push" channels.

As a summary illustration of the foregoing, Fig. 7 shows
the processing of data received from the server for a
netchannel that the user has activated and designated for
display. As the data is received from the server, the

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 18 -

corresponding model is updated to reflect the new data.
The view component of each active channel that uses that
model is notified that a change has occurred, and makes a
corresponding change in the display.

Configquring Channels
To configure channels, the user selects an option to open

up a non-resizable window where a list of available
channels and selected channels is displayed. The user may
select channels from an "available" list, and deselect
them from a "selected" list. 1If desired, the system can
easily be implemented such that a selection triggers a
billing record to be initiated for the purpose of metering
application or channel usage.

Instead of channels being added and removed as desired by
the user, the "available" list may be predefined for the
user based on administrator approval.

Users may order and name their selected channels as
desired. Channels may be named to distinguish one
instance of a view from another. Each instance may have

its own configuration options.

Figure 8 depicts a typical scenario. Any model located in
the model repository may be "instantiated" and provided
with user preferences for a particular type of
information. An example of such preferences information
is a list of stocks the user is interested in viewing.

The model/view architecture allows for an arbitrary number
of views to register as "observers" of the model. Because
the model is concerned only with retrieving information
from the corresponding data source, it is unimportant what
kind of object any given observer is. As new or updated

information becomes available (e.g., a change in stock

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 19 -

price) each registered observer is automatically notified
of the change.

The client software application preferably contains a core
suite of netchannels useful for presenting information
from prepackaged data sources. However, because an
organization may also require the ability to create its
own netchannels, several netchannel development options
are preferably also supported by the client software
application. For basic netchannels, a "View Templates"
software application is preferably provided including
several templates that define netchannel layouts that are
commonly found to be convenient. Users can use these
templates to build new netchannel views with minimal
coding effort. For example, a particular template might
specify the location of a corporate logo, stock ticker,
and news headline ticker. The user connects each element
in the netchannel view to an existing model from the model
repository. Once connected, the new channel is then ready
to use. In the event that the model repository does not
contain a model suitable for the new netchannel, the
client software application provides a custom Java™
Application Programming Interface (API) that facilitates
information retrieval. Models developed according to this
API can be added to the model repository and used in
subsequently-created netchannels.

Another option is preferably provided for creating a
custom netchannel. A GUI "ChannelBuilder" software
application offers and advanced drag-and-drop interface
for developing highly customized netchannels with no
coding effort. This application allows developers to
select from a palette of available components and add
these elements to channels in real-time. The GUI
ChannelBuilder also displays a hierarchical view of all _

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 20 -

available data sources in the model repository. Channel
designers simply draw a line from a data source to a
visual component, and the component is connected to that
source. Channels can be tested in this environment to
ensure proper functionality, and the GUI ChannelBuilder
has the capability of generating a compiled channel
package with the press of a button.

Data Acquisition
The invention provides a full set of data services to

channel models. A "Model Services" component abstracts
many of the common functions required by channels. For
example, Model Services contains code that retrieves data
from web pages. By using Model Services as opposed to raw
Java™ calls to perform this task, developers of channels
need not write cumbersome network access code. Moreover,
Model Services automatically detects if a proxy server is
installed and modifies the network request accordingly.
Additional functions provided by Model Services are
subscribing and unsubscribing to "push" topics and/or
events; launching a web browser to display an HTML
document; notifying the container that the channel is "“on
alert" and should be displayed; and sending a message to
a user’s beeper. Aside from the obvious benefit of
reducing tedious programming work, the availability of
Model Services means that users do not have to input
preferences information such as a pager PIN or web browser
location for each channel application; user data is
shared among all applications.

Pull-type channels request Model Services to retrieve a
web resource on a regular basis, ranging from every few
minutes for rapidly changing data such as stock quotes, to
only once every few hours for less dynamic data. Often

this interval is user-configurable. Model Services will

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 21 -

take the simple request from the channel and formulate a
proper HTTP request for a web server. If the user is
operating behind a firewall, Model Services modifies the
request to go via the proxy server. Data is returned to
the channel in the form of HTML (Hypertext Markup
Language). Channel models then parse this data using
custom routines,‘or utility classes provided as part of
the display system which aid in processing HTML documents.

Push channels, on the other hand, use Model Services to
subscribe to a particular data topic. Model Services
takes the request and formats a subscription request for
the push engine in use. When new data for this topic is
generated, it is sent to the container, which determines
the channel or channels for which the data is destined and
sends the appropriate message. Because pushed data is
formatted according to a special protocol, no parsing of
HTML is required in this scenario. The models used in
these cases simply add the content of the event to their
data store and notify all observers that new content is
available.

The process by which a piece of information is retrieved
and ultimately displayed to the user is different
depending on whether the netchannel in question is a
"pull" or "push" channel. Both processes are described
below.

Pull channel models are implemented as Java™ threads and
are timed to retrieve the complete contents of a raw
resource (information source) at a given interval. This
resource may be any number of file types, such as an HTML
document on the World Wide Web, or a preformatted text
file located on a corporate intranet.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 22 -

Pull models are programmed to retrieve resources from a
well-defined location, and contain specific rules for
parsing information that is retrieved from this particular
site. 1In most cases this parsing involves scanning an
HTML document and extracting only the relevant information
to be displayed. Oftentimes information deemed relevant
in an HTML file is in some preformatted state (e.qg.,
bullet points in a web document), so the model will simply
scan for each instance of the HTML code that formats the
relevant information. For example, a model which

retrieves news headlines might look for each instance of

the HTML tag, which signifies a bullet point, and

extract the text immediately following the tag for display
as a news headline. Model Services is utilized to
automatically retrieves the contents of a given resource
via a simple method call.

Unlike inherently static pull models whose contents are
reset during each update, push models are dynamic and
maintain a constantly changing state throughout the life
of the application. When a push model is created, it
regiéters interest in a particular topic with the push
server'in use. This registration process is accomplished
via Model Services and notifies the push engine that a
netchannel model wishes to receive events related to a
particular topic, such as a change in a stock price or
breaking news on a. specific company. Since all
communication with the push server is conducted via Model
Services, a unique ID code is assigned to the channel
model at the time of subscription for purposes of tracking
incoming and outgoing messages.

When information changes for a topic to which a push model
has subscribed, the push server sends a message to Model

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 23 =

Services containing the new data. This message contains
only the data that has changed; that is, the minimum
information necessary to update the information the net
channel already has, is transmitted. Model Services
references the ID code attached to the incoming message
and forwards the data to the corresponding model. A
predefined data structure is utilized for the update
information being sent, and therefore, no parsing of
information is required. all relevant data is
preformatted for the netchannel models.

Regardless of how data is obtained (via push or pull
methods), the subsequent processing is identical. A
library of "netchannel widgets", which are special objects
programmed to listen for events generated by netchannel
models, is provided. These widgets are graphical
information controls, such as stock tickers, scrolling
headline displays, and dynamic text labels. In much the
same manner that a push channel mode subscribes to events
form a push server, netchannel widgets register interest
in updates from netchannel models at the time the user
makes a particular netchannel active.

One example of what a model can do is as follows. As a
netchannel model processes new information, a data
structure is created which contains all relevant
information for netchannel widgets. This structure
contains the text of the data to be displayed, an optional
URL which links to more information related to the data, a
foreground and background color for the information
display, and a timestamp. Each model automatically
broadcasts these structures to all widgets that have
previously registered interest in that model’s updates.

As the updates are received, the widget adds the new data

to its information display and shows the data onscreen.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 9926127 PCT/US98/24280
- 24 -

Filtering
It is preferable to provide granular filtering of

information channel-by-channel, although this is not
itself part of the display system of the present
invention. Each channel contains options for specifying
the type of information a user is interested in within the
context of the channel’s content. An example would be
filtering a financial news channel to display only news
relating to stocks in the user’s personal portfolio.
Individual customization screens allow the user to create
filters for each channel. Multiple filters may be created
for each channel, and can be saved and re-used at will.

In addition to its filtering capabilities, the system is
capable of generating user-defined alerts. In much the
same manner that filters are defined, users may establish
criteria for special alerts. A typical scenario would
involve an alert when a particular stock’s price hits a
specified level, or when a topic of interest to the user
is reported in the news. An appropriate interface is
provided for building complex alert criteria and storing
them along with other preferences.

When the system is used in a "push" environment, both
filters and alerts are stored on the remote push server,
enabling user-specific settings to follow the user to
whatever computer she is presently using. In the absence
of a push server, filters and alerts can be stored on a
local machine.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 25 -

Serialization

The invention utilizes the concept of "serialization" to
preserve application state and provide continuity from one
session to the next. All user-specific information,
including preferences, filters, alert criteria, and
settings, are "serialized" at the end of each application
execution. The serialization process involves taking a
"snapshot" of current memory and saving it to an arbitrary
output stream. This output stream may be a local disk

file, or a socket connection to a push server.

By storing this complete snapshot of memory, all user
preferences and configuration information is éasily stored
and restored. Individual channel developers need not be
concerned with storage of user settings since the
container automatically handles this operation. Moreover,
since complete state information can be serialized to a
push server over a nétwork’connection, the same
configuration a user enjoys on his desktop computer by day
can be accessed from home on his laptop.

As described above, the invention also allows for a
montagevview presentation of applications. Because each
model is preferably implemented using Sun’s Java™
programming language as a JavaBean, its properties can be
discovered dynamically. This eliminates the need to
develop custom settings screens for each model.
Applications are discovered and made available to the user
to place into the segmentable montage workspace. Since
each application is a JavaBean component, the viewing and
modification of attributes, or "properties," is supported.
In.addition, the top-level montage view container itself
is a JavaBean, which means that the exact subdivision of
the screen into panes, as well as the applications which
reside within these panes, are all part of a large

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 26 -

containment hierarchy. When the user exits the
application, the top level of this hierarchy is
serialized, and as a result, each application contained
within the hierarchy is serialized as well. Later when
the application is restarted, the desktop appears exactly
as it was left off. Like channels, montage view
applications need not provide code for storing and
retrieving user preferences, as the container
automatically handles this.

It is preferable that the channel selector, the
netchannels and the montage view are implemented in
software as JavaBeans. The Sun JavaBeans specification
defines a software component model for Java™ that supports
the creation of reusable components supporting a common
interface. Important benefits of JavaBeans include
introspection, serialization and reuse. In regard to
introspection, users of JavaBeans do not need to know the
properties and methods supported by the Bean at design
time. Built-in introspection methods are used to discover
dynamically the interface of a particular component, thus
eliminating the need to restrict functionality of
components to a lowest common denominator, or to provide
specialized handling in code. By discovering a particular
netchannel’s properties, for example, the present
invention is able to build a configuration screen for that
netchannel on the fly. The JavaBeans specification also
supports automatic serialization of components, which
means that state information such as user preferences can
be stored and retrieved without writing specialized code
for each Bean. This provides an efficient method for
maintaining settings strong among various complex
components. In regard to reuse, because JavaBeans are
components with well-defined interfaces, JavaBeans of
various types can be instantiated easily regardless of the

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 27 -

container. This means that a particular application can
be contained in the montage view, a floating window, or in
any other compatible container. If Java™ is used, both
the main view and the montage view are JavaBean
containers. In the main view, both the left and right
views hold netchannel beans, whereas each pane in the
montage view may contain a JavaBean application. An
additional benefit of implementing the montage view as a
JavaBean container is that third-party JavaBean components
may be instantiated in a montage pane, thus providing the
significant benefits of the montage view to additional
applications.

Preferably, the client software applications are
‘implemented as Java™ applications rather than Java™
applets. (Applications are standalone programs that are
executed directly by the operating system, while applets
are Java™ programs that run within a web browser.) A
major benefit of Java™ applications is the ability to use
Sun’s reference Java™ implementation. (Although
ostensibly all versions of Java™ Virtual Machines (VM’s)
are functionally equivalent, practical experience reveals
differences amongAvarious vendors’ VM’s that are
significant enough to affect performance.) Also favoring
Java™ applications is the fact that the major browser
vendors have yet to update their browsers to the most
recent Java™ specification. Without capabilities
introduced in Sun’s October 1997 Java™ release (version
1.1.4), key functionality is not possible. Although most
of the functionality of the client software application
can be implemented with pure Java™ code, a small number of
key functions are only available via platform-specific
function calls.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 28 -

To address these issues and preserve all cross-platform
functionality, commonly used platform-specific calls are
abstracted in a common Java™ class library. Rather than
having application code call a system native method, the
client software application contains functions such as
"loadWebDocument" which will perform the platform-specific
action regardless of the user’s operating system. By
replacing this single class library according to the
operating system in use, no application contains platform-
specific code.

One example of this is hyperlinking from a netchannel
headline to a web document. Java™ has the capability to
launch an instance of any application, including a web
browser, but cannot independently send the platform-
specific request to load a web page in the browser. 1In
this specific example of launching a web browser, another
alternative is provided. A Java™-based web browser
application is preferably provided as part of the display
system of the invention. This browser runs in the montage
view and can optionally display pages when users click on
netchannel links. Although this browser does not support
all advanced web features, it does provide sufficient

rendering of most pages.

Upon startup, a well-known directory containing channel
binary files is scanned. 1In the preferred implementation,
all channels are implemented as JavaBeans and stored in
Java™ Archive (JAR) files. The main code reads each JAR
file in this special directory and discovers any channels
that are contained within the JARs. Once the channels are
discovered, they are automatically queried for basic
information such as the title of the channel, and a small

graphical icon representing the channel. This information

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 29 -

is cached and used later to allow the user to add and

remove active channels.

Each JAR file is "stamped" with a code indicating the
version of the particular channel application(s) it
contains. New versions of channel JAR files may be stored
on a remote server for the purpose of automatic software
upgrades. At startup, this remote server is queried and
determines if newer versions of any applications exist.
This process is accomplished by comparing the version
stamp of the local JAR file with the version reported by
the server. If a newer version exists, the user is
prompted to upgrade, and if the decision is made to do so,
the new JAR file (or files) is automatically downloaded
from the server to the well-known directory. In this
manner, applications software is automatically upgraded
with minimal user intervention. System administrators may
optionally force upgrades without explicit user
acceptance, thus providing powerful central administration
of software distribution. Any errors that occur during
the automatic upgrade process can be logged and analyzed.
In addition to new versions of existing channels, totally
new channels may be sent to client systems in the same

manner.

For its graphical displays, the present invention
preferably employs the known Netscape Internet Foundation
Classes (IFC) user interface components. IFC is a Java™
user interface application framework for building
applications independent of operating system-specific
windows and user interface controls. The foundation
classes enable development of rich, professional user
interfaces that are not affected by individual platform
idiosyncrasies. IFC also has close ties to the next-

generation Java™ Foundation Classes (JFC) which are

Peﬁﬁonerhdkmosoﬂn—Ex.1051

.WO0 99/26127 PCT/US98/24280
- 30 -

presently under joint development by Sun, Netscape and
IBM. JFC, an outgrowth of IFC, provides a "pluggable"
look and feel for Java™ applications which enables users
and developers to select the graphical user interface of
their choice for each application. JFC will support all
major IFC features, including lightweight user interface
components and IFC’s basic application framework. Since
JFC will become a part of the core Java™ package when
released, the use of IFC will allow for the smoothest
possible upgrade to JFC.

As described above, the present invention preferably
supports the use of several applications. All of these
applications can be hosted in the montage view. Such
applications are also preferably developed with Sun’s
Java™ programming language and as JavaBeans.

Consequently, every component in the display system of the
present invention, and the applications used therewith,
are-platform-inde@endent and web-enabled, providing tight
integration with all popular browsers, where appropriate.

One such application is a "market minder" which is a
table-based display of securities in a user’s portfolio.
Prices, bid/ask values, volume, and other data are updated
continuously for each item in the portfolio. Multiple
paging, e-mail and pop-up alerts can be associated with
events specific to each security. When operating with a
push server, the market minder application can also
display intraday and historical price/volume charts for
any security. Charts can be "drifted-down" to show more
details for a given time period. Another application is a
"news minder", which aggregates news headlines related to
user-defined topics from various sources. These topics
can be simple keywords, complex queries, or the companies

represented in the user’s market minder portfolio.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 31 -

Selecting a topic displays a list of all current headlines
with summaries, original source, and date of posting.
Users can click on a particular headline and view the full
article in rich text, complete with graphics and
hyperlinks. Additionally, intelligent filters can be
applied on a topic-by-topic basis, enabling further
refinement of information on topics that contain a large
amount of news. A third application is a "unified inbox".
Traditionally, users are required to use separate
applications for e-mail, voicemail, and faxing. The
unified inbox wraps all three types of incoming messagings
into a single interface. Users can read e-mail, listen to
voicemail, and view faxes all from the same unified inbox
application. Other, smaller utility applications, such as
financial calculators and graphing utilities, may also be
invoked within the montage view.

Of course, it will be appreciated that the invention may
take forms other than those specifically described. The
scope of the invention, however, is to be determined
solely by the following claims.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 32 =

WHAT IS CLAIMED IS:
1. A method for generating a display for a computer
system comprising the steps of:

receiving, from a server, data from one or more
sources of data, to which sources the computer system
subscribes;
‘ generating a display image partitioned into a
plurality of display areas;

selecting for display at least one source of
data from among the one or more sources received in said
receiving step; and

displaying the selected at least one source of
data in a corresponding partitioned display area.

2. A method according to Claim 1, further comprising the
step of partitioning one of the partitioned display areas
into a plurality of subpartitioned display areas.

3. A method according to Claim 2, further comprising the
steps of selecting the at least one source of data
displayed in the corresponding partitioned display area,
dragging the selected data from the corresponding
partitioned display area, and dropping the dragged data
into one of the subpartitioned display areas.

4. A method according to Claim 1, further comprising the
step of running an application in another one of the
partitioned display areas.

5. A method according to Claim 2, further comprising the

step of running an application in one of the
subpartitioned display areas.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 33 -

6. A method according to Claim 5, further comprising the
step of running a second application in another one of the

subpartitioned display areas.

7. A method according to Claim 6, wherein the
applications are two parts of a single predefined suite of
applications.

8. A method according to Claim 6, wherein the
applications are not parts of a single predefined suite of
applications.

9. A method according to Claim 1, further comprising the
step of defining display conditions for execution of said

displaying step.

10. A computer system, comprising:

means for receiving, from a server, data from
one or more sources of data pushed to said computer system
from the server, the sources of data being ones subscribed
to by said computer system;

a display for displaying an image;

means for partitioning the image of the display
into a plurality of display areas; and

means for selecting for display at least one
source of data from among the one or more sources received
by said receiving means, said display displaying the
selected at least one source of data in a corresponding
partitioned display area.

11. A computer system according to Claim 10, further
comprising means for partitioning one of the partitioned
display areas into a plurality of subpartitioned display

areas.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

WO 99/26127 PCT/US98/24280
- 34 -

12. A conmputer system according to Claim 11, further
comprising means for selecting the at least one source of
data displayed in the corresponding partitioned display
area, dragging the selected data from the corresponding
partitioned display area, and dropping the dragged data
into one of the subpartitioned display areas.

13. A computer system according to Claim 11, wherein said
selecting means comprises one or more virtual buttons,
each of said virtual buttons corresponding to one of the
sources of data.

14. A tangible computer-readable medium storing
instructions which, when loaded into a programmable
apparatus, cause that apparatus to perform a method
comprising the steps of:

receiving, from a server, data from one or more
sources of data, to which sources the computer system
subscribes;

generating a display image partitioned into a
plurality of display areas;

selecting for display at least one source of
data from among the one or more sources received in said
receiving step; and

displaying the selected at least one source of

data in a corresponding partitioned display area.

Peﬁﬁonerhdkmosoﬂn—Ex.1051

PCT/US98/24280

WO 99/26127

NOLLVINHOSNI
IASRRNIALNT

e o —— . gy,
-— ——

IN3ITO

LIANVYLNI
vV Wil

— -
e . et ——

\\I.}

HIAYIS HSNd 1INVHIX3 viva

T—

LINVHLIX3
JN4I03dS-AHLSNANI

[-OIAd

Petitioner Microsoft - Ex. ti‘OS 1

SUBSTITUTE SHEET (RULE 26)

PCT/US98/24280

WO 99/26127

2/9

31IS 93M

il

3LIS 83M

o ———— —— o,

1INVHLNI ~
g Wyl S~
~
INAO ™\
A¥3IND OOH av AN
\
Y3IANIS HSNd N
TVNYILNI \
ANZNO\
I — !
- _
= 39VSS3IW aaHsNd !
= /
/
/
IN3INO /
)/
1S3no3y g
NOILdINOSENS e

Petitioner Microsoft - Ex. TOS 1

SUBSTITUTE SHEET (RULE 26)

WO 99/26127 PCT/US98/24280

3/9

FI1G-3

HTTP TUNNELING

PUSH SERVER

— WEB SITE
CLIENT \

WEB SITE

SUBSTITUTE SHEET (RULE 26) Petitioner Microsoft - Ex. 1051

WO 99/26127 PCT/US98/24280

4/9

F1G-4

MODEM

CLIENT
(Dial-Up Connection) WEB SITE

SUBSTITUTE SHEET (RULE 26) Petitioner Microsoft - Ex. 1051

PCT/US98/24280

WO 99/26127

5/9

2805 P8OS *
J/ J/
-eg0g
\\\ ,\
4805 ~}—
BH=]=] N3N 3oVINOW 1 908
41— ep0s
ay0s ~— o M 11 1@ u
/ \\%n Sojione] 09 Mol esmoig 1p3 alld
H=]= p i M3IIA NIV
\
s Jos % D

c0S

Petitioner Microsoft - Ex. 1051

SUBSTITUTE SHEET (RULE 26)

WO 99/26127 PCT/US98/24280

6/9

FIG-0A

LAUNCH DISPLAY
APPLICATION

|

SELECT NETCHANNEL(S)
FOR ACTIVATION

|

SELECT ACTIVE
NETCHANNEL(S) FOR
DISPLAY

SUBSTITUTE SHEET (RULE 26) Petitioner Microsoft - Ex. 105 1

WO 99/26127 PCT/US98/24280

719

FIG-6B

LAUNCH
MONTAGE
?

NO

SCROLL
STORED

MONTAGES
?

STORED
MONTAGE

SELECTED
?

Y

CREATE NEW MONTAGE

DISPLAY

'
)

SUBSTITUTE SHEET (RULE 26) Petitioner Microsoft - Ex. 1051

WO 99/26127 PCT/US98/24280

8/9

FI1G-7

RECEIVE DATA

UPDATE MODEL

|

CHANNEL COMPONENT
NOTIFIES REGISTERED
VIEW(S) OF UPDATE

|

VIEW MODIFIES
DISPLAY TO REFLECT
UPDATE

SUBSTITUTE SHEET (RULE 26) Petitioner Microsoft - Ex. 1051

PCT/US98/24280

WO 99/26127

9/9

SM3IA T3NNVHOL3N

| 43AY3S

M3IA
NOLLYINYO4NI
JSIHdYILINT

$310ND MJ01S
ONIAIRILIY TIAONW
HIAYIAS J1VHINTO

M3IA
S3ANINAVIH SM3N

M3IA
HIMOIL MO01S

SESLEEREL
d3aSN

AHO1ISOd3y T3d0ON

1300N
S3ANIAv3H
SM3N 39Vd 9IM

Petitioner Microsoft - Ex. 1051

Ao:spzﬁwz_

T13A0N
HIAYIS F1VHINIO

T3A0OW
SL1AUIATV NILSAS
INIWIOVNVIN YHOMLIN

1300N
SM3N ISIHdY3LNT

8-l

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/24280

A. CLASSIFICATION OF SUBJECT MATTER
IPC(6) :GOGF 3/00, 3/14, 15/16
US CL : 345/340, 326, 329, 335, 339; 395/200.33; 705/37

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 345/340,326,329,335,339,332,333,343,346,348,349

Minimum documentation searched (classification system followed by classification symbols}

,354,962; 395/200.33; 705/37

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

APS
C. DOCUMENTS CONSIDERED TO BE RELEVANT
Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 5,339,392 A (RISBERG et al.) 16 August 1994, abstract, col. 2, | 1-2, 4-11, 13-14
----- lines 28-48; col. 7, lines 61-66; col. 18, lines 45-60; figs. | ~--------
Y 1,3,13,21,37. 3, 12
Y, P US 5,812,862 A (SMITH et al.) 22 September 1998, col. 2, lines| 3, 12
----- 51-67; col. 3, lines 21-67; figs. 9A-9C, 11A-11C. ———meen
A,P 1-2, 4-11,
13-14

US 5,195,031 A (ORDISH) 16 March 1993, abstract; cols. 2, 3. 1-14
A US 5,270,922 A (HIGGINS) 14 December 1993, abstract; col. 1. | 1-14
A US 5,297,032 A (TROJAN et al.) 22 March 1994, abstract. 1-14

D Further documents are listed in the continuation of Box C.

D See patent family annex.

- < ial

P

R ies of cited d
"A" document defining the general state of the art which is not considered
to be of particular relevance

"E* earlier document published on or after the internationsl filing date

"L* document which may throw doubu on priority claim(s) or which is
cited to establish the date of ther citation or other
special reason (as :pec\ﬁed)

0" document referring to an oral discl or other

means

¢, use, exhibiti

p* document published prior to the international filing date but later than

the priority dats claimed

T later d blished after the inter 1 filing date or priority
dats and not in conflict with the application but cited to understand

the principle or theory underlying the invention

X* document of particular relevance; the claimed invention cannot be
idered novel or t idered to involve an inventive step

when the document is taken alone

& document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

'8 document member of the same patent family

Date of the actual completion of the international search

14 JANUARY 1999

Date of mailing of the international search report

18MAR 1999

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks

Box PCT
Washington, D.C. 20231
Facsimile No. (703) 305-3230

Authorized officer
Raymond Baycrl’% ﬂ . Ww
Telephone No.) 305-9789

Form PCT/ISA/210 (second sheet)(July 1992)x

Petitioner Microsoft - Ex. 105 1

	Bibliographic Data
	Claim
	Drawing
	Description
	Abstract
	Search Report

