A Tour Through Cedar

Warren Teitelman

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

Introduction

This paper‘f1 introduces the reader to many of the salient features of
the Cedar Programming Environment, a state-of-the-art programming
system that combines in a single integrated environment: high quality
graphics, a sophisticated editor and document preparation facility, and
a variety of tools for the programmer to use in the construction and
debugging of his programs. The Cedar Programming Language [8] is
a strongly-typed, compiler-oriented language of the Pascal family. What
is especially interesting about the Cedar project is that it is one of the
few examples where an interactive, experimental programming
environment has been built for this kind of language. In the past, such
environments have been confined to dynamically typed languages like
Lisp and Smalltalk.

The paper attempts to give the reader the feel of the Cedar system by
simulating a live demonstration., The demonstration is actually taken
from a video tape of such a live demo; the sequence of events, as well
as the dialogue, is fairly close to what a viewer of this tape would see
and hear. Numerous snapshots of the display taken at various points
during the session simulate the visual information contained in the
tape. Text that would actually appear on the display during the
demonstration - either because the user typed it or the system printed
it — will appear in this paper in a distinguished font. The explanations
that the demonstrator would give will be in the normal font. Comments
that would be distracting during a live demonstration but are
appropriate for the paper are included as footnotes. T2

Background

In 1977, the computing community at Xerox Palo Alto Research Center
(PARC) consisted of three distinct cultures: Interlisp [15], Smalltalk
[6], and Mesa [11]. Both the Smalltaik and Mesa communities
programmed primarily on the Alto, a small personal computer that
had been developed at PARC [16]. The Interlisp programmers operated
on a time-shared, main-frame computer. Each of these communities
was beginning to run into the limits imposed by the size of memory,
both real and virtual, and by the computational power that the
corresponding machine provided.

We decided to solve these problems by designing and building a much
more powerful personal computer, the Dorado [7]. The arrival of the
Dorado in 1978 resolved our immediate hardware problems of

11 This paper is a condensed version of a paper contained in [14]; because of space
limitations, many of the figures have been removed and comments have been abbreviated
or eliminated. [14] also contains a second paper entitled "The Roots of Cedar,” which
describes the conditions in 1978 that led us to embark on the Cedar project, and helped
us to define its objectives and goals, as well as a third paper entitled "Cedar: The
Report Card," which evaluates the successes and failures of Cedar.

12 These footnotes contain a lot of information about Cedar: why we did things certain
ways, how useful a particular feature turned out to be, etc. For some readers of this
paper, the footnotes will contain the most interesting material. However, the reader who
is unfamiliar with Cedar and simply wants to get an overview might find the footnotes
distracting to the flow of the demonstration. Therefore, a good way for him to read this
paper might be to ignore the footnotes on the first reading (especially the long ones),
and then come back to them later.

0270-5257/84/0000/0181$01.00©1984 IEEE

execution speed, memory size, and address space. Our ability to
experiment with computer systems, critical to our research, was now
limited only by our programming capabilities of which the principal
component was the programming environment.

Thus, in 1978 we embarked on a project to design and implement
Cedar, an advanced programming environment that would take
advantage of the capabilities provided by the Dorado. A group of us
met for several months and produced a catalogue of programming
environment capabilities for such an environment [4]. At this point,
we were not committed to either of the three principal programming
languages in use at PARC, but after lengthy deliberations we decided
to base Cedar on Mesa [14]. However, our goal was that Cedar would
support each of the Lisp, Mesa, and Smalltalk programming styles.

For various reasons as the Cedar project evolved, some of our goals
changed, or at least were reprioritized; a fair characterization of the
Cedar project as it is currently constituted is that it is an attempt to
take the Mesa language and build for it a programming environment
based on ideas and techniques from Interlisp and Smalltalk.

Now let’s begin our tour.
The Display

You are looking at (see Figure 1) a bitmap display connected to my
personal computer, a Dorado. 3 The figures you see at the bottom of
the screen in Figure 1 are called icons. They represent objects that are
of potential interest, but not currently in active use. Some of them
represent text documents, scanned images, or other data structures that

Figure 1: Initial cedar screen layout showing various icons

+3 All Dorados have as a display a high resolution television monitor, 1024 pixels wide
by 808 high. The physical dimensions of the display are 12" x 9". Figures in this paper
that show the entire display are about 1/2 scale (but full resolution).

. _ MS_SURFCAST 000003623
Petitioner Microsoft - Ex. 1068, p. 1

I can look at and manipulate. Others represent tools or services that |
can use. Their shapes are meant to be suggestive of their functions.
For example, the icon on the lower right in Figure 1 that looks like a
mail box represents my mail reader, called Walnut. The fact that the
flag on the mail box is up indicates that I have new mail. The icon
next to the mailbox that looks like a stack of envelopes represents my
active message set. We will use both of these later in the demonstration.
The icon next to my messages is used for sending hardcopy to the
printer down the hall whose name is Clover, and the icon in the left
hand corner of the display that looks like a file cabinet views the
FileTool, a facility for obtaining files from remote servers,

Viewers Window Package

The Viewers Window Package provides the basic display paradigm for
Cedar [10}. It allows users and programs to create, destroy, move, and
resize individual rectangular viewing areas called viewers. (To a first
approximation, a viewer corresponds to what is called a window in
many other systems.) Some viewers present textual or graphical data
to the user; others provide the user with various forms of control, such
“as access to facilities or the ability to invoke procedures. Viewers that
provide access to a facility are called tools, and viewers that simply
invoke a procedure are called buttons.tS The FileTool and the Walnut
Mail Reader shown at the bottom of Figure 1 are examples of tools,
and the nine small boxes labelled 1dle, Clean, New, et al, at the upper
right in Figure 1 are examples of buttons.

The icons at the bottom of Figure 1 are also viewers - viewers in their
iconic form. Opening an iconic viewer tells the Viewers Package to
allocate screen real estate to the viewer in the center portion of the
display (see Figure 2), thereby allowing the viewer to present its
contents in a more comprehensive fashion. Conversely, closing a viewer
releases the space that the viewer currently occupies, and causes it to
be displayed in iconic form at the bottom of the screen.

The user can open an icon by pointing at it using a device called a
mouse [16]. Pointing is accomplished by sliding the mouse along a
horizontal surface to position a mouse-controlled cursor on the display.
(In Figure 1, the cursor is displayed near the center of the screen as
an arrow.) When the desired location is reached, the user depresses
and releases one of the three buttons located on top of the mouse. We
use the verb click to describe this act of positioning the cursor and
pressing and releasing a button. Let’s open the icon for the Clock and
the FileTool. This produces the configuration shown in Figure 2 in
which both the Clock and the FileTool viewers now occupy large,
rectangular areas whose height is nearly the height of the entire display.

[swpt VET of e-May-11 161250 POT

Dureciory
Fucneme)
Loca:

OF Fue

[connec Passwors

Retnevet
iore:

Local Lusy

List-Opuonst =
Remote-Lut Ciaset

o
DFGuBown: HHemore-Betest

Figure 2: The same display after opening the FileTool and Clock
viewers

182

Most top-level viewers (viewers that are themselves not contained as
part of another viewer) include a collection of buttons for invoking
various operations associated with that viewer. For example, the
FileTool viewer includes buttons for retrieving, storing, and listing
files. The user clicks a button to make the corresponding operation
happen. Often, these buttons are arranged in a horizontal array called
a menuy that is displayed just below the viewer’s caption, the black area
at the top of each opened viewer that contains the viewer’s name. For
example, the Clock has a menu that includes the buttons SwapColor
and ChangeOffset (see Figure 2). More elaborate menus are associated
with text viewers, as shown in Figure 6.

In addition to buttons specific to particular classes of viewers, buttons
for various operations that apply to a/l viewers regardless of their class,
such as Destroy, Close, and Switch columns, are contained in a menu
that is hidden under the caption. This caption menu is only displayed
when the mouse is actually in the caption area (it can be seen in
Figure 10). Other buttons for invoking system-wide activities, such as
creating a new viewer, performing a checkpoint, and booting, are not
contained in a particular viewer but instead are included in the message
area at the top of the screen (see Figure 2). For example, the button
PS (PrintScreen) is used to produce hard copy images of portions of
the screen and was used to generate the figures in this paper. The
remainder of the message area is used for displaying various comments
about the system’s status and behavior. The bottom portion of the
screen is used for displaying icons.

The large, middle part of the screen that in Figure 2 is now occupied
by the FileTool and Clock viewers is divided into two columns. 6
When more than one viewer is created or opened in the same column,
the viewers automatically share the space available.T” Conversely, when
a viewer is closed or destroyed, the screen space that it occupied is
then shared among the remaining viewers in its column. If a viewer is
grown, i.e., given the full column to itself, then any other viewers in

+4 In a traditional time-sharing environment, users share files straightforwardly since
all files reside in the same place. In our distributed environment, files that are created
by a user on his personal machine can only be shared if they are stored on another
machine called a file-server, a computer with a large disk dedicated to the task of storing
and retrieving files, to which all of the personal machines have network access. For files
that are part of the standard system. such as sources, documentation, and fonts, the user
need not be aware of where the files are stored, or whether they have already been
retrieved onto his local disk - the system takes care of this automatically for him using
a version map that is built when the system is released. However, the user must explicitly
store, retrieve, and keep track of files that are not part of the standard system (but there
are packages to aid him in this task).

F5 The principal difference between a tool and a button is in the number of operations
and degrees of freedom they provide to the user. Tools typically allow the user to
specify a number of parameters (and retain these parameters between invokations),
whereas a button may take an argument, but essentially performs the same operation
each time.

+6 Both the width and height of these columns can be easily adjusted by the user
using the mouse.

17 This strategy of placing viewers adjacent to one another with no overlapping and
no blank space is called tiling the screen. It is one of the most widely discussed aspects
of the Cedar user interface, and often leads to heated, religious debates between its
adherents and advocates of overlapping windows such as those employed in Interlisp
and Smalltalk. However, regardless of how they resolve them, each of these screen
management systems deal with the following issues: (a) provide for some form of default
window placement so that the user does not have to be involved in specifying the
position and size of windows if he does not wish to; (b) allow the user flexibility with
regard to screen layout (in particular, some way of overriding default window placement);
(c) strive to make maximal use of the screen real estate; (d) give the user a predictable
and intuitive model about what will happen to the display when he performs a given
operatipn. With regard to this framework, the two screen management algorithms have
different ad and disad For example, overlapping windows give the
user a lot of flexibility with regard to screen layout, but can lead to wasted, i.e.. unused,
screen space. On the other hand, no window need be larger than the information it
contains. Overlapping windows also have the advantage that the working set of active
windows can be quite large, since only a small portion of a window has to be visible
for the user to have access to the window. (This effect of using the comers as handles
for those windows that the user might want to access is provided for in Cedar through
icons.) However, users wind up spending a fair amount of time ensuring that the desired
corners are always visible, and even so, overlapping windows seem to have an uncanny
knack for getting lost.

. _ MS_SURFCAST 000003624
Petitioner Microsoft - Ex. 1068, p. 2

that column are automatically closed. To show you how this works,
I'll open the remaining icon on the left side of Figure 2, the one
labelled "Cedar" that looks like a chalkboard with erasers on its ledge.
This produces the arrangement shown in Figure 3.

5] () T T (Y
Sop! VET or_ a-May-8) 16 12 38 POT wapdolor ehan, .
P iieNamecs) Upaae 2
coca Updae
oF Fue exporisonty
connect Passwory venty
[Remever Locat-Luse Lun-dpuons DEGer
orer Remow Listt Close DF ooty oo b

-

S n

oot Trovze Wowbor ewWE Addtelec Howbines ore o

Cedar 4.4 D ion Browser

Lust ediied vy Jum Donahue Jnly 26, 1983 4 24 g, Jum Hornsng My 23,1903 1 43 pm

s aaunase give v vey pretimunary verson o omine aacumentwion for Coar 1 conie o * L 4
sevennd Whitebourds.

o a1 4} ble, WNIZR contin
Tt o1 component a1 116 T INTLAON O pertexin aspecls s Cede. ach i mo e
‘Manual 01 s GUsolaved on Deze whAleCeArde, -

Kodos ond Queries
™ e
[Whitetoars nse
E foren
M

Figure 3: The FileTool and Documentatwn Browser share the left
column

Whiteboards

The viewer that | just opened is an example of a class of viewers
calied whiteboards. A whiteboard is simply a viewer consisting of a
two-dimensional area in which viewers and text can be inserted,
removed, or repositioned, i.e., whiteboard viewers provide a spatial
way of organizing data. The whiteboard at the bottom of the left
column in Figure 3 serves as a documentation browser for Cedar.
Notice that not all of the information on the whiteboard is visible in
the viewer; the bottom of the viewer clips off additional information.
This particular class of viewers, whiteboards, elects to simply clip
information that is not visible, rather than scaling the display to fit
the amount of screen space available, as the Clock does in Figure 4.

In order to see more of this whiteboard viewer, let's move the FileTool
from the left-hand column to the right-hand column using the
appropriate button in the menu that is hidden under the FileTool’s
caption. This produces the screen layout shown in Figure 4.

resze e i
Cedar a4 Documen(anon Browser

Lust editod by Jim Donahue Jaly 26, 1983 4 24 pm, Jim Hotning May 23,1983 1 43 pma

107 Codas 11 consist o1

e Testson mhirivenra ve

i, et u.‘m.m;uu:m vie
The en Sacumonaion s Avcrion i he AL nsa 4] iv, ATSER conminy n n

et o companen a) et AN UBEmAER o carcras Lo o e e

Whisasoard into

L4 *
»

- Sopt VET of_a-tMay-81 161258 pDT
o o1 Codar, e C oy Lamfunge, e mor e N
Gl Thinc T e e e ot iy o Coos e ||
ysem Di wle oo, elc) nd 1N 1mperiant progruaming wneriaced ol Cadar Al Fea FileName(s)
Tairovechon reerences baiom-— i hves yaporian: enere eSERAon Locat
par. Exf

or P
connect Passwrora Ve
Beavet Lot ListOpaonst DFGeu toeat-9|
4 _ _ _ _ __ ore! Remow-List Close! DFGeBo! Aewew]

RC and Cedas irom Lyle Ramanar -
bos: ihe local envionment

Gt some Rits for eacious iG> e Eloomry
Provides a1 the "FPARC-speat” that you will ated 1o

o e dewramecaocn:

oty
e LT nmu y ooy
oD > cpen

S T Moo, o;ﬂ\ full nizes
R <3 grow i bt

Figure 4: The Cedar Documentation Browser

Online Documentation

The Cedar Documentation Browser shown in Figure 4 uses a
whiteboard viewer to display a data base for the online documentation
for Cedar [3]. About halfway down this whiteboard is a row of icons
for seven other whiteboards: Basics, Language, Components, Tools,
Interfaces, ToolBox, and Games. We can find out more about any of
these aspects of Cedar by browsing the corresponding whiteboard. To
do this, we follow the instructions displayed in the lower right hand
corner of the whiteboard: we move the mouse into the corresponding
icon and click the middle button. This will cause a new viewer for the
corresponding whiteboard to be created and displayed.T8 For example,
let’s open the Components whiteboard, which includes whiteboards
for various important components of Cedar such as the Viewers
package, the Tioga editor, and the UserExecutive. The Components
whiteboard in turn contains an icon for the Viewers Package
whiteboard. If we middle-click this latter icon, we get the configuration
shown in Figure 5.

Cedar 4.4 Documentation Browser The Viewers Colﬂponem of Cedar

Tne Viewsrs Window PACKAFE 1 the aroitet of the waer npui and displey.
NarGware in the Cedar programmunt envitonmenl, 11 provices the UIgnon o e
SIOFIAmMES Dt nere 1 privale Gapity, mouse and heytcard samaied i e
Toviication. whle siowing ih e 13 RmbilansoLsy ineTec Wi many
applica:

o busic chject mampalais by crensprograa und visble o he et i he

Lt ebiuaty Jim Domsnue July 36, 1980 4 2 pm. i Horing L

W iearas
mparians

So0Le ity e oo

The Tool2ox mhitevourd

fise neet o e m.m,um eiemor memp r TARC and Cod]
e foa 10 1he Aansal 4

AU 53 COBORem 51 ey %A% oA on SaTCK A pects oh

o inclugey

Tethuce for aser inpul The scrmen pombon and fize of
. be modied by Ie Giar 4% well 4t 4AOCF program control

- - Fotos
I P

focamor

ipefGaes igfiuaeahglucs mtudes

T =y g Butte-n Clasees
= = -

A nandy colection o1 Viawer clasees (.
Durtons. Latele)

asisiuon o e Viewers dun
gruchie s e ot 0 buric operations on
Viemers (Croate, Testroy: Pome o1

gze\ Trogze Wewbor MewWE Addtelec

o e . . ﬂ . .
The components ot Codar that yon are likely 10 wse mo¢t Ireqently wAclac

Viewess rtne Cedar mindow manager).

o, reon.

the UsecExec.

Cypress (ihe dautese sysem> el Entnton ans Manus
For saen ot thee compontis we gve e L e comanog it o 310

rereTences 0 Other wRiieccards wih (kMR informAUon on (he inleriaces
Components provide

And there s more
Aactionaliy, ihere 4re 2 tasge namber of other componenls 0t Cedar that e

section of the Viewers o the retevent

The place 16 1ook Jor hem se in the Cedar Catalof And ihe Cedas and 1SL iniommanon
o Foem o8 whICh 18 E1ven 6101

= D TTYYER T

Flgure 5. Browsing the documentation using whiteboards

The whiteboard for the Viewers Package that appears on the right in
Figure 5 includes icons for the various public interfaces of the Viewers
Package, as well as an icon for the Viewers Package online
documentation contained in the file ViewerDoc.Tioga. We can cause
this documentation to be displayed using the same method as we did
to display the whiteboards, namely by simply moving the cursor into
the icon and clicking. ¥

The Tioga Editor and Document Preparation System

The text viewer that appears in the left-hand column of the display in
Figure 6 is the on-line documentation for the viewer package itself, in
the form of a Tioga document. Tioga is both the editor for Cedar
programs as well as its document preparation system.? In Tioga, a
document is a tree structure of nodes rather than a list of paragraphs

18 The system will automatically obtain the necessary information from the
corresponding data base, which is stored on a file-server. All of this happens reasonably
quickly (a few seconds).

19 We have placed a great deal of emphasis in the design of Cedar on uniformity of
command interface. "What is important about a standard user interface package is that
the user be able to confidently predict the general manner of interaction with a program
that uses the package, even though he hasn't experienced it yet; and that by and large,
the user will be right. This has been called the Law of Least Astonishment” [4].

110 The Viewers Package documentation shown in Figure 6, as well as all Cedar
documentation, was prepared using the Tioga editor, as was the paper that you are now
reading. When hardopy is needed, the Tioga typesetter (represented by the printer icon
shown at the bottom of Figure 6) is used to generate high quality hardcopy from the
document and send it to the corresponding printer.

183

o _ MS_SURFCAST 000003625
Petitioner Microsoft - Ex. 1068, p. 3

so that a hierarchical structure can be explicitly represented. Successive
levels correspond to greater levels of detail, and the viewer of a Tioga
document can be instructed to suppress the display of all nodes deeper
than a certain level. For example, in Figure 6 only the top level of
nodes are shown, thus effectively providing a table of contents.

\de "2l Places Levels hangetog
ind Wors Tei Panuen Pl Keseics
L evmionly Marerevels Feweriveis’ AllLEve
Inter-Office Mouor-uaun
13 Sedar Tneres Dae Crcember 21, 1902
From Sem McGrogor Lo quon Paio Al
sebpct The Viewers Window Fxiste Orpanzenon PARC/SL

XEROX

The imtrgorces: i
programer xmrm!lu 10 330 1he Vyewers Siindon

Fues or. [indsgo) Sedar Documetuauon ViewsDoc Tiore snd ViewerLoc Press

Torsmeny (ingigo} Zedar iewers Ziewelsaf. s exporiad by the Codar boct fle

Riltein Clas:

A nanay o
Butions, Luval

‘Fﬂ:”

The Viewers Window Package

Disclaimer

Introdactisn

Screen Layout

Viewer Classes

Viewer fastances

Predefined Viewer Classes And there s more

The Interiace Sxmmary sxciion of ine Viewers Tocumentation)
tntormation

Tmplementation Guideiines

S

Figure 6: Online documentation for the Vlewels Window Package

In combination with scrolling, the use of levels in Tioga makes it easy
for the user to browse through a document or program and quickly
find the part that interests him. For example, let’s scroll to the section
entitled "PreDefinedViewer Classes"lf11 and click the MoreLevels
menu button at the top of the viewer.T12 This allows us to see one
more level of detail, the titles of subsections, as shown in Figure 7.

mp) PrevEile ve Time Spuc Pleces Lovels On eset
Find Word Def Pestion Nomalize MreoPlace Rewiec evels Thangetos e c———
FirstLevelOnly Morelevels FewerLevels AliLevels The Viewer]

Predefined Viewer Classes

bootLi5153 below is & set o viewer classes for client use with implementations provided in the Cedar The Viewers Wi

e,

Buttens ool
applications.

Centainers The basic object
viewer; a rectangul]

Labels user display, A vie]

mrerm:l h the daj

Rules

Text & viewer mly !! mq

The document
programmer intendi
apptication, It is orf
sysem prov:m on
examptes of u
Consut he interiacy

Implementation Guidelines

ures and variables in a viewer were designed to support 4 p.mcnm style of

implementation for new Classss. Many of the procedures and varisbles were added

heln sotve some general problem of Concurrency or user interaction, Implementors are nol required
use these ures, bat they should only depert trom them when they have good reasans,

Basics

The best way to write a uset application that uses Viewers is 1o first write a applications package
accessivle to client programs and then make & thin veneer over it for users, It is templing 1o tailor
Jg your implementation o the user interface, but this temptation should be resisted. No matter Now

user-oriented your program is, some user some day will wan! 1o write a progeam that uses your
spplication directly. It is besi that you prepare for that eventualily now,

There are four different ways that s particular function in your program could ve invoked:
Aotitication of an aser event through the NotityProc, s Call on a pre-defined function in the Viewers

class (such as set, get, and save), invokation through a bulton or menu item on the viewer, an
client call on an interface you ex, yon tse more than one of these paths 1o invore » fanction
Yo shoutd be abeolutely cermin that hey ail have exactly the same semantics. The best
this is 10 have them ail call the same procedure. Thus the NotifyProc that handles special user
actions should do no more than gather parameters and dispatch 10 procedares that are defined in an
interiace exported by your progrem. The same should be true of procedures that are invoked with
buttons and menas.

The functions ‘Create’ and “destroy’ ere special tunctions in the Viewers warld. Al of the
creation and destruction tha is for a particular Viewers class should happen in the Class’s
InitProc and DestroyProc. In particular it is very important that all of the menu construction,
sub-viewer creation and private daia initialization happen in the InitProc. This ailows e vmv:xs
Ppackage to create an: siances of 8 class without Raving (o knaw about interiaces

The gefinition of
structure and the
Viewers (Create,

e

Icons

Defsnition and
Monagement

By The class's implementation, This (s imporiant Since opening & deskiop somerimes requires e
Fe-Croation of & Viewer Inat the user Rad Gestfoyed, ALl That the Viewers packsge can da ir eai
ViewerOps C into: (name: and hope that this is suificient

10 create and initialize the viewer. Application tools should create their own viewer's class just 50
they can have their own InitProc, even it there is never more than ono instance
Similarly, ViewerOps. DestroyViewer{viewer] should be X me Viewers packs
hat the viewer has cleaned up all of its internal data stractus ning up internal
SUrUCTares (nGIuGes breaking Circulas inks 5o he farbags colocior will Feciaim the Torsges

eeds 10 mk: sure And there’s m

Tne Intertace S
information

Figure 7: Browsing a Tioga document using level clipping to
suppress detail

F11 Scrolling is accomplished by moving the mouse into the scrollbar, a vertical area
at the left side of a viewer, and then clicking the mouse. The scrolibar is visible in
Figure 7.

184

Clicking the MoreLevels menu button again would show yet further
detail, i.e., the contents of the subsections entitled Buttons, Containers,
etc. Now let’s scroll back to the beginning of the document and I'll
briefly demonstrate how the Tioga editor works.

The Tioga editor allows the user to select individual characters, words,
or entire nodes or branches (a node plus all of its children). For
example, I can select the word "environment” in the first paragraph
of the introduction (see Figure 8) by pointing at it and clicking the
middle button of the mouse. This does two things. First, it establishes
the input focus, i.e., tells the Viewers Package that any characters that
I type should be seen and interpreted by this viewer, not by some
other viewer also waiting for input. Secondly, clicking the mouse in a
Tioga document tells the Tioga editor the location of the current
insertion point, in this case immediately following the word
"environment.” Tioga indicates the current insertion point on the
display by the appearance of a blinking caret. (In Figure 8, the caret
can be seen in the third line of the first paragraph, just after the word
"over.") Basically, what all this means is that to use Tioga, you simply
point and type and the characters are inserted into the document at
the place where you pointed. Figure 8 shows the state of this document
after I pointed at the word "environment” in the second line of the
first paragraph and typed "Here I am in the process of inserting
material: the quick brown fox jumps over.”

SECTIONS 70T V2T W), IT YEITECts THE STAYE OY THE VIEWEYS PACKELE 10Y CEOAY VErSoN 4.0, Y0
may be able fo find a more recent version on [Indigo}X CedarViewers)> Viewers> ViewerDoc.tioga,

Introduction

The Viewers Window Package is the arbiter of the user input and display hardware in the Cedq
progrnmmmg environment Here I am in the process of inserting material: the guick brown fox
jumps over, It pmvxdes the ittusion to the programmer that there is & private display, mouse and
keyvoard dsociated with each application, while allowing the user 10 simultaneously interact with
many such applications,

The basic object mampumeﬂ by client programs and visible to the user is the viewez; a
rectangular area with amm'ufy contents which may be made visible on the user display. A viewer|
takes its name in that it allows the human user to view and interact with the data associated with o
Cedar npphcauon The underlying i software has control over the dxsplnyed

contents of a viewer and has available a rich user interface for user input, The screen position and
size of a viewer may be modified by the user as well as under program control,
This documentation is written for the programmer intending to use the Viewers Window Packa;
10 build & new application, It is organised along the broad areas of functionality that the Viewers
system provides and attempts 10 explam design theory and some pragmatics, For examples of usag
see the reierem:es within each section, and for exact details consult the interfaces direcily. One
lient

Figure 8: Inserting characters into a Tioga document

Commands can be given to Tioga using various control keys, e.g.,
typing a character while the CTRL key is depressed. For example, I'll
undo the insertion I just made with a single keystroke. This ability to
undo editing operations allows the user to recover from mistakes.

Another command that [can give to Tioga is to change the way
characters appear by changing their looks. For example, let me
emphasize a sentence of this document to draw it to your attention by
making it appear in a larger font and underlined (see Figure 9).

The sentence that I underlined makes an important point: users can
and do make heavy use of parallelism in Cedar. It enables them to
start one task before another has finished, and to switch back and
forth among several tasks, e.g., editing, compiling, reading mail. T3

112 The advanced user can perform this same operation with a single action by holding
down the SHIFT key while scrolling. This is an example of our concern for an efficient
interface for experts. Many systems that boast of being extremely easy to use have the
drawback that they do not allow the experienced user to become much more proficient
with the system than the novice user. For experts, the desire for common operations to
require a minimum of effort can be more important than the desire for the greatest
possible simplicity in the user interface.

+13 To facilitate this parallelism, we have pursued in the design of the Cedar user
interface what might be called the Principle of Non-Preemption: "Individual interactive
programs operate in a non-intrusive manner with respect to the user's activities. The
system does not usurp the attention and prerogatives of the user” [4]. This is especially
important in an environment such as ours where the use of personal machines encourages
using the time when the user is thinking or the time between keystrokes by performing
various background tasks, e.g.. sending and receiving mail. printing. recompilation, and
database maintenance. Such activity loses a lot of its utility and attractiveness if the user
is continually forced to deal with unexpected interrupts from these background tasks.

MS_SURFCAST_000003626

Petitioner Microsoft - Ex. 1068, p. 4

The Viewers Window Package

Disclaimer
This document is curren1ly in progress and hence is incomplete (as wilnessed by a number of mesa

sections not yet written). It reflects the state ot the Viewers package for Cedar version 4,0. You
may be able 10 find a more recent version on {Indigo CedarViewers) Viewers> ViewerDac. tioga,

Introduction

The Viewers Window Package is the asbiter of the user input and display hardware in the Cedar,
programming zavmmmem HereIam in the nrocess of msenmzdchnrscters provides tl
10 t!

The basic object mayupululeu by client programs and visible 10 the user is the viewer; &
recunzuln! area with arbitrary contenis which may be made visible on the user display, ‘A viewer
1akes its name in I)IM n allows the human user to view and interact with the data associated with a

Cedar software has complete contral over the displayed
Contents of a viewer ula has available a rich user interface for user input, The screen position and
size of & viewer may be moditied by the user as well as under program control,

This documentation is written for the programmer intending to use the Viewers Window Package|
10 build & new application. 11 is Organised slong the broad areas of functionality that the Viewers
system provides and attempts to explain design theory and some pragmatics. For examples of usage,
see the references within each section, and for exact details consult the interfaces direcily. One
point of notation: used throughout this document, client refess 10 a program calling the Viewers

Figure 9: Changing fonts

We aren’t going to be needing this viewer, so let’s destroy it using the
Destroy menu button which is contained in menu that is hidden under
the caption. We do this by moving the mouse into the caption area of
the viewer, which causes the caption menu to be displayed as shown
in Figure 10. Notice that the Destroy button has a line through it.
This indicates that the button is guarded. Guarded buttons must be
clicked twice in a short time interval to take effect.t14 This is to guard
against the user’s inadvertent destruction of useful work. For example,
the first time any edits are made to a Tioga document, the Destroy
button automatically becomes guarded. If we were to go ahead and
destroy this viewer anyway, a new icon labelled UnsavedDocuments
List would be created. If | were to open this icon, I would see: "The
following files were edited but not saved. They may still be restored
with edits intact simply by loading them." i.e., I could still get my
edits back if I really wanted them.

Pestroy Adjust Top <(-- --> Grow Close

Clear Reset Get Geumpl PrevFile &wre Save Time Split Places Levels Changelog
Find Word Def Position Normalize PrevPlace Reselect

FirstLevelOnly MoreLevels FewerLevels AllLevels

Inter-Office Memorandum

To Cedar Interest Date December 21, 1982

From Scott McGregor Location Palo Alto

Subject The Viewers Window Package Organization PARC/ISL
Filed on: {Indigo]<Cedar>Documentation >ViewerDoc.Tioga and ViewerDoc. Press.
Documents: [Indigo]<Cedar>Viewers>Viewersdf, as exported by the Cedar boot file.

The Viewers Window Package

Dicalai

Figure 10: The Destroy menu button is guarded to prevent accidents

Such touches as undoing, guarded buttons, and the ability to recover
destroyed edits, are what some might describe as frills. However, we
believe that they contribute a surprising amount to programmer
productivity. They allow the user to move ahead quickly with the
confidence that he will be able either to avoid disaster or to recover
from it. We have placed a great deal of emphasis on them in the
design of Cedar.

114 The first click removes the guard. If a second click does not occur within a
specified interval (about five seconds), the guard is restored. We feel that this interface
is preferable to having the system enter into a confirmation mode; the latter would
violate our principal of non-preemption.

185

The UserExecutive

An increasing number of users of Cedar are non-programmers; they
use Cedar to prepare documents and read and send mail. However,
Cedar is primarily a programming environment. So let us now focus
our attention on the programming aspect of Cedar. To do this, I'll
open up a UserExecutive. Notice that | said a UserExecutive, not the
UserExecutive. Consistent with our philosophy of providing
parallelism, there can be several instances of the executive, each with
its own state, and performing its own operations.

Each instance of an executive is associated with a viewer called a Work
Area through which the user interacts. Commands are typed to the
executive by typing to its viewer, and its output is displayed in the
same viewer. At this point in the demonstration, there is only one
instance of the executive; it is associated with the icon at the lower
right of Figure 6 that looks like a scroll and is labelled "A: Executive.”
I'll open this icon in the usual way, and then move the mouse into
the resulting viewer and click it. The executive is now listening to me,
i.e., it will see the characters that I type.

The UserExecutive implements various standard executive functions
such as accessing the directory system, compiling, binding, loading,
and running programs. Each interaction with the UserExecutive is
called an event, and consists of a command name, followed by any
parameters. The user can request explanatory information about a
command or its arguments by typing "?7". For example,

&7 run?

Run Load and Start the named programs.

The "?" indicates that 1 want to see more information about the
preceding subject, in this case, the run command. The UserExec tells
me that this command is used for loading and starting programs. I'll
use the run command to run the program Watch, which is a
performance monitoring tool that periodically samples and displays
the words allocated, cpu load, and page faults. 115

&8 run watcch
watcch -> watch
Loaded and started: watch.bcd

I misspelled the name of the program to be run. In most systems, this
would cause some sort of a FileNotFound error to occur. Instead, the
Cedar spelling corrector was invoked, and given the name "watcch”
and the context "a file to be run,” quickly produced a file which was
reasonably close in spelling. This automatic correction of "watcch” to
"watch"” is an example of what we call DWIM, short for
Do-What-I-Mean. The Cedar DWIM facility is patterned after the
Interlisp DWIM facility in philosophy and style [13].

The UserExec has loaded and started the Watch program, which
created an icon for the Watch tool. I'll open the Watch icon, and we'll
observe the Watch tool in action as 1 execute another event in the
UserExec (see Figure 11).

The Interpreter
One of the valuable lessons we learned from Interlisp and Smalltalk

was that the availability of an interpreter greatly facilitates debugging
and testing, even when the programs being debugged are themselves

$15 Since Cedar programs are often written in expectation of production use of the
program, performance monitoring and tuning is an important issue. The Watch tool is
just one example of a number of such tools available in Cedar. For example, a much
more elaborate and precise performance tool is the Cedar Spy, developed by John
Maxwell. "With the Spy, the programmer can see which procedures are consuming
CPU cycles, which are causing page faults, which are using the allocator, or which are
calling a particular procedure. When the programmer narrows his focus to just one
process, the Spy will tell him where that process is spending its time, where it is waiting
on page faults, where it is waiting on monitor locks, where it is waiting on condition
variables, and when it is preempted by other processes” [9].

MS_SURFCAST_000003627

Petitioner Microsoft - Ex. 1068, p. 5

Load and Start the named programs.
&8 run watcch

waweck - Wawh

Loaded and started: Watch.bcd

&9 list *.press
figurel.press
figure2.press

105472 31-Aug-83 12:09:06 PDT
165472 31-Aug-83 12:09:29 PDT

Words 913144 1
CPU Load

Faults 6055 1 3 10 30

requests 16218 disk 4423 gfi 104 mds 27 VM 3593 VM run 2468

100 1000 10000

16000 done. (GC#4$ got 17194 words, 1305 objs)

CIFS status (inverted iff active)

[Sample][interval] 2
L4

Figure 11: The Watch Tool monitors program activity

totally compiled.t16 Thus, the Cedar interpreter is an important and
integral part of the Cedar environment, despite the fact that Cedar is
a compiler-oriented language.

To show you how the Cedar interpreter works, let’s interpret some
Cedar expressions. I'll create an interpreter Work Area by clicking the
New menu button at the top of Work Area A. (This menu can be
seen in Figure 15.)

The Cedar language includes the data types found in most modern
programming languages, such as integers, reals, booleans, characters,
arrays, pointers, records, etc.

For example,

&1 «3 + 4

7

&2 « ABS[1.414 * 1.414 - 2,0]) < .001
TRUE

The first event, &1 « 3 + 4, really means assign the value of 3 + 4
to the variable &1, and 1 can refer to this value in later expressions.
For example, let's multiply it by 1.4:

&3 « &1 * 1.4

9.8

The Cedar interpreter also allows me to perform operations on fypes
as well as values. For example, typing ? following an expression will
show the type of the value of the expression.

&4 « 3.2?

is of type REAL

&5 « ’X?

is of type CHAR

&6 « Time.Current?

is of type PROC RETURNS [time: System.GreenwichMeanTime]

In the Cedar language, is used to denote field extraction. For
example, x.y means the field of x whose name is y. In this case, Time
is the name of an interface, and Current names a procedure in that
interface. An interface is like a contract between implementors and

$16 Actually, all Smalltalk expressions that are input by the user are compiled before
execution, although it is not clear that Smalltalk users are (or need to be) aware of this
operation, The important point is the ability to create and execute program fragments in
a specified, dynamic context. Whether this is done via a separate interpreter as is the
case with Interlisp, or by compiling each expression as Smalltalk does, is simply an
implementation issue.

17 Note that we are not just talking about primitive, built-in data types, such as
integer. boolean, string, etc. Cedar encourages the programmer to augment the collection
of predefined types by constructing new types defined in terms of built-in or previously
constructed types. In a typical Cedar system, there may be over a thousand such types.
Thus, for the purposes of debugging, knowing that a particular object is a pointer to a
word containing all 0’s may not be anywhere near as informative as finding out that
the object in question is of type REF Foo, rather than REF Baz, where both Foo and
Baz happen to be synonyms for the type INTEGER.

186

clients. It declares that a procedure of a specitied name, such as
Current, takes certain arguments and returns certain results. The Cedar
compiler can then make sure that any programs that import (use) this
interface conform to its specifications. The compiler also checks that
the implementation module conforms to the same specifications. 118

Let’s call this procedure. It takes no arguments.

&7 « Time.Current[]
Thursday, September 1, 1983 12:33:21 pm

Its value is of type:

&8 « &? 119
is of type System.GreenwichMeanTime

The reason that the value of Time.Current in event number 7 prints
so nicely as a day, date, and time, rather than as a 32 bit quantity, is
that a PrintProc has been associated with the type
System.GreenwichMeanTime. A PrintProc is a procedure that
provides a more desirable way of presenting an object of a certain
type, rather than simply printing its data structure using the default
methods. The PrintProc facility is quite useful for dealing with large
and complicated data structures such as viewers, documents, and
streams, where the user typically just wants to be able to identify the
object, rather than seeing its actual structure. Cedar includes a number
of PrintProcs for just this purpose. In addition, individual users may
define new PrintProcs for their own types.

Automatic Storage Management and REFs

In the early stages of planning for Cedar, one of the features that
received the highest priority was automatic storage management — a
garbage collector. The Cedar language was extended to include a data
type called a REF, which is a pointer to an object in collectible storage.
In addition to REFs to particular types, such as REF REAL, REF BOOL,
REF PROCEDURE, etc., the Cedar language includes a generic REF type,
REF ANY.T20 Atoms, which are very similar to Lisp atoms, and Lists
are also examples of REFs.T2!

For example, let's make a list of some of the values that we just
computed.

&9 « LIST[&1, &2, &3, &7]

(17, 1TRUE, 19.8, 1Thursday, September 1, 1983 12:33:21 pm)
&10 « &?

is of type LIST OF REF ANY

Since each of these objects is of a different type, the type of the value
of event 9 is LIST OF REF ANY. Note that the first element is really a
REF INT, the second a REF BOOL, the third a REF REAL, etc. In other
words, the type of &9.first, the first element of this list, is REF ANY,
but the type of the referent of this element, &9.firstr, is INT.

Manipulating Lists

The List interface includes a variety of procedures for manipulating
lists, such as Append, Reverse, Remove, Union, and Intersection.

118 The notion of abstraction mechanisms and the explicit notion of interface was an
important item in our original catalogue of programming environment capabilities [4):
"Abstraction mechanisms are important because they make explicit the logical
dependencies of one part of a program on another, while concealing the implementation
choices irrelevant to the communication between parts. Thus, these mechanisms enable
the ability to factor the development, debugging, testing. documentation, understanding,
and maintenance of programs into manageable pieces, while leaving individual
programmers the appropriate freedom to design those pieces™ [4]. The author believes
that the abstract notion of an interface is one of the great strengths of the Mesa
programming language. However, the need to specify interfaces in advance can also be
cited as a weakness of the Mesa approach. Certainly, the present need for vast
recompilations whenever a fundamental interface is changed, even in a backwards
compatible fashion, is a weakness, but one that certainly can be reduced and maybe
even eliminated (for example, by maintaining version stamps at the interface item level,
rather than at the interface module level as is currently done).

119 The value of the variable & is the value of the last event execute, i.e., in this case
& and &7 have the same value. 120. $21 (see next page)

o _ MS_SURFCAST 000003628
Petitioner Microsoft - Ex. 1068, p. 6

Let’s try the procedure Reverse on the list constructed in event 9.

&11 « List.Revers[&]
Revers -> Reverse ?

I misspelled the name of the procedure causing an error to occur, i.€.,
the procedure Revers was not found in the set of procedures contained
in the interface List. DWIM was invoked and searched through the set
of items declared in the interface List.¥22 bwiMm found a procedure,
Reverse, whose spelling was pretty close to what I typed, and in
Figure 12, is now waiting for me to confirm or reject the correction,
which | can do via the keyboard, or by clicking the Yes or No menu
buttons which have been added to the Work Area’s menu for this
purpose. 23 When (and if) 1 confirm the correction, the corrected
expression will be evaluated.

20 A recurring theme in our discussions of requirements for an experimental
programming environment centered around the issue of early versus late binding of
various implementation decisions. "The key property of the programming languages
used in exploratory programming systems is their emphasis on minimizing and deferring
the constraints placed on the programmer, in the interests of minimizing and deferring
the cost of making large scale program changes. ... The languages make extensive use
of late binding, i.e., allowing the programmer to defer commitments as long as possible”
[12].

The addition of the type REF ANY to the Cedar-Mesa language represents an attempt
to provide for one form of late binding; use of the type REF ANY enables an
implementor to defer type checking from compile time to runtime on a case by case
basis. Note that in the Lisp programming language. every item is effectively a REF
ANY: all objects are pointers, and the type of each object can always be determined at
Tuntime. As a result, certain classes of errors can remain undetected untit a program is
run, perhaps even until the program is run on particular data. At the other extreme,
the Mesa programming language requires the specification of the type of each object at
compile time. Consequently, unanticipated modifications or extensions to Mesa programs
often require changes to type declarations and recompilation of interfaces and
implementation modules.

In Cedar, we wanted the best of both worlds: the flexibility of runtime (dynamic) type
checking and the reliability and performance of compile-time (static) type checking. We
hoped that by employing REF ANY in the early stages of development, programs could
opt for more flexibility at the expense of performance and/or runtime errors. As the
program matured, various binding decisions could be made eartier by employing specific
types where approprniate.

Another important use of REF ANY in Cedar is to enable generic programs. Since
programs can determine the type of a REF ANY at runtime, they can operate differently
depending on the type of the object they are given. For example, the same Sort program
can be used to sort lists of integers, reals, strings, or even viewers, by selecting the
appropriate comparison algorithm based on the type of the objects being compared.
The capability provided by REF ANY is also essential for enabling object-oriented
programming. For example, streams, viewers, and ropes are all objects in Cedar whose
definition consists of a block of procedures along with a datum which contains the state
of the object. Since the type of the datum is different for each different implementation,
for example. file streams need different information than keyboard streams, the datum
is represented as a REF ANY which the individual procedures can then interpret.

21 A List in Cedar is a REF to a structure consisting of two fields, first and rest.
The first field contains the element of the list and the rest field the tail of the list (the
Lisp CAR and CDR). Cedar provides language support for the construction of lists (via
LIST and CONS), but no polymorphism; it is not possible to write a program that
traffics in LIST OF T without specifying T at compile time. Since most programs using
lists employ lists of specific types, the absence of polymorphism means programmers
must (re)implement for each specific type list primitives such as Reverse, Append,
Union. and Intersection. This absence of polymoprhism is cited as the biggest
shortcoming of the current implementation.

$22 When we first began work on Cedar, some thought that the complexity of the
Cedar language would make it too difficult to implement any sort of automatic error
correction facility such as was available in Interlisp. However, this very complexity turns
out to be of great benefit for error correction in Cedar expressions, because more
information is available at the time of the error than in Lisp, where all the interpreter
knows is that an identifier is unrecognized and whether it was used as a function or a
variable. For example, when the user typed List.Revers above, DWIM was called given
the identifier "Revers”, the message "selection failed", and the context the List interface.
DWIM knew that it was looking for an element defined in the List interface. which
immediately narrowed the search down to 42 possible candidates. Similarly, List.Subst
is a procedure which takes three arguments: new, ofd, and expr. If the user types
List.Subst[new: $Foo, old: $Fie, exrp: x] (misspelling the name of the third argument),
then DWIM only has to consider three candidates. For assignments, the type of the
target can also be used to guide the correction. For example, if x is declared to be of
type Color, where Color is an enumerated type consisting of {red, green, biue}, and
the user writes x « bue, then he probably means blue, whereas if x is of type {feature,
nonfeature, bug}, and the user writes x « bue, he probably means bug.

187

&5 « X
X

&6 « Time.Current?
is of type PROC RETURNS {time: System.GreenwichMeanTime]
&7 « Time.Current[]
Thursday, September 1, 1983 12:33:21 pm
&8 « &7
is of type System.GreenwichMeanTime: TYPE = RECORD[LONG
CARDINAL}
&9 « LIST[&1, &2, &3, &7]
(+?, +*TRUE, +9.8, +Thursday, September 1, 1983 12:33:21 pm)
&10 « &?
is of type LIST OF REF ANY
& 11 « ListRevers[&]
Revers - Reverse 7
A~

EditTool

Figure 12: Confirming a DWIM error correction

&11 « List.Revers[&]
Revers -> Reverse ? Yes
(tThursday, September 1, 1983 12:33:21 pm, 19.8, 1TRUE, 17)

Ropes

Cedar also includes another useful type of REF called a ROPE. A ROPE
is Cedar’s standard string type.’r24 The input syntax for a ROPE is a
sequence of characters delimited by "'s. For example,

&12 « "this is a rope"
"this is a rope"

&13 « &?

is of type ROPE

Just as the List interface provides operations for dealing with lists, the
Rope interface contains a variety of useful operations on ROPEs. For
example, Rope.Find is a procedure that searches one ROPE for the
occurrence of another.

&14 « Rope.Find?
is of type PROC [s1: ROPE, s2: ROPE, pos1: INT « 0, case: BOOL
« TRUE] RETURNS [INT]

This tells us both the names and the types of the arguments that
Rope.Find expects, and that it returns an integer. (This integer
indicates the character position in the first ROPE at which the second
ROPE begins.) Let’s try it.

&15 « Rope.Find[

At this point, instead of retyping the ROPE "this is a rope", I can
simply select the corresponding text in event number 12 using the

123 In general, we try to give the user the choice of performing operations either via
menu or via the keyboard. The main reason for this redundancy is that if the user's
hands happen to be on the keyboard, it is more convenient to interact through that
medium rather than having to reach for the mouse. Conversely, if the user’s hands are
already on the mouse, it is easier to click a menu button than to reach back to the
keyboard. The use of menus in conjunction with confirmation provides the added
benefit of allowing the system to handle gracefully the issue of typeahead and its
potential interaction with confirmation. Consider the case where the user has entered
some operation, and then typed ahead the next operation not realizing that the first
would require confirmation. The desired behavior of the system is that the user be able
to confirm without having his typeahead affected, i.e., that he not have to retype it after
confirmation. This is accomplished by requiring that the user only confirm via menu
once there has been any typeahead.

124 A ROPE is a garbage-collectible sequence of characters. ROPEs are immutable;
the sequence of characters denoted by a ROPE never changes. Thus, ROPEs may be
shared freely among independently-written applications, since no application can hand
out a ROPE and have some client free its storage or alter the characters it contains.

o _ MS_SURFCAST 000003629
Petitioner Microsoft - Ex. 1068, p. 7

mouse, and cause the characters to be treated exactly as though they
had been typed. I can do this because this Work Area I have been
typing to as though it were simply a glass teletype is really a full-fledged
Tioga document, and | can make use of any of the facilities of the
Tioga Editor when constructing expressions to be interpreted. For
example, if 1 hold down the SHIFT key while selecting in a Tioga
document, the selected material is displayed with a gray underline (as
is shown in Figure 13). Such a selection is called a source selection.

Find Split New Stop Compile Eval Redo Set Clear
CARDINAL]
&9 « LIST[&1, &2, &3, &7]
(+7, +TRUE, 19.8, +Thursday, September 1,
&10 « &7
is of type LIST OF REF ANY
&11 « List.Revers[&]
Revers -} Reverse 7 Yes
(*Thursday, September 1, 1983 12:33:21 pm, +9.8, +TRUE, +7)
&12 « "this is a rope"
“this is a rope’
&13 ¢ &7
is of type ROPE
& 14 « Rope Find?
is of type PROC [s1: ROPE, s2: ROPE, posl: INT « 0, case: BOOL «
TRUE] RETURNS [INT]
&15 « Rope.Find&

1983 12:33:21 pm)

Figure 13: Copying displayed characters instead of typing them

When [release the SHIFT key, this source selection will be cog)led to
the current insertion point, i.e., the place where the caret is.t

&15 « Rope.Find["this is a rope",
S5

The value S indicates that the second ROPE begins at character position
5 in the first ROPE.

"is a"]

This gives you a general overview of the Cedar interpreter. Now let’s
try using the Cedar system in earnest.

Tracking Down a Bug

Earlier when I typed Rope.Find? in event 14, the system simply told
me the names and types of the arguments and return values. I thought
that the system was also supposed to show me the comments associated
with the procedure Find in the Rope interface, so that [would know
what the various arguments and the return value meant. Let’s create
a viewer on this interface and see if there are any comments associated
with this procedure. I select Rope.Find in my Work Area, and then
click the Open menu button in the message area at the top of the
screen. This tells the Viewers Package to create a new viewer, load the
file Rope.mesa into this viewer, and then search for the definition of
the procedure Find, which it has finished doing in Figure 14.

As you can see, there are comments here. Let’s try to find out why
they weren’t shown when I typed "?". To do this, I am going to plant
a breakpoint in the code that implements the ? feature of the
UserExecutive. First, | create a viewer on the corresponding source

+25 This feature is tremendously useful. It greatly increases the bandwidth of the user’s
interaction with the system. It also enables us to use long and descriptive identifiers,
such as 10.CreateEditedStream, UserExec.FindExecFrom Viewer, and
ViewerTools.GetSelectionContents, even though many of our users are not fast typists.
Such long identifiers are tolerable because they rarely have to be typed, but usually can
be copied from somewhere else on the screen, e.g., from a viewer on the interface that
defines them. (Note that having to read long identifiers in programs is not a burden
but an asset: the name contains so much information it is in effect a form of
documentation.)

188

St ponion_ Nermaliz Reselect :
i cveronty ~ areLevels ' Fementsvers AliLsvels

arz poT
mu Liep-ay gl
ar 83 230025 PST

mm Harny @004 pOT
38 2 Mar 43 20132 pET
e ey 3w por

L 20 pust om0 cxe no - vaue) apruews (er)
furns posrton in 31 where 4z aceurs (Jard dookun spell pras
rewumy -1 if nor toind Uit ogs press
o ¢baraciars 18 signancant serbmeie
Userproniedoe pr
Towl o 18 tes, 3121 page

Index no
} ove, post s - 1t case 2001 - TAUE] RETUANS [IMT].
srurms e muuv m"m posaen ¥ such ot

LD ot et e ecares
e o et s 1 ngmatean
ukmpty vaoe ir sores vermes froot.

Srevurns Leogfr] «

Lenria raoc Tbase xors] arvumes [ier],

Terurmi the lengih of the rope (LengNIL] + 9
Eeptace raoc

Worns 1020 1 PO TR
Tt S5k s e < ohen er < Masien, i o -] P Lont
oot b0 3 3 o =
Loqumsts 20106 sk D8 £0 104 mds 27 VM 3438 VM un 2312
16000 [GE] dome. (GCA1 ot 16342 worse, 931 0bss
3 ars s noeries 1 wuve)

pvsen ange repixed e cow
U Fangs InVAD oF AU w0 long

fbase 2072] sevors (1),
SRrafvise] » Longinjbase]

Fobsw reoc Compile o Set Clear
‘rerurns s subrope of ihe.

- BoundsEsult xcvrs i the fange gicen 13 aot vahid

base yore. sware s - 0. len 1wy » MasLen] arrunns (105t
e RN
& usman a2 a5 401
C7USTRUE. 158, Thursder. Sepember 1, 1341 123) 21 pm)
<harsciet conversions |KKA sz why we they hero 't i
S50 ge usT oF rF ANY
Comtrol yh0¢ [ch cman] aetorws [cnar] s it Tisreverta
Evon [ch e TR) T e Samokarrier EoE ch]
ll‘nuuany Eepemter 1, 1993 12152 5, ve 4, (TRUE. +%)
Tpper sacc (ch cuan] eTanns ckar] - mume
RETun ir ch i 3] THEN o - camOOiet 38 ch

258 e pron [u ROPE. 32 POPE. posl INT . case BOOL ~

Lomez suoe [ch smar] persans (cnan) s muoms ¢ BT RS

Catoau e e wEm ch ¢ Cadeofiaes g1k eh]

1515 ropa”, s #°)

Leusr mnc (ch cnan) 'ux .
o (ch o (A

e fros - mm ¢

g e e

= - v

Figure 14: Access to program sources provides online documentation

file, scroll to the appropriate location, and then select the place where
I want the breakpoint inserted.f26 [then plant the breakpoint by
clicking the Set menu button in my Work Area. T2/

& 16 SetBreak UserExecMiscimpl.mesa 13897 Break # 1 set.
Break #1 in UserExecMisclmpl.PrintDeclFromSource (source:
13891)

pattern « TiogaOps.CreateSimplePattern[target]; -- creates a
pattern for the search.

The breakpoint has been set.T28 The system provides feedback by
displaying in my Work Area the corresponding line of source text with
the location of the breakpoint underlined, as well as by underlining
the corresponding location in the source viewer (in Figure 15, the
bottom viewer in the left column).

Now let’s reexecute Rope.Find?. I can do this by simply selecting
anywhere inside of the corresponding event in the Work Area and
clicking the Redo menu button. The UserExecutive maintains a history
of the events that have been executed.?® It uses this history hst to
find the event corresponding to my selection and reexecute it. 13

%26 The reader may wonder how | knew where to place the breakpoint. In this
particular case, I happen to be familiar with the internal workings of the UserExecutive.
However, it is not at all uncommon for Cedar users, especially experienced ones, to
poke around in other people's code, planting breakpoints, and examining data. This
behavior is facilitated by the structuring of the source files that Tioga enables, and by
the use of long, suggestive names. As a result, it is not uncommon for a bug report not
only to describe the symptom, but to identify the offending line of code.

%27 Clicking the Set menu button causes an appropriate command line to be constructed
and input to the UserExecutive, rather than executing the operation directly. This
technique provides the user with a record of all of his interactions with the executive
and enables him to examine or replay them at some later point.

128 Setting a break point involves finding the place in the object (compiled) code that
corresponds to the indicated location in the source, and then inserting a special
instruction that will invoke the breakpoint machinery. The Cedar compiler facilitates
this process by constructing as a by-product of compilation a table that contains for
each statement the mapping from the object locations to the corresponding source
location. However, most users are unaware of this process, and simply think of and
treat the source file as the program. Cedar goes to great lengths to encourage this model.

129 The notion of a history list and facilities for manipulating it came from Interlisp.
We have not yet implemented the notion of Undo as applied to events that Interlisp
provides, partly because it is harder to capture all of the side effects of an operation in
a language such as Cedar, and partly because other tasks were given higher priority.

130 The user can also reexecute events by selecting the characters that were originally
typed while holding the SHIFT key down, as was done in event 15. The principal
convenience of the REDO menu button is (a) the user can simply select anywhere in
the event, and (b) multiple events can be reexecuted by selecting a range that spans the
desired events.

o _ MS_SURFCAST 000003630
Petitioner Microsoft - Ex. 1068, p. 8

&17 Redo 14

>« Rope.Find?

is of type

Break # 1 in UserExecMiscimpl.PrintDeclFromSource
computation suspended, switching to Action Area C...

(and down below a new Work Area pops up in which appears:)

Action #1 (kind: break, process: 173B) (from Work Area B)
Break # 1 in UserExecMiscimpl.PrintDeclFromSource
pattern « TiogaOps.CreateSimplePattern[target]; --
pattern for the search.

rmm.lm
ar e Cedapl TresFile ve Wime 5l Plores Levels tnanfelof
0

z 3
Find Word Cef Posion Normalize PrevPlace Reselect
Furv eveioniy - Moreleven Fewesteoels Alllevels

creates a

axrons fc cman).

(e
radered Chavsc e (o
IndsFault cecurs if \ndes is

1na moc [s1, 52 ore. st e voos - aue) xrrums (),
- uxe indez. s passaon 1 31 whers 3 scurs ks ooking. ¢ por/s
" N o if not totm
of charatiers 1 sigaificant i o s1: ROPE, 52 ROPE. post: INT + 0, case BOOL =
Trye eromus mﬂ
A13 - FopeFindftus o)

Dlmeticme

.52 pore, case 200L + TavE] RETORMS (T
aracter paniaon N uch Gt
T3S aceurs i 52 91 N and B s posi If 3 Goes nat

st pos. 4/ ensd i3 retumod.
o ehrxiens 1 ugaseant

i
e - Tt Cuaimpksmeratacte
porkin or woe sewen

HRmpty o it nore) arroas oot
- reurns Len gt

LULTTN

Lengud moc fbwe 20m1] aervans ().

B 21 i sererecauctnpl PrinDeciTOm SIS,
Serurns the lengid of ihe rope LengINIL) + B0

Compuidacn suspeaded, TNIICAIDS © ACGon Ares
o Xoos. naet Dot - 0, len v7 - MasLen. wih ko9t - wi]

£ sve Time
Fing Wors Det Paitan Normaiize Remalec
Firsieveionty * Moretevels Fewerieseis AllLEvels
1ooking up declarations in fite
PraDciFmazaurcy puric poc (ke Rane, fle xore. exec UsrEasc Exchandle)
Aeroaws [value booiEas) s oro
o inian ¢ Um!n(,('n\su-m[out. N
lea Vo MakeAwm[e

I Places angeLor od Soln ew_ Zop
Proceed” awe

Sourcs_Waltgmck ShowFrame.

Sear

A i kg brew, prces, 0) (o Work Ares B)
Breax #11n UserEaccMisclinpl Priniecif romSource
B - -n...o i CroateSImplePatiorn{ a0, -- ¢/ovees 3 parioen

ViewerOps £indViewsr{fie]s # w roex doc -

Tisgazm xc-elmfvlw)

e1E Aen PugToplom’ DieAtom. ey $hoon, oa 6 - TiogakraZps Gediefole *
oura

valie = raise, azvOLN),
- Thogaioms Sresesimpiapanern (et

'H [docr 81,

¥ or erndecirromsouree.

Breakpoints and Action Areas

- erostes 3 potietn for wne sawrcn

PRI

Figure 15: Hlttmg a breakpoint

Whenever a breakpoint is encountered in Cedar, the corresponding
process is suspended so that the user can examine the state of the
computation. We have found it useful for these interactions to take
place in an entirely separate Work Area called an Action Area. 31 1n
Figure 15 we see that a new Action Area has been created. This Action
Area tells me that | am at a breakpoint that arose out of an operation
in Work Area B. It also tells me that the breakpoint is in the procedure
PrintDeciFromSource, and shows me the line of code in which the
breakpoint occurred.

The first thing I want to do in this breakpoint is to examine the
arguments to the procedure PrintDecliFromSource. To do this, I click
the ShowFrame menu button in my Action Area.

&1 ShowFrame args

A- target: "Find\n",
file: "Rope.mesa"”,
exec: {UserExecHandle: "B"}

UserExecMiscimp!.Pri n;:gech romSource

133

The debugger tells me that this procedure, PrintDeclFromSource, has
three arguments, target, file, and exec. The values for file and exec
are ok, but the value of target should be "Find" rather than "Find\n".
Let’s see if this is the only problem, i.e., if target were "Find,” would
the comments be printed? I'll reset target using the interpreter.

&2 « target « "Find"
"Find"

131 This method also supports the Principle of Non-Preemption espoused in footnote
13. The user is not required to deal with this action at this time. He can continue editing
documents, create and interact with other executives, read his mail, etc., and this action
will wait for him. Another benefit of separate Action Areas is that it enables the user
1o keep track of the flow of control if another action occurs while pursuing this one.

432 \n is how Cedar prints carriage-return when it appears as data.

$33 The printing of UserExec handles is another example of the use of PrintProcs.
The actual handle is a fairly complicated data structure.

189

Now T'll allow the computation to continue by clicking the Proceed
menu button, and we’ll see if the comments from the Rope interface
are in fact printed in Work Area B above.

&3 Proceed
proceeded Action # 1, returning to Work Area B

B L L L T g

(and in Work Area B above:)

PROC [s1, s2: ROPE, pos1: INT « O, case: BOOL ¢ TRUE] RETURNS
[INTE;

-- like Index, returns position in s1 where s2 occurs {starts
looking at pos1)

-- returns -1 if not found

-- case =) case of characters is significant

and sure enough, there are the comments.

Having identified the nature of the problem, now we must find out
the cause — why is the wrong value being given for target in the first
place? Let's redo Rope.Find? again.

&18 Redo 17

>« Rope.Find?

is of type

Break #1 in UserExecMiscimpl.PrintDeclFromSource
computation suspended, switching to Action Area C...

and we are back at the breakpoint. Now ['ll use the WalkStack menu
button to climb the call stack. Each time we click the WalkStack
menu button, we climb the call stack one frame.

&4 WalkStack

Now we are at the frame corresponding to the procedure that called
PrintDeclFromSource. I'd like to look at the source code
corresponding to this call. I click the Source menu button, and the
system will find the source and display it in a viewer on the left. 134

&5 Source userexecmethodsimpl.mesa 3822
IF_NOT UserExecPrivate.PrintDeciFromSource[target: target, file:
fileName, exec: exec] THEN target « NIL; -- to indicate that it didnt
find it in file

UserExecMethodsimpl.Help

TATTTE W AT
tuumumllmdﬂ « pos! 11 32 dows ot
1 silengw 1 remed.

pOGTGR S, TR b Ay A e BT
+ 0, cale 200i + thuE] arTumes (orc);
Pposition e 32 occurs (suews

a
e of <haracirs 13 sigraficant
Det 1 N "

‘MorsLevels ' FewerLovels AllLevels

up declarations in file

a18 Redo 14
. Bope find?

1 in UsmExechscinpt PunDwltronsourcy

foct2: wmpuuﬂau Ching © Acuon Arss &

e [valoe seoczan) o
o staEAM « UserExec Geisweans{ Jout
o xrom » Alom Maks ABRINISY.

wrcs: PUILIC PhOC (Wiget: RO7E, file. nOPE, exec: UserExec ExecHandle)

in ear

fr TiewerClasses Viewer, broceed " wbert Source_WalkStack ShowFrame

Acuon #1 (Kno: break, process (from Work Ares B)
Break #11n UserEzecMuscimpl. m\D—chnmsa\nu
- crevees s povern

B inine soor.
e,

b osraza

ra faoc * Laoynnu[Ameolep[lwm fleAtm, prop: $Root]]}:

m,!! " e R R R T

Def posiuon_Normaiize PrevPlace Reselect

7 borsLeves _fewsiLevels Alllovels

0+ Rops Fand TR E e
e

agiern - Tiog
ST i vserRzeeMiscimpl pnDsci ramsource
A e Finda”

‘e Kope
ozec: (U-ev!n(mndle)
23« urget

e

a0ps CreawSimplePattern target],

S0, raiher than wbL
-1 rnen
mumnm(uwsum(w ezprrope, ten 1] -

e Rope Bubsatare e rome. St 3 1. o, Rops Len g BlEApTTOR] 3

kor e

3 Proceed
Peaceedes Action #1. returming Work Area B

Acton 2 (sund: bresk, proces: 2048) (frum Work Ares B)

v secPrivate PrnDeclE romSource{r e, et fe DieName, exec Breax #1n UserErecMisclmpl PrintDec
o] rmew rter ~lo indicaie that 16 didnt find 1 in Die Bitiern + Tioga0ps CrestsSumplebaerm{large: - croves 3 pocern
for the soorch

A€ warscr UserExocMethodsimp! Help.

res userezecaethodsimpl mesa 3422

Gsererochrivate PriniDuclF omSource target, e, il
st that it

i
B, vnderTyre Type.
e AsTpu e x xor

Name, czoc cxec] THEN Ifel - Wil

P e T Typelen valur). g nd 1t

undsType Under Typels

TypeClass[underType!

Figure 16: The Source command finds the location in the source file

The underlined location in the viewer on the left in Figure 16 is the
point in the procedure UserExecMethodsimpl.Help that corresponds
to where the computation is right now, i.e., the statement from which
PrintDeciFromSource was called. Notice that immediately before this
statement is the expression: target « Rope.Substr[base: expr.rope,
start: i + 1, len: Rope.Length[expr.rope] - i - 1]. This expression

%34 This operation involves using the compiler’s statement map to perform the inverse
mapping from that of planting breakpoints, namely given a location in object code, find
the corresponding location in the source. If the source file is not on the user's local
disk, but is part of the released system, i.e., is contained in the version map (see footnote
4), the file will be automatically obtained from a file server.

o _ MS_SURFCAST 000003631
Petitioner Microsoft - Ex. 1068, p. 9

uses the procedure Rope.Substr to compute target as the substring
of expr.rope that is len characters long, and begins at position start.
We already determined (in the previous breakpoint) that the value of
target at this point is the ROPE "Find\n", instead of the ROPE "Find."”
Let’s find out why this is the case by examining the arguments specified
in the call to Rope.Substr. First, we'll find out the value of the
argument named base by evaluating the expression expr.rope. We
can do this by simply pointing at the expression in the source viewer
while holding down the SHIFT key, thereby causing the characters to
be copied into the interpreter Work Area, the same as we did earlier,
even though in this case we are copying characters from one viewer
into another.

&6 « expr.rope
"Rope.Find\n"

That’s what we expected. Similarly, let’s check the value of start, the
starting position for the substring, and the value of len, the length of
the substring.

&7 «i + 1

5

&8 « Rope.Lengthfexpr.rope] —i - 1
5

Here is the problem, an off-by-one bug. If we don’t want the \n to
be included, there should only be four characters in the substring,
instead of five. In other words, the length argument should be the
length of the entire ROPE, minus the start position, minus 1 (so as not
to include the last character), i.e., Rope.Length[expr.rope] - (i + 1)
- 1. Let’s make that change in the source.

1 make the edit using Tioga, and then click the ChangelLog menu
button. This automatically constructs a change log entry (see Figure
17) containing my name, the date, and a list of those items that have
been changed. It also provides a space for me to fill in a comment
describing each change. | fill in the comments field, and then save the
file using the Save menu button.

viewer: ViewerClasses. Viewer;

pattern: TiogaOps.Pattern;

start, end: TiogaOps.Location;

found, inline: soOL;

i ROPE;

stream: I0.STREAM;

TRUSTED {doc « LOOPHOLE[Atom GetPropfatom: fileAtom, prop: $Root]]};
17 doc # NIL THEN NULL

1]
aces Levels Changelog

Clear Reset Get Geumpl P
Find Word Def Position Normalize PrevPlace Reselect
FirstLevelOnly MoreLevels Fewerlevels AllLevels
Bdited on May 24, 1983 10:28 am, by Teiteiman
changed call w GetToken in escapecomplete w use IDProc rather than TokenProc because of Nief
names contyining -, .5, Horning wtied ping Larch-H ESC and got "No maich”
changes w: Escaj
Edited on Septembder I, 1983 12:51 pm, by Teiwiman

-hanges w: Helph 4

Figure 17: Automatic Change Log maintenance

Now let’s go back to the Action Area on the right, and since we are
finished with this problem, let’s just abort the action and control will
return to the Work Area from which the action originated.

Electronic Mail

The next thing I want to do is to fix a bug that was reported to me
in a message. As | mentioned earlier, the mail box shaped icon in the
lower right corner of the screen (see Figure 1) is my Walnut Control
Panel. I'll open it now. As the flag on the mail box icon indicated, the
Walnut Control Panel tells me that I have new mail. I click the
NewMail menu button in the Walnut Control Panel to retrieve these
messages from the mail server. These messages will initially be placed

in my Active message set, represented by the icon that looks like a
stack of envelopes. I'll open my Active messages and we will be able
to see my new mail. T35

ind
Cato +* zave of charers 13 SsmINCIAT

&
Changed cil o GeiToken i A —— TokeaProc teceuse of e
conuning .o Horning wes Pping Luch'H ESC nd fot No mich 218 Reso 17
changes o Ewsre -+ Rope Find"
Edited b Sepiember 1, 1941 12 1 pm. b3 Teveiman 1 of type
N7od bug wherewn * was nof pssing the RERT SIDE © PRtDeCIFTOmSOUICE Breas @1 1n UserExecMiscimpl Prio e Fromsoce.
champes o Help compuiauan suipendod. Siehing o Acuce Ares &

o

o NewMul* Prin® Prin ng Tevt New Tiop Compre B o 2o Oloar
15 Sep 83 yocoti pa Re: use of st ané List

DEC/Zuhernen Inuerface.
Mussing brary book:
* leSep dy smnsonbe Two bup
T 19Seps3 MBrownpa Ne Wilhelm semioar chanted 1 1030 omosrow
- Farewell Party for Sam and Jack Saugent

1a Clara Ballet ot Flins Ceneer

Rope Fradvn
a7

A8 - RopeLengi(exprrcpe) -3 - }

Al breass cleacea

Fiyy NnJ ilhein senine changsd © 1920 oaotrow o

To) Mot

Reply-io MBrsen pa “Acuve Delowd AN
DawAnaTine asalerexampies Duscussion Documenwauon Forum

HowTo Humor LmpiedSugs IninePoli 1o Misc MyBugs

TypesSupgesuons Ams BecxBurner Codarpapd

OhersBug:
RemnderEramples RiverRan Spoli TiogaSupgesuons TSmur

im seminar changed 1o 1038 tomartow
UserExecChanges UserExecPoll UserRequests VideoTape

e he
T Cnm;uvzrkemh putngSazInat T, CompuunfSeminarRemote s
=

Fesuart pmshes
Cavernet s rcoed 1 aeseres
Eimienasims; founevea's messate

L PN

Figure 18: The Walnut Mail System; Entering a message into my
reminder system

To,erong confuct wi e 10L eb sesune. ihe ue of o e helny seenar hus b
1 20 Sepuamber (sull in CSL Commens) s & repeat of the uue
g

The messages marked with ? (see Figure 18) are the ones that [haven’t
read yet. Messages regarding events I want to be sure not to forget,
such as a talk or meeting, 1 can enter into my personal
calendar/reminder system by simply clicking the Remind menu button
on the corresponding message as shown in Figure 18. The Reminder
system obtains the time and date for the corresponding event from
the message itself, 736 and when the corresponding time rolls around,
a blinking icon will be automatically displayed on my screen (as shown
in Figure 19). If I open this reminder icon, the viewer will contain
this message. 37

Messages that 1 want to save so that I can refer to them later I
frequently sort into various categories which I have created called
message sets. | have about thirty of these categories and can add more
whenever | need them. My current message sets are shown in the
Walnut Control Panel (at the lower right in Figure 18): BackBurner,
CedarPaper, Discussion, Documentation, etc.

+35 We rely heavily on our electronic mail systems at PARC. We use them for mail
as well as for the type of announcement that might in other environments be posted
on a bulletin board. In addition to messages from one user to another, announcements
of impending meetings, for sale notices, and the like are all sent as messages directed
at expansive distribution lists. You can see examples of such messages in my Active
Message Set in Figure 18 (middle viewer, left hand column).

There are a number of such electronic mail systems in use at PARC (because there are
several different programming environments). However, all of these access a common
mail distribution service [1]. Walnut, the mail system for Cedar. provides facilities to
send and retrieve mail and to display and classify stored (previously retrieved) messages.
Walnut uses the Cypress database system [3] to maintain information about stored
messages.

136 You can see the feedback from the reminder system in the message window at
the top of the screen: "Reminder will be posted at Tuesday. September 20. 1983 10:30
am for 60 minutes.” This time was computed from the string "10:30 tomorrow” in the
subject field of the message. using the date field of the message to determine the
reference point for "tomorrow,"” i.e., pretend today is 19 Sep 83 when figuring out what
tomorrow is, even though I am actually reading the message on September 20 (the day
after it was sent).

+37 Here is an excellent example of what we mean when we say Cedar is integrated:
the various facilities can use each other in important ways since they all coexist in the
same address space. (Here the reminder system uses both Walnut and Tioga.)
Furthermore, there need not be any explicit context switch and corresponding loss of
state when switching between tasks or programming tools, for example. in switching
from debugging. to editing, to reading mail. Integration is one of the reasons why a
large virtual address space (> 24 bits) was one of the highest priority items in our
original Catalogue of Programming Environment Capabilities [4].

190

o . MS_SURFCAST 000003632
Petitioner Microsoft - Ex. 1068, p. 10

If 1 point at one of the message set buttons in the Walnut control
panel and click the mouse, Walnut creates a viewer on the
corresponding message set. This viewer shows the date, sender, and
subject of each message in the set. For example, I typically save
messages about bugs in my software in the message set called MyBugs.
The message regarding the bug I want to fix is in this message set,
which I'll now open.

The message that 1 am interested in is 11-Feb-83 Willie-Sue.pa
bug?2.t3 T'll click it. and Walnut will obtain the message contents
from the data base and put it in a new viewer as shown in Figure 19
(top viewer, left hand column).

A Bug Report

The message states that when an event consisting of just a comment
is typed to the executive, an error occurs. Let's try it and see. Instead
of typing the comment in the message into Work Area A, I can simply
copy it by selecting the corres 1‘pondmg characters in the message while
holding down the SHIFT key.

&10 -- try it now

ERROR 10impl.EndOfStream from
Inputimpl.GetCedarScannerToken1

computation suspended, switching to Action Area E...

(and down below a new Work Area pops up in which appears:)

Action #1 (kind: signal, process: 204B) (from Work Area A)
ERROR I0Impl.EndOfStream[stream: {15501066B - Input From
Rope Stream}] from Inputimpl.GetCedarScannerToken1

reezs_Categonies AnawerForw: e ot Sphi Pecrs Levels Romin: in

Doe Ti-Feb-33 170227 F5T o
O 10Lm.
Inpaiimpr Concatar i,
o it s tea: Smvang o Acaon Azos E

17506 whun 1 vpecied would be 8 comaent e e o -ty ow

s e RO L, Ema et mite]

10 commands
cror cneroed vy I8 tource commanter

e — Acuvo Deloied AMTypessupEssuons Awms BatBurner Cedarpipd
DueAndTims douerviansies Drcosnon Cocumenauon Form
HowTo Humor LmpieoSurs Inhneboll © Lit

ReminderEzampies KiverRal Speii TiogaSuggesuons TShurts
woutie Wb Newsvus UserfreeChanges Usaifxecholl UsetRequests VideoTape
Viewerssugzesuons.

Bent Chec

plit New Sup compile Fu: loar
paRng last-#é1ed en very “Source Waiksuex Showt ame
e upsunt Tescadien &

neunen
Somine, Thuas ke 109D a7m (Auionm) Bades Siogh (U of | ASSTR 43,0108 Sgnd, procese) from sk Asva n)
0 R upmsung i edned ey S ot e o e ok
13 AUE B CommeiPA T Re caservce reeny ANTIrecommendauon Yy
Incaiescom numer .
T o comr s Enends

R Tha Mamry Sysm of o Futb-Performance Peronal Conpuer
Planzing for e demue of Max

Figure 19: A user reports a bug via an electronic message; Checking
out the problem causes an error which results in the creation of a
new Action Area

Well, it’s just like the message said. We
and are now in a new Action Area.T40
see what’s happening.

&1 WalkStack
&2 WalkStack
&3 WalkStack
&4 WalkStack
&5 WalkStack
&6 WalkStack

The first five levels of procedure nesting correspond to internal calls
within the {0 package. However, the procedure
UserExecimpl.isWellFormed looks more promising. Let’s look at its
source.

%ot an EndOfStream error,
Let’s walk the stack and

Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
Inputimpl.fromTokenProc
Inputimpl.GetCedarScannerToken
Inputimpl.GetCedarToken
UserExecimpl.IsWellFormed

191

23932
Rgzpe.Equal["é-

&7 Source userexecimpl.mesa
IF Rope.IsEmpty[rope] OR NOT
10.GetCedarToken[stream]] THEN GOTO Yes;

The underlined location marks the place in the source that corresponds
to where the computation is now. It looks like the program is using
the procedure 10.GetCedarToken to read a token from stream. Let's
examine the variable stream using the interpreter.

&8 « stream
{157254228B -

Note that streams have PrintProcs which print out the kind of stream,
suppressing the stream’s actual representmionff"3 In this case, we do
want to look inside of the stream at its data, which we can do using
the interpreter. First, I'll find out the stream’s type.

&9 « &?

is of type STREAM: TYPE = REF I0.STREAMRecord;
I0.STREAMRecord: TYPE = RECORD[streamProcs: REF
10.StreamProcs, streamData: REF ANY, propList: Atom.PropList
« NIL, backingStream: STREAM « NiL]

This says that a stream is a REF to a record consisting of four fields:
streamProcs, streamData, proplist, and backingStream, each of
which have the indicated type. Let’s look at the streamData field,
which contains the data for this particular stream.

&10 « &.streamData
t[rope: "-- try it now", pos: 13]

Input From Rope Stream}

Even though the type of this field is REF ANY (so that different Kinds
of streams can store different types of data in the same field), the
interpreter is able to figure out the type of the referent using the
run-time type system. It tells me that the data for this stream is a REF
to a record consisting of two fields named rope and pos, whose values
are "-- try it now" (notice that this ROPE has 13 characters), and 13.
In other words, the current position, pos, does indeed correspond to
the end of the stream. What happened to the previous 13 characters?
In puzzlement, 1 decide to look at the definition for
10.GetCedarToken. I select the characters 10.GetCedarToken in the
source viewer, and then click the Open menu button to create a new
viewer on the 10 interface positioned at the definition of
GetCedarToken, as shown in Figure 20.

138 The video tape that this demonstration was taken from was originally produced
in February 1983. whereas this paper was written in September, 1983. Obviously this
and other bugs that 1 will fix during the course of this demonstration were actually
taken care of many months ago. However, for the purposes of this paper, | have restored
Cedar to the state that it was in February, at least with respect to these changes. and
am reenacting the scenario.

139 Note that in this case | am copying characters from a Walnut message viewer into
an Executive Work Area, still using the same method as we used previously. Consistency
of user interface!

140 Uncaught errors and signals are handled the same as breakpoints: they constitute
actions and are given their own Action Area.

$41 Notice that, since it is now 10:30AM, the reminder concerning that talk [wanted
to attend (entered in Figure 18) has popped up at the bottom of my display. fourth
icon from the left. The icon is blinking to call itself to my attention, If I were to open
this icon, I would find the original message.

142 The Cedar Language provides for an extremely restricted form of GOTO statements,
namely to a series of labelled statements called an ExitsClause that appear at the end
of a block. Think of GOTO as the Cedar way of spelling EXIT.

143 A stream in Cedar is simply a producer and/or consumer of byte sequences. The
stream abstraction can be implemented in a variety of ways; for instance, the producer
behind an input stream might be a file or a user typing at a keyboard. We call each
stream implementation (file. keyboard. and so on) a stream class. One of the most
important aspects of streams are that a typical client program can manipulate a stream
without regard to the class that implements it, so varying stream implementations can
be substituted without effect on the program (2]. Furthermore, new implementations of
streams can be supplied by the user. Examples of such user defined streams are:
decrypted input and encrypted output streams layered on top of other streams, an
output stream that automatically indents to indicate structure, a stream which reads
Intel format absolute binary object files, and a stream that emulates Unix pipes.

. . MS_SURFCAST_000003633
Petitioner Microsoft - Ex. 1068, p. 11

et Get Geump) Prevrile we Time Spuit
Find Word Def Posiuon Normalize PrevPlace Reselect
FirsievelOnly MoreLevels muruvels AlLevels

© disangush ~ foo? from
IsWellFormed 7100 frope: ore] -uu--s[-oouu] {

wem o m(mpe) ince sumams sty acquired, we might consider swving 3
tream an

P d wnng 1t
4 Rowuimw[mwl % ot Rope Equal(“«", MMM stream)] THEX GOTO Yer;
lO!xuuGe\fAﬂmnnerTaken[swm L !

10SynuaxError +> GoTo Nai
10ERGOfSTeam »» GOTO Yes

ind Sphit New Siop Compie
Proceed _Abow Source WalkSuck

Acuon @4 (Kind: signal, process:
ERROR 10lmpl EndOfS

L IoLoon:

Stzeam}] trom Inpuilmpl GeiCed:
et o arroanirave): 1 wansiocx ed.
No «> azrusm[ratsz], &2 waxsiscx ed
&3 wassmex T
ioar mpl Prevei ve Time Spit et
e waxsta oilmp)
Fina Word Def Poton Normalize PrevPise Reseiect] .,::;:_,: s |

FirslevelOniy MoreLevels FewerLevels AllLevels
Qefiniton 15 {AETORN[TALIZ, TAUL)) 16 i Gotequence(Every Thing] teturns &e
contents of

2 Bope lsEmpty (rope] o8 wot Rol
ioGecedsrToken(surean]] 7

Parsing the fapat stream as a sequence of Codar Tekeas: GeiCedarToken (mmzw Input From Rope St

GRICEIAITaNAR, Phoc (rcsan sTazaw] wrTvRNs(xovel: s of \ype STREAM TYPE « REE
uses O ey io scan the input susam Tor e next mess ioken, which 13 feturned 35 | 10 STREAMRecora: TYPE » RECO)
3 rope. e for the susam IO.RIS((410, 3.3, J. Soccossive caits on ar Token ocs, sireamData: REF A
ovld return the mine wkens - 3 and 7+ Goncedar Token NIL, backingStream: STREAM - N

B
automaucally niters out all comments Fof Convenience in use with the inwerpreeet, & 1
wssisd 3 & regular characier, Ser dhan CIUSIg 3 YRS ervor, Le 421" wll pirse 3
2 single

Getatom, GetBoo), GetCaro, Getint, Gothisl, and GotFope descrived below povide ways of

parsing Ne inpat stream into cbjects of ing 1ype. 1 the client kows what ype of

sbjectis nexi expecied, he can use the gt roatine o tnat

Figure 20: The IO interface serves as online documentauon

Aha! The comment in the IO interface says: "GetCedarToken
automatically filters out all comments.” The problem is that when
my program asks for the next token from the stream, there isn’t one,
because comments are filtered out when reading tokens. So the error
EndOfStream is raised.f*4 What I should be doing in this program is
catching the signal EndOfStream in the call to 10.GetCedarToken,
and simply returning TRUE. Let's make that change.

Now let’s return to our Action Area on the right, and since we are
finished with this problem, we can abort the action, and return to the
Work Area above.

Compiling, Support for Parallel Operations

Now I want to compile the files that I have edited. The system keeps
a list of those files that need to be compiled, i.e., those that were
edited but not yet successfully compiled. It also provides visual
reminders in the form of a black border around the corresponding
icons, as shown in Figure 21. I can instruct the system to compile all
of the files that need compilation via the command compileall. 43

&10 compileall
>Compile UserExecMethodsimpl.mesa UserExecimpl.mesa

While that is going on, I'll answer Willie-Sue’s message. [click the
Answer menu button in the viewer containing her message, and
Walnut creates a reply form containing the appropriate Subject, To,
and cc fields. In Figure 21, I am in the process of composing my
answer in the viewer on the lower left, while the compiler continues
to run in the Work Area at the upper right, 46

I finish composing the message, and click Send, and the message is
sent on its way. In Figure 22, the Walnut Control Panel tells me that
the message has been delivered. The next time that Willie-Sue clicks
her NewMail menu button, she will see the message.

144 The Cedar language uses signals and errors as a mechanism for handling exceptional
conditions. Think of a signal/error as a procedure call where the body of the procedure
is determined dynamically using the call stack.

$45 CompileAll simply keeps track of those files that have been edited. It does not
deduce that because Interface A has been recompiled. Modules B, C, and D also need
to be recompiled. This latter behavior is much more ambitious and falls under the
category of what we call System Modelling. A preliminary version of a system modeller
has been built and tested, and a more comprehensive version has been partially
implemented.

146 As mentioned earlier. Cedar supports and encourages concurrent operations, and
users make heavy use of this parallelism. Here 1 am sending a message while compiling
a file. In this particular case. only one task requires my attention: the other is running
in background {my background. not the computer's). However. it is not uncommon for
users to be performing several foreground tasks simultaneously, such as editing several
source files at the same time. or debugging a program by stepping it from breakpoint
to breakpoint. while simultaneously reading mail. etc. The important point is that the
user’s interactions with the system can match the style with which he is most comfortable.

roeze Cxiegories _answer ¥orw: i gvi Tpbn Paces Levels Remin N
Froe Wile-Sue po Sxron Toimms

EndOfSrosm rrem
Submcs bup Inputimpt. GoCobarScantur Tobon t
To Tensizan CompuLen Sispended. wiling (@ Acon ATes ..
& wie-sue pa
§trpeé what | expecies wouis be » conmens i ine ezec_e g -y monie Ussrbxec MethoaulmpLness Usertzeimpl mess
et el o o ares enmime g ERROR Gl Endoema{morble) Compaling UserErecMetnodsimpl

Ty pee gt Awa: B Ruar Cotuae

D dealeresampies Discussion Documentatior

Rowe Humor pStagt InbmePul 12 Lab M MyBors
ShersBus

Riverkant Spell TSmies

m;- e by’
TRy o' Your message of 51-Pen-t1 158227 ST
A Filiesoe

Thanks for your bug report I fixed e prodiem

R TPUr New Top omple: Fual Redo et Cloar

TP STREA TYPE | KEF [OSREAMRScors.
xc STREAMRwcord: TYPE - RECORE fsweanprocs RE
Fenpres, isaaDae KEF ANY. brosis ‘wom propLss -

S rantns
Sy now”, pas: 1]

ort
"Action #4, retzming w Work Area A

Figure 21 Cedar supports concurrency; answering mal] while
‘compiling

Meanwhile the compiler has successfully compiled the first file (notice
in Figure 22 that the black border around the fifth icon from the left
is now gone), but ran into a problem in compiling the second file.
The UserExec has created a viewer on the left which displays the
compiler log containing the error message.“47

TiPete) 176227 BT EEROR FOtmpT
ew wibe:Zuere taputimps. GorCodartx.
Submce bug inion sunpondnd, Yev g 5 Acuon A E..
7o ettt sbormd
o ihe-sue ps 318 compuent
e UserEsccMothodsimpl mess Us7Eas 3l mesa
Ttyped what | expected would be & sttt

R R i vy A S - e A)

Compiing UserExecimpl 1 errors
‘of comprlaan,

Teiewd AMTy
DaeAndTime dsalaresanples Diussion Documentation Forum
MowTo Humor impiedSugs InkinePoll 1o Luts Misc MyBugs
sBuzs
eminderExamples Riverkart Spell TiogaSupgesuons 1Shirs
jserExecChanges Usetkxecsoll UserRequess VideoTape

perSugenon Awms BaXBurmer Cedarard

fime Tphn Places Lovels Changelo
Sediy V4 Sampier of 13-Apr- ST

otep 43
Fomaune UerEesMewouiapl e N » i".:".,{-‘("ﬁ.“z

SaTE 6 Meth s mpI 3650 - J00Toe \OKERs 3174, Ume. n e v sending o 1 e
code bytes. 2762, links. 41, frase 1ze 98 PasnE h_&.ﬂmx nding 10 1 cocipwny

comaena virtrciap aczs
#r RO v Equa I ———————
STV T pe Equell fing Spil New Swp Compnie T T Slear
-,

Zrvor [23865) ! 75 of_type STREAM TYPE + REF 10 STRE AMRecord.
et T iouns, TEE - PRCoIOutaars 7ok

LRI R e ot P
UsrErsctp mes - stoes. 1 s, ame- 35 e T A Y

T
Tos i wme 32 St L e 1y

Figure 22: Compller error log

The error is a simple syntactic error, a missing . I'll make this fix
and recompile. In the meantime, this reminds me that a user had sent
me a message about a request concerning the UserExec’s behavior
with regard to the compiler log. I keep such messages in my
UserRequests message set. I click the UserRequests button in my
Walnut Control Panel to create a viewer for this message set, and then
look at the corresponding message, which states that the user wants to
be able to specify that compiler logs are always created iconic instead
of always being open as in Figure 22.

147 The compiler log includes for each error a position (character count) in the source
file. The user selects this position. and then clicks the Position menu button in the
corresponding source file. and the source file is automatically positioned at the indicated
location. The user can thus quickly step through the source file from error to error and
make the necessary edits. Even so. the process of getting a file to compile successfuily
is still very tedious. More tools are required. For example. many compiler errors turn
out to be of the nature that their correction could be automated. One could imagine an
extension of DWIM that would handle this task.

192

. . MS_SURFCAST_000003634
Petitioner Microsoft - Ex. 1068, p. 12

The User Profile

Since some users like the way compiler logs currently work, to satisfy
this user’s request, I am going to define a new user profile option so
that each user can specify how they want the compiler log handled.
In the area of user interface, rather than enforcing a consensus upon
everyone, we allow individuals to tailor the system to suit themselves,
enabling facilities that they like and disabling those that they don't.

Let's implement the new profile option. It willl allow me to
demonstrate an important aspect of the Tioga Editor: its abbreviation
expansion facility. I'll create a new viewer, load it with the appropriate
source file, and then scroll to the place where I want to make the
change. What I want to do is to insert a conditional statement that
will check the user’s profile to determine whether or not to create the
viewer for the compiler log iconic.

Templates as an Aid for Editing Programs

To accomplish this, I'll use Tioga’s abbreviation expansion facility to
cause a template for an IF-THEN statement to be inserted. To do this,
I type IF followed by CTRL-E (E with the CTRL key depressed). This
causes Tioga to expand the abbreviation for IF into the template IF
» TEST« THEN » TRUEPART<«. T4 This template contains two fields, TEST
and TRUEPART, each delimited by special brackets called placeholders,
displayed as »«. Tioga allows me to move to the next field delimited
by placeholders with a single keystroke. If I am positioned at one of
these fields, anything [type replaces the field. Right now, [am ready
to specify the predicate for my IF-THEN statement.

The predicate 1 want to use is the procedure UserProfile.Boolean. |
type the name of the procedure, UserProfile.Boolean, and then I
type CTRL-E again, this time to request a template for its arguments.
Note that UserProfile.Boolean is not defined as an abbreviation;
Tioga computes a template consisting of the names, types, and default
values for this procedure using the run-time type system, and inserts
it in the document as shown in Figure 23.

“Places Levels Changelog

Re t Getlmpt Sore e
d Word Def Position Normalize PrevPlace Reselect
FirstLevelOnly MorelLevels FewerlLevels AllLevels
ShowLog: PROC [name: ROPE, OK: BOOLEAN, exec: ExecHandle, blinkit: 800L « TRUE]
RETURNS[log: Viewer] = {
log « ViewerOps.FindViewer(name];
IF NOT 0K THEN

createlconic: BOOLEAN ¢ TRUE;

1r exec # NIL AND NOT exec.viewer.iconic AND (InputFocus.GetInputFocus(Jowner =
exec.viewer) THEN createlconic ¢ rarse;

1r UserProfile.Boolean[key: , default: PBOOLEAN « FALSE{] THEN
»TRUEPARTY(

1r log # NiL THEN ViewerOps.RestoreViewerflog)

eLse Ir UserExec.CheckForFile[name] THEN log « CreateLog{name: name, iconic:
createlconic]; -- log not there in case of no such source

}
ELSE 1P log # NIL THEN (
1r destroyLogOnSuccess THEN {ViewerOps.Destroy Viewer[log]; log + N1L}
zLse ViewerOps RestoreViewer{log];
i
b
CreateLog: PrOC [name: ROPE, iconic: BOOL + TRUE] RETURNS{viewer: Viewer] = {
viewer « ViewerOpsCreateViewer[flavor: $Text, info: [name: name, file: name, iconic:
iconic]}
H

Blinklcon: PUBLIC PROC [icon: Viewer, n: INT ¢« 10] = TRUSTED {
2 Datachl Rainki n!

Figure 23: Computing a template for a procedure call

As the template indicates, UserProfile.Boolean takes two arguments;
the first is named key, and is of type ROPE, the second is named
default, and is of type BOOLEAN. I'll call the key for the new user
profile option that I am going to define Compiler.lconicLogs. If the

$48 The Tioga abbreviation expansion facility helps the user in dealing with the Cedar
syntax. avoiding errors, and formatting programs consistently. There are similar
abbreviations for many of the language constructs in Cedar. e.g.. FOR expands to FOR
»ControlVariable 4 « pInitialExpr4, »NextExpr4 DO »BODY < ENDLOOP. In
addition. the user can add to or change the set of predefined abbreviations.

49 Runtime availablility of all source program information was another important
item on our original catalogue of programming environment capabilities. Underlying
this was our desire to make it easy to extend the set of tools for assisting the programmer.
The computed template facility shown here is a good example of the kind of thing we
had in mind.

193

value of this key is TRUE, i.e., if the user’s profile contains an entry of
the form Compiler.fconicLogs: TRUE, then I'll make the compiler
log viewer iconic. The entire statement that I inserted is:

IF UserProfile.Boolean[key: "Compiler.lconicLogs", default: FALSE]
THEN createlconic ¢ TRUE;

but I only had to type the underlined characters plus two CTRL-E’s.
Using the Interpreter for Experimentation

There was another request in my UserRequests message set concerning
compiler logs, namely that the compiler log use the typescript icon
rather than the document icon, to make it easier to distinguish the
compiler log from other iconic Tioga documents.

Before we make this edit, let's try changing the icon for this viewer
by hand., i.e., by using the interpreter."50 So I'll reopen my interpreter
Work Area, select the compiler log, and use the Eval menu button to
evaluate the current selection.

&19 CurrentSelection

Wiewer - class: Text, name: Compiler.Log}

The value of this event is the viewer for the Compiler Log. I can
manipulate this value. For example, let’s look at its icon field.

&20 « &19.icon
document

As expected. Now let’s change this field to be typescript.

&21 « &19.icon « typescript
typescriptt -> typescript
typescript

Now let’s repaint the icon and see how it looks. I can do this by using
the procedure PaintViewer, which is in the interface ViewerOps.

&22 « ViewerOps.PaintViewer[&19]
***Missing Arguments: hint: ViewerOps.PaintHint

What's a paint hint? I'll evaluate it and find out.t52

&23 « ViewerOps.PaintHint
ViewerOps.PaintHint: TYPE = {all, client, menu, caption}

This says that a PaintHint is an enumerated type consisting of the four
values all, client, menu, and caption. I'll bet I can just pass in all for
the hint argument. Let’s try that.

&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}

Sure enough the icon for the compiler log (the icon in the center of
Figure 24) is now a typescript. I can now implement this feature by
editing the corresponding source.

150 Using the interpreter to try things out before going to the trouble of making
changes to a program is a technique that is relatively new to the Mesa community
(although it has been commonplace in Interlisp for many years). Part of the reason for
this is historical. Earlier Mesa debuggers were non-resident; the debugger operated at
arm’s length from the debuggee in an entirely separate address space. Interpreting
expressions in this remote world was slow and cumbersome. Furthermore, the interpreter
only handled a limited subset of the language. We had higher aspirations for Cedar: to
provide a resident debugger that shared the same address space as the programs being
debugged. as well as a complete expression interpreter. Thus. the Cedar environment
represents the first opportunity that Mesa programmers have had for realistically using
an interpreter to carry out experiments.

51 Obviously I am making some of these typing mistakes just to demonstrate the
pervasiveness of the error correction facilities. but this correction is especially interesting.
because DWIM uses as candidates for the correction only the set of values that an
object of type icon can assume. In order to find what these are. DWIM uses the runtime
type system to compute this information when the error occurs. In this way, DWIM can
work on user defined types as well as those that are defined in the basic system.

152 Note that in this example. we are evaluating an expression whose value is a type.
One of the goals of Cedar was to make types into first-class citizens. It is still not
possible to pass types around as values, and there is no polymorphism in the language.
However. at runtime. it is possible to perform a wide variety of operations on types.

o . MS_SURFCAST 000003635
Petitioner Microsoft - Ex. 1068, p. 13

However, now I find that while I have made it easy to distinguish the
compiler log from the other documents, there are so many typescript
icons that it is hard to find the compiler log among all of them.

ReminderEramples RiverRan Spell TiogaSuggesuons TShiris
UserSzeeChanges UserEsecholl UserRequests VideoTape
Viewerssugees:

Keswur: nmshed.
Aubsobcaung wer

ssage. sending 1 recipients

AT tesrs s “oreas
Broes 3110 VaeeEvachsclng] PrntDacIFromSaurce (suce: 3431
pasern 03

Dan T e T T
msou
. Tiotaspe Crowatimpiepaversurger, - cra

T

pactein or
foswei s
a1 1t

ok w
Brask #7 im Uservobiscimp! rincDeciEronsource.
compuisuon suspe: o Aras -
priaei ety dede, s forn),
7 occurs (starts

Sould ou change ViewsiEecCysinpl SoewResuls o ot ae sumpilr Tops con 1 » typeserpt
Lnsiesd of & Socument~ Here 1 (e hacessary

< luke Index. reiuras ponon 1 1 where
tooking 1 posls

108 = ViewerOps CresteViewer(avor STex. 1nfo (name name, fle: name, icomc. 1CoRLC, 1con
ypescp])

nsteed of

lo = ViewerOps CresteViewer{flaver $Text. info: [name. name. file Rame, 169mic. 1comc]

Brouk 1 in UserBxachisclmpl PrnDeclEromsaurcs,
Sompulaon suigended, SWCHINE 10 ACaon ALES

Set e ve 2
Find Wora el Pomuon Nermalize FrevPlae Resctec
FimiLeveiony ~ MorLcvels "Pewertcots” AlLevels

¥ Forrentetec
s an Sepiemer s g i Tett. name Compiies Log)
serpeonie npnan T Bsing et o¢ tcomie, e creseeog 1o wse wpescrpt icon s
Ererlrse

a2 rOps Pau
St Ohe it TIPE + (A, chens. meng, caguon)
L34 trns bunceven{ieurs 815, Mt 1]
{iops ol ot e}

23

Figure 24: Now there are too many typescript icons

Designing a New Icon

One way of solving the problem of too many typescript icons is to use
a different icon for some of the executives. I'll use a graphics tool
called the IconEditor to design a new icon for Action Areas executives
(the two executives on the right in Figure 24).

&25 run iconeditor

Loaded and started: IconEditor.bcd

In Figure 25, the Icon Editor shows some of the icons that other
people have designed for various applications. The Squirrel icon is for
our data base facility which is named Squirrel. Next to it is the Walnut
mail reader icon you have already seen. Also included in the two rows
of icons are an icon for a calendar, a bus schedule, a TV listing, an
organization chart, etc. The last icon in the second row is the
trafficLight icon I am working on (for executives stopped because of
a signal).

= play D ielcon - Show!

“nirDn DAL Shurkt Mt Sedavel Uniedsbel Repiner
Ve _Derioporey DeniGray Biack nvecelor Crewline WhieLabel BieaLove:
riie Ssmplecons

hanges Userbrecpoll DserRequests. vioeatape
Vewsnprens

Nahenucasn ny usex
oot e et aimsas.. sonding 1 | ecipents
R EN A e

T T lear

Comeisun STeRaed, SRS o Acien Ares
Sooed
21 Currencer
Loer " clos " Text, name Compiler Log)
X

{; chen, mena, capuon)
Viewer 419, R at]

Figure 25: The Icon Editor

The 64 x 64 array of squares that occupies the lower two-thirds of the
Icon Editor’s viewer represents the individual pixels in the icon
currently being edited. I can change individual pixels from black to

194

white or vice versa by clicking with the mouse in the corresponding
square. | can also draw lines, change rectangular areas to different
textures (stiple patterns), shift rectangular areas up, down, left or right.
As | make changes in this array, the smaller version of the icon is
updated so that I can see how the icon is going to look, actual size.
I'll make a few finishing touches to my icon — darkening the red light
and adding rays of light coming from it.

I’'m happy with the icon now, so I'll save it on a file and also associate
the name "trafficLight” with this icon by using the Register menu
button in the IconEditor viewer. This will allow me to refer to the
icon by name without having to remember where it is stored.

Now let’s use the interpreter to change the icon of one of the executives
to be the trafficLight and see how it looks. First, we obtain an exec
handle by selecting the viewer and evaluating the current selection.

&26 « CurrentSelection

t[viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR 10impl.EndOfStream from
Inputimpl.GetCedarScannerToken1}, privateStuff: 7246044B1]

This value is the handle for Work Area E. Now let’s set its icon to be
a trafficLight.

&27 « &26.icon « IconRegistry.Getlcon["trafficLight"]
selection failed on icon

The viewer is one of the fields of the exec handle, and icon is one of
the fields of the viewer. I am one level of indirection of: I should
have said "&26.viewer.icon." Since what I did type is correct in every
other respect, I can fix this by simply replaying this line, pointing at
the "." in "&26.icon,”" and typing "viewer", as | am in the process of
doing in Figure 26.753

TESOm:
Restart finished

Authenticating user0k

... Parsing..... Sending message....

sending t0 1 recipients

.. Message has been delivered

i £ InoErpreter
Find Split New Swp Compxle Eval Redo Set Clear
&23 « ViewerOps.PaintHint
ViewerOps.PaintHint: TYPE = {all, client, menu, caption}
&24 « ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}
425 CurrentSelection
t{viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR I0Impl EndOfStream from
GetC ‘Token 1}, p T 724604437]
&26 « &2Sicon « IcnnRaglsu'y Getlcon["rafficLight" 1
selection failed en icon
&27 « &25vie. xcon . lcnnReg)suy Getlcon(“trafficLight"]

ind Split New Stop Compile Eval Redo Set jear
>Compile UserExecMethodslmpl mesa UserExeclmpl.mesa
Compiling: UserExecMethodsimpl no errors
Compiling: UserExeclmpl 1 errors

End of compilation

_- Errors in —- UserExeclmpl

&11 Redo 10
>compileall
2Compile L

Figure 26: Editing events as they are being entered

mesa

&28 « &26.viewer.icon « |conRegistry.Getlcon["trafficLight"]

Now let’s repaint the icon for action area E and see how it looks. We
already have an expression in event 24 that is pretty close to what we
want, namely ViewerOps.PaintViewer[viewer: &19, hint: all]. We can
use the use command to specify reexecution of this event with a
different value for the viewer argument.

&29 use "&25.viewer" for &19
>« ViewerOps.PaintViewer[viewer: &25.viewer, hint: all}
{does not return a value}

And there’s our traffic light (see Figure 27).

Let’s go ahead and make the edit that will cause the system to use the
trafficLight icon for Action Areas.

153 In previous examples. the only editing of the typescript that we did consisted of
appending characters to its end. This examples illustrates that we really can edit, in the
full generality of the term, events that are being entered for execution.

. . MS_SURFCAST_000003636
Petitioner Microsoft - Ex. 1068, p. 14

ind_ Split New Swp_Compile Eval Redo set Clear
&23 « ViewerOps.PaintHint

ViewerOps PaintHint: TYPE - {all, client, menu, caption}
424 « ViewerOps.PaintViewer[viewer: &19, hint: all]

{does not return a value}

425 CurrentSelection

+[viewer: {Viewer - class: Typescript, name: Action Area E:
aborted ERROR 10Impl EndOfStream from
Inputlmpl.GetCedarScannerToken 1}, privateStufY: 7246084B+)
&26 « &25icon « IconRegistry.Getlcon["wafficLight"]
selection failed on icon

&27 « &25.viewericon « IconRegistry Getcon["wrafficLight"]
27B?

&28 use "&25.viewer” for &19

>« ViewerOps.PaintViewer[viewer: &25.viewer, hint: all}
{does not return a value}

&29 o—A

A agl

Co

Find _Split New Stop
>compileall
>Compile UserExeclmpl.mesa
Compiling: UserExecimpl
End of compilation
& 12 run iconeditor
Loaded and started: IconEditor.bed
al13

no errors

Figure 27: The Action Area icon has been changed to a traffic light
Wrapping it up

Now let’s compile the rest of the files we have changed.

&13 compileall

>Compile ActionAreasimpl.mesa CompilerExecOpsimpl.mesa
Compiling: CompilerExecOpsimpl no errors
Compiling: ActionAreasimpl . . . no errors

End of compilation

The compilation has finished successfully. Now let’s bind the program.

&14 bind userexecutive
Loading Binder.bcd...
Binding: userexecutive
End of binding

no errors

Unfortunately, since the changes we have made were to the UserExec,
a component of the system that is already running, in order to test the
changes out we have to reload the system; we can't simply replace the
UserExec that is running with the new one. Reloading takes about
two minutes. We hope to implement a facility for replacing an
individual module in a running system. This should greatly improve
the turnaround time on making and testing changes.f 4

Conclusion

The demonstration contained in this paper has presented a number
of the key concepts and facilities in Cedar. Some of these are: a highly
visual user interface which exploits the high bandwidth display and
mouse pointing device; a uniform screen paradigm provided by the
Viewers Window package, which includes facilities for icons,
whiteboards, and tools. as well as text viewers; a high quality editor
and document preparation system (Tioga); spelling correction
(DWIM); availability of an interpreter for a compiler based language;
a strongly typed programming language of the Pascal family which
also includes automatic storage management, the ability to manipulate

154 One of the top priorities in our original catalogue of programming environment
capabilities was fast turnaround for minor program changes (< § sec). "Our concern
with fast turnaround comes from the observation that programming should be think
bound. not compute bound. There are several ‘knees’ (points of substantial non-linearity)
in one's perception of response delays. One such knee is in the vicinity of 3 to 5 seconds.
We believe that it is essential to reduce the system time for minor program changes to
below this point” [4]. While the changes that we made in this tour were not minor. sad
to say that even had they been. we would still have been forced to reboot in order to
test them out. Attacking this shortcoming is now one of our highest priority items.

195

types at runtime. and support for Lisp-style lists and atoms: a
sophisticated debugger which includes source-object code mapping to
facilitate planting of breakpoints and examining program state; support
for concurrent operations; and a high degree of integration of facilities
and uniformity of user interface.

Today. in the fall of 1983, Cedar is being used by about 30
researchers. Visitors from other laboratories are envious of Cedar's
emphasis on visual interaction, of its support for concurrent tasks, of
its sophisticated debugging facilities, and of the wide variety of
packages and tools. Cedar makes it possible for a researcher to design
and implement an experimental computer system in a remarkably
short period of time. For example, in the last few months, various
programmers using the Cedar environment have been able to construct
two experimental systems for handling electronic mail, one for
computer storage of voice messages, one for producing raster images,
several for VLSI design. They all reported favorably on how easy it
was to construct real, functioning systems.

References

[1] Andrew D. Birrell, Roy Levin. Roger M. Needham, and Michaei D. Schroeder.
"Grapevine: An Exercise in Distributed Computing," Communications of the
ACM. Volume 25, Number 4, April 1982.

[2] Mark Brown, "The 10 and Convert interfaces." in [5] .

[3] R. G. G. Catell, "Design and Implementation of a Relationship-Entity-Datum Data
Model”, Xerox Palo Alto Research Center Report CSL-83-4. May, 1983.

[4] L. Peter Deutsch and Edward A. Taft, ""Requirements for an Experimental
Programming Environment,"" Xerox Palo Alto Research Center Report
CSL-80-10. June, 1980.

[5}J. H. Homning, editor. ""The Cedar System: An Anthology of Documentation," Xerox
Palo Alto Research Center Report CSL-83-14.

[6] D. H. Ingalls, "The Smalitalk-76 Programming System: Design and Implementation,”
Proceedings of the Sth Annual ACM Symposium on Principles of Programing
Languages. 1978.

[7} Butler W. Lampson and Kenneth A. Pier, "A Processor for a High-Performance
Personal Computer,” Xerox Palo Alto Research Center Report CSL-81-1. January,
1981 (also in Proceedings of Seventh Symposium on Computer Architecture,
SigArch/IEEE, La Baule. May 1980, pp 146-160).

[8] Butler W. Lampson, The Cedar Language Reference Manual, Xerox Palo Alto
Research Center Report CSL 83-15.

[9] John Maxwell, "The Cedar Spy." in [5]

[10] Scott McGregor "The Viewers Window Package.” in {5].

[11] James G. Mitchell, William Maybury, and Richard Sweet. "Mesa Language
Manual.” Version 5.0. Xerox Palo Alto Research Center Report CSL-79-3.

[12] Beau Sheil, "Environments for Exploratory Programming,” Datamation, February,
1983.

[13] Warren Teitelman and Larry Masinter. "The Interlisp Programming Experience,”
Computer. April. 198

[14] Warren Teitelman, "The Cedar Programming Environment: A Midterm Report."
Xerox Palo Alto Research Center Report CSL-83-11 December, 1983.

[15] Warren Teitelman, The Interlisp Reference Manual, revised 1978, Xerox Palo Alto
Reserach Center.

[16] C. P. Thacker. E. M. McCreight, B. W. Lampson. R. F. Sproull, D. R. Boggs,
"Alto: A Personal Computer,” Xerox Palo Alto Research Center Report
CSL-79-11. August, 1979 (also in Computer Structures: Readings and Examples,
second edition, by Siewiorek, Bell and Newell).

o . MS_SURFCAST 000003637
Petitioner Microsoft - Ex. 1068, p. 15

