
Window Interfaces

A Taxonomy of Window Manager User
Interfaces

This article presents a taxonomy for the user-visible
parts of window managers. It is interesting that there
are actually very few significant differences. and the
differences can be classified in a taxonomy with fairly
limited branching. This taxonomy should be useful in
evaluating the similarities and differences of various
window managers, and it will also serve as a guide for
the issues that need to be addressed by designers of
future window manager user interfaces. The advan·
tages and disadvantages of the various options are also
presented. Since many modern window managers
allow the user interface to be customized to a large
degree, it is important to study the choices available.

Brad A. Myers
Carnegie Mellon University

AWindow manager is a software package that helps
the user monitor and control different contexts by
separating them physically onto different parts of one or
more display screens. At its simplest, a window manager
provides many separate terminals on the same screen,
each with its own connection to a time-sharing com­
puter. At its most advanced. a window manager supports
many different activities, each of which uses many win­
dows, and each window, in turn, can contain many
different kinds of information including text, graphics.
and even v ideo. Window managers are sometimes imple­
mented as part of a computer's operating system and
sometimes as a server that can be used if desired. They

September 1988 0272-171618810900-0065501.00 1988 IEEE 65

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SU RFCAST _000003831
Petitioner Microsoft - Ex. 1067, p. 1

r.llu.l .-.1
xcloek.l
xcolorl.l
xd ... o.l

xclpr .1
xclvl.!
xfox.1
xfd.!
.ne.t.l

xl",py.l
xin1 t.1
xlo~d.1
xrwn.t
xpe-rFl'tOn.l

xpr.l
xrof,,"h.l
xsot.l
xsh.ll.l
xt~m.1

xtrek.l
""d. 1
""lnlnfo.l
)(WIll. 1
xwud.l

1 .,lle 16591 Apr 30 20:25 X.l
1 .. lIe 2188 Apr 30 20:25 blfF.l
1 .,lle 13&33 Apr 30 20: 25 bl t".,ap. 1
1 "I.e 5&48 Apr 30 20: 25 1
1 mise 3516 Apr 30 20:25 ,...~~~---------
1 .,15e 1539 Apr 30 20: 25
1 miae 1527& Apr 30 20:25 /2ci=J,:ii=871111;::1~5iD;;;;Jl;l:Ki-;1,:;g;;t.C;;;;~~-(:t;;;;c!~th.,'OC------rt
1 .. lIe 5145 Apr 30 20:25
1 mise 2421 Apr 30 20: 26
1 .,lle 6711 Apr 30 20: 26
1 .. lie 1023 Apr 30 20: 26
1 mile 273& Apr 30 20: 26 lIModiF~ (lobl.Counter. Table "Contento")
~ :~:~ ~m ~~~ ~g ~n: lIModiF~(f1aureCount.r, loblo "Content.-)

1 "Ile 1526 Apr 30 20:26 hayen't tried It. but It looks like It should
1 .. lie 3805 Apr 30 20: 26
1 .. 1Ie 2311 Apr 30 20: 26
1 "i Ie 4360 Apr 30 20: 26
1 mise 10720 Apr 30 20: 26
1 ",lac 3472 Apr 30 20: 26
1 mise 5002 Apr 30 20: 26
1 mise 1053 Apr 30 20: 26
1 mlae 2151 Apr 30 20: 26
1 ",lie 6411 Apr 30 20:26
1 .,ise 27590 Apr 30 20: 26
1 ",lse 742 Apr 30 20: 26
1 mise 2367 Apr 30 20: 26

1 mise 4192 Apr 30 20:26 t~~~~~~~~~~~~:: 1 .. lac 9263 Apr 30 20: 26
1 .. ICc 2654 Jul 9 13: 57

> ><wd -out /tJop/wd. dl.O'lp

Figure 1. An example of a typical screen using the X window manager4 with overlapping windows. Some
windows have title lines (the top-left window's says "xterm #2"). The background. where there are no win­
dows, is gray. The small windows at the bottom are icons.

can even be implemented by individuill ilpplication pro­
grams or programming environments.

Window managers have become popular primarily
because they allow separate activities to be put in phys­
ically separate parts of the computer screen. The user of
a computer is frequently shifting focus from one activity
to another. including such small shifts as changing from
editing om~ file in a text editor to editing illlother. and
such large context shifts as changing from compiling a
program to reading mail.

Before window managers, people had to remembnr
their various activities and how to switch back and forth.
Window managers allow each activity to have its own

06

snparate area of the screen [its own "window"). Switch­
ing from one window to another is usually very simple.
This physical s(!pilfation is even more important when
the opera ling system allows multiple activities to oper­
ate at the same time ("multiprocessing"). For example.
in Unix. the user can compile one file allhe same time
a different file is being edited. On a conventional termi­
nal, if the compiler process outputs any data, it is con­
fusingly intf!rspRrsed with the editor's display. If the two
processes request input at thf! same time. the user may
give the input to the wrong program. Window manager"
help with these problems by prov iding separate areilS in
which each process can perform input and output.

IEEE Computer Craphic:, & i\pplicQtiorcs

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10.2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003832
Petitioner Microsoft - Ex. 1067, p. 2

Another advantage of window managers is that they
provide a higher level interface to the mouse, keyboard,
and screen, and therefore can support much higher qual­
ity user interfaces. For example, the window managers
on the Star 12 and Macintosh 1 help support the meta­
phor that using the computer is like doing operations on
a physical desk. This higher level interface can also make
application code more portable from one machine to
another, since the same window manager procedural
interface can be provided on different machines. This
was an important motivation for the development of the
X window manClger.<

Today there are a large number of window managers
in existence from many companies and research groups,
and more are being cff'!ated all the time. In surveying
these window managers, iL became clear that there are
many similarities between all of them, and the differ­
ences can be characterized on a small number of differ­
ent axes. (This survr,y was started at the Alvey MMI
Workshop on Window Management.") Most of the
ideas seem to have originated at the Xerox Palo Alto
Research Center, including windows in general
(Smalltalk6

), pop-up menus/ icons (TajoR,~ and Star (2
),

and Liled windows [Cedar1Q
,11). Of course every window

manager has its own original aspects, but most of the
important featurcs of the user interfaces of window
managers do not seem to vary markedly.

With the advent of the X window manager,4 which is
rapidly becoming a de facto standard, the study of the
user interface component is becoming more critical.
This is bcr:allsc X and many other modern window
managers allow the user interface to be changed, while
still maintaining the same application interface, User
interface designers therefore are faced with not only a
choice for the user interface uf their application. but also
for that of the window manager. It is therefore important
to focus on the different choices in the user interface
component of window managers. This article presents
a taxunumy of the choices used in existing window man­
ager user interfaces, along with some advantages and
disadvantages of each r:hoir:e.

(At the time of this writing, Xerox, AT&T, and Sun had
just announced a portable window-manager user inter­
face r:alled "Open Look," which apparently will be
implemented on multiple-window managers, including
X 4 and NeWS. 12 Open Look, which is based partially on
the user interface of the Xerox Star, is designed to match
the case of use of the Macintosh, and thereby make Unix
systems more user friendly.)

Definition of terms
The previous section defined "window managers"

and discussed the reasun they are su pupular. This sec­
tion defines some related terms that are important for
understanding how window managers work.

A window manager can be logically divided into two

September 1988

layers, each uf which has two parts. The base layer imple­
ments the basic functionality of the window manager.
The two parts of this layer handle the display of graphics
in windows and ar:r:css to the various input devices
[usually a keyboard and a pointing device such as a
mouse). The primary interface of this layer is to other
programs, and it is called the window manager's appli­

cation or program interface. The hase layer is not dis­
cussed further in this arLicle. The oLher layer uf window
managers is the user interface. This includes all aspects
that are visible to the user. Sometimes the base layer is
called a window system, reserving the nilmc "winrlow
manager" for the user interface layer. Since this article
deals only with the user interface layer, the term "win­
dow manager" is used here.

The two parLs of the user interface layer are the presen­
tation, which is composed of the pictures that the win­
rlow manager displays, and the operations, which are the
commands the user can give to manipulilte the windows
and their contents. Figure 1 shows windows that demon­
strate different aspects of the presentation, including
patterns or pictures for the area where there are no win­
dows, title lines and borders for windows, etc. Examples
of the operations that may be provided for windows
include moving them around on the screen and specify­
ing their size.

One very important aspect of the presentation of win­
dows is whether they can overlap or nol. Overlapping
windows, sometimes called covered windows, are a fea­
ture allowing a window to be partially or totally on top
of another window, as shown in Figure 1. This is also
sometimes called the desktop metaphor, since windows
can cover each other like pieces of paper can cover each
other on a desk. (There are usually other aspects to the
desktop metaphor, however, such as presenting file oper­
ations in a way that mimics office operations, as in the
Star office workstation. 12

) The other alternative is
called tiled windows, which means that windows are not
allowed to cover each other. Figure 2 shows an example
of tiled windows, The advantages and disadvantages of
each are rliscussed below, Obviously, a window manager
that supports covered windows can also allow them to
be side by side, but not vice versa. Therefore, a window
manager is classified as covered if it allows windows to
overlap.

Another important aspect ofthA presentation of win­
dows is the use of icons. These arc small pictures that
represent windows. They are used because there would
otherwise be too many windows to conveniently fit on
the screen and manage easily. When a window is not in
use, it can be removed and replaced with its icon, and
later conveniently retrieved when needed. Figure 3
shows examples of icons from some different window
managers. The section on icons discusses the options
available for icons in more detail.

An important aspect of window managers is how the
user changes which window is connected to the key-

67

Authorized licensed use limited to: Carnegie Mellon Libraries, Downloaded on August 10,2009 at 22:52 from IEEE Xplore, Restrictions apply

MS _ SURFCAST _000003833
Petitioner Microsoft - Ex. 1067, p. 3

-----------_._,--
1M.I.aa, _ ,...1.'

.. ,...,., ·'rr ... ~

.- ~.'" IJ .. ~"' ... r
~ .1.iifI,.... IfI"TT'4I'I'e,....,... ~,..,... -_ -,--v-.~ ;-t<l cAM,. .'l«.-

..".." _ I. ,., '~II ,.. '" r.
~,.--. I ... _~ .. ,.. •• ~,. "...c.~ _ ... -

., 1 1'f.aoe"""" U.., 'I
I: ..,." ""-"'·PI
U :., II 0- " TtIII 6
IJ ' ,,.,...,,.
"..,,, L~'A
U:.,') , ",-...u _ ...
I', WOrooa.,.. I."" _~, ,..... ..

r It ' ".
~ It , ~
r , .. ., ,
I'''''I~

, P
, 1 f"

_. U AJaa'"
..... n..-, ..

,..a= 'CC) ro::v:c
... 1MI«u.a .. ua -__ .. __ :0_
.. : ~ ... L'"
.. ..-.l.-. ... LuI
.. ..-., LYU ... Laa DtCII __ _

w....." • ..,
T
tt.J .~ ..u. c:a.-,... lID !t}ll ___

'....-&i '" ,. "- ... JeJI;
..... IaA. 0.. , ... , 0.._
.. _" _UOO .,..
-.. W\aIae ___ caa,..Jt ~ _.-.. ___ 0..-

~--..-- -
~---' r nc... .. All o.tf
__....r1Dl. --._ W-..,....-.. ...

....... 11
h -'lM'
" "" 'Tr-
...... '1 '" ~Muc~."..tDw~
~ ~,I ... I['A.uI'.A:: ... ~~.

""'W a.,

• , .. I. I
I
AI. _1-.... (.......... 1·.·
I
.t n-....... A..U IMNIu ~ •• 'A.~
.... AC l,~ •• W
-.--- -----_._-----------_ ... -_ .. -----

Figure 2. A screen from the Cedar'0,11 window manager. Windows are "tiled" into two columns. There is a
row of icons along the bottom. Each window has a fixed menu of commands below the title line.

board. Although th8re will typicillly b8 multipl8 win­
dows, there is usually only one keyboard for each user.
Therefore, only one window at a time can be attached
to the keyboard. This window is termed the listener, since
it is listening to the user's typing. AiIother t()rm for this
window is the input (or keyboard) focus. Older systems
called the listener the "active window" or "current win­
dow," but these me poor terms, since in a multiproces­
sing system, many windows can be actively outputting
information at the same time. Window ma'nagers provide
vilrious ways La specify and show which window is the
listener.

Most window managers use some form of pointer,
which is an input device that returns a 2D value used to
identify locations on the screen. Pointing devices are
typically used for specifying window size and position,
for selecting characters in an editor, for drawing lines in
a graphics program, and for transferring a picture (such

!:ill

as a map) into the computer by specifying points (this last
use is called digitizing). Examples of pointing devices are
lighL pens, electromagnetic tablets with pucks or pen·
like styli, touch·sensitive surfaces (touch tablets or touch
screens). trackballs. and mechanical or optical mice.'·
Since the lIlost popular pointing device for window
manilgers is a mouse, the term mouse will often be used
in this article to mean pointing device.

Light pens and touch screens are used for pointing
directly at the screen, but with the other types the user
moves a device on the o8sk or on a special surface, and
a smilll picture, called the tracking symbol or cursor, fol·
lows the movement on the screen. In many window
managers the picLure for the cursor can be changed, but
a common picture is an arrow pointing to the upper left.

Pointing devices usuillly hilve one or more buttons. For
example, there are typically one to three buttons on the
top of a mouse. Some window managers allow the user

IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003834
Petitioner Microsoft - Ex. 1067, p. 4

EJ w *:m! ~~ Mail ~~ ~
••• ••• c=---- ._

Sapphire

o
~ecWrite Docunenl

Macintosh

x

Cedar
Star

Figure 3. Examples of icons from different systems: Sapphire,13 Macintosh,3 X,4 Cedar, 10 and Star.' Some of
the X icons contain the actual text displayed in the window in a tiny (unreadable) font.

to press two or three times quickly to specIfy additional
commands. This is called multiclicking (for example,
pressing twice quickly is double-clicking). Window
managers may also support holding down keyboard keys
(such as the shift key) while prr!ssing a mOllS() button.
This is often used to modify the) button's mmllling.

The window manager versus add-ons
10 compare window managers, it is first necessary to

establish the boundaries of discussion. A window man­
ager provides the basic service of managing different
windows on the screen, as defined above. In many sys­
tems, however, other servicp.s nrc also provided, and
these are often classified as part of the window manager.
By providing these services in a central place, the system
promotes consistency and makes applications easier. 10
compare the window managers of these different sys­
tems, however, it is important to classify which aspects

September 1988

are being compared and which are considered add-on
services. This section discusses some of these add-ons
so that the rest of the article can concentrate on the win­
dow manager portion itself.

Some commOll add-ons are the following;

1. a typescript package (handles user typing)

2. elltire editors

3. a graphics package for output (also called the imag-
ing model

4. menus of various kinds

5. forms (also called dialogue boxes)

6. scrolling mechanisms

7. general tool kits (which usually include menus,
forms, and scrolling mechanisms)

69

Authorized licensed use limited to: Carnegie Mellon Libraries. Oownloaded on August 10. 2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003835
Petitioner Microsoft - Ex. 1067, p. 5

- .. ,"",,"~----""""""<"" "

Table. Window managers discussed in this article.

-
Primay Tiled or

Name Created by Computer Covered Comments References
Smalltalk Xerox PARC"""-···· __ • Alto C fIrst window system 6,7,29,30
DLisp Xerox PARC Alto+mainframe C 40
Interlisp-D Xerox PARC Doom C 35
Tajo Xerox SDD Dandelion C first use of icons, renamed "XDE" 8,9,38
Star XeroxSDD Dandelion T first product with windows 1,2,46
Blit AT&T Bell Labs Blit C 1st documented imp!.; terminal emulator 36
Display Manager Apollo Apollo C originally had no mouse 49
'!! Symbolics Symbolics C uses multi-clicking 48
Sapphire Three Rivers PERQ C active icons 13
PNX ICL PERQ C feedback is full windows 41
SunWindows Sun Sun C 17
Cedar XeroxPARC Doom T first tiled; used graphics package 10,11.20
Window Manager Apple Lisa C 18
Window Manager Apple Macintosh C popularized windows & mouse 3,19
Andrew CMU ITC (IBM) IBM-RT. Sun T 16
Whitechapel Whitechapel MG-l C 23
RTL/CRTL Siemens PERQ T no columns; used constraints 33
MSWindows Microsoft IBM-PC T current version supports covered also 28
Viewpoint XeroxSDD 6085/1186 TorC successor to Xerox Star 32
X MIT Project Athena <many>
NeWS Sun Sun. etc.

3. user interface management systems or UIMSs 1
',

(which usually include a tool kit)

Typescript package
An example of a service that is often provided by win­

dow managers is the handling of typing. This is often
called a typescript package. and it usually supports some
rudimentary line editing (backspace, delete line, etc.).
The idea is to mimic the teletype interface to terminals
providr:d hy r.onventional time-sharing operating sys­
tems. Most programming langllflgf~s (for example C and
Pascal) have as a function to mfld a line of text. When this
function is executed, the user is typically allowed to edit
the typed line before using r.flrriage-return to confirm the
entry. The typescript package handlr:s this input also. In
addition. it may provide more elaborate commands, and,
in the extreme, be a full-fledged editor, as in thr: Andrew
system. 1b In a window system, the typescript par.kage
may also provide the ability to copy text from one win­
dow to another, as in SunWindows. 17 An advanced form
of this copying is the clipboard in the Lisa J(j and Macin­
tosh,J which provides the ability to copy arbitrary text
and graphics from one window to another.

Editors
In addition to the typescript package used to handle

command typing, some window managers include an
entire text editor, which r.an be Llsed for preparing docu-

70

C
C

first "portable" WM; emerging standard 4,24,27
uses Postscript· nee "Sundew" 12,21

ments and programs. This mayor may not be the same
package used for handling typing to programs.

Graphics package
Some window managers provide a sophisticated

gmphir.s package for application programs to help them
produce output. r:learly, the window manager needs to
output some graphics to draw the title lines, window
borders, ir.ons, hackgrounds, etc. The primitives that the
window manager provides for handling output is called
the "imaging model" of the window manager.

Some window managers, such as SunWindows and X,
provide a simple imaging model and expect that mom
sophisticated graphics packages will be huilt using the
window manager. This allows more flexibility, since mul­
tiple graphics packages can be used. For example, the
CORE, GKS, and PHIGS graphics packages have all been
implemented on top of SunWindows. In addition. the
graphics operations may be more efficient. since the
window manager can export the primitives supported
hy the hardware. The interface to the window manager
mily be simpler, since there are fewer primitives.

Other window managers are built on top of powerful
graphics packages. For example, the ;vlacintosh is on top
of QuickDraw,1" Cedar is un top of CedarCraphir.s,20
and NeWS,12 which was originally called SunDew,21 is
on top of a version of Postscript.22 Adobe Systems and
Next are creating another version of Postscript called

IEEE Computer Graphics & ApplicHtinns

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10.2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SU RFCAST _000003836

Petitioner Microsoft - Ex. 1067, p. 6

Display Postsr.ript to serve as the imaging mude! for
future window manilgers. ThR advilntClgR of llsing an
underlying graphics package is that th(: winoow l11illl­
ager can provide a more attractive presentat ion. For
example, the ~1acintosh window manager displays drop­
shadows ilnd rOlllldRd corners. Other ach'antages
include a more consistent interface to and bet weell
applications and better device indepcndRnu:.

User interface tool kits
Another service often provided by window managers

is a library of procedures to help applications cn;ate their
user interfaces. For example, almost every window man­
ager pruvides a menu package. VVhitechapeF 1 abo pru­
vides scroll bars that can he display(~d OIl tIl{) \\in£iows.
The Macintosh comes witb a r.ompletr: "Toolbox," 1'1

including menus, dialogue boxes. scroll bars, and text­
editing. A full tool kit for X is also under development.'"
The ad vantage of a tool kit is that it significantly reduces
thr: r:ffort required tu create higher ljuality user inter­
faces. and it helps RnSUrl? r.onsistRncy among the usn]'
interfaces uf different application programs on the same
machine. In addition, some window managers also pro­
vide a tool to help organize and use the contents of the
toul kit. Examples of this are the Apple MacApp
program'" and Apollo's Open Dialog."" These tools are

otten called user interface fIwnagement svsterns lC
, and

are nr:c(~ssary because programmers often find that tool
kits are large and difficult to usc.

Window managers surveyed
:-'1entioning every window manager is impossible,

sincf) new ones appear all the time. and man~ are nul
docul11[:nted in generally available publications. Th[~
selection here is not meant to be an indication of which
window managers are best. The ones included are the
ones that exemplify important variations. In addition,
window managers are continually changing, so the
dRscripLiuns for some window managers may no longer
be acr.uratll. Th(~ primary objectivll of lhis article is to
illustrate the choir.r:s availahlr: in window managr:r user
interfaces rather than to describe lully any particular
window manager.

Some window managers allow their llser illlerfaces to
be changed. For example, X allows significant changes.
For this class of window manager, the article describes
onf) uf the available user interfaces, and some of the
viHiilbilitv is mentioned where appropriate. For X, the
"uwm" \~indow manager"7 for tbc IHM-I{l' computer is
described and will be called "X/uwm."

Although this article discusses advantages and disad­
vantages of various user interface choices, this is not
meant as a criticism of any window manager. As with
all user interface decisions, there are often external con­
siderations that influence the choice. The descriptions
,He mcnnt to illustrate concr:pts rather than evaluate win-

September)988

dm\" managers.
The Table shows all the window managers mentioned

in this article. Thr: r:ntries are npproximatr:I~' in chrono­
logicalorricl'.

User interface of application programs
One intercs1ing r.onsideration is the extent to which

the windo\\" manilger's user interface affects the user
interface of applicatioIl programs Lhat run undur it. E\'Cll

wimlll1A' I11clIlagers thrtt try to minimize their user inter­
face will at least need to allow thr: user to change the lis­
tener rtnd the positions of windows. and even this user
interface will affect how dn application program can
interact with the user. Some window managers dttempt
to minimize their restrictions of the application's user
interi'ac() so they can allow applicatiolls maximum nex­
ibility

Othr:r window managcrs atlr:mpt to specify the user
interfacr: of applications to a large extent to ensure con­
sistency. In ilny case, the cboicr: of the user interface of
the window manager lIIust aff(:ct thullser int(:rJElr.r:s of
the applir.iltion programs. E\'en such window managers
as X, whose own user interface can be changed. are not
free of this problem. Different applications that run at
the same time canIlot all impose their choices on the
same window manager. since the windO\\ manager llSCI
interface is glubal Lo all applicatiullS. Figure 4 shows a
few samplu window managr:rs and hc]\\' l11uch they
infillflm:e the llser interfaces 01 applications.

Presentation
Now thr: taxonomy uf the user interface part of win­

dow managers will be presented. This section discussus
the presentation aspects of this taxullumy, and a later sr:c­
tion discusses the operations. Figure 5 shows the tax­
ullumy of th(, pn:lsentation aspects ofwindO\\' managers.
The following sections explain the various options
shown in this figurr:.

Tiled versus overlapped
The first major d(~cisi[]n is whether windows are

allowf~d to overlap or not. Some window systems (includ­
ing Cedar and the original versions of !\1icrosoft
Windows"") require that windows be side by side and
not overlap. As discussed earlier. this is called "tiling."
The alternati\'e is to allow windows to overlap, and this
is provided b~ Sl11alltnlk,"'1 lIi X/uwm, and many
others.

Implementation and human factors issues guide the
choice bet\\'een tiling and overlapping. In tiling systems,
the computer is typically in charge of managing the win­
dow placement and size, limiting the user's freedom. III
covered window managers, the user must usually man­
age tIlR windows. Putting the mouse in an arbitrary win­
dow is also easier with tiling. since all of the windows

71

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003837
Petitioner Microsoft - Ex. 1067, p. 7

r-""-------------"~---.

little a 101 total

I I I I I I
Slit SunWindowl Sapphire Cedar Ma.einlolb .'11

Figure 4. The amount that the user interface of some
sample window managers affects the user interface
of application programs.

{

I colunm Emacs . {fiXed columns ~.:Olunms Cedar

[

Uled arbitrary Andrew
arbi trarY .J)Qsi lions
RTL/CRTL

/ """"."".C ~ be partia1ly off screen Macintosh
I verlapped"I,. S listener can be covered

II ""''''''''C update covered window -L Sapphire, X
I ~ ~ II Interlisp-D Macintosh

II [Textonly Interlisp

I
I .. ",.,"'." Text + graphics Sapphire

,tItle lines II",

II ,'L ·u lines ""'I"r- Contains visible command buttons Macintosh

I ' noll e L-not X
". Blit

II ,,' ,tiUe line Whitcchapcl. X

I ' ,I'
I ". . !~:::".' window border Sapphire, X

1
,' [Listener shown 'II'!: .. · .. ··· text cursor Interlisp-D

I "
b chan . I, ""

I " ,.", y gillg: "" "" command areas Macintosh I'" """'" no visible change "'I, interior of window Blit

P . I" "", S Ma in sh resentatIon 'I "", r- icons represent data objects tar. c to
of Wi ndows '1\ IL- icons represent windows Sapphire, X

'1\\ '" E window and icon shown at same time Sapphire

11

\ " " one or the other shown Sun Windowl, X

11

"\ " ,,' icon shown as shadow Macintosh, Star

\11 \ I':'" r- icons a:e essentially static Macintosh
'11111 '" ,I """",'L- dynarrucally change Sapphire, X
11\ 1\ '" [iCOrut'II:' icons can be moved by user X
'\ \'\1 III Illl""·"'··E movable as a group Sapphire
1'\ \' 1:\ not movable
I \ II III \ r- icon size is variable X I \, II 0 icons II lL- size is fixed Sapphire

1\,\ II Interlisp-D. III c: full conunands in icons Sapphire, X
II \ II Blit I limited conunands SunWindowl

1\ \ II~ rectangular windows only Sapphire, Cedar

'I \1 ''"--- other shapes allowed Macintosh, NeWS

II \1 "",""'for icons Sapphire . . I I[has special areas'II""",,,"ofor prompts and mput DlilP, Intcrhlp-D
II 11~ll::: •••. for window manager commands P N X

I, 'III

\ no special areas \ covetable?
II X I'removeable?

II . """.,oeolor supported? Cedar, SunWindowlI
I()ther Issues: Ilh""''''USef-definable background? Macintollh

I, ...

"'etc.

Figure 5. Taxonomy of the presentation aspects of the user interface of window managers. Solid lines are
choices (exactly one of the options is chosen). A window manager can include any or all ofthe options at the
ends of the diagonal gray lines. Example systems are shown in an outline font. There will typically be many
other systems that also share the same features. The options shown are discussed in the article.

72 IEEE Computer Graphics & Applications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003838
Petitioner Microsoft - Ex. 1067, p. 8

are alw8ys visible. Often, the "best" style is a matter of
personal taste, but one stuoy oiscovercd th8t, while users
claimed to prefer covered window managers, they spent
less time doing window management operations with
tiled window managers.:ll The overall timing results for
task completion were somewhat inconclusive, however.

The computer's screen size will also affect whether til­
ing or covered is preferred. With small screens, such as
on the standard :vIac:intosh, there is not enough room to
use the tiling style. For the winoow-manager imple­
menter, graphical output primitives are more difficult to
provide with covered systems, since the output must be
clipped to differently shaped regions. On the other hand,
with tiled systems, the implementer must provide some
sort of automatic screen layout facilities. Some window
managers, such as ViewpointJ2 lwhich is the successor
to Star), allow the user the choice of covered or tiled win­
dows. Another possibility is for a window manager that
uses r.overed windows to provide automatic layout. This
is harder than with tiled windows, however, ber:ause it
is less clear where windows should be placed.

When windows are tiled, the next decision is whether
the windows must be arranged in fixed columns or
whether the windows can be in arbitrary places on the
screen (see Figure 6). A good discussion of the various
options for tiled window systems can be founo in
Cohen's article. 33 Originally, the Anorew window man­
ager used a constraint system to allow windows to be
nonoverlapping and anywhere on the screen. The sys­
tem would adjust the sizes of windows based on the con­
straints whenever a new window was created or an old
window destroyed, Unfortunately, users did not like this
for a number of reasons: It took too long for the windows
to finish aojusting themselves after a change, winoows
all over the screen woulo r:hange size when a new win­
dow was added or removed, and the screen layout result­
ing from one window changing was unpredictable.
Therefore, Andrew now supports a much simpler
approach instead, with a user-defined number of
columns. I;

The RTL/CRTL window manager from Siemens also
uses constraints.:n The current version runs on top of
X11, and it reporteoly docs not have the problems dis­
cussed ahove for Andrew.

If there are fixed columns, then there can be either a
specified number or an arbitrary number. Probably the
first use of the window concept was in such full-screen
text editors as Emar:s,l4 which allowed multiple files to
be edited at the same time by dividing the terminal
screen into horizontal sections. This idea has been
extended in window managers that allow multiple
columns. For example, Cedar provides for exactly two
columns on a black-and-white display (see Figure 2)

along with one additional column on the optional color
display.

If windows are allowed to overlap, then there are a
number at secondary options, First is whether to allow

Scptem ber 1988

A
0

A
0

sic
B E

E
F F

H
I

C

G G

Figure 6, Tiled windows can be in arbitrary places
(left) or in fixed columns (right).

windows to extend partially off screen (so that only part
of the window is visible on the screen). :VIost covered
window managers support this. Another option is
whether to allow windows to be updateo while they are
coven;o. It is dearly more difficult to clip the output
operations correctly so that covered windows can be
updated, so such older window managers as Smalltalk
and Interlisp-035 require that windows come to the top
before being written to. Most modern window managers,
however, allow output to windows while they are
covered. If output can occur in portions that are covered.
the next question is whether the listener window is
a Iloweo to be covered. There is no additional implemen­
tation difficulty in allowing this, but some window
managers, such as the :VIacintosh. always bring the lis­
tener window to the top, to help users keep track of
where they are typing. Other window managers. such as
Sapphire and X/uwm, allow the listener to be covered
so that users call have maximum flexibility in arranging
their working environment.

Title lines and borders
All window managers provide some "decoration" for

the windows. This usually includes special "title lines"
at the top and special borders around the entire window.
The title line typically shows such global information as
the current directory, the name of a file being ediled. or
the name of the program being run (see Figures 1 and 2).

The Blit36 window manager is one of the few window
managers that does not use title lines. In addition, the
title lines and borders may contain other decorations and
command buttons.

Showing the listener

An important presentation issue is how the listener is
shown. Since there are multiple windows and only one
listener, it is important that the Ilser know which win­
dow is the listener, One method for specifying the lis­
tener is simply to move the mouse into a window. In this

73

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10.2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003839
Petitioner Microsoft - Ex. 1067, p. 9

File Edit Uiew Special

CJ CJ CJ
Syst~m Fold~r Uti1iti~s Paint

$ ~ CJ CJ
MacPaint MacDra'W' Dra'W' Scrppn dumps mp lp

Figure 7.The listener on the Macintosh 3 is shown by drawing lines in the title line and displaying the com­
mand areas. The scroll bars and arrows on the right and bottom of the window move the display inside the
window, the icon at the bottom right of the window is used to change the window's size, the icon at the top
right is used to make the window full screen, and pressing in the square at the top left closes the window.

74

Figure 8. Sapphire"3 displays the listener window by
making its border thicker. The window marked W2 is
the listener. The icons are in the window at the bot­
tom, and they can display status information about
the window and the process running in it.

case the window containing the mouse tracking symbol
is dearly the listenr-r. The window manager might use
some combination of other ways to show the listener,
including changing thp. title line decorations
(VVhitechapeJ"'l). changing the border decorations
(Sapphire I'). changing the titlp. and border (X/uwm"'J,
r:hanging the shape of the text input cursor or starting
it blinking (Interlisp·Dj, removing the command ilrHilS

(Milr:intosh). or even filling the window with a particu­
lar pattern when it is not the listener [dots are used ill
the Blit). Figure 7 shows a combination of changing the
title line and command areas, and Figure 8 shows an
example of using the hordp,r only.

IEEE Computer Graphics & l\pplications

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003840
Petitioner Microsoft - Ex. 1067, p. 10

Icons
A major issue of presentation in modern systems is

whether the window manager supports icons or not.
These were inv[mted by David Smith" and first used in
a window manager in the Xerox Tajo environment"
(which was later renamed XDE:lH). In Tajo the icons
were originally just the title lines of the windows. A simi~
lar approach is used by the Andrew system. which leaves
the title line where it was in the column, and simply
hides the window contents.

Pictorial icons W8fR first used in the Xmox Stor.1.2
where they give the user the illusion of operating in a
physical environment. Each icon represents an object in
an office environment (documents. folders. file cabinets.
printers, etc.). so thp. user caniearn how to operate these
objects by analogy to the way operations are performed
in the physical world. For example, to delete a file, the
user moves the icon for the file to the icon that looks like
a trash can (see Figure 3). Icons in the Star, as well as in
the Apple Macintosh, therefore represent data objects
and processes.

Most oth8r window systems use icons in a different
way. They represent windows. In these systems. the icon
is simply another representation for a window, without
the additional semantics of being data objects that can
be operated on.

Most systems provide icons as an alternative represen­
tation for windows, so that a window is either full size
or "shrunk" to an icon. Somp. of thp.sp. systems, such as
the Macintosh and Star, leave a "shadow" of the icon to
show where it came from, whereas other systems (Sun­
Windows aIld Xjuwm) du not.

The Sapphire window manager uses icons in an
entirely different way: The icon for a window is always
fully visibl8, eV8n if the window is on the screen. The
icons in Sapphire are used to give commands to the win~
dows and to show eight pieces of status information
ilboutlhe window and the process running in the win­
dow. 13 This includp.s perr:p.nt~donp. progress indicaturs''l
to show how the job is doing and pictures to show when
an error has occurred or when the process in the win­
dow is waiting [or input (see Figure 8J.

The Sapphire imns ilre an example of huw the icuns
can dynamically change. Another example is the Xjuwm
window manager, where an icon can be a tiny version
of the actual window, as shown in FiglJ['e 3.

In most other window managers, however. the icons
are essentially static. Often, there are situations where
the icon changes a little, however. For example, in the
M&cintosh, most icons are static. except that the trash
can icon bulges when something is put into it. Similarly,
on the Star, the mail icon changes to show when mail has
arrived.

Other issues with icons are whether the user can move
them around, whether their shape and size are fixed, and
whether the user can give commands to the window
using the ir:ons. In the extrume, it icuns are just an alter-

September 1988

native representation for windows, the user should be
able to type to the ir:on and have the text go to the appli­
cation running ill the winduw. This is allowed in sump.
window managers, such as Sapphire, but others limit the
commands available when the window is shown as an
icon.

Window shape
/\ minor point is what window shapes are supported.

Usually, only rectangular windows am provid8d, hut the
NeWS winriow manager does support arbitrarily shaped
windows (see Figure 9). Most of the windows in the
:'v1acintosh are rectangular (Figu!'[~ 7), hut they are
allowp.d to be arbitrary shapes. Obviously, a tiling win­
dow manager must use shapes that r:an be tiled, such as
rectangles or hexagons (all existing ones use rectangles).
Many window managers simulat8 arhitrary shapes for
icons. [wen if the windows must be rectangular.

Special areas
Another pl'esenta tion aspect of window-manager user

interfaces is whether any screen areas are rese~ved for
special functions. For example. DLisp"o has a reserved
area at the tUIJ ill1d Interlisp-D has a res()fved window for
error messages and user prompts. Other examples are
the Macintosh, which reserves the top line for a com­
mand meIlU, and PNX,"' which has a special window­
manager window for giving some window-manager
commands. Other window managers have special areas
for icons. which may be in the background, or in a sIJe­
cial winduw (as in Sapphire). Icons may be in arbitrary
places, as in X/uwm. on a regular grid, as in the Star, or
in arbitrary places with a user-callable "neatening" onto
a grid as in the Macintosh. Another issue is whether the
icons can be covered by other windows (usually true if
there are overlapped windows, false if tiled winduws).

Other issues
There are a number of other issues of presentation,

such as whether color is supported, whether the user can
manipulate the preseIltation (fur [)xamIJle. changing the
background pattern in the Macintosh), and to what
extent application programs can change the presentation
(for example, changing the title line's appearance).

Operations
The second major component of the user interface of

window managers is the set of operations that the user
can execute to control the windows. This r.ompon8nt GlIl

be further subdivided into the functionality of the oper­
ations provided, and the user interface of those opera­
tions. Taxonomies for these aspects are shown in Figures
10 [Inri 11. respectively.

Functionality
The first issue, uf cuurse, is which uperatiuns are sup­

port!~d. All window managers must supply some way for

75

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10. 2009 at 22:52 from IEEE Xplore. Restrictions apply

MS _ SURFCAST _000003841
Petitioner Microsoft - Ex. 1067, p. 11

pfn-l ... au'
p.Unl'
nIbb.C" . ..,.
.CM.!.C·

Figure 9. NeWSt2 supports nonrectangular windows.

the user tu change the listener. There usuLllly are also
commands to create new windows and delete old win­
dows. ll. system with covered windows will also need a
command to make the window become uncovered (top).
and there is usually a command to make a window be
covered by all other windows (bottom). The bottom com­
mand is often used to remove windows that are hiding
a fully covered window.

Most window managers allow the user t() move win­
dows and change their size. but these operations may be
restricted in a tiled window manager. For eXilmplc. in
Cedar. you can only move a window to the other column
or change its size in the current column, and the width
of illl windows in a column must be adjusted together.
Other tiled systems allow a winduw to he plLlced in the
"seam" between any two other windows. With a covered
window system, an issue is whether the windows can
change size or move while they are partially covered (true
in Sapphire, false in X/uwm). On the Macintush it is pos-

76

... ,_ -......... -.... ----- -...
~~~.,,-::;~~ -:=r=:,_ ......... ...:::::.:::r .. · 

~.=--=.:::~ ... .::== . .::.­
=:.:.:=F'~--=-=:----== .... 
I~ .... _~ •• - ... ....... ~ ..... -:..-=:::.~. =.::.-:- .. --=~~ .... ~-= 
=:e~{.: __ ~~~:.r 
5~=='=~ ... -,.-,------ ... ~-
~.,·::::~~==2 
"-- IW_ .... _ ..... ___ .. 

January Pie Sales 

sible to move a covered window by holding down the 
cummand kRY whilR pressing in thR window's titlR line. 

Another issue is whether a window can be modified 
only from a particular corner (as in the grow operation 
for the :vfacintosh, which works only from the lower 
right curnp,r), from a SRt at control points (Sapphire 
allows windows to be moved and changed in size from 
points on each side and corner). or from anywhere in the 
window (as in X/uwm). 

Fur window man3gers that hClVR icons, therR are often 
operations to shrink the window down to the icon and 
to expand from the icon to normal size. There might also 
be operations to move the icon itself (no system I am 
aware of allows the user to change the icon's size). 
Another operation that is often provided is the ability to 
make a window full screen or full size. The old size and 
p()sition are remembered so a single operation can make 
the window go back. This command is available in Sap­
phire and for sum(~ windows on the Mar.intosh. 

IEEE Computer Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003842 
Petitioner Microsoft - Ex. 1067, p. 12



, listener change <all> 
II, create window <all> 

"" destroy window <all> 
III' ,',III .......... ' top <all> 

/1:ll:/ if covered~·'"I ........... bottom <most. 1I0t Macilltosh> 

lil
li" if tiled ", change colunms? 

, " .---- in columns·'I,I:, .. move to arbitrary place? 

I 
' . III;" change colunm width? 

I
I ,,' " change individual window height? 

,I
," "move and grow-t-- if

arb
' ~trariled. :"1:""" arbitrary grow provided? 

I
I ", 1 y. " .... arbitrary move provided? 

I ", 
II 

",,' C move/grow while covered Sapphire 

I ",,' '--- if ed I"'" no Macintosh, X 

I " cover I " . 
F t ' )'t I"" "'E fromspeciaicontrolJX>ints Sapphue unc lOna I Y I from one piaceMaclntosh 
of operations 1'1'1""" from anywhere X 
on windows: '" ",.,," " .. , shrink to icon 

ii " "'" icon operations '111'::"''' move icon 

I', ~ 
1
1'\ "" expand from icon 

1111 'II I,tofull screen Sapphire 

II 
II, ":,, circulate all windows' X 

II "" 1,lll,"refresh windows 
IIII other operations II I'::"" quit window manager 

II
II I'::" change default background color 
I1II 'I,:' application functions available? 
IIII 'etc. 
11:111 operations abortable by user'? 

II' operations disabled by application? 

l\operations perfonned by application? 

Figure 10. Taxonomy for the functionality of window manager operations. 

Some window managers provide additional opma­
tions. For example, most window managers allow a 
change from black text on white to white on black; 
X/uwm allows the most covered window to be circulated 
to the top; and Sapphire and X/uwm have commands to 
refresh the contents of windows. 

othp,r hand, there is no way to stop the grow operation 
on the Macintosh. In Sapphire. any operation can be 
aborted by hitting the Delete key on the keyboard. 

For systems where the window manager itself is 
optional. such as SunWindows and X/uwm. there is 
often a command to quit the entire window manager. 
Some window managers allow applications to insert 
their own commands into the normal window manager 
command mechanism (for example. into the Interlisp-D 
menus). There may also be an Undo command to reverse 
the previous window manager command. 

Another important question is whether the user can 
abort a command after it has started. For example, in the 
Macintosh, if you begin to move a window and change 
your mind, you can move the cursor into the command 
area and the move operation will be aborted. On the 

September 1988 

Another issue is whether application programs can 
ailect the functionality of the commands. For example, 
s program implementing a tp,rminal emulator might 
want to restrict its window to be exactly 24 by 80 charac­
ters big and therefore disable the window-size-change 
command. In a different situation an application may be 
designed for novices and therefore want to disable any 
"dangerous" window manager commands. Another 
example is how dialogue boxes refuse to allow the user 
to change the listener on the ~lacintosh. 

A related question is whether applications can execute 
the commands. For example, can applications move 
existing windows or change their size? c'an an applica­
tion change the listener'~ The latter functionality is use­
ful to provide alarms for special asynchronous 
situations. For example, the PrintMonitor OIl the MaciIl-

77 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003843 
Petitioner Microsoft - Ex. 1067, p. 13



1 Macinto.h 

n{2 Star 
Jnurnber of mouse butto 3 SunWlndow. 
r any X. NeWS 

I
I "move mouse SunWindow. EfJ!St press sent lOilpIllication C;edar 

"" Lpress mouse button _hidden from apphcatJon Interhsp-D 

I ,change liSterlelll:., application chooses Sapphire I I "'C OK if no listeneT X 
J J must be a listener Macin tosh . 
r ,r E areas invisibleSapphlre II' ,'specific buttons Andrew """ areas visible Macintosh 
I i I specific shift keys X """, areas become VlSlble Cedar 

'
I II /l,mUltiPle clicks used """'" "" in windows themselves 

II I "" Symbolic. """ ........ ,II~::u .. in title lines 

I I ,It','. ,'I:::: ............ , .. ·.. ";:'" in borders I ~ I.I,,/special command area$ '" visible bunons 

1
1,1 ~III/ Ehair-lines for move/grow Macintosh 

I 
I' II "' feedback I\"," fuU-W1Jldow PNX 

I
I 'I ,~.''''''''''. \ comers only Small talk 

I 
d commands from mouse', ~ kin bol hang Sapphire 

,". '~ trac g sym c es 

/
1 ",/' '" ~lXed ce~dar pop-up . , "., ~t. pop-up X slide out lnterlisp-D 

User mte~race 1/ " pull-down Macintosh 
of operatIOns ~I \ .csub-men pages Andrew 
on windows I', men ,......... none Sapphire etc. 

I', 'b . . I. " '~flllegal options removed '1 III .~ illegal options greyed Macintosh. X 1\', illegal option displayed Sapphire 

" III .d~ special shift key Macln tOlh 
I " "p ~ I lIfo .... ' .. special preflX key Sapphire 

II commands from keyboard I ~"specialkeyssunWindowl 
\ • keyboard change listener Sapphire 

~ "." .... assign buuons to commands 

I user-tailorable interlace? Iq~~""-PiCk which ccmmands are available 

~~ .... parameterize the coounands always the same 
\specify initial confjgurati=----r:::retumS to previous Macintosh 

Ulr-ccustomiWlle using IXofIle flies X 

Figure 11. Taxonomy for the user interface of window manager operations. 

tosh pops up a window and milkes it the listener when 
there is a problem with the printer. 

The advantage of a large number of commands is that 
the user can pRrform uperations in a variety of ways. The 
disadvantage, however, is that it may be more difficull for 
the user to know which command to use, and therefore 
make the window manager more difficult for novices. In 
addition, if a command has lots of variants and options, 
it may take longer to invoke any single command, since 
tbe various options must be specified. As an example, 
allowing a window to be grown from any side or corner 
usually involves three steps: first giving the grow com­
mand. second specifying the place to grow from, and 
finally specifying the new size. When there is less flexi­
bility, as in the Macintosh, the second step is eliminated. 

78 

Future window managers will probably need to pro­
vide additional functionality in their user interfaces to 
help the user control the windows. Whereas icons and 
automatic layout for windows are good first steps, users 
still find that they frequently lose winduws and have dif­
ficulty reconstructing thd r working environment. This 
is especially important since studies have shown that 
people do not work on a particular task for more than 15 
minutes on average before they switch lu a different task, 
presumably in a different window . .j2 Some research 
window managers provide groupings of windows, so 
that the user can set up a related group uf tasks running 
in windows in a particular layout, and go directly from 
one group to another. Cedar contains a fixed overview 
of 16 screens, each of which has a set of windows, and 

IEEE Computer Graphics & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003844 

Petitioner Microsoft - Ex. 1067, p. 14



the Rooms system"' II pw\'ides arbitrary gmllpings of 
windows. 

User interface of operations 
Tlw next important issue with operations is how they 

can be specified by the user. 1\1any window managers 
provide multiple ways of giving the same command. For 
example, there may he) mcnus that contain all commands 
for noviC(~s, as well as (IcL'tdero(u['s-faster ways for expert 
users tu give the most frequent commands using the 
mouse and keyboard. Clearly, the considerations about 
what user interface to usc for the window manager must 
be influenced hy general user intmface llrinciples, which 
are more fully described in other places, for cxample by 
Foley and van Dam. 1

' 

Number of mouse buttons 
One of thu most obvious diffe]'enCl~s between window 

managers is hm\' many buttons on the mouse they are 
designed to use. The Macintosh mOllse has only one but­
ton because it is intended tn be vury easy t() usc tor 
novices, Witb more buttons, the novice might forget 
which button performs which operatwn and be nef\'OUS 
about pressing them. The designers of thc Star system 
did extensi\'e testing and dcdrled two buttons were eas­
iest to learn and most eHicient. If> ~lallY other windu\\ 
managers are designed for three buttons (Sull\Vindows 
and Sa]Jphim, for example). Some willllo\\ managers 
simulatt~ a middle button on a two-button mOUSl) by hold­
ing down both buttons at the same time. Naturally, thp, 
customizable window managers, sllch as X and NeWS, 
can support any number of buttons on the mOllse. 

Changing the listener 
Of particular interest is how the user changlJs the lis­

tener, Some systems, including SunWindllws and 
Smalltalk, change the listener to whatever window con­
tains the cursor. Other winriow managers-including 
I nterlisp-f1, Still', Sapphire, Eli!, Ceddr, and Mal:intosh­
require an explicit press to change thl~ listener. Some 
window managers, such as X and NeWS, allO\\ the llser 
to pick which technique is used. 

If an explicit press is rCfjuimd, then an issue is whether 
this press should be sent through to he used by the appli­
cationllrogram, If so, as in Cedar. changing the listener 
must always do something to the application (such as 
changing the insert point in an editor). If the button p['(~ss 
is not sent through, as in Interiisp-D. tbllllthe user might 
be confused that the uperation did not happen, Sume 
systems, sllch as Sapphire, let the application decide 
v;hether to interpret the first press, but this ml)anS that 
applications may opemte inconsistently. 

The advantages of changing the listener on cursor 
movement are that this operation is easier and faster. the 
mouse cursor provides a nice form of feedback for whicb 
window is the listener, and the problem of whether to 
send the press through to applications is avoided, The 
advantageb of using a press to change listeners are that 

the listener does not change accidentally if the mOllse is 
bumped, input cievices like a stylus that do not retain 
their position can easily be used, the position of the 
ll101lSe r:iln still he used cven when it is outside of the lis­
llmer window, the mouse can be moved outside the Will­
dow s() no part of the window is hidden under the cursor, 
and if the input device is a tablet, it can be used in either 
ilbsollltC (digitizing) or relative (mouselike) tracking 
modes, I 

Another issue is whether the window lIlanager allows 
there to be no listener, In X/UV\fll1, for example, when the 
cursor is outside of all windows (that is, over the back­
ground), keyboard typing jllst disappcars. In Sapphire, 
keys typed when there is no listenCf are saved and given 
to the next window that becomes the listener, Un the 
other hand. the Macintosh will not allo\\' no listener; if 
YOll press over the background, nothing happens, and if 
the listener window is deleted, then the next topmost 
vvindow is made the listener, This tends to be much more 
intuitive and keyboard typing is never lost. 

!\ question for future window managers will be how 
to handlc additional input devices. Currently. window 
managers typically support only the keyboard and one 
pointing device, Research has demonstrated, however, 
that using multiple input devices, such as touch tablets, 
knobs, and switches, along with the pointing dev'ice (for 
example, one in each hand) can increase the user's effec­
tiveness." In addition, speech recognition is slowly 
becoming practical. All of these input techniques will 
have to be switched alllong windows as the keyboard is 
now, and the issue will be whether to switch all devices 
at the same time, to have different techniques for switch­
ing each device separately, or to allow certain devices to 
be grabbed perlllanently by a particular window, 

Other commands j'rom a mouse 
There are various ways that window managers allow 

commands to be given using the mouse. Some systems, 
sLlch as Andrew, reserve a special mouse button to give 
window manilger commands. Other systems, such as 
X/uwm, resurve a special shift key on the keyboard, For 
example, to give a window manager command on the 
IBM RT computer, you need to hold down the "AJt" key­
board key while pressing the mouse buttons. Still other 
systems, such as Symbolics"R and Macintosh, usP, mul­
tiple clickiIlg, 

Pressing the mouse buttons while the cursor is in 
different areas tYllically has different meanings. ~1usl 
window managers, for example, provide special com­
mands when the mouse is pressed in the title lines of 
windows. Some window managers also allow the user 
to press in the borders of windows, which might be used 
for changing a window's size or position, The Macintosh 
window manager, among others, has special "buttons" 
in the window titk line and border which are llSed for 
closing a window or changing its size (see Figure 7). On 
the other hand, some window managers allow the COIll­

mands to be given if the cursor is anywhere inside the 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003845 
Petitioner Microsoft - Ex. 1067, p. 15



, ... • U r~~~~~~ L·· .. • .. • =m 
~ 

.:::\::~ 
-~. A 

.... 
~ Ifil W b ta rn l ....... .1 •••• 

LJ x '\- ..t. ---r ~ 
i I! 

l ___ .1 

i 
~ T ,)- +tj 

~~ I 
Figure 12. Various cursor pictures used in Sapphire '3 

to show which operation is in progress. 

window. Sapphire and the Macintosh, for example, 
r:ausc a window to become the listener when the cursor 
is pressed anywhere inside it. 

The special areas for giving commands are sometimes 
not visible ill the window. For example, Tajo and Sap­
phire divirle) thp. title line into three regions horizontilily 
and assign different functions to each region. The divi­
sions are not shown, but the user is assumed to be able 
Lo differenliale the middle from Lheleft and right of the 
title line for any window that has a reasonable size. Other 
window managers only use visible areas. The trade-off 
is obviously using screen area for command labels so 
they will he easip.r to find and more obvious for n()vir:p.s, 
versus using the screen space to display other useful 
information. Cedar has a unique solution to this prob­
lem: Some of the command buttons are hidden under­
neath the titlp.lin!). and the title line is replar:ed with the 
command menu whenever the cursor goes into the title 
line. 

Another issue when giving commands with the mouse 
is what kind of feedback the user sees. Most systems pro­
vide hairlines the size of the window when a window is 
moved. The PNX window manager actually has the 
entire window follow the mouse in real time, and origi­
nally Smalltalk showed only one corner. 

Often, there will be feedback in the cursor picture as 
to the operation being performed. For example, X/uwm 
shows a picture of the button that is down. Sapphire uses 
the cursor picture to show which operation may happen, 
When the button is pressed in a particular area. the cur­
sor changes Lo show what will happen (see Figure 12). 
[fthe button is released, the operation happens. but if the 
cursor is moved away before releasing, the operation is 
aborted, Different cursor pictures are also often used to 
show what modp. the usp.r interfar:p. is in. 

80 

lWenus 

Commands in window managers are usually given 
using m()ll1lS. A menu is a list of options. anrl in il win­
dow manager, the desired option is usually picked by 
pointing at it with the mouse, Menus were classified as 
an add-on earlier, since they are usually supplied to 
application programs as a service. On the other hand, 
most window managers also use menus as part of their 
own user interface, so it is necessary to discuss them 
here. This discllssiDn is not mp.ant to be comprehensiv8, 
however, since there are many different ways to present 
menus and the options listed here are only those that 
have been commonly uoed with window managers. 

Menus can be always visible (usually at a fixed place 
on the screen or a fixed place in each window), in which 
case they are called fixed menus, Alternati vely they can 
appear when the user performs some action. and then 
are called pop-up menus (see figure 13), Pop-up m(")nus 
are often used because Lhey do not take up screen area 
when not in USC), anrl they appear at the cursor so less 
hanrl movement is needed, On the other hand, they have 
the disadvantages that novices may not know heo\\' to 
make them appear, and they usually take longer to use 
sincp. thp. user must first perform the action to make them 
appear, then search through the men u for the correct 
item, and then make the selection. 

Fixed menus also allow the user to mouse-alleml. 
Mouse-ahead is giving commands with the mOllse 
bdore thp. system is ready to accept them. This is analo­
gous to type-ahead from the keyboard, Pop-up menus are 
hard to llse with mouse-ahead because the menu is not 
displayed, so the llser cannot see where the desired item 
is. Fixed menus are used by the ~1acintosh on the top line 
of the screen (see Figure 14b). in DLisp in windows that 
can appear anywhere on the screen (see Figure 13b), anrl 
in Cedar ao the menlls in the title lines (see Figure 2). 
Fixed menus in a special place on the screen, as in the 
Macintosh, are probably appropriate only when the 
screen is small, so that the maximum hand movement 
Lo movp. thp. cursor to them is not too large. 

Many window managero use pop-up menus to give 
window-manager commands. For example, in X/uwm 
when the A.1t key and the left mouse button are held 
dow·n. a menu pops up which contains the standard 
window-manager commands. The middle button with 
the Ait key pops up a different set of commands. Sap­
phire provides a menu of commands when the right 
mouse button is pfP.ssp.d ovp.r the left or right title line 
areas. A distinction among pop-up menus is whether 
they appear on a down press and the selection is made 
on the release (X/uwmJ, or whether a second down press 
is needed to milke the s(")lection (Symholics and Sap­
phire). Some menu systems support both styles 
(RTL/CRTL"). 

Another issue with menus is whether submenus are 
supported. A submenu is a menu that appears after a 

IEEE Computer Graphics & Applicatiulls 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003846 
Petitioner Microsoft - Ex. 1067, p. 16



a 

\Vtt..-rl (l 1\'111,1 
J',lIl;;S h'.hs 

.t, .111 HS 
IItS. 

Figure 13. A pop-up menu (al from smalltalk, and 
fixed menus (b) in DLisp. 

particular item in a menu is selected. This will typi~illly 
provide more options or parametr:rs to that partIcular 
operation. 

There af(~ various ways to provide bubmenus. The most 
obviolls way is simply for them to pop up after the maill 
sdr:ction has been made. Interlisp-D and SunWindows 
hilvr: the submenus appear when the cursor is slid off a 
m(!I1U item to the right [see Figure 14a). Macintosh uses 
a similar idea. called pull-down menus. but here the main 
mr:nu is horizontal and the submenus appear when the 
cursor is over any top-level item (see Figure 14b). Andrew 
hils the menUb stacked like pages of a book [see Figure 
14c), so the user can flip through them quickly. Many 
othr:r options are possible. 

A final feature of menus in window managers is the 
handling of items that are currently illegal. For example. 
a particular application may prevent its window's size 
from being changed. The illegal item might be left out of 
the menu altogether, it might be included but shown in 
gray, as in X/uwm and the Macintosh Isee Figure 14b), 
or ilmight be shown normally and just fail to operate, 
as in Sapphire. 

The advantage of showing the option in gray is that the 
illegal items are obvious. but the other items in the menu 
always appear in the same places so the user gets famil­
iar with where items are placed. The advantage of show­
illg only the legal options is that more items can be 
included if they all appear in independent sets. 

Commands from the keyboard 
Some wi~dow managers allow operations to be 

executed using the keyboard. This might be done by 
using a reserved shift key (for examplr:, the command key 

September ElAn 

b 

I
:.:·:..:.. ... :, 'J' 1",-.. 0( • 
OJ-
!,.~ .. ':r '001 ... . ,. 
I]~" •• fIII.!."I"f'" "A',."', .... 

I",-~ · ... ( ... r:,.,:·· ~ "j> - - .: .. : 

I 'H:':;;''''t' .. :~I1"'h""~ , 
II!I- .... .-..- ..... , 
~j.,.. ... ,...I ... '.". );;'&&"lj 

, ... ( ..... "'_ hn ..... l~"""') 
:~:.~'I .......... ' 
!j.~ ............ I ...... ' ....... "~] ... 

I 
~';.>;:".;,.-;.::. 
: •.• ;: .. ~~.1 !a..... (' ...... 11 

-..r:' ~r ~ ....... 1 !~...'. . 
--- -

"~II!I!I~·'_II!IZ~ ::l~i ," ::~':~: ~"I~~ILI toI'a& ltD 

:h!~~~·~=:'~~:;:J:; :~~'; !~:;:~~:,:':~~:~:.:: .. 
f .... ' .. ' .. 'hI:, 'Ill "~ .""." 

, ... q .. ,.I.It .. t .... 1 ,.f ".'.;1" 
i.·,,; "j 
I' '., 
, 

, ..•• " .,! "'It.". 

on the Macintosh); hy using rr:sr:rvr:d keys for spr:cial 
functions (some function kr:ys in Apollo,4Y for r:xamplr:, 
and SunWindows); or hy reserving a prefix kr:y which 
must be typed before window manager r.ommilnds. as 
in Sapphire. 

The keyboard commands are usually considered 
accelerators which experts will use when pOp-liP menus 
are too slow. Sometimes the keyboard r:ommands arr: 
provided for people who do not like or cannot use the 
mouse. EasyAccess on the Macintosh, for example. was 
designed to allow handicapped people to replace all 
mouse commands with kr:yhoard ar:tions. Thr: Apollo 
window manager is one of the few that was designed 
with the keyboard as its primary input device: the early 
Apollos did not have mice.49 

Other issues with keyboard commands are whether 
type-ahead is supported, whether the keyboard can 
change the listener (false in the Macintosh, true in Sap­
phire and SunWindows). and whether thr: keyhoard can 
make selections in the menus. 

Other user interface issues 
Some r.ommands require arguments. For example, the 

user must specify a new sizr: for a window whr:n the 
change~size or creatr:-window command is givr:n. Some 

81 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SU RFCAST _000003847 
Petitioner Microsoft - Ex. 1067, p. 17



a b 

~~eWRdS crc~v"~I-~~.~'~""""""""""""~~~~""""~~~""~""IZ~:[~ 
[TypesCriPt ~-2 krw.~t.I~~ ____________________________ N_E_w_'_~_'_A_'L~_L-I __ -=~S~t~~ ____ , ~ __________ ~ 

v L),., .. ,o.flU,,. _!how __ 

c 

I VI S '1It 
wml 
-I r.t.per "> ft ....... U 
-I p.p« ' II lI .. pt .... '. 
Itmp/sn.t.psbot-Z 
-/p,lp~r " .. 

-

-

0. .. Tllni1-VIJ.y S.&, ....... 
v'Burr Sll,.~rmaa 

Ya B""'I 
~Jlm Mom. "" •• tb&! 
~B'rry SI'.erm •• 

RD3 Dell 
'/~chlS'<1. Wllhteln 

Two A.QDOUoceroenu 
,/Wlcb.el T, loBue 

Kim C. Recommendlt-lon 
~s ... <I .. 10.<1 ~.el 1 .. d l "em' 

To ,~ThLo·P.ople 

!Jl'f'M.V: 
eo ... 
TUM: 

'Iact: 

Vll., A 3.,. ....... ' 
Fn<l., . I Ilovembu. 1985 
1000 am 

7l"0 

AI Mal 
Old Mal 

Urnad Md 
o.ted Mal 
~ted Mal 
UncIItuifled Mal 

.:oj 
.... ~.-4 

- I 

G!D COllCUP.UlfT LOOIC rP.O(lP.AWMINO LANOUAOES 

The dom~n of [oele ~roiramminc l~n,ulges. cOl'uisu. o( the most plrt. of 

fo~~l~'nlLb~~f:~::'OD &I!~~~~~lo~or:n'I~!~~ Wh~Cb pf::r:~e i:odt!~~~ [:~:a(~! 
con,,'U of .... of defloi« cllu,. UIOII>I with (perhlp' impllcl') coo"ol 
Inform.t.uon for ruiljtnl rbe uDtierlYtDi eDtln~ EI~UtJOIl I' initiated b, tbe 
Frl!S'~nc,ltlon of J conjunction of a:Q~S or que~es lAd t~rm,n .. te. when the ~DiiDe, 
follOWlnt th~ rr~s('nb'!d control. tilscoy'!n ~lther ~ proof of the iOJIs. or the 
impo"'~,Ii'y 0 '''co • proof Concu~nt IOilC pro~r.",mlnc (eLP) \ADcu~e, 
provld~ ~~eCUUOQ ~neID~S cipible of punulnc concu~ntly proof. of ~~h of tbe 
loals lD J cODJunctlVe syStem. (so'caUetj and'puallehsm) ~d ibo different possible 
rroof rltb, (or •• cb loll (or-r.rlllehlm) £umpl., of <:ru'lnc coocu"e., Horo 
I.nsuli.' .,.. Concu"...t Proloc, PatlOl, aHC, DeltA'Prolol ADd CP(I.I,4t~ 

In thIS {heSts I eropose to Lay .l sound tb~retlciJ found~tlOD ~or. md explore 
the pU~I~m of. c_tl Il.ncuiJI'i~s. Sp~ClflC.ll1)1'. I propose lQ IDveHllite tb-. d~SlCD. 
'~m.lntlCI. ImplementitlOD. and use of such !iDlu.J.Ces 

The the ... IS io«nded 1.0 m.ke <o.tri~utlOOJ 1.0 e.&Cb of tb. (oliowloC ..... 

J:'f"Oir.lmmlng l.lnlilJ.li~ tjesl'~n. vi .. 
•• An undenranoiini of the deslcn sp.c~ lor 

concurrent rrocr.lmmln, IJniu.aa~s t:>ij~d on lnnat.ared Horn IO~lc. 
.. the de"tn of • r.ra1Iim.tlC CLl I.n,ua,e (Cr['.I,&,;D prov,d'DC 

Figure 14. Submenus may appear when the user slides the cursor out of the right of the item marked with an 
arrow (a) as in Interlisp-n,35 when the cursor is over an item (b) as in the Macintosh,3 or they may be stacked 
like pages (c) as in Andrew. '6 The Enlarge command in (b) is shown in gray because it is currently illegal. 

IEEE \.omputpr Craphic., " Appill.atio", 

Authorized licensed use limited to: Carnegie Melion Libraries. Downloaded on August 10, 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003848 

Petitioner Microsoft - Ex. 1067, p. 18



window managers provide accelerators to allow special 
valm:s of the parameters to be specified easily. For exam­
ple. in XjUWlIl. when creating a window, a special but­
ton combination will make the window a default size 
that depends on the application (for example, 
80-by-24-characters high in the default font for a t8rmi­
nal emulator). A different button combination allows the 
user to specify the size using thr: mouse. 

j\nother important issue is to what extent the user can 
change the llsr:r interface of the window manager. Win­
riow systems such as X and NeWS were designed to allow 
the user total flexibility, so almost any aspect can be 
changed. In Xjuwm. many of the changes can be made 
by editing specially formatted text files (for example, 
. uwmrc), but other changes require writing programs. 
Other window managers allow customization to illr:ssm 
extent. For example, Cedar allows the menu itr:ms ill1d 
their functions to be assigned by the user employing 
"TIP" tables, II but the general window layout is 
fixed. A related issue is how much of the initial screen 
layout can be specified for when the system is powered 
on. Some systems always start the same way, others allow 
the user to define the initial configuration in profile files 
(Xjuwm), and others return the screen to the last config­
uration (Macintosh). 

Conclusions 
This article has attempted to list some of the important 

common aspects of the user interfaces of window 
managers. The various features can be broken down into 
fairly simple taxonomies, which will hf: usdul whf:n 
studying and comparing current window managers or 
designing new ones. Clearly, there will always be new 
innovations that are not in these taxonomies, but they are 
expected to mver the important parts of flew designs, 
and may even help tuture designers see where new tech­
niques might be used. 

One obvious conclusion from tooking at the taxono­
mies is that there is not a great deal of difference among 
different window managers. In fact, when faceri with il 
new window manager, a user coulri probably deduce 
how to operate it by pressing the various mouse bullons 
with various keyboard shift keys (Shift, Control, Meta, 
Hypm, Super, Alt, etc.) held down over the special areas 
(in the window, the title line, the border, on any special 
decorations which might be buttons, etc.). This is also 
encouraging for efforts at standardizing window 
managers, since there is less variability that must be 
accommodated. • 

Acknowledgments 
First, I want to thank the Alvf:y workshop' for spon­

soring the conference that inspired this article. Mark 
Weiser providr:d many helpful comments and edited an 
earlier vr:rsion of this article. Warren Teitelman partici-

Septemherl~HH 

pated in some early discussions. A number of people at 
various companies also supplied useful information 
about their window managers. For help and support 
with this article, I would like to thank Bernita Myers. 
David Anrierson, Doug Runting, Richilrri l.ohn, ilnd 
Randy Pausch. 

Work on this article was started while the author was 
in the Dynamic Graphics Projecl, Compuler Systems 
Research Institute, University of Toronto. Funding at 
Carnegie Mellon was provided by the Defense Advanced 
Research Projects Agency (000), ARPA order no. 4976 
under contract F33615-87-C-1499 and monitored by the 
Avionics Laboratory, Air Force Wright Aeronautical 
Laboratories, Aeronautical Systems Division (AFSC). 
Wright-Patterson AFB, OH 45433-6543 . 

The views and conclusions contained in this docu­
ment are those of the author and should lIot be inter­
preted as representing the official policies. either 
expressed or implied, of the Defense Advanced Research 
Projects Agency of the US government. 

References 
I. D.C. Smith "t 01 .. "Designing the Star Cscr Interface." l3"tc. \"01. 

7. Nu. 4, AfJr. 1982, fJfJ. 242-282 

2. D.C. Smith et al.. "The Star User Interface: An Overvie\\'." Pm.:. 
Nu1'l Computer Conf'.. ,\FIPS Press. Arlington. Ve., 19HZ. PI'. 
515-528. 

3. W. Cregg. "The Apple MaclrItosh Computer." Byte. Vol. 9. )io. 2. 
Feb. 1984. pp. 30-54. 

4. R.W Schedler and J. Gettys. "The X Window System." AC:\/ '[frms. 
on Cruphlcs. Vol. 5. No.2. AfJr. ]986. PI'. 79-1O\J. 

5. F.R.A. Hopgood et al.. eds .. I\.1ethod%gy of Wi n dOl\" Management 
(Proc. Al\e,' Workshop), Springer-Verlag. Berlin. 1986.250 fJp. 

G. C. Krasner. Srnullt"lk-80: flits of I listnrv. W()rds orA,h-ice. Addison-
Wesley. Reading. Mass., 1983 ' 

7. L. Tesler. "The Smalltalk Environment." fl,.tc. \"01. 6. :\0. 8. Aug. 
1981, PfJ. 90-147. 

8. W. Teitelman. "Ten Years 01 Window Systems-A RetrospectIve 
View." Mdhodology of Window ,\/onogement (Proc. Alvey Work· 
shop). 1985. Springer-Verlag. Berlin, 1986. pp. 35-46. 

9. 0. Wallace. "Tajo Functional Specification. versiun 6.0." tech. 
report. Xerox. Oct.1980. 

In. W. 'Ieitelman. ".A. 'Iour Through CEDAR." IEEE Soft\\"orc. VoU. No. 
2. Apr. 1084. pp, 44 73. 

11. 0. Swinehart ct aJ.. .. A Structural View of the Cedar Programming 
Environment," AClvl Trons. Programming Languogcs Gnd S~'stem,", 
Vol. 8. No. 4. Oct. 1986. PI'. 419-490. 

12. Sun Microsystems. Inc .. NeWS Preliminary Technical O'·Brdelv. 
Mountain View. Calif.. 1986. 

13. B.A. Myers. "The User Interface for SafJphire." CC&A. Vol. 4. No 
12. Dec. 19H4. pp. B-2:l. 

14. W.K. English, o.c. Engelbart. and M.L. Berman. "Display Setec­
tion 'Iechniques for Text Manipulation," IEEE Tnm,. Human Fac­
tors in Electronics. Vol. HFE-S. 1'\0. 1. Mar. 1967. 

10. B.A. Myers. "Tools for Creating User Interfaces: /\n Introriuction 
and Survey," Tech. Report CMU-CS-8sc107. Carnegie Mellon Uni­
versity. Computer Science Dept. Alsu to appear in IEEE Suftwure. 
Jan. 19S9. 

83 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10. 2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SU RFCAST _000003849 
Petitioner Microsoft - Ex. 1067, p. 19



16. J.H. Morris et aI., "/\nrlrew: II. fJistnhuted Personal Computing 
Environment." CACM, VoL 29, No, 2, Mar. 1986, pp. 1H4-2U1. 

17. Sun Microsystems, Inc. SunWinrlow.; Programmers' GUlde, Moun­
tain View Calif.. 1984. 

18. G. Williams, "The Lisa r:omputer System," Byte, Vol. 8, No. 2, Feb. 
1983, pp. 33-50. 

1~, Apple Computer, Inside Macmtosh, Adrlison-Wesley. ReBrilng, 
Mass" 1985. 

20, J. Warnock and D.K. Wyatt, "A Device-Independent Graphics Imag­
ing Model for Use with Raster Devices" Computer Craphics, (Proc, 
SIGGRAPH), VoL 16. No, 3, July 1982, pp.313-319, 

21 J. Gosling, "SunDew-A Distributed and Extensible Window Sys­
tern," Methodology or Window MUIIagIOment. Springer-Verlag. Ber­
lin (Proc. Alvey Workshop, 1985), pp. 47-57. (A slightly diIJereIlt 
version of this paper with the same title also appeared in the Proc. 
1986 Winter L:senix Tech. \'onf., Jan. 1!1Hn, Pl'. !1H-1!)J 

22. Adobe Systems. Postscript Language Hefercnce Manual, Addison­
Wesley, Reariing, Mass .. 1985, 

23. D. Sweetman, "A Modular Window System for Unlx," ,'>Iethodol­
ogy of Window Management (Pro~. Alvey Workshop. 1~B5). 
Springer-Veriag, Berlin, 1986, pp. 73-80. 

24, MIT and DEC, X Tool kit Library C Language Interface; Too} kit 
Beta Version 0.1; X Protocol Version 11, Boston, 1987. 

25. K.J. Schmucker, "Macl\pp: An Application Framework," By to, Vol. 
22, No.8, Aug. 1986, pp.189-193, 

26, Apollo Computer, "Open Dialog Interface Management System 
Supports IBM, DEe. and Sun," Product Announcement. \'helms­
ford, Mass., 1987. 

27. M. Gancarz, "Uwm: A User Interface lor X Windows." Conf. Proc. 
Sammer Tech. Conf., Usenix, Denver. Jan. 1986, pp. 429-440, 

28. V. Puglia et aI., "Operating in a New Environlllent," PC Mogazine, 
Feb. 1986, pp. 109-132. 

29. A. Goldberg, Smalltalk-80: The )nteroctivc Programming Em'iron­
ment, Addison-Wesley, Reading, Mass., E184 

30, A. Goldberg and D. Robson, Smalltalk·80 The Language (lnd Its 
Implementation, Addison-Wesley, Reading, \1ass" 1983, 

31. SA Uly and I.K. Rosenberg, "A Comparison of Tiled and Overlap­
ping Wmdows," Proc. SIGCllI, Human Factors In Computing Sys­
tems, ACM, New York. 1~H(i, pp. 1U1-1lJti. 

32, Xerox Office Systems Division, VwwPuint Users MOIlLlCli, Palo AHo, 
Calif., 1985. 

33, E,S, Cohen, ET Smith, and L.A. Iverson. "Constraint·Based Tiled 
Windows," Proe. 1st lnt'} Con[. OIl Computer WorkstatlOns. CS 
Press, Los Alamitos, Cali!., No\,. 1984, pp. 2-11. 

34, RM. Stallman, "Emacs: The Extensible, Customizable, Self­
Documenting Display Editor," Tech. Report 519. MIT Artificial 
Intelligence Lab. Cambridge, Mass., 1979. 

35 W. 'Ieitelman and L. Masinter, "The Interlisp Programming En\']­
ronment. ' \'omputer, Vol. 14, No.4. Apr. 1981. pp. 25-:J3. 

36 R. Pike, "Graphics in Overlapping Bitmap Layers," /\CM Trans 
Graphics, Vol. 2, No" 2, Apr. 1983, pp, 135-160. Also appears in Com­
puter Graphics (Proc, SIGGRAPH), Vol 17. No.3, luly 1983, pp. 
331-355. 

37. D.e. Smith, Pygmalion: A Computer Program to Model and Stimu· 
late Creative Thought, Birkhauser, Basel, 1977. 

38. Xerox Office Systems Division, Xerox Development Environment: 
Concept and Principles, Part p610Eo0130, Palo Alto, Calif., 1981. 

39. B.A. Myers, "The Importance of Percent-Done Progress Indica­
tors for Computer-Human Interfaces, " [Proc. SIGCH]I, ACM, New 
York, 1985, pp. 11-17 

40. W, Teitelman, "A Display Oriented Programmer's Assistant," Int') 
J. Mon-Machine Stud,es, Vol. ]1, 1979, pp. 157-187. Also Xerox PARC 
Tech. Report CSL-77-3, Palo Alto, CaM .. 'viaI'. H, 1977 

41. In!'1 Computers Ltd" ICL PEHQ Guide to Pl\'X, In!'l Computers 
Ltd" UK Software and Literature Supply Sector, Reading, RG3 
lNR, UK, 1983. 

84 

42, L. Bannon 8t a1.. "E\'aluating and Analysis of Users' Activity 
Organization," Proc. SlGCHI, Human Facturs in Computing Sys­
tems, ACM, New York, 1983, pp. 54-57. 

43. S,K. Card aIlll A. Henderson, Jr., "A Multiple Virtual-Workspace 
Interface to Support User Task Switcltillg," Pmc, SlGCHI +C1. 
Humnn Foetors in Computing Systems. GraphiCS interfocc. AC,'"l, 
j\;ew York, 1987, pp. 5.3-,',,!. 

44. D.A Henderson, Jr., und S.K. Card, "Rooms: The Use of Multlple 
Virtunl Workspace to Recluce Space Contention in a \Yindo\\'-Bosed 
Graphical [;scr Interface," ACM Tf(Jns Crophics, Vol. 4 .. :-;0, 3. July 
1986, pp. 211-243. 

45, J.D, Foley and A. van Dam, Fundamentals of/ntcructi\'c Computer 
Graphics, Addison-Wesley, Reading Ma"" 1982. 

46 W.L. Bewley et al., "Human Factors Testing in the lJesign of Xcmx's 
Hmo 'Star' Office Workstation," Proc, SlGCHl, llumoll Factors in 
Computing Systems, ACM, New York, lJec 19R]. pp.72-77. 

47 W. Buxton and B. Myers, "A Studv in Two-I landed Input," Proc 
SlGCH1. 1 1 U'111 an Fu~ton in Computing Systems, ACM. :-;ew York, 
Apr. 1986, pp.321-326. 

43. R. Sta1l111on, D. Weinreb, and lJ. Moon, Lisp Machine Inc.. Lisp 
Machine \Vinrlrnvs Srstcm 1\1anual, Culver City, Calif. 1983. 

49. Apollo \'omputer Inc .. "Window Manager," Chelmsford. Mass .. 
1981. 

Brad A, Myers is a research computer sClentist 
at Carnegie Mellon University. From 1980 until 
1983 he worked at PERQ Systems Corporation 
where he designed and implemented the Sap­
phire window manager and numerous PERQ 
demonstrations for the SIGGR;\PH equipment 
exhibition. His research interests inclllrie llser 
interface management systems (lll MSs), llscr 
interfaces, programming by example, visuill pro­
gramming, interaction techniques, window 

management, programming environments, debugging, and graphic~. 
Myers received a PhD in computer SClence at the University of 

Toronto, and MS and BS~ degrees from the Massachusetts Institute 
of Technology, While at MIT, he was a research intern at Xerox PARe. 
He is a member of SIGGRAPH, SIGCHI. ACM, and the Computer 
Society of the IEEE. 

Myers' address is Computer Science Uepartment. Carnegie Mellon 
University, Pittsburgh, PA 15213-3890 

IEEE \'omputer GraphiCS & Applications 

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on August 10,2009 at 22:52 from IEEE Xplore. Restrictions apply 

MS _ SURFCAST _000003850 
Petitioner Microsoft - Ex. 1067, p. 20




