
A Tour Through Cedar

Warren Teitelman

Xerox Palo Alto Research Center

3333 Coyote Hill Road

Palo Alto, CA 94304

Introduction

This paper tl introduces the reader to many of the salient features of
the Cedar Programming Environment, a state-of-the-art programming
system that combines in a single integrated environment: high quality
graphics, a sophisticated editor and document preparation facility, and
a variety of tools for the programmer to use in the construction and
debugging of his programs. The Cedar Programming Language [8) is
a strongly-typed, compiler-oriented language of the Pascal family. What
is especially interesting about the Cedar project is that it is one of the
few examples where an interactive, experimental programming
environment has been built for this kind of language. In the past, such
environments have been confined to dynamically typed languages like
Lisp and Smalltalk.

The paper attempts to give the reader the feel of the Cedar system by
simulating a live demonstration. The demonstration is actually taken
from a video tape of such a live demo; the sequence of events, as well
as the dialogue, is fairly close to what a viewer of this tape would see
and hear. Numerous snapshots of the display taken at various points
during the session simulate the visual information contained in the
tape. Text that would actually appear on the display during the
demonstration - either because the user typed it or the system printed
it - will appear in this paper in a distinguished font. The explanations
that the demonstrator would give will be in the normal font. Comments
that would be distracting during a live demonstration but are
appropriate for the paper are included as footnotes. t2

Background

In 1977. the computing community at Xerox Palo Alto Research Center
(PARC) consisted of three distinct cultures: Interlisp [15). Smalltalk
[6), and Mesa [ll). Both the Smalltalk and Mesa communities
programmed primarily on the Alto. a small personal computer that
had been developed at PARC [16). The Interiisp programmers operated
on a time-shared. main-frame computer. Each of these communities
was beginning to run into the limits imposed by the size of memory.
both real and virtual, and by the computational power that the
corresponding machine provided.

We decided to solve these problems by designing and building a much
more powerful personal computer, the Dorado [7). The arrival of the
Dorado in 1978 resolved our immediate hardware problems of

t1 This paper is a condensed version of a paper contained in [14]: because of space
limitations. many of the ligures have been removed and comments have been abbreviated
or eliminated. [14] also contains a seoond paper entitled "The Roots of Cedar." which
describes the conditions in 1978 that led us to embark on the Cedar project, and helped
us to deline its objectives and goals. as well as a third paper entitled "Cedar: The
Report Card." which evaluates the successes and failures of Cedar.

t2 These footnotes contain a lot of information about Cedar: why we did things certain
ways. how useful a particular feature turned out to be. et<;. For some readers of this
paper. the footnotes will contain the most interesting material. However. the reader who
is unfamiliar with Cedar and simply wants to get an overview might find the footnotes
distracting to the flow of the demonstration. Therefore. a good way for him to read this
paper might be to ignore the footnotes on the first reading (especially the long ones).
and then come back to them later.

0270-5257/84/0000/0181$Ol.OO©1984 IEEE
181

execution speed. memory size. and address space. Our ability to
experiment with computer systems. critical to our research, was now
limited only by our programming capabilities of which the principal
component was the programming environment.

Thus. in 1978 we embarked on a project to design and implement
Cedar, an advanced programming environment that would take
advantage of the capabilities provided by the Dorado. A group of us
met for several months and produced a catalogue of programming
environment capabilities for such an enviroQment [4). At this point,
we were not committed to either of the three principal programming
languages in use at PARC, but after lengthy deliberations we decided
to base Cedar on Mesa [14). However, our goal was that Cedar would
support each of the Lisp, Mesa, and Smalltalk programming styles.

For various reasons as the Cedar project evolved, some of our goals
changed. or at least were reprioritized; a fair characterization of the
Cedar project as it is currently constituted is that it is an attempt to
take the Mesa language and build for it a programming environment
based on ideas and techniques from Interlisp and Smalltalk.

Now let's begin our tour.

The Display

You are looking at (see Figure 1) a bitmap display connected to my
personal computer, a Dorado. t3 The figures you see at the bottom of
the screen in Figure 1 are called icons. They represent objects that are
of potential interest, but not currently in active use. Some of them
represent text documents, scanned images, or other data structures that

Figure 1: Initial cedar screen layout showing various icons

t3 All Dorados have as a display a high resolution television monitor. 1024 pixels wide
by 808 high. The physical dimensions of the display are 12" x 9". Figures in this paper
that show the entire display are about 112 scale (but full resolution).

MS _ SURFCAST _000003623
Petitioner Microsoft - Ex. 1068, p. 1

I can look at and manipulate. Others represent tools or services that I
can use. Their shapes are meant to be suggestive of their functions.
For example, the icon on the lower right in Figure 1 that looks like a
mail box represents my mail reader, called Walnut The fact that the
flag on the mail box is up indicates that I have new mail. The icon
next to the mailbox that looks like a stack of envelopes represents my
active message set We will use both of these later in the demonstration.
The icon next to my messages is used for sending hardcopy to the
printer down the hall whose name is Clover, and the icon in the left
hand comer of the display that looks like a file cabinet views the
FileTool, a facility for obtaining files from remote servers. t4

Viewers Window Package

The Viewers Window Package provides the basic display paradigm for
Cedar [10). It allows users and programs to create, destroy, move, and
resize individual rectangular viewing areas called viewers. (To a first
approximation, a viewer corresponds to what is called a window in
many other systems.) Some viewers present textual or graphical data
to the user; others provide the user with various forms of control, such
as access to facilities or the ability to invoke procedures. Viewers that

. provide access to a facility are called tools, and viewers that simply
invoke a procedure are called buttons. t5 The FileTool and the Walnut
Mail Reader shown at the bottom of Figure 1 are examples of tools,
and the nine small boxes labelled Idle, Clean, New, et ai, at the upper
right in Figure 1 are examples of buttons.

The icons at the bottom of Figure 1 are also viewers - viewers in their
iconic form. Opening an iconic viewer tells the Viewers Package to
allocate screen real estate to the viewer in the center portion of the
display (see Figure 2), thereby allowing the viewer to present its
contents in a more comprehensive fashion. Conversely, closing a viewer
releases the space that the viewer currently occupies, and causes it to
be displayed in iconic form at the bottom of the screen.

The user can open an icon by pointing at it using a device called a
mouse [16). Pointing is accomplished by sliding the mouse along a
horizontal surface to position a mouse-controlled cursor on the display.
(I n Figure 1, the cursor is displayed near the center of the screen as
an arrow.) When the desired location is reached, the user depresses
and releases one of the three buttons located on top of the mouse. We
use the verb click to describe this act of positioning the cursor and
pressing and releasing a button. Let's open the icon for the Clock and
the FileTool. This produces the configuration shown in Figure 2 in
which both the Clock and the FileTool viewers now occupy large,
rectangular areas whose height is nearly the height of the entire display.

Slop' V!'ToI '·M""·,, ,.,lIIPDT

Du'''''''''Y
fll<NOlIIe,.) Upc!ateo'

UJId"""
e.porvOnJy
v .. nry

D~Go~ ______
DfCl.t8o\h· __

•

•

• •

•
• • •

Figure 2: The same display after opening the FileTool and Clock
viewers

182

Most top-level viewers (viewers that are themselves not contained as
part of another viewer) include a collection of buttons for invoking
various operations associated with that viewer. For example, the
FileTool viewer includes buttons for retrieving, storing, and listing
files. The user clicks a button to make the corresponding operation
happen. Often, these buttons are arranged in a horizontal array called
a menu that is displayed just below the viewer's caption, the black area
at the top of each opened viewer that contains the viewer's name. For
example, the Clock has a menu that includes the buttons SwapColor
and ChangeOffset (see Figure 2). More elaborate menus are associated
with text viewers, as shown in Figure 6.

In addition to buttons specific to particular classes of viewers. buttons
for various operations that apply to all viewers regardless of their class,
such as Destroy, Close, and Switch columns, are contained in a menu
that is hidden under the caption. This caption menu is only displayed
when the mouse is actually in the caption area (it can be seen in
Figure 10). Other buttons for invoking system-wide activities, such as
creating a new viewer, performing a checkpoint, and booting, are not
contained in a particular viewer but instead are included in the message
area at the top of the screen (see Figure 2). For example, the button
PS (PrintScreen) is used to produce hard copy images of portions of
the screen and was used to generate the figures in this paper. The
remainder of the message area is used for displaying various comments
about the system's status and behavior. The bottom portion of the
screen is used for displaying icons.

The large, middle part of the screen that in Figure 2 is now occupied
by the FileTool and Clock viewers is divided into two columns. t6
When more than one viewer is created or opened in the same column,
the viewers automatically share the space available. t7 Conversely, when
a viewer is closed or destroyed, the screen space that it occupied is
then shared among the remaining viewers in its column. If a viewer is
grown, i.e., given the full column to itself, then any other viewers in

t4 In a traditional time'sharing environment. users share files straightforwardly since
all files reside in the same place. In our distributed environment. files that are created
by a user on his personal machine can only be shared if they are stored on another
machine called afile-server. a computer with a large disk dedicated to the task of storing
and retrieving files. to which all of the personal machines have network access. For files
that are part of the standard system. such as sources, documentation, and fonts. the user
need not be aware of where the files are stored. or whether they have already been
retrieved onto his local disk - the system takes care of this automatically for him using
a version map that is built when the system is released. However, the user must explicitly
store. retrieve, and keep track of files that are not part of the standard system (but there
are packages to aid him in this task).

t5 The principal difTerence between a tool and a button is in the number of operations
and degrees of freedom they provide to the user. Tools typically allow the user to
specify a number of parameters (and retain these parameters between invokations),
whereas a button may take an argument, but essentially performs the same operation
each time.

t6 Both the width and height of these columns can be easily adjusted by the user
using the mouse.

t7 This strategy of placing viewers adjacent to one another with no overlapping and
no blank space is called tiling the screen. It is one of the most widely discussed aspects
of the Cedar user interface, and often leads to heated, religious debates between its
adherents and advocates of overlapping windows such as those employed in Interlisp
and Smalltalk. However, regardless of how they resolve them, each of these screen
management systems deal with the following issues: (a) provide for some form of default
window placement so that the user does not have to be involved in specifying the
position and size of windows if he does not wish to; (b) allow the user flexibility with
regard to screen layout (in particular. some way of overriding default window placement);
(c) strive to make maximal use of the screen real estate; (d) give the user a predictable
and intuitive model about what will happen to the display when he performs a given
operation. With regard to this framework, the two screen management algorithms have
difTerent advantages and disadvantages. For example, overlapping windows give the
user a lot of flexibility with regard to screen layout, but can lead to wasted, i.e .. unused.
screen space. On the other hand, no window need be larger than the information it
contains. Overlapping windows also have the advantage that the working set of active
windows can be quite large. since only a small portion of a window has to be visible
for the user to have access to the window. (This efTect of using the corners as handles
for those windows that the user might want to access is provided for in Cedar through
icons.) However, users wind up spending a fair amount of time ensuring that the ileslfed
corners are always visible, and even so, overlapping windows seem to have an uncanny
knack for getting lost

MS _ SURFCAST _000003624
Petitioner Microsoft - Ex. 1068, p. 2

that column are automatically closed. To show you how this works.
I'll open the remaining icon on the left side of Figure 2. the one
labelled "Cedar" that looks like a chalkboard with erasers on its ledge.
This produces the arrangement shown in Figure 3.

s.,p' VPlo! '-Mq·J1 16 1211 P(>T

Din><IO'y

~I"N"'~"I

Pft,l.

DFG •• < __

DfO.t8ot!>' __

• • •

"""'-"'-'~'-'''~'' ~~'~--'
~ 4.4 Documentation

Figure 3: The FileTool and Documentation Browser share the left
column

Whiteboards

The viewer that I just opened is an example of a class of viewers
called whiteboards. A whiteboard is simply a viewer consisting of a
two-dimensional area in which viewers and text can be inserted.
removed. or repositioned. i.e .. white board viewers provide a spatial
way of organizing data. The whiteboard at the bottom of the left
column in Figure 3 serves as a documentation browser for Cedar.
Notice that not all of the information on the whiteboard is visible in
the viewer; the bottom of the viewer clips off additional information.
This particular class of viewers. whiteboards, elects to simply clip
information that is not visible, rather than scaling the display to fit
the amount of screen space available. as the Clock does in Figure 4.

In order to see more of this whiteboard viewer, let's move the FileTool
from the left-hand column to the right-hand column using the
appropriate button in the menu that is hidden under the FileTool's
caption. This produces the screen layout shown in Figure 4.

edar 4.4 Documentation Browser

1'Iu.4.0'.". .. I'" ... _ypN",.. """'''''''''.~ocwn.ft ... "Oft'''''C f lIeo
"-.J M ' '"'" ... ",,,, """." .. ~"'"' 10 "_o. W,,,,-. '" ... ", , .. , •• ,
"""'''"',.,.,..,."''"_.''''''."~ID'''''I.,h.,y.,..wlll!< , Tobl"" ... ",."","".,""
.. rnoHcl!ck' •• ,<nII •• O"ope1!'I d'opl».ftl' •• Uieor ... "..-nlor rinr' •• ,00I

~:;;:!::MO:."~~,= .. ~:!'i'::J:!'i'":"'.£.,"P":'"""';A";..g"::!~:7:~,~~{ ... :~y ..
::=::c!';'~'::i"d~:".! :;:~",":.::.":'.::...~=::,'~,~"!'b!i.~.I • .;.::,:C~,O~'::I:

W/fIT~~.AI/c)fNSTIf'h.:7To:JNS
, ", ••• >kHCo ,

,1"""""'·"""1
CT~' H" .) del ... _.DUlY

'~I" "'00" .J opm run .. _
"'G~' .) pow ,n, boo

• •
•

L·
• •

•

Figure 4: The Cedar Documentation Browser

183

Online Documentation

The Cedar Documentation Browser shown in Figure 4 uses a
white board viewer to display a data base for the online documentation
for Cedar [3]. About halfway down this white board is a row of icons
for seven other whiteboards: Basics, Language, Components, Tools,
Interfaces, ToolBox, and Games. We can find out more about any of
these aspects of Cedar by browsing the corresponding whiteboard. To
do this, we follow the instructions displayed in the lower right hand
comer of the white board: we move the mouse into the corresponding
icon and click the middle button. This will cause a new viewer for the
corresponding whiteboard to be created and displayed. t8 For example,
let's open the Components white board, which includes whiteboards
for various important components of Cedar such as the Viewers
package, the Tioga editor, and the User Executive. The Components
whiteboard in tum contains an icon for the Viewers Package
whiteboard. If we middle-click this latter icon, we get the configuration
shown in Figure 5.

Cedar 4.4 Documentation Browser

1'.ddll!O"""'Y.,·· ... ,..·,.."C •• m.t""'I>IO'h.'oompoll •• "OICe<I&" .. '
n.~100010.''''.'''< 'nlh.C O''''')C'''d'".Ced&t'".ISL .. 001_' OO"OIC" ",,, ,,,,,0'"

The Viewers Component of Cedar

n.v .. "."wl~4<I .. p..,..,."'" •• "''' .. 0l'!« ... ''"''''' ... ~O''''I.y
."d,..,..,IIIlo.C p"" """I ••• "O , l'ptO""' ... 'UU1UlO~'O'".
ptOff"' .. IIOfollt."O.,.. ... pn ~I.OpI" ... o_ •• ~h"""""'...",..' "O .. oo
• .."I""''' ''"'''',!!O'"'''I,O.""o""." •• """''y"" ... o,,,,,hm&nY''C"
• .."11"""",,,

n '<otI)ec'm •• ,p , ... ~yC,,""'pt"''' "O"' .. ~I.tO'" • ...,f ",n_
.,.,..".~.f\Olor __ ''''".'''' tyco",."'''""'<nm.y''''m' ... '''~'.on'!«
"set4"play 1'.0 1&). .. "' '.' .. "'.110 .. " '00,. .. .,,4
'n'"'..:'''''h''I ~IOt1''"".C_f • ..,,''''''''''.n· .. <I<''.'·1 .M'J"""""'SO!, ... "" •• 'Wlllpl"'.=""lovn'~d'OpIOY ... c~ ""' •• , ... ""
.M V""~ ... !'IC"U '"!et'to<'<IO' ... fl.F., Tn'''''''''''P''"'hon.M'' .. OI
.·, ... "" ... Y"" ,,,,.,·.· .. , .. _" .. 1lIId""p'or .. mCOll'n>l

n.~"' /Ind.IO'Cuor'-._nI4t,Qvv '_."'I. """Ito. "", ••
",.O\l '"' ... d"'I'o eV~" w'.do .. Pook.'.'ob.,ld."."
'M'''''''''''' I'''O'1.n'_.!on't!u.~'''''d._.'''' .. <!!O .. ,''l' .. ''"''',,..

~~r,~:~,'~~:~:~f~~£·~~~~:;£d:!~!,~~~·!~~i:

Figure 5: Browsing the documentation using white boards

The whiteboard for the Viewers Package that appears on the right in
Figure 5 includes icons for the various public interfaces of the Viewers
Package, as well as an icon for the Viewers Package online
documentation contained in the file ViewerDoc.Tioga. We can cause
this documentation to be displayed using the same method as we did
to display the whiteboards, namely by simply moving the cursor into
the icon and clicking. t9

The Tioga Editor and Document Preparation System

The text viewer that appears in the left-hand column of the display in
Figure 6 is the on-line documentation for the viewer package itself, in
the form of a Tioga document Tioga is both the editor for Cedar
programs as well as its document preparation system. tlO In Tioga, a
document is a tree structure of nodes rather than a list of paragraphs

t8 The system will automatically obtain the necessary infonnation from the
corresponding data base. which is stored on a file-server. All of this happens reasonably
quickly (a few seconds).

t9 We have placed a great deal of emphasis in the design of Cedar on unifonnity of
command interface. "What is important about a standard user interface package is that
the user be able to confidently predict the general manner of interaction with a program
that uses the package. even though he hasn't experienced it yet; and that by and large.
the user will be righL This has been called the Law of Least Astonishment" [4(.

nO The Viewers Package documentation shown in Figure 6, as well as all Cedar
documentation. was prepared using the Tioga editor. as was the paper that you are now
reading. When hardopy is needed. the Tioga typesetter (represented by the printer icon
shown at the bottom of Figure 6) is used to generate high quality hardcopy from the
document and send it to the corresponding printer.

MS _ SURFCAST _000003625

Petitioner Microsoft - Ex. 1068, p. 3

so that a hierarchical structure can be explicitly represented. Successive
levels correspond to greater levels of detail, and the viewer of a Tioga
document can be instructed to suppress the display of all nodes deeper
than a certain level. For example. in Figure 6 only the top level of
nodes are shown. thus effectively providing a table of contents.

'" ''''''' A If. ,. ""' ' ... pLl ... "s ve. ~ ""'" I
1"'" wo'" r .. r 1'O>'~Qn No:r p,.,,,PI,,,. ""',0<'

r"""~"'·O"'''~'''. '-"'MO"'~~~~:·=rl:o;i;,;",;;:=:·",;:.",I:III=·~=~=O:':·:'!:: ... ::-----------l i he Viewers Component of Cedar

XEROX

The Viewers Window Package

Bt .. ·.["I

I ~" •• ".,._.M·"""··~"···r··-···"
I ;3~~~;: ;,~;:~::r~~:£!~~~:~T="~~:!;=i:

n '. ""«I ... ",~.I"'" ~y.Io'A\ "..ocr "~ "Ab", 1
..... " .• fOCl&"r'"·r "h .. "'''.,y''''"~" .. ''"o<" ... y ...
urn ~lSpIt.f A VI."'" "a .. " ," , .. ," .110 .. , ,."
'nl.flC1 .. '''''M ... ''' • ..,.". '",.Coda •• P'OlIeo'''''' T .. .

::r.;::;:~':r..;3,,~~~r~~.?1~r;~!-L~~~
Th" _.", n""""C<4~r __ "'~t, .. /V,._"'¢<~'o

ptfI(rom_r,n,ond'.,'O ... ,MV,."".....,,,P.<h,,,,oblll
oppl, ... " .. !'''''''''"'_'\O"lt"''''OId'~''O''"".h''''''''Y

~;:~~:E'!:~:~J~:~:~E':~~::c~~~O~~~

Figure 6: Online documentation for the Viewers Window Package

In combination with scrolling. the use of levels in Tioga makes it easy
for the user to browse through a document or program and quickly
find the part that interests him. For example, let's scroll to the section
entitled "PreDefinedViewer Classes"tll and click the More Levels
menu button at the top of the viewer. t12 This allows us to see one
more level of detail, the titles of subsections, as shown in Figure 7.

Predefined Viewer Classes

bool~~~ below Is a set of view~r c,;Ilt,SIC tor elienl IIR wilh implementation$ provu1ed in the

Implementation Guidelines

The procedures ancl variables in II. VIeWeTweredesie:ned 1DApporl Ilperticul"$1yleol

~,:r~:I:~l=~ ~:n::1 ~I~~ein ~~::~~~y~:e7i:~~a~:i~blrllt;~r;::t~~ :~~:c~~i~
10 IlSe UI.e$e procedures, bill 'hey sholl.lcl only depart from them When they have ,OOCS reaRlns

~ou::~E~~~:~ ;;:~:t:£cl:!:~::~II~:~:~i;~;~~il~~:£i:t~~~~I~: how
oR!r:onen1ed .your procr,am IS, some u.ser some day will want to write a procram thaI Ue your
apphcallon dueclly II 15 bes1 11141 YO\l preplre for Ihll eventuality no,",

~S~~~o~I~~;Eah1~r~~~~~~$;:~:~~~~~O;~~~~Z~~~ffeo~~:~~~7:~
YO.II ~holiid be ab$Olu,lely cerulln thai they 11.11 have exactly the same R!lDanlics. The bMt way to do
lhl~ IS 10 have them 411 call the same procedure. Thus the NotilyProc that handles special user
~ClU)M should do no more t!lan ,'thel" parameters and ddpat~ltlo proc/:dllres Iltal are !Sellned i.n an
~~~~~~::=ne:s.bY your PTOIlram. TIle same shOUld be ttlle 01 pr0ce4ures lhal are inVOked Wilh 

't'!'e lunctions 'create' lnd 'destroy' atespectlilunctionsift the Viewers ".orld Allot the 
cn:allonandde$1ruCltonlhatlsn~rytorlparticularVie"'erscta$$Sh.oUldhlppeninlhe 

!:~~::~;~;~'ri~:I~~~~i~:t~I~~i~ :::=~aj~ ~~!tI~It~~,e ~i: ;1~~~l:~~~O~;ewers 
:CI~C~,~:~~~I~en"::i~: ';'hl,ni:i:~~~'s:~~~i~!n: ~~~~~; ::~:i~~er~~':~led 
re.-cree.llon otl Vle"!'erlhallhe uIII!!r had destroye<t, All lhallheViewetspa~kl,ecando ilcall 
VlewerOpsC~I~Vle ... er{vle:1I'erFlavor, i.nlo' [name: viewerName]] and h.ope Ihal Ihis is $llUiClenl 

:~e~l~ ::~el~~~;i~~~~i~p,~'e~~~t'~~: ~~~$v~O~~~c~~e ~=:iin~~~c~i~~~~ :~s just ~ 
SillUtarlY,. V,e1l'erOps,DestroyV,ewerf.viewerl shOuld be allihe Viewers pa~ka,e needs 10 make sure 
Ihll Ihe vl~".er hu clean~ u,? all ot I1S internal data structures. (ele.aninC lip internal data 
strUctures Inclu<1esbreaktn.C circular links $0 lhe caroe.ce collectot will reclaim lheslon~e.) 

Figure 7: Browsing a Tioga document using level clipping to 
suppress detail 

tIl Scrolling is accomplished by moving the mouse into the scrollbar. a vertical area 
at the left side of a viewer. and then clicking the mouse. The scroll bar is visible in 
Figure 7. 

184 

Clicking the MoreLevels menu button again would show yet further 
detail, i.e., the contents of the subsections entitled Buttons, Containers, 
etc. Now let's scroll back to the beginning of the document and I'll 
briefly demonstrate how the Tioga editor works. 

The Tioga editor allows the user to select individual characters, words, 
or entire nodes or branches (a node plus all of its children). For 
example. I can select the word "environment" in the first paragraph 
of the introduction (see Figure 8) by pointing at it and clicking the 
middle button of the mouse. This does two things. First, it establishes 
the input focus, i.e., tells the Viewers Package that any characters that 
I type should be seen and interpreted by this viewer. not by some 
other viewer also waiting for input. Secondly, clicking the mouse in a 
Tioga document tells the Tioga editor the location of the current 
insertion point, in this case immediately following the word 
"environment." Tioga indicates the current insertion point on the 
display by the appearance of a blinking caret. (In Figure 8, the caret 
can be seen in the third line of the first paragraph. just after the word 
"over.") Basically. what all this means is that to use Tioga, you simply 
point and type and the characters are inserted into the document at 
the place where you pointed. Figure 8 shows the state of this document 
after I pointed at the word "environment" in the second line of the 
first paragraph and typed "Here I am in the process of inserting 
material: the quick brown fox jumps over." 

may be able to find a more recent version on 

Introduction 

The Viewers Window Package is the arbiter of the user input and display hardware in the 
programming environment Here I am in the process of inserting material: the quick brown fox 
jumps over. It provides the illusion to the programmer that there is 0. private display. mouse and 
keyboard ('$Sodated with each application. while allowing the user to simu1taneously interact with 
many such applications, 

rect;~:u~:~i~r~~j~i~~:~ft~~:~e~o~;e~\i:~tS~~g~~S :en!:J~i~li~i~:~~ ~~~r ~~et:e~"~;'~"~i;f~'.~iil'!~ 
takes its n.ame in that it allows the human user to Idew and interact with the dat_~_ 
Cedar application. The underlying applications software has complete control over 
contents of a viewer and has available a rich user interface for user input. The ,m~n ,,,,,;I[on.no1 
size of a viewer may be modified by the user as well as under program control. 

Figure 8: Inserting characters into a Tioga document 

Commands can be given to Tioga using various control keys. e.g., 
typing a character while the CfRL key is depressed. For example, I'll 
undo the insertion I just made with a single keystroke. This ability to 
undo editing operations allows the user to recover from mistakes. 

Another command that I can give to Tioga is to change the way 
characters appear by changing their looks. For example. let me 
emphasize a sentence of this document to draw it to your attention by 
making it appear in a larger font and underlined (see Figure 9). 

The sentence that I underlined makes an important point: users can 
and do make heavy use of parallelism in Cedar. It enables them to 
start one task before another has finished, and to switch back and 
forth among several tasks, e.g., editing, compiling, reading mail. t13 

t 12 The advanced user can perfonn this same operation with a single action by holding 
down the SHIFf key while scrolling. This is an example of our concern for an efficient 
interface for experts. Many systems that boast of being extremely easy to use have the 
drawback that they do not allow the experienced user to become much more proficient 
with the system than the novice user. For experts. the desire for common operations to 
require a minimum of effort can be more important than the desire for the greatest 
possible simplicity in the user interface. 

t13 To facilitate this parallelism. we have pursued in the design of the Cedar user 
interface what might be called the Principle of Non·Preemption: "Individual interactive 
programs operate in a non-intrusive manner with respect to the user's activities. The 
system does not usurp the attention and prerogatives of the user" [4]. This is especially 
important in an environment such as ours where the use of personal machines encourages 
using the time when the user is thinking or the time between keystrokes by perfonning 
various background tasks. e.g .. sending and receiving mail. printing. recompilation. and 
database maintenance. Such activity loses a lot of its utility and attractiveness if the user 
is continually forced to deal with unexpected interrupts from these background tasks. 

MS _ SURFCAST _000003626 
Petitioner Microsoft - Ex. 1068, p. 4



The Viewers Window Package 

Disclaimer 

This (locument is cur~nlly in proiress ana hence ,is incomplete (as witnessed b~ II. number of 
sections not yet wrinen). It reflects the stale at the Viewers package IO~ Cet1ar v~rslOn 4,0 .. You 
may be able to find II. more recent version on (Indigol<CedarViewers>Vtewer:ll>VtewerDoc.llogll. 

Introduction 

The V~ewers Window PackaQ'c is the arbiter 01 the user i1!put an" (1isplav hl!.rdwa~ in Ihe 
vironment Here I am!~ ~'heO::=ie:s 01 i~~rtlne:dc.haraiters. ouse ~ri d e t oa d 

n w e W t e user t SlffiU a U 
t 

The basic object manipulated by client programs Ilnd visible to the user is the ,viewer; a 
rectangular area with artlitrafY contents which maY,be made, visible o~ Ihe user display" A vie:",er 
lAkes its name in that it allowS Ihe hUman user to \/lew and Interact with the data assocla!ed with a 
Cedar application. The undertyi.ni applications s~Hware has complete control over the dl~p.laYed 
contents 01 a viewer and has available a rich user Interface lot user input. The screen p()$ltion And 
size 01 a viewer may be modified by tlte user as well as under prOitlll1l control. 

Figure 9: Changing fonts 

We aren't going to be needing this viewer, so let's destroy it using the 
Destroy menu button which is contained in menu that is hidden under 
the caption. We do this by moving the mouse into the caption area of 
the viewer, which causes the caption menu to be displayed as shown 
in Figure 10. Notice that the Destroy button has a line through it 
This indicates that the button is guarded. Guarded buttons must be 
clicked twice in a short time interval to take effect tl4 This is to guard 
against the user's inadvertent destruction of useful work. For example, 
the first time any edits are made to a Tioga document. the Destroy 
button automatically becomes guarded. If we were to go ahead and 
destroy this viewer anyway, a new icon labelled UnsavedDocuments 
List would be created. If I were to open this icon, I would see: "The 
following files were edited but not saved. They may still be restored 
with edits intact simply by loading them." i.e., I could still get my 
edits back if I really wanted them. 

~ Adjust op -- --> .,Grow Close 
Clear Reset Get GetImpl PtevFlIe Qere. Save Time SpIlt Places Levels ChangeLog 
Fmd Word Def Posll.lon Normalize PrevPlace Reselect 
FlrstLevelOnly Mote Levels f'ewerLevels AllLevels 

Inter-Office Memorandum 

To Cedar Interest Date December 21, 1982 

From Scott McGregor LocaUon Palo Alto 

Subject The Viewers Window Package Organizauon PARC/ISL 

XEROX 

Filed on; {lndlgo](Cedar>Oocumentation>ViewerDoc,Tloga and ViewerDoc.Press. 

DocUments! (Indigo]<Cedar>Viewers>Viewers.df, as exported by the Cedar boot file. 

The Viewers Window Package 

Figure 10: The Destroy menu button is guarded to prevent accidents 

Such touches as undoing, guarded buttons, and the ability to recover 
destroyed edits, are what some might describe as frills. However, we 
believe that they contribute a surprising amount to programmer 
productivity. They allow the user to move ahead quickly with the 
confidence that he will be able either to avoid disaster or to recover 
from it We have placed a great deal of emphasis on them in the 
design of Cedar. 

tl4 The first click removes the guard. If a second click does not occur within a 
specified interval (about five seconds). the guard is restored. We feel that this interface 
is preferable to having the system enter into a continnation mode; the latter would 
violate our principal of non·preemption. 

185 

The UserExecutive 

An increasing number of users of Cedar are non-programmers; they 
use Cedar to prepare documents and read and send mail. However, 
Cedar is primarily a programming environment. So let us now focus 
our attention on the programming aspect of Cedar. To do this, I'll 
open up a User Executive. Notice that I said a User Executive, not the 
UserExecutive. Consistent with our philosophy of providing 
parallelism, there can be several instances of the executive, each with 
its own state, and performing its own operations. 

Each instance of an executive is associated with a viewer called a Work 
Area through which the user interacts. Commands are typed to the 
executive by typing to its viewer, and its output is displayed in the 
same viewer. At this point in the demonstration, there is only one 
instance of the executive; it is associated with the icon at the lower 
right of Figure 6 that looks like a scroll and is labelled "A: Executive." 
I'll open this icon in the usual way, and then move the mouse into 
the resulting viewer and click it. The executive is now listening to me, 
i.e., it will see the characters that I type. 

The UserExecutive implements various standard executive functions 
such as accessing the directory system, compiling, binding, loading, 
and running programs. Each interaction with the UserExecutive is 
called an event, and consists of a command name, followed by any 
parameters. The user can request explanatory information about a 
command or its arguments by typing "?". For example, 

&7 run? 
Run Load and Start the named programs. 

The "?" indicates that I want to see more information about the 
preceding subject. in this case, the run command. The User Exec tells 
me that this command is used for loading and starting programs. I'll 
use the run command to run the program Watch, which is a 
performance monitoring tool that periodically samples and displays 
the words allocated, cpu load, and page faults. tl5 

&8 run watcch 
watcch -> watch 
Loaded and started: watch. bed 

I misspelled the name of the program to be run. In most systems, this 
would cause some sort of a FileNotFound error to occur. Instead, the 
Cedar spelling corrector was invoked, and given the name "watcch" 
and the context "a file to be run," quickly produced a file which was 
reasonably close in spelling. This automatic correction of "watcch" to 
"watch" is an example of what we call DWIM, short for 
Do-What-I-Mean. The Cedar DWIM facility is patterned after the 
Interlisp DWIM facility in philosophy and style [13]. 

The UserExec has loaded and started the Watch program, which 
created an icon for the Watch tool. I'll open the Watch icon, and we'll 
observe the Watch tool in action as I execute another event in the 
UserExec (see Figure 11). 

The Interpreter 

One of the valuable lessons we learned from Interlisp and Smalltalk 
was that the availability of an interpreter greatly facilitates debugging 
and testing, even when the programs being debugged are themselves 

tlS Since Cedar programs are often written in expectation of production use of the 
program. perfonnance monitoring and tuning is an important issue. The Watch tool is 
just one example of a number of such tools available in Cedar. For example. a much 
more elaborate and precise perfonnance tool is the Cedar Spy, developed by John 
Maxwell. "With the Spy. the programmer can see which procedures are consuming 
CPU cycles. which are causing page faults. which are using the allocator. or which are 
calling a particular procedure. When the programmer narrows his focus to just one 
process. the Spy will tell him where that process is spending its time. where it is waiting 
on page faults. where it is waiting on monitor locks. where it is waiting on condition 
variables. and when it is preempted by other processes" [9). 

MS _ SURFCAST _000003627 
Petitioner Microsoft - Ex. 1068, p. 5



run Load and Start the named programs. 
&8 run watcch 
'UT.3t.cch -) W.3tch 
Loaded and started: Watch.bed 
&9 list * .press 
figure1.press 105472 31-Aug-83 12:09:06 PDT 
figure2..press 105472 31-Aug-83 12:09:2.9 PDT 

Figure II: The Watch Tool monitors program activity 

totally compiled. t 16 Thus, the Cedar interpreter is an important and 
integral part of the Cedar environment, despite the fact that Cedar is 
a compiler-oriented language. 

To show you how the Cedar interpreter works, let's interpret some 
Cedar expressions. I'll create an interpreter Work Area by clicking the 
New menu button at the top of Work Area A. (This menu can be 
seen in Figure 15.) 

The Cedar language includes the data types found in most modern 
programming languages, such as integers, reals, booleans, characters, 
arrays, pointers, records, etc. 

For example, 

&1 .. 3 + 4 
7 
&2" ABS[1.414· 1.414·2.0] < .001 
TRUE 

The first event, & 1 .. 3 + 4, really means assign the value of 3 + 4 
to the variable &1, and I can refer to this value in later expressions. 
For example, let's multiply it by 1.4: 

&3 .. &1 • 1.4 
9.8 

The Cedar interpreter also allows me to perform operations on types 
as well as values. For example, typing? following an expression will 
show the type of the value of the expression. t17 

&4" 3.21 
is of type REAL 
&5" 'X? 
is of type CHAR 
&6 .. Time.Current? 
is of type PROC RETURNS [time: System.GreenwichMeanTime] 

In the Cedar language, "." is used to denote field extraction. For 
example, X.y means the field of x whose name is y. In this case, Time 
is the name of an interface, and Current names a procedure in that 
interface. An interface is like a contract between implementors and 

tl6 Actually. all Smalltalk expressions that are input by the user are compiled before 
execution. although it is not clear that Smalltalk users are (or need to be) aware of this 
operation. The important point is the ability to create and execute program fragments in 
a specified dynamic context. Whether this is done via a separate interpreter as is the 
case with Interlisp. or by compiling each expression as Smalltalk does. is simply an 
implementation issue. 

tl7 Note that we are not just talking about primitive, built·in data types. such as 
integer. boolean. string, etc. Cedar encourages the programmer to augment the collection 
of predefined types by constructing new types defined in terms of built'in or previously 
constructed types. In a typical Cedar system, there may be over a thousand such types. 
Thus, for the purposes of debugging, knowing that a particular object is a pointer to a 
word containing all O's may not be anywhere near as informative as finding out that 
the object in question is of type REF Foo. rather than REF Baz, where both Foo and 
Baz happen to be synonyms for the type INTEGER. 

186 

clients. It declares that a procedure of a specitied name, such as 
Current, takes certain arguments and returns certain results. The Cedar 
compiler can then make sure that any programs that import (use) this 
interface conform to its specifications. The compiler also checks that 
the implementation module conforms to the same specifications.tls 

Let's call this procedure. It takes no arguments. 

& 7 .. Time.Current[] 
Thursday, September 1, 1983 12:33:21 pm 

Its value is of type: 

&8" &? tl9 
is of type System.GreenwichMeanTime 

The reason that the value of Time.Current in event number 7 prints 
so nicely as a day, date, and time, rather than as a 32 bit quantity, is 
that a PrintProc has been associated with the type 
System.GreenwichMeanTime. A PrintProc is a procedure that 
provides a more desirable way of presenting an object of a certain 
type, rather than simply printing its data structure using the default 
methods. The PrintProc facility is quite useful for dealing with large 
and complicated data structures such as viewers, documents, and 
streams, where the user typically just wants to be able to identify the 
object, rather than seeing its actual structure. Cedar includes a number 
of PrintProcs for just this purpose. In addition, individual users may 
define new PrintProcs for their own types. 

Automatic Storage Management and REFs 

In the early stages of planning for Cedar, one of the features that 
received the highest priority was automatic storage management - a 
garbage collector. The Cedar language was extended to include a data 
type called a REF, which is a pointer to an object in collectible storage. 
In addition to REFs to particular types, such as REF REAL. REF BOOl. 
REF PROCEDURE, etc., the Cedar language includes a generic REF type, 
REF ANy.t20 Atoms, which are very similar to Lisp atoms, and Lists 
are also examples of REFS.t21 

For example, let's make a list of some of the values that we just 
computed. 

&9" L1ST[&1, &2, &3, &7] 
("1'7, 1'TRUE, 1'9.8, '!'Thursday, September 1, 1983 12:33:21 pm) 
&10" &? 
is of type LIST OF REF ANY 

Since each of these objects is of a different type, the type of the value 
of event 9 is LIST OF REF ANY. Note that the first element is really a 
REF INT, the second a REF BOOl, the third a REF REAL, etc. In other 
words, the type of &9.first, the first element of this list, is REF ANY, 
but the type of the referent of this element, &9.first1', is INT. 

Manipulating Lists 

The List interface includes a variety of procedures for manipulating 
lists, such as Append, Reverse, Remove, Union, and Intersection. 

tls The notion of abstraction mechanisms and the explicit notion of interface was an 
important item in our original catalogue of programming environment capabilities [4): 
.. Abstraction mechanisms are important because they make explicit the logical 
dependencies of one part of a program on another. while concealing the implementation 
choices irrelevant to the communication between parts. Thus. these mechanisms enable 
the ability to factor the development, debugging. testing. documentation. understanding, 
and maintenance of programs into manageable pieces. while leaving individual 
programmers the appropriate freedom to design those pieces" [4). The author believes 
that the abstract notion of an interface is one of the great strengths of the Mesa 
programming language. However. the need to specify interfaces in advance can also be 
cited as a weakness of the Mesa approach. Certainly. the present need for vast 
recompilations whenever a fundamental interface is changed. even in a backwards 
compatible fashion. is a weakness. but one that certainly can be reduced and maybe 
even eliminated (for example. by maintaining version stamps at the interface item level, 
rather than at the interface module level as is currently done). 

tl9 The value of the variable & is the value of the last event execute. i.e .. in this case 
& and &7 have the same value. t20. t21 (see next page) 

MS _ SURFCAST _000003628 
Petitioner Microsoft - Ex. 1068, p. 6



Let's try the procedure Reverse on the list constructed in event 9. 

&11 .. List.Revers[&] 
Revers .) Reverse? 

I misspelled the name of the procedure causing an error to occur, i.e., 
the procedure Revers was not found in the set of procedures contained 
in the interface List. DWIM was invoked and searched through the set 
of items declared in the interface List.t 22 DWIM found a procedure, 
Reverse, whose spelling was pretty close to what I typed, and in 
Figure 12, is now waiting for me to confirm or reject the correction, 
which I can do via the keyboard, or by clicking the Yes or No menu 
buttons which have been added to the Work Area's menu for this 
purpose. t23 When (and if) I confirm the correction, the corrected 
expression will be evaluated. 

t20 A recurring theme in our discussions of requirements for an experimental 
programming environment centered around the issue of early versus late binding of 
various implementation decisions. "The key property of the programming languages 
used in exploratory programming systems is their emphasis on minimizing and deferring 
the constraints placed on the programmer. in the interests of minimizing and deferring 
the cost of making large scale program changes .... The languages make extensive use 
of late binding. i.e .. allowing the programmer to defer commitments as long as possible" 
[12]. 

The addition of the type REF ANY to the Cedar·Mesa language represents an attempt 
to provide for one form of late binding: use of the type REF ANY enables an 
implementor to defer type checking from compile time to runtime on a case by case 
basis. Note that in the Lisp programming language. every item is effectively a REF 
ANY: all objects are pointers. and the type of each object can always be determined at 
runtime. As a result. certain classes of errors can remain undetected until a program is 
run. perhaps even until the program is run on particular data. At the other extreme. 
the Mesa programming language requires the specification of the type of each object at 
compile time. Consequently. unanticipated modifications or extensions to Mesa programs 
often require changes to type declarations and recompilation of interfaces and 
implementation modules. 

In Cedar. we wanted the best of both worlds: the flexibility of runtime (dynamic) type 
checking and the reliability and performance of compile·time (static) type checking. We 
hoped that by employing REF ANY in the early stages of development. programs could 
opt for more flexibility at the expense of performance and/or runtime errors. As the 
program matured. various binding decisions could be made earlier by employing specific 
types where appropriate. 

Another important use of REF ANY in Cedar is to enable generic programs. Since 
programs can determine the type of a REF ANY at runtime. they can operate differently 
depending on the type of the object they are given. For example. the same Sort program 
can be used to sort lists of integers. reals. strings. or even viewers. by selecting the 
appropriate comparison algorithm based on the type of the objects being compared. 
The capability provided by REF ANY is also essential for enabling object'oriented 
programming. For example. streams. viewers. and ropes are all objects in Cedar whose 
definition consists of a block of procedures along with a datum which contains the state 
of the object Since the type of the datum is different for each different implementation. 
for example. file streams need different information than keyboard streams. the datum 
is represented as a REF A NY which the individual procedures can then interpret 

t21 A List in Cedar is a REF to a structure consisting of two fields. first and rest. 
The first field contains the element of the list and the rest field the tail of the list (the 
Lisp CAR and CDR). Cedar provides language support for the construction of lists (via 
LIST and CONS). but no polymorphism: it is not possible to write a program that 
traffics in LIST OF T without specifying T at compile time. Since most programs using 
lists employ lists of specific types. the absence of polymorphism means programmers 
must (re)implement for each specific type list primitives such as Reverse. Append. 
Union. and Intersection. This absence of polymoprhism is cited as the biggest 
shortcoming of the current implementation. 

t22 When we first began work on Cedar. some thought that the complexity of the 
Cedar language would make it too difficult to implement any sort of automatic error 
correction facility such as was available in Interlisp. However. this very complexity turns 
out to be of great benefit for error correction in Cedar expressions. because more 
information is available at the time of the error than in Lisp. where all the interpreter 
knows is that an identifier is unrecognized and whether it was used as a function or a 
variable. For example. when the user typed List.Revers above. DWIM was called given 
the identifier "Revers". the message "selection failed". and the context the List interface. 
DWIM knew that it was looking for an element defined in the List interface. which 
immediately narrowed the search down to 42 possible candidates. Similarly. List.Subst 
is a procedure which takes three arguments: new. old. and expr. If the user types 
List.Subst[new: $Foo, old: $Fie, exrp: x] (misspelling the name of the third argument). 
then DWIM only has to consider three candidates. For assignments. the type of the 
target can also be used to guide the correction. For example. if x is declared to be of 
type Color. where Color is an enumerated type consisting of {red. green, blue}. and 
the user writes x .. bue. then he probably means blue. whereas if x is of type {feature, 
nonfeature, bug}. and the user writes x .. bue. he probably means bug. 

187 

'X 
&6 .. Time,Current? 
is of type PROC RETURNS [time: System,GreenwichMeanTime] 
& 1 .. Time,Current[] 
Thursday, September I, 1983 12:33:21 pm 
&8 .. &? 
is of type System,GreenwichMeanTime: TYPE = RECORD[LONG 
CARDINAL) 
&9 .. LIST[&l, &2, &3, &7) 
U7, ~TRUE, ~9,8, ~Thursday, September I, 1983 12:33:21 pm) 
&10 .. &? 
is of type LIST OF REF ANY 
& 11 .. List,Revers[ &) 
RetTers -,\ RetT&rse ? 

" 

Figure 12: Confirming a DWIM error correction 

&11 .. List.Revers[&] 
Revers .) Reverse? Yes 
(tThursday, September 1, 1983 12:33:21 pm, t9,8, tTRUE, t7) 

Ropes 

Cedar also includes another useful type of REF called a ROPE. A ROPE 

is Cedar's standard string type. t24 The input syntax for a ROPE is a 
sequence of characters delimited by '''s. For example, 

&12 .. "this is a rope" 
"this is a rope" 
&13" &? 
is of type ROPE 

Just as the List interface provides operations for dealing with lists, the 
Rope interface contains a variety of useful operations on ROPEs. For 
example, Rope.Find is a procedure that searches one ROPE for the 
occurrence of another. 

& 14 .. Rope.Find? 
is of type PROe [s1: ROPE, s2: ROPE, pos1: INT .. 0, case: BOOL 
.. TRUE] RETURNS [INT] 

This tells us both the names and the types of the arguments that 
Rope,Find expects, and that it returns an integer. (This integer 
indicates the character position in the first ROPE at which the second 
ROPE begins.) Let's try it. 

&15" Rope.Find[ 

At this point, instead of retyping the ROPE "this is a rope", I can 
simply select the corresponding text in event number 12 using the 

t23 In general, we try to give the user the choice of performing operations either via 
menu or via the keyboard. The main reason for this redundancy is that if the user's 
hands happen to be on the keyboard. it is more convenient to interact through that 
medium rather than having to reach for the mouse. Conversely. if the user's hands are 
already on the mouse. it is easier to click a menu button than to reach back to the 
keyboard. The use of menus in conjunction with confirmation provides the added 
benefit of allowing the system to handle gracefully the issue of typeahead and its 
potential interaction with confirmation. Consider the case where the user has entered 
some operation. and then typed ahead the next operation not realizing that the first 
would require confirmation. The desired behavior of the system is that the user be able 
to confirm without having his typeahead affected, i.e .. that he not have to retype it after 
confirmation. This is accomplished by requiring that the user only confirm via menu 
once there has been any typeahead. 

t24 A ROPE is a garbage'collectible sequence of characters, ROPEs are immutable; 
the sequence of characters denoted by a ROPE never changes, Thus. ROPEs may be 
shared freely among independently' written applications. since no application can hand 
out a ROPE and have some client free its storage or alter the characters it contains. 

MS _ SURFCAST _000003629 
Petitioner Microsoft - Ex. 1068, p. 7



mouse, and cause the characters to be treated exactly as though they 
had been typed. I can do this because this Work Area I have been 
typing to as though it were simply a glass teletype is really a full-fledged 
Tioga document. and I can make use of any of the facilities of the 
Tioga Editor when constructing expressions to be interpreted. For 
example, if I hold down the SHIFf key while selecting in a Tioga 
document. the selected material is displayed with a gray underline (as 
is shown in Figure 13). Such a selection is called a ,source selection. 

CARDINAL] 
A' .. LlST[&I, &2, &3, &7] 
(~7, ~TRUE, ~9,8, ~Thursday, September 1, 1983 12:33:21 pm) 
AID .. &? 
is of type LIST OF REF ANY 
All.. List.Revers [ & ] 
RetTers -,) RetTerse ? Yes 
(~Thursday, September 1, 1983 12:33:21 pm, ~9,8, ~TRUE, ~7) 
AU .. "this is a rope" 
"this is a rORe" 
AU .. &7 -r. 
is of type ROPE 
A 14 .. Rope,Find? 
is of type PROC [51: ROPE, 52: ROPE, posl: INT .. 0, case: BOOL .. 
TRUE] RETURNS [INT] 
A IS .. Rope,Find~ 

Figure 13: Copying displayed characters instead of typing them 

When I release the SHIFf key, this source selection will be copied to 
the current insertion point. i.e., the place where the caret is. t25 

& 15 .. Rope.Find["this is a rope", "is a"] 
5 

The value 5 indicates that the second ROPE begins at character position 
5 in the first ROPE. 

This gives you a general overview of the Cedar interpreter. Now let's 
try using the Cedar system in earnest. 

Tracking Down a Bug 

Earlier when I typed Rope.Find? in event 14, the system simply told 
me the names and types of the arguments and return values. I thought 
that the system was also supposed to show me the comments associated 
with the procedure Find in the Rope interface, so that I would know 
what the various arguments and the return value meant. Let's create 
a viewer on this interface and see if there are any comments associated 
with this procedure. I select Rope,Find in my Work Area, and then 
click the Open menu button in the message area at the top of the 
screen. This tells the Viewers Package to create a new viewer, load the 
file Rope.mesa into this viewer, and then search for the definition of 
the procedure Find, which it has finished doing in Figure 14. 

As you can see, there are comments here. Let's try to find out why 
they weren't shown when I typed "?". To do this, I am going to plant 
a breakpoint in the code that implements the ? feature of the 
UserExecutive. First. I create a viewer on the corresponding source 

t25 This feature is tremendously useful. It greatly increases the bandwidth of the user's 
interaction with the system. It also enables us to use long and descriptive identifiers, 
such as IO.CreateEditedStream. UserExec.FindExecFromViewer. and 
ViewerTools.GetSelectionContents, even though many of our users are not fast typists. 
Such long identifiers are tolerable because they rarely have to be typed, but usually can 
be copied from somewhere else on the screen. e.g .. from a viewer on the interface that 
defines them. (Note that having to reod long identifiers in programs is not a burden 
but an asset: the name contains so much information it is in effect a form of 
documentation.) 

188 

,. .. "' .... "<I"-·O··.".<I··,····j· .. ""·'I'U'AO) 
(~o:;b'" JDiHtz<>d cWr":"" "."", &" ... " ,~_ 

··80vr>4;F~ul'=Vf>Um<Ht." .",propp,,;: .. 

~';·~<d~~"'!;":~-;';';''':'!' ::f,; !;,::,s,,~~~,; ,~~ ~;::'~";, r;,T}; 
.. ,_. ,_or'~"',""",,""~,.,Il<.&n' 

:" lOP',po" , .. ·0," ", .. , ..... 00t.TO .... I •• "".'[' .. I . 
• - ~~'ut'" _ ,,,....1.,, <~.,.""." po"'"m ",wI> "'., 
'"OCW"ln,:~'N=<1N ."",: /I,.'d_"", 

.. "cu,'" "~"'_t_l. ,U~"."'" ",'urn"" "",.,.-.of,I>""."",.,,,,,.,,,""-"" 
I£I! •• '" "'0<:' .0") ... ""~, :'00<1 

~,u".'I=""{rl·~ 

.... I.-:e .. o< 
l"- ~O",'WL "' •• 0.'0" , ... M",Un.,.,,,,- .0 .. 
u,uu.{.cn] . 

.. ;;;:~~~I',=, ~~{::i;":';~,,'::},:~ !;u1:':x. /""1 

u ... ' ... ~< {en <~"l "~~kU {OK"'] • IU'U { 
~.<TUU llr on ,. r. '1 Tn •• ct •• ,-on,... ..... <to] 

Figure 14: Access to program sources provides online documentation 

file, scroll to the appropriate location, and then select the place where 
I want the breakpoint inserted. t26 I then plant the breakpoint by 
clicking the Set menu button in my Work Area. t27 

& 16 SetBreak UserExecMisclmpl.mesa 13897 Break # 1 set. 
Break # 1 in UserExecMisclmpl.PrintDeclFromSource (source: 
13891) 

pattern .. TiogaOps.CreateSimplePattarn[target]; -- creates a 
pattern for the search. 

The breakpoint has been set. t28 The system provides feedback by 
displaying in my Work Area the corresponding line of source text with 
the location of the breakpoint underlined, as well as by underlining 
the corresponding location in the source viewer (in Figure 15, the 
bottom viewer in the left column). 

Now let's reexecute Rope.Find? I can do this by simply selecting 
anywhere inside of the corresponding event in the Work Area and 
clicking the Redo menu button. The UserExecutive maintains a history 
of the events that have been executed. t29 It uses this history list to 
find the event corresponding to my selection and reexecute it. no 

t26 The reader may wonder how I knew where to place the breakpoint In this 
particular case, I happen to be familiar with the internal workings of the UserExecutive. 
However. it is not at all uncommon for Cedar users, especially experienced ones. to 
poke around in other people's code, planting breakpoints, and examining data. This 
behavior is facilitated by the structuring of the source tiles that Tioga enables. and by 
the use of long. suggestive names, As a result, it is not uncommon for a bug report not 
only to describe the symptom. but to identify the offending line of code, 

t27 Clicking the Set menu button causes an appropriate command line to be constructed 
and input to the UserExecutive, rather than executing the operation directly. This 
technique provides the user with a record of all of his interactions with the executive 
and enables him to examine or replay them at some later point. 

t28 Setting a break point involves finding the place in the object (compiled) code that 
corresponds to the indicated location in the source, and then inserting a special 
instruction that will invoke the breakpoint machinery. The Cedar compiler facilitates 
this process by constructing as a by·product of compilation a table that contains for 
each statement the mapping from the object locations to the corresponding source 
location. However. most users are unaware of this process, and simply think of and 
treat the source tile as the program. Cedar goes to great lengths to encourage this model. 

t29 The notion of a history list and facilities for manipulating it came from Interlisp. 
We have not yet implemented the notion of Undo as applied to events that Interlisp 
provides. partly because it is harder to capture all of the side effects of an operation in 
a language such as Cedar, and partly because other tasks were given higher priority. 

t30 The user can also reexecute events by selecting the characters that were originally 
typed while holding the SHIFf key down, as was done in event 15. The principal 
convenience of the REDO menu button is <a) the user can simply select anywhere in 
the event, and (b) multiple events can be reexecuted by selecting a range that spans the 
desired events. 

MS _ SURFCAST _000003630 
Petitioner Microsoft - Ex. 1068, p. 8



&17 Redo 14 
> ... Rope.Find? 
is of type 
Break # 1 in UserExecMisclmpl.PrintDeclFromSource 
computation suspended. switching to Action Area Coo. 

(and down below a new Work Area pops up in which appears:) 

Action # 1 (kind: break. process: 173B) (from Work Area B) 
Break # 1 in UserExecMisclmpl.PrintDeclFromSource 
pattern ... TiogaOps.CreateSimplePattern[target]; -- creates a 
pattern for the search. 

loll ... " "'''''i' .".'j UT<>1 .. , !.OOL] 
. .... u,.,.,£"'~i'j·~ 

lA"cd! •• oor- .onj UTU,"' ['MT] 
"'urn, ,M ~ns<h ('f 1M"."" ,tM>tfll(Nrt.!. _. 

a..J __ ... "'" 
r_·"···SW<,"'··O.J.n<1".M ... L.n .• "th." .. · .. "1 

... I ....... u, ......... " ...... .,." ... , S",a/l' ... ' 
_.',nU"",!>",M.xlmplPronU).,<j''''IflSoU«.(>OUf(O 'In,. 

~m.nOI"Op'Cf'O<oteS""pl.Pb\~n!""''''I. c,.".". .. 

_Rop<F,nd" 

~11""J"'ff''''MI",''''plPnnlDw:l''''mS'>Uw> 
<""'PU'-"'M'U'~"'<!,."'''I:I''ns<c..t<"",,A''''':: 

"'tuon.,(.,nd " .... ,Pf<I< ... l_,(t'ro .. WorkA"'.tll 
__ ',nU .. ,h«M''''''''pIPr""Oo<'fromSo\lre< 
zr~: ~""flij"" C_\eS"flp~P_m[~c.'l, •. UN,*, ~ _wn 

Figure 15: Hitting a breakpoint 

Breakpoints and Action Areas 

Whenever a breakpoint is encountered in Cedar, the corresponding 
process is suspended so that the user can examine the state of the 
computation. We have found it useful for these interactions to take 
place in an entirely separate Work Area called an Action Area. t3l In 
Figure 15 we see that a new Action Area has been created. This Action 
Area tells me that I am at a breakpoint that arose out of an operation 
in Work Area B. It also tells me that the breakpoint is in the procedure 
PrintDeclFromSource, and shows me the line of code in which the 
breakpoint occurred. 

The first thing I want to do in this breakpoint is to examine the 
arguments to the procedure PrintDeclFromSource. To do this, I click 
the ShowFrame menu button in my Action Area. 

& 1 ShowFrame args UserExecMisclmpl.PrintDeclFromSource 
A- target: "Find\n", t32 

file: "Rope. mesa" , 
exec: {UserExecHandle: "B"} t33 

The debugger tells me that this procedure, PrintDeciFromSource, has 
three arguments, target, file, and exec. The values for file and exec 
are ok, but the value of target should be "Find" rather than "Find\n". 
Let's see if this is the only problem, i.e., if target were "Find," would 
the comments be printed? I'll reset target using the interpreter. 

&2 ... target +- "Find" 
"Find" 

t3l This method also supports the Principle of Non-Preemption espoused in footnote 
13. The user is not required to deal with this action at this time. He can continue editing 
documents. create and interact with other executives, read his mail, etc., and this action 
will wait for him. Another benefit of separate Action Areas is that it enables the user 
to keep track of the flow of control if another action occurs while pursuing this one. 

t32 \n is how Cedar prints carriage-return when it appears as data. 

t33 The printing of UserExec handles is another example of the use of PrintProcs. 
The actual handle is a fairly complicated data structure. 

189 

Now I'll allow the computation to continue by clicking the Proceed 
menu button, and we'll see if the comments from the Rope interface 
are in fact printed in Work Area B above. 

&3 Proceed 
proceeded Action # 1, returning to Work Area B 

(and in Work Area B above:) 

PROC [s1, s2: ROPE, pos1: INT ... 0, case: BOOl +- TRUE] RETURNS 

[INT]; 
-- like Index. returns position in s1 where s2 occurs (starts 

looking at post) 
-- returns -1 if not found 
-- case = > case of characters is significant 

and sure enough, there are the comments. 

Having identified the nature of the problem, now we must find out 
the cause - why is the wrong value being given for target in the first 
place? Let's redo Rope.Find? again . 

&18 Redo 17 
> ... Rope.Find? 
is of type 
Break # 1 in UserExecMisclmpl.PrintDeclFromSource 
computation suspended. switching to Action Area Coo. 

and we are back at the breakpoint. Now I'll use the WalkStack menu 
button to climb the call stack. Each time we click the WalkStack 
menu button, we climb the call stack one frame. 

&4 WalkStack UserExecMethodslmpl.Help 

Now we are at the frame corresponding to the procedure that called 
PrintDeclFromSource. I'd like to look at the source code 
corresponding to this call. I click the Source menu button, and the 
system will find the source and display it in a viewer on the left. t34 

&5 Source userexecmethodsimpl.mesa 3822 
IF NOT UserExecPrivate.PrintDecIFromSource[target: target. file: 
fileName, exec: exec] THEN target ... Nil; -- to indicate that it didnt 
find it in file 

"",",puLl "".us ..... 'IC inS can /'NL .. o~. oS 
ursmJi¥INJltldN 'opoll If.J_,,,,' >0", pool ,or.' O,ca;<e .OOL' n"'j &a • .,.,,, (",,). 

k!::"I!!!!',:';~;:'!!f!=:I!"'I!,;:.~!!"!!'~,~!!!"I~w~!!"";~,I!I!!",,, 1I!!~"'!'!!!~!Il"'!I, I!'!!~,,!!!"" .. -I -,;;?]if'!;;;~=:~"':::,::~~ ,,="" "W" 
y Mo",Level.! fewerL.vel. AlILe"'elJ 

.p de"b .•• U,n.s I.fll" 

IP..-..... 'UJucnoc( ... c ••• " .. ,ru •• o ..... ecU>e'E.&ClllOcH""dleJ 
.. ,[value 'OOLru).{ 

i:;~~~~:=;~=;~WU' 

.Ro~P'ndl 
,.oft""",, 
_ 11m Us>!l~r«MI.>C/mpI-PT""D«lf-=" 
c_p""'''''''Su>r->dMI''''''lChml''' ... c''on'''''''L~ 

,n ""'" lOP OIlIP' v Proc_ *- S<>ur<o Walt$«<;k Sllcwfr ....... 

end TIOI~l.oc.uon. Action .1 (kind hl' ... k. PI"""", 2008) (1'1'0" Work A_ B) 
B,...ol:., , .. U .... e: .. "MloclmpIPrlnlDooolFromSollf<e 
~~~ ;;.!::':..'..opoCru<eS''''Plep6'tern[ .... ,e'], .• t:l'NteJ ~_tern 

"; ~':.."\:.';;'~:~~L.[A,..,.CelProP[a,..,. fl,.A,..,.. prop SRoot]]) !~l:~:rE.\n~-~re.oM'sclmPIPnnlDe<lrromSouJ'(e

~~!!iMi!::,i,:::~" .. il!"~iP.~I!":t:'!!O.::-!!'OA'!!':~I!":..'I!!:'F!!" .. '!"I!"" 'II!,!!!,,",!!!",I!""!I!!!!!I'!~~ ~,·_,._:".:_~_·_·-:..:_·~.~·,_~,_·o~.:_~:.,·._·-_ .. ~~·.'_._·,~_~_~_w~~_~-.~_~ __ .
.. ~"; ~~,;~,~~\~~p~~:.;,;.;.]~: :!.;;~ ~f +fI>D/.~t :!':!'/""" ~b.L ~~ " .. ,. ,. ..

N.N D ... Ropt-Cont:~[R"pt.subStt[_ .. p'ropr,l.n1J,·IrI· .. ·l
1U1e<·Rope.s>JbStt[_upr rope,.!Mt,+I,lenRopel..enltl>[•• p:rrcpe] ,

~~O{ T~,:~E:!irz:~6,!::Ih~LI[=;:~:--:"~:::~~d ~:~,,n),~~&me, exec
}.

'YF,underTypeType.
'I AMTypoHCI ,
'ypeN"""".o •• ,

~~;'!{f:~~1;0[;~l:

Figure 16: The Source command finds the location in the source file

The underlined location in the viewer on the left in Figure 16 is the
point in the procedure UserExecMethodslmpl.Help that corresponds
to where the computation is right now, i.e., the statement from which
PrintDeclFromSource was called. Notice that immediately before this
statement is the expression: target ... Rope.Substr[base: expr.rope,
start: i + 1, len: Rope.Length[expr.rope] - i - 1]. This expression

t34 This operation involves using the compiler's statement map to perfonn the inverse
mapping from that of planting breakpoints, namely given a location in object code. find
the corresponding location in the source. If the source file is not on the user's local
disk. but is part of the released system, i.e .. is contained in the version map (see footnote
4). the file will be automatically obtained from a file server.

MS _ SU RFCAST _000003631
Petitioner Microsoft - Ex. 1068, p. 9

uses the procedure Rope.Substr to compute target as the substnng
of expr.rope that is len characters long, and begins at position start.
We already determined (in the previous breakpoint) that the value of
target at this point is the ROPE "Find\n", instead of the ROPE "Find."
Let's find out why this is the case by examining the arguments specified
in the call to Rope.Substr. First, we'll find out the value of the
argument named base by evaluating the expression expr.rope. We
can do this by simply pointing at the expression in the source viewer
while holding down the SHIFf key, thereby causing the characters to
be copied into the interpreter Work Area, the same as we did earlier,
even though in this case we are copying characters from one viewer
into another.

&6 <- expr.rope
"Rope.Find\n"

That's what we expected. Similarly, let's check the value of start, the
starting position for the substring, and the value of len, the length of
the substring.

&7 <- i + 1
5
&8 <- Rope.Length[expr.ropej - i - 1
5

Here is the problem, an off-by-one bug. If we don't want the \n to
be included, there should only be four characters in the substring,
instead of five. In other words, the length argument should be the
length of the entire ROPE, minus the start position, minus 1 (so as not
to include the last character), i.e., Rope.Length[expr.ropej - (i + 1)
- 1. Let's make that change in the source.

I make the edit using Tioga, and then click the ChangeLog menu
button. This automatically constructs a change log entry (see Figure
17) containing my name, the date, and a list of those items that have
been changed. It also provides a space for me to fill in a comment
describing each change. I fill in the comments field, and then save the
file using the Save menu button.

pattern:
start, end:
found, Inhne: 8aoL;
r: ROPE;
stream: IO.STREAM;
TRUSTED {doc .. LOOPHou:[Atom.GetProp(atom: fileAtom, prop: SRoot]]};
IF doc # NIL THEN NULL

ch-mged Get'['oken m escapecompJete to use IDProc ramer 'than TokenProc bccduse of
names contalning -~ e.g. Horning trled {Yplng L.arch-H ESC.and gOl "No match"

changes to.' Escape
Edited on September l~ 1983 lJ:Sl pm~ ~.v Teitelman

4h.mgeS to.' Help~ i

Figure 17: Automatic Change Log maintenance

Now let's go back to the Action Area on the right, and since we are
finished with this problem, let's just abort the action and control will
return to the Work Area from which the action originated.

Electronic Mail

The next thing I want to do is to fix a bug that was reported to me
in a message. As I mentioned earlier, the mail box shaped icon in the
lower right comer of the screen (see Figure 1) is my Walnut Control
Panel. I'll open it now. As the flag on the mail box icon indicated, the
Walnut Control Panel tells me that I have new mail. I click the
NewMail menu button in the Walnut Control Panel to retrieve these
messages from the mail server. These messages will initially be placed

190

in my Active message set, represented by the icon that looks like a
stack of envelopes. I'll open my Active messages and we will be able
to see my new mail. t35

~~'~~~n1 ~;M:"i:~b "£:d~:".~rl~:v.i-~.,:t P" ""., v.. on,. ,
U,~""M,*-v::41'1J1I:M_."",ro-, .. I",...,

cb._~od <4il '" .;."rot= m =~pI ... '" u><" IDProt:. r~<h<:r "'m Tot..,Proc -... of flI~
" """..,n"'~ ." ~ Herr>Jn~ rrlotl t~p",~ L3Kb·H E"Sc" Y<d ie, We ,..,,"-

u;~;;t4:.fn l. ::.:: ';;/::'n:'~~~n~ig;~ur~$ '" Prm~lrr-~v'u

1;Sel>ll)O<Ohlpoo
- I. Sop Il ~""m<);ES
-"Sop'lPmdor.PA

10 Sop tl ~u:!l1>On poo
"SopS) Mllf"OWDpoo

-""p'lPazkerPA
, l'S.p'll<._oonpo
'll&.p311or .. bee.po
, 195ep")1_.PA

l's.pS!MBrowft,po.
"Sow 83 g"lD'bar~po

, I'SopOJ H<>"' ... ,poo
- I~ Sop 11 l'orrODd.e>
• 10 SoP OJ coro.PA
- :~ s.p II Anen PA

...,...., '" no> An''''e-t
Oaooll&'pil,,4/01PDT

DECtllhe"'.'lnlerf
M""mlll~r ... y _ ..

T",o ~UI' '" ov",d
N.>IW~h.I,."' .. 'n ... c"""I~to IO"tomo<row
fa 11 Porty ro. S.,. on~ j"". ""'I.n'
Mo,"" Info Sanl<l '::Ior~ Ball., ... ~lIn' Cen""

eye ~I""'" round
IitIIl Wl_m_nat 0",",,"'" ., IC:30_
Hlnnl M"~D~ WodnesdOl" ofTe, l<o".r
Compule';1"e= Rel>.bll1'y ""d R",k,,,, Ilt. PublK
hper<Sy,"'mln", .. "

Mo .. To"n .. T"ke" . AIIGon<

:.:"~~':.:'~e!,."''''m'''<h''''lodlO!ClU",,"''''',"
J:Pl'i~!'%O~!~

D ... 10 SOP I! J~ "" PDT

rr~~;F~.~~~:u~~~~'n~:~ ~:;'O~;,"I~""M'Re",o""
To ."o,d """nlOt ""Ilt tbe ILoL lob "'''Unl, the U",e of Hetl WII~eJ .. ~ "'m'nor~ n
;::~:'::":tIOlO ",,"o,row, IJ.lSop",,,,bo, ('UllIn CSL Commons) Hero t> .repe~tQI the ,,~.

'n " • .., to m. v

-,..N.rm·i,fnot_nd
-- C_ .' , of CWl"" .. " .., "~ndlC.>tl(

·" ... f,nd'

~~~~~ ;;'i;::::'~.:~t:'t:;,,;::~m:.~<~ 

-"'o".fm~\n· 

~;,:;~;.~:.~~r.,pr rOfe) -, 
~':"~ _~:':O~_:"!: ~:~~~'~! _~ _".:~' .... _ ~~:._ ~ __ _ 

Figure 18: The Walnut Mail System; Entering a message into my 
reminder system 

The messages marked with? (see Figure 18) are the ones that I haven't 
read yet Messages regarding events I want to be sure not to forget, 
such as a talk or meeting, I can enter into my personal 
calendar/reminder system by simply clicking the Remind menu button 
on the corresponding message as shown in Figure 18. The Reminder 
system obtains the time and date for the corresponding event from 
the message itself, t36 and when the corresponding time rolls around, 
a blinking icon will be automatically displayed on my screen (as shown 
in Figure 19). If I open this reminder icon, the viewer will contain 
this message. t37 

Messages that I want to save so that I can refer to them later I 
frequently sort into various categories which I have created called 
message sets. I have about thirty of these categories and can add more 
whenever I need them. My current message sets are shown in the 
Walnut Control Panel (at the lower right in Figure 18): BackBurner, 
CedarPaper, Discussion, Documentation, etc. 

t35 We rely heavily on our electronic mail systems at PARe. We use them for mail 
as well as for the type of announcement that might in other environments be posted 
on a bulletin board. In addition to messages from one user to another. announcements 
of impending meetings, for sale notices. and the like are all sent as messages directed 
at expansive distribution lists. You can see examples of such messages in my Active 
Message Set in Figure 18 (middle viewer, left hand column). 

There are a number of such electronic mail systems in use at PARC (because there are 
several different programming environments). However. all of these access a common 
mail distribution service [IJ. Walnut, the mail system for Cedar. provides facilities to 
send and retrieve mail and to display and classifY stored (previously retrieved) messages. 
Walnut uses the Cypress database system [3J to maintain infonnation about stored 
messages. 

t36 You can see the feedback from the reminder system in the message window at 
the top of the screen: "Reminder will be posted at Tuesday. September 20. 1983 10:30 
am for 60 minutes." This time was computed from the string "10:30 tomorrow" in the 
subject field of the message. using the date field of the message to detennine the 
reference point for "tomorrow." i.e .. pretend today is 19 Sep 83 when figuring out what 
tomorrow is. even though I am actually reading the message on September 20 (the day 
after it was sent). 

t37 Here is an excellent example of what we mean when we say Cedar is integrated: 
the various facilities can use each other in important ways since they all coexist in the 
same address space. (Here the reminder system uses both Walnut and Tioga.) 
Furthennore. there need not be any explicit context switch and corresponding loss of 
state when switching between tasks or programming tools. for example. in switching 
from debugging, to editing. to reading mail. Integration is one of the reasons why a 
large virtual address space (> 24 bits) was one of the highest priority items in our 
original Catalogue of Programming Environment Capabilities [4J. 

MS _ SURFCAST _000003632 
Petitioner Microsoft - Ex. 1068, p. 10



If I point at one of the message set buttons in the Walnut control 
panel and click the mouse, Walnut creates a viewer on the 
corresponding message set. This viewer shows the date, sender, and 
subject of each message in the set. For example, I typically save 
messages about bugs in my software in the message set called My8ugs. 
The message regarding the bug I want to fix is in this message set, 
which I'll now open. 

The message that I am interested in is 11·Feb·83 Willie·Sue.pa 
bug??t38 I'll click it, and Walnut will obtain the message contents 
from the data base and put it in a new viewer as shown in Figure 19 
(top viewer, left hand column). 

A Bug Report 

The message states that when an event consisting of just a comment 
is typed to the executive, an error occurs. Let's try it and see. Instead 
of typing the comment in the message into Work Area A, I can simply 
copy it by selecting the corresponding characters in the message while 
holding down the SHIff key.t39 

&10 -- try it now 
ERROR IOlmpl.EndOfStream from 
Inputlmpl.GetCedarScannerToken 1 
computation suspended, switching to Action Area E. .. 

(and down below a new Work Area pops up in which appears:) 

Action # 1 (kind: signal, process: 2048) (from Work Area A) 
ERROR IOlmpI.EndOfStream[stream: {155010668 . Input From 
Rope Stream}] from Inputimpl.GetCedarScannerToken1 

_ ... leone> An,,,, •• OM< 

Do« II·f.b-~) I ~ 02 l' PST 
Pr,,,. Wlll",·S",o .... 

~b~~r~~ 
1f)'~"'h"lnpectc<!.ouldbo,o""""~D'ItI"' .... "" .• , -··",,.Jtno,,,"Cl\ 
1 .... rr...,.,."""' ..... ".on .... onnOUIlClnl !RRORJOlmpleMoe"'''''I''''''''W') 

IluJl'S""".l>ott .... 
"uIIlMBrownpa 

IJuJ!lMBtownp" 
Ilull' MlI"wnw 

12!ultl<ro""" 
I'Jul') M.n'ell .... 

I "'UIIl WUU.·SO.". 
''''P3) ",a\U"" 
.... pU Nllpo 
IOSepilS",lflpo 

Qu01e>lCco ......... d··I .. n 
em>r ,ene,."'" by· ... " ''''''C' OO .. " .. n~"'· , .. 
.nd-of-m.,n, ... mcIJ .. ,&l 
..... lIllh.lpfrolll'CO"' ... ..,.,. 
Uneo .. p>l ... p_o,..... 

BuI,nSp<na..lNl_hll"f,l.t", 
N ..... wrfd .... _'ml 

II ... UI3Iv .... loun.np& "P" ... nll<oo'-""le<Ien~ 
,2 AUI~' To """leuJ\on ~o "p:j.~nl , .. ,-<"I,,,,,, on"1 
12 "'''1 Il S4r,.nI.PA So""D"'. ThUl'. 1111, I~)O om (Aud.llOllUm) B41dov SlDI" (ll of 
IlA"IlI)vonleunonpo !teuP<!.un.l"'...,.,le<Ien"1 
""'UIII eo."'PA Ito <41 .. .",CO "'on I ANTI·""""",_MOUon 
"A"lll Sctuller.l'A lnc,"""",,,,,,,,-umo. 
""'''1 Il Do"lb,yP'" P""Y TUII. 10' M;<;""or.ond ~r1end. 
""'''11) Ubno,P'" M.n"rorlhe", ... k.nd,n,lfli 
I'AU, U Hom,nl"" R. C ...... Com ..... dl-tn. 
I' AUI 31 """IO'I1non,.. PM",un.l'A 
11"'''131&o<h,.. Bal.d.v"nlb·.'nw"", .. "",~o""w .. t 
13.0."111 don...,,,,,p" s..'''n.Ood ... l-D~ 
".0."181804<"-",, fo'''''lorl'o>tCed'''1 
..... Ulll PI.,P... R. Th.MomorY:<y ..... of.Ii"b·~or"'."'.Per>Dn ... ~Jllpu .. r 
11.0.",,, Ton.l'... P""'''In, for tbedo .. "" 01 Mo:rc 

o."AndT:lm. d ..... "" .... p, ... o...;u.,'on Do<;",,",,,n,",Uon fo", .. 
Ho"To 11" .. 0. lJpp/odSuU lnlm.~1! w 1.-" .. Muc MyBul' 
MyS"U"""'" No~_l:Indol Otbo"Bu,. R."' ....... rurr 
R .... nd.r!l ... pleo Rlv.rRoI't Spol! T""""u"O$<Ioo, TStu'to 
lI .. rllecCh.onl~ lI .. 'liec~1I lI ... R""" •• ,. V'dooT4PO 
V,._t<SuU.,~o"" 

OoU>ICbe<Q>om' 
CL=nl WolJI"'''' .. "",,oon .do". 
Cl=nl W"",,,,,,.,,,,,,,,,uon .done 
OponmIW~n"'"'''''''''''''''' dono 

Figure 19: A user reports a bug via an electronic message; Checking 
out the problem causes an error which results in the creation of a 

new Action Area 

Well. it's just like the message said. We yot an EndOfStream error, 
and are now in a new Action Area. t40 t4 Let's walk the stack and 
see what's happening. 

& 1 WalkStack 
&2 WalkStack 
&3 WalkStack 
&4 WalkStack 
&5 WalkStack 
&6 WalkStack 

Inputimpl.GetCedarScannerToken 
Inputlmpl.GetCedarToken 
Inputl mpl. from TokenProc 
Inputlmpl.GetCedarScannerToken 
Inputlmpl.GetCedarToken 
UserExeclmpl.lsWellFormed 

The first five levels of procedure nesting correspond to internal calls 
within the 10 package. However, the procedure 
UserExeclmpl.lsWellFormed looks more promising. Let's look at its 
source. 

191 

& 7 Source userexecimpl.mesa 
IF Rope.lsEmpty[rope] OR NOT 
lo.GetCedarToken[streamJ] THEN GOTO Yes; 

23932 
Rope.Equal["+-", 
t42 

The underlined location marks the place in the source that corresponds 
to where the computation is now. It looks like the program is using 
the procedure IO.GetCedarToken to read a token from stream. Let's 
examine the variable stream using the interpreter. 

&8 +- stream 
{157254228 . Input From Rope Stream} 

Note that streams have PrintProcs which print out the kind of stream, 
suppressing the stream's actual representation. t43 In this case, we do 
want to look inside of the stream at its data, which we can do using 
the interpreter. First. I'll find out the stream's type. 

&9+- &? 
is of type STREAM: TYPE = REF IO.STREAMRecord; 
IO.STREAMRecord: TYPE RECORD[streamProcs: REF 
IO.StreamProcs, stream Data: REF ANY, propList: Atom.PropList 
+- NIL, backingStream: STREAM+- NIL] 

This says that a stream is a REF to a record consisting of four fields: 
streamProcs, streamData, propList, and backingStream, each of 
which have the indicated type. Let's look at the stream Data field, 
which contains the data for this particular stream. 

&10+- &.streamData 
-r[rope: "-- try it now", pos: 13] 

Even though the type of this field is REF ANY (so that different kinds 
of streams can store different types of data in the same field), the 
interpreter is able to figure out the type of the referent using the 
run·time type system. It tells me that the data for this stream is a REF 
to a record consisting of two fields named rope and pos, whose values 
are" -- try it now" (notice that this ROPE has 13 characters), and 13. 
In other words, the current position, pos, does indeed correspond to 
the end of the stream. What happened to the previous 13 characters? 
In puzzlement. I decide to look at the definition for 
lo.GetCedarToken. I select the characters IO.GetCedarToken in the 
source viewer. and then click the Open menu button to create a new 
viewer on the 10 interface positioned at the definition of 
GetCedarToken, as shown in Figure 20. 

tJ8 The video tape that this demonstration was taken from was originally produced 
in February 1983. whereas this paper was written in September. 1983. Obviously this 
and other bugs that I will fix during the course of this demonstration were actually 
taken care of many months ago. However. for the purposes of this paper. I have restored 
Cedar to the state that it was in February. at least with respect to these changes. and 
am reenacting the scenario. 

tJ9 Note that in this case I am copying characters from a Walnut message viewer into 
an Executive Work Area. still using the same method as we used previously. Consistency 
of user interface! 

t40 Uncaught errors and signals are handled the same as breakpoints: they constitute 
actions and are given their own Action Area. 

t41 Notice that. since it is now 1O:30AM. the reminder concerning that talk I wanted 
to attend (entered in Figure 18)' has popped up at the bottom of my display. founh 
icon from the lett. The icon is blinking to call itself to my attention. If I were to open 
this icon. I would find the original message. 

t42 The Cedar Language provides for an extremely restricted fonn of GOTO statements. 
namely to a series of labelled statements called an ExitsClause that appear at the end 
of a block. Think of GOTO as the Cedar way of spelling EXIT. 

t43 A stream in Cedar is simply a producer and/or consumer of byte sequences. The 
stream abstraction can be implemented in a variety of ways; for instance. the producer 
behind an input stream might be a file or a user typing at a keyboard. We call each 
stream implementation (file. keyboard. and so on) a stream class. One of the most 
important aspects of streams are that a typical client program can manipulate a stream 
without regard to the class that implements it so varying stream implementations can 
be substituted without effect on the program [2]. Funhennore. new implementations of 
streams can be supplied by the user. Examples of such user defined streams are: 
decrypted input and encrypted output streams layered on top of other streams. an 
output stream that automatically indents to indicate structure, a stream which reads 
Intel fonnat absolute binary object files, and a stream that emulates Unix pipes. 

MS _ SURFCAST _000003633 
Petitioner Microsoft - Ex. 1068, p. 11



.nuulS[.ooL~AMl T { 

$lreaJll +- 101"{rope); •• SI1>C" sl/'lNms .!Il~v ~U1tt>d, "'" ffll&/H ccmld"T .... 'In& .. 

~:~~~~=y~~j~! !~T Rope£qual{"+-', ~'tnam)) THEM "OTO V •• 

IOeztr,..GeICedar$c.annerToken[JIlNm, IflL! 

:~~~~~~~':'''~~~ON~~ 
U~~LOOP' 

Tes.) J.nUJ.M[TJ.tr~); 
No.>.nUJ.M[rALU), 

Figure 20: The 10 interface serves as online documentation 
Aha! The comment in the 10 interface says: "GetCedarToken 
automatically filters out all comments." The problem is that when 
my program asks for the next token from the stream. there isn't one, 
because comments are filtered out when reading tokens. So the error 
EndOfStream is raised. t44 What I should be doing in this program is 
catching the signal EndOfStream in the call to IO.GetCedarToken, 
and simply returning TRUE. Let's make that change. 

Now let's return to our Action Area on the right, and since we are 
finished with this problem, we can abort the action, and return to the 
Work Area above. 

Compiling. Support for Parallel Operations 

Now I want to compile the files that I have edited. The system keeps 
a list of those files that need to be compiled, i.e., those that were 
edited but not yet successfully compiled. It also provides visual 
reminders in the fonn of a black border around the corresponding 
icons. as shown in Figure 21. I can instruct the system to compile all 
of the files that need compilation via the command compileall. t45 

& 1 0 compilea" 
>Compile UserExecMethodslmpl.mesa UserExeclmpl.mesa 

While that is going on, I'll answer Willie-Sue's message. I click the 
Answer menu button in the viewer containing her message, and 
Walnut creates a reply fonn containing the appropriate Subject, To, 
and cc fields. In Figure 21, I am in the process of composing my 
answer in the viewer on the lower left. while the compiler continues 
to run in the Work Area at the upper right. t46 

I finish composing the message, and click Send, and the message is 
sent on its way. In Figure 22, the Walnut Control Panel tells me that 
the message has been delivered. The next time that Willie-Sue clicks 
her NewMail menu button, she will see the message. 

t44 The Cedar language uses signals and errors as a mechanism for handling exceptional 
conditions. Think of a signal/error as a procedure call where the body of the procedure 
is determined dynamically using the call stack. 

t45 CompileAIi simply keeps track of those files that have been edited. It does not 
deduce that because Interface A has been recompiled. Modules B. C. and 0 also need 
to be recompiled. This latter behavior is much more ambitious and falls under the 
category of what we call System Modelling. A preliminary version of a system modeller 
has been built and tested. and a more comprehensive version has been partially 
implemented. 

t46 As mentioned earlier. Cedar supports and encourages concurrent operations. and 
users make heavy use of this parallelism. Here I am sending a message while compiling 
a file. In this panicular case. only one task requires my attention: the other is running 
in background (my background. not the computer's). However. it is not uncommon for 
users to be performing several foreground tasks simultaneously. such as editing several 
source files at the same time. or debugging a program by stepping it from breakpoint 
to breakpoinL while simultaneously reading mail. etc. The imponant point is that the 
user's interactions with the system can match the style with which he is most comfonable. 

192 

""'l2 ....... n,,,,.r alW 
Dote II·f.~·,) llOll' P!>T 
fro .. \II,m.·tuopa 

;t!i~~~~~ 
: 'Y!"'d .. t,.' 1 •• pO<'""- ww.J~ .... " ....... 11 '" "' •• ,0<,'1· uy" DO"- ~"'It, 
r .... poo<O<Ion"''''''''''''' ..... _noun"nl !/(/(v~ IVL .. pJfnd=""_{"""~I'J 

,n " .... '" ... 
" •• OIl/Ohol'l~fM8 
~u.,t.~_._""'_1 

e04IPU ... uon ,u,,,.,,d«l. ''''Jlehmr "' ... «'Oll ... ,....E 

li~~:~~~r~i:~'!':;;;:!';'" U .. r!l~lmpJ Ill ... 

eworm ew", 0,""'" .0" 
Tb ... I> no n ... """L .. l'·~p·11 Ill'~J P~'T 

Figure 21: Cedar supports concurrency: answering mail while 
compiling 

Meanwhile the compiler has successfully compiled the first file (notice 
in Figure 22 that the black border around the fifth icon from the left 
is now gone), but ran into a problem in compiling the second file. 
The User Exec has created a viewer on the left which displays the 
compiler log containing the error message. t47 

~". one. "mwet orw 
r-. lI·f~·" 1>~11' PST 

jt~,'~:~f~ 
lty!"'d .. ".'I .. _ted .. ouId .... 'o ..... n'I01I>Oen< •• ' ··"1!tMW'·;-R 
l., ... p ........ "",.., .. uon .... announ"nl!;UQRlvL .. plfndOfl:tre ... { .. " .. bI.] 

.WO,., ...... omml1._ ..... 

T ..... I>non ........ J.,l?·~p·'112P.IPDT 

~ .. ~~, ~"~.~ .. ~!"!!!I'!"I~~~~[,~l~.~.~.:,;:r"~,~~~f[~~~J:futf~fi:;~· 
'~.~~?i~~,L~~ of I~ "pH) l'lll~ v ._,,_v ~ 

~~~~,~;';:;!':.!.i~~:';.~T ItO,.. f ..... 01[···. IOG.tC ...... Toun!"' .... ' Iv ~ndQr.;, ...... , 

!1"lW [In!'l
T .. ",,"'I"18<II> ;

U ... rf:lecl .. pl '" •• ot<>r<e<I. I ~r>01"'. tim. ,;

... up~=!~::;:En' ~=:!J .. ndlnl'" 1 ~,pwnu

Figure 22: Compiler error log

The error is a simple syntactic error, a missing 'J. I'll make this fix
and recompile. In the meantime, this reminds me that a user had sent
me a message about a request concerning the UserExec's behavior
with regard to the compiler log. I keep such messages in my
UserRequests message set. I click the UserRequests button in my
Walnut Control Panel to create a viewer for this message set, and then
look at the corresponding message, which states that the user wants to
be able to specify that compiler logs are always created iconic instead
of always being open as in Figure 22.

t47 The compiler log includes for each error a position (character count) in the source
file. The user selects this position. and then clicks the Position menu button in the
corresponding source file. and the source file is automatically positioned at the indicated
location. The user can thus quickly step through the source file from error to error and
make the necessary edits. Even so. the process of getting a file to compile successfully
is still very tedious. More tools are required. For example. many compiler errors turn
out to be of the nature that their correction could be automated. One could imagine an
extension of DWIM that would handle this task.

MS _ SURFCAST _000003634
Petitioner Microsoft - Ex. 1068, p. 12

The User Profile

Since some users like the way compiler logs currently work, to satisfy
this user's request, I am going to define a new user profile option so
that each user can specify how they want the compiler log handled.
In the area of user interface, rather than enforcing a consensus upon
everyone, we allow individuals to tailor the system to suit themselves,
enabling facilities that they like and disabling those that they don't.

Let's implement the new profile option. It willi allow me to
demonstrate an important aspect of the Tioga Editor: its abbreviation
expansion facility. I'll create a new viewer, load it with the appropriate
source file, and then scroll to the place where I want to make the
change. What I want to do is to insert a conditional statement that
will check the user's profile to determine whether or not to create the
viewer for the compiler log iconic.

Templates as an Aid for Editing Programs

To accomplish this, I'll use Tioga's abbreviation expansion facility to
cause a template for an IF-THEN statement to be inserted. To do this,
I type IF followed by CTRL-E (E with the CTRL key depressed). This
causes Tioga to expand the abbreviation for IF into the template IF
~TEST<OI THEN ~TRUEPART<OI.t48 This template contains two fields, TEST
and TRUEPART, each delimited by special brackets called placeholders,
displayed as ~~. Tioga allows me to move to the next field delimited
by placeholders with a single keystroke. If I am positioned at one of
these fields, anything I type replaces the field. Right now, I am ready
to specify the predicate for my IF-THEN statement.

The predicate I want to use is the procedure UserProfile.Boolean. I
type the name of the procedure, UserProfile.Boolean, and then I
type CTRL-E again, this time to request a template for its arguments.
Note that UserProfile.Boolean is not defined as an abbreviation;
Tioga computes a template consisting of the names, types, and default
values for this procedure using the run-time type system, and inserts
it in the document as shown in Figure 23. t49

~!~:- :;;:;:; ~: ~:s~::~ ~~~aYi~e ~v~:;: ~!~~ec~p It Places Levels ChangeLog

FtrstLevelOnly MoreLevels FewerLevels Al!Levels
Sho_LoC: PRoe [name: ROPE, ok: 8001.£AN, exec: ExecHandle, blmklt: !lOOL .. TRUI!)

RUURNS[log: Viewer] '" {
log +- VlewerOps.FmdViewer(name];
IF NOT ok THEN

{
createIconlc: BOOLEAN +- TttUE;
If' exec # NIL AND NOT exec.vIewer.iconIc AND (InputFocus,GeUnputFocus[].owner =
exec,viewer) THEN createlcomc +- FALSE;
I~i'R~~~~~~.:ooleMl[key:,..., default: t>BOOLEAN +- FALSE~J THEN

IF log # NIL THEN VlewerOps,ReswreViewer[log]
EL'E IF UserExec.CheckForFlle[name] TH!!N log t- CreateLog[name: name, lcomc'
createIconlc]j -- log not there In C03.Se of' no such source

}
!!L'!! IF log # NIL TH!!N {

};

t!' destl'oyLogOnSuccess THEN {VlewerOps.Dest1oyViewer[log]; log NIL}
EL,e: VlewerOps.Re5toreViewer[log];
};

CreateLoe;: PROC [name: ROPE, ICOniC: BOOL t- TRUE] RETURN'[VIewer: Viewer) = {
viewer VlewerOps.CreateVIewer[flavor: SText, info: [name: name, Ole: name, ICOnIC:
icomc]]

};

Blinklcon: PUBLIC PROC (ICOn:: viewer: n: INT fo 10] = TRunED {

Figure 23: Computing a template for a procedure call

As the template indicates, UserProfile.Boolean takes two arguments;
the first is named key, and is of type ROPE, the second is named
default, and is of type BOOLEAN. I'll call the key for the new user
profile option that I am going to define Compiler.lconicLogs. If the

t48 The Tioga abbreviation expansion facility helps the user in dealing with the Cedar
syntax. avoiding errors. and fonnatting programs consistently. There are similar
abbreviations for many of the language constructs in Cedar. e.g .. FOR expands to FOR
~ControIVariable~ +- ~lnitiaIExpr~, ~NextExpr~ DO ~BODY~ ENDLoOP. In
addition. the user can add to or change the set of predefined abbreviations.

t49 Runtime availablility of all source program infonnation was another important
item on our original catalogue of programming environment capabilities. Underlying
this was our desire to make it easy to extend the set of tools for assisting the programmer.
The computed template facility shown here is a good example of the kind of thing we
had in mind.

193

value of this key is TRUE, i.e., if the user's profile contains an entry of
the form Compiler.lconicLogs: TRUE, then I'll make the compiler
log viewer iconic. The entire statement that I inserted is:

IF UserProfile.Boolean[key: "Compiler.lconicLogs", default: FALSE]
THEN createlconic +- TRUE; --

but I only had to type the underlined characters plus two CTRL -E's.

Using the Interpreter for Experimentation

There was another request in my UserRequests message set concerning
compiler logs, namely that the compiler log use the typescript icon
rather than the document icon, to make it easier to distinguish the
compiler log from other iconic Tioga documents.

Before we make this edit, let's try changing the icon for this viewer
by hand, i.e., by using the interpreter. t50 So I'll reopen my interpreter
Work Area, select the compiler log, and use the Eval menu button to
evaluate the current selection.

&19 CurrentSelection
tViewar . class: Text, name: Compiler.Log}

The value of this event is the viewer for the Compiler Log. I can
manipulate this value. For example, let's look at its icon field.

&20 ... &19.icon
document

As expected. Now let's change this field to be typescript.

&21 +- & 19.icon +- typescript
typescriptt -> typescript t51
typescript

Now let's repaint the icon and see how it looks. I can do this by using
the procedure PaintViewer, which is in the interface ViewerOps.

&22 ... ViewerOps.PaintViewer[&19]
- - -MiSSing Arguments: hint: ViewerOps.PaintHint

What's a paint hint? I'll evaluate it and find out. t52

&23 ... ViewerOps.PaintHint
ViewerOps.PaintHint: TYPE = {all, client, menu, caption}

This says that a PaintHint is an enumerated type consisting of the four
values all, client, menu, and caption. I'll bet I can just pass in all for
the hint argument. Let's try that.

&24 +- ViewerOps.PaintViewer[viewer: &19, hint: all]
{does not return a value}

Sure enough the icon for the compiler log (the icon in the center of
Figure 24) is now a typescript. I can now implement this feature by
editing the corresponding source.

t50 Using the interpreter to try things out before going to the trouble of making
changes to a program is a technique that is relatively new to the Mesa community
(although it has been commonplace in Interlisp for many years). Part of the reason for
this is historical. Earlier Mesa debuggers were non-resident: the debugger operated at
ann's length from the debugge. in an entirely separate address space. Interpreting
expressions in this remote world was slow and cumbersome. Furthennore. the interpreter
only handled a limited subset of the language. We had higher aspirations for Cedar: to
provide a resident debugger that shared the same address space as the programs being
debugged. as well as a complete expression interpreter. Thus. the Cedar environment
represents the first opportunity that Mesa programmers have had for realistically using
an interpreter to carry out experiments.

t51 Obviously I am making some of these typing mistakes just to demonstrate the
pervasiveness of the error correction facilities. but this correction is especially interesting.
because DWIM uses as candidates for the correction only the set of values that an
object of type icon can assume. In order to find what these are. DWIM uses the runtime
type system to compute this infonnation when the error occurs. In this way. DWIM can
work on user defined types as well as those that are defined in the basic system.

t52 Note that in this example. we are evaluating an expression whose value is a type.
One of the goals of Cedar was to make types into first-class citizens. It is still not
possible to pass types around as values. and there is no polymorphism in the language.
However. at runtime. it is possible to perfonn a wide variety of operations on types.

MS _ SURFCAST _000003635
Petitioner Microsoft - Ex. 1068, p. 13

However, now I find that while I have made it easy to distinguish the
compiler log from the other documents, there are so many typescript
icons that it is hard to find the compiler log among all of them.

".0"'" '""'0 ,
~,<)<, 12 """"n po

1llovl<MIlro .. npo
11JanilkolllnlP<l lll ... ,, __

lOF.D~l Homm
I' f~~ ~l I.ollmll>O
I1M",11 Mflro .. npo

l'''pr Il Swmeb",'po
~4 Apr 8J ' ... m~M'" p"
H Mof '1 To 1.~m
HM~" Mcen-'rhlpo
6)"" 13 vM!."MnP<l

1_ Ado nt n '"

",>11,1>1''''''''''''''0..,01,,,,,,,,
R" po<."hl.Um.· .. ? .. on'oU"""k

.... _It>t«AlQ)llu.lOl
U""P,."fll.L",DtTok<M
I.-W)-"",M."""d,rr" ... nlrro,,, ·Wh.,vou M.on·'
I don' kno .. "'hot \h,. 'Mull! ~o. b~t
_ ... EnIlYopon.v' r

ComPl'''·'''o"
""""p'.orn,U
Ro.o.,oupl"olDIU
om 1 "mmnr ,)", ve,..on of~ bcd'
CoIhnl pJ'OCOdu= from u,,, co"'''' ... ~ lIn"

booy""'"

....,'" to no. A",,,,er o,v,,",
o.. .. lL-JMl·ll,4"1IPST

~~~~:.~I,~~ '0. <O .. P".' 101 

~~ ~~':!;:r:.r 

Could 1"" < ...... ,. V", ... ,hO«:·p'lD'lpj£M","e,ul1 00 Ill., 1M eomp".' 101' lOon" • 'YP"><rop' 
m'_OI.d"""",.n" H.",,,1he,,, .. ,,,,,;uyood. 

~o"" ..... ",,1 01Om" os< ..... 
yo~ h"". De .... ." ot lI-Sep-1l !'IO 40 PDT 

~:;:~~'M~' on ~,':~ 
Acuve Dele"'" AMTYP".:Iuuo>"on. ""'''''' """Burn", C.., ... 
Da .. A~rlTtm. d .... ., •• _~I., D,..-""""" [)oc-"",on"'''on fe",,,, 
HowTo Humor ImplodSull Inhn.PoI] '" b,,, M,,,, MyBur' 
MyS~u •• uoru NOUl_Und •• O\h~"flUI' R_ ... .,."ll'ulT 
hmmd.,h_p'" ~'~",R~ ~ ... )) T,o.£uu .. uom T~h,," 
U,e'!I ... Ch""I~' U""E,«Poll U""Roqu"u V!dooT .... 

V""'''''''II··''''''' 
R~tIUl flll,lhed 
Aulllenuo.,mrU>e1 ok 

P."'o ...... ndm ......... .>endm,"I~,p"'n" M ..... '.h..,_nd.)'~.''''' 

m I".w to 0 .. ,e ~ 0' .... 
• ,6' ...... ", ......... """ ....... ,,.., 8", .... ,." 

:=~n;J~~M~~~!~I~=,rDi~s:.~r._:';;':,:, ~lI!'l 

'·Ro ... Fmd 
uo!typ< 
Br»Jl<..,lrnlj..,.,Ef~MjjClmp/I'1,"<£W:IF1o"'_",. 
~ompu"u~" lu,,,,miod. , ... ,,,,"m; '" ... <".", ... "'" c- '.0< [." • .' 
.o,~~ f,!ld,';;z' !::"~~,~~: ,!·,~·t::;:.v:_!'~J:;;Jm.v" 

-'~7..z;;::'::a~O:h'::::"" "in/flon! 
1'!I!!i"',,' !!i'~'.","""'!iij~!!!.!!v''''I''!i.r(nli!''!,,!"' !!"",''''!!i'""," i'"-",''!i!"-"",' "!\!" ~"-!,!"!!"."'l""!!'.!!!""~n.....j ,. Rope Fmd' 

;~,~:.~" o.~M:;;::::" ·dh.,::"·::~;,,~~"' '" ". ....~""' ~,~:,.,,~,=-,:,:,~.~,_,,~,,".:::;M,'::",:~:::~;.",.,;~,~.~.:,_".~,·,v:~:·:~,","::,-,,~.:",,~~~~m=' M'i}::~¥!i.:!!!.;;;:±~ ';:::,~:m,::~" "'~'-."'"'' ,.~,,~ "'" :i:.: :_=~:: . , 
"·M"~'''#'',#"",,,,,,''','',V,,,or''~.P,",.Qf'.' 

~':Ef~!;~l;rJ~~:.r\~~~~~:"~l~,·~~,<!f"t") 
i~'.f>O"·'ur".Vo.Lue) 

Figure 24: Now there are too many typescript icons 

Designing a New Icon 

One way of solving the problem of too many typescript icons is to use 
a different icon for some of the executives. I'll use a graphics tool 
called the Icon Editor to design a new icon for Action Areas executives 
(the two executives on the right in Figure 24). 

&25 run iconeditor 
Loaded and started: IconEditor.bcd 

In Figure 25, the Icon Editor shows some of the icons that other 
people have designed for various applications. The Squirrel icon is for 
our data base facility which is named Squirrel. Next to it is the Walnut 
mail reader icon you have already seen. Also included in the two rows 
of icons are an icon for a calendar, a bus schedule, a TV listing, an 
organization chart. etc. The last icon in the second row is the 
traffic Light icon I am working on (for executives stopped because of 
a signal). 

>colD.pll.oll 
>eo .. "". U"'~',",I .. pJm.'" 

~~~]~§7::~~rb<d 

Figure 25: The Icon Editor

The 64 x 64 array of squares that occupies the lower two-thirds of the
Icon Editor's viewer represents the individual pixels in the icon
currently being edited. I can change individual pixels from black to

194

white or vice versa by clicking with the mouse in the corresponding
square. I can also draw lines, change rectangular areas to different
textures (stiple patterns), shift rectangular areas up, down, left or right.
As I make changes in this array, the smaller version of the icon is
updated so that I can see how the icon is going to look, actual size.
I'll make a few finishing touches to my icon - darkening the red light
and adding rays of light coming from it.

I'm happy with the icon now, so I'll save it on a file and also associate
the name ntrafficLightn with this icon by using the Register menu
button in the Icon Editor viewer. This will allow me to refer to the
icon by name without having to remember where it is stored .

Now let's use the interpreter to change the icon of one of the executives
to be the traffic Light and see how it looks. First, we obtain an exec
handle by selecting the viewer and evaluating the current selection.

&26 .. CurrentSelection
t[viewer: {Viewer . class: Typescript, name: Action Area E:
aborted ERROR IOlmpl.EndOfStream from
InputimpI.GetCedarScannerToken1}, privateStuff: 7246044Bt]

This value is the handle for Work Area E. Now let's set its icon to be
a traffic Light.

&27 .. &26.icon .. IconRegistry.Getlcon[ntrafficLightn]
selection failed on icon

The viewer is one of the fields of the exec handle, and icon is one of
the fields of the viewer. I am one level of indirection of: I should
have said n&26.viewer.icon.n Since what I did type is correct in every
other respect, I can fix this by simply replaying this line, pointing at
the n." in n&26.icon,n and typing nviewern, as I am in the process of
doing in Figure 26. t53

Restart
Authenucaung user ok
, .. Parsmg Sendmg message, .. sendmg to 1 recipients
, .. Messaa:e bas been delivered

capuon}
424 +- : all]
{does not return a
&2S CurrentSelecuon
,.{Vlewer: {Viewer - class: Typescript, name: Action Are4 E:
aborted ERROR IOImp1.EndOfStream from
InputImp1.GetCedarScannerToken 1}. pnvateStuff: 1246044B,.]
&2' +- &2S.icon +- IconRegistry.GetIcon[ntrafflcLightn]
selection £ailed on icon
427 +- &Z5.Vl~lcon +- IconReglstry.Getlcon[nUafflcLlght"]

>Compile
Compllmg:
Compilmg: UserExeclmpl ..
End of compilauon
-- Errors iZl -- UserExeclmpl
&11 Redo 10

Figure 26: Editing events as they are being entered

&28 .. &26.viewer.icon .. IconRegistry.Getlcon[ntrafficLightn]

Now let's repaint the icon for action area E and see how it looks. We
already have an expression in event 24 that is pretty close to what we
want, namely ViewerOps.PaintViewer[viewer: &19, hint: all]. We can
use the use command to specify reexecution of this event with a
different value for the viewer argument.

&29 use U&25.viewer u for &19
> .. ViewerOps.Paintviewer[viewer: &25.viewer, hint: all]
{does not return a value}

And there's our traffic light (see Figure 27).

Let's go ahead and make the edit that will cause the system to use the
traffic Light icon for Action Areas.

t53 In previous examples. the only editing of the typescript that we did consisted of
appending characters to its end. This examples illustrates that we really can edit. in the
full generality of the tenn. events that are being entered for execution.

MS _ SURFCAST _000003636
Petitioner Microsoft - Ex. 1068, p. 14

+- VlewerOps.P&ntHlnt
VlewerOps.PamtHmt: TYPE = {all, cilent, menu, capuon}
&24 +- VlewerOps.PamtVlewer[vlewer: &19, hmt: all]
{does not return a value}
&2S CurrentSelecuon
1'[vlewer: {Viewer - class: Typescript, name: Acuon Area E
aborted ERROR lOlmpl.EndOfStream from
Inputlmpl.GetCedaxScannerToken I}, privateStuf'f: 724604481' J
&26 +- &2S.icon +- IconReglstry.GetIcon["trafficLle:ht"]
selectioD t"ailed OD ieOD
&27 +- &2S.vlewer.lcon +- IconReglstry.Getlcon["trafflcLlght"]
21B?
&21 use "&25.vlewer" for &19
)+- VlewerOps.PamtVlewer[vlewer: &25.vlewer, hint: all]
{does not return a value}
&2' +- A

)complleall
)Complle UserExeclmpl.mesa
CompIling: UserExeclmpl .
End of compilauon
"12 run lconedltDr
Loaded and started: IconEdltor.bcd

Figure 27: The Action Area icon has been changed to a traffic light

Wrapping it up

Now let's compile the rest of the files we have changed.

& 13 compileall
>Compile ActionAreaslmpl.mesa CompilerExecOpslmpl.mesa
Compiling: CompilerExecOpslmpl no errors
Compiling: ActionAreaslmpl ... no errors
End of compilation

The compilation has finished successfully. Now let's bind the program.

& 14 bind userexecutive
Loading Binder.bed ...
Binding: userexecutive no errors
End of binding

Unfortunately. since the changes we have made were to the UserExec,
a component of the system that is already running, in order to test the
changes out we have to reload the system; we can't simply replace the
UserExec that is running with the new one. Reloading takes about
two minutes. We hope to implement a facility for replacing an
individual module in a running system. This should greatly improve
the turnaround time on making and testing changes. t5"4

Conclusion

The demonstration contained in this paper has presented a number
of the key concepts and facilities in Cedar. Some of these are: a highly
visual user interface which exploits the high bandwidth display and
mouse pointing device; a uniform screen paradigm provided by the
Viewers Window package, which includes facilities for icons,
white boards, and tools, as well as text viewers; a high quality editor
and document preparation system (Tioga); spelling correction
(OWIM); availability of an interpreter for a compiler based language;
a strongly typed programming language of the Pascal family which
also includes automatic storage management, the ability to manipulate

t54 One of the top priorities in our original catalogue of programming environment
capabilities was fast turnaround for minor program changes « 5 sec). '"Our concern
with fast turnaround comes from the observation that programming should be think
bound. not compute bound. There are several 'knees (points of substantial non-linearity)
in ones perception of response delays. One such knee is in the vicinity of 3 to 5 seconds.
We believe that it is essential to reduce the system time for minor program changes to
below this point'" [4]. While the changes that we made in this tour were not minor. sad
to say that even had they been. we would still have been forced to reboot in order to
test them out Attacking this shortcoming is now one of our highest priority items.

195

types at runtime, and support for Lisp-style lists and atoms; a
sophisticated debugger which includes source-object code mapping to
facilitate planting of breakpoints and examining program state; support
for concurrent operations; and a high degree of integration of facilities
and uniformity of user interface.

Today, in the fall of 1983, Cedar is -being used by about 30
researchers. Visitors from other laboratories are envious of Cedar's
emphasis on visual interaction, of its support for concurrent tasks, of
its sophisticated debugging facilities, and of the wide variety of
packages and tools. Cedar makes it possible for a researcher to design
and implement an experimental computer system in a remarkably
short period of time. For example, in the last few months, various
programmers using the Cedar environment have been able to construct
two experimental systems for handling electronic mail. one for
computer storage of voice messages, one for producing raster images,
several for VLSI design. They all reported favorably on how easy it
was to construct real. functioning systems.

References

[I] Andrew D. Birrell. Roy Levin. Roger M. Needham. and Michael D. Schroeder.
'"Grapevine: An Exercise in Distributed Computing.'" Communications of the

ACM. Volume 25. Number 4. April 1982.

[2] Mark Brown. 'The 10 and Convert interfaces:' in [5] .

[3] R. G. G. Cattell. '"Design and Implementation of a Relationship-Entity-Datum Data
Model'". Xerox Palo Alto Research Center Report CSL-83-4. May. 1983.

[4] L. Peter Deutsch and Edward A. Taft "'"Requirements for an Experimental
Programming Environment:'" Xerox Palo Alto Research Center Report
CSL-80-1O. June. 1980.

[5] J. H. Homing. editor. "The Cedar System: An Anthology of Documentation." Xerox
Palo Alto Research Center Report CSL-83-14.

[6] D. H. Ingalls. '"The Smalltalk-76 Programming System: Design and Implementation:'
Proceedings of the 5th Annual ACM Symposium on Principles of Programing

Languages. 1978.

[7] Butler W. Lampson and Kenneth A. Pier. '"A Processor for a High-Performance
Personal Computer:' Xerox Palo Alto Research Center Report CSL-81-1. January.

1981 (also in Proceedings of Seventh Symposium on Computer Architecture.

SigArch/IEEE. La Baule. May 1980. pp 146-160).

[8] Butler W. Lampson. The Cedar Language Reference Manual. Xerox Palo Alto

Research Center Report CSL 83-15.

[9] John Maxwell, "The Cedar Spy:' in [5]

[10] Scott McGregor "The Viewers Window Package:' in [5].

[11] James G. Mitchell. William Maybury. and Richard Sweet. "Mesa Language

Manual:' Version 5.0. Xerox Palo Alto Research Center Report CSL-79-3.

[12] Beau Sheil. "Environments for Exploratory Programming:' Datamation. February,

1983.

[13] Warren Teitelman and Larry Masinter. "The Interlisp Programming Experience:'

Computer. April. 198

[14] Warren Teitelman, "The Cedar Programming Environment: A Midterm Report:'
Xerox Palo Alto Research Center Report CSL-83-11 December. 1983.

[IS] Warren Teitelman. The Interlisp Reference Manual. revised 1978. Xerox Palo Alto

Reserach Center.

[16] C. P. Thacker. E. M. McCreight, B. W. Lampson. R. F. Sproull, D. R. Boggs,
"Alto: A Personal Computer:' Xerox Palo Alto Research Center Report
CSL-79-11. August, 1979 (also in Computer Structures: Readings and Examples.

second edition. by Siewiorek. Bell and Newell).

MS _ SURFCAST _000003637
Petitioner Microsoft - Ex. 1068, p. 15

