
MS_SURFCAST _000002172
Petitioner Microsoft - Ex. 1066, p. 1

!lIe principal designer of the Sapphire window rnanager
talks about its icons and user commanos

in this tutorial on the screen allocation package.

The User Interface for Sapphire

Brad A. Myers

University of Toronto

Sapphire (the Screen Allocation Package Providing
Helpful Icons and Rectangular Environments) is a very
p<)werfu! window manager running on the PERQ personal
workstation. 1 The PERQ has a high-resolution screen and
spedal hardware to dl:;play graphics quickly. Sapphire was
dc:signed to support program development in the Aecenl'
multiprocessing operating system. Companies (OEMs) that
purchase PERQs may also use Sapphire in their final pro
dnds, so unlike such other window managers as Star, 3 Sap
rime must be general purpose and highly t1exible. Sapphire
is flOW used by quite a large communit)' at PERQ Systems
Corporatioll, Carnegie-Mellon University, and elsewhere.
It ~upports a full implementation of lhe covered window
paradigm (where the rectangular windows can overlap like
pieces of paper (m a desk), which is described in another
arilClc. 4 In Sapphire, windows can coycr each other and can
extend off the screen in any direction (and may be entirely
of[screen).

AU window managers can be loglc.aUy divided into three
fllnctions: (i) the implemcntation of the low-level graphics
primitives (which includes preventing graphics from
;;I!owing throllgh covered portions), (2) the presentation of
pictures to the user by the window manager (such as vlin
dow title lines and icons), and (3) the opcrations that allow
the user to manipulate windows. The lalter two !um:tions of
a window manager are collected under the heading User In
terface. This article presents the user interface of Sapphire
awl explains why it is novel and appealing. First, however, .
Some background material is induded for those who are not
liHniliar wHh window managers.

Background

Pel's{ltlal workstations, Interest in window management
systems has expanded with the proliferatioB of personal com
puters. Personai' workstations are personal computers that
are used by only OBe perSO!l at ;1 time but provide far more
power than typical homc computers. A personal workstation
will usually have a processor that Ciln execute over one
million instructions per second, a hard disk that can hold over
20 million byte, or data, a memory of a! least one million
bytes, some number of input/output options, such as RS-232,
Ethernet, IEEE 488, floppies, etc., and a high-perfonnance
screen that is capable of graphics. Most personal workstations
currently use high-resolution hit-map screells (about SOO x
10(0) where each point 011 the screen (called a pixel) is
associated with one hit of memory. Each pixel can t)e either
on or off (white or black). Many personal workstations have
some sort of hardware that allo'ws screen operations to run
swiftly, and some offer color screens as an option.

Most persona! workstations run an operating system, such
as Unix,.~ that allows the user to nUl. a number of different
.ioh~ (sometimes calle<iprocessl?.I') at the same time. For cx
a!nple, the user might spedfy that a compilation should con
tinue to 11m (in the background) while the user enters the
editor to work on a different file. Even with the high perfor
mance of a personal workstatioll, there will unfortunately
always be jobs that cannot be processed instantly (i .e., fast
. !?nough so the IIser does not notice the delay). With
multiprocessing the user does not have to wait idly for jobs
10 be finished, so time can be used more effectively.

MS_SURFCAST _000002173
Petitioner Microsoft - Ex. 1066, p. 2

!4

Wind{)w managers. If a user runs more than one process
in most cO!lvc~n!i()!lilJ sys[{Oms, the input: and output from the
variolls processes can be confusingly intermixed on the
screen. For example, the Dutput from one process may ap
pear while another process is listing a file and be missed en
tirely, or .he output might appear while running a screen
<'Alitor Dr a graphks program and thereby mess up lhe screen.
When two processes request inpllt at the same time, the user
may give the input to the wrong program. A windo<N illJlnager
solves theBe problems by simulating several terminals on the
same physical screen. The input Jlnd output for the different
"virtual tenninals" is kept separate by the window manager.
Each or the viltual terminals is .:alled a lViiidow. This is a
simpiifialtion, however, since windows are also used in many
other ways. TtJere are several kinds of window managers,
diflerentiated by where they allow windows to be ;md how
the usc·!" controls the windows, All have as their basi;;' goal
allowing the user to control a number of separate activities
more easily.

Since there is only one keyboard, but multiple windows,
it is ciellr Ihat there must be some way to identify where typ
ing is directed. Some window managers call the window ac
cepting input the active window, but this is often confusing,
since many windows may be 'actively displaying output at
the Siime time in such window managers as Sapphire.
Therefore, in our system we coine~ the term Listener to refer
to the window accepting typing, since it is "listening" to
the keyboard. The user is provided with mechanisms for
changing the Listener so it is possible to (Ilk (0 any process.

\VI

\va

Figure 1. Three Sapphire windows. Window W3 is covering win·
dow W2, and both windows W3 and W2 are coveting Wi. Wi is on
fhe "bottom" and W3 is on the "top." W2 has.·,a ~rayborder to
show that it is the listener {accepting user input),' .

The t:l)vercd. window paradigm. AlmDst all windefw
man:tgers require that windows be rectlmgllJac A very sim
ple 'window manager might divide the screen horiwlltalJv
lmd/or vertically into some number of sec:tions of fixed si1.~.
The next level of compiex.!!y is to have a number of variable.
size windows thM are not allowed to ovnlap. For example,
the Cedar environment" from Xerox PARC CSL aHov,l, win.
dow$ to be any height that fits on the s('reen in two vertical
c:olumns, This technique has several advantages: It can readily
create windows and control. their placement automatkallv
and it can implement graphic operations more easily. A pro;:
lem in a nonoverlapping system i~ that it may be diftkl!!t
{i)r the Ilser to get a window big enough to pre~ent suffidem
contextual information to accomplish the task easily. Imagine
trying to <'Alit a file when you are only allowed to see three
or four lines at a time! Even if it is possible to change a win.
dow's size and location, the user may fee! severely restrictcd,
since windows caonot be overlapped.

Several window managers allow the window:; to oVNl3p
on the screen. The windows can be thought of as pieces oj"
paper, and the screen can be though! of a~ a desk.1 Thus a
window may be on wp of another .vindow, just as one pic'ce
of paper may be on top of another piece of paper. The win
dow that is behind is covered by the window on top, and
the parts (hat ;m~ undemeath the top window do not show

through (see Figure i). There is " total ordering imposed
on ali the wimkw,Is where \vindows hiJ?her in Lite order cover
windows that are lower. Windows that dn not interact ,we
still ordered. The top window is not covered by a!lY win
dows, and the window that is most covered is said to be 'm
the bottom. Windows may also exteBd off the screen ill any
direction. with the pans not on the screen :;imply not shmv.
ing. The covered window paradigm \vas developed at Xer'l};
PARC for DLisp' and Smalltalk. 8

The advantage of this technique is that there em 1)(' a
number oflarge windows th3t would no! ;)11 fit on the ocre(:n
if they were required to be side by side. The user caB th@
rearrange these windows as needed to make the window ::;1'
interest visible, The disadvantages are that the covered win·
dow scheme is fairly difficult to implement and the scrc(:n
may become cluttered if there are lots of windows. CJearls.
a window rnallager implementing a covered wind",,;
paradigm can simulate OBe without covered window;;, if the
USer prekrs.

Manipulation. For a covered window scheme to be usC'd
easHy, the user must be able to manipulate the windows r,'"lili··
Iy. At a minimum, the user should be able to bring a specified
window, which may previously have been Glvered by othel
windo\vs, to tbe top. The user must also have somt~ way or i
:~'~~:)~l~ t~~!:i:~e ~:~:~::l~!r:h;~:k:lb~l~t;~: :;;~:~n:r~"i~~~;~~:: ~
around the screen, t<J change its size, and t.o send it to the "

bottom. The last is ol1:en llsed to locate a window that is totally .1,:

coverM by other windows. The typical \"Iay to find the \Vin~ .
dow in many window systems is to send other windows w 1.
the bottom until the desireu wimJow appears on top. J

Some window managers require thm the Listener window :1

;l]ways be on top. From an implementation point of vie>,,;, l
Litis is not necessary. If the \vindow manager supports out··
put to windows that are covered, aiJowing the Listen,~r to
be covert-u presents flO additional difficulty. The user might

IEEE CC;S.\

MS_SURFCAST _000002174
Petitioner Microsoft - Ex. 1066, p. 3

have the Listener window full screen, for example, yet want
to copy some lHformation from some other, smaller, win
dow. The smalier .vindow could then he brought to the top
for inspection, whi.!e typing continued to the Listener, 'Nhich
would nnw be partiaHy wvered.

Display. One of lhe difficult things 10 implement in a
covered window system is the display of text and graphics
in windows that are partially covered. The covered window
system must ensure thHl the text and graphics jor one win
do\v are not displayed lH the parls that <H'e covered by other
windows. Some systems handle this problem by requiring
that the window getting output never be covered. Ot.t'ier
systems, such as the Lisp t\·1achine,9 handle this by sendi!ig·.
ail the output to speciai ol'fscreen buffers and then copying'
the visible portions onto the screen. This re(luires that the
display operations be done twice, once to the offscreen buf ..
fer and then once to the screen (for portions that arc visi
ble), To avoid this overhead, Sapphire and the Blit tcrmlnapo
cHvide the screen window into rectangles that may be either
covered or visibJe. For the visible rectangles the output is
directed to the screen, but for the covered rectangles the out
put is (optionally) dire(ted to an offscreen buffer. This olf
screen buffer is then u:icd to regenerate ihe picture if the win ..
dDW becomes uncovered.

Pointing dt~yk.e. Mos! personal workstations come with
some fi)fJ:-n of pointing deviee, which returns a two·
dimensional value that allows the llser to identify locations
on the screen by simply pointing to them. The pointing device
may also be used for specifying window ~i2.e and position,
fix idcntiJying characters in all editor, for drawing iines in
a graphics program, ;md for transferring a picture (such as
a mHp) imo the computer by specifying points (this is called
digifizing). Examples of pointing devices (see Figure 2) are
iightpens, eiectromagnenc tablets, toueh-sen>.itive surfaces,
and mechanical or optical" mice." J! Light pens are nsed by
pointing directly to tile screen, but the user moves the other
devices on the desk or on a special surra.ce. and a srnall pic
ture (the tracking symbol), f()lIows the movement on the
screen. Some touch-$ensitive surfaces are ;lctllally JIlounted
directly 00 the screen, but these usually have tracking sym-

bols too. In many personal w'orkstations the picture for the
cursor can be changed, b!.lt II common picture 1S an arrow
pointing to the llpper left (Number 1 in Figure 7).

Many pointing devices can be operated in two mod.es: ab
solute and relative. In absolute mode the position of tile poilli~
ing device on a spcl,ial surfaee specifies where the tnicking
symbol will he on the screen. For example, if the pointing
device is in th,~ upper left eotTIcr of !he surface. then the track
illg symbol will be in the upper left corner of the screen.
In relative mode the actual position has no meaning; oniy
movements life important. Thus. no JIlatter where lhe track
ing symhol is, putting the pointing device on thc surface and
moving it in some din:l'iion will move the tracking symonl
by a proportional amount in the same direction. Relative
mode is preferred by many users. since only a portion of
the surface needs to be used (or accessible).

Such devices as mi"e ean only provide relative mode. Ab
solute mode, hOwever, is necessary fi)r digiti7.ing and other
applications. A device that provides absolute mode ean
simulate relative mode fairly easily in ~oftware.

Pointing devices often have one Dr more buttoBs, (Therc
are typically one to three buttons on a mouse.,) Elec·
tromagnetic tables come with a pen (called a stylus) with one
button (presslHg down on the pen tip is interpreted as a but
ton push) or a three-to-25-button puck (see Figure 2). The
buttons on tiJe,~e dcvices ilre usually pf'<:!ssed by the nser to
tel! the computer that the current position of the poimir!g
device should be interpreted in some way. A C{ltllmOn W;l)'

to identify a window, for example, is to move the pointing
device until the traeking symbol i, over the desired window
Hnd then pmss one of the buttons.

Icons. Even with the operations specified above, it is
sometimes difficult to manage II large number of wi!ld(!w~,
The :;crecn gcts clllttt~red, and finding a desired window is
very difficult. knns were !lc~t used as a way (){ representing
H window by Xerox in lhe Star. 3 The Apple Lisn] 2 and Macin
tosh !.lse icons in essentially the same manner. The window
seems to have been "snmnk" down unlH only it.~ icon is visi
ble. (In Sapphire the icun and the window exist at the same
time, as will be explained later. This differs from the opera
tion of icons in the Star and Lisa.) The icons at Xerox and

Figure 2, Examples of different pointing devices. Thes·:3 $fe notdraWI1 to scale, The first is a typical three-button
mechanical or optical mouse. The second is a stylus on an electromagnetic tablet, and the third is a four·button puck,
which operates on the same type of tablet

December 19X4 i5

MS_SURFCAST _000002175
Petitioner Microsoft - Ex. 1066, p. 4

I. (,

Apple are typicaHy little pictures. about the; size of a postage
stamp, that attempt to represent pictorially the process run
ning in the window (sec Figure 3), For example, a mail pm
gram might be represented by ;l picture of a mailbox. When
finished with the mail program, the user gives a command
that shrinks the tll3i! program's window down to ils icon.
The window is no longer on the screen, and tbe little icon
is neatly put out of the way ;It the edge of the screen. When
the mail program is needed again, the user points ,0 the icon
for the mail program (using the pointing device) and gives
some command. Icons can also repres;~nt such static objects
as documents, and moving one of these to a process icon
causes the process to operate on the otljecLIcDns heip users
understand how to operate the system.because rhey arc u
metaphor of the real world. Saving a file in a directory is
presented as purting a "document" k~on in a' 'folder" icon
in a "file cabinet" icon. As explained below, Sapphire vlews
icons differently ilnd has greatly expanded their nmctionali
ty, so Ihey can be used for multiple process monitoring, as
well as for window cC)!llroL

Presentation of Sapphire windows

Windows in Sapphire llsually h,l'ie title lines and borders
(see Figure I). Application programs may create windDws
without either, but the borders ate useful for showing \VhCfC

the windows are, and the title lines are useful t()r displaying
s!atu~ information. For example, in <l multiple director\!
system such ,IS Unix the titk lllle might contain the c\lrre~t
directory. A window running the compiler might have iile
version number of the compiler and the name orthe file be··
ing processed displayed in the title line, The title line is shown
in rever8e video at the top of the window (Figure I).

It is important that the llser be able 10 easily deternnne
which window is the Listener. Other systems simply idcll
tHy the Listener by ·which window contains the tracking sym
bol. Since Sapphire does not change the Listener when the
pointing device is moved, some graphic method is needed
Sapphire shows the Listener by changing the border from
a single hairline to two hairlincs sllrrounding a gray area (i,CC

W2 in Figure 1). Many ()ther systems show the Listener by

~'.
«~ •.•• o

MacWfite ~t

Figure 3. Samples of icons used io the Apple Macintosh computer.

:)) ~ ~ (10 " .c <I ~ 0(" -.: l(, <

•
C-F OCI
c: ::: HI 111111 j Iii 1l1li1 -' ..

1«0 nl

Figure 4. Expanded \liew of icons in SapphirEl, In iconi, {a}is the error signa!, (b) showsthalthe process is waiting lo(user input,
and (c) is Ihe application,defined attenHon signal. (e} and (!} !m! two "percElnl·dorm pmgrElss bars," and {g) shows lhal ihe
associated window is off screen. !con :2 corresr/ondsto the listener {Ihe border is shown in gray), and it has its first progress bar
(i) showing random progress. The process asst;datid~vifh icon 2 is f'Copy"{h), In icon i, the compiler has shown {d) the name of
the program being ptQ{:es~md ("C" 1m compHer, and "Foo" 1s Ihe name 01 the program).

IEEE ('Cc'\:!\

MS_SURFCAST _000002176
Petitioner Microsoft - Ex. 1066, p. 5

,imply highlighting the title line in some manner, but this
03.$ the disadvantage that if the elltire top of the Listener's
window is covered or oft~;creen, there is no visihle indic;l"
tj(,il. Also, highlighting the entire border seems to make the
Listener easier to find when scallnillg the screen. Another
advantage ofhighiighting the border rather than the title line
:is ,hat almost aU windows will have borders, but an applica
tion may creute a window without a title line if no status in
formation J& Ile,xied (and Sapphire does allow this), In tins
c"se, you still wam to know if the wincio'N is the Listener
or not.

The icons in Sapphire are very different from the icons
in Lisa or the Star, Icons were introduced on the Star prmlllri
ly to make the operations on the compukr seenl more like
the corresponding operations in the office environment. and
thereby make lhe ~ystem easier for the naive user to learn.
ConS<xlul,ntly, the icons are pictures of the operations they
represent. The Lisa uses icons in the same way. This has
a number of severe hmitatio[J:;, First, rnany ope.rations do
not have obvious pictorial representations, Some pictUres ill;lY

be ambiguous, hard to understand, or even offensive to some
users, In add.ilion, while sllch representatinns as these icons
may help the novice learn the system, they may actually
hinder the expert user.;> Icons in Sapphire do not attempt
to enforce a unified analogical view of the system. although
"pplication programs that use Sapphire may use icons in this
manner,

The icons in Sapphire were designed with an entirely elif ..
ferent goal in mind. Sapphire's icons are iHtencied to enhance
ihe user's productivity when executing multiple tasks con-

'l: If'lorU

•••

currentiy. As was explained above, users will often multi
task to increase their efficiency, However, people easily lose
trad of what they are doing and need aids to help plan,
monitor, and control the various tasks operating at the same
time. Thcrcf()Ie, the icons in Sapph.ire present six pieces of
information about the process being ruB, as well as two pieces
of information about the status of the window (see Figure 4),

Process name. First. there is the process name (this is (d)
and (h) in Figure 4). The application program may optionally
rcplace this with some other useful names. Thus, the icon
for a compiler might use "C-Foo" when compiling a file
titled FOD, rather than just "Compiler."

Progress bars. In the icon there ;lIe abo ,wo "percent
done progress bars" (tbese are (e), (0, and (i) in Figure 4),

Progress bars function like the giant thennometers used to
mark progress in charity drives. They give the user enough
informatioJl at a quick glance to estimate how much of the
task has been completed, These are ~;ept up to date by the
application progran:1 (or by the s}'stem for certain operatiolls),
so the uscr can always check how far along the process is,
For example, a compiler can report how far it is through
the file. The first progress bar (e) and (i) in Figure 4) i5
used by the application program and is repeated in the title
line of the window underneath the text (Figure 5), The se
coml progress bar (see (f) in Figure 4), which appears only
in the icon, is used for such aggregates as co~mand files,
to tel! how much of the entire job has been completed, A
formal study has shown that users prefer systems with pro
gress bars.'·

Most applications can caieulate or estimate what percen ..
tage of the work has been completed, but for those that call
not, Sapphire provides "random progress," which shows

Flgufe5,j\IWlcaISapP{Jlreicon Wi!1dtlW ,J\l9Hi tl1/.it1hls w.lndoy., Cilt\l:i~ cov~re(j by other v~1l1cioW$,lcof) {a} 1$ l()rtr~lYlal!
programwhkh is Ilsing the i3Heri!ionsignill(e~di3matlonpojnl} ~O$haw!hal neiti mail has .<lrrived. TM threeootsshow
that the wlndawi$ 6lfs<;reen, Icon. (b) 1$ kirthe ~rlil!)rW(:'*iflg on the lile '.'Dernoj' It iSWi3iting iot USEi!t'lnpuf (tlie
keyb()ard). aflols ShOW1f19 ·"tandom pr()gtess,~;Jt is alsoofl screen: !cOri.(c)has: the en-()t signa\{bl1g)cilsplayed,ilswellas
user Input andaltenHon slgnals'!l als:ooas t('<}o"percenl,ooneprogress oafS;" the iirslshowimJ 1hal Tester is about ~O%~
comp!e\e,aoct the second -showing ihai the eniire lof:}}$ <lh<:lut 2C%cc)!np!ete; !cOi'lS{d) and (f) naveapplitiitian,defifl!jd
pictures inthen'L leon tel ha!;~gfHY ~oroetlo sl')QW tl1<\1 tl6ot.\isppMs to 111£!Ustener wl(\clow .ICQn(9) and U$\i<Jlndo\.',1
s!19W !hatthe· fifS! progress bar 1$. repI,>it!3dlflihe winctoWti\le line,

Decem btJ i 984

MS_SURFCAST _000002177
Petitioner Microsoft - Ex. 1066, p. 6

that work is progressing by continl!ally XORing vertical lines
,It random plal'es aiong the progress bar. This display~ a con'
tinuaUy changing pattern thut shows that the progr:lm is Pf"O
cessing, but is not confused with normal progre~s. In Figure
4, Ii) shows random progress.

Progre;;,s bMS have proven to be an extremely helpful user
interfac:e feature for a number of reasons: They make the
users tee! better about the system because it is obvious tbat
the program is m;lking forward progress ()!l requests and has
not gotten into an intlnite loop. Many systems present a
"busy" picture, such as an hOllIglaSS, dock or a Buddha
(for palience). to show that they are computing, but since
this is static, it does !lot shov/ that the progi:hm has not crashed
or how swiftly it is progressing toward tompletlOll. Indepcn
dent of any other advantages. this iowerlng of the user\; anx
iety is an important benefit. USer>: call aLso usc the progress
ini<)rmatiofl to estimate when jobs will be completed so they
can schedllle their time more effectively, either in othl~r com
puter ta.sks Of in off-computer a.ctivities. Thu:;, Ilsers may
be more productive when provided with progress
information.

/\.. major l'omplaint about progress bars is that it is too dif
ficult f<)r applications programs to compute what percent of
the .lob they have completed. In the PERQ POS nperating
system, J 5 however, experienc:e has shown that most ;lpplica
lions can provide this information with only a little work.
Since HI(" display is vcry low resolution, an approximation
is aU that is needed, Estimates of progress can usually be
calculated based OJ] the amount of an input -file that has becn
read. for example, ilnd (possibly) heuristics based on past
perfonnance. III some cases operating systems can provide
useful infmmation that. will allow progress to be compllted
and displayed. L'i

The 1a>:(three pkces of process lnii)rmatiotJ provided by
Sapphire are shown as pictures in the icon. One picture t(,~ns
whether there has been un error in the last Hcilvlty, ,mother
tells when the process is waiting for' user input, and the third
is reserved lor specifIC application-defined attention :;ignab.
The actual pictures used (see Figure 4) are a bug (a). a
keyboard (b), and an exclamation poini (c), but these can
eaSily be changed by the user or application (see "Corpora!"
Identity for iconic Interface Design .. ., by Aaron Mar
cus on p. 24 of this issue). The pictures are present when
the "onditions are tme and absent when they are false. The
attention signal might be used, for example, by a mail pro
gram to report that new mali has arrived. The visual signals
Hre nonintmsive, unlike an auditory beep, so the user call
ignore them, but they are easy to see jf desired. Another ad·
vantage over a beep is that if the user chooses to postpone
handling a condition, the picture stays on the screen as 3

reminder that it should be handled eventually,

Window status. An icon aiso displays 1\vo pieces of in for
Illation about the status of the window. First, the bonier of
the icon for the Listener is highlighted in th(; same manner

as t1C window itself (in Figure 4, icon 2 corre:;ponds !O the
Listener). Sel~ond, th!:': icon displays a ~;ma{! picHlm if the
window has heen moved entirely off the screen (~ee (g) in
Figure 4).

Although the icons are small (M'x .&Lp:ixe\s each). they
are ensy to Interpret. and the inti)frnmion IS displayed in "
cO!lvenient manner. The user can simply scan the icom; to

dt:,juce ihe staie of tbe entire comp\!ier and easily sce wilic:h
processes require attention. or course, if the deiilul! inri}!,_
mation described above is not approprlme for SOfM proce"scs,
arhitrary pictures ,:an be displayed ill the icon ~as ~WHS done
by two precesses HI Figure 5). In this way, the kons of tlw
Star or Lisa C,ln be simulated by Sapphire,

!eon window. In almost ail other window managers with
icons ail icon appears when a window is removed from the
screetl~ ThilS the window either is displayed or has been
shrunk down so that only the icon silows. In Sapphire,
however, it seems clear that \\le want icons for all window,
displayed at all times, SlB,'e they provj(k~ so Illuch il~;"fl!l

injbrmation. There is no logical difference between a win·
dow that is totaHy covered by otber windows and Gne tilat
is offscreen; both are invisible to the user. Therefore. icons
in Sapplme are visible nil' ail windows. A windmv may still

be removed from the screen in Sapphin~ by SImply moving
it so that it is torally olfscreen (see next section). The icons
are therefore assotiaft'd with a window rather than an Blt(c\'
native representation f()r it.

Since the icons and the windo\',:s they represent can be on
the screen at the ~ame time in Sapphire, it might be difficuit
to sped!,y whether sllch operations as "move" ~hould operate
on an icon or Oil its willdow. To aHeviate this problem. Sap,
phire groups all imn~; together in one w·indow. Thus, tile jcon~
as a group can be lTIuved around or removed aitogeth,:f if
the user does not like Icons. The icon window .:an be cover('c!
by other window>-, and Its 5i:<:e and position can be changd
in the sallle mallner as any other window.

The icons in the icon wind{);v are not rearranged except

on U8Ct' comnmnd, Thm, when a windo\-v is deleted, its iC<)(I

is deleted, but the hole is not filled until anDther window;"
created, Users will probably remember which window goc'S
with which icon by position, so it is important not to rear"
range the ic:ons wi.thout the llser's permi~si()n. Of COl.H·S,~
there are also commands to identify the icnn I<)r a window
and the window ti)r the icon if the user for'gets_ TillS ',>,itl
be discussed later.

User interface

11lcre are ,I number of trade-offs to be considered in design·
ing a window manager. For example, ihe larger the ic~,m
are, ihe rnore inf(;rtnation they can di:-,piay, tmt then ther,;
is less screen space for wimlo\'.;:;_ Similarly, the user inter
face mw;t halance a number of competing goab_

One of the goals of Sapphire is io provide a rich and POW(;['

ful uscr i.nterface without restricting the Bser inte "face of ,IP
plication, running under it. This is important, sim.:e the user
will be gjying c:ommands to the application program far ;non:
often than to the window manager. Sapphire wili be I.ls,,~d

to support many diflCrent types of applications with different
requirements for input :md output. Therefore, Sapphire,
unlike most other window managers, does not reserve ailY
of the buttons on the pointing device exclusively for u~e by
Sapphire. Any button pressed ,)1' releascd inside the Ustenu
window IS sent to the applicatwn running in that windo'l',.
To give window-manager commal1ds for a window, the usn
must press H button in the title line or .in the icon for that
window.

IEEE C(i& \

MS_SURFCAST _000002178
Petitioner Microsoft - Ex. 1066, p. 7

Jnput devices. Sapphire is also designed to run with a
11umber of different input devices, one of which is a one
button stylus. This provides two constraints. First, all opera
tions have to be possible with one button, and second, the
point position cannot be used to determine whi.ch window
is the Listener. This latterrestriction arises from the fact that
the pointing device returns random positions when the pen
is removed or laid on the tablet. If the position were deter··
mined simply by the position of the traCKing symbol, then
characters would be haphazardly given to different windows.

A similar problem arises with mice or pucks when the
device is accidentally bumped and the tracking symbol (rave!s
into ano!he r window. The user might not notice and coul~'
thus give the wrong command to the wrong progrmh.
Sometimes applicau()!ls also need to know the tracking sym
bol position, even when it is outside the window. Therefore,
in Sapphire the lIser must take an explicit action by pressing
a button in a window to change the Listener; just moving
the tracking symbol is not enough. The press that changes
the Listener is not sent (0 the application program, since this
might cause some nndesired action.

Another advantage of requiring an explicit press is that
the pointing device can then be used in absolute or relative
modes by different windows. As was explained above, ab
solute mode is necessary for digitizing, but relative mode
is preferred by most users for other applications. If the cur
rent mode is relative, ;Jnd then a window that uses absolute
mode becomes the Listener, the tracking symbol wil! jump
to the absolute location that is specified by the current posi
tion of the pointing device. This may well be outside of the
current Listener's window, but this causes no problem for
Sapphire.

Accderators. A further important goal of Sapphire is to
make the most ,'ommon window manager operations very
easy to specify. A single button press should be wfficient
to give the mas! common commands. On the other hand. we
want to provide a large number of different operations to
increase the functionality of the system, Many window
managers use "'pop-up menllS" for giving con1.mands. The5e
arc small menus that appear when a button is pressed (see
Figure 6). The user picks an operation from the menu, and
then the menu dis;Jppears. restoring the picture that was
underneath. The advantage of pop-up menus is that they do
not take any screen space when not in llse, but a disadvan
tage is that choosing an item takcs a number of steps: first
OJ press to get the menu. then a search to find the correct itcm
in the menu. and finaily a selection of that item. Pop-up
menllS also lend to be computationally expensive, so it may
take it noticeable period of time before the menu appears.
Experience has shown, with PERQ Sapphire and at Xerox.'6
that experts will be happy to memorize special "accelerators"
to avoid using pop-up menus whenever possible. Sapphire
provides accelerators, in addition to pop-up menus, in a man··
nerthat is easy to learn and remember. TIl(: keystroke model J7

suggests that these accelerators will speed up expert
performance.

The commands available with a single button press in Sap··
phire (the accelerators) include top, bottom, moving a win
dow, and changing its size. Another provided operation·i);·,
making a window full screen, This might be used, for ex
ample, when more contextual information is desired during

[)(xcl1lber J 984

an editing session. The user can define whether·' full screen"
leaves the icons visible or not. When a window is made full
screen, its old position and size are saved so the window can
easily be returned to its original place. Similarly, there is
a command to move the window entirely off the screen. This
can be used to prevent the screen from getting cluttered with
windows that are nor in use. It ;JIso makes the window com·
putations less expensive, since offscreen windows are not
considered. A command ilsing the icon brings the window
back to its original place on the screen.

Assignment of commands. The title line of a window is
divided horizontally into three sections: lefi:, middle, and
right. Since title lines are typically about five inches across,
each section is about 1 liz illches and is therefore easy to hi!
with the pointing device, The left and right sections have
the same filnctions, since windows are often covered on one
side or the other, The most cOimnon pointing device for Sap
phire has three buttons. so we have 3 (buttons) x 2 (areas:
left-right and center) = 6 (functions) available on the title
line. The actual assignment of commands to locations can
be defined by the user. This is usef111 for a number of reasons.
First, it allows lett-handed people to put the major commands
under their inde>; finger (when the puck or mouse is moved
from the right to the left side. the primary button changes
from the index to the ring finger). Another advantage is that
novices can define all buttons to provide the same fUllction
(e.g .. pop-up menu) and thereby avoid confilsion until they
are comfortable with the system, The best reason for allow
ing this Hexibility, however, is simply that different people
want to operate in different ways. For example, some peo-

Ffgure 6, Apop·up menuoiier a backgfound oiadirect.ory listing,
The command HELP will .be exe.cuted.

19

MS_SURFCAST _000002179
Petitioner Microsoft - Ex. 1066, p. 8

2', \I

pIc would like "top" and "Listener" to happe!l together,
while other people prefer thes(' openltions to be performed
separately.

Default assignments. The default assignments of opera
lions are as follows: On the ends ofthe title line arc (I) top,
(2) bOttOl.11, and 0) pop-up menu. The pOp-!lP menu pro
vides an d' tbe commands th;lt can be given directly fmm
Ihe title line, so a novice can always find commands easily.
In addi!lou, it allows users with a stylus (one Dutton) to issue
all commands. The pop-up menu also includ~~s the command
"help" \vilieh generates a window In the center of the screen
explaining all commands. The pop-uP, !rienu contains a
number of additional commands, including some for such
proces:i control as abort, s!lspend, and create ne'w shell.

In the center of the title line tht~ more esoteric functions
are provided: (4) move/grow, (5) tiJII screen or bad frmn
full screen, and (6) uffscreen. After selecting "movefgrow,"
the llser then ,elects a position on the window to move or
grow frollL The corners are grow points, and the sides have
both move and grow points. Appropriate feedbaek shows
whidl operation will be perfonned. as described below. Since
windows in Sapphire may be moved partially off:~creen in
any direetion, it is necessary to be able to move them from
lmy side. It is also useli.ll to be able to gro'N a window hom
different points if the user is trying to align one window with
other windows. During the move and grow operatIons, and
also during window creation, hairlines are displayed to show
the outline for the window so that the user can place it ac
curately. This feedback also makes it easy to identify wtwt
the system expects the user to do.

The icons are too smal! to have three areas, so we ;lre
limited to three functions total (one fOl' each button). One
button perl<)mlS "top" and" Listener" and "back from oft:.
screen" all at once. Another burton provides a pop-up menu
with an of the commands, and the third button idenllfies the
window that corresponds to the icon. This is accomplished
by blinking the window and lhe icon, and drawing lines from
the corners of the icon to the comers of the window. If the
window is eovered, the lines show where the covered win
dow \vould be if it were brought to the top, so the nsef can
send the appropriate windows to the bottom tD make it visi
ble. Of course, the user caB simply bring the window to the
top using the first icon cornmand. Again, a user wilh a one
button stylus can perform these operations using the pop-up
menu,

Feedback. With all of these different functions. it seems
dear that the user will nm always remember '),'hich button
will res!llt in \vhich action, In Sapphire there i:; a simple
method, which does not penahz:e the experts, for showing
tbe operation that wi!! OCCllr. When a blitton is pressed, the
tmcldng symbol dmnges to a picture that shows the opera
tion thHt wi!! be performed (see· Figure 7). If!his is the desin;{j
operation, then the button is sirnply released. If this is 1'10/

the desired operation, then the liser C;lfi move the tmcking
symbol around to the correct place (if in the title line) or
rnove it away hef6re releasing to ahort. Thus the expert can
simply press and release without waiting for the picture. and
the ilovice can check all. operation~ befme exe~:!!ting them.
Some systems provide an "undo" command, so novices can
execllte a command and then undo it if it was the wrong one.

Users prekr knowing in advance. what (OJIlflJand they \<"iH
execute, however, su Sapphire provide;; feedbHck bebre
commands arc eKecuted. AI! commands can ea$iiy be
reversed or abmied in Sapphire, so a special "undo" is Hot
needed.

While performing such multistep tash iiS gro\\'ing it win
dow or choosing from ilPOP"UP rnenu, Sapphire also display:;
an appropriate tta.cking symbol picture. This can be used,
for example, to verify whether a' 'move" Of a "grow" will
be performed. Tile tracking symbol picture uT!ambiguol\~ly
shows the user what to do. which redllces the contiJsion alld
difficulty. Also, the user can always abort these operations
by hitting a keyboard key, s() the user i:; never stuck ill a
mode without knowing hDw to leave.

The def;mlt tracking-symbol pictures that are used wcre
drawn by the author and a grapbic artist (;;ee Figure 7), but
they can easily be changed. For exampk, {)(her versions of
the pictures are shown in A;mm M;lrclls\; article on p. 3l.

Keyboard commanGs. For some n~asoll there are a
number of peopk who prefer no! to use a pointing devine.
Therefore, all commands in Sapphire ;lre also available from
the keyboard. Since there are a number of commands, 'Ne
use a special prefix key {that does not have a standard ASCiI
interpretation). Thb avoids the probk~m of taking many keyo
away from application programs. Th(, keyboard commands
are also usefnl jf the pointing device is broken, Of if some
process has reserved It Of changed the tmcking in arbitral,)!
ways. For eKHmp!e, Sapphire allows application programs
to specify (hilt the tracking should be: Dn a grid or re;;trlctecl
within a specified box or turned off altogether. This make::;
tlw operating system more effi(,~iellt, since the appli{:atJon pro
gram does not have to wail in a bl!sy··loop, monitoring tile
pointing device. However, since the prefix key (which can
be changed by ilsen;) returns the tracking to th,~ standard
ddimll, we have ensured that u~ers can always give com
mands either from the keyboard or Ihe pOinting device.

Most keyboard commands operate on the eurreni Listener
Some (~ommaBds, however, are global. For example, one
of the keys Oil the PERQ keyboard is labeled "Help:' and
this provides help for Sapphire if typed after the prefix key.
Another glObal command displays tbe icon window if it has
been Il:lOved of[~creen Dr tovel'ed.

To designate different windows as the Listener llsing thl'
keyboard, there are a pair of commands that change til"
Listener to another window in a certain ord~r. Currently,
there is a rillg of windows ordered temporally by the time
they were iast the Listener. The ·window that was the ia"t
Listener is previous to the current Listener, with the win
dow previous to that before it (see Figure 8). Thu~. YOll can
go to the previous Listener with one c()mmand. If' the u~er
is operilting on a palr of windows, for example, this make:,
it easy to :;witch back and i<)rth. \Vilen new windows afl~
created .. they are put at the' 'end" of the ring, which isjust
after the current Listener (see Figure 8). Thus the user can
change from the current Listener to the most m::ently creali'd
window with Olle cmmnand; just move forward H\ the
Listener ring. This will be useful when the user canses a new
window to be ;:reated and then wants to operate on thi~

window.
Although this order is very appealing, it has a serious prob

lem. When the Listener is changed from the curren! Listener

IFEECC&\

MS_SURFCAST _000002180
Petitioner Microsoft - Ex. 1066, p. 9

\

~."",.'.,'.,',.:.', •.. ' .
.. .

. ~

. *' ,,#'

Jf'j' '\J

......... ~ ~-~ ~.: H
:-........ :;: ; .. .

:- ,'" . " {.

~ •. ;.) >

.... ~ .;.
i.?

.J
'ii

Figtlre 7, Tracking symbols ust:id in Sapphlre. When the user presses down ()nthe polnthigdevlc8. tht:itracking
symbol piCWre changes 10 show what operation will be. performed, If the operaliorlJeqU!res mulUple actions (fot
example, when growing a window). the picture changes al each step ttl show what is 8j(pected next. Tt\eplCfures
abOVE! represent:

2, The default Sapphire cursor (a star Sapphire ring).

3, Make this window be the Ustener.

4. Bring this window to the top.

S, Send this window to the bottom.

6. Top and Listener (used in the icon),

7, Get a pop-up menu of commands.

6, Return the window from full SCt'een to orlg!na! pOSitIon.

9. Make the \'iind()w full screen.

D('cember :.934

10, Identify the icon f()f1hls window.

from any side or corner,

12. Ch;:lflge the windoW's Si~E!,

13, Change the winciow'spos1fion,

14. User-specified abort of any operation,

15·22, Specify corner or side ()f ihewindoW,

2~. Identify the window for this lc()tl.

24, Get <! pop-up menu from i<;on,

21

MS_SURFCAST _000002181
Petitioner Microsoft - Ex. 1066, p. 10

to the previous Listener, the old current Listener becomes
the previous, ,1Od the old previous Li~!ener is now the Cllr·

rent. (This is more easily understood by reference to Figure
8.) Thus, the windows have switched places and the com-
lYIatJil "previous" will just os\.~illat(;~ between the top tW{) win·
dows, and no other windows can ever be access,,~d. The salllC

~. ~~, 7 •. ;)
" ~o,~

-

problem occurs for movIng i()fWard. Therdore, tben~ n;!l~t
be a mode. when the; llscr is changing the Listener, th,lt ",iii
allow access to all the windows, TillS mode has been a prob·
lem in praclic:e, so we are investigating other orders for (he
Listener ring, The rnost obvious alternative order is to 1):,,;

the order of the windows in the kon window.

...... ~~--~---------~ -....... ~

-

-
Figure a. Th~ Listener ring. Wi is Ihe current Listener, Th~ previous Listener was W2, so 9111i09 the "previous·
Listener" command ,';'iIl move fromW'! to W2. Ustener before W2 was W3, etc. Window 'Wfr was newly created and
has never been Listener so it is al the "end" 01 the ring. The command "forward Listene(' from Wi wiU get to we.
When windows are created, they are <ldded "forward" from the current Us1ener {e.g., between Wi and W6 in this
case}, H W4 is made the current LiiAe!~er;nleJ1ilwm be removed from the ring (so forward from W5 is W3, and
previQus to W3 is W5), and then added belweeti W1 and W6. When usi.ng the "previous-List.ener" command to
move around the ring, a mode is Meded to prevent W2 and W1 from just repeatedly sv,'applrlg places.

MS_SURFCAST _000002182
Petitioner Microsoft - Ex. 1066, p. 11

Conclusions

Sapphire incorporates a number of innov';!tions in window
management and user interface de&ign, Icons in Sapphire are
llsed in a nDyei way to cllham:e the user's prodl!divity whw
doing several task:> concurrently. Eight pieccs of status in,·
,i)miall011 arc silowil ill the icon, so t.l-te user can easily tel!

whether the process nmning in the window has gotten all

;;;rror or wants attention and what percentl'gt~ of the task has
been completed. This allows the user to lYIOlutor and ",)n
(wi multiple processes more easily.

The user interfacc of Sapphire provides full functionality
from both the pointing device and the keyboard and is easy
for the novice while providing "impie and powerful opera~ .
lions for experts. All commands are available from pop-up
menus. but accelerators allow the most common commands '(l be execute,J with a single button press. The picture in the
tracking symbol changes to show the operation that will be
performed. This llser interface promotes experimentation,
since there is always appropriate feedback. and it is always
possible to abort an operation once it has been started. This
J]exibility and power has been pt"Ovided in a way that does
not restrict application programs to a particular style of in-·
If?ractio!l or a predefined ana logic view of the system.

Sapphire is currently in use by a growing ,.ommunlty of
people in ditff?rent fields. Even though some of its features
are not yet extensively llsed, the overall consensus is eil··
thusiastica!ly positive. Sapphire is continually being modified
based on user feedback, as we discover how to rnake it even
easier to usc.1lIlII

Acknowledgments

The design of Sapphire grew out of discus:>ions with Gene
Bat!, Fred Hansell, Dave Golilb, ilnd many other>: at
Carnegie-Mellon University and PERQ Systems Corpora
lton. Amy Bntler and David Golub have heen largely respon·
sible for maintaining Sapphire, For help and support with
this artide. I wuuld jike to thank my wife, Bernita l'vlycrs,
and Alain Fournier, William Bux!On, Brian Rosen, Joyce
Swaney, and many others at the University of Toronto and
PERQ Systems CorpOJation,

References

Brian Ro,en, "PERQ: A ConHnt~rcially Available Per;,(Jna!
Scicntiik Compulo'," iEEE Compml1 Dige.w, Spring 198{).
pp 484·485,

2. R. R'l"hid and G. Robc'rison, "Accent: A Cmnmunil:atiotl
Oriented Netwotj.; Op,cra1i.ng System Kt'mel," Proc. Eighth
Symp. Operating S)'. fems PriJ)oj)ks, Dec, 19S1, Asilornar~
Ca!if" pp. 64·7.'5,

3. David Canfi.eJd Smith, Charles lrby, Ralpb KimbaiL Bill
Verpla!ik. and Erik Harslem, "Designing the Star tTser In·
terht:..'e J " By:e !t1ngazjJjf:!, Apr. J982 .. pp. 242-282.

4. Brad A, Myers, "A Complete Implementation of Covered
\Vindow::; for a Heterogeneous Environment," Dynamic
Graphil'E< Pfi.~iect. t;;:ch, memo~ U. of Toronto Comp, Sci.
Dept., 1984.

5. D. M. Richie ;lnd K. Thompson, "The UNlX T\me·~hm-i!lg
sys,,"m." C.)mm, AeM, Vol. 17. No.7. July 1974, pp.
365~375.

O. Richard J, Beach, "Experience with (he Cedar Pmgram
ming Environment for Compnter Gmphks Research," Proe
Gr<"<phics lnler/ila '84, May l8·June " 1984. Otta'J.a, On
tario. Canada, pp. 65··79.

7. Warren TeitdmCln, A Displa)' Oriellied Programmer's ..1ssis-
1(1111, Palo Alto: Xerox PARC CSL-TI-J, Mar, 1S, 1977.

8, Lllny Teokr, "The SmaUta!k Envir()mn<.~nt," Byte
Magazine, Aug. 1981. pp. <)0-147.

9. D. Weinreb and D. Moon, introductioll to Using the Will
dow SYSt<"II1, Symbolic;;, Inc.. 1981.

10. Rob Plke, "Graphics in Overlapping BitntHP L1Yf.fS," tlCM
TrailS. Gmphics, \101. 2, N<! 2, Apr. J983, pp. i.35-!60.

J L W.K. Engli,h, D,C. Engelhart, and M.L. Berman,
"Display Sdection Techni,:!ue.s fm Text Mampuj;,lioll.·'
IEEE Trans. H,lIJwn Fuoors iN Electronics, Vol HFE-g,
No. !, Mar. 1967.

12. Gregg Williams, "The Lisa Computer System," Byte
MagaZine, Feb, 1983, pp. :n,50.

13. frank Halasl and Thomas P_ MOf;!!!, "Analogy Considered
Harmfill," Pro!:. ifunuUl Far.lO;:s in Compwer Systems
COJJI, Mar. 15-17. 1982, pp, 383-386.

14,1~r~,d A. Myer:i. "The Importance of Per~ent-Done Progress
"Indi,'3tors it11" Computer-!'Iuman Interface;;," Dynamic
Graphics Project, tech. memo. Vnivrrsity of Toronto C()mp.
Sci. Dept, 19S4

15. "PERQ POS Operating Syst.:m M3JlUaJ," PERQ SyM<':m
Soji,mre R<'!<'nmce Manual, POS Version G3, PERQ
SY"I~ms Corporation, Pittsburgh, P;L l\hy 1983,

Hi There,a Roherts. private e£.lllversation ~bollt experielll'e at
Xewx SDD on the Star develDpment environment, t.,1ar.
1984

17. S. K. Card, T. p, Moran, and A. Newell, "Th" Key!;troke
L"vd Model f<),' User Performance Time with Interactive
Systems," Comm. AeAf, Vol. 23, No.7. July 1980, pp.
396-4lO.

EnId A, Myel';; is a PhD candidate in
COH1putc,r science i.-it tlK Vniversity 0fTororl~
to. from 1980 until J.923 he wotlwl at PERQ
System;, Corporatioll where he <ksigned and
implemeflt~d the Sapphire window manager
and mim{,rous PERQ demOllStr,1tion:; for the
Siggraph <:quipmen(<~xhibitioH. His wseardl
interests include user interfaces, interaction
techniques, window management, program
ming environments, debugging, ~U1d graphics.

Myers received the BS and \lS degrees from the Massachusetts In·
stiluli;' c)fTedmology. While attending MIT, he wa;; a researdl in
tern at Xerox PARe. He i:; a memher of Siggraph, t\CM, the Cana·
dian Information Processing Society. and the. IEEE Computer
Soci(~ty .

Myers's address is Computer Systems Re:;eruxh Institute, Univer
sity 01." Torol\lo, Toronto, Ontario, Canada, M.'iS lA4.

PERQ's address is PERQ Sy;,1t:m,; Corpori;tion, 2600 Liberty
Avenue. P,O. Box 2600, Pittsburgh, PA, USA. 15230.

MS_SURFCAST _000002183
Petitioner Microsoft - Ex. 1066, p. 12

