
2550 Garcia Avenue
Mountain View, CA 94043
U.SA

Part No: 802-2109-10

OpenStep User Interface Guidelines

+SunSojt
A Sun Mirrosystems, Inc. Business

MS _ SURFCAST _000076434
Petitioner Microsoft - Ex. 1069, p. 1

~
Please

Recycle

© 1996 Sun Microsystems, Inc.

2550 Garcia Avenue, Mountain View, California 94043-11 00 U.S.A. All rights reserved.

Portions Copyright 1995 NeXT Computer, Inc. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and
decompilation. No part ofthis product or document may be reproduced in any form by any means without prior written
authorization of Sun and its licensors, if any.

Portions ofthis product may be derived from the UNIX® system, licensed from UNIX System Laboratories, Inc., a wholly owned
subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party font
software, including font technology in this product, is protected by copyright and licensed from Sun's suppliers. This product
incorporates technology licensed from Object Design, Inc.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c) (l)(ii) of the Rights in Technical Data and Computer Software clause atDFARS 252.227-7013 and FAR 52.227-19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS

Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, and Open Windows are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United
States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of
Novell, Inc. PostScript and Display PostScript are trademarks of Adobe Systems, Inc. Object Design is a trademark and the Object
Design logo is a registered trademark of Object Design, Inc. OpenStep, NeXT, the NeXT logo, NEXTSTEP, the NEXTSTEP logo,
Application Kit, Foundation Kit, Project Builder, and Workspace Manager are trademarks of NeXT Computer, Inc. Unicode is a
trademark of Unicode, Inc. VTl 00 is a trademark of Digital Equipment Corporation. All other product names mentioned herein
are the trademarks oftheir respective owners.

All SPARC trademarks are trademarks or registered trademarks ofSPARC International, Inc. in the United States and other
countries. SPARCcenter, SPARCcluster, SPARCCompiler, SPARCdesign, SPARC811, SPARCengine, SPARCprinter,
SPARCserver, SPARCstation, SPARCstorage, SPARCworks, microSPARC-11, and UltraSPARC are licensed exclusively to Sun
Microsystems, Inc. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK® and SunTM Graphical User Interfaces were developed by Sun Microsystems, Inc. for its users and licensees.
Sun acknowledges the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user
interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which
license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

X Window System is a product of X Consortium, Inc.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

MS _ SURFCAST _000076435
Petitioner Microsoft - Ex. 1069, p. 2

Table of Con tents

1. A Visual Guide to the User Interface. 1-1

OpenStep Workspace. 1-1

Types of Windows . 1-3

Standard Windows . 1-3

Panels. 1-4

Menus. 1-6

Miniwindows . 1-7

Application Icons. 1-7

Types of Controls. 1-8

Buttons. 1-9

Text Fields ... 1-10

Sliders. .. 1-11

Color Wells. .. 1-11

Scrollers. .. 1-12

Browsers and Selection Lists .. 1-13

iii

MS _ SURFCAST _000076436
Petitioner Microsoft - Ex. 1069, p. 3

iv

2. Design Philosophy. 2-1

Basic Principles. .. 2-2

The Interface Is Natural. .. 2-2

The User Is in Control. .. 2-2

Avoiding Modes. .. 2-3

When You Should Act for the User. 2-3

The Mouse Is the Primary Input Device. 2-4

The Interface Is Consistent. .. 2-4

Three Action Paradigms. .. 2-5

Direct Manipulation .. 2-5

Targeted Action. .. 2-5

Modal Tool .. 2-6

Paradigm Extensions. .. 2-8

Testing User Interfaces .. 2-8

3. User Actions: The Mouse and Keyboard 3-1

Mouse Actions. .. 3-2

Clicking. .. 3-3

Multiple-Clicking. .. 3-3

Pressing. .. 3-4

Dragging. .. 3-4

Mouse Responsiveness. .. 3-4

Changing the Functions of the Mouse Buttons 3-4

Selecting Objects with the Mouse .. 3-5

Clicking to Select. .. 3-6

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076437
Petitioner Microsoft - Ex. 1069, p. 4

Multiple-Clicking to Select. .. 3-6

Dragging to Select. .. 3-7

Extending a Selection .. 3-7

Continuous Extension. .. 3-7

Discontinuous Extension. .. 3-8

How the Arrow Keys Affect a Text Selection. 3-9

Implementing Selection. .. 3-10

When Discontinuous Selection Is Not Implemented. 3-11

Selection in Text and Selection in Graphics. 3-11

Managing the Pointer .. 3-11

Changing the Pointer .. 3-12

Hiding the Pointer. .. 3-12

Mouse Actions for Custom Objects. .. 3-13

Reacting to Clicks 3-13

First Click on a Window 3-14

When Dragging Should Not Imply Clicking 3-14

When to Use Multiple-Clicking. .. 3-16

Dragging From a Multiple-Click 3-16

How to Use Dragging 3-17

Moving Objects 3-17

Defining Ranges. .. 3-17

Sliding From Object to Object 3-18

When to Use Pressing. .. 3-19

Using Modifier Keys With the Mouse. 3-19

Table of Con ten ts v

MS _ SURFCAST _000076438
Petitioner Microsoft - Ex. 1069, p. 5

vi

KeyboardActions 3-20

Modifier Keys. .. 3-21

Special Command-Key Combinations 3-23

Other Action Keys. .. 3-23

Handling Arrow Characters. .. 3-24

Implementing Keyboard Alternatives. 3-24

Reserved Keyboard Alternatives. .. 3-25

Required Keyboard Alternatives. .. 3-26

Recommended Keyboard Alternatives. 3-27

Application-Specific Keyboard Alternatives 3-28

Choosing the Character. .. 3-29

Using the Alternate Key .. 3-29

When Mouse Operations and Keyboard Alternatives
Differ .. 3-30

Implementing Modifier Key-Arrow Key Combinations. 3-31

Control-Arrow Combinations 3-31

Shift-Arrow Combinations. .. 3-32

Alt-Arrow Combinations. .. 3-32

Other Arrow Key Combinations .. 3-33

4. Windows in the OpenStepInterface 4-1

How Windows Work. .. 4-2

Parts of a Window. 4-3

Window Order. .. 4-4

Window Characteristics .. 4-6

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076439
Petitioner Microsoft - Ex. 1069, p. 6

Reordering. .. 4-6

Moving. 4-6

Resizing. .. 4-7

Closing and Miniaturizing. .. 4-7

Hiding and Retrieving Windows. 4-9

Application and Window Status .. 4-10

Active Application. .. 4-11

Key Window. .. 4-13

Main Window. .. 4-14

How Windows Become the Key Window or Main
Window. .. 4-17

Results of Clicking on a Window 4-18

Implementing Windows. .. 4-19

Designing Windows .. 4-19

Placing Windows. .. 4-19

Implementing Standard Windows. .. 4-21

Choosing a Title. .. 4-21

Using the Resize Bar. .. 4-22

Using the Miniaturize Button. .. 4-22

Using the Close Button. .. 4-23

Implementing Window and Application Status 4-24

Choosing the Key Window. .. 4-24

Activating an Application .. 4-24

Avoiding Activation When Dragging 4-25

Table of Con ten ts vii

MS _ SURFCAST _000076440
Petitioner Microsoft - Ex. 1069, p. 7

viii

5. Panels... 5-1

How Panels Work .. 5-2

Ordinary Panels. .. 5-2

Implementing Ordinary Panels. .. 5-4

Window Considerations. .. 5-4

Using the Resize Bar .. 5-4

Using the Miniaturize Button. 5-5

Using the Close Button .. 5-5

Panels That Become the Key Window. 5-5

Relinquishing Key-Window Status 5-6

Exceptions to Ordinary Panel Characteristics. 5-6

Persisting Panels. .. 5-6

Floating Panels. .. 5-7

Panels With Variable Contents. .. 5-8

Multiform Panels. .. 5-8

Inspector Panels. .. 5-9

Implementing Attention Panels. .. 5-10

Naming an Attention Panel. .. 5-10

Default Option in an Attention Panel. 5-11

Closing an Attention Panel. .. 5-11

Naming the Buttons in an Attention Panel. 5-12

Optional Explanations in an Attention Panel. 5-12

Standard Panels. .. 5-13

Implementing the Close Panel. .. 5-17

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076441
Petitioner Microsoft - Ex. 1069, p. 8

Implementing the Find Panel. .. 5-17

Using the Help Panel. .. 5-18

Implementing the Info Panel. .. 5-21

Using the Link Inspector Panel .. 5-21

Using the Open Panel. .. 5-22

Implementing the Preferences Panel. 5-22

Implementing the Quit Panel. .. 5-23

Using the Save Panel. .. 5-24

6. Menus... 6-1

How Menus Work .. 6-1

Basic Menu Functions. .. 6-3

Main Menu. .. 6-4

Bringing the Main Menu to the Pointer. 6-4

Submenus. .. 6-5

Keeping a Submenu Attached 6-6

Tearing Off an Attached Submenu. 6-7

Closing a Submenu .. 6-8

Commands. .. 6-8

Keyboard Alternatives .. 6-9

Implementing Menus 6-10

Designing the Menu Hierarchy. .. 6-10

Choosing Command Names 6-11

Table of Con ten ts

Commands That Perform Actions. 6-11

Commands That Open Panels 6-12

ix

MS _ SURFCAST _000076442
Petitioner Microsoft - Ex. 1069, p. 9

x

Commands That Open Submenus 6-13

Commands That Open Standard Windows 6-13

Sample Command Names 6-14

Disabling Commands .. 6-14

Graphical Devices in Menu Commands. 6-15

Assigning Keyboard Alternatives .. 6-15

Standard Menus and Commands .. 6-15

Main Menu. .. 6-16

Adding Commands to the Main Menu. 6-18

Info Menu ... 6-19

Document Menu .. 6-21

Performing an Implicit New Command 6-23

Uneditable Documents. .. 6-23

Edit Menu. .. 6-24

Paste As Menu .. 6-26

Checking Spelling. .. 6-26

Link Menu .. 6-27

Find Menu .. 6-29

Format Menu 6-31

Font Menu. .. 6-32

Text Menu. .. 6-35

Windows Menu .. 6-36

Services Menu 6-38

Providing Services. .. 6-39

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076443
Petitioner Microsoft - Ex. 1069, p. 10

Adding a Tools Menu .. 6-40

7. Controls... 7-1

How Controls Work. .. 7-1

Basic Control Functions. .. 7-2

Standard Controls. .. 7-2

Custom Controls .. 7-3

Buttons 7-3

How Buttons Work .. 7-3

Buttons That Open Lists. .. 7-5

Implementing Buttons. .. 7-6

Designing the Button's Action. 7-7

Choosing the Button's Image or Label. 7-7

Changing the Button's Appearance During a Click .. 7-10

Implementing Pop-Up and Pull-Down Lists. 7-11

Implementing Link Buttons 7-12

Implementing Stop Buttons 7-13

Text Fields. .. 7-13

Sliders. .. 7-16

Color Wells .. 7-17

Scrollers. .. 7-19

How Scrollers Work. .. 7-20

The Bar and Knob 7-21

Fine-Tuning Mode 7-22

Scroll Buttons. .. 7-22

Table of Con ten ts xi

MS _ SURFCAST _000076444
Petitioner Microsoft - Ex. 1069, p. 11

xii

Automatic Scrolling. .. 7-23

Implementing Scrollers .. 7-24

Browsers and Selection Lists. .. 7-25

Choosing the Appropriate Control. .. 7-26

Controls That Represent Actions. .. 7-26

Controls That Represent Settable States. 7-27

Displaying a Single Option. .. 7-28

Displaying a Group With an Unrestricted Relationship
7-28

Displaying a Group With a Mutually Exclusive
Relationship .. 7-29

8. The Interface to the File System. 8-1

OpenStep Folder Conventions. .. 8-2

Home Folder. .. 8-2

OpenStep Folders. .. 8-3

Local Folders. .. 8-3

Personal Folders. .. 8-4

fnet Folder. .. 8-4

Search Paths in OpenStep File System 8-5

The Workspace Manager Search Path. 8-5

Application Search Paths .. 8-6

File Name Extensions in OpenStep File System. 8-6

Workspace Manager Extensions .. 8-6

Custom Application Extensions. .. 8-6

File Packages in OpenStep File System. 8-7

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076445
Petitioner Microsoft - Ex. 1069, p. 12

Displaying File Names .. 8-7

Files and Folders That Your Application Creates 8-8

Index .. Index-l

Table of Con ten ts xiii

MS _ SURFCAST _000076446
Petitioner Microsoft - Ex. 1069, p. 13

xiv OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076447
Petitioner Microsoft - Ex. 1069, p. 14

Tables

Table 3-1

Table 3-2

Table 3-3

Table 4-1

Table 4-2

Table 5-1

Table 6-1

Table 6-2

Table 6-3

Table 6-4

Table 6-5

Table 6-6

Table 6-7

Table 6-8

Table 6-9

Table 6-10

Reserved Keyboard Alternatives. .. 3-25

Required Keyboard Alternatives. .. 3-26

Recommended Keyboard Alternatives 3-27

Buttons in a Window's Title Bar. 4-8

Closing a Window. 4-9

Standard Panels. 5-15

Menu Command Names............................... 6-12

Sample Menu Command Names. .. 6-14

Main Menu Commands .. 6-17

Info Menu Commands .. 6-20

Document Menu Commands. .. 6-22

Edit Menu Commands. .. 6-24

Link Menu Commands. .. 6-28

Find Menu Commands. .. 6-30

Format Menu Commands. .. 6-31

Font Menu Commands. .. 6-33

xv

MS _ SURFCAST _000076448
Petitioner Microsoft - Ex. 1069, p. 15

xvi

Table 6-11

Table 6-12

Table 7-1

Table 8-1

Text~enuCommands

Window ~enu Commands

~oving from One Text Field to Another

Folders in /usr/openstep/Developer

OpenStep User Interface Guidelines-September 1996

6-35

6-37

7 -14

8-3

MS _ SURFCAST _000076449
Petitioner Microsoft - Ex. 1069, p. 16

Preface

This manual contains guidelines that tell you what an OpenStep GUI should
look like and how it should behave. It does not tell you how to use Interface
Builder, Icon Builder, and the other tools to build an interface; the guidelines it
contains are simply standards for the results you should achieve with the
development tools.

Communicating with Your Users
Your OpenStep GUI should communicate with your users. There are different
ways to measure this communication, but two points are particularly
important.

• Users should be able to start up an application, look at its interface, and
know what they can do (for example, "I can enter statistical data, chart it,
and print the charts"). The guidelines explain how to achieve this kind of
communication through the effective use of menus, windows, panels, and
controls.

• The objects that make up your interface should behave in predictable ways.
Users should be able to look at the menus, windows, panels, and controls on
their screens and know how to operate them. The guidelines describe the
characteristics your interface objects should exhibit to achieve this kind of
communication.

xvii

MS _ SURFCAST _000076450
Petitioner Microsoft - Ex. 1069, p. 17

Using the Application Kit Effectively

The Types of Guidelines

xviii

The OpenStep Application Kit (App Kit) supplies standard interface objects,
such as panels, buttons, and menus, with their basic appearance and behaviors
defined for you. You can include these objects in your interface and then
complete them by adding some application-specific behavior. For example, a
button's appearance and its basic reaction (it highlights when pushed, and so
forth) are supplied, but you need to define what your application will do when
the button is pushed.

Most features and options of an application can be represented in its interface
by one of the standard objects supplied in the App Kit. Many of the objects in
your own interfaces, then, will be App Kit objects that you complete with
application-specific behavior. You can also develop custom objects of your own
design that supplement those supplied in the App Kit.

To use the development tools effectively, you need to understand the
relationship between behaviors supplied in the App Kit and the application­
specific results you define-you need to know what has been supplied and
what you will be adding. To help with this, User Interface Guidelines includes
several types of standards or guidelines:

• The design principles that were applied to the overall OpenStep desktop,
which define the appearance and behavior of the workspace, including
application icons and the dock. Your application needs to conform to these
principles and be consistent with the workspace behavior.

• Guidelines for the overall appearance and interaction of your application.
These guidelines help you decide when to use standard windows, when to
use panels, what kinds of commands should appear in menus, how many
levels of submenus you can use, and so on.

• Descriptions of the objects supplied in the App Kit, which emphasize the
characteristics built into them (how they respond to mouse and keyboard
operations). These descriptions help you decide which objects will most
effectively represent the features of your application.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076451
Petitioner Microsoft - Ex. 1069, p. 18

• Specific conventions that should be followed when designing an OpenStep
interface, such as the guidelines for keyboard shortcuts. These include
"reserved" and "required" shortcuts, suggestions for when to use shortcuts,
and guidelines for choosing the shortcut characters.

• Guidelines for using the standard objects supplied in the App Kit. These
include objects such as the Open and Close panels and the File and Edit
menus.

The point of view emphasized is how to choose the objects that will most
effectively present your application's features to your users.

Who Should Use This Book

If you are developing an OpenStep application with a graphical interface you
need to be familiar with the guidelines covered in this manual. The material is
appropriate for those who have never designed or built a GUI and also for
those who have experience with other GUI development environments.

Before You Read This Book

Before attempting to develop an OpenStep interface application, you should be
familiar with the workspace, the dock, the File Viewer, the applications
supplied with OpenStep software, and the general look and feel of the
OpenStep interface. If you haven't used the OpenStep interface, the following
end-user manuals will help you learn about it:

• Quickstart to the Openstep Desktop
• Using the Open Step Desktop

How This Book Is Organized

This manual presents interface guidelines in the following chapters:

Chapter 1, "A Visual Guide to the User Interface," is an illustrated
introduction to the interface objects supplied in the App Kit.

Chapter 2, "Design Philosophy," explains the basic principles that apply to all
OpenStep GUI's, including the OpenStep Workspace. Pay particular attention
to the three paradigms for user actions.

Preface xix

MS _ SURFCAST _000076452
Petitioner Microsoft - Ex. 1069, p. 19

Related Books

xx

Chapter 3, "User Actions: The Mouse and Keyboard," extends the concept of
action paradigms, which was introduced in Chapter 2. It looks at the specific
mouse and keyboard actions that operate interface objects. It covers both
supplied and developer-defined characteristics.

Chapter 4, "Windows in the OpenStepInterface," covers the different types of
windows supplied with the App Kit and the appropriate uses of each type. It
also includes a detailed discussion of standard window interaction.

Chapter 5, "Panels," is a detailed discussion of panel characteristics. It also
lists and describes the standard panels (such as the Save panel and the Open
panel) supplied with the App Kit. These descriptions indicate what behavior
has been implemented for the standard panels, and what remains for you to
implement.

Chapter 6, "Menus," is a detailed discussion of menu behavior. It also lists and
describes the standard menus supplied in the App Kit. Some of the necessary
behavior has been implemented for the standard menus, and some, which is
application specific, has been left for you to design and implement.

Chapter 7, "Controls," provides detailed discussions of the different control
types and when they are most effectively used. It explains what behaviors have
been implemented for each, and what remains for you to do. It also lists
guidelines for any custom controls that you develop.

Chapter 8, "The Interface to the File System," describes the OpenStep
conventions for using the Solaris file system.

The following manuals cover the tools you use to actually build OpenStep
GUI's:

• OpenStep Development Tools Guide, especially Chapter 3, which covers the
Interface Builder and Chapters 15 through 18, which are tutorials that make
extensive use of the Interface Builder.

• OpenStep Programming Reference, which covers the Application Kit and the
GUI class libraries.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076453
Petitioner Microsoft - Ex. 1069, p. 20

What Typographic Conventions Mean
The following table describes the typographic conventions used in this book.

Table P-l

Typeface or
Symbol

AaBbCc123

AaBbCc123

AaBbCc123

AaBbCc123

Preface

Typographic Conventions

Meaning

The names of commands,
files, and directories;
on-screen computer output

What you type, contrasted
with on-screen computer
output

Command-line placeholder:
replace with a real name or
value

Book titles, new words or
terms, or words to be
emphasized

Example

Edit your .login file.
Use ls -a to list all files.
machine name% You have mail.

machine name% su
Password:

To delete a file, type rm filename.

Read Chapter 6 in User's Guide.
These are called class options.
You must be root to do this.

xxi

MS _ SURFCAST _000076454
Petitioner Microsoft - Ex. 1069, p. 21

xxii OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076455
Petitioner Microsoft - Ex. 1069, p. 22

OpenStep Workspace

A Visual Guide to the User Interface

This chapter illustrates the different types of windows and controls supplied in
the App Kit. Besides showing you what these interface objects look like, it
includes some general remarks about the way each object is typically used.
Extended discussions of object behavior and hints for creating custom objects
are available in Chapters 3 through 7.

OpenStep Workspace

Types of Windows

Types of Controls

page 1-1

page 1-3

page 1-8

The following design principles were established before the OpenStep interface
was designed:

• The "look and feel" should be consistent across applications, so that interface
objects can provide cues that guide users in their interactions with OpenStep.
Objects should have consistent and reasonable responses to user actions.

• The mouse should be the user's primary input device.

• Colors should be used effectively-the OpenStep color scheme makes
extensive use of black, white, and grays to outline the interface objects, but
uses full color to accent and enhance them.

• The overall appearance should be simple and easy to understand, with
shading that gives a three-dimensional effect.

1-1

MS _ SURFCAST _000076456
Petitioner Microsoft - Ex. 1069, p. 23

1-2

The basic interface objects, such as windows and menus, were designed to
conform to these principles. The appearance and behavior of each object was
carefully planned, so that they would work together as a whole.

Menu Standard windows Application icons

Figure 1-1 The OpenStep Workspace

Figure 1-1 is a typical view of the OpenStep interface in use, with a number of
interface objects working together in the user's workspace. Two applications
(File Viewer and Edit) are represented by standard windows. Edit also has a menu
and a panel open. Other applications are running, but they are only represented
by their application icons and, in some cases, miniaturized windows known as
mini windows.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076457
Petitioner Microsoft - Ex. 1069, p. 24

Types of Windows

1=

Although many applications can run at once, only one can be active. The active
application is the one that accepts user input, such as typing and mouse clicks.
Users can tell which application is active by looking at the menu displayed in
the upper left of the screen; it is always the menu for the active application. In
Figure 1-1, the active application is Edit.

As shown in Figure 1-1, three type of windows are used to make application
features available to your users: standard windows, panels, and menus. Two
other kinds of windows, application icons and miniwindows, appear in the
workspace, but these do not make any application features available.

The active application always has at least one standard window or panel open.
When it has more than one open standard window or a combination of
standard windows and panels, one window will be the key window, which
accepts user typing. The key window is identified by its black title bar. In
Figure 1-1, the key window is the Find panel. (The key window is covered in
greater detail in "Application and Window Status" in Chapter 4.)

Standard Windows

The parts of a standard window are shown in Figure 1-2. Not every standard
window needs every part. The File Viewer window, for example, has no close
button, which prevents beginning users from accidentally closing a window
they need to use their computers. You decide which parts to include in the
standard windows you create.

A Visual Guide to the User Interface 1-3

MS _ SURFCAST _000076458
Petitioner Microsoft - Ex. 1069, p. 25

Panels

1-4

i s pot on a stormy on,
e ig htee n-year-old singer from the streets of C hicag 0 co mbi nes the ach ing sou nd
of old-time b lues with a seari ng messag e fro m her ge neratio n, But her voice-full
of energ y and open-throated pass ion-does nt let you wallow in des pair, It makes
you want to make a difference,

The title cut is a trib ute to 01 d-ti me bl ues lege nd Ski p James, but Brig ht is abo ut to
beco me a leg en d in her own rig ht. Brig ht learne d her craft hang i ng arou nd
outs i de the bac k doors of bars and clu bs on Cfh icag o's South Si de, S he got her
message from ki ds I ike herse It kids liv ing on the streets, The mess ag e is not
what yo u mig ht ex pext. These kids are not 100 king for a f4ree meal or a dealer,
They're 100 king for a future, not on Iy for the mse Ives but for the planet And
Brig ht sing s th is message 10 ud and clear,

Emily Brig ht may have her roots ina b lues past but s he's got her eyes on the
future, Her so und is so ulful, down-an d-dirty an d i nnoce nt at the same time, Th is
woman's g oi ng to soar, an d G it 0 n Down the Road is g oi ng to get an old trad itio n
movi ng in a fres h, new direction,

Figure 1-2 A Standard Window

More information about the appearance of windows in general, and standard
windows in particular, can be found in Chapter 4, "Windows in the OpenStep
Interface. "

Panels can look just like standard windows, but they have different roles in the
interface. They let users perform secondary functions that support the work
they are doing in standard windows. In text editors, for example, standard
windows display the documents users are editing, and panels are opened
when the application needs to obtain information for print, save, search, and
other commands.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076459
Petitioner Microsoft - Ex. 1069, p. 26

1=

Figure 1-3 An Ordinary Panel

The Font Panel in Figure 1-3 is an ordinary panel. When an ordinary panel is
open, users can move from the panel to any other window (including panels)
of the active application.

In some situations the application must get the user's undivided
attention-when, for example, the user must confirm a possibly destructive
command. Attention panels were designed for these situations. When an
attention panel is open, the user cannot move to any other window in the
application or issue any application commands. (It is possible to move to
another application.) Because attention panels are different than ordinary
panels, they look different, as shown in Figure 1-4.

Figure 1-4 An Attention Panel

A Visual Guide to the User Interface 1-5

MS _ SURFCAST _000076460
Petitioner Microsoft - Ex. 1069, p. 27

Menus

1-6

The App Kit supplies a number of commonly used panels (including the two
illustrated in this section) complete with text and controls. You can use them
without building them yourself. Using standard panels also helps your users,
because they have less to learn in a new application. Chapter 5, "Panels,"
contains information about using standard panels and creating application­
specific panels.

Menus give users access to all of an application's features. Users should be able
to look at the menu commands in an OpenStep application and get a good idea
of what it does. As shown in Figure 1-5, menu commands are grouped into a
main menu and its submenus.

Figure 1-5 Main Menu and Submenus

Users can always choose menu commands with the mouse. In some cases a
keyboard alternative -combination of keys that can be used instead of a mouse
click-may benefit them. To choose a command from the keyboard, users hold
down the Command key and type the character shown in the menu command.
For example, to quit an application, the user can either click on the Quit menu
command or hold down the Command key and press" q." "Implementing
Keyboard Alternatives" in Chapter 3, covers keyboard alternatives in more
detail.

The appearance of the main menu and a number of frequently used submenus
(File, Edit, Info, for example) have been standardized. These menus should
have generally the same commands, in the same order, in any application
Chapter 6, "Menus," describes the standard menus and commands, and gives
guidelines on creating application-specific menus and commands.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076461
Petitioner Microsoft - Ex. 1069, p. 28

1=

Miniwindows

When a user clicks on a window's miniaturize button (the left button in its title
bar), the window shrinks down to become a miniwindow, as shown in Figure
1-6. To get the full-size window again, the user double-clicks on the
miniwindow.

Figure 1-6 Miniwindows

Application Icons

Running applications are represented on the screen by icons. Users can start
applications by simply double-clicking on the right icon.

Application icons can be freestanding or docked. Docked icons line up along the
right edge of the screen. They stay in the dock even when the applications they
represent are not running, making it easy for users to locate the icons, double­
click them, and start up the applications. Freestanding icons appear in the
workspace after users start applications from the File Viewer, and they
disappear when users quit those applications. Users can customize their
environment by dragging application icons into and out of the application
dock.

Figure 1-7 Docked and Freestanding Icons

A Visual Guide to the User Interface 1-7

MS _ SURFCAST _000076462
Petitioner Microsoft - Ex. 1069, p. 29

Types of Controls

1-8

The dock varies the appearance of docked icons to indicate application status.
Three small dots (similar to an ellipsis) in the lower left corner of a docked icon
indicate the application is not running. The dots disappear when the
application is started up. During start-up, the icon is highlighted. These
changes are illustrated in Figure 1-7.

Controls are interface objects that appear on windows and let users give
information to an application or start its next action. Controls usually appear on
panels or menus, although they can appear on standard windows. Figure 1-8
shows some of the controls supplied in the App Kit. (Menu commands are
actually controls, but they are covered separately, in "Menus" earlier in this
chapter.)

r~p~~~r~ HHHHHHHHHH,

Button Text field
Color well

Selection List

Browser

l.!ljtt~::t}1
Slider Scroller

Figure 1-8 Controls

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076463
Petitioner Microsoft - Ex. 1069, p. 30

Buttons

1=

The following sections contain some general observations about using each
type of control supplied in the App Kit and show some of the variations in
appearance that are possible. Chapter 7, "Controls," covers the behavior of
App Kit controls in detail and discusses creating your own control types.

Buttons are most often used to start an action or set a state. Buttons that initiate
actions tend to be simple in appearance, such as those in Figure 1-9.

Figure 1-9 Simple Buttons

Among the buttons that initiate actions are those that open pull-down lists. See
Figure 1-10. A pull-down list combines a button and a menu-like list. The
button opens the list, and the user chooses an item to initiate an action. For
example:

Figure 1-10 Pull-Down List

Buttons that set a state tend to be more complex in appearance. Some typical
state buttons are shown in Figure 1-11.

A Visual Guide to the User Interface 1-9

MS _ SURFCAST _000076464
Petitioner Microsoft - Ex. 1069, p. 31

Text Fields

1-10

Figure 1-11 Typical State Buttons

Pop-up lists, like pull-down lists, combine a button and a list. The button opens
the list and users can choose an item to set its state. Unlike a pull-down list
button, the title on a pop-up list button will change to display the current state
(such as "Centimeters" in Figure 1-12).

Figure 1-12 A Pop-Up List

Text fields let users enter textual data by typing on the keyboard. The
application can work with the data as soon as the user presses Return or clicks
on an action button associated with the text field. Whenever possible, the tab
key should let users move to the next text field. Figure 1-13 shows three text
fields.

Figure 1-13 Text Fields

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076465
Petitioner Microsoft - Ex. 1069, p. 32

Sliders

Color Wells

1=

Sliders set values somewhere between minimum and maximum values you
determine when you create the slider. Users can change the value by dragging
the slider's knob. Refer to Figure 1-14.

Figure 1-14 Slider

Color wells, shown in Figure 1-15, let users set the colors of interface objects or
lines they are using in drawings. Applications often display a set of color wells
on a dialog, with predefined colors, from which the user can choose. Frequently
one color is chosen for the outline of a graphical object and another for its fill.
Users can change the colors available from color wells by dragging in a color
from another well, or by clicking on the well's border, which opens the color
selection panel.

Figure 1-15 Color Wells

A Visual Guide to the User Interface 1-11

MS _ SURFCAST _000076466
Petitioner Microsoft - Ex. 1069, p. 33

Scrollers

1-12

Scrollers let users move documents in the display area by dragging the knob or
pressing the arrow buttons. (Alt-clicking on the arrow buttons scrolls by a
screenfull.) Figure 1-16 shows a typical scrolling display area, with vertical and
horizontal scrollers.

Ii! BirdAndRowers.eps - lnetJdoe/exportiopensteplpostsctipt Ii

Figure 1-16 Scrollers

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076467
Petitioner Microsoft - Ex. 1069, p. 34

1=

Browsers and Selection Lists

Browsers are used to show lists of items when there are hierarchical
relationships between the items. The names of folders and files are typical of
the information displayed in browsers. Users can move up and down a
hierarchy represented in a browser by clicking on items that include the arrow
symbol C·. Selection lists resemble browsers, but show only one level of items.
In both browsers and selection lists, users can select items by clicking on them.
Figure 1-17 shows a typical browser and a selection list.

A browser A selection list

Figure 1-17 Browser and Selection List

A Visual Guide to the User Interface 1-13

MS _ SURFCAST _000076468
Petitioner Microsoft - Ex. 1069, p. 35

1-14 OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076469
Petitioner Microsoft - Ex. 1069, p. 36

Design Philosophy

Any user interface you build for an OpenStep application should meet the
needs of both novice and experienced users:

• For novice or infrequent users, it must be simple and easy both to learn and
remember. It should not require any relearning after an absence from the
computer.

• For experienced users, it must be fast and efficient. Nothing in the user
interface should get in the way or divert the user's attention from the task at
hand.

The challenge is to accommodate both these goals -to combine simplicity with
efficiency.

The interface objects introduced in Chapter 1 help you reach both goals. They
have recognizable properties of real objects, making it possible for your users
to rely on analogies to everyday experience when they approach the computer.
They will understand that windows in the interface behave much like separate
sheets of paper, and buttons work like the real buttons they are familiar with.
The same qualities of the user interface that provide simplicity for novice users
can also result in efficiency for more expert users.

Basic Principles page 2-2

Three Action Paradigms page 2-5

Paradigm Extensions page 2-8

Testing User Interfaces page 2-8

2-1

MS _ SURFCAST _000076470
Petitioner Microsoft - Ex. 1069, p. 37

Basic Principles

2-2

Four basic principles were considered when the overall look and feel of the
OpenStep user interface was established. You should consider the same
principles when creating interfaces for your own applications:

• The interface should feel natural to the user.
• The user is in control of the workspace and its windows.
• The mouse (not the keyboard) is the primary instrument for user input.
• The interface is consistent across all applications.

Each of these principles is discussed in more detail below.

The Interface Is Natural

The great advantage of a graphical user interface is that it can feel natural to
your users. In a carefully designed interface, the workspace becomes a visual
metaphor for some aspect of the real world, and the objects displayed on the
screen can be manipulated in ways that are analogous to the ways physical
objects are manipulated. This is what makes a user interface intuitive-it
behaves as your users, with experience of real objects in the real world, expect
it to.

The similarity of graphical objects to real objects should be at a fundamental,
rather than superficial level. Interface objects need not resemble physical
objects in every detail, but they do need to behave in ways that your users'
experience with real objects would lead them to expect.

For example, objects in the real world stay where your users put them; they do
not disappear and reappear. Your users should find the same qualities in
graphical objects. Similarly, although graphical dials or switches do not
duplicate all the features of physical dials and switches, they should be
recognized immediately by your users, and they should suggest the same
actions that real dials and switches suggest.

The User Is in Control

The workspace and the tools for working in it (the keyboard and mouse)
belong to the user, not to anyone application. Users should be free to choose
which application and window they will work in and to rearrange windows in
the workspace to suit their own tastes and needs.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076471
Petitioner Microsoft - Ex. 1069, p. 38

Users working with an application should be given the widest possible
freedom of action. It is inappropriate for an application to arbitrarily restrict
what its users can do. If an action makes sense, it should be allowed.

A voiding Modes

Applications should avoid setting up arbitrary modes that restrict their users.
Modes often make programming easier, but they also prevent your users from
determining what happens next.

In OpenStep interfaces, modes are used in only three situations:

• In attention panels, which are covered in Chapter 5, "Panels."

• In the modal tool paradigm, which is covered in "Three Action Paradigms"
in Chapter 2.

• In spring-loaded modes, which last only while the user holds a key or mouse
button down. See "Window Order" in Chapter 4 for more information.

When you use a mode in one of these situations, the mode should be freely
chosen by the user, it should be visually apparent that the situation is modal,
and you should provide an easy way out of the mode.

When You Should Act for the User

Even though the user is generally in control, it is sometimes appropriate for the
application to act on the user's behalf without waiting for instructions.
Consider the panel that appears when users choose the Print command. For
some items on this panel, like "page size," a state must always be selected.
Selecting a default page size of "letter" is an action that your application can
reasonably take for its users.

The purpose of acting for the user is to simplify a task and possibly make a
user action unnecessary. Therefore, when the application acts it must respond
as though the user had acted. If the page size control, for example, changes in
appearance when a user changes its state, it must change in the same way
when the application sets its state.

Actions made on the user's behalf should be simple and convenient.
Otherwise, they can be annoying or confusing, and reduce the user's sense of
control over the workspace. If there is any doubt whether an application
should act on the user's behalf, then it probably should not. It is better for the
application to do too little than too much.

Design Philosophy 2-3

MS _ SURFCAST _000076472
Petitioner Microsoft - Ex. 1069, p. 39

2-4

The Mouse Is the Primary Input Device

Every aspect of an application, every possible operation by a user, is
represented by a graphical object displayed on the screen. Graphical objects are
operated mainly by the mouse, and the keyboard is principally used for
entering text. The mouse is the more appropriate instrument for acting on
graphical objects.

One of the goals of user interface design is to make mouse actions as natural
for users as touch typing is for experienced typists. This is only possible if
mouse actions follow established paradigms that users can rely on. To help
achieve this, three paradigms have been developed for user actions on
OpenStep interface objects. They are covered in "Three Action Paradigms" on
the next page.

Although the mouse is the primary input device, the OpenStep interface also
allows keyboard alternatives to mouse actions. They can be efficient shortcuts for
experienced users. Keyboard alternatives are always optional; however, a
keyboard operation without a corresponding mouse-oriented action on screen
is not acceptable. ("Implementing Keyboard Alternatives" in Chapter 3 covers
the details of implementing keyboard alternatives.)

The Interface Is Consistent

When every application has the same basic user interface, all applications
benefit. Consistency makes each application easier to learn and increases the
likelihood it will be used and accepted.

Just as drivers become accustomed to a set of conventions on public highways,
users tend to learn and rely on a set of conventions for their interaction with a
computer. Although different applications are designed to accomplish different
tasks, they all require some common actions-selecting, editing, scrolling,
setting options, making choices from a menu, managing windows, and so on.
You application's behavior is predictable only when you follow the
conventions for these actions.

Interface conventions permit computer users, like drivers, to develop a set of
habits and to act instinctively in familiar situations. Instead of being faced with
special rules for each application, which would be like each town defining its
own rules of the road, users can carry their knowledge about interface objects
from one application to another.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076473
Petitioner Microsoft - Ex. 1069, p. 40

Three Action Paradigms
Graphical user interfaces work best when they have well-defined paradigms
for user actions with the mouse. These paradigms must be general enough to
support the widest possible variety of applications, and also precise enough
that users are always aware of what actions are possible and appropriate.

The OpenStep user interface supports three paradigms of mouse action:

• Direct manipulation
• Targeted action
• Modal tool

Direct Manipulation

Most interface objects respond directly to manipulations with the mouse-a
button is highlighted when pressed, a window comes forward when clicked,
the knob of a slider moves when dragged. Direct manipulation is the most
intuitive of the action paradigms and the one best suited for moving and
resizing graphical objects. For this reason, windows can only be reordered,
resized, and moved by direct manipulation.

By directly manipulating the icons that represent documents, applications, mail
messages, or other objects stored in the computer's memory, users can
manipulate the objects the icons represent. For example, dragging an icon to a
new location will change the position of a file in the file system's hierarchy.

The other paradigms-targeted action and modal tool-include some direct
manipulation. When users select objects as targets for actions, the objects
highlight themselves in some way, providing feedback to the users. And when
users select modal tools from palettes, the appropriate tool icons are
highlighted, reminding your users which tool is in use.

Targeted Action

Your applications provide controls, such as buttons and scrollers, which let
users choose what the application will do next. Clicking on a close button, for
example, doesn't just highlight the button; it also removes the window from
the screen. Controls are devices, like light switches and steering wheels, that let
your users carry out actions.

Design Philosophy 2-5

MS _ SURFCAST _000076474
Petitioner Microsoft - Ex. 1069, p. 41

Modal Tool

2-6

All controls act on targets. For some controls, such as the Quit menu command,
the entire application is the target. For others, such as the close button in a
window title bar, the target is a window. And for still others, such as the Cut
menu command, the target is a subset of one window's contents, such as a
range of text the user has selected.

In some of these cases (the Quit command and the close button) the target of
the action is implied, but in others (the Cut command) the user must explicitly
select the target. User-selected targets are frequently text strings or editable
graphics. They can also be other types of objects, such as windows (the target
of the Close Window menu command) or file icons (the target of the
Workspace Manager Destroy command).

When the target of an action must be selected by the user, the user first selects
the target and then chooses the control that initiates the action. With the Cut
command, for example, users select a range of text in a document and then
choose the command from the Edit menu.

This kind of targeted action, with an explicit selection, is the normal paradigm
for controlling or operating on objects. It has the advantage that users can
choose a target and then initiate a sequence of different actions. Users who
select text, for example, can change the font, the point size, and then copy the
selection to the pasteboard, without changing the target. Another advantage is
that a single control can act on a series of different user-selected targets,
making it extremely efficient and powerful. The Cut command, for example,
can delete text, graphics, icons, and other objects.

For those situations in which direct manipulation is the most natural way to
perform an operation, it is preferable to targeted action. However, since direct
manipulation is not sufficient for many operations, targeted action is actually
the most frequently used paradigm. Direct manipulation is an easy, natural
way to resize a window by dragging its borders. It is neither easy nor natural
to set the size of text by dragging the letters to a new height.

With the modal tool paradigm, users determine what their mouse actions will
do by selecting a tool. Depending on the tool that is chosen, mouse actions
(clicking and dragging) produce different visual results. For example, a
graphics editor might provide one tool for drawing circles and ovals, another
for rectangles, and a third for simple lines.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076475
Petitioner Microsoft - Ex. 1069, p. 42

Each tool sets up a mode-a period of time when the user's actions are
interpreted in a specific way. The mode limits the user's freedom of action to a
subset of all possible actions, which is normally undesirable. But with the modal
tool paradigm, the limits imposed by the mode are justified in several ways:

• The mode is not hidden. The altered shape of the pointer and highlighted
state of the tool make it apparent which mouse behaviors are in effect.

• The mode is not unexpected. It is the result of a user choice, not the by­
product of some other action.

• The way out of the mode (usually clicking on another tool) is apparent and
easy. It is also available to the user at any time.

• The mode mimics the way things are done in the real world. Artists and
workers choose the appropriate tool (whether it is a brush, hammer, pen, or
telephone) for the task at hand, finish the task, and choose a different tool
for the next task.

These modal tools are often displayed in palettes with related tools, each tool
enabling a specific set of mouse behaviors. The pointer assumes a different
shape for each tool, so that it is always apparent which one has been selected,
and the tool remains highlighted in the palette.

The modal tool paradigm is appropriate when a particular type of operation is
likely to be continued for some length of time (for example, drawing lines). It
is not appropriate if the user is put in the position of constantly choosing a new
tool before each action.

Figure 2-1 shows a typical palette of modal tools; the freehand line tool is
highlighted to indicate that it has been selected, and the pencil-image pointer
shows that a mode is in effect.

Figure 2-1 Palette of Modal Tools

Design Philosophy 2-7

MS _ SURFCAST _000076476
Petitioner Microsoft - Ex. 1069, p. 43

Paradigm Extensions

Testing User Interfaces

2-8

Users come to expect familiar operations throughout the user interface. It is
your responsibility to make sure the action paradigms your application uses
are apparent to its users-controls should look like controls (like objects that fit
into the targeted action paradigm), palettes of tools should look like palettes of
tools, and so on.

You should also make sure that the paradigms used in your applications fit the
actions users will actually be taking. It would not be appropriate if your users
were required to select a modal "moving tool" just to move objects. Graphical
objects should move, as real objects do, through direct manipulation.

Applied properly, the three paradigms described in this chapter can
accommodate a wide variety of applications and user actions. Yet, over time, as
programmers develop innovative software, new and unanticipated operations
might require extending these paradigms.

A paradigm extension should be your last resort. All possible solutions within
the standard user interface design covered in this chapter should be exhausted
first. You must weigh the functionality added by extending the paradigms
against the ill effects of eroding interapplication consistency for your users.
Make sure that any extensions you develop are obviously different to your
users from the existing paradigms.

If a paradigm extension is required, it should be designed so that it grows
naturally out of the standard user interface, and adheres to the general
principles discussed above.

The success of an application's interface depends on real users. There is no
substitute for having users try out the interface, even before there is any
functionality behind it, to see whether it makes sense to them and lets them
accomplish what they want.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076477
Petitioner Microsoft - Ex. 1069, p. 44

User Actions: The Mouse and
Keyboard

Chapter 2 introduced three basic paradigms-direct manipulation, targeted
action, and modal tools-that guide OpenStep users when they operate
windows, menus, controls and other interface objects. This chapter looks at the
specific mouse and keyboard actions-clicking, double-clicking, dragging, and
so on-that users perform on these objects.

Mouse Actions page 3-2

Selecting Objects with the Mouse page 3-5

Implementing Selection page 3-10

Managing the Pointer page 3-11

Mouse Actions for Custom Objects page 3-13

Keyboard Actions page 3-20

Implementing Keyboard Alternatives page 3-24

Implementing Modifier Key-Arrow Key Combinations page 3-31

3-1

MS _ SURFCAST _000076478
Petitioner Microsoft - Ex. 1069, p. 45

Mouse Actions

3-2

The mouse moves the pointer in the workspace. Users typically move the
pointer to an object and then use the mouse button to act on the object.There
are two basic mouse operations:

• Moving the mouse to position the pointer. When the pointer is focused on
an object, it is said to be positioned "on" or "over" the object. (With the
standard arrow pointer, the point of the arrow indicates the user's point of
focus; other pointer shapes have other graphic devices to indicate their
points of focus.)

• Pressing and releasing the mouse button.

From these basic operations, the standard mouse actions are derived:

• Clicking
• Multiple-clicking
• Dragging
• Pressing

Guided by the action paradigms, users can perform these mouse actions (and
combinations of them) to rearrange windows, operate controls, and edit
documents.

Note - The result of using App Kit objects includes recognition of appropriate
mouse actions and automatic execution of the application-specific behavior
you specify in action methods. The menu command object, for example, will
execute its action method when clicked. You write the action method, which
might open a panel or perform some other action. The text object responds to a
different set of mouse actions, including clicks, double-clicks, triple-clicks, and
dragging. If you create a custom control or a custom content area, you will
probably need to write code to handles any mouse actions you want the
control or area to respond to. This is covered later in this chapter in the
sections "Actions for Custom Objects" and "Other Action Keys."

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076479
Petitioner Microsoft - Ex. 1069, p. 46

Clicking

Users click on an object by positioning the pointer over it and operating the
mouse button. The mouse button is pressed and released quickly, and the
mouse is not usually moved during the click. The timing of the click is
generally not significant.

A click indicates that the user's attention is focused at a particular screen
location. The interface's response to the click depends on the object at that
location. If the object is a window, clicking on it brings it to the front and
usually selects it to receive characters from the keyboard. If the object is a menu
command, button, or other control, clicking on it initiates whatever
application-specific action has been defined for it. In a text area, a click selects
a location for the insertion point (the place where typing will begin). In a
graphics editor, it may select the location for a Paste command.

Note - The OpenStep interface provides two mouse functions, Select and
Menu. Select is used for clicking, double-clicking, choosing menu commands,
and other operations on interface objects that are described in this chapter.
Select is normally assigned to the left button (left-handed users can reverse the
functions of the buttons). In this manual, which covers operating the interface,
"clicking the button" and "clicking on an object" mean clicking the button that
is currently performing the Select function. For more information, see
"Changing the Function of the Mouse Buttons in this Chapter.

Multiple-Clicking

Users double-click an object by positioning the pointer over it and pressing and
releasing the mouse button twice. The second click must be within a short
interval of the first to be recognized as a double-click. (Users can adjust the
time interval within which two clicks are recognized as a double-click, to suit
their individual needs, with the Preferences application.) The pointer cannot
move significantly during the interval between the two clicks, which ensures
that the double-click is focused on a single screen location.

Users triple-click an object by rapidly pressing and releasing the mouse button
three times in succession. Triple-clicks are subject to the same pointer
movement and time interval constraints as double-clicks.

Some objects respond differently to single, double- and triple-clicks.

User Actions: The Mouse and Keyboard 3-3

MS _ SURFCAST _000076480
Petitioner Microsoft - Ex. 1069, p. 47

3-4

Pressing

Dragging

Users press an object by positioning the pointer over it, and pressing and
holding the mouse button. Some types of object, such as the arrows in a
scroller, respond to pressing and begin to act as soon as the mouse button is
pressed. They do not wait for the button to come back up and complete a click.

Pressing an object resembles a click because the mouse button will be released
eventually. The object is said to be pressed, rather than clicked, if the action
begins when the mouse button is pressed and ends when the button is
released.

Users drag by pressing the mouse button, holding it and moving the pointer
with the button down. This action is most often used in direct manipulation of
objects.

In general, a dragging action includes a click (since the mouse button is
pressed before dragging and released after it is complete). Dragging a window,
for example, will also bring it to the front, as though the user simply clicked on
it. There are, however, a few situations in which objects should respond
differently to dragging and clicking. These are covered in "When Dragging
Should Not Imply Clicking" later in this chapter.

Mouse Responsiveness

The pointer moves when the user moves the mouse, but the relationship
between the two movements is not constant. Rapid mouse movements move
the pointer farther than slow ones. This feature is called mouse speed, and users
can adjust it with the Preferences application.

Changing the Functions of the Mouse Buttons

OpenStep provides two mouse functions, Select and Menu. Select is used to
click, double-click, and choose menu commands, and is normally assigned to
the left menu button. Menu opens a copy of the active application's main menu
at the pointer location, and is normally assigned to the right menu button. On
a three button mouse, such as a Sun mouse, the middle button is not active,
while a two button mouse uses both of its buttons.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076481
Petitioner Microsoft - Ex. 1069, p. 48

Left-handed users may be more comfortable if they reverse these functions.
They can do so with the Mouse Preferences panel in the Preferences
application. (See "Bringing the Main Menu to the Pointer" in Chapter 6 for
details of the Menu function.)

Selecting Objects with the Mouse
The modal tool and targeted action paradigms require users to select objects.
They do so by clicking on them or by clicking and dragging. A variety of
objects can be selected, including:

• Tools in a tool palette
• Cells in a matrix or fields in a form
• Icons in a file viewer
• Items in a list (of files or mail messages, for example)
• Characters in editable text
• Graphical elements of editable artwork
• Position of the insertion point in text or graphics

Selecting an object distinguishes it from other objects of the same type. It does
not change the selected object in any way. (It does not include such operations
as clicking on a radio button or choosing a menu command.) In some cases,
such as clicking on a window to bring it forward or clicking in a text area to
position the insertion point, selecting is a complete operation in itself, followed
by another operation such as moving to a control on the window or typing at
the insertion point. But in most cases, users select an object to designate it as
the target for a subsequent operation (this is the targeted-action paradigm).

In areas where users are allowed to insert new material (text, graphics, and so
on), they can select objects already displayed or select a location for inserting.
In a text field, for example, it is possible to select characters that have already
been typed or an insertion point for more typing.

Note that windows are activated, rather than selected. Users can both activate
a window and select a control or text location on it with a single mouse
operation.

This rest of this discussion concentrates on selections in editable material,
although the rules often apply to other kinds of selection.

User Actions: The Mouse and Keyboard 3-5

MS _ SURFCAST _000076482
Petitioner Microsoft - Ex. 1069, p. 49

3-6

Clicking to Select

If the anchor point (the pointer's location when the mouse button was pressed)
and the endpoint (the pointer's location when the mouse button is released)
are substantially the same, the user's action is a click. A click sometimes selects
the item under the pointer and sometimes simply selects the clicked location as
the insertion point for text or a modal tool. In a graphics editor, for example, a
click can select an existing figure.

In text, a single click always selects a location as the insertion point, where
characters can be entered from the keyboard. The insertion point is normally
marked by a blinking vertical bar located between characters. If the user clicks
on top of a character, the insertion point is positioned at the nearest character
boundary. Clicking in a margin, or in an empty area away from any text, puts
the insertion point next to the nearest character.

Multiple-Clicking to Select

A single click in a text area selects the location of the insertion point, but
multiple clicks select a linguistically meaningful unit of the already existing
text. Double-clicking in text normally selects a word, and triple-clicking
normally selects a paragraph (defined as the text between two return
characters) .

If the user selects a character or word with a multiple-click and then drags, this
selects additional text in the character blocks selected by the multiple-click. For
example, after double-clicking to select a word, dragging after the double-click
selects all other words that are even partially within the range defined by the
anchor and end points of the drag.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076483
Petitioner Microsoft - Ex. 1069, p. 50

Dragging to Select

Dragging selects everything between the anchor and end points of the drag.
Exactly what is included in the selection depends on the type of material
through which the pointer is dragged. See "Selection in Text and Selections in
Graphics" later in this chapter for details.

Note - The App Kit supplies a text object and a browser with all of the
selection mechanisms described in this section except one-the text object does
not implement discontinuous selection. If you define your own selectable data,
you will have to implement selection yourself, in accordance with these
guidelines.

Extending a Selection

Pressing the mouse button to begin a click or drag operation normally cancels
the current selection to begin a new one. But holding down either the Alt key
or the Shift key modifies this action, allowing users to extend the current
selection instead of canceling it.

Continuous Extension

Clicking and dragging when the Alt key is held down results in a new
selection, which includes the initial selection and everything that lies between
it and the pointer's final position (where the mouse button is released). The Alt
key is thus an alternative to dragging as a way of selecting a range-the user
can click on one location to establish an anchor point, hold down the Alt key,
and click again to determine the end point.

If the initial selection is itself a range, Alt -clicking and Alt -dragging will extend
one edge of the selection (the edge closest to the pointer when the mouse button
goes down) to the pointer's final position (where the mouse button is released).
The Alt key thus also provides a way of adjusting the boundaries of the initial
selection. Alt-clicking outside a selected range extends the range to the point on
which the user Alt -clicks. Alt -clicking inside a selected range repositions the
closest edge of the selection to the point on which the user Alt-clicks. Refer to
Figure 3-1 to see the effect of Alt -clicking.

User Actions: The Mouse and Keyboard 3-7

MS _ SURFCAST _000076484
Petitioner Microsoft - Ex. 1069, p. 51

3-8

Initial selection

Figure 3-1 Alt-Clicking

BliJe
Brown
Green
Indigo
Mauve
Orange
Red

Alt-clicking on Violet Alt-clicking on Orange

If the initial selection is the result of a multiple-click the Alt key extends it, just
as dragging would. Double-clicking a word, holding the Alt key down, and
clicking on another word elsewhere in the text extends the selection to include
both words and all those between the two.

Discontinuous Extension

The Shift key lets users add to, or subtract from, the current selection.
Additions do not have to be continuations of the current selection, so
discontinuous selections can result.

Discontinuous selection is common for editable graphics, icons, and items
arranged in a list. It is not usually implemented for normal text.

To extend a selection, the user clicks and drags as usual while holding the Shift
key down. New material is selected, but the previous selection also remains.
This is illustrated in the middle column of Figure 3-2.

Initial selection

Figure 3-2 Shift-Dragging

Mauve
Orange
Red
Violet

Shift-dragging from
Mauve to Violet

OpenStep User Interface Guidelines-September 1996

Shift-dragging from
Mauve to Violet

MS _ SURFCAST _000076485
Petitioner Microsoft - Ex. 1069, p. 52

To subtract from the selection, the user holds the Shift key down while clicking
on or dragging over some part of the current selection. Shift -clicking and Shift­
dragging deselect material that has already been selected. While keeping the
Shift key down, the user can first select material, then deselect it, then select it
again.

Shift-dragging either selects or deselects; it never does both. Which it does
depends on the status of the item under the pointer when the mouse button
goes down:

• If the item is not currently part of the selection, Shift -dragging will select it
and everything the user drags over. It will not deselect material that
happens already to be selected.

• If the item is currently selected, Shift-dragging deselects it and any other
selected material that is dragged over. It will not add unselected material to
the selection.

How the Arrow Keys Affect a Text Selection

In a text area, the keyboard arrow keys are used to position the insertion point
or, if modified by the Alt key, alter the current selection. Unlike the mouse,
which can select anywhere within a document, movement by the arrow keys is
only relative to the current selection. The arrow keys have nothing to do with
the pointer, which is controlled only by the user's mouse movements.

The following descriptions assume that the initial selection, before the user
touches an arrow key, is a range of text. The simpler case, in which the current
selection is not a range but an insertion point, is not directly addressed, but it
can easily be derived from the descriptions given.

• When used alone (without a modifier key), the current selection is canceled
and the insertion point moves. The left arrow key puts the insertion point
one character before the beginning of the current selection. The right arrow
key puts the insertion point one character beyond the end of the current
selection. These keys will move the insertion point to the previous or next
line if necessary.

User Actions: The Mouse and Keyboard 3-9

MS _ SURFCAST _000076486
Petitioner Microsoft - Ex. 1069, p. 53

Implementing Selection

3-10

• The up arrow key puts the insertion point one line above the beginning of
the current selection, and the down Arrow key puts it one line below the
end of the current selection. As the up and down Arrow keys move it from
line to line, the insertion point maintains the same approximate distance
from the left margin. It falls at the end of any line that is shorter than that
distance, but comes back out to the original distance when a line that is long
enough is encountered.

More information on handling the arrow keys is in "Other Action Keys" later
in this chapter. Modified arrow keys-for example, Alt-arrow-are discussed
in "Implementing Modifier Key-Arrow Key Combinations" later in this
chapter."

"Selecting Objects With the Mouse" earlier in this chapter described how your
users can select the objects supplied with the App Kit. There are two situations
in which you need to implement selection yourself: when your application has
areas of editable text and when you include custom objects and allow your
users to make multiple selections of them. This section describes the proper
interface behaviors for these situations.

Note - Even if your application uses the supplied Text object for its editable
text areas, you still need to implement the modifier-arrow key combinations
described in "Implementing Modifier Key-Arrow Key Combinations" later in
this chapter.

When implementing selection, make sure that your application never moves
the selection out of the user's view. When necessary, the display must scroll
itself to make the new selection visible. Users, of course, can choose to move a
selection out of view with a scroller. But as soon as the user makes a new
selection or extends the initial selection (by such actions as pressing an Arrow
key), the application selection should scroll the selection back into view.

Note - To hide the pointer temporarily, use the single-operator function
PSobscurecursor().

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076487
Petitioner Microsoft - Ex. 1069, p. 54

When Discontinuous Selection Is Not Implemented

Sometimes an application implements selection in an area without
implementing discontinuous selection. In situations like this, the Shift key
should act just like the Alt key during a selection, and both keys should result
in continuous selections.

For example, discontinuous selection is not implemented in the App Kit text
object, so both Shift -clicking and Alt -clicking extend the selection continuously.
This saves the user from making errors due to pressing the wrong key when
trying to extend the selection.

Selection in Text and Selection in Graphics

Managing the Pointer

Dragging a rectangle to make a selection has slightly different results in text
and graphics. In text (and other serially arranged material) the selection
includes the entire series of characters between the anchor and end points. In
graphics (and other material consisting of objects that can be independently
arranged, such as icons or the graphic elements that make up a picture) the
selection generally includes everything that is even partially within the
rectangle defined by the anchor and endpoints. Figure 3-3 shows the difference
between selections in text and graphics.

The title cut is a trib ute to 01 d-ti me bl ues lege nd
Ski p James, but Brig ht is abo ut to become a leg en d
in her own rig ht.~higMIJ3<l.rMJ;!h~r¢r<l.fI;hMgmg
aroUrid@tsldetheba¢kd60rsofbafs<l.nd¢lubson
()hI@gb'$$bllth$id~'S he got her mes sag e from kids
Ii ke hers elf. kids livi ng on the streets. The message
is not w hat you mig ht ex pect These kids are not
looki ng for a free meal or a dealer. They're looki ng
for a future, not on Iy for the mse Ives but for the
planet And Brig ht sings this message loud and clear.

Figure 3-3 Selecting Objects by Dragging the Pointer

The pointer is generally handled by the App Kit. There are, however, situations
in which an application needs to explicitly hide the pointer or change its shape.

User Actions: The Mouse and Keyboard 3-11

MS _ SURFCAST _000076488
Petitioner Microsoft - Ex. 1069, p. 55

3-12

Changing the Pointer

Your applications can change the pointer from the standard arrow ~~ to any
other image of equal size (I6 pixels by 16 pixels). When doing so, you must
specify what part of the pointer acts like the tip of the arrow. That point, the
pointer's hot spot, should be apparent to your users from the image itself. For
example, if the pointer is an X, the hot spot should be where the two lines
cross.

A shape other than an arrow is more useful in many situations. A typical
example is the I-beam pointer used to select the insertion point in text areas.
This pointer has its hot spot in the center of the beam.

It is often a good idea to change the shape of the pointer to indicate that the
user has entered a mode. In applications that use the modal tool paradigm, the
pointer should change to indicate which tool has been selected. For example,
the pointer might look like a pencil while thin lines are being drawn in a
graphics application, or like a wide brush when painting in broad strokes.

If mouse actions are valid only in a certain area, the pointer should revert to its
normal shape when it leaves that area. It is best not to change the pointer too
often, however. To avoid confusing your users, use the standard arrow
wherever possible.

Hiding the Pointer

A visible pointer is essential for mouse actions, but it can get in the way when
users are concentrating on using the keyboard. The text object automatically
hides the pointer (makes it disappear from the screen) when users begin to
type. The pointer returns to the screen as soon as the user moves the mouse,
which signals a shift in attention away from the keyboard and back to the
mouse.

The pointer should also be hidden whenever the user selects an insertion point
or a range of text. The new selection is a good indication that the user is ready
to begin typing, and hiding the pointer prevents confusion between the I-beam
pointer and the vertical bar representing the insertion point. Unless it is
hidden, the I-beam can obscure the vertical bar. In this case too, the pointer
must reappear as soon as the user moves the mouse. (This is not currently
implemented by the text object, so each application should do this for itself.)

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076489
Petitioner Microsoft - Ex. 1069, p. 56

Mouse Actions for Custom Objects
This section describes the behaviors you should implement for custom
controls, application-specific document areas, and other custom objects. It
describes how these objects should respond to clicking, dragging, and other
mouse operations. You do not need the guidelines in this section if you are
only using the standard Application Kit objects.

Reacting to Clicks

When one of your users clicks on an object on screen, the object should provide
immediate, visible feedback as soon as the mouse button goes down.
Depending on the action paradigm in effect, however, the correct behavior for
the object may be to wait until the mouse button is released before it does
anything more:

• If the purpose of the click is direct manipulation of the object, the object
should react when the mouse button goes down. For example, when a
window is clicked on, it comes to the front of the screen without waiting for
the mouse button to go up. Similarly, when editing text, the user is
committed to a new selection as soon as the mouse button is pressed.

• If the click is intended to initiate a targeted action or choose a modal tool,
then, in general, the object should act when the mouse button goes up. This
gives the user a chance to change his or her mind. If the user moves the
pointer off the object before releasing the button, the action is canceled.
Suppose, for example, that the user presses the mouse button while the
pointer is over the Cut command in the Edit menu. The command is
highlighted, but the current selection is not actually cut until the user
releases the mouse button. If the user moves the pointer away from the
menu before releasing the mouse button, the command will not be carried
out.

Note - You can implement multiple-clicks so that they act when the mouse
button is pressed the second (or third) time, instead of waiting for the mouse
button to go back up (as is usual for a single click). This implementation can
help improve the perceived speed of your application.

User Actions: The Mouse and Keyboard 3-13

MS _ SURFCAST _000076490
Petitioner Microsoft - Ex. 1069, p. 57

3-14

First Click on a Window

Sometimes the intention of a click is simply to bring a window forward. Your
application needs to decide whether the user wanted the click to bring the
window forward, or to bring it forward and do some work in the window. Use
the following guidelines:

• If the user chooses a particular control-clicking on a button or a scroller, for
example-the click should not only bring the window forward, but should
also operate the control. Since controls are small, it is reasonable to assume
that the user chose to position the pointer over the control and click on it.

• If the click is generally within the content area of the window, but not over
a control, the click should just bring the window forward, without
otherwise acting on it. In particular, it should not alter the current selection.

If the user chooses to double-click in the content area of the window, the
normal double-click action should be performed. Double-clicking on a word
should select the word whether the window is in front or not.

When Dragging Should Not Imply Clicking

In general, the main action performed by an object should be initiated by a
single click, and dragging should be recognized as a click and initiate the same
action. But there are situations in which you don't want dragging an object to
initiate its action.

For example, the main action associated with a docked application icon is
activating an application, but users can also move icons by dragging them.
Users should be able to move icons without activating their applications, so
dragging and activating must be separate actions.

There are three ways to handle a situation like this:

• Require users to hold down a modifier key when the object is dragged.

• Implement the object so that dragging does not perform a click.

• Implement the object so a click does nothing, and a double-click is required
to perform the object's action.

In the case of the docked icon, the first solution (requiring a modifier key to
drag the icon) is not appropriate. Moving an icon is a common operation, and
unmodified dragging is the natural way to do it.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076491
Petitioner Microsoft - Ex. 1069, p. 58

The second solution (a single-click activates the application and dragging does
not perform a click) is not appropriate either, mainly because users who
intended to drag the icon could easily click on it accidentally. An accidental
click would begin the icon's main action (activating an application), which
takes time, brings up windows, and cannot be reversed until the application is
fully started. In addition to this, if a single-click started the application, it
would be inconsistent with the way application icons behave in the File
Viewer. In the File Viewer, a single-click selects the application's file. It is not
started up until the user double-clicks it.

So the only acceptable implementation for docked application icons is the third
possibility, in which a single-click does nothing and a double-click starts the
application.

Another example, in which the second solution (dragging does not imply a
single click) was implemented, is the File Viewer's shelf. When the user clicks
on the icon of a folder on the shelf, the File Viewer changes to show the
folder's path. However, when the user drags the icon off the shelf, the File
Viewer does not perform the click's action-it does not change the current
path. One of the reasons this solution works is that the shelf differentiates
clicking from dragging by having a threshold for dragging. Until the user
drags the icon a certain distance, it does not move. Once the user has
committed to dragging the icon, it cannot be clicked. The icon also looks very
different when it is clicked on (it is highlighted) then when it is dragged (it
moves, and a dimmed copy is visible in its old location).

In general, for this kind of implementation, where dragging does not perform
a click, the following conditions must be met to be successful:

• The user gets clear visual feedback that indicates whether the object is
reacting to a click or to dragging, and it is difficult for the user to do the
wrong thing. For example, if the user starts to drag the object but then
decides to put it back, the action should not be treated as a click.

• The single-click's action matches similar uses of single-clicks elsewhere in
the interface.

• The action initiated by the click does not have consequences that the user
might want to avoid and that cannot easily be stopped or reversed. This
condition is important because the user might accidentally click on an object
when intending to drag it.

User Actions: The Mouse and Keyboard 3-15

MS _ SURFCAST _000076492
Petitioner Microsoft - Ex. 1069, p. 59

3-16

When to Use Multiple-Clicking

You should only implement double-clicking for a custom object when it
logically extends the action of a single-click. Triple-clicking should only be
implemented when there is an action that logically extends a double-click.
There are two reasons for this rule, one philosophical and the other
programmatic:

• Complex mouse actions are best remembered and understood when they
appear to grow naturally out of simpler actions.

• Every double-click includes a single-click (the first click in the sequence),
and every triple-click includes a double-click. At the time an application
receives one click, it cannot know whether additional clicks will be received.
So it must first act on the single click, then the double-click, then the triple­
click.

For example, the first click of a double-click on a File Viewer icon selects the
icon, just as a single-click would. The second click activates the application
associated with the icon. A single click in text selects an insertion point, a
double-click extends the selection to a word, and a triple-click extends it
further to a full line, sentence, or paragraph.

Quadruple-clicks (and above) become increasingly difficult for users to
produce or understand. They are neither used nor recommended in the
OpenStep user interface. Even triple-clicks should be used sparingly.

Dragging From a Multiple-Click

The act of pressing a mouse button to initiate dragging can be part (the last
part) of a double-click or triple-click. If the user does not immediately release
the mouse button and begins dragging at the end of a multiple-click, the
dragging action can be assigned a meaning that is related to the meaning of the
multiple-click.

In text, for example, double-clicking selects a word and dragging from a
double-click selects additional words within a range of text. If triple-clicking
selects a line, dragging from a triple-click will select additional lines within the
range.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076493
Petitioner Microsoft - Ex. 1069, p. 60

How to Use Dragging

Dragging can be implemented in a variety of situations. The three most
common are:

• Moving objects, such as windows and the knobs of scrollers

• Defining ranges, usually to select the objects within the range

• Sliding from one object to another in order to extend an action initiated in
the first object to the second object

The following sections cover these situations in detail.

Moving Objects

The user can drag a movable object by positioning the pointer over it, pressing
the mouse button, and moving the mouse while the button is down. The object
should move in such a way that it remains aligned with the pointer on screen.
When the object is constrained within an area or a track as a scroller knob is, it
should remain as closely aligned with the pointer as possible.

The Application Kit contains support for moving objects between and within
applications. It even changes the pointer to indicate whether the object is being
moved, copied, or linked. See "Managing the Pointer" earlier in this chapter
for more information on changing the pointer.

Defining Ranges

The user can also drag over an area or through a series of items such as text
characters to define a range. The position of the pointer when the mouse
button is pressed is the anchor point. Its position when the mouse button is
released is the endpoint. The difference between the anchor point and endpoint
determines the area or objects inside the range. Figure 3-4 shows anchor point
and endpoint locations.

Dragging to define a range is mostly used to make a selection (such as a string
of text characters or a group of icons) for the targeted-action paradigm.

User Actions: The Mouse and Keyboard 3-17

MS _ SURFCAST _000076494
Petitioner Microsoft - Ex. 1069, p. 61

The anchor point

The endpoint

3-18

When the user drags to define a rectangular range, as in a drawing program,
applications often drag out, or "rubberband," a rectangle that shows the area
between the anchor point and endpoint. See "Selection in Text and Selection in
Graphics" earlier in this chapter for more information on the dragging
operations that define a rectangular range.

Figure 3-4 Dragging to Define a Range

Sliding From Object to Object

Sometimes a group of closely related objects reacts to dragging as though the
user clicked on one of the objects. No matter which object in the group was
under the pointer when the mouse button was pressed, the object chosen is the
one that is under the pointer when the mouse button is released. (Notice that
when an object is not in a group, it is chosen only when it is underneath the
pointer both when the mouse button is pressed and when it is released.)

When working with menus users can press the mouse button when the pointer
is over one command and release it when it is over another, which chooses the
command that is under the pointer when the button is released. Similarly,
when working with a tool palette, users can drag the pointer from one tool to
another, or when working with a set of radio buttons they can drag the pointer
from button to button.

The grouped objects do not have to be all of the same type. For example, a user
can drag from a button that controls a pop-up list through the list to make a
selection, or from a menu command that opens a submenu into the submenu.

If the user can drag from one object to another in a group of objects, then this
fact should be apparent from the way the objects are displayed. Usually, such
objects are displayed in a single row or column, as close to each other as

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076495
Petitioner Microsoft - Ex. 1069, p. 62

possible. For example, graphical radio buttons should be displayed next to
each other, to distinguish them from ordinary buttons. (Graphical radio
buttons are discussed in detail in Chapter 7, "Controls. ")

When to Use Pressing

For the most part, pressing is an alternative to repeated clicking. It should be
used wherever a control's action can be repeated with incremental effect.
Clicking a scroll button is a common example. One click scrolls one line of text,
a second click scrolls another line, and so on. Pressing the scroll button scrolls
continuously, until the mouse button is released.

Pressing is also used to begin the mouse action of sliding from one object to
another. If a button controls a pop-up list, the user presses the button and
drags through the list to choose one of its options. After pressing a menu
command to bring up a submenu, the user can drag into the submenu.

Using Modifier Keys With the Mouse

You can use modifier keys to change the results of mouse operations. Modified
mouse actions should be implemented for optional or advanced features of
your user interface, because they are harder to remember and require more
coordination to produce. They typically extend or alter the effect of the
standard mouse action. For example:

• Dragging a file icon from one directory window to another moves or copies
the file to the new directory, depending on whether the directories are on
the same disk or a different disk. Command-dragging always moves the file.
Alt-dragging always copies the file. Control-dragging is similar to copying,
but the new "copy" of the file is simply a link to the old copy. The user
knows what will happen because of the visual feedback the application
provides. It changes the pointer shape (to a UJ for example, when Alt­
dragging).

• Clicking on a scroll button scrolls a line of text. Alt-clicking scrolls a larger
amount of text.

• Alt-clicking on a window moves it to the front without making it the key
window or activating its application.

User Actions: The Mouse and Keyboard 3-19

MS _ SURFCAST _000076496
Petitioner Microsoft - Ex. 1069, p. 63

Keyboard Actions

3-20

• Clicking selects a new insertion point in text. Alt-clicking extends the
selection to include everything between the current insertion point and the
point of the click. If an application implements discontinuous selection,
Shift-clicking will select a new insertion point without dropping the old
selection. If discontinuous selection is not implemented, Shift -clicking acts
like Alt -clicking.

• Clicking selects an icon in a directory window. Shift -clicking adds new icons
to the current selection. (Shift-clicking of a selected icon removes it from the
selection.)

Note - The Caps Lock key does not work for Shift-clicking or Shift­
dragging-the Shift key must be held down manually. This way, users will not
find themselves Shift -clicking by mistake when they intend only to click.

The Control key (with no other modifier keys) is often used for mouse actions
that create or act on links. If your application's documents can receive linked
information, then you need to implement the Control-double-click accelerator,
as described in the discussion of the Link Inspector panel in Chapter 5,
"Panels."

Some modifier keys should be used only in limited circumstances:

• The Help key should be used only for Help-clicking, which brings up help
on the clicked object.

• The combination of Alt and Control should be used only as a substitute for
the Help key. (This is necessary because some keyboards do not have a Help
key.)

Applications should avoid distinguishing between the left and right key of the
Shift and Alt pairs. Users do not expect such a distinction except for certain
computerwide, potentially destructive operations, such as resetting the
computer's processor. Also, there is no hardware-independent way to
differentiate the left and right modifier keys.

In theory, the keyboard is used only to enter text, and the mouse is used for all
other operations, such as making selections and using controls. In reality, a
number of actions are initiated from the keyboard. A few, such as Return and
Enter, are traditional keyboard actions. Others are keyboard alternatives that

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076497
Petitioner Microsoft - Ex. 1069, p. 64

provide convenient shortcuts for initiating mouse actions. There are some
special key combinations that modify mouse actions. Figure 3-5 shows a
typical Sun keyboard layout.

~)
Help ~LJ I F1 I F2 IF3 IF4

I
IF5 IF6 IF7 I F8

I
I F9 IF10 IF11 IF12 I I~;:;,el~" IPao," 11<l~I<)))1 ~I cI) I

,------

- I' I~ I~ I: I~ I; I ~ I; I~ 16 1:- I: I BeckSp'" I'e'"rt I Hom, I~g, I D Stop Again . 1 Nom / * Lock
f-- -

Tab ~ 10 IW IE IR IT IY IU I' 1° I P 11 Ii 1\ ID""'IEed I~~ I 7 8 9
Props Undo Home t PgUp

r-- -

Front Copy c:::::::::J Caps IA IS ID IF IG I H IJ IK IL I: I:' I -' Ee'"
4 5 6

Lock - -r-- -

IZ IX Ie IV IB IN 1M I: I ~ I; I + Shift d±hJ
1 2 3

Open Paste t Shift Eed : PgDn

r-- - Enter
Find Co, ct., I AH I ° I 1° 1= It·

0
Com Graph 'e, pose D,' ~-

Figure 3-5 Typical Keyboard Layout for a Sun Computer

A computer keyboard includes standard typewriter keys, which are used to
enter letters, numbers, and common symbols. This characteristic is covered in
Using the Open Step Desktop.

The computer keyboard also has keys that are not found on typewriters,
including Alt, Control, Command, Help, Enter, and the Arrow keys. These
keys, along with the Shift key, are used in keyboard actions and must be
considered when developing an application.

Modifier Keys

Shift, Alt, Control, Command, and Help are known as modifier keys because
they can modify the results of a mouse operation or another key on the
keyboard. If a user presses Shift-3, for example, it yields the # character, and
pressing Command-c issues a Copy command. Pressing a modifier key by
itself does nothing.

To use a modifier key, the user must hold it down and press the key (or
perform the mouse action) to be modified. More than one modifier key can be
used at a time. (Command-Shift-c is a valid combination.)

User Actions: The Mouse and Keyboard 3-21

MS _ SURFCAST _000076498
Petitioner Microsoft - Ex. 1069, p. 65

3-22

Use of modifier keys is summarized the following paragraphs.

• The Shift key modifies keystrokes to produce the uppercase character on
alphabetic keys and the upper character on numbers and other two­
character keys. It is sometimes used with other modifier keys.

• The Alt key modifies keystrokes to produce an alternate character to the one
that appears on the key. In general, the characters produced are special
characters that are used relatively infrequently. To find out which alternate
characters are generated by which keys, see Using the Open Step Desktop.

Note - On SPARC keyboards, this function is mapped to the Alt key. On x86
keyboards, it is mapped to the right Alt key.

• The Control key modifies keystrokes to produce standard ASCII control
characters. Some control characters are generated by single character
keys-for example, Tab is Control-i, Return is Control-m, and backspace
(Shift-Delete) is the same as Control-h.

Note - On SPARC keyboards, this function is mapped to the Control key. On
x86 keyboards it is mapped to the Ctrl key.

• The Command key provides a way to choose menu commands with the
keyboard rather than the mouse. As an alternative to clicking on a menu
command with the mouse, the user can press the Command key in
conjunction with the character displayed in the menu next to that command.
For example, Command-c chooses the Copy command.

Note - On SPARC keyboards, this function is mapped to the Meta (+) keys. On
x86 keyboards, it is mapped to the left Alt key.

• The Help key does not modify keystrokes. It is used only to modify mouse
actions, as described in "Using Modifier Keys with the Mouse" earlier in
this chapter.

Note - On SPARC keyboards, this function is mapped to the Help and FI keys.
On x86 keyboards, it is mapped to the FI key.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076499
Petitioner Microsoft - Ex. 1069, p. 66

Special Command-Key Combinations

Several Command-key combinations produce special effects. Some playa
particular role in the user interface. Others, in effect, give commands to the
computer itself rather than to just one application. They cannot be used for
functions other than those listed below.

• Command-. (period) should let users cancel the current operation in the
active application. (The Esc key also performs does this.) Although the
Application Kit has code to support Command-., it is not automatic. An
application must ask for this functionality.

• Command-space should be used for file name completion. In contexts where
it is appropriate for the user to type a file name (such as in an Open panel),
Command-space bar displays as many characters as match all possible file
names in the directory. If the user first types enough characters to identify a
particular file and then presses the space bar with the Command key down,
the remaining characters of the file name are filled in. (In many applications,
the Esc key also performs file name completion.)

Other Action Keys

This section describes the kinds of results that you can appropriately
implement for the non text keys that initiate actions. These keys generate non
display characters that tell the application to initiate some action. The action
will depend on how the application handles the special character. Some typical
responses to these special character keys are listed here.

• The Return key moves the insertion point or prompt to the beginning of the
next line, much like the carriage return key of a typewriter. When data is
entered in a text field or form, Return moves the insertion point and informs
the application that the data is ready for processing.

• The Enter key, like Return, signals that data is ready for processing. It need
not move an insertion point or prompt to the beginning of the next line.
Enter can also be generated with Command-Return.

• The Backspace key, usually located above the Return key, as shown in
Figure 3-5, removes the preceding character in text or deletes the current
selection. Shift-Backspace generates the backspace character, which moves
the insertion point back one character. In most applications, the Del key has
the same function as the backspace key.

User Actions: The Mouse and Keyboard 3-23

MS _ SURFCAST _000076500
Petitioner Microsoft - Ex. 1069, p. 67

• The Tab key moves forward to the next tab stop, or to the next text field in a
sequence. Shift-Tab moves backward to the previous tab stop or text field.

• The Arrow keys move the symbol that is used in some contexts to track
where the user is writing or entering data-for example, the insertion point
in a document processor. The arrow keys' action is described in "How the
Arrow Keys Affect a Text Selection" later in this chapter, and "Implementing
Modifier-Arrow Key Combinations" earlier in this chapter.

Handling Arrow Characters

Because the Arrow keys generate the same character codes as the Symbol font's
arrow characters, text objects should check to see which key generated the
character. The Arrow keys never produce visible arrow characters. However,
when a non arrow key (perhaps modified by the Alternate key) produces an
arrow character code, it should produce visible arrow characters, and not result
in Arrow key functionality.

For example, Alt-f should produce a visible left-arrow symbol, as shown in the
User's Guide, instead of moving the insertion point left one character.

Implementing Keyboard Alternatives

3-24

Many users find it faster and easier to operate graphical objects with their
keyboards than with the mouse. The standard menus include keyboard
alternatives for some operations; you should consider providing keyboard
alternatives for the operations that will be most frequently performed in your
applications.

Note - For most applications, keyboard input is handled automatically. Text
entry and display are handled by the App Kit's Text object, and keyboard
alternatives are automatically converted into clicks on the controls they are
associated with. All you have to do is choose keyboard alternatives (as
discussed later in this chapter) and then specify them in Interface BuilderTM. If
your application does not use the Text object for its text entry you will need to
write code that handles keyboard input.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076501
Petitioner Microsoft - Ex. 1069, p. 68

Keyboard alternatives consist of a single alphanumeric keystroke, which is
modified by the Command key (and possibly another modifier key). They are
most often used for menu commands, although they are permitted for a
panel's buttons and pull-down lists, as well.

Although a keyboard alternative is associated with a graphic object, the object
does not have to be on the screen for the alternative to function. Keyboard
alternatives for menu commands and panel buttons will work when the menu
or panel is hidden.

This section contains guidelines for assigning keyboard alternatives to
application functions. There are three sets of keyboard alternatives-reserved,
required, and recommended. Each set is listed in its own table.

Notice that users can use the Preferences application to change the keyboard
alternatives (for every application), which means the keyboard alternatives you
set up are only the initial settings.

Reserved Keyboard Alternatives

If your application provides a function listed in Table 3-1, you must use the
command and reserved keyboard alternative assigned to it. For example, if
your application opens files it must have the Open command, and the function
Command-o must be the keyboard alternative.

You cannot use these reserved characters as alternatives for any other
commands. If your application does not allow the user to open files, it will not
have an Open command and must not use Command-o as a keyboard
alternative. (See "Standard Menus and Commands" in Chapter 6 for more
information on the listed commands and menus.)

Table 3-1 Reserved Keyboard Alternatives

Keyboard Alternative Command Menu

Command-? Help Info menu

Command-a Select All Edit menu

Command-c Copy Edit menu

Command-h Hide Main menu

Command-n New Document menu

Command-o Open Document menu

User Actions: The Mouse and Keyboard 3-25

MS _ SURFCAST _000076502
Petitioner Microsoft - Ex. 1069, p. 69

3-26

Table 3-1 Reserved Keyboard Alternatives (Continued)

Keyboard Alternative

Command-p

Command-q

Command-s

Command-v

Command-w

Command-x

Command-z

Required Keyboard Alternatives

Command

Print

QUit

Save

Paste

Close Window

Cut

Undo

Menu

Main menu

Main menu

Document menu

Edit menu

Windows menu

Edit menu

Edit menu

If your application provides a function listed in Table 3-2, you must use the
command and required keyboard alternative assigned to it. For example, if the
application has a Find panel, you must use Command-f as the keyboard
alternative for bringing it up. See "Standard Menus and Commands" in
Chapter 6 for more information on the listed commands and menus.

If the application does not implement a listed function (it does not have a Find
panel), you can assign its required keyboard alternative (Command-f) to
another menu command. However, to preserve interapplication consistency, it
is strongly recommended that you first try to use characters other than those
on this list.

Table 3-2 Required Keyboard Alternatives

Keyboard Alternative Command Menu

Command-; Check Spelling Edit menu

Command-b Bold (Unbold) Font menu

Command-d Find Previous Find menu

Command-e Enter Selection Find menu

Command-f Find Panel Find menu

Command-g Find Next Find menu

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076503
Petitioner Microsoft - Ex. 1069, p. 70

Table 3-2 Required Keyboard Alternatives (Continued)

Keyboard Alternative

Command-i

Command-t

Command-C

Recommended Keyboard Alternatives

Command

Italic (Unitalic)

Font Panel

Colors

Menu

Font menu

Font menu

Varies

If your application provides a function listed in Table 3-3 and you want to set
up a keyboard alternative for it, you must use the recommended keyboard
alternative. For example, if you provide a keyboard alternative for the Copy
Ruler command you must use Command-I.

If you don't use the keyboard alternative for the recommended function, you
can use it for another command. For example, if you don't set up an alternative
for the Copy Ruler command, Command-l can be used as a keyboard
alternative for another command.

Table 3-3 Recommended Keyboard Alternatives

Keyboard Alternative Command Menu

Command-l Copy Ruler Text menu

Command-2 Paste Ruler Text menu

Command-3 Copy Font Font menu

Command-4 Paste Font Font menu

Command-j Jump to Selection Find menu

Command-m Miniaturize Window Windows menu

Command-r Show Ruler Text menu

Command-P Page Layout Format menu

Command-S Save As Document menu

Command-V Paste and Link Link

User Actions: The Mouse and Keyboard 3-27

MS _ SURFCAST _000076504
Petitioner Microsoft - Ex. 1069, p. 71

3-28

Application-Specific Keyboard Alternatives

Because the OpenStep user interface is visual, every operation-every menu
command, every scrolling operation, and so on-has a graphical representation
that can be operated with the mouse. Keyboard alternatives are just that:
alternatives. You should never set up an alternative for an operation that
cannot be performed with the mouse.

Keyboard alternatives are allowed only for the commands in a menu, the
buttons in a panel, or the items in a pull-down list. The characters used as
keyboard alternatives must be visible to your users in the menu, panel, or list.
Menus display them on the commands, and pull-down lists follow this
example. A panel can identify the keyboard alternatives for its buttons in any
way appropriate to the design of the panel.

When you decide which operations will have keyboard alternatives, your main
consideration should be frequency of use. It is better to assign a keyboard
alternative to a frequently used command than to one that is used less often.
Infrequently used commands-such as the Info Panel command-should never
have keyboard alternatives.

You should also try to assign keyboard alternatives to commands that are
needed while users are working with the keyboard (for example, the
commands in the Find menu). Keyboard alternatives for these commands let
users keep working without moving from the keyboard to the mouse and back
again.

You can also use keyboard alternatives that enable proficient users to work
with one hand on the keyboard and the other on the mouse. For example,
Command-x, Command-c, and Command-v allow users to select with the
mouse while carrying out cut, copy, and paste operations from the keyboard.
These keyboard alternatives free users from having to move the pointer out of
the region where they are working just to click on a command.

If a keyboard alternative is assigned to one command from a set of parallel
commands that control formatting or viewing data (a set of commands that lets
users sort items in various ways, for example), the command that restores the
default setting should have a keyboard alternative, too. Keyboard actions can
then take the user to an alternate format and back to the default, rather than
just half way.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076505
Petitioner Microsoft - Ex. 1069, p. 72

Note - You do not need to assign a keyboard alternative to every command.
Remember that users can create their own global keyboard alternatives with
the Preferences application.

Choosing the Character

Any character except the period (.) and the space can be used for a keyboard
alternative, but some characters have been set aside for the reserved, required,
and recommended keyboard alternatives. If the character is a letter, it can be
either uppercase or lowercase, although lowercase characters are preferred
because they do not require the user to press two modifier keys (Command
and Shift) at once.

When choosing the character for a keyboard alternative, try to make it
mnemonic. If possible, it should be the first letter of the command it performs.
If it is closely related to a command that already has a keyboard alternative,
then you might want to choose a character physically near the existing one.

For example, the Find command's keyboard alternative is Command-f, taken
from the first letter of the command. Two commands related to Find have
keyboard alternatives that use the keys next to "f." The Find Next command
uses Command-g, because it is just to the right of "f" and Find Previous
command uses Command-d, because it is just to the left of "f."

Using the Alternate Key

If necessary, your application can have keyboard alternatives that use the
Command and Alt key together to operate them. This is not desirable; you
should exhaust all reasonable possibilities using the Command key or
Command-Shift before you use Alt. See Figure 3-6.

If you do set up a keyboard alternative that requires the Alt key, the alternative
character should be displayed in italics.

Figure 3-6 Using the Alternate Key in a Keyboard Alternative

User Actions: The Mouse and Keyboard 3-29

MS _ SURFCAST _000076506
Petitioner Microsoft - Ex. 1069, p. 73

3-30

Notice that the italicized character identifies the key that the user presses while
holding down Command and Alt, rather than the character that would be typed
if the user held down Alt.

Note - Keyboard alternatives operated with the Alt key are difficult to
recognize, and the significance of italic characters in menus is not explained in
the OpenStep user documentation. If you implement any keyboard alternatives
operated by the Alt key, make sure that the documentation for your application
explains the meaning of the italicized character.

When Mouse Operations and Keyboard Alternatives Differ

A keyboard alternative should generally do exactly what the corresponding
mouse action does. There are, however, a few cases in which it is acceptable to
have the keyboard alternative do just a bit more than the mouse operation.
These cases are rare and they often go unnoticed by users because the
differences are both subtle and intuitive.

For example, the Edit application has a Find panel which is brought up with
the Find Panel menu command or its Command-f keyboard alternative. When
opened from the menu, the panel usually remains open until the user explicitly
closes it, since it may be used for several Find operations before it is closed.
But a user whose attention is focused on typing often wants to find a word in
a document and then resume typing without returning to the Find panel.

Edit handles this by implementing a slightly different behavior when the panel
is opened with the keyboard alternative. If a user opens the panel with the
keyboard and initiates the search by pressing Return, Edit assumes that this
user wants to continue typing as soon as the word is found, and it closes the
panel when the Find operation is complete. The user does not need to switch to
the mouse and activate the document window.

A keyboard alternative that has been handled like this simply does what the
user expects and accomplishes either or both of the following:

• Reduces the number of clicks or keystrokes the user needs to perform

• Eliminates the need to switch from the keyboard to the mouse and back
again

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076507
Petitioner Microsoft - Ex. 1069, p. 74

In general, you should start with keyboard alternatives that result in the same
behavior as their associated mouse actions. In those rare cases when the
keyboard alternative should differ from the mouse action, the need becomes
apparent in everyday use.

Implementing Modifier Key-Arrow Key Combinations
If your application allows text selection, you are encouraged to implement the
characteristics described in this section for modifier key-Arrow key
combinations. These combinations retain the basic directional orientation of
each arrow key but alter the behavior of the key somewhat. Before reading this
section, you should understand the standard arrow key behavior, which is
described in "How the Arrow Keys Affect a Text Selection," earlier in this
chapter.

Control-Arrow Combinations

An arrow key modified by the Control key should move the insertion point to
the edge of the current display. The left arrow key moves the insertion point in
front of the first visible character on the line where the current selection begins,
and the right arrow key puts it after the last visible character on the line where
the current selection ends.

The up arrow key moves the insertion point to the first visible line of the
display, directly above the beginning of the current selection. The down arrow
key moves the insertion point to the last visible line, directly below the end of
the current selection.

When the insertion point is already at one edge of the currently visible display,
the Control-Arrow combination that would normally move it to that edge will
scroll the display (by the amount of a page scroll) and move the insertion point
to the edge of the new display. When the insertion point reaches the beginning
of a line, the left Arrow key does not move it further (for example, to another
line). The right Arrow key does not move it beyond the end of a line.

User Actions: The Mouse and Keyboard 3-31

MS _ SURFCAST _000076508
Petitioner Microsoft - Ex. 1069, p. 75

3-32

Shift-Arrow Combinations

An Arrow key modified by the Shift key should move the insertion point from
word to word. Shift -left arrow moves it to the left of the current selection to the
beginning of a word. Shift-right Arrow moves it to the right of the current
selection to the end of a word.

Shift-up Arrow moves the insertion point to the beginning of the word one line
directly above the beginning of the current selection. Shift -down Arrow moves
it to the end of the word one line directly below the end of the current
selection. As the up and down Arrow keys move the insertion point from line
to line, they choose words that lie directly above or below the original starting
point. (In other words, the location of the insertion point can be calculated by
the same rules that determine the edge of the selection when the user
double-clicks and drags directly upward or directly downward.)

Alt -Arrow Combinations

An Arrow key modified by the Alt key should extend the current selection by
one character or one line at a time. The edge moved first becomes the active
edge; any subsequent motion with an Arrow key will move the active
edge-left or right, up or down.

If, for example, the user presses Alt-Ieft Arrow first, it moves the beginning of
the current selection (its left edge) one character to the left (toward the
beginning of the document). After this, the left and right Arrow keys will both
move the left edge, either one character to the left or one character to the right.
If the user presses Alt-right Arrow first, the end of the current selection (the
right edge) moves one character to the right (toward the end of the document)
and becomes the active edge, after which both keys move the right edge.

Alt-up arrow and Alt-down Arrow are similar. If the user presses Alt-up
Arrow first, the top edge of the selection moves up one line and becomes the
active edge. If the user presses Alt-down Arrow first, it moves the edge of the
current selection down one line, after which both keys move the edge of the
selection.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076509
Petitioner Microsoft - Ex. 1069, p. 76

Other Arrow Key Combinations

More than one modifier key can be used in combination with an arrow key,
with additive results. Thus, Shift-Alt-right Arrow extends the selection to the
end of a word, and Control-Shift-up Arrow places the insertion point at the
beginning of a word in the first visible line of the display. Remember that Alt
and Control cannot be used together because that combination is reserved by
the system as an alternative for the Help key.

User Actions: The Mouse and Keyboard 3-33

MS_SURFCAST _000076510
Petitioner Microsoft - Ex. 1069, p. 77

3-34 OpenStep User Interface Guidelines-September 1996

Petitioner Microsoft - Ex. 1069, p. 78

Windows in the OpenSteplnterface

The OpenStep user interface communicates to its users by displaying text and
graphics in windows. Many of the windows also receive input from the users.
This chapter presents the guidelines for window appearance and behavior that
will help you develop windows that communicate effectively with your users.
It also covers standard window behavior in detail.

How Windows Work page 4-2

Implementing Windows page 4-19

Implementing Standard Windows page 4-21

Implementing Window and Application Status page 4-24

Detailed coverage of the other types of windows is in separate chapters: for
panels, see Chapter 5, "Panels," and for menus, see Chapter 6, "Menus;" for
pop-up and pull-down lists, see Chapter 7, "Controls," and for miniwindows
and application icons, see Chapter 1, "A Visual Guide to the User Interface."

Note - In documentation for your users, try to use the term window only for
standard windows, although you can refer to panels and menus as special
types of windows. You should refer to miniwindows, lists, and icons only by
those names; don't use the generic term window for them, as it would imply
common implementation that is lacking.

4-1

MS _ SU RFCAST _000076512
Petitioner Microsoft - Ex. 1069, p. 79

How Windows Work

4-2

Figure 4-1 OpenStep Window Interface

This section covers the basic appearance and behavior of all OpenStep
windows-standard windows, panels, menus, pop-up and pull-down lists,
miniwindows, and application icons.

Note - The window behavior described in this section is automatically handled
by the Application Kit's NSWindow class and its subclasses. The application­
specific behavior you design and implement is covered in "Implementing
Windows" later in this chapter.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076513
Petitioner Microsoft - Ex. 1069, p. 80

Minimize button

Title bar

Content area

Border

Resize bar

Parts of a Window

The parts of a window are illustrated in Figure 4-2.

""--- Close button

Title

Figure 4-2 Parts of a Window

Every window has a content area where the application can be used to enter
text and images.

Standard windows, panels, and menus also have title bars above their content
areas and borders that surround both content area and title bar. The title bar is
the user's control center for one of these windows. The title bar displays the
window's title, if it has one, and often contains buttons the user can click on to
dismiss it from the screen. In addition, the user moves the window by
dragging its title bar.

Panels and standard windows can also have resize bars, which appear at the
bottom of a window, below the content area but within the border. By dragging
any of the regions of the resize bar, users can alter the sizes and shapes of the
windows on their screens. The resize bar is the only window control outside
the title bar.

Windows in the OpenSteplnterface 4-3

MS _ SU RFCAST _000076514
Petitioner Microsoft - Ex. 1069, p. 81

4-4

Window Order

As users work, they move windows around and move from window to
window. This freedom is essential, but it does allow them to put larger
windows over smaller ones. If there were no restrictions on window ordering,
users could cover their menus and docked icons with standard windows and
even lose sight of attention panels and pop-up lists that required immediate
attention.

To prevent problems of this sort, which would certainly confuse users, the
different types of windows (menus, panels, standard windows, and so on) are
assigned to different levels. A window is only allowed to cover windows in
lower levels. There are seven levels:

• Windows that appear in a spring-loaded mode-pop-up lists, pull-down lists,
and menus opened with the mouse's Menu button-are assigned to the
frontmost, or first, level. These windows remain on screen only while the
user holds the mouse button down, and so they only momentarily obscure
other windows. Putting them in the first level guarantees that they will not
come up behind other windows.

• Attention panels are assigned to the second level. Like spring-loaded
windows, they are on screen temporarily. But unlike spring-loaded
windows, which disappear when the user releases the mouse button,
attention panels must be explicitly dismissed. They are assigned to the
second level, so they cannot be covered by other windows. This keeps them
in front of the user until they are dismissed, thus encouraging prompt user
responses.

• The main menu is assigned to the third level. Unless some user action has
opened a spring-loaded window or an attention panel, the main menu is the
frontmost window on the screen.

• Other menus are assigned to the fourth level, just below the main menu.
They can cover each other, but not the main menu.

• Docked application icons occupy the fifth level. They can be covered by
spring-loaded windows, attention panels, and menus, but not by the
ordinary windows of your application.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076515
Petitioner Microsoft - Ex. 1069, p. 82

• Floating panels are in the sixth level. Floating panels are defined and
discussed in Chapter 5, "Panels."

• All other windows are grouped in the seventh level. This is the largest level,
and it holds most of the windows on the screen. These windows can cover
each other, but cannot come in front of spring-loaded windows, attention
panels, menus, the dock, or floating panels.

This seven-level system keeps windows in the upper levels in view and readily
available to the user; it prevents them from being inadvertently lost in a large
pile of windows. Although attention panels, menus, and docked application
icons can cover other windows, the user can get them out of the way when
necessary: attention panels can be attended to and dismissed, menus can be
moved to the side or closed, and the dock can be slid mostly off screen.

Some other points worth noting are listed below:

• When a window is first placed on screen, it comes up at the front of its level
to get the user's attention.

• When two windows belong to the same level, either one can be in front.
When two windows belong to different levels, however, the one in the
higher level will always be above the other.

• Every window has its own position in the order; even when two windows
appear to by side-by-side, one is technically in front of the other.

• Even when a window is covered by other windows, it is considered to be on
screen; it retains its ranking in the order and can be exposed by moving the
windows above it to the side.

• Application and window status (which is the currently active application
and which is the current key window) also playa part in determining the
order in which the windows are displayed. See "Application and Window
Status" later in this chapter for more information.

Windows in the OpenSteplnterface 4-5

MS _ SU RFCAST _000076516
Petitioner Microsoft - Ex. 1069, p. 83

4-6

Window Characteristics

This section describes basic window characteristics. Notice that some of these
behaviors are implemented by including optional parts (see Figure 4-2) in a
particular window; you can modify the behavior of windows you create by
adding or removing these parts:

• Reordering - Any window can be brought to the front of its level. Notice
that it can only be brought to the front of its own level, which prevents users
from moving a standard window in front of an attention panel or a menu.

• Moving - Any window with a title bar can be moved to a new location on
the screen, as can any miniwindow or application icon.

• Resizing - Any window with a lesize bar can be resized.

• Closing and miniaturizing - A window with the appropriate buttons in its
title bar can be closed or miniaturized.

• Hiding and Retrieving - The Hide menu command lets users hide
windows so they are not visible on the screen. This is not the same as
closing them.

Reordering

Clicking on a window brings it to the front of its level, unless the click is on a
title bar button. The window is reordered immediately when the mouse button
is pressed. If the user is dragging the window to a new location, the window
moves to the top of its level before it is moved.

Another way the user can reorder windows is to hold the Command key and
press either the up-arrow or down-arrow. Command-up Arrow moves the
backmost window (if it is in the lowest level) or standard window to the front
of the level. Command-down Arrow moves the frontmost window to the back.

Moving

The user can drag any window by its title bar (if it has one). To drag a window,
users must press and release the mouse button. This counts as a click and
brings the window to the front of its level.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076517
Petitioner Microsoft - Ex. 1069, p. 84

Resizing

Figure 4-3 Resizing a Terminal Window

If a window has a resize bar, users can change its size by dragging the resize
bar. While the bar is being dragged, an outline of the window's border follows
the pointer, as shown in Figure 4-3. When the user releases the mouse button,
the window is resized to the outline.

Closing and Miniaturizing

A window's title bar can display two buttons, which are shown in Figure 4-4:

Close buttons

Figure 4-4 Title-Bar Buttons

Windows in the OpenSteplnterface 4-7

MS_SURFCAST _000076518
Petitioner Microsoft - Ex. 1069, p. 85

4-8

The window in front has both buttons as they normally appear. The miniaturize
button is on the left, and the close button is on the right. The window in back
shows a broken close button, which indicates that the window is displaying a
document that the user has edited but not saved. "Implementing Windows"
later in this chapter has more information on the miniaturize and close buttons.

The user clicks the buttons either to miniaturize or close the window, as
described in Table 4-1. The click does not bring the window to the front, make
it the key window, or activate an application. (The key window and the active
application are discussed in "Application and Window Status" later in this
chapter.)

Table 4-1 Buttons in a Window's Title Bar

Button What It Does

Miniaturize button Replaces the window with a miniwindow. The miniwindow
represents the window on screen and gives the user access to it.
Double-clicking the miniwindow causes it to disappear and the
window that was miniaturized to reappear.

Close button Closes the document displayed in the window, and removes
the window from the screen.

Miniaturizing

Miniaturizing a window clears it from the screen without destroying it or
changing its contents. From the user's point of view, the window is
transformed into a miniwindow. Double-clicking the miniwindow reverses the
miniaturization.

Most standard windows and some panels have a miniaturize button. They can
be miniaturized using either the button or the standard Miniaturize Window
menu command. A group of windows representing a single document can be
miniaturized into a single miniwindow, as described in "Document Menu" in
Chapter 6.

Users cannot work in a miniaturized window, but programs can continue to
update the window's display. If you begin compiling a program in a Terminal
window and then miniaturize the window, the compiler messages will be
visible when you unminiaturize the window.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076519
Petitioner Microsoft - Ex. 1069, p. 86

Miniaturizing differs from closing in a number of ways:

• Miniaturizing preserves the window as it was last seen on screen. A
window that is closed cannot necessarily be brought up in the same state.

• Miniaturizing a window leaves a miniwindow behind so that it can be
brought back up on the screen. Closing a window does not provide the user
with a way to do this.

• Miniaturizing a window that displays a file will not the file or change the
way it is displayed. Closing a window usually closes the file it displays.

Closing

The close button removes a window from the screen. What this means depends
on the type of window:

Table 4-2 Closing a Window

Type of Window Effect of Closing the Window

Menus and panels A menu that is closed is removed from the screen, but the user
retains a way to reopen it qUickly with a command in another
menu. Panels that are closed can be reopened in the same way.
(See Chapter 6, "Menus," for more information on menus.)

When a panel that was closed is reopened, it assumes its
former size and location and retains its former state. From the
user's point of view (and programmatically) it is the same
panel that was closed.

Standard windows Closing a standard window usually removes it from the
application as well as from the screen. From the user's point of
view, the same window cannot necessarily be brought up
again. The selection in effect when the window was closed
might not be preserved, and the new window will not
necessarily be located in the same place or have the same
dimensions as the old one, especially when the user moved or
resized the window before closing it.

Hiding and Retrieving Windows

The Hide menu command lets the user clear the screen of all the windows that
belong to one application. This clears the workspace and makes it easier to
work in another application.

Windows in the OpenSteplnterface 4-9

MS _ SURFCAST _000076520
Petitioner Microsoft - Ex. 1069, p. 87

4-10

When an application is hidden-only its application icon remains on the screen.
When the user double-clicks the icon, the hidden windows reappear, arranged
as they were before being hidden. Users can resume working in the
application, picking up again at exactly the point where they left off.

Double-clicking the icon has one other effect: it activates the application (as
discussed in the next section), which may cause the menus and panels of
another application to disappear while those of the newly activated application
reappear.

Double-clicking the icon for a running application activates it and brings its
windows to the front, even if the application was not hidden. (The user can
also bring covered windows forward using commands in the Windows menu,
as described in Chapter 6, "Menus.") The application's menus also return to
the screen.

If the user holds down the Command key while double-clicking an application
icon, the application is activated as usual, but in addition all other applications
are hidden.

Notice that when a window is completely obscured by other windows, it is
covered by them but not hidden in the sense used here. Users can make a
covered window visible by moving the windows above it to the side. This will
not work for a hidden window, which is completely removed from the
workspace.

Application and Window Status

Since more than one application can run at a time in OpenStep, the screen is
likely to display windows for several applications. Users must be able to pick
the application and window they want to work in. There are three OpenStep
concepts that help them do this:

• The application that the user is currently working in is known as the active
application.

• The windows that are the current focus of user attention in the active
application are known as the key window and the main window These are
usually one and the same.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076521
Petitioner Microsoft - Ex. 1069, p. 88

The terms key window and main window describe functional roles. Both roles
can be assumed by the same window, or each can be assumed by a different
window:

• The key window is the window that receives characters from the keyboard.
• The main window is the window containing the selected target for controls.

Keep in mind that the active application, the key window, and the main
window, are not fixed properties of specific applications and windows, but
concepts that describe an application's or a window's status at a particular
point in time. The status will change as the user works with the computer, and
OpenStep provides feedback to indicate where the active application, key
window, and main window are. This is discussed more fully in the three
sections that follow.

Active Application

From all of the applications running on a computer, the user can select only
one to be the active application. The user must activate an application before
being allowed to enter text in its windows or use its menus.

The appearance and behavior of the active application are distinguished in the
following ways:

• It is the only application with visible menus. When an application is
deactivated, its menus are hidden from view. When it is reactivated, they are
restored to the screen.

• It is the application that owns most, if not all, of the panels that are visible
on the screen. In general, panels behave like menus. They hide when the
application is not active and return to the screen when the application is
reactivated. (In some situations it is appropriate to implement a panel that
remains on screen when the application is not active; see Chapter 5,
"Panels," for guidelines.)

• It is the application that receives the user's keyboard actions. Typing and
keyboard alternatives can affect only the active application. When there is
no active application the user's keystrokes have no effect.

• It is the application that contains the key window and main window (if
there is a current key window or main window), and its windows are likely
to be in front of the windows of other applications.

Windows in the OpenSteplnterface 4-11

MS _ SURFCAST _000076522
Petitioner Microsoft - Ex. 1069, p. 89

4-12

Application Activation
In general, the task of selecting the active application is left to the user. The
user's action can be direct, such as starting up the application or clicking on
one of its windows, or indirect, such as having one application send a message
to another application.

The only exception to this principle is when the user hides or terminates the
active application. In this situation, OpenStep guesses which of the
applications with windows on the screen should be activated next, which often
saves the user from clicking to choose the new active application.

The actions that activate an application are:

• The user starts it up, unless the user activates another application while the
first one is starting up.

• The application owns the panel or standard window that is frontmost on
screen after the user hides or terminates the current application.

• The user double-clicks a miniwindow belonging to the application, or
double-clicks the application's freestanding or docked icon. Double-clicking
a docked icon starts up the application if it is not already running.

• The user clicks on one of the windows that belong to the application,
provided the window is not a miniwindow or application icon.

• The application receives a message from another application that asks it to
do some work requiring interaction with the user. Receiving a message from
the Workspace Manager that asks the receiving application to open a file is
one example. See "Activating an Application" later in this chapter for
details.

Application Deactivation
There can be only one active application per workspace (that is, one per
Window Server) at a time. Whenever the user chooses a new active application,
the currently active application is automatically deactivated. The Application
Kit and Workspace Manager take care of this task.

The active application is also deactivated when:

• The user hides its windows (by using the Hide command).
• The user terminates it (by choosing the Quit command).

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076523
Petitioner Microsoft - Ex. 1069, p. 90

In either case, if there are other applications with panels or standard windows
on the screen, then the Workspace Manager activates the application that owns
the frontmost panel or window. If no other application has panels or a
standard window on screen, no application becomes active.

In addition, an application that sends a message to another application with
intention of activating the other application should deactivate itself just before
sending the message. See "Activating an Application" later in this chapter for
details.

Note - A deactivated but running application can still do work. It is
deactivated only in the sense that the user cannot interact with it without
reactivating it.

Key Window

Users expect to see their actions on the keyboard and mouse applied to a
specific window in a specific application. They need to know which window
will be affected before they act-there should be no surprises.

Because the user is controlling the pointer location with the mouse, the user
can place the pointer over a window and know that the next mouse action will
affect that window. The window where typing will appear must also be
obvious to users, so OpenStep visually identifies the key window (the window
where typing will appear).

To identify the key window for users, the App Kit highlights its title bar by
turning it black. This is illustrated in Figure 4-5.

Windows in the OpenSteplnterface 4-13

MS _ SURFCAST _000076524
Petitioner Microsoft - Ex. 1069, p. 91

4-14

Figure 4-5 Key Window Highlighting

You can think of the title bar highlighting as a pointer for the keyboard. It
moves from window to window as the key window changes. Key-window
status also moves from application to application as the active application
changes. Only one window on the screen has the highlighted title bar, and it
must belong to the active application. There is just one key window per
computer. Even a system that has two screens, but only one keyboard, has at
most one key window.

A window does not have to become the key window to receive, and act on,
keyboard alternatives. It must, however, belong to the active application.

Since the key window belongs to the active application, its black title bar has
the secondary effect of helping to show which application is currently active.
The key window is the most prominently marked window in the active
application, making it key in a second sense: it is the main focus of the user's
attention on the screen.

Main Window

The main window is the standard window where the user is currently working.
It is the ultimate focus of any user action carried out with a menu or panel.
When a user opens the Find panel, for example, it becomes the key window
because the user must type in criteria for the Find operation. But the panel is

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076525
Petitioner Microsoft - Ex. 1069, p. 92

just an instrument with which the user is working on a document displayed in
another window. That other window, the one displaying the document, is
known as the main window.

Whenever a standard window becomes the key window, it also becomes the
main window. When the key window status moves from a standard window to
a panel, the standard window retains main window status.

iii Standanl Window II
This is b<:>th the key wincbw ,,00 the "",in wincbw.

Figure 4-6 The Main Window Is the Key Window

To identify the main window in situations when the main and key windows
are different, the Application Kit highlights the main window's title bar in dark
gray. (When the main window is also the key window, it has only the black
highlighting that indicates key window status.) Figure 4-6 illustrates
highlighting the main window when it is also the key window. Figure 4-7
illustrates highlighting when the main window is not the key window.

Windows in the OpenSteplnterface 4-15

MS _ SURFCAST _000076526
Petitioner Microsoft - Ex. 1069, p. 93

4-16

Figure 4-7 The Main Window Is Not the Key Window

A menu command can operate on either the key window or the main window,
depending on the nature of the command. For example, the Paste command
can be used to enter text in a Find panel when it is the key window. But the
Save command will always save the document displayed in the main window,
and the Bold command will make the current selection in the main window
boldface. The rules for this behavior are:

• The action called for by a command is first directed to the key window. If
the key window can handle the action, it does.

• If the key window is a panel and cannot handle the action, the action is next
directed to the main window.

Note that this order of precedence is reflected in the way windows are
highlighted: the key window is always highlighted, but the main window
is highlighted only when it is not the key window.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076527
Petitioner Microsoft - Ex. 1069, p. 94

The main window and key window are always in the active application. The
main window follows the key window, as user actions shift the focus from
window to window and from application to application.

How Windows Become the Key Window or Main Window

In most situations the user, rather than the application, selects the key window
and main window. This section describes how different user actions select a
main or key window and the part that the App Kit plays. Those few situations
in which your application needs to choose its own key window are covered in
"Choosing the Key Window" later in this chapter.

In the Currently Active Application

The user designates a new key window by clicking on any of the windows
displayed by the active application. If the new key window is a standard
window, it also gets main window status. If the new key window is a panel
that accepts text entry, it gets key window status, but the original main
window retains main window status and gets main window highlighting (a
dark gray title bar). Notice that the user cannot select a main window without
also making it the key window.

When the user closes or miniaturizes the window that has key window status,
the App Kit chooses a new key window (or main window) for the active
application. When the user closes the last open window, so that the application
has no more windows on screen, no new key window can be chosen, although
the application still remains active.

When an Application Is Activated

When an application is activated, one of its windows gets key window status
and one (usually the same one) gets main window status. Whenever possible,
status is assigned as a result of user action:

• If the user activates the application by clicking on a window that accepts
keystrokes, that window gets key window status. If it is a standard window,
it also gets main window status.

• If the user activates the application by double-clicking on a miniwindow, the
miniaturized window is brought up on screen and gets both key window
and main window status.

Windows in the OpenSteplnterface 4-17

MS _ SURFCAST _000076528
Petitioner Microsoft - Ex. 1069, p. 95

4-18

If the action that activates the application does not directly select a new key
window, each window retains it previous status. If the user reactivates an
application by double-clicking its icon, the windows that had key and main
window status when the application was deactivated retain their status.

Note - When an application is activated, its key window may be highlighted
before the newly deactivated application's key window loses its key window
highlighting. This is an aspect of OpenStep's multitasking environment, in
which users can begin working in one process (the new active application)
before their instructions to another process (the previously active application)
have been completed. Although the deactivated application's key window may
retain its highlighting for a short time, it is not the key window-all keyboard
actions are directed to the newly activated application.

Results of Clicking on a Window

Clicking on a window has two separate, but related, results:

• The window usually becomes the key window (and in most situations the
main window), and the application that owns it is activated. Standard
windows always get key window status when clicked, but panels might not.
This is covered in detail in Chapter 5, "Panels."

• The window comes to the front of its level.

The first is a change in the window's status, the second in its position on
screen. Both must happen before the user can work in the window. Moving it
in front of other windows makes its contents available; making it the key
window allows the user to type in it and give it menu commands.

In the OpenStep interface, these two results of a mouse click, while logically
related, can take place separately. If the user Alt-clicks on the window's title
bar, the actions will bring the window to the front without making it the key
window or activating its application. Alt-clicking on title bars thus lets users
rearrange and reorder windows on the screen without changing window or
application status.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076529
Petitioner Microsoft - Ex. 1069, p. 96

Implementing Windows

This section covers guidelines for designing and placing the different types of
windows used in your application.

Designing Windows

The only windows that have a fixed size are miniwindows and icons. The
initial sizes of all other windows are determined by the application developer.
Standard windows are usually larger than panels, and panels are usually larger
than menus, but there are no absolute rules.

When designing a panel or standard window, you should keep a substantial
part of it free of objects that will respond to the user's first click. Make it easy
for your users to find a place to click within the window and select it.

Try to limit the number of panels and standard windows your users need to
bring up in order to use the application. Too many windows result in a
cluttered screen that might confuse users. Even two windows will be excessive
if users cannot tell which one they are supposed to work in. Finally, if your
application clutters the screen, it will be difficult for your users to work in
more than one application.

Placing Windows

One of the basic principles of the OpenStep user interface is that users control
their own workspaces. One aspect of this control is the freedom to rearrange
windows to suit their own tastes and needs. To maintain user window
arrangements, window that are dismissed and brought up again must reappear
in their previous locations.

To avoid making the user rearrange windows unnecessarily, each of your
panels and nondocument standard windows should remember its own
location when it is dismissed. The next time the window is brought up, it
should reappear in the same location. Suppose, for example, the user brings up
a Find panel, moves it to a new position, and then closes it. The next time the
user brings up the panel, it should come up in its user-defined position, even
when the user has quit and restarted the application.

Windows in the OpenSteplnterface 4-19

MS _ SURFCAST _000076530
Petitioner Microsoft - Ex. 1069, p. 97

4-20

Whether your document windows should also remember their position
depends on the nature of the application. For example, Mail message windows
do not remember their positions because users typically open many documents
at once, and thus need the application's help in positioning the windows.
However, an application such as a drawing program that is typically used for
editing one file at a time should probably let the user determine each
document window's default location.

The first time a window comes up, its position is determined by the
application. To ensure a consistent user interface, all applications should follow
these guidelines for initial locations of windows:

• When an application starts up, its main menu should appear in the upper
left corner of the screen, unless the user has specified a different location for
it.

• Standard windows should come up to the right of the main menu, allowing
enough room for submenus that might later be attached to the main menu.
Some applications also allow room for panels to come up to the left of the
standard window and below the main menu.

• Attention panels should come up centered in the upper part of the screen,
where they cannot be overlooked.

• No part of any window (other than miniwindows and icons) should be
placed off screen unless the user has put it there.

Programmer's Note - There are three methods you can use to help panels and
non-document standard windows remember their window position. Calling
the setFrameAutosaveName: method once per window makes the window
save its position in the defaults system whenever necessary. The next time the
window comes up, it appears at the last-saved position. A less automated way
of handling the window position is to call saveFrameUsingName: every time
you wish to save the position, and call setFrameUsingName: to set the
window's position when it is being brought up.

These methods are not appropriate for document windows, since there is no
easy way to guarantee unique names for documents. If your application saves
the positions of document windows, you should use the
saveFrameToString: method to save a representation of the window's
position into the document itself. When opening the document, you should
position its window using setFrameFromString:.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076531
Petitioner Microsoft - Ex. 1069, p. 98

Implementing Standard Windows

The standard window is the most commonly used type of window, and
standard windows are used as the principal windows in every application. If an
application lets the user edit files, each file should be displayed in a separate
standard window. If the application is a game, the game board should be
displayed in a standard window, and if the application is a simple accessory like
a clock, the clock face should be displayed in a small standard window.

Every standard window has a title bar. Most also have the window controls­
resize bars, close buttons, and miniaturize buttons. This section covers
choosing titles for your windows and the user actions you need to implement
when your windows have the window controls. It also describes the situations
in which it is acceptable to omit the window controls.

Choosing a Title

If a window displays a document that can be saved, the title bar of the window
should display the name of the document, an em dash (-) and the path for the
folder that contains the document. Use two spaces on each side to set off the
em dash. The following example shows the correct title for a window that
displays a document named "jobRecords" which is in /net/ server / export
/records:

jobRecords /net/server/export/records

The title bar is not a good place to show status (such as what the application is
currently doing). Status is better displayed in the window's content area or in
a panel that accompanies the window. When status is displayed in a window,
small, dark gray text is often used (as it is in the Workspace Manager's File
Viewer).

Programmer's Note - You should use the
setTi tleWi thRepresentedFilename: method of the NSWindow class to
set the title of a document window. To produce this window title:

jobRecords /net/server/export/records

you should send the window a setTitleWithRepresentedFilename:
message, and the argument to this method should be a pointer to an NSString
containing the string /net/server/export/records/jobRecords.

Windows in the OpenSteplnterface 4-21

MS _ SURFCAST _000076532
Petitioner Microsoft - Ex. 1069, p. 99

4-22

Using the Resize Bar

Most standard windows-especially those with scrollable contents-should
have a resize bar. The bar gives users control of their environments by letting
them determine how much screen space is used for to the contents of the
window.

Figure 4-8 Resize Bar

If a window has a resize bar, you should be careful that the window remains
useful and legible, no matter how large or small the user makes it. OpenStep
lets you constrain a window's dimensions so that it does not become too big or
too small too be useful, and you can also restrict it so that it only grows and
shrinks by fixed amounts. An example of this is the Workspace Manager File
Viewer, which will only grow or shrink by the width of its browser columns,
eliminating the possibility of showing only a partial column.

Using the Miniaturize Button

In general, each standard window should have a miniaturize button ~.
Exceptions to this rule occur when your application has an essential
window-the application cannot be used without it. When a window is
miniaturized, it should remain miniaturized until the user explicitly
unminiaturizes it.

Because a miniaturized window is not likely to be the focus of user attention,
applications should not alter the appearance or contents of a miniaturized
window without the user's knowledge. They can, however, continue to do
work that the user requested before miniaturizing the window. Terminal, for
example, will complete any commands that the user entered in a Terminal
window before miniaturizing it. Changes that were not initiated by the user
before miniaturizing the window are unacceptable. Changing the font used in
a miniaturized window, for example, is unacceptable unless the user specifies a
font change for all windows.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076533
Petitioner Microsoft - Ex. 1069, p. 100

The Windows menu has a command which is a counterpart to the miniaturize
button and miniaturizes the key window. You can also add a command that
miniaturizes several related windows into a single miniwindow to the
Document menu. See "The Windows Menu" and "The Document Menu" in
Chapter 6 for information on these commands.

Using the Close Button

Most standard windows have close buttons lSl. In some situations the close
button is not needed. The Preferences application, for example, has only one
standard window, and it cannot be used without that window; so the window
has no close button. Compare this to the Edit application, which allows users
to open and close multiple documents and also allows them to issue useful
commands, such as File/New, when no windows are open.

Your application should break a window's close button 1] whenever it
contains unsaved work. From the user point of view, a broken close button
means that the application will not let users lose work by accidentally closing
the window without saving the work. If the user tries to close a window with
a broken close button or quit the application that owns the window, the
application should bring up a Close or Quit panel, which gives the user an
opportunity to save the work. (See Chapter 5, "Panels," for more information
on these standard panels.)

Note - If an application uses multiple windows to display a single file and any
one of them contains unsaved work, you should display a broken close button
in all of them. The application should not bring up a Close panel, however,
until the user closes the last window for the file.

The Mail application breaks the close button on a Send window as soon as a
user types in the message area. If the user tries to close the window (either
directly or by quitting the application), Mail puts up an attention panel that
forces the user to either confirm the close or cancel it.

If an application does no work that can be saved, but merely shows data that
might change, you can use the close button to indicate the status of the data.
Break the close button to indicate that data in the window is not up to date.
The application should also provide a way for the user to force the window to
update. For an example of close buttons used in this way, look at the File
Viewer.

Windows in the OpenSteplnterface 4-23

MS _ SURFCAST _000076534
Petitioner Microsoft - Ex. 1069, p. 101

Just as there is a command in the Windows menu ("miniaturize") that
corresponds to the miniaturize button, there is one that corresponds to the
close button ("Close"). It has a keyboard alternative, Command-w (for
"window"). See "The Windows Menu" in Chapter 6 for details.

Implementing Window and Application Status

4-24

Most aspects of window and application status are handled by the Application
Kit. You must choose the initial key window and decide which windows are
allowed to become the key window. (For information on when to make a panel
the key window, see Chapter 5, "Panels.") You need to make sure the
application activates itself in the appropriate way, as discussed in the following
paragraphs.

Choosing the Key Window

In general, every standard window in your application should be permitted to
act as the key window, even if it does not respond to keyboard actions. Giving
key window status to a window will focus attention on it and prevent the user
from typing in any other window. When the key window does not accept
typing, it should beep as it receives keystrokes, informing the user that typing
is not appropriate.

When an application is activated on startup, it should designate one of its
windows to be the initial key (and main) window. If the application opens a
document file for the user, the window that displays the document should be
the key window.

Activating an Application

Applications do not usually activate or deactivate themselves explicitly. When
an application exchanges messages with the Workspace Manager, uses
services, or provides services, activation and deactivation are handled by the
system. For example, when the user chooses the Mail Selection service from
Edit's Services menu, the Edit application is deactivated. Mail is then activated,
on the condition that no other application is currently active. Since Edit has
been deactivated, this condition will be met unless the user activates another
application in the meantime.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076535
Petitioner Microsoft - Ex. 1069, p. 102

The only time an application needs to explicitly activate or deactivate itself is
when it communicates with another application without using the services
system or the Workspace Manager. This might happen when two applications
work together closely by sending messages directly to each other. If the intent
of a message is to activate the receiving application, then the sender of the
message should deactivate itself just before sending the message, and the
receiver should conditionally activate itself when it receives the message. If the
intent of a message is not to activate the other application, then neither
application should activate or deactivate itself. In general, a message should
conditionally activate the receiving application whenever the user might work
in it-even if it is only to operate a scroller.

Note - Applications should avoid activating themselves unconditionally.
Unconditional activation violates the principle of user control, since it ignores
the user's desire to turn to something else.

Programmer's Note - As described in this subsection, most applications do not
need to explicitly activate or deactivate themselves. However, when necessary,
an application can conditionally activate itself with the following code:

[NSApp activateIgnoringOtherApps:NO];

An application can deactivate itself as follows:

[NSApp deactivate];

Avoiding Activation When Dragging

When a user drags an object, such as a color or a file, between two
applications, both the area that originally contained the object (the source) and
the area to which the object is dragged (the destination) need to be visible.
Sometimes the user needs to move the windows of one or both applications to
make this possible. Once the user starts to drag the object, a change in window
order may cover up the destination. This could happen when the source
application is not active. When the user begins to drag, the source application
is activated, bringing its windows forward and perhaps covering the
destination.

Windows in the OpenSteplnterface 4-25

MS _ SURFCAST _000076536
Petitioner Microsoft - Ex. 1069, p. 103

4-26

To prevent this, there is an exception to the standard activation behavior in this
situation. When a user drags an object from one application to another, the
drag should not activate the source's application. It should activate, however,
when the user clicks anywhere in the source's window or begins a drag
anywhere in the window except the source area.

Programmer's Note - Avoiding activation when dragging objects is fairly
simple to implement. First, each NSVi ew that contains draggable objects
should override acceptsFirstMouse: so that it returns YES. This enables the
NSView to receive events whether or not its window is the key window. Next,
the NSView should override the shouldDelayWindowOrderingForEvent:
method so that it returns YES when the passed mouse-down event occurred
over a draggable object. (The shouldDelayWindowOrderingForEvent :
message is sent just before the mouseDown: message for the event.)

That is all you have to do if you use the dragging system. The dragging system
automatically calls the preventWindowOrdering method (which prevents
the window's application from being activated) if the object is dragged. Unless
the preventWindowOrdering method is called, the window's application is
activated, as usual.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076537
Petitioner Microsoft - Ex. 1069, p. 104

Panels 5=

Panels support the work your users do in the application's standard windows.
There are two general classes of panels:

• Most panels let users give instructions to the application. Developer-defined
controls on the panel allow users to construct logically complex commands
or instructions for the application. The Font, Find, Page Layout, and Open
panels are examples of this type.

• Other panels give information to the user. Help panels, the Info panel, and
attention panels that display warnings are examples of this type.

For both types, the application's developer uses the panel to create a dialog
between application and user that is highly structured in both form and
content.

How Panels Work page 5-2

Implementing Ordinary Panels page 5-4

Implementing Attention Panels page 5-10

Standard Panels page 5-13

5-1

MS _ SURFCAST _000076538
Petitioner Microsoft - Ex. 1069, p. 105

How Panels Work

Note - The App Kit includes a number of standard panels and callable
functions that create the standard attention panels. When standard panels
don't have the features you need, you can enhance them or create custom
panels. When you create custom panels, you are responsible for following the
guidelines in this chapter, so that your users recognize them as ordinary panels
or attention panels.

The panel is a type of window, and its most basic characteristics are those
shared by all types of window. These are covered in Chapter 4, "Windows in
the OpenStep Interface." Only the unique characteristics of panels are covered
in this section.

Ordinary Panels

5-2

Ordinary panels look and behave very much like standard windows. They are
typically in the same level as standard windows and compete with them for
screen space. They have title bars, but do not usually have miniaturize buttons.
Ordinary panels differ from standard windows:

• A panel can never become its application's main window.

• A panel should not become the key window unless it accepts typing from
the keyboard.

• Panels are generally removed from the screen when the applications that
own them are deactivated.

• You can make a panel into a "floating panel" by assigning it to the sixth
level, which puts it above standard windows. See "Floating Panels" in this
chapter for more about this.)

• Attention Panels

When an application opens an attention panel, it creates a mode that prevents
the user from working in any of the other windows of the active application.
The mode limits the user to rearranging. Nothing else in the application-title
bar buttons, text entry, miniwindows, or controls in other panels-will work.
The only menu commands that will work are those that can operate on the

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076539
Petitioner Microsoft - Ex. 1069, p. 106

attention panel itself. Cut, Copy, and Paste, for example, will work when an
attention panel includes an editable text field. The mode remains in effect until
the user responds to the attention panel and explicitly closes it.

While an attention panel is open, the user can activate another application and
work in it. When the original application is reactivated, however, the attention
panel is still displayed and the mode it created is still in effect.

Attention panels differ from ordinary panels in the following ways:

• An attention panel has an empty title bar.

• An attention panel is closed by one or more buttons in the content area, and
does not have close buttons in their title bars.

• An attention panel stays on screen-even when its application is not
active-until closed by the user.

• An open attention panel has key window status while the application that
owns it is active.

• An attention panel is in the second level, above everything on the screen
except spring-loaded windows such as pop-up lists.

• An attention panel is opened just above the center of the screen, so that
users cannot overlook it. (Users can move attention panels.)

Because an attention panel creates a mode that disables the other functions of
its application, it must have a distinctive appearance that immediately tells the
user a mode is in effect. Some of the graphical features that create this
distinctive appearance are illustrated in Figure 5-1.

Panels 5-3

MS _ SURFCAST _000076540
Petitioner Microsoft - Ex. 1069, p. 107

Application icon ____ _

Bold, larger than usual type

Figure 5-1 Attention Panel

Empty title bar

Default choice
in the lower­
right corner

Attention panels are closed when the user responds to the situation described
by the panel. The buttons on the panel present the user with one or more
possible responses. When the user chooses a button, the panel is closed and the
mode ends.

Implementing Ordinary Panels

5-4

Because ordinary panels are used in many ways, you have considerable
freedom when you design and implement them. This section covers guidelines
for those aspects of ordinary panels that are different from standard windows.

Window Considerations

Title bar buttons and key-window status are handled differently than they are
for standard windows. For more detailed information on the title bar buttons
and on key windows, see "Implementing Windows" in Chapter 4.

Using the Resize Bar

If you decide that the ability to resize a panel might help your users, you
should give it a resize bar. If necessary, you can set limits on the panel's
dimensions that prevent users from making it too large or too small.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076541
Petitioner Microsoft - Ex. 1069, p. 108

Using the Miniaturize Button

You can put a miniaturize button on an ordinary panel, but it is rarely needed.
Since your users can use menu commands to close a panel or reopen it, the
miniaturize button is generally redundant. You can make an exception if
shrinking a panel to a miniwindow would be more convenient for users, or if a
panel persists on screen when its application is not active. See "Persisting
Panels" later in this chapter for more information.

Using the Close Button

Every ordinary panel should have a close button so the user can dismiss it
when it is not needed. You don't need to break the close button, since panels
do not display documents that users will be saving.

Panels That Become the Key Window

Panels that accept text entry and panels that are used independently of other
windows should be allowed to get key window status. The Find panel, for
example, becomes the key window because users can type in the word for
which they are searching, and the standard Info panel becomes the key
window because it displays information that is independent of the
application's other windows and becomes the focus of the user's attention. On
the other hand, the tool palette in a graphics application should never become
the key window, because it is operated only by the mouse and is always used
in conjunction with a document window.

Even if a panel accepts typing, you can delay giving it key window status until
user action (such as clicking on a text field) indicates the user is ready to begin
typing. Both of the following conditions must be true for you to implement this
behavior:

• Text entry is not essential to using the panel.
• Users typically do not enter text when using the panel.

This is most often true for panels on which most of the control devices are not
text fields, but are buttons, selection lists, and so on, and when there are
alternatives to text entry. For example, the user can type an item or select it
from a list. The Font panel is an example. This kind of panel should not show
any selection until the user indicates a readiness to begin typing.

Panels 5-5

MS _ SURFCAST _000076542
Petitioner Microsoft - Ex. 1069, p. 109

5-6

Note - Panels that need to avoid becoming the key window until the user
indicates a readiness to begin typing can use the
setBecomeKeyOnlylfNeeded: method of the NSPanel class to do so.
However, panels that should never become key-a tools palette, for
example-must use a different way to avoid becoming the key window. Each
panel must remove key-down and key-up events from its event mask.

Relinquishing Key-Window Status

After a panel becomes the key window, it should retain key window status
only as long as necessary. If user actions on the panel affect the main window,
key-window status should return to the main window when those actions are
completed.

The Font panel, for example, gives up key-window status when the user clicks
on the Set button on a Font panel and changes the font of the text currently
selected in the main window. In all likelihood, the user is finished with the
Font panel at this point and is ready to resume working in the main window.
By managing key window status in this way, you allow the user to resume
working in the main window immediately, without clicking on it just to make
it the key window.

Exceptions to Ordinary Panel Characteristics

In general, ordinary panels are unobtrusive. They occupy the lowest level, and
they disappear when their application is deactivated. In some situations that
call for a more prominent panel, you can implement special features.

Persisting Panels

By default, an ordinary panel is removed from the screen when its application
is deactivated. Users see only the panels that belong to the active application.
This prevents confusion that could arise if similar panels from two different
applications (two Find panels, for example) were on screen at the same time.

If one of your panels contains information that is relevant to the user's work in
another application, you can override this default behavior and allow the panel
to remain on screen after its application has been deactivated. This should be a
rare occurrence.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076543
Petitioner Microsoft - Ex. 1069, p. 110

An example is the Workspace Manager's Info panel, which contains system­
level information, such as the amount of memory in the computer. Because the
user might want to copy this information down-possibly into an e-mail
message-this panel persists even when the user deactivates Workspace
Manager and activates the mail application.

Floating Panels

By default, an ordinary panel is in the lowest level with standard windows. In
some situations, however, it is useful for a panel to float above the standard
windows and the other ordinary panels in the application. Typical of these
situations is a small panel that contains a palette of drawing tools, which is
most useful if it floats above the application's other windows. Figure 5-2 shows
an example of a floating palette.

Figure 5-2 A Floating Panel

The following conditions should be true for you to implement a floating panel:

• The panel is oriented to the mouse rather than the keyboard. This means a
panel you allow to become the key window should not be made a floating
panel with one exception: It becomes the key window only when the user is
ready to type (see "Becoming the Key Window" earlier in this chapter).

• It is important for the panel to remain visible while the user works in the
application's standard windows. This is true when the user must frequently
move between the standard window and the panel (as for a tool palette) or
when the panel displays information that is relevant to the user's actions in
the standard window (as in some inspector panels).

• It is small enough that it will not obscure much of what is behind it.

• It does not remain on screen when the application is deactivated.

Notice that panels float for some of the same reasons that menus do.

Panels 5-7

MS _ SURFCAST _000076544
Petitioner Microsoft - Ex. 1069, p. 111

5-8

Panels With Variable Contents

Two types of ordinary panels-multiform panels and inspector panels-were
designed for displaying specialized information in a limited amount of space.
Both multiform and inspector panels can be used for many different purposes,
even within the same application.

Multiform Panels

A multiform panel is a panel that can take a number of different forms. It has a
pop-up list or a set of radio buttons at the top that which let the user choose
which form it takes. Figure 5-3 shows a panel which lets the user choose
among seven different forms.

Figure 5-3 Two Forms of a Multiform Panel

Multiform panels conserve screen space by combining many related panels
into a single panel. Since not all of a multiform panel's contents are visible at
the same time, you should not use a multiform panel for an application's most
basic functionality.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076545
Petitioner Microsoft - Ex. 1069, p. 112

Inspector Panels

An inspector panel is a panel that displays information about the currently
selected object. An inspector panel usually lets users set properties of the
object, as well as view them. The Font panel (described in "Standard Panels"
later in this chapter) is an inspector panel that displays font information for the
current selection. Figure 5-4 shows the Workspace Manager Inspector panel,
which lets users view and set information about the currently selected file or
folder. Inspectors are often multiform panels, with each form displaying a
different kind of information about the selected object.

Figure 5-4 Inspector Panels

Panels 5-9

MS _ SURFCAST _000076546
Petitioner Microsoft - Ex. 1069, p. 113

Implementing Attention Panels

5-10

Because attention panels create modes that severely limit your users' freedom
of action, you should use them only when they are really necessary. The
guidelines for deciding when a panel should be implemented as an attention
panel are:

• The panel gives the user information about the current context. The panel
usually identifies an error, warns of potentially dangerous or unexpected
results from the current course of action, or informs the user of a condition
that makes it impossible to carry out the requested action. They may also
supply information the user needs to proceed intelligently.

• It interrupts an action and gives the user an opportunity to take corrective
steps-as does, for example, the panel that interrupts the Quit command to
let the user save altered files before the application terminates.

• It clarifies or completes a user action-as does, for example, the panel that
completes the Save As and Save To menu commands. In this case, the menu
command must have three dots after its name-for example, "Save As ... ".
This is discussed under "Commands That Open Panels" in Chapter 6.

Attention panels that interrupt or complete an action must have a Cancel
button, which gives the user the option of cancelling the action. If Cancel is
chosen, the application should return to its previous condition, as though the
user had never initiated the action. When a panel informs or warns, it should,
if possible, let the user choose what to do in response to the information it
displays.

Naming an Attention Panel

Attention panels that open as the result of a command or a command-like
action should be named for the action that brings them to the screen. The panel
that appears after the user chooses Save, Save As, Save To, or Save All should
be named Save. The panel that comes up when the user wants to close an
edited but unsaved document should be named Close, whether it is invoked
from the close button or through the Close or Close Window commands. The
panel's name appears just to the right of the application icon, as shown in
Figure 5-5.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076547
Petitioner Microsoft - Ex. 1069, p. 114

Figure 5-5 Name of an Attention Panel

Default Option in an Attention Panel

When a user action opens an attention panel that has more than one button,
the button that allows the user to continue with the action should be the
default button.

The default button should not perform any action that was not implied by the
user request that brought up the panel. It should be the "safest" of the actions
that are available to the user (for example, Open Copy rather than Open
Anyway when the user tries to open a document that someone has already
opened). It should not contradict what the user set out to do, which means you
should not use Cancel as the default button.

The default button in an attention panel should be located in the lower right
corner of the panel. In most cases, users should be able to operate it by
pressing the Return key (when the panel is the key window), and you should
mark it with the return symbol .<7. •• to indicate this. When a default button has
dangerous side effects, it may be better to omit the return symbol and require
that users click on the button.

Closing an Attention Panel

Each action that can close an attention panel is represented by a button. These
buttons should be located along the right and lower edges of the panel, and the
default button should be in the lower right corner. Only the default button
should be operable by the Return key.

Panels 5-11

MS _ SURFCAST _000076548
Petitioner Microsoft - Ex. 1069, p. 115

5-12

Naming the Buttons in an Attention Panel

Label each button clearly with a verb or verb phrase that describes its action.
Users should be able to read the names of the buttons and choose the right one.
They should not need to read other text on the panel. Avoid "generic" labels
like Yes and No, because they are not clear and lead to user errors. Avoid using
OK unless it is the only button in the attention panel.

Good names for attention panel buttons include:

Cancel
Close Anyway
Don't Close
Don't Save
Explain
Open
Open Copy
Open Anyway
Quit Anyway
Replace
Revert
Review Unsaved
Save
Save All
Set

Optional Explanations in an Attention Panel

An Explain button can offer users a way of getting more information before
dismissing the panel. A typical example is shown in Figure 5-6.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076549
Petitioner Microsoft - Ex. 1069, p. 116

Standard Panels

Figure 5-6 Explain Button on an Attention Panel

Some panels are used in many applications. The Info panel, which gives certain
kinds of general information about the application, appears in every
application. The Font panel, which lets the user set the font of the text
selection, appears in every text processing application.

This section describes all the OpenStep standard panels. Some of them are
provided by the App Kit; the others you build yourself, following the
guidelines in this section. If there is a standard panel for a function you are
using in an application, you should use it instead of designing a new panel.

Panels 5-13

MS _ SURFCAST _000076550
Petitioner Microsoft - Ex. 1069, p. 117

5-14

If an Application Kit panel does not provide all of the features you want for
your application, you can customize it by adding controls and information to
what the App Kit already supplies. Figure 5-7 shows the standard Open panel
on the right and a customized Open panel on the left. A check box (named Use
Simple Mode) has been added to the customized panel.

Open

Figure 5-7 Standard and Customized Open Panels

Note - To customize a panel that is implemented by the Application Kit,
construct an NSVi ew that contains the information and controls you want to
add. Add your NSView to the panel by sending it in a setAccessoryView:
message.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076551
Petitioner Microsoft - Ex. 1069, p. 118

Table 5-1 lists and describes the standard panels. The sections that follow the
tables explain how to implement those panels that are not fully implemented
by the App Kit.

Table 5-1 Standard Panels

Panel Description

Close An attention panel that opens when a user tries to close a
document with unsaved changes. For more information on this
panel, see "Implementing the Close Panel" in this chapter.

Colors An ordinary panel provided by the App Kit. It lets a user
preview and specify colors in any of the following modes: color
wheel, grayscale, red-green-blue (RGB), cyan-magenta-yellow­
black (CMYK), hue-saturation-brightness (HSB), custom palette
(which loads an image from which the user can choose colors),
and custom color lists.

Find

Font

Help

Info

Panels

A Colors panel sometimes works with color wells. See "Color
Wells" in Chapter 7 for information on color wells. For
information on the command that opens the Colors panel, see
"Font Menu" in Chapter 6.

An ordinary panel that lets the user enter a string for an
application to search for. For more information on this panel,
see "Implementing the Find Panel" later in this chapter.

An ordinary panel provided by the Application Kit. It lets the
user preview fonts and change the font of the currently selected
text. For more information on the interface to fonts see "Font
Menu" in Chapter 6.

An ordinary panel provided by the Application Kit. Use this
panel to display on-line help text. It can display text, graphics,
and link buttons (which lead to other information). For more
information on creating help, see "Using the Help Panel" later
in this chapter.

An ordinary panel that displays information about the active
application. For more information on this panel, see
"Implementing the Info Panel" later in this chapter.

5-15

MS _ SURFCAST _000076552
Petitioner Microsoft - Ex. 1069, p. 119

5-16

Table 5-1 Standard Panels (Continued)

Panel Description

Link Inspector

Open

Page Layout

Preferences

Print

QUit

Save

Spelling

An ordinary panel provided by the App Kit. It lets a user get
and set attributes of the currently selected linked information.
If your application's documents can receive linked information,
it should have this panel. For more information, see "Using the
Link Inspector Panel" later in this chapter and "The Link
Menu" in Chapter 6.

An attention panel provided by the App Kit. It lets the user
designate a file to open. For more information, see
"Using the Open Panel" later in this chapter.

An Application Kit panel that prompts the user for information
needed to display documents on screen, or print them. If your
application has extensive page layout features, you can replace
this panel with one that has information and controls for those
features. For more information, see "The Format Menu" in
Chapter 6.

An ordinary panel that allows the user to determine some
details of the application appearance and behavior. For more
information, see "Implementing the Preferences Panel" later in
this chapter.

An attention panel provided by the Application Kit. This panel
opens whenever the user prints a document or other data. It
prompts the user for information needed to print, and displays
the following options: send the output to a printer, save the
output to a PostScript file, send the output to a fax modem,
preview on screen, and cancel any of the preceding actions,
even after they have started. For more information, see "The
Main Menu" in Chapter 6.

An attention panel that should open when the user tries to quit
an application that has some unsaved or incomplete work. For
more information, see "Implementing the QUit Panel" later in
this chapter.

An attention panel provided by the Application Kit. It prompts
the user for the name under which the file should be saved. For
more information, see "Using the Save Panel" later in this
chapter and "The Document Menu" in Chapter 6.

An ordinary panel provided by the Application Kit to help the
user check the spelling of text. See "Checking Spelling" in
Chapter 6 for more information.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076553
Petitioner Microsoft - Ex. 1069, p. 120

Implementing the Close Panel

When the user closes a document that has been edited but not saved, your
application must open a Close panel and let the user choose among canceling
the close operation, saving the document before closing, or closing without
saving. This panel should have at least three buttons:

Cancel Don't Save Save

Save is the default option, because many users do not think of closing a
document and saving as separate operations-for many, closing implies
saving.

If closing the document or window has consequences other than losing
unsaved work, you must still use a Close panel to inform the user. When the
user closes a terminal emulation window, for example, the emulator
application should open a Close panel that tells the user closing will terminate
the currently running command. In a situation like this, when there is no
alternative to the "side effect" of the operation initiated by the user, the Close
panel should have these buttons:

Cancel Close Anyway

Note - Do not open a Close panel unless there is work that will be lost.

Implementing the Find Panel

Figure 5-8 Find Panel

This panel, shown in Figure 5-8, should have at least two controls: a text field
in which to enter a text string and a button that initiates a search for the next
occurrence of the string. In most cases you should also have a button that will
find the previous occurrence of the string.

Panels 5-17

MS _ SURFCAST _000076554
Petitioner Microsoft - Ex. 1069, p. 121

5-18

Note - Although we recommended that you use verbs as button titles, it is not
appropriate in this panel for two reasons. First, changing the titles to Find
Previous and Find Next obscures the difference between the buttons-it is easy
for users to miss the second word on a button. Second, the word "Find" is
already used twice on the panel (and no other verb is), making it redundant in
the button titles. For more information on naming buttons, see "Choosing the
Button's Image or Label" in Chapter 7.

Find panels often have more controls than the panel in Figure 5-8. Typical
additions are:

• Check box that lets users indicate whether capitalization matters in the
search (by default, it should not)

• Check box that lets users indicate whether partial words should be
considered matches (by default, they should)

• Second text field, named "Replace With" that allows the user to specify a
second text string, which will replace the first when it is found

• Radio buttons that allow the user to indicate the range over which the
search should be conducted (by default, the range should be global)

• Options that allow the user to specify objects other than text strings (such as
paragraph characteristics) for the search

Although the Find panel usually stays open until the user explicitly closes it,
there is one situation in which the application closes it for the user; see "When
Mouse Operations and Keyboard Alternatives Differ" in Chapter 3.

This panel is opened by the Find Panel menu command, and the Find Next
and Find Previous commands correspond to the buttons on the panel. For
more information, see "The Find Menu" in Chapter 6.

Using the Help Panel

The App Kit's Help panel is part of the OpenStep help system. As supplied to
you, the help system includes help text for basic interface tasks, such as using
menus and scrollers, and skeletal help for menus and panels that are
implemented in the App Kit. You write help text for application-specific objects
and tasks, and link it to the basic text.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076555
Petitioner Microsoft - Ex. 1069, p. 122

When users Help-click on a menu or panel implemented in the Application
Kit, the supplied help text is displayed. For example, Help-clicking on the Print
panel opens a Help panel with basic information on the panel's features.

You can add text for the objects in your application and the tasks associated
with them. To do this, override the help files for Application Kit panels and
commands with new files containing links to more task-oriented help. When
you have added your own help text, you should modify the supplied index
and table of contents so that they refer to your help text.

Programmer's Note - The Help panel is part of OpenStep's support for on-line
help, which also includes:

• A question mark pointer which appears when the user presses the Help or
FI key (or on keyboards without a Help key, Alt-Control)

• Help text for basic user tasks (such as using menus and operating scrollers)

• An easy way to connect your interface objects to help text, so that Help-
clicking on your objects will open Help panels with your help text

To add help text to your application, you first add a help folder using Project
Builder. This help folder includes template files for the Help panel's index and
table of contents. You can create and modify these and other help files, along
with the help links in them, with the Edit application in developer mode. Both
Interface Builder and the Application Kit have support for associating help
with the user interface objects in your application.

For more information on implementing on-line help, see the discussion of
NSHelpPanel in the OpenStep Programming Reference.

If your application uses the Help panel, you need to implement Help-clicking
for each of its objects. (Otherwise, when the user Help-clicks on an object, the
Help panel will open but will probably show inappropriate help.) Help­
clicking on an object results in the panel automatically displaying the most
specific help available. For example, when the user Help-clicks on a button, the
help system first looks to see whether the button has help associated with it; if
so, the Help panel displays it. If not, the help system looks for more general
help, such as that associated with the window or even the application that the
button is in.

Panels 5-19

MS _ SURFCAST _000076556
Petitioner Microsoft - Ex. 1069, p. 123

5-20

Writing Note - You are encouraged to reuse the help text from OpenStep
applications such as Edit, Mail, and Workspace Manager. After copying text
from one of these applications' Help panels, you can paste it into a file in your
application's help folder. You should then modify the text and update the help
links it contains so that it suits your application. For example, Edit has help on
working with documents, text, graphics, and color, as well as on printing. With
a few changes, much of this help will be appropriate for other document -based
applications.
You are also encouraged to use the design of OpenStep's help. Help in
OpenStep applications is task-oriented, with Help-clicking serving as a way of
discovering the tasks an object is used for. At the end of every help file is a list
of related tasks, with links to the help for each task. The objects that have
associated help are generally menu commands, standard windows, panels, and
a few important buttons such as those in Mail's Compose window. If
supplying this level of help is not practical, then you should at least ensure
that Help-clicking on any object results in help on a relevant subject, even if the
help is very general.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076557
Petitioner Microsoft - Ex. 1069, p. 124

Implementing the Info Panel

Each application must have an Info panel (an example is shown in Figure 5-9),
which displays a small amount of basic information about the application:

• Name of the application
• Application icon
• Copyright information
• Current version of the application
• Names of the authors (optional)

Figure 5-9 Info Panel

The Info panel should not offer help for using the application or give more
information about it (such as its history or purpose).

Interface Builder includes a sample Info panel that you can use in your
application. For information on the command that opens the Info panel, see
"The Info Panel" in Chapter 6.

Using the Link Inspector Panel

When you use this App Kit panel, you should provide the following keyboard
alternative for its Open Source button: hold down the Control key and double­
click on a linked item. This should perform the same action as selecting an item
and choosing the Open Source button.

Panels 5-21

MS _ SURFCAST _000076558
Petitioner Microsoft - Ex. 1069, p. 125

5-22

Using the Open Panel

Whenever this panel is opened, it should list the contents of the folder with
which the user was most recently working. To determine which folder this is,
examine the window that is currently (or was most recently) the application's
main window. The document displayed in this window will be the document
most recently edited; the Open panel should list the contents of the folder that
contains this document. If the application has not had a main window since it
was started, the panel should show the user's home folder.

If your application can open only certain types of files, the Open panel should
list only files of those types when it opens.

Implementing the Preferences Panel

Most applications have a Preferences panel, which is an ordinary panel that
allows the user to determine some aspects of how the application looks and
behaves. Figure 5-10 shows an Edit Preferences panel. Users typically use this
panel infrequently. They should not need to open it during normal work with
the application.

Figure 5-10 Edit Preferences Panel

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076559
Petitioner Microsoft - Ex. 1069, p. 126

Preferences panels typically include controls for such things as:

• Default font size
• Format for displaying data
• Whether the application should make backup files
• Default size of the application's windows
• Options that make expert features available
• Application's keyboard alternatives

Do not use the Preferences panel for appearance or features the user might
want to reset from time to time during a session.

The contents of the Preferences panel should be valid throughout the
application; the appearance of the panel should not change depending on the
window or data currently selected. The preferences should carryover from
session to session; most will also affect the way the application works during
the current session.

All of an application's options must be settable from within the application. It
is not acceptable to have options that are settable only by using the dwri te
command.

Preferences panels are often implemented as multiform panels, which reduces
their dimensions and lets you organize the options. The Preferences panel is
opened by the Preferences command in the Info menu. For more information,
see Chapter 6, "Menus."

Implementing the Quit Panel

Whenever the user tries to quit an application that has unsaved or
uncompleted work, the application should open a Quit panel. This should
happen, for example, when the user has edited a document and not saved the
changes, or when the application is still computing (a command is executing in
a UNIX shell). Notice that in these situations, one or more of the application's
windows should have a broken close button. For more information on breaking
the close button, see "Using the Close Button" in chapter 4.

The Quit panel is an attention panel. In most cases it has three buttons,
arranged as follows:

Cancel Quit Anyway Review Unsaved

Panels 5-23

MS _ SURFCAST _000076560
Petitioner Microsoft - Ex. 1069, p. 127

5-24

You could also add a Save All button that saves every unsaved document,
exactly as the Save All command does. The buttons function as follows:

• Cancel cancels the Quit command and allows the user to take some
alternative action.

Note - When your application opens a Quit panel because of a logout or a
poweroff, the panel should not have a Cancel button, because the application
cannot cancel the logout or poweroff.

• Quit Anyway continues the Quit operation, regardless of the consequences.

• Review Unsaved is the default button. If the user chooses this button, the
application should cycle through its unsaved documents, opening a Review
Unsaved panel for each one. The Review Unsaved panel functions like the
Close panel, allowing the user to decide whether the document open for
review should be saved, but its name reflects the different manner in which
it is invoked.

The user can cycle through all the unsaved documents, using the Review
Unsaved panels to indicate which should be save. The user can also click on
the Review Unsaved panel's Cancel button, which terminates the review
process and returns the user to the Quit panel.

You should only include a Review Unsaved button when the application is
document -oriented.

Note - Do not open a Quit panel unless work is about to be lost.

Using the Save Panel

This Application Kit panel should come up showing the folder of the
document being saved (the document in the main window). A document's
folder is reflected in its window's title bar. For example, if the title bar shows

UNTITLED-l /net/server/export/documents

the Save panel should come up showing /net/server/export/documents.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076561
Petitioner Microsoft - Ex. 1069, p. 128

How Menus Work

Menus

Menus reveal your application's features to its users. Users often browse the
menus to see what features are offered and explore those that seem useful.

Because of this, you should use the menu system's hierarchical nature and
group your application's commands into a logical and meaningful set of
menus. A well-designed menu hierarchy will help users understand the
structure of an application and find the commands they need.

How Menus Work page 6-1

Implementing Menus page 6-10

Standard Menus and Commands page 6-15

This section describes the basic appearance and behavior of OpenStep menus,
which are built into the Application Kit. It covers the main menu, submenus,
menu commands and keyboard alternatives. It also describes the user actions
that operate menus.

The Application Kit supplies the basic menu functions covered in this section.
In particular it supplies:

• The ability to respond to menu commands. (The chosen command is
highlighted, and the action you define for the command, such as opening a
submenu or a panel is performed.)

6-1

MS _ SURFCAST _000076562
Petitioner Microsoft - Ex. 1069, p. 129

Main menu

• Abilities of menus to open, close, hide, and return; of the main menu to
change when the user changes the active application; of submenus to be
torn off, and so on.

• Ability of a menu command to open a submenu.

• Ability of commands to handle keyboard alternatives.

Menus you create when you work in Interface Builder have these abilities. To
add an application-specific command to a menu, for example, you drag a
menu command from the Palettes window to the menu. You can then name the
command, give it a keyboard alternative if necessary, and associate it with an
action. Figure 6-1 shows typical menus.

---------- Submenu

Indicates that this command
opens a submenu

Menu command Disabled command

Figure 6-1 How Menus Work

6-2 OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076563
Petitioner Microsoft - Ex. 1069, p. 130

Basic Menu Functions

The main purpose of a menu system is to display commands from which users
can choose. To make this a relatively simple process for the developer and
ensure easy use, the OpenStep interface implemented the following guidelines
for overall menu functions in the App Kit:

• Menus are arranged hierarchically. A command can open a submenu that
has its own commands.

• Menus are assigned to the third and fourth levels, which keeps them
floating above everything else on the screen except spring-loaded windows
(such as pop-up lists) and attention panels.

• Only menus for the active application are displayed. When the user moves
to another application and activates it, current menus disappear and menus
for the newly activated application take their places. The App Kit
remembers which menus the user has opened and displays them whenever
the application is reactivated. For more information, see "Window Order"
and "Miniaturizing" and "The Active Application" in Chapter 4.

• Menus cannot be miniaturized. They do not need to be, since they are small
(do not cover much of the screen) and are easily reopened after they have
been closed.

The basic user operation is choosing a menu command with the mouse. Simply
clicking on a command will choose it; users can also drag the pointer through
the content area of a menu and release the mouse button when the pointer is
over the desired command. (Dragging will highlight each command that the
pointer passes over; a command is chosen when the button is released.)

The rest of this section covers these points in more detail.

Menus 6-3

MS _ SURFCAST _000076564
Petitioner Microsoft - Ex. 1069, p. 131

Main Menu

6-4

Every OpenStep application has a main menu, which is displayed on the
screen when the application is active. It contains standard commands used in
every application and application-specific commands that you supply.

Programmer's Note - Project Builder creates a main menu with some standard
commands for your application. You can add commands and submenus in
Interface Builder. Note that some of the standard commands available in
Interface Builder have actions or submenus already associated with them. If
you add the Windows command to your main menu, you get the Windows
submenu.

In the smallest applications, the main menu may be the only menu. Most
applications need more than one menu to hold all of their commands. In
OpenStep, this is handled by submenus-commands on the main menu
identify general functional areas, and when chosen they open submenus with
more specific commands. The hierarchical relationships between the main
menu and its submenus give users access to all of the application's menus
through the main menu.

The default location for main menu is the upper-left corner of the screen. Users
can change the default location by dragging it to a new location. They can also
change the main menu's location for all of their applications (except those
whose main menus have already been moved) with the Preferences
application.

The main menu does not have a close button; it is displayed whenever the
application is active. When the user activates another application its main
menu replaces the original main menu. When the user reactivates the original
application, its main menu reappears.

Bringing the Main Menu to the Pointer

When the user presses the mouse button that is mappped to the MENU
function, OpenStep opens a copy of the main menu at the pointer location. See
Figure 6-2. Notice that the pointer must be over a window that belongs to the
active application, rather than the screen background or an inactive window.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076565
Petitioner Microsoft - Ex. 1069, p. 132

Submenus

Figure 6-2 Bringing the Main Menu to the Pointer

As long as the mouse button is down, the user can drag into this copy of the
main menu, open its submenus, and choose one of the available commands.
When the mouse button is released, this copy of the main menu and any
submenus the user opened will disappear. Submenus that may have been
opened from the permanent copy of the main menu are not affected.

Users can use the Preferences application to assign the MENU function to
either the left or right mouse button. See "Changing the Functions of the
Mouse Button" in Chapter 3 for more information on the MENU function.

The main menu is created by Project Builder. All of the menus you create are
submenus. They may open directly from the main menu, or they may open
from one of its submenus (making them "sub-submenus"). Users open a
submenu by choosing a controlling command on a menu that is already open.

Menus 6-5

MS _ SURFCAST _000076566
Petitioner Microsoft - Ex. 1069, p. 133

6-6

Users can drag from a controlling command into a submenu and move the
pointer to one of the submenu's commands. As long as the mouse button is
held down, the submenu remains open and the controlling command remains
highlighted. When the user releases the mouse button over a command, it is
executed and the submenu disappears.

The OpenStep menu system gives users two options for working with
submenus. They can be attached to their parent menu or torn off

Keeping a Submenu Attached

The easiest way for users to open a submenu is to click on the parent menu
command that opens it. They can also drag to the parent menu command, and
release the mouse button. Either action will open the submenu and keep it
attached to its super menu. The parent menu command will remain
highlighted, indicating that its submenu is attached.

When attached, a parent menu and an attached submenu behave like a single
window. User actions that move or close the parent menu will also move or
close the submenu. An attached submenu has no close button of its own. A
submenu attached to the main menu is assigned to the same window level as
the main menu.

An attached submenu can also have its own attached submenu. This is
illustrated in Figure 6-3. The Mail menu is attached to the Services menu,
which is attached to the main menu. Moving the main menu moves all three.

Figure 6-3 Attached Submenus

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076567
Petitioner Microsoft - Ex. 1069, p. 134

Tearing Offan Attached Submenu

After opening a submenu, the user can tear it off and drag it to another location.
See Figure 6-4. The torn-off menu can be moved close to the location where the
user is working. The user can also close the parent menu and work only with
the submenu. When a menu is torn off, it gets its own close button. Any
submenus that were attached to the submenu when it was torn off remain
attached and move with it.

Figure 6-4 Detached Submenu

Once a submenu has been torn away from its parent menu, it stays where the
user puts it. To reattach it, the user must close it and then reopen it from the
parent menu.

If the user presses the mouse button while the pointer is over the controlling
command that opened the torn-off submenu, a second copy of the submenu
temporarily appears in the attached position (next to its parent menu). Figure
6-5 shows this condition.

Menus 6-7

MS _ SURFCAST _000076568
Petitioner Microsoft - Ex. 1069, p. 135

Commands

6-8

Mailbox £I , Sorting

Figure 6-5 Temporarily Attached Submenu

Closing a Submenu

An attached submenu can be removed from the screen in three ways:

• By choosing its controlling command again. In Figure 6-4, clicking on the
Mail command (on the detached Services menu) will make the Mail
submenu disappear.

• By choosing any other command in the parent menu.

• By removing its parent menu from the screen. For example, when a torn-off
parent menu is closed, its attached submenu disappears from the screen.

A torn-off submenu is removed from the screen by clicking on its close button.

Menu commands use the targeted-action paradigm. Some commands-Cut,
Copy, Paste, and Miniaturize Window, for example-require the user to select
the target. Others-such as Hide, Quit, and Info-do not require selection,
because the target is assumed by the action.

When a command is chosen (by either a mouse action or a keyboard
alternative), it is highlighted. When the user uses a keyboard alternative to
choose a command in an off-screen menu, some visual feedback is necessary.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076569
Petitioner Microsoft - Ex. 1069, p. 136

OpenStep provides it by highlighting the menu's controlling command or, if
the parent menu is not visible, the parent menu's controlling command. This
indicates that the keyboard alternative has in fact invoked the command.

Many commands control submenus. The actions of these commands are simply
to attach the submenu to the menu. These commands are identified by the
submenu symbol F.

Other commands cause panels or standard windows to appear on screen:

• Some open a standard window-the New command in the Document menu,
for example, or the Console command in the Workspace Manager Tools
menu.

• Some put an attention panel on screen to help clarify or complete the
command. For example, the Save As command produces a panel that asks
the user to type in the file name the user wants to use for the document.

• Others open a panel that can stand on its own, independent of the command
that produced it. Sometimes the panel simply imparts information to the
user-a Help panel, for example. But usually it acts as a control panel where
the user can give instructions to the application-the Font and Find panels,
for example. Such panels are similar to submenus in that they open a range
of options to the user.

The highlighting behavior of a command depends on its action. If it controls a
submenu, it remains highlighted while the submenu is attached. If it controls
an attention panel, it remains highlighted until the panel is closed. If it opens a
panel that is not an attention panel, it does not remain highlighted.

You can disable a command, as described in "Disabling Commands" later in
this chapter. Disabled commands have dark gray text (instead of the usual
black) on the usual light gray background. They are completely inoperative
and are not highlighted in response to user actions.

Keyboard Ai tern a tives

Users can often use keyboard alternatives, instead of the mouse, to choose
commands. A keyboard alternative is a combination of a character and the
Command key. For example, holding down the Command key and pressing
the "p" key is the standard keyboard alternative for the Print command.
Keyboard alternatives are discussed in detail in "Other Action Commands" in
Chapter 3.

Menus 6-9

MS _ SURFCAST _000076570
Petitioner Microsoft - Ex. 1069, p. 137

Implementing Menus

The App Kit supplies the format for a basic appearance and functions for
OpenStep menus. This section covers what you do to create a menu system for
your application:

• Designing the menu hierarchy
• Choosing command names
• Disabling commands

Designing the Menu Hierarchy

6-10

When designing your application's menu hierarchy you begin with a main
menu that was created by Project Builder. As you add features to your
application, and design menus that will make those features available to your
users, keep the following guidelines in mind:

• Use as many of the standard menus (described later in this chapter) as
possible. Using the standard menus is one of the easiest ways to ensure
consistency between applications, and it will speed up the development
process

• Keep your application's menu hierarchy as shallow as possible. In general, a
menu should be no more than two steps away from the main menu. It is
even better when you can keep it one step away, but don't let it become too
long (too many items) or confusing just to avoid the second level. Figure 6-6
shows a hierarchy that has too many levels.

Figure 6-6 Levels of Submenus

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076571
Petitioner Microsoft - Ex. 1069, p. 138

• A menu should never have fewer than two commands, unless you add and
remove commands dynamically and the menu has fewer than two
commands in some situations. If an application has a menu with only one
command in it, move the command up one level and replace the controlling
command that opens that menu. A specific example of this is discussed
minify Menu" later in this chapter.

• A menu can have as many submenus as it has commands, although only
one at a time can be attached to the menu. A menu should appear only once
in the menu hierarchy-it should not be the submenu of two menus.

Choosing Command Names

Names for commands should be short. Limit them to a single word whenever
you can, and use very short phrases when you cannot. Avoid abbreviations in
command names, especially abbreviations that are not standardized or widely
used. Apply the same capitalization rules to all applications in the same
language. (For English, commands are capitalized as they would be in a
title-the first and last words begin with uppercase letters, as well as major
words in between.)

Command names should be unique. No two commands, even when they are in
different menus, should have the same name.

Commands That Perform Actions

If a command performs an action, its name should begin with a verb, giving a
command name that reads like a short imperative sentence (addressed to the
application). Examples of this include Hide, Open, Save As, and Revert to
Saved.

When a menu command is used to toggle a state or condition, you should
change its name rather than using two menu commands. The clearest way to
inform the user of situation like this is to change the verb in the command's
name. Do not, for example, create a menu with both Show Ruler and Hide
Ruler commands. (Note that one of the commands would always be disabled.)
Some examples of good names are listed in Table 6-1:

Menus 6-11

MS _ SURFCAST _000076572
Petitioner Microsoft - Ex. 1069, p. 139

6-12

Table 6-1 Menu Command Names

First State

Show Ruler

Show Grid

Use Grid

Bold

Second State

Hide Ruler

Hide Grid

Ignore Grid

Unbold

Commands That Open Panels

Notes

Do not use Grid On and Grid Off.

Bold is treated like a verb in this command.

If the main purpose of a command is to perform an action, and it opens a panel
to help the user through the action, name the command for the action rather
than the panel. Follow the naming guidelines for action panels (see
"Commands That Perform Actions" in the previous subsection). The standard
Save, Save As, and Save To commands, for example, are action commands that
happen to open a panel (named the Save panel). Notice that the panel is given
a name that reflects the command's name.

If the main purpose of the command is to open the panel, then name the
command for the panel. This usually results in a name that is a noun phrase,
instead of the verb phrase used for action commands. The Preferences
command, for example, opens the Preferences panel, and the Spelling
command opens the Spelling panel.

With one exception, a command that opens a panel must have three dots after
its name (for example, "Preferences ... "). The exception is for panels that are
warning panels, such as the panel that comes up when the user tries to revert
to a saved version of a document. Because the user would complete the action
if the warning panel did not open, you don't want to imply that the command
opens a panel where the user does work. In addition to this, new users often
examine an application's panels by choosing the menu commands with" ... ".
You do not want these users to choose commands that open warning panels.
For example, the Workspace Manager Log Out command does not have three
dots, but it always opens a warning panel.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076573
Petitioner Microsoft - Ex. 1069, p. 140

Do not put three dots after commands that open standard windows (like the
New Viewer command in the Workspace Manager, or the New command in
the standard Document menu).

Note - Use three periods (not the ellipsis character) to produce the three dots.

A command that opens a panel should not usually have the word "panel" in
its name, since the three dots indicate that it opens a panel. It is acceptable to
use "Panel" in a command name that would otherwise be identical to the name
of an existing command name. For example, when the command that opens
the Info panel is in the Info menu, the command is named Info Panel. When an
application has no Info menu, the command is named just Info.

Commands That Open Submenus

Commands that open submenus usually begin with nouns, but verbs or
adjectives are acceptable when they are clearer. It is important that these
commands have names that clearly identify what the submenu contains. For
example, it is a bad idea to have both a Tools menu and a Utilities menu under
the main menu, since most users will not be able to remember the differences
between the two.

If a command opens a submenu of actions, it might be appropriate to have the
command name include the target of the actions. This scheme is used in the
Document menu: the Open command can be read as Open Document, the New
command can be read as New Document, and so on.

Commands That Open Standard Windows

Commands that open standard windows should begin with "New," as in the
standard New command that appears in the Document menu, or match the
title of the window they open. The Workspace Manager's View menu, for
example, has a New Viewer command that opens a Viewer.

Menus 6-13

MS _ SURFCAST _000076574
Petitioner Microsoft - Ex. 1069, p. 141

6-14

Sample Command Names

Some representative names for commands are listed in Table 6-2:

Table 6-2 Sample Menu Command Names

Command Name

Cut

Font

Font Panel...

Hide

Info Panel...

New

Preferences ...

Save As ...

Select All

Show Graphics

Disabling Commands

What the Command Does

Performs an action

Attaches the Font menu

Opens the Font Panel

Performs an action

Opens the Info panel (used only when Info is already used)

Opens a new document in a standard window

Opens the Preferences menu

An action command that happens to open a panel

Performs an action

Switches to Hide Graphics when graphics are already visible

When an application is in use, it is not uncommon for commands to have no
valid function. For example, when a text editor does not have any documents
open, its Save and Close commands have no function. In situations like this, a
menu command that has no current function should either be disabled or it
should open a panel explaining the function is not currently available. The text
editor mentioned previously, for example, should have its Save and Close
commands disabled, as shown in Figure 6-7.

Figure 6-7 Document Editor Menu

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076575
Petitioner Microsoft - Ex. 1069, p. 142

When users chooses a disabled command with a keyboard alternative, the
computer should beep. This lets the user know that the command is not valid,
even if the command is not visible.

If an invalid command opens an explanatory panel, it should explain why the
command is inappropriate and offer assistance. The panel must provide more
information than just that the command will not work, since that information
can more directly be conveyed by disabling the command.

Graphical Devices in Menu Commands

The area to the right of a command can be used for two things: the keyboard
alternative character or the submenu symbol. (Commands that control
submenus cannot have keyboard alternatives.) Nothing else is permitted in this
area.

In addition, menu commands should not use arbitrary graphical devices, such
as check marks, to show state. There is almost always a more appropriate way
to display current state in the OpenStep interface-for example, by using
buttons or check boxes in a panel or by designing objects that can be directly
manipulated (such as those in the Edit application's ruler).

Assigning Keyboard Alternatives

"Other Action Keys" in Chapter 3 lists standard and recommended keyboard
alternatives.

Standard Menus and Commands

This section describes the standard menus supplied by the Application Kit,
Using as many of them as possible will speed application development and
help you achieve consistency between applications. It also covers the standard
arrangements for commands in each menu.

Menu and command names are shown in U.S. English. If you are working in
another language, there will be a different set of standard names (for example,
Quit is Quitter in French applications) but you should use them.

Menus 6-15

MS _ SURFCAST _000076576
Petitioner Microsoft - Ex. 1069, p. 143

Main Menu

6-16

Programmer's Note - The standard menu commands and much of their
functions are supplied by the App Kit, Project Builder, and Interface Builder.
The App Kit even manages the names of some supplied commands (such as
changing Bold to Unbold) and disables some commands, such as Heavier
when they are invalid. However, you should double-check that each menu
command works properly.

Every application should have its main menu laid out as described in this
section. Figure 6-8 shows a typical main menu layout.

Figure 6-8 Main Menu

The main menu's title should be the application's name, shortened when
necessary. For example, the main menu of Interface Builder is titled IE because
"Interface Builder" would waste screen space.

Table 6-3 describes Main Menu commands.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076577
Petitioner Microsoft - Ex. 1069, p. 144

Table 6-3 Main Menu Commands

Command Action

Info Attaches the Info menu, which contains commands that give general
information about the application, as well as let the user set general
preferences about how the application works. Info is the first command
in the main menu in part because it can be read in conjunction with the
application name in the title bar (for example, Info about Edit, Info
about Draw, and so on). See "Info Menu" later in this chapter.

Document Attaches the Document menu, which has commands that affect a
document as a whole-opening, saving, and closing, for example. This
menu is named differently in different applications, so it is important
that the command be in a prominent, well-defined location (second). See
"Document Menu" later in this chapter.

Edit

Format

Windows

Print...

Menus

Attaches the Edit menu, which contains commands affecting the current
selection. Every application that can have editable documents or
selectable text must have this menu. See "Edit Menu" in this chapter.

Attaches the Format menu, which contains commands affecting the
layout of documents, including the font and paragraph format of text
and the arrangement of graphic images. See "Format Menu" later in this
chapter.

Attaches the Windows menu, which contains commands affecting the
windows that belong to the application. See "Windows Menu" in this
chapter.

Opens the Print panel, which permits the user to print a document. You
can omit the Print command if your application does not print. In
general, the Print command is assumed to print the document in the
main window. If a panel can be printed (for example, one that contains
a registration form), then to avoid confusion the panel might contain its
own Print button.

6-17

MS _ SURFCAST _000076578
Petitioner Microsoft - Ex. 1069, p. 145

6-18

Table 6-3 Main Menu Commands (Continued)

Command Action

Services Attaches the Services menu. This menu lets the user choose services
provided by the system or by other applications. See "Services Menu"
later in this chapter.

Hide Hides all the windows of the application. See "Hiding and Retrieving
Windows" in Chapter 4.

QUit Terminates the application. If quitting the application might cause the
user to lose work, then the application should open a QUit panel.
Otherwise, the application should not require confirmation of a QUit
command.

The Info, Services, Hide, and Quit commands should be in the main menu of
every application. The other commands described above should be included
when appropriate.

Adding Commands to the Main Menu

The main menu works best when it is short (so that commands are easy to
find) and narrow (so that it does not take up much screen space). Try to limit
your main menu to no more than 11 or 12 commands.

The main menu is also, for the most part, a menu of menus. The commands
you add should generally be commands that open submenus.

When designing your application's user interface, you can move a command
that the guidelines place in a submenu up one level to the main menu,
provided that:

• The main menu is short enough to accommodate another command.

• The command provides functionality that is considered central, even crucial,
to the application. For example, a text editor might bring the Font command
up to the main menu from the Format menu, but a spreadsheet would not.

Like any other command that is added to the main menu, a command that is
raised from a submenu should generally control another submenu.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076579
Petitioner Microsoft - Ex. 1069, p. 146

Info Menu

When a command is promoted to the main menu, you should, for continuity,
put it immediately after the command that controls the submenu it was in. For
example, if the Font command is promoted from the Format menu, it follows
the Format command. If the Find command is promoted from the Edit menu, it
follows the Edit command, as shown in Figure 6-9.

Figure 6-9 Adding the Font Command to the Main Menu

The Info menu contains commands that let the user view and set information
about the application as a whole. See Figure 6-10. A License command is an
example of the kind of command you could add to this menu. Table 6-4
describes Info Menu commands.

Figure 6-10 Info Menu

Menus 6-19

MS _ SURFCAST _000076580
Petitioner Microsoft - Ex. 1069, p. 147

6-20

Table 6-4 Info Menu Commands

Command Action

Info Panel...

Show Menus

Preferences ...

Help ...

Opens a panel that displays a small amount of basic
information about the application. This standard panel is
described in "Implementing the Info Panel" in Chapter 5.

Displays and tiles all the application's menus. There is
currently no support for this command in the App Kit. You can
implement it or not as you see fit.

Opens the application's Preferences panel, which permits the
user to customize the application. This standard panel is
described in "Implementing the Preferences Panel" in Chapter
5.

Opens a panel with helpful information on how to use the
application. If you implement this command, you should use
the standard Help panel, which is described in "Using the Help
Panel in Chapter 5. If you do not implement this command,
then when the user Help-clicks on an object in your
application, the system opens a panel informing the user that
the application does not use the OpenStep help system.

If your application does not support any of the commands in the Info menu
except Info Panel, you can omit the menu and make the Info command open
the panel instead of opening the menu. If you do this, add the three dots to the
command.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076581
Petitioner Microsoft - Ex. 1069, p. 148

Document Menu

This menu contains commands that affect a document as a whole. (Commands
that affect selected parts of a document are generally in the Edit menu.)
Applications that do not open or save documents of some kind and do not
have a New command may omit this menu. Figure 6-11 shows a typical
Document Menu, and Table 6-5 describes menu commands.

Figure 6-11 Document Menu

The command for of this menu (the second command in the main menu)
should indicate the type of thing that the Open command opens and the Save
command saves. It might be Document, Project, File, Model (for spreadsheets),
or Shell (for a terminal emulator). Never call this menu Window, since most
applications include the standard Windows menu.

Menus 6-21

MS _ SURFCAST _000076582
Petitioner Microsoft - Ex. 1069, p. 149

6-22

Table 6-5 Document Menu Commands

Command Action

Open... Opens the Open panel so the user can open a file. Opening a file
also opens a window (or windows) that displays it.

New Opens a new, unnamed file and a window to display it in. This
new document should be in the same folder as would be displayed
in the Open panel. (See the section "Using the Open Panel" in
Chapter 5.)

Save Saves any changes in the document displayed in the current main
window to a file. If the document has never been saved to disk,
this command should have the same effect as the Save As
command.

Save As ...

Save To ...

Saves the document displayed in the main window, as changed, by
writing it to a new file with a name supplied by the user. The
document displayed in the main window corresponds to the new
file, and the window's title is changed accordingly. This command
places a Save panel on screen that asks the user to type in a file
name or cancel the command.

Saves the current version of the document displayed in the main
window, by writing it to a new file with a name supplied by the
user. Save To is similar to the Save As command, but Save To does
not replace the window's current file with the new one. You can
choose whether to implement Save As or Save To, or both in your
application.

Save All Saves every document that is open in the application. This is a
shortcut for performing the Save command on every open
document.

Revert to Saved Replaces the current version of the document displayed in the
main window with the version saved on disk. This undoes any
changes made to the document since it was last saved.

Close Closes the document in the main window, and all the windows
used to display that document. It is completely parallel to the
Open command. See "Windows Menu" later in this chapter for
information on a related command, Close Window.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076583
Petitioner Microsoft - Ex. 1069, p. 150

If your application uses more than one window to display a document, you
can add a Miniaturize command that miniaturizes all of the windows
associated with the currently selected document (the document of the key
window) into a single miniwindow. There is a standard command in the
Windows menu (Miniaturize Window) that miniaturizes a single window.

Performing an Implicit New Command

If the user starts up an application by double-clicking an application icon
rather than a document icon, the application should, if appropriate, provide
the user with a new document to work in (performing an implicit New
command). This is much friendlier to a new user than simply putting a menu
on screen. Users should be permitted to disable this action through a
preference.

It is almost always appropriate for general-purpose applications to perform an
implicit New command. However, it is not appropriate if the application
cannot produce a new document without user input. It is also not appropriate
if producing a new document has side effects, such as modifying the file
system by creating a new folder or adding a file that might persist even if the
user decided not to save the new document.

When an application is started up automatically at login or from another
application, it should not perform an implicit New command.

If the user opens another document without touching the new one that was
provided at startup, the application could automatically close the new one. But
this is not a requirement of the user interface.

Uneditable Documents

If a document is opened that the application will not allow the user to save
(even with a Save As command), it should not permit the user to edit the
document on screen. Waiting until the user is ready to save changes is too late.

Menus 6-23

MS _ SURFCAST _000076584
Petitioner Microsoft - Ex. 1069, p. 151

Edit Menu

6-24

The Edit menu contains commands that alter the selection in the current key
window (or in the main window if the key window does not respond to the
command). Commands should be dimmed when they cannot operate on the
current selection. See Figure 6-12.

Figure 6-12 Edit Menu

Table 6-6 describes commands contained in the Edit Menu shown above.

Table 6-6 Edit Menu Commands

Command

Cut

Copy

Paste

Paste As

Action

Deletes the current selection and copies it to the pasteboard.

Copies the current selection to the pasteboard without deleting it.

Replaces the current selection with the contents of the pasteboard.

Attaches a submenu that permits the user to paste the current
contents of the pasteboard into the document in a specified data
type. The submenu lists the possible data types, as discussed in
"Paste As" in the next subsection.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076585
Petitioner Microsoft - Ex. 1069, p. 152

Table 6-6 Edit Menu Commands (Continued)

Command

Link

Delete

Undo

Action

Attaches the Link menu, which contains commands for
manipulating linked information. See "Link Menu" later in this
chapter.

Deletes the current selection without copying it to the pasteboard,
thus leaving the contents of the pasteboard intact. The Delete key
has the same effect.

Undoes the last editing change. This usually includes all changes
since the user last made a selection, including the selection of an
insertion point.

Find Attaches the Find menu, which contains commands related to the
Find panel. See "Find Menu" later in this Chapter.

Spelling... Opens the Spelling panel.

Check Spelling Finds the next misspelled word without bringing up the Spelling
panel.

Select All Makes the entire contents of the file the current selection.

Applications that permit the user to edit text or graphics should support at
least the Cut, Copy, Paste, and Select All commands. It is strongly
recommended that you also implement the Undo command.

Programmer's Note - To includes this menu, drag it from the Palettes window
of Interface Builder. It is already associated with the text object, which provides
all the menu's functions except Find, Paste As, Link, and Undo.

Menus 6-25

MS _ SURFCAST _000076586
Petitioner Microsoft - Ex. 1069, p. 153

6-26

Paste As Menu

The Paste As menu, shown in Figure 6-13, is rarely needed because
applications can take care of pasteboard data types without user intervention.
However, sometimes it is useful for the user to be able to specify the format in
which data is pasted. For example, the user of a page layout program might
want to choose whether text is pasted as ASCII or Rich Text Format (RTF), or
whether graphics are pasted as EPS or TIFF.

Figure 6-13 Paste As Menu

This menu should include only the types appropriate for its application. As
usual, you should disable any invalid menu commands. For example, when
the pasteboard contains only text data, any graphics formats should be
disabled.

Checking Spelling

The Spelling and Check Spelling commands in the Edit menu are intended to
provide a uniform user interface for the spell check function that parallels the
interface for Find. (Find is discussed in "Find Menu" later in this chapter.)
These commands for checking spelling are supported by the App Kit's NSText
object; custom objects will need custom code to check spelling.

The Spelling command opens the Spelling panel, which is described in
Chapter 5, "Panels." The Check Spelling command is equivalent to the button
on the panel that searches for and selects the next misspelled word in the main
window; it permits the user to find the next misspelled word without bringing
up the panel. If the application cannot find the next misspelled word until the
user takes some action within the Spelling panel (for example, loads a
dictionary), Check Spelling opens the panel. (This function is parallel to Save,
which opens a panel when the user must first supply a file name, or Find Next
opening the Find panel if the user needs to enter a text string to search for.)

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076587
Petitioner Microsoft - Ex. 1069, p. 154

Link Menu

If an application has spelling options that cannot be accommodated in a panel,
Spelling and Check Spelling should be replaced by a Spelling command that
opens a submenu. That menu could have Spelling Panel and Check Spelling
commands.

The Link menu provides a standard interface for the functions of receiving and
supplying linked information. See Figure 6-14. Linked information is
information, such as a graphic image, that has been copied from another file or
application, but will be automatically updated when the original is modified.
See the Using the OpenStep Desktop for more information on working with links.
Table 6-7 lists Link Menu commands and their actions.

Figure 6-14 Link Menu

Programmer's Note - The App Kit supports links with its
NSDataLinkManager and NSDataLink classes. See the OpenStep
Programming Reference for detailed information on how to make your
application receive and supply links.

Menus 6-27

MS _ SURFCAST _000076588
Petitioner Microsoft - Ex. 1069, p. 155

6-28

Table 6-7 Link Menu Commands

Command

Paste and Link

Paste Link Button

Publish Selection

Show Links

Link Inspector

Action

If the last Copy operation was performed in an application that
can supply linked information, this command pastes the
contents of the pasteboard and links it to the original
information.

If the last Copy operation was performed in an application that
can supply links, this command pastes a button <) that, when
clicked, opens the document that contains the original
information. Link buttons are discussed in "Implementing
Buttons" in Chapter 7.

Creates a link file. When this link file is dragged into
documents that can receive linked information, the end result is
as if a Paste and Link command had been done. This command
places a panel on screen that asks the user to type in a file
name or cancel the command.

Highlights or unhighlights all linked information in the current
document. The name of this command must alternate between
Show Links and Hide Links, depending on the state of the
document.

Opens the Link Inspector panel, which is discussed in "Using
the Link Inspector Panel" later in this chapter.

An application that can receive linked information (one that implements one or
both of the Paste and Link and Paste Link Button commands) should also
implement Show Links and Link Inspector.

When users choose the Show Links command, the application should highlight
all the linked information in the main window, as shown in Figure 6-15. In the
window shown in the illustration, the picture at the lower left is the only
visible linked information, so it is the only picture that is highlighted with a
chain pattern.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076589
Petitioner Microsoft - Ex. 1069, p. 156

Find Menu

~~ Blue Planet Produdions

r~~~~B~~-~1

~ ~ plANET I
~C~O~0~:';:'~Qo~c~.1

Figure 6-15 Linked Information

Applications that display large amounts of text are encouraged to include a
Find menu like the one illustrated in Figure 6-16. Other applications might also
find this menu useful, but because it is designed most specifically for text, a
variation of it might better meet their needs. Table 6-8 describes Find Menu
commands.

Figure 6-16 Find Menu

Menus 6-29

MS _ SURFCAST _000076590
Petitioner Microsoft - Ex. 1069, p. 157

6-30

Table 6-8 Find Menu Commands

Command

Find Panel...

Find Next

Find Previous

Enter Selection

Jump to Selection

Action

Opens the Find panel, makes it the key window, and selects
everything in the text field labeled Find so that the user can
easily enter new text. If the panel is already on screen, the
command brings it to the front, makes it the key window, and
selects the Find field.

Searches forward for the next occurrence of the string in the
panel's Find field.

Searches backward for the previous occurrence of the string in
the panel's Find field.

Enters the current selection into the panel's Find field so that
Find Next and Find Previous can search for it.

Scrolls to display the beginning of the current selection.

Find Next and Find Previous begin searching at the current selection. If the
search is successful, the text that is found is selected and becomes the starting
point for the subsequent search. Neither command requires the Find panel to
be on screen. However, if the panel's Find field is empty, Find Next and Find
Previous both open the Find panel, make it the key window, and select its Find
field. This is exactly what the Find Panel command does. These other
commands do it as a convenience to the user, who has indicated an intention to
do a search.

The Find panel is further described in "Implementing the Find Panel" in
Chapter 5.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076591
Petitioner Microsoft - Ex. 1069, p. 158

Format Menu

The Format menu, shown in Figure 6-17, should hold the principal formatting
commands available to users of your application. For applications that deal
mainly in numbers, they may be commands that format the text display of
floating-point numbers or the graphical display of numeric data. For text
processors, they may include the commands that would otherwise go into the
Text menu, plus others. Table 6-9 describes commands in the Format Menu.

Figure 6-17 Format Menu

Table 6-9 Format Menu Commands

Command

Font

Text

Page Layout...

Action

Opens the Font menu, which has commands that alter the font
of the current selection. (See "Font Menu" on page 6-32)

Attaches the Text menu, which lets the user choose the format
of the selected blocks of text. (See "Text Menu" on page 6-35.)

Opens the Page Layout panel, which lets users determine how
documents are to be printed and displayed on the screen.

If you promote the Font command to the main menu and have no other
commands to add to the Format menu, the Format menu would become little
more than a container for the Text menu. In this circumstance, the commands
that would otherwise go in the Text menu should be placed directly in the
Format menu. A separate Text menu is needed only when there is reason to
isolate these commands from other formatting commands, or to shorten what
would otherwise be an excessively long Format menu.

When commands from the Text menu are placed in the Format menu, they
should follow the Page Layout command, so that the Copy Ruler and Paste
Ruler commands end the menu.

Menus 6-31

MS _ SURFCAST _000076592
Petitioner Microsoft - Ex. 1069, p. 159

Font Menu

6-32

Applications that support text entry and editing should provide a Font menu
(shown in Figure 6-18) and Font panel. The Font panel is described in "The
Standard Panels" in Chapter 5. It contains controls that let users preview and
set font attributes. The Font menu has a command to open the panel, and
commands to make common adjustments to a font.

Figure 6-18 Font Menu

Each command alters one aspect of the font, such as its size or style, while
leaving other aspects intact. The Font menu and Font panel target currently
selected text. The Preferences panel should be used to alter the default font.
Table 6-10 describes Font Menu commands.

Note - When you drag this menu in from Interface Builder's Palettes window,
you get the menu and its functions from the NSText object with little additional
work. Make sure that every command works, dims, and changes it name as it
should.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076593
Petitioner Microsoft - Ex. 1069, p. 160

Table 6-10 Font Menu Commands

Command Action

Font Panel... Opens the Font panel.

Bold Makes the current selection bold, if it is not bold already, and makes it
unbold if it is. The name of the command must alternate between Bold
and Unbold depending on the selection.

Italic Makes the current selection italic or oblique, if it is not already, and
makes it unitalic if it is. The name of the command must alternate
between Italic and Unitalic depending on the selection.

Underline

Larger

Smaller

Heavier

Lighter

Superscript

Subscript

Unscript

Copy Font

Paste Font

Menus

Underlines the current selection, if it is not already underlined, and
removes the underlining if it is. When the current selection is already
underlined, the command name must change to Ununderline.

Makes the current selection one point larger.

Makes the current selection one point smaller.

Uses a heavier typeface to display the current selection.

Uses a lighter typeface to display the current selection.

Moves the currently selected text up an appropriate amount for a
superscript. Choosing the command again moves the text that much
higher.

Moves the currently selected text down an appropriate amount for a
subscript. Choosing the command again moves the text lower by the
same amount.

Returns the selected superscripted or subscripted text to the normal
baseline of the text.

Copies from the current selection all the text attributes listed in this
menu, including font family, font size, bold, italic, underlining,
superscript, and subscript.

Alters the current selection so that it has all the font attributes
previously copied with the Copy Font command.

6-33

MS _ SURFCAST _000076594
Petitioner Microsoft - Ex. 1069, p. 161

6-34

Note - When the current selection is an insertion point, commands in the Font
menu affect the characters that are typed next, rather than any existing text
(unless the text area can contain only one font). If an area of text can have only
one font, then selections on the Font menu and Font panel change the font of
all text in the area.

The only commands that must be included in the Font menu are Font Panel,
Copy Font, and Paste Font, although frequently used commands like Bold and
Italic should be present in most cases. Applications that are not text intensive
may decide to omit less frequently used commands, such as Heavier and
Lighter.

Each command leaves other font attributes intact. For example, Bold will
change ll-point Times Roman to ll-point Times Bold and 24-point Courier
Oblique to 24-point Courier Bold Oblique.

If there is more than one font in the selection, the Larger and Smaller
commands make each one point larger or smaller than its current size. The
other commands make only the change that is appropriate for the first
character in the selection. For example, if the first character in a multifont
selection is italic, the Unitalic command will remove the italic trait from all the
text in the selection, but will not change any text that is not italic. If the first
character is not italic, the same command (now called Italic) will italicize the
entire selection, but it will not alter any text that is already italic.

The Colors command, which opens the Colors panel, often appears in the Font
menu. You can put it somewhere else; each application should place the Colors
command in a menu that indicates the kind of objects the Colors panel can
affect. In Mail and Edit, colors can be applied only to characters (and not to
their background), so the Colors command is in the Font menu.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076595
Petitioner Microsoft - Ex. 1069, p. 162

Text Menu

The Text menu, shown in Figure 6-19, contains a set of formatting commands
that affect text. These commands are supported by the Application Kit's
NSText object.They can be isolated in a Text submenu, as shown here or
included directly in the Format menu. If you have other formatting commands
that are more important to your application, those commands, rather than
those listed in Table 6-11, should go in the Format menu.

Figure 6-19 Text Menu

Table 6-11 Text Menu Commands

Command

Align Left

Center

Align Right

Justify

Menus

Action

Aligns the text at the left margin, leaving a ragged right margin.

Centers the text between the left and right margins.

Aligns the text at the right margin, leaving a ragged left margin.

Aligns the text at both the left and right margins.

6-35

MS _ SURFCAST _000076596
Petitioner Microsoft - Ex. 1069, p. 163

6-36

Table 6-11 Text Menu Commands (Continued)

Command

Show Ruler

Copy Ruler

Paste Ruler

Action

Displays a ruler in the text area, if the ruler is not currently visible.
Otherwise, this command hides the ruler. The name must alternate
between Show Ruler and Hide Ruler, depending on the state of the
text area. The ruler is a scale containing controls that affect the
format of a paragraph (such as margins and tabs).

Copies the ruler settings in the first paragraph of the selected text.

Alters the paragraphs containing the text selection to have the
settings most recently copied with the Copy Ruler command.

An application, such as a word processor, which includes many other text­
related commands, can put all of them in the Format menu, in the order that is
most useful. All applications should, however, use the command names shown
above in the Text menu, no matter which menu the commands are in. (See
"Format Menu" in this chapter.)

Windows Menu

The Windows menu (see Figure 6-20) contains commands that affect the
windows belonging to the application. You may replace this menu with one
more suitable for your application. If the application that has multiple
windows per document, for example, you might add commands that organize
those windows. Table 6-12 describes Windows Menu commands.

Figure 6-20 Windows Menu

Programmer's Note - This menu, with all of its functionality, is provided for
you. Drag the Windows command into your main menu from the Palettes
window of Interface Builder.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076597
Petitioner Microsoft - Ex. 1069, p. 164

Table 6-12 Window Menu Commands

Command Action

Arrange in Front Stacks and offsets all the application's document windows
(those that can become the main window and are created
using Open and New commands) at the front of the screen.
While this command is recommended, it is not mandatory.

Miniaturize Window Miniaturizes the key window if it has a miniaturize button.
The affected window need not be a document window.

Close Window Closes the key window if it has a close button. If the window
is the last one (or only one) open displaying a document, it
also closes the document, just as the Close command would.
(See "Document Window" earlier in this chapter, for a
description of the Close command.)

The commands in this menu bring windows to the front of the screen or
remove them. Other kinds of commands, even if they affect windows in some
way, should be located elsewhere in the menu hierarchy.

You can replace Arrange in Front with an Arrange command that opens a
panel or menu giving the user more choices concerning which windows to
arrange and how they should be tiled or stacked.

The commands inserted below Arrange in Front list current document
windows. Each command brings one window to the front and, if possible,
makes it the key window. The Application Kit creates this list and dynamically
adds a command for each new document window that it is opened. Because
the Application Kit creates the command names from the title bars of the
document window, improperly titled windows can lead to the Windows menu
becoming too wide. Window titles are discussed in "Choosing a Title in
Chapter 4. Figure 6-21 is an example of dynamically created commands for
document windows.

Menus 6-37

MS _ SURFCAST _000076598
Petitioner Microsoft - Ex. 1069, p. 165

6-38

Figure 6-21 Windows Menu Listing Document Windows

Services Menu

This menu is required; it contains commands that invoke services provided by
the system or by other applications. Refer to Figure 6-22. Commands are
placed in the menu dynamically by the Application Kit when it becomes aware
that other applications are service providers. This means there is no need for
you to specify the order in which commands are added.

Figure 6-22 Services Menu

Programmer's Note - To take advantage of services provided by other
applications, you should first drag the Services menu from the Palettes
window of Interface Builder. Then, if you use the NSText object in your
application, your application automatically gets many services.
Your application can get more kinds of services if you write a few lines of code.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076599
Petitioner Microsoft - Ex. 1069, p. 166

Providing Services

Programmer's Note - To provide services to other applications, your
application advertises its services in a section of its executable file or in its file
package. (File packages are special folders that look and behave like files.)
These services are automatically included in the menus of any applications that
can accept them.

If you application provides services, you can specify how menu commands
that request services should be worded. The following guidelines apply:

• Each command should begin with a verb and should name the application
that will respond to the request. If the name of the application can be
interpreted as a verb, it can be the first word of a command phrase (for
example, Chart Selection for an application named Chart). Otherwise, the
verb that begins the command should be followed by a preposition and the
name of the responding application (Open from Workspace).

• If an application responds to more than one service request, it can arrange
the commands in a submenu under the application's name. Commands in
the submenu do not have to name the application, but should, like all other
commands, begin with a verb.

However, if the application name is commonly interpreted as a verb, the
submenu commands can consist of words that would meaningfully follow the
application name in a phrase, much as the commands in the Paste As menu.
For example, Figure 6-23 shows the Sort command:

Figure 6-23 Names of Services

Menus 6-39

MS _ SURFCAST _000076600
Petitioner Microsoft - Ex. 1069, p. 167

6-40

Service requests conditionally activate the other application, but only if user
input might be required. For example, Digital Webster is likely to require the
user to scroll the display, but the Workspace Manager does not need the user's
help to get a file opened. The application that opens the file will become active,
but the Workspace Manager will not.

Adding a Tools Menu

Since it is easiest for users to find a command when it is in a submenu with
related commands, the commands that open panels and special non-document
windows should be located throughout the menu hierarchy in the appropriate
submenu. For example, the Font Panel command is in the Font menu, the Open
command is in the Document menu, and Page Layout is in the Format menu.

In some cases, a window or panel is an independent tool with a functional
domain all its own, and you may find it difficult to group the command that
controls this window with your other commands. Some common examples of
this are the palettes in a graphics program, the Inspector in Interface Builder,
and the Console in the Workspace Manager. If your application has two or
more such commands, consider collecting them together in a Tools menu.
Figure 6-24 shows a Tools menu from the Workspace Manager.

Figure 6-24 Tools Menu

The Tools menu should not be considered a default location for commands that
open windows or panels. If a window or panel is not truly a tool, its command
should go elsewhere. If you can put a command into a submenu by function,
you should do so.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076601
Petitioner Microsoft - Ex. 1069, p. 168

How Controls Work

Controls

Controls represent actions your users can initiate or states they can set. Each
type of control has a slightly different "feel," the result of the specific
appearance and behavior built into it. Each action or settable state you add to
your application should be represented by the control that will feel most
natural to the users.

How Controls Work page 7-1

Buttons page 7-3

Text Fields page 7-13

Sliders page 7-16

Color Wells page 7-17

Scrollers page 7-19

Browsers and Selection Lists page 7-25

Choosing the Appropriate Control page 7-26

This section explains some basic characteristics exhibited by all types of
controls, lists the standard controls, and introduces the concept of custom
controls. It is followed by sections that cover in detail the appearance and
actions of standard controls.

7 -1

MS _ SURFCAST _000076602
Petitioner Microsoft - Ex. 1069, p. 169

7-2

Basic Control Functions

When a user acts on a control with the mouse or keyboard, two things happen:

• The control's appearance changes, to let the user know it is responding.
Each type of control responds to specific mouse and keyboard actions and
changes its appearance in specific ways. These reactions are part of its
definition.

• The control sends some instructions to the application. The instructions
associated with a control are designed and implemented by the application
developer. They are part of an application's definition.

You can compare these two characteristics of graphical controls with control
devices in the real world. A mass-produced switch, for example, can be
installed on a variety of different machines. The manufacturer of the switch
provides it with a user interface, which invites specific user actions, but
product engineers give those user actions different meanings in different
machines.

Standard Controls

As you develop an application, you design the actions that you want it to
perform and identify the states that users will be able to set. Then you need to
decide which control will best represent these actions to your users.

The App Kit supplies a number of standard controls, and each has an
appearance and behavior option. For most actions or states you implement,
you should be able to find a standard control that works well. The standard
controls are covered in the following order:

• Buttons
• Text fields
• Sliders
• Color wells
• Scrollers
• Browsers and selection lists
• Menu commands (See Chapter 6, "Menus.")

If you cannot find the appearance and action you need in one of the standard
controls, you can create a custom control.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076603
Petitioner Microsoft - Ex. 1069, p. 170

Buttons

Custom Controls

The App Kit makes it relatively easy to design your own controls, but you
should follow these guidelines:

• A control must provide immediate feedback to let the user know that it is
responding and initiating an action. Just as users can look at a dial on a
stove to see whether it has been turned, a graphical control must change its
appearance in response to user actions. Don't assume that users will notice a
reaction elsewhere in the application as user feedback.

• A custom control should have a distinctive appearance and behavior. Do not
design controls that look so much like standard controls that users will
confuse them.

• The behavior of a control should be apparent from its appearance. Users
who are familiar with OpenStep should be able to recognize new types of
control objects and know, almost instinctively, how to operate them.

Buttons are the most common controls. They are used in title bars (the
miniaturize and close buttons), on attention panels (for Cancel and the other
options that close the panel), and in most other situations that call for a control.

You can create buttons in a variety of different shapes and sizes. Figure 7-1
shows the standard types.

How Buttons Work

There are some differences in function among the buttons; this makes different
buttons suitable for different situations. The most significant difference is
between buttons that act and buttons that set a state:

• Action (or one-state) buttons tell the application to perform a task, such as
scrolling a document forward or beginning a search.

Controls 7-3

MS _ SURFCAST _000076604
Petitioner Microsoft - Ex. 1069, p. 171

7-4

Standard radio buttons

Button controlling a pop-up list

Graphical radio buttons

Button controlling
a pull-down list

Switch

Miscellaneous action buttons

Figure 7-1 Types of Buttons

'l> Link button

• Two-state buttons set a state on or off. A typical example is the button that
lets users indicate whether the text search should find only whole words.
Standard two-state buttons include switches and radio buttons. This
category also includes pop-up lists.

Another difference is the specific user action that will sends a button's
instruction to the application:

• Most buttons respond to a complete click and send their instructions to the
application when the user releases the mouse button (assuming the pointer
is still over the button when the mouse button is released). If the user
presses over the button but moves the pointer away before releasing the
mouse button, the instruction will not be sent.

• Other buttons respond when pressed. They send their instructions to the
application as soon as the user pushes the mouse button down. This type of
button typically repeats its instruction at regular intervals if the user holds
the mouse button down and keeps the pointer over the button. This user
action (holding down the button on a scroller, for example) gives the

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076605
Petitioner Microsoft - Ex. 1069, p. 172

appearance of continuous action. Users who keep the mouse button down
can drag away from the control button and then back again to stop and
restart the action. They can also press, release, and press again to restart the
action.

All types of buttons respond visibly as soon as the mouse button goes down,
and they maintain this "responding" appearance until the mouse button is
released or the pointer is moved away. Even when the mouse button is
released, control buttons maintain a responding appearance until any action
the user initiated is complete. (In most cases this effect is momentary, and the
user generally sees the button changing as soon as the mouse button is
released.)

Buttons That Open Lists

The Application Kit supports two kinds of button/list combinations: pop-up
lists and pull-down lists. Pressing the button for either of these controls opens
a list, which stays open as long as the mouse button stays down. Users can
drag through the list and choose an item.

Pop-up lists and pull-down lists look similar, and users choose items with the
same action. One is an action button, however, and the other is a multistate
button. This means that you use them in different situations.

Pop-Up Lists

A pop-up list functions like a set of radio buttons-it presents a set of values
from which users can choose. (Compared to a set of radio buttons, the pop-up
list saves screen space and prevents overcrowding in panels.) Each list is
controlled by a button with a special symbol: •• :4;t. When users press the button,
the list pops up. It stays open while the mouse button is down. See Figure 7-2.

Figure 7-2 Pop-Up Lists

Con troIs 7-5

MS _ SURFCAST _000076606
Petitioner Microsoft - Ex. 1069, p. 173

7-6

When users open a pop-up list, the item that matches the button's label
appears on top of the list. Users can drag through the list and release the
mouse button on another item, which selects it. When a new item is selected,
the button's label changes. The button displays the new selection, but no action
is taken.

Pull-Down Lists
A pull-down list looks like a pop-up list, but it initiates an action rather than
setting a state. See Figure 7-3. The button that controls a pull-down list has a
different symbol

Figure 7-3 Pull-Down Lists

Users can drag through a pull-down list and release the mouse button to select
an item. When they do, the control initiates the selected action, and the list
closes without changing the label. Notice that this behavior of pull-down lists
is like the behavior of a menu.

Implementing Buttons

Before you implement any type of button, you must do three things:

• Design the button's action.
• Choose an image, a label, or both for the button.
• Decide how to manage the button's appearance when it is clicked.

Of course, before using a button you should be certain that it is the best control
for the job. Reading "Choosing the Appropriate Control" later in this chapter,
should help.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076607
Petitioner Microsoft - Ex. 1069, p. 174

Designing the Button's Action

A one-state (action) button should always perform the same action. It may
seem efficient to vary a button's action according to the application's state-to
switch between Erase and Restore, for example-however, it is better to
provide separate buttons for each action and disable those that become
irrelevant. This lets your users click safely on the same location whenever they
want to perform an action without considering which state the application is
in. It is acceptable, however, to change buttons that initiate time-consuming
actions into Stop buttons while the action is in progress. See "Implementing
Stop Buttons" later in this chapter.

One-state buttons are generally labeled with a verb or verb phrase that
describes the action (such as Find), but some have only a graphic image (such
as the arrowhead in a scroll bar button). Guidelines for assigning labels are
covered in "Choosing the Button's Image or Label" in the next subsection.

Two-state buttons should never perform actions. Keep in mind, however, that
changing a state can change the display. An inspector panel for a graph
document might, for example, have a set of radio buttons that represent
options for the graph type (line, bar, and so on). When the user clicks on one of
these, it resets the graph's type, and the graph is redrawn. However, it would
not be acceptable for the radio button to create a second graph of the new type.

Ideally, the display should be updated whenever a user clicks on a two-state
button. This is not practical, however, when updating would take a long time
or would be difficult to reverse. Consider giving users control over the display
in these situations. If redrawing a graph takes a long time, you could provide a
Redraw Graph button. (Remember that the button's own appearance must
change immediately.)

Buttons with more than two states are not recommended; it is very difficult to
convey their significance to the user.

Choosing the Button's Image or Label

A button's label should indicate what will happen when it is pressed or
clicked. Keep in mind that a label identifying the current state (such as AM or
PM), will probably be misunderstood. Users are more likely to assume the
label represents the state they will set by clicking. A button labeled On, for
example, is more likely to be interpreted as "Press here to turn something on"
than as "This is now on."

Controls 7-7

MS _ SURFCAST _000076608
Petitioner Microsoft - Ex. 1069, p. 175

7-8

To avoid this, use images and highlighting to show the current state, and use
the button's label to indicate what it does. Labels that display the current state,
such as one that switches between AM and PM, should only be used when the
information they refer to is clearly visible. AM/PM buttons will probably be
understood if you put them next to a digital representation of the time, but not
if they stand alone. These and other two-state buttons are shown in Figure 7 -6.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076609
Petitioner Microsoft - Ex. 1069, p. 176

• Buttons should clearly look like action buttons or two-state buttons. Two­
state buttons that do not have two distinct states and action buttons that do
not look like they performs actions will confuse your users.

• Button labels should be dimmed (using gray text) whenever their buttons
have no effect. Dimmed buttons are completely disabled-pushing them
should not highlight, push in, or transform their appearance in any way.

• Button labels should be capitalized like menu commands. The first and last
words should begin with capital letters, and the words between should be
capitalized as they are in titles.

• Buttons that always open panels (except warning panels) should have three
dots (...) at the end of the label.

• Action buttons that can be chosen with the Return key should display the
Return symbol in their labels (see the Create button in the left panel in
Figure 7-4). Some user actions, such as activating another application and
moving key window status away from the panel, will prevent Return from
choosing the button. In these situations, remove the Return symbol to
prevent user confusion (see the right panel in Figure 7-4).

Figure 7-4 Using the Return Symbol on a Button

Programmer's Note - App Kit panels automatically remove the Return symbol
when the panel loses key window status. So will attention panels created with
NSRunAlertPanel () and its related functions.
For other panels, you need to explicitly manage the Return symbol. Do it in
your implementations of the windowDidResignKey: and
windowDidBecomeKey: delegate methods of the NSWindow class.

Controls 7-9

MS_SURFCAST _000076610
Petitioner Microsoft - Ex. 1069, p. 177

7-10

Changing the Button's Appearance During a Click

A control button's appearance should be transformed when the mouse button
goes down, to indicate that it is responding. (This transformation should also
reflect what the button will do; buttons that set a state should reflect the new
state as soon as the mouse button goes down. See Figure 7 -6, in which the Bold
button uses a check mark to represent its state, for an example of this.) There
are three ways of doing this:

• You can highlight it.
• You can highlight it and change the shading so it appears to be pushed in.
• You can change the image it displays.

In most situations, you should respond to user actions by highlighting the
button and pushing it in. When buttons are right next to each other (such as
scroll buttons and graphical radio buttons) you should not push them in,
because they have no space around their bezeled edges and look less three­
dimensional than normal. (It is possible to have a button pushed in without
highlighting it, but this is not recommended because it is difficult for users to
see.)

Note - Highlighting can be done automatically by the Application Kit or by
changing the image to a custom "highlighted" image.

Figure 7-5 shows the recommended transformations for action (one-state)
buttons.

before
cl i:::ki 1"1]

during
cli:::k

after
cli:::king

Figure 7-5 Changes in Appearance for a One-State Button

Figure 7-6 shows the recommended transformations for two-state buttons.

OpenStep User Interface Guidelines-September 1996

Petitioner Microsoft - Ex. 1069, p. 178

oftE! r during aftE! r be10 19

olbkjl"l]
during

fim 01 bk first olbk SE!oond olbk SE!oond oliok

Figure 7-6 Changes in Appearance for a Two-State Button

Implementing Pop-Up and Pull-Down Lists

You must provide the titles for pop-up lists. The normal way to do this is with
a titled box around the pop-up list's button. Figure 7-7 shows a box titled
"Units" providing the title for a pop-up list.

Figure 7-7 Titling a Pop-Up List

Pull-down lists do not need titled boxes because their labels do not change.

When you use a pop-up or pull-down list, make sure the list does not blend
with nearby objects when it opens. An open list may also place items next to
another object's label, leading users to interpret them together. Finally, an open
list can obscure other objects that would help users decide what list item to
select.

Controls 7-11

MS _ SU RFCAST _000076612
Petitioner Microsoft - Ex. 1069, p. 179

7-12

Programmer's Note - When an item in a pop-up or pull-down list opens an
attention panel, default behavior for the list is staying open until the panel is
closed. But the list is in a higher tier than the attention panel, and it will cover
the panel. To avoid this, dismiss the list before opening the attention panel.
Have the list item call the performSelector: obj ect : afterDelay:
method to schedule the execution of a method 1 millisecond in the future. This
method should then open the attention panel.

Implementing Link Buttons

Link buttons are usually created by users rather than developers. Since they
often appear in custom content areas which are usually unique to an
application, link buttons need a little more support from the application than
the other types of buttons. When you implement link buttons, make sure they
have the following behavior:

• Clicking a link button highlights it (briefly) and opens the document that
contains the information referred to in the link. An unmodified click should
never select the link button.

If the user presses the mouse button with the pointer over a link button and
drags away without releasing the mouse button, the link button should lose
its highlight. If the user keeps the mouse button down and drags back over
the link button, the link button regain its highlight.

• Shift -clicking a link button selects it.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076613
Petitioner Microsoft - Ex. 1069, p. 180

Text Fields

Implementing Stop Buttons

Users who initiate actions that might continue for some time can cancel those
actions by holding down the Command key and pressing the period (.) key.
(This is described in "Implementing Keyboard Alternatives" in Chapter 3).

You can make it more obvious to your users that they can interrupt the action
if you give the button that controls the action a stop state. If you implement a
stop state, use the transformations shown in Figure 7-8.

Figure 7-8 Stop Button

The button's action should be started when the user completes the first click
(releases the mouse button). Similarly, the button's action should be terminated
when the user finishes clicking the button in its stop state.

Text fields are controls that allow users to type a single line of data, such as a
file name, a part number, or an address. See Figure 7-9. Users can select text
and edit it. If the user types more text than will fit in the field, the entry
automatically scrolls so that the insertion point stays visible. The data is
processed only when the user presses Return or clicks on a button that is
associated with the field.

Figure 7-9 Text Field

A text field should have a white background and be surrounded by a bezeled
border that makes it appear inset from the surface of the screen. When the text
field is temporarily disabled, the text becomes gray Oust like the label of a
button), but the background color does not change.

Controls 7-13

MS _ SU RFCAST _000076614
Petitioner Microsoft - Ex. 1069, p. 181

7-14

A text field that is not usually edited or selected but can be (such as a name
associated with a file icon in the File Viewer) should display text on a gray
background and have a border with no bezel. When the user selects the text,
the text field's background should turn white, and the selected text's
background should turn light gray.

Text fields can be titled and arranged in groups to produce an on-screen form,
such as the one illustrated in Figure 7-10.

Figure 7-10 Titled Text Fields

When there is more than one text field in a window, the Tab key moves the
selection-the point where typing will appear-from one field to another. Refer
to Table 7-1.

Table 7-1 Moving from One Text Field to Another

Character

Tab

Shift-Tab

Action

Moves from one text field to the next one in the series. In Figure 7-10,
Tab moves the current selection from the Name field to the Street field
to the City field, and so on.

Moves from one text field to the previous one in the series.

When the user presses Return after typing in a text field, the field usually
initiates an action. Data might be entered and processed, a search might begin
for text that matches the string in the field, or a document might be saved to a
file name the user typed. Exactly what happens is in the application's
definition.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076615
Petitioner Microsoft - Ex. 1069, p. 182

You should include a button that has the same action as Return (and is marked
with the Return symbol) on the window or panel. This button's label is an
explicit statement of what Return will do. From the user's point of view,
Return is simply a shortcut for the action of the button.

Figure 7-11 shows a button with the Return key's action. The user can start
printing a document by clicking on the Print button or pressing Return while a
text field is selected. When the user presses Return, the Print button is pushed
in and highlighted, as if the user acted on it directly.

Figure 7-11 This Print Button Is the Equivalent of Pressing Return

• If the action associated with Return is one that the user is likely to repeat
with different values in the text field, you can have the Return action select
the text in the current field, allowing the user to replace it and press Return
again.

• When you combine text fields in a form, you might decide that Return
should not perform an action that processes user input. Instead, it will
simply do just what Tab does-move the selection to the next field. Users
must act on a button or other control to enter the data they type into the
form.

Controls 7-15

MS _ SU RFCAST _000076616
Petitioner Microsoft - Ex. 1069, p. 183

Sliders

Bar

Knob

7-16

Text fields generally accept data without restrictions on type, but in some
situations you need to control the data type of the input. Typical examples of
restrictions you can place on input data include:

• Unsigned or signed integers
• Unsigned or signed floating-point numbers
• Dates

If a user types data that is not accepted, the contents of the text field should be
selected and highlighted. The user can make any necessary corrections and try
again.

Sliders are controls that let users set a value on a scale (between some
maximum and minimum). The scale can be continuous or incremental (divided
into intervals). It consists of a vertical (Figure 7-12) or horizontal (Figure 7 -13)
bar and a knob that moves on the bar.

Figure 7-12 Slider

The position of the knob indicates the current value. Users can change the
value by moving the knob, or by positioning the pointer somewhere over the
bar and pressing the mouse button. The knob will jump to the pointer's
location; releasing the mouse button will fix the knob in its new location,
dragging will move it along the bar.

When the slider has an incremental scale, the knob jumps to the nearest
incremental position when the user releases the mouse button. Users can press
the Alt key and drag the knob to values between the normal scale.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076617
Petitioner Microsoft - Ex. 1069, p. 184

Color Wells

Users should always be able to see some feedback when they manipulate the
slider's knob-this is usually done in a text field or label next to the slider (as
shown in Figure 7-13).

Figure 7-13 Slider with Label

Programmer's Note - Your application should specify the increment amount to
be used for Alt-dragging. Otherwise, Alt-dragging has the same effect as
unmodified dragging.

Color wells are controls that let users manage the colors in their documents.
See Figure 7-14. They give users access to all of OpenStep's color definition
tools, but the sequence of user actions required to use them is more complex
than the actions required for other controls. You typically implement color
wells on Inspector panels, where they allow users to set the colors of document
objects.

Figure 7-14 Color Wells

To work with a document object's colors, the user selects the object and opens
its Inspector panel. The panel should have color wells, one for each part of the
object with a color. In Figure 7-14, the Inspector has two color wells because
the selected object has two colors: fill and line.

When the Inspector is first opened, the color wells should display the object's
current colors. Users can change the colors in the wells and apply the new
colors to the objects. These are separate actions, so users can perform some
complex operations that copy colors from one object to another or create a new
color and apply it to several objects. The basic user operations are:

Controls 7-17

MS_SURFCAST _000076618
Petitioner Microsoft - Ex. 1069, p. 185

7-18

• Setting the color in a color well.

To do this, the user drags a color into it, from either the Colors panel or
another color well. Users who want to define a color on the Colors panel can
open it by clicking on the color well's border.

If the user selects the color well's border, the color in the well will change
when a new color is selected in the Colors panel (every time the user clicks
on a color). This is a good way for users to preview colors, but users who
don't understand the selection mechanism might find it confusing. The
application should deselect the color well's border whenever the user is not
actively selecting colors. For example, you should deselect all color wells
when the panel thy appear on is miniaturized.

OpenStep User Interface Guidelines-September 1996

MS_SURFCAST _000076619
Petitioner Microsoft - Ex. 1069, p. 186

Scrollers

• Applying the color to a document object.

When a object is selected, the color wells should change color to reflect the
object's colors. For example, if a white box with a red border is selected,
then the Fill well shown in the previous figure should contain white, and
the Line well should contain red. When the user changes the color in a well,
that change should be reflected in the selected object. For example, dragging
a swatch of green from the Colors panel into the Line well should
immediately make the outline of the selected box green.

Whether or not a color well's border is selected should have no effect on
whether the well affects the object that is currently selected

When deciding whether or not to user color wells, consider the following:

• They are powerful because they give access to whole color section
mechanism, but indirect, so you should use them only when users need the
full range of color choices.

• An alternative to using a color well, when the group of acceptable colors is
small, is to use graphical radio buttons (as pictured in "Buttons" earlier in
this chapter).

• Another alternative, when a wide range of colors is needed, is to use the
Colors panel alone. The user can change an object's color by selecting it and
then choosing the new color in the Colors panel.

• You could also use a custom control that is more appropriate in appearance
and functionality than a color well.

The Colors panel is an Application Kit panel, covered in Chapter 5, "Panels." It
opens when users selects a color well's border; they can also open it directly
with the Colors command.

Scrollers are controls that allow users to work with documents larger than the
display area, by moving the display area to different parts of the document.
You will probably add scrollers to most viewing areas in your application.

Controls 7-19

MS _ SURFCAST _000076620
Petitioner Microsoft - Ex. 1069, p. 187

7-20

.;:. . \ -' ;.. \ ~ ~ .. ;

.: .. ;.'" " .. , ':.::

:;;:.:.: .. ; ... ;;:: :: ... :.::.:.;

:;: .. :-::: .. ;.: .. , .. :-:'
".:.:'.

Figure 7-15 Scrollers

Figure 7-15 shows the area on a window which is available for viewing
documents, along with the document itself, which is much larger than the
viewing area. Scrollers move the viewing area over the surface of the
document.

How Scrollers Work

Figure 7-16 shows the three parts of a scroller: the bar, the knob, and the scroll
buttons (which are optional). This scroller is vertical and scrolls the viewing
area up and down. A horizontal scroller scrolls it from side to side.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076621
Petitioner Microsoft - Ex. 1069, p. 188

Knob

Bar

Scroll buttons

Figure 7-16 A Vertical Scroller

If the viewing area has scrollers but the document fits in the viewing area, the
knob and the scroll buttons are removed, leaving a scroller in the form of a
plain gray strip. This residual scroller indicates that functional scrollers will
appear whenever the document becomes larger than the viewing area or the
viewing area is reduced in size.

The Bar and Knob

The relative dimensions of the bar and knob indicate how much of the
document is visible in the viewing area. The length of the bar represents the
entire document, and the knob represents the part of the document that is
currently visible. When the user deletes material from the document, the knob
grows because the visible area is a larger percentage of the whole document;
when the user adds material, the knob shrinks because it represents a smaller
percentage of the entire document. The knob never becomes smaller than a
square.

The location of the knob indicates which piece of the document is currently
displayed. If it is at the top of the bar, the top of the document is being
displayed; if it is at the bottom, the bottom of the document is displayed. The
knob in Figure 7-16 indicates that about one third of the document area, near
its top, is displayed in the viewing area.

Controls 7-21

MS _ SURFCAST _000076622
Petitioner Microsoft - Ex. 1069, p. 189

7-22

Users scroll the viewing area by moving the knob in the bar. The knob
responds to four kinds of user action:

• Dragging it to a new location. The viewing area moves as the knob moves.

• Pressing the mouse button in the bar but not on the knob. The knob jumps
to the pointer, and the viewing area moves accordingly. If the user keeps the
mouse button down, the knob can be dragged to a new location. With this
technique, users can jump to the general part of a document they want to
view (by pressing in the bar) and then fine-tune the viewing area (by
dragging the knob).

• Pressing or clicking on a scroll button. The knob (and the viewing area) will
move in the direction indicated by the arrow on the scroll button.

• Selecting something in the document and then extending the selection past
the edge of the viewing area. This automatically scrolls unseen portions of
the selection into view.

Fine-Tuning Mode

If a document is large, even small movements of the knob will make large
changes in the display area. This makes it difficult for users to adjust the
display area accurately by dragging the knob.

To help with this, scrollers have a fine-tuning mode that is activated by holding
down Alt and dragging the knob. This changes the responsiveness of the knob,
so that it (and the display area) move only slightly when dragged by the mouse.
The knob moves in the direction it is dragged, but does not move as far as the
pointer does. It moves slowly, representing the motion of the display area.

Once the Alt key is released, any subsequent dragging action will cause the
knob to jump to the position of the pointer.

Scroll Buttons

The scroll buttons permit more precise scrolling than direct manipulation of
the knob. In a text document, clicking on the vertical scroll button scrolls the
viewing area by one line of text. When pressed, it scrolls continuously in one­
line increments. Horizontal scroll buttons work in a similar way, scrolling a
small, fixed amount either left or right.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076623
Petitioner Microsoft - Ex. 1069, p. 190

• If the user drags from one button on a scroller to the other, without releasing
the mouse button, each button acts as it is pressed. (Users cannot drag a
scroll button on one scroller to a scroll button on another scroller.)

• If the user holds down Alt and clicks on a scroll button, the viewing area
moves by an amount based on its own dimensions. Alt-clicking on a vertical
scroller moves the bottom line (or two) to the top of the display area or the
top line (or two) to the bottom. This provides users with a bit of overlap, so
they know that nothing was skipped.

• Sometimes scroll buttons are displayed without the rest of the scroller. Since
there are no knob and bar to indicate when the viewing area has reached a
vertical or horizontal limit, you should dim the arrow on the corresponding
scroll button.

Note - Interface Builder makes it easy to put scrollers around a document
display area. The App Kit handles all scrolling characteristics, including
Alt-clicking and Alt-dragging. You may want to adjust the amount the viewing
area moves for a single click (even for graphics, it should be the distance
comparable to a single line of text) and optimize drawing performance so that
scrolling is as fast as possible.

Automatic Scrolling

When the user begins a selection (usually of text) in the display area and then
drags to extend the selection beyond it, the display area will scroll
continuously to bring the moving edge of the selection into view. This
continues until the user releases the mouse button and sets the final edge of the
selection. The amount scrolled increases as the edge of the selection moves
farther from the display area. The application brings the location under the
mouse pointer into view.

As the document scrolls, the scroller knob is adjusted to reflect the current
position of the display.

Controls 7-23

MS _ SURFCAST _000076624
Petitioner Microsoft - Ex. 1069, p. 191

7-24

Implementing Scrollers

If a document is taller than the display area, it should have a vertical scroller. If
it is wider than the display area, it should have a horizontal scroller.

Note - When users scroll, they move the display area over the surface of a
document. They often perceive, however, that the document moves (not the
display area). This means that the knob and the document appear to move in
opposite directions. To avoid confusion, documentation for your application
should explain scrolling in terms of adjusting the visible portion of the
document, rather than adjusting the document to make it visible.

The scroll buttons for both vertical and horizontal scrollers should occupy the
lower left corner of the display area, where the two scrollers meet. This makes
it easy for users to move from one set to the other.

If you use controls that operate on the document view, such as the page-scroll
buttons as shown in Figure 7-17, you can put them in the area normally
occupied by the scrollers (beneath and to the left of the document). Other types
of control should not be put in this area.

Standard Controls

A, you develop an a pplica tion, you de,ign the action, tha t you want it to
pe1io,m and identify th e ,tat e, tha t use" will able to ,et. Then you need to
decide whic h conhol wi 11 be, t ,ep' e,ent them to you, use".

The Applica tion Kit ,upplie, a monbe, of ,tanda,d conhol" and each ha,
appeal ance and be hamol: option J so f01 most ac tions 01 sta tes yo u imp le-mentJ
you 'hould be able to fin d a ,tanda, d conhol th at wo, ks we II. Th e ,tan da,d
conho I, a' e cove ,ed in the following 0' del:

• Button,
• Text field,

• Slide"
• Colo, well,
• SClolleH
• B,owse" and ,election li,t,
• Menu comma.nd, (,ee Cha.pte, 6, "Menus)

Figure 7-17 Page-Scroll Buttons and Controls

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076625
Petitioner Microsoft - Ex. 1069, p. 192

Controls that you can put in the scroller area include:

• An editable text field that displays the current page number can be located
at the far right of the horizontal scroller (see Figure 7 -17).

• A pop-up list that lets the user scale the display can be located in the
horizontal scroller (see Figure 7 -17).

• A pop-up list that controls the viewing mode (for example, preview versus
drawing mode in a graphics application) can be located in the vertical
scroller.

• Page-scroll buttons, which scroll from page to page or in increments
matching the dimensions of the display area, can be grouped next to the
scroll buttons. There is no current Application Kit support for page scroll
buttons, and a precise arrangement is not specified. (See Figure 7 -17 for
typical page-scroll buttons.)

Browsers and Selection Lists
Browsers and selection lists are controls that display lists and let users select
one or more items in the list. Browsers show several lists side-by-side, allowing
users to work with data organized hierarchically, such as:

• Files and folders
• Cities, counties, and states
• Management structure of a company

Selection lists display data that exists on a single level. They usually have
scrollers, but this is not required. See Figure 7-18.

Figure 7-18 A Browser and a Selection List

Controls 7-25

MS _ SURFCAST _000076626
Petitioner Microsoft - Ex. 1069, p. 193

"Selecting Objects With the Mouse" in Chapter 3 summarizes the mouse
actions that select items in a browser or selection list. Browsers and selection
lists can also include text fields, in which users can select by using the
keyboard and typing in the name of an item. The browser on the Save panel
includes a text field that allows users to select from files appearing in the
browser by typing.

If double-clicking on items appearing in a browser or selection list does
anything, it should perform the same action as pressing Return (that is, the
same action as the button marked with the Return symbol).

Choosing the Appropriate Control

7-26

In some situations, it is clear which control will best represent an action or
state to your users:

• Scrollers are used when documents are displayed in display areas that
might be too small for a complete document.

• Sliders are used when your users need to set a value within a bounded
range (of colors, numbers, or sound levels, for example).

• Text fields are used whenever it is impossible or impractical to provide a list
of all possible values.

• Color wells are used only with the Colors panel, and only where complex
color characteristics are needed.

• Browsers are used only for data that is organized hierarchically.

In other situations, the choice is less clear. You can use a button or a selection
for most of them, but these controls have many variants, and you want to pick
the one that "feels right." The rest of this section analyzes different kinds of
actions and states that must be represented by controls and identifies the
buttons or selection lists that will work best.

Controls That Represent Actions

Actions your users can start should usually be represented by menu
commands or buttons.

• In some cases, an action can be represented by both a menu command and a
button.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076627
Petitioner Microsoft - Ex. 1069, p. 194

• Although text fields can initiate actions when users press Return, they do
not identify the action nor provide feedback to the users. You should always
supply a nearby button that represents the action, labels it and responds
when Return is pressed.

• Some actions are unimportant or rarely used and you don't want to use
screen space to represent them as individual buttons. In these situations,
you can make them into items in pull-down lists. Another possibility is to
implement them as menu commands.

The Figure 7-19 shows a single action, printing, implemented by a menu
command, a button, and a pull-down list item. Any of these controls opens the
print panel. Print is normally implemented as a menu command.

Figure 7-19 Different Controls That Start the Same Action

Controls That Represent Settable States

Settable states can be represented by two-state buttons, pop-up lists, and
selection lists. Menu commands should never be used to show state. A settable
state can be more or less independent of other settable states, and the degree of
independence influences your choice of a control to represent it:

• In some situations a settable state is completely independent of any other
state represented on the panel. (The display size of text in a document is an
example.) These states can be represented by a single control.

• Some settable states (options) are related to other options on the panel, but
there is no fixed relationship among them. Users can choose any
combination of options.

• In other cases, there is a mutually exclusive relationship among a group of
options. Users must choose one, and only one, of the related options.

Note - Selection lists allow a relationship in which either no choice or one
choice can be selected.

Controls 7-27

MS _ SURFCAST _000076628
Petitioner Microsoft - Ex. 1069, p. 195

7-28

Controls that represent a state should only be used to show and set state and
not to initiate actions. There are two apparent exceptions to this rule:

• Double-clicking an item in a selection list can initiate an action, but the
double-click is actually a shortcut for selecting the item and then clicking on
a button.

• Setting a state can have visible consequences, such as changing the
displayed format of a document to change, but this is actually feedback that
the state has changed, and not an action.

Displaying a Single Option

When a single option is truly independent of the other options on a panel, a
switch is the preferred control. You could also represent it as a graphical two­
state button, as long as it is very clear that the button has two states. Refer to
Figure 7-20.

Figure 7-20 Control for an Independent Option (a Switch)

Displaying a Group With an Unrestricted Relationship

When you want to represent a number of related options that work together to
determine something but do not have a mutually exclusive relationship, use
one of the controls illustrated in Figure 7-21:

• Group of switches

• Group of graphical two-state buttons (they should not look like graphical
radio buttons)

• Selection list

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076629
Petitioner Microsoft - Ex. 1069, p. 196

Figure 7-21 Controls for Options With an Unrestricted Relationship

Switches and graphical two-state buttons are preferred. Selection lists are less
attractive and do not indicate how many selections can be made. (If you use
two-state buttons, be careful that they do not look like radio buttons.) A
selection list might be more appropriate when the list of choices can increase or
decrease dynamically, or when space on the panel is restricted.

Displaying a Group With a Mutually Exclusive Relationship

Several kinds of controls can be used to represent options with a mutually
exclusive relationship. These controls let the user choose one and only one
option:

• Group of radio buttons (standard or graphical)
• Pop-up list
• Selection list

Figure 7-22 shows these controls as they would be used to set the background
color of a text field. Because this use is inherently graphical and there are only
a few valid choices, graphical radio buttons are the best choice, followed by
standard radio buttons. A pop-up list is marginally acceptable for this use, and
a selection list is the least appropriate choice.

Figure 7-22 A Group of Choices With a One-of-Many Relationship

Controls 7-29

MS _ SURFCAST _000076630
Petitioner Microsoft - Ex. 1069, p. 197

7-30

The following considerations might help you decide which control to use:

• If the control will be used frequently, consider using radio buttons (standard
or graphical), since they are easier to operate and more accessible to the
user.

• If text does not adequately describe the choices, consider using a group of
graphical radio buttons.

• If space is limited or the window or panel looks too complex, consider using
a pop-up list.

• If the list of choices can increase or decrease, consider using a pop-up list or
a selection list.

• If the list of choices can grow larger than the screen, use a selection list with
a scroller.

• If the user needs to see more than one of the choices on screen to
understand them, avoid using a pop-up list.

• If the control will usually appear at the edge of the screen, you might want
to avoid a pop-up list.

Note - : A pop-up list usually pops up so that the current selection is under the
pointer. If, however, the list is long and near the edge of the screen, it shifts so
that the entire list can appear on screen, which may change the selection under
the pointer. Users might unwittingly make a new selection while intending
only to see what is in the list. When considering a pop-up list, think about
whether it is important to avoid this result.

• If many ordinary text-based buttons are in the panel, a pop-up list might fit
in better graphically.

OpenStep User Interface Guidelines-September 1996

MS _ SU RFCAST _000076631
Petitioner Microsoft - Ex. 1069, p. 198

The Interface to the File System

The OpenStep Workspace Manager provides an effective graphical interface to
the Sun Solaris file system. Directories are represented by folder icons, and files
are represented by a variety of icons which indicate file type and owning
application. These objects are displayed on a specialized panel (the File
Viewer) featuring browser controls that allow users to navigate the file system
with mouse actions.

The file icons are fully-featured graphical objects, and users can act on the
icons they see in the File Viewer (in accordance with the direct manipulation,
modal tool, and targeted action paradigms) to manipulate files. The Workspace
Manager, which includes the File Viewer, the Application Dock, and all of their
characteristics, has been implemented for you. (These characteristics are
documented in Using the Open Step Desktop.)

This chapter explains some things you will need to know in order to fully
integrate your application into the OpenStep environment -conventions for
folders in which applications are installed, for creating file packages, new file
extensions, and so on.

OpenStep Folder Conventions page 8-2

Search Paths in Open Step File System File System page 8-5

File Name Extensions in OpenStep File System File System page 8-6

File Packages in OpenStep File System File System page 8-7

Displaying File Names page 8-7

Files and Folders That Your Application Creates page 8-8

8-1

MS _ SURFCAST _000076632
Petitioner Microsoft - Ex. 1069, p. 199

Note - Users who want to use a command line to interact with the operating
system can use the Terminal application to open a VT-lOO terminal emulation
window and run a standard command shell.

OpenStep Folder Conventions

8-2

Although the OpenStep system runs on a full Solaris file system, the file
system interface has adopted some conventions that make it easier for users to
work with the file system:

• The File Viewer's default view shows all of the files available on the system,
but the user can change the view and hide many of the system folders.

• OpenStep software creates some standard folders for OpenStep system
software. It also establishes conventions for other software (including your
own) that is installed at user locations.

The user's view of the file system begins with the root (I) folder. Inside the
root folder, the OpenStep convention is to distinguish between software
installed as part of the product and other software installed at a customer site,
by creating and using the following folders:

• Home folder, for files the user creates and works with

• OpenStep folders, for software installed as part of an OpenStep installation,
which include the developer tools, for users who install them.

• "Local" folders, for software installed at a customer site and available to all
users

• "Personal" folders, for software installed by (or for) individual users

• A /net folder that represents network folders available to the computer

Home Folder

Traditionally, each user has a home folder that is identified with his or her
login name, /home/username. Home folders of other users may also be visible
in the File Viewer.

When typing in file names, users can specify their home folder as -. For
example, -/openstep refers to the openstep folder in the user's home
folder.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076633
Petitioner Microsoft - Ex. 1069, p. 200

OpenStep Folders

The OpenStep folders contain documents, resources, and the applications that
are bundled with OpenStep.

• /usr/openstep/Apps contains supported applications that are likely to be
used by all OpenStep users. These are general-interest applications such as
Edit, Preferences, Mail, Terminal and Preview.

• /usr/openstep/Developer holds applications and files used to develop
OpenStep applications. Some of the folders that can appear in
/usr/openstep/Developer are listed in Table 8-1.

Table 8-1 Folders in /usr/openstep/Developer

Folder Name

Apps

Demos

Examples

Contents of Folder

Holds applications used by developers. This folder might not exist
on all systems. Project management, application construction, and
other window-based programming tools belong here. Like all other
applications in the four OpenStep folders, these applications can be
run from the Workspace Manager. Compilers, debuggers, and
profiling tools are typically located in /opt/SUNWspro/bin.

Contains programs that demonstrate the capabilities of OpenStep.
These are not full applications and are not supported by Sun.
However, they include games and utilities that users might find
interesting.

Contains source code for example programs. This folder might not
exist on all systems. Its folders contain source code that you can
study and compile.

• /usr / openstep /Library contains resource files, which are organized into
several folders. Not all files or folders are on every system.

Local Folders

Software not supplied by Sun and installed with OpenStep should not be
installed in /usr / openstep. This software belongs in folders known as local
folders. The following list describes local folders, their creation, and their use.

• Local folders are not included on the release disk. They are created when
they are needed.

The Interface to the File System 8-3

MS _ SURFCAST _000076634
Petitioner Microsoft - Ex. 1069, p. 201

8-4

• The local folders local folders you can create and use are
/usr /loeal/openstep/apps and /usr /loeal/openstep/Library.

• The local folders should not contain any files that are part of the OpenStep
product. They should contain applications and other information available
to all users at a local site. A new font available to all the users of your
network, for example, should be installed in
/usr/loeal/openstep/Library/Fonts.

• Any user who logs in to a computer or boots from it over a network has
access to the contents of the computer's local folders.

Personal Folders

Inet Folder

Users can use -/openstep/Apps and -/openstep/Library folders (not
LoealLibraryor LocalApps) in their home folders for applications and
information that they alone have access to. Users who develop utilities for their
own use or purchase private copies of word processors or spreadsheets should
install them in -/openstep/Apps.

The /net folder gives the user access to file systems that are physically located
on remote machines. Immediately below /net are folders that represent the
servers visible to the current computer. The next level of folders represents the
file systems on those machines that have been exported to the network. For
example, /net/willow/export/mise is the mise file system on a server
named willow.

Note - /net will only contain other folders if automounting is in effect on the
current computer and the file systems it attempts to mount have been
exported.

All the folders in the root (j) folder, including /net, are physically located on
the disk that the user's machine was booted from.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076635
Petitioner Microsoft - Ex. 1069, p. 202

Search Paths in OpenStep File System
This section covers the uses of search paths in the OpenStep file system. There
is a standard Workspace Manager search path, and you can create a search
path for your own application to use.

The Workspace Manager Search Path

When the Workspace Manager searches for executable files it looks in the
folders specified in the search path, The default search path includes six folders:

-/openstep/Apps
/usr/local/openstep/Apps
/usr/openstep/Apps
/usr/openstep/Developer/Apps
/usr/openstep/Developer/Demos

The search path is used in three situations:

• Finding the icons to display for the files associated with a particular
application

• Finding the application to start when a user double-clicks on a file

• Finding services offered by applications

Before using the search path to find the application to start up, Workspace
Manager first looks in the dock. Each application icon in the dock represents a
specific executable in a specific folder, and Workspace Manager assumes that
the user prefers the version installed in the dock to any other versions that may
be available.

If an application is not represented in the dock, the Workspace Manager next
looks in the current working folder (the folder containing the file the user
wants to open). If it fails to find the application there it uses the search path.

The search path begins with -/openstep/Apps, since any user-installed
applications would be there. /usr/local/openstep/Apps is next because it
contains sitewide software. If nothing is found in the user and site folders,
/usr/openstep/Apps, /usr/openstep/Developer/Apps,and
/usr / openstep/Developer /Demos, which contain Sun-supplied software,
are searched. This search order ensures that any user-installed software is
found before (and overrides) the sitewide software, and the sitewide software
is found before (and overrides) Sun-supplied OpenStep software.

The Interface to the File System 8-5

MS _ SURFCAST _000076636
Petitioner Microsoft - Ex. 1069, p. 203

Users can alter the default search path by setting a value for the Application
Paths parameter in their defaults database.

Application Search Paths

If your application needs to look up data that could be in more than one place
on the system it should use an ordered search path similar to the Workspace
Manager search path. Three functions, NSStandardApplicationPaths () ,
NSStandardLibraryPaths, and NSStandardFontPaths, provide a
programmatic interface to ordered search paths. Applications that use these
functions can avoid hard-coded search paths.

File Name Extensions in OpenStep File System

8-6

This section covers the uses of extensions in the OpenStep file system,
including extensions reserved for the Workspace Manager and custom
extensions for your own applications.

Workspace Manager Extensions

OpenStep applications use file name extensions to identify different types of
files. The extensions consist of the last period (.) in the file name and the
characters that follow it. Mail, for example, uses the extension . mbox to
identify its mailboxes. Typical names for mailboxes are Acti ve . mbox and
Outgoing. mbox.

The Workspace Manager also uses file name extensions to associate document
files with applications. Every application that defines its own data file format
appends an identifying extension to the names of its document files.

Custom Application Extensions

Your application should use a unique file name extension to identify its
documents. The characters that follow the period can include only alphabetic
and numeric characters. Your extensions must include at least three characters;
extensions of fewer than three characters are reserved for OpenStep files. The
extension. example is acceptable, but. eg is not, because it has only two
characters after the period.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076637
Petitioner Microsoft - Ex. 1069, p. 204

File Packages in OpenStep File System

Displaying File Names

A file package is a folder which looks like a single file in the File Viewer. Because
users do not normally look inside file packages (unless they explicitly open it
as a folder), they are not likely to alter or reorganize their contents.

Applications should create a file package when they work with groups of files
that must be kept together. If, for example, your application displays
information that is stored in independent text files, or if it makes use of a
private utility program, or if it just loads archived objects from Interface
Builder . nib files, you may want to keep these auxiliary files in close
proximity to the main application executable file. A file package (with the
. app file name extension) is the way to do this.

Similarly, if your application creates documents that are split into more than
one file-for example, if text is in one file and artwork in another-these files
can also be grouped in file packages.

File packages for documents should have the file name extension used for the
application's document files. When a word processor uses a file package to
store a document and its artwork, the file package should have the same
extension as a text -only document stored in a single file.

Opening and naming the individual files within a document file package is
entirely the application's responsibility.

When file names are displayed in browsers, users can see the complete path
leading to the file. In other situations, as document window title bars, text
strings are used to represent the file's name and path. In these situations, the
correct format for the filename is as follows:

jobRecords /net/ servername/ export/records

The file name should be followed by two spaces, an em dash, two more spaces,
and then the path.

When there is not enough space to display the full file name-as in a menu
command-you can shorten the path to the minimum that differentiates the
file. The part of the path you don't show should be replaced with three dots.

The Interface to the File System 8-7

MS _ SURFCAST _000076638
Petitioner Microsoft - Ex. 1069, p. 205

For example, if a file called j obRecords is listed in a limited space, you can
display it as:

jobRecords

If two files called j obRecords are listed in limited space, you might display
them as:

jobRecords
jobRecords

... /records

... /backup

Files and Folders That Your Application Creates

8-8

Applications frequently create, manage and save files and folders that are not
explicitly created by their users. When an application creates several files to
store a single document, they should be grouped in a file package (see the
preceding section for more information). In other situations, when the files
hold information about the current state of an application, templates, or similar
information, the file names and locations the application uses for them depend
on whether users need direct access.

The guiding principle here is that the user's home folder belongs to the user.
Applications should not put anything in the home folder that belongs to an
application rather than the user. When the application must create unrequested
files and folders, it should put them where the user can find them but where
they are not likely to get in the user's way.

• If the user never needs direct access to the files or folders, they should be
placed in a folder named -/ . openstep/ .Applnfo. If an application needs
to create many such files, it should create a folder in
-/ .openstep/ .Applnfo and store them there. If MyApp creates many
unrequested files, it should put them in a folder named
-/ . openstep/ . Applnfo/MyApp. (If the -/ . openstep/ .Applnfo folder
does not already exist, the application can create it.)

• If the user might work with the unrequested files or folders independently of
the application that creates them (for example, template files), the files and
folders should be placed under -/openstep/Library. The names assigned
to these files and folders should let users know which applications they
belong to.

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076639
Petitioner Microsoft - Ex. 1069, p. 206

Note - You should generally use the defaults system instead of files to store
small amounts of data. The functions supporting the defaults system are
described in the OpenStep General Reference manual.

The Interface to the File System 8-9

MS _ SURFCAST _000076640
Petitioner Microsoft - Ex. 1069, p. 207

8-10 OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076641
Petitioner Microsoft - Ex. 1069, p. 208

Index

A
Align Left command, 6-35

Align Right command, 6-35

Alternate key
as modifier key, 3-22
use with arrow keys, 3-32
using to extend selection, 3-7
using with mouse, 3-19

anchor point, 3-17

application icons, 1-7 to 1-8
docked, 1-7
docked, tier of, 4-4
freestanding, 1-7

Application Kit
programming note on menus

and, 6-1
programming note on windows

and, 4-2
provisions for implementing

menus, 6-10

application status, implementing, 4-24 to
4-26

applications
acting on user's behalf, 2-3
activating, 4-12, 4-24
active, 1-3, 4-11 to 4-13
avoiding activation when

dragging, 4-25

deactivating, 4-12 to 4-13
programming note on activating and

deactivating, 4-25, 4-26
programming note on avoiding

activation when
dragging, 4-26

window interface to, 4-24 to 4-26
and window status, 4-10 to 4-18
windows of, 1-3 to 1-8

Arrange in Front command, 6-37
arrow characters, 3-24

arrow keys
use of, 3-9 to 3-10, 3-24
use with Alternate key, 3-32
use with Control key, 3-31
use with modifier keys, 3-31 to 3-33
use with Shift key, 3-32

attention panels, 1-5, 5-2 to 5-4
See also panels
default option in, 5-11
features of, 5-3
implementing, 5-10 to 5-12
naming, 5-10 to 5-11
naming buttons in, 5-12
optional explanations in, 5-12
tier of, 4-4

Index-l

MS _ SURFCAST _000076642
Petitioner Microsoft - Ex. 1069, p. 209

Index-2

B
Bold command, 6-33
browsers, 1-13,7-25
buttons, 1-9 to 1-10,7-3 to 7-13

c

See also radio buttons, pop-up lists,
and pull-down lists

appearance of, 1-9
changing appearance of during a

click, 7-10
choosing image or label for, 7 -7 to 7 -9
choosing results of using, 7-7
close, 4-8
controlling lists, 1-9, 7-5 to 7-6
how they work, 7-3 to 7-6
implementing, 7-6 to 7-13
link, implementing, 7-12
miniaturize, 4-8
naming in attention panels, 5-12
one-state, 7-7
programming note on Return

symbol, 7-9
stop, implementing, 7-13
that set a state, 1-9
two-state, 7-7
types of, 7-3
used as switches, 7-3

Center command, 6-35
Check Spelling command, 3-26,6-25

clicking, 3-3
in windows, 3-14
reactions to, 3-13 to 3-14
to select, 3-6

clicking in windows, results of, 4-18
close button, 4-8, 4-23 to 4-24

broken, 4-8
Close command, 6-22

Close panel, 5-15,5-17

Close Window command, 3-26, 6-37
color wells, 1-11, 7-17 to 7 -19

choosing colors for, 7-18
Colors command, 3-27

Colors panel, 5-15
colors, choosing for a color well, 7-18

Command key
as modifier key, 3-22
special combinations with, 3-24 to

3-31
using with mouse, 3-19

commands, 6-8 to 6-9
See also menus
See also specific command
for checking spelling, 6-26
choosing from menus, 6-3
choosing names for, 6-11 to 6-14
disabling invalid, 6-14
naming for bringing up panels, 6-12

to 6-13
naming for bringing up standard

windows, 6-13
naming for bringing up

submenus, 6-13
naming for performing actions, 6-11
naming in Services menu, 6-39
program note on implementing, 6-16
sample names for, 6-14
standard, 6-15 to 6-40
using graphical devices in, 6-15
using keyboard alternatives to

choose, 6-9

Control key
as modifier key, 3-22
use with arrow keys, 3-31
using with mouse, 3-20

controls, 1-8 to 1-13,7-1 to 7-30
choosing the appropriate, 7-26 to 7 -30
designing your own, 7-3
displaying a group with a one-of-

many relationships, 7-29 to
7-30

displaying a group with an
unrestricted
relationship, 7-28 to 7-29

displaying a single option with, 7-28
principles of designing, 7-3
that show state, 7-27 to 7-30
that start actions, 7-26

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076643
Petitioner Microsoft - Ex. 1069, p. 210

types of, 7-2
uses of, 7-1

Copy command, 3-25,6-24
Copy Font command, 6-33
Copy Ruler command, 3-27,6-36
cursor

bringing main menu to, 6-4
changing, 3-12
hiding, 3-10, 3-12
managing, 3-10, 3-11 to 3-12

Cut command, 6-24

D
Delete command, 6-25
Delete key, use of, 3-23

direct manipulation, 2-5
Document menu, 6-17,6-21 to 6-23
documents, uneditable, 6-23
double-clicking, 3-3

when to act on, 3-14 to 3-16

dragging, 3-4

E

avoiding activation when, 4-25
how to use, 3-17 to 3-19
moving objects by, 3-17
over groups of objects, 3-18 to 3-19
range that should be selected by, 3-11
to define a range, 3-17
to select, 3-7

Edit menu, 6-17, 6-24 to 6-25
programming notes on, 6-25

end point, 3-17
Enter key, use of, 3-23

Enter Selection command, 6-30
Esc key, use of, 3-23
extensions, file name, 8-6

F
file name extensions, 8-6

file packages

using, 8-7

file system
interface to, 8-1 to 8-8
organization of, 8-2 to 8-7

files
creating unrequested, 8-8
displaying names of, 8-7 to 8-8

Find menu, 6-25, 6-29
Find Next command, 3-26,6-30
Find panel, 5-15,5-17
Find Panel command, 3-26, 6-30
Find Previous command, 3-26, 6-30

folders
creating unrequested, 8-8
home, 8-2
local, 8-3 to 8-4
Net, 8-4
NeXT, 8-3
personal, 8-3 to 8-4
root, 8-4

Font menu, 6-31,6-32
programming note on, 6-32

Font panel, 5-15
Font Panel command, 6-33
Format menu, 6-17,6-31

H
Heavier command, 6-33
Help command, 6-20
Help key

alternative when keyboard has
no, 3-20

as modifier key, 3-22
using with mouse, 3-20

Help panel, 5-15,5-18
Hide command, 3-25,6-18
home folders, 8-2

I
Info menu, 6-17,6-19
Info panel, 5-15,5-21

Index-3

MS _ SURFCAST _000076644
Petitioner Microsoft - Ex. 1069, p. 211

Index-4

Info Panel command, 6-20
Italic command, 3-27,6-33

J
Jump to Selection command, 6-30
Justify command, 6-35

K
key window, 1-3,4-10,4-13 to 4-14, 4-17

keyboard
description of, 3-21
use of, 3-20 to 3-23
user actions with, 3-1 to 3-33

keyboard alternatives, 1-6,3-24
choosing, 3-24 to 3-31
choosing characters for, 3-29
creating application-specific, 3-28 to

3-31
determining actions performed

by, 3-30 to 3-31
recommended, 3-27
required, 3-26
reserved, 3-25 to 3-26
using the Alternate key in, 3-29

keys, implementing special, 3-23 to 3-31

L
Larger command, 6-33
Lighter command, 6-33
link buttons, implementing, 7-12

Link Inspector command, 6-28
Link Inspector panel, 5-16, 5-21
Link menu, 6-25, 6-27

links, programming note on
implementing, 6-27

M
main menu, 6-4,6-16 to 6-19

adding to, 6-18 to 6-19
bringing to cursor, 6-4
standard commands in, 6-16 to 6-18

tier of, 4-4
main window, 4-10, 4-14 to 4-17
menus, 1-6,6-1 to 6-40

See also commands
See also specific menu
bringing main to cursor, 6-4
closing, 4-9
commands in, 6-8 to 6-9
designing the hierarchy of, 6-10
how they work, 6-1 to 6-9
implementing, 6-10 to 6-15
programming note on the Application

Kit and, 6-1
role of, 1-6
standard, 6-15 to 6-40
tier of, 4-4
uses of, 6-1

miniaturize button, 1-7, 4-8, 4-22 to 4-23

Miniaturize Window command, 6-37
miniwindows, 1-7
modal tool, 2-6 to 2-7

modes
avoiding use of, 2-3
when to use, 2-3, 2-7

modifier keys, 3-21 to 3-22
use with arrow keys, 3-31
using with mouse, 3-19,3-20

mouse
implementing actions with, 3-13 to

3-20, 3-31 to 3-33
paradigms for using in user

interface, 2-5 to 2-7
responsiveness of, 3-4
setting the scaling of, 3-4
use of, 3-2 to 3-10
use of buttons, 3-4
use of in user interface, 2-4
user actions with, 3-1 to 3-33
using for selection, 3-5 to 3-10
using modifier keys with, 3-19 to 3-20

multiple-clicking, 3-3
to select, 3-6
when to use, 3-16

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076645
Petitioner Microsoft - Ex. 1069, p. 212

N
Net folder, 8-4
New command, 6-22

performing an implicit, 6-23
NeXT folders, 8-3

o
Open command, 6-22
Open panel, 5-16, 5-22
ordinary panels, 1-5, 5-2

p

See also panels
conventions for, 5-4 to 5-5
exception to behavior, 5-6 to 5-7
implementing, 5-4 to 5-9

Page Layout command, 3-27,6-31

Page Layout panel, 5-16
panels, 1-4 to 1-6, 5-1 to 5-24

See also attention panels and ordinary
panels

closing, 4-9
customizing Application Kit, 5-14
floating, 5-7
floating, tier of, 4-5
how they work, 5-2 to 5-4
implementing, 5-4 to 5-12
inspector, 5-9
multiform, 5-8
naming commands that bring

up, 6-12 to 6-13
persisting, 5-6
programming note on avoiding key-

window status for, 5-6
programming note on creating, 5-2
relinquishing key-window status, 5-6
role of, 1-4
standard, 5-13 to 5-24
uses of, 5-1
with variable contents, 5-8 to 5-9

Paste and Link command, 6-28
Paste As menu, 6-24, 6-26

Paste command, 3-26, 6-24
Paste Font command, 3-27, 6-33
Paste Link Button command, 6-28
Paste Ruler command, 3-27,6-36
paths, search, 8-5

pop-up lists, 7-5 to 7-6
implementing, 7-11
tier of, 4-4

Preferences command, 6-20
Preferences panel, 5-16,5-22 to 5-23

pressing, 3-4
when to use, 3-19

Print command, 6-17

Print panel, 5-16
Publish Selection command, 6-28
pull-down lists, 7-6

Q

buttons that control, 1-9
implementing, 7-11
tier of, 4-4

QUit command, 6-18
QUit panel, 5-16,5-23 to 5-24

R
radio buttons

graphical, 7-3
standard, 7-3

resize bar, 4-22

Return key
use of, 3-23
using instead of a button, 7-15

Revert to Saved command, 6-22

s
Save All command, 6-22

Save As command, 3-27,6-22
Save command, 3-26,6-22
Save panel, 5-16, 5-24
Save To command, 6-22

Index-5

MS _ SURFCAST _000076646
Petitioner Microsoft - Ex. 1069, p. 213

Index-6

scroll bar, 7-21 to 7-22
scroll buttons, 7-22
scroll knob, 7-20 to 7-22
scrollers, 1-12,7-19 to 7-25

fine-tuning mode in, 7-22
how they work, 7-20 to 7-24
implementing, 7-24 to 7 -25
parts of, 7-20
the user's view, 7-24
uses of, 7-19

scrolling
automatically, 7-23
programming note on, 7-23

search paths, 8-5
Select All command, 6-25
selection, 3-5 to 3-10

by clicking, 3-6
by dragging, 3-7
by multiple-clicking, 3-6
continuous extension of, 3-7 to 3-8
discontinuous extension of, 3-8 to 3-9
extending the, 3-7 to 3-9
implementing, 3-23 to 3-33
of a range by dragging, 3-11, 3-17
when discontinuous not

implemented, 3-11

selection lists, 1-13,7-25

Services menu, 6-18, 6-38 to 6-39
naming commands in, 6-39
programming note on, 6-38

services, providing, 6-39 to 6-40
Shift key

as modifier key, 3-22
use with arrow keys, 3-32
using to extend selection, 3-8
using with mouse, 3-20

Show Links command, 6-28
Show Menus command, 6-20
Show Ruler command, 6-36
sliders, 1-11, 7-16 to 7-17

current value of, 7-16
parts of, 7-16

programming note on implementing
Alternate-dragging for, 7-17

Smaller command, 6-33
special character keys, 3-23 to 3-24
Spelling command, 6-25
Spelling panel, 5-16,6-26
stop buttons, implementing, 7-13

submenus, 6-5 to 6-8
keeping attached, 6-6
naming commands that bring

up, 6-13
removing from screen, 6-8
tearing off, 6-7

Subscript command, 6-33
Superscript command, 6-33

T
Tab key, use of, 3-24
targeted action, 2-5 to 2-6
text fields, 1-10,7-13 to 7-16

moving between, 7-14
uses of, 7-13

Text menu, 6-31,6-35
title bar, 4-7
Tools menu, 6-40

triple-clicking, 3-3

u
Unbold command, 3-26, 6-33
Underline command, 6-33
Undo command, 3-26, 6-25
Unitalic command, 3-27,6-33

Unscript command, 6-33
Ununderline command, 6-33
user interface

basic principles of, 2-2 to 2-4
consistency of, 2-4
design philosophy, 2-1 to 2-8
direct manipulation paradigm, 2-5
extensions to, 2-8
goals of, 1-1, 2-1

OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076647
Petitioner Microsoft - Ex. 1069, p. 214

modal-tool paradigm, 2-6 to 2-7
naturalness of, 2-2
paradigms for using mouse in, 2-5 to

2-7
reasons for graphical, 2-1
targeted-action paradigm, 2-5 to 2-6
testing, 2-8
use of mouse in, 2-4
user control of, 2-2
visual gUide to, 1-1 to 1-13

users

w

control of user interface, 2-2
when applications should act on

behalf of, 2-3

window status
and applications, 4-10 to 4-18
implementing, 4-24 to 4-26

windows, 1-3 to 1-8
behavior of, 4-6 to 4-10
choosing the key, 4-24
choosing titles for, 4-21
clicking in, 3-14
closing, 4-9, 4-23 to 4-24
closing standard, 4-9
designing, 4-19
hiding, 4-9
how they work, 4-2 to 4-18
implementing, 4-19 to 4-26
implementing standard, 4-21 to 4-24
as interface to applications, 4-19 to

4-26
key, 4-13 to 4-14
main, 4-14 to 4-17
miniaturizing, 4-8 to 4-9, 4-22 to 4-23
moving, 4-6
naming commands that bring up

standard, 6-13
note on meaning of, 4-1
order of, 4-4 to 4-5
parts of, 4-3
placing, 4-19 to 4-20

programming note on Application Kit
and, 4-2

programming note on implementing
titles of, 4-21

programming note on saving position
of, 4-20

reordering, 4-6
resizing, 4-7, 4-22
results of clicking in, 4-18
retrieving hidden, 4-9
standard, 1-3
tiers of, 4-4 to 4-5
title bar of, 4-7

Windows menu, 6-17, 6-36 to 6-37
programming note on, 6-36

workspace, 1-2

Workspace Manager
as interface to file system, 8-1

Index-7

MS _ SURFCAST _000076648
Petitioner Microsoft - Ex. 1069, p. 215

Index-8 OpenStep User Interface Guidelines-September 1996

MS _ SURFCAST _000076649
Petitioner Microsoft - Ex. 1069, p. 216

