) ; il
©
[i o0
¥ i mlu
M =
=
ow
| 8
| mﬁﬁfq,
“ «, ,mm ﬂ
, w he ©
m Ze R
2 2
Ed 3]
{ @.M
A m .
« D
, =
Q
=
, =i
z e
B
M , Q
, : 7,
o € i
L il s)
”. i + P
® =
s O

. S1TOdVINNIW
sa¥0d3y B3S AUVHEI
AINN VEIOSENNIW

; LLCE TLN

co®yS3 NKW

Constraint-Based Tiled Windows

Ellis S. Cohen
Siemens Research & Technology Laboratories

Edward T. Smith
Carnegie-Mellon University

_Lee A Iverson
Siemens Research & Technology Laboratories

AN
/' \ S
/ \ N
N
Vs \ S
/ N\
/’ / \\ N
/ / N
/ / \ S
/ / \
Vs / N
V4 / \
Vg
V4 / \\
4 / N\
/7 / N
4 / N\

-—_-—_-_‘---_—----------——--——--—-----_I

Typical computer workstations employ window
managers for creating, destroying, and arranging
windows on the screen. Window managers generally
follow either a desktop metaphor, allowing windows to
overlap each other like sheets of paper on a desk, or
they use a tiling model, arranging each window with a
specific size and location that avoids overlap. Desktop
models allow for the most layout freedom, but can be
frustrating to use when dealing with a large number of
windows that must all be visible at once. Tiling models
guarantee that each window will be completely visible
on the screen, but thus far have provided relatively
poor mechanisms for controlling layout decisions.

This article describes work in tiled window manage-
ment featuring a constraint-based layout mechanism.
With it the user can specify the appearance of individ-
ual windows and constrain relationships between
windows, thus exercising necessary control over the
tiling process. We discuss our constraint model and
then detail an implementation approach that would

Window managers generally follow either a
“desktop” metaphor, allowing windows to overlap each
other like sheets of paper piled up on a physical desk, or
they use a “tiling” model, arranging windows so that no
overlap occurs.

Desktop models allow for the most freedom in arrang-
ing windows. Each time a window is created, the user
typically is queried for its size and location. At any time,
the user can rearrange the windows, changing the size,
location, and/or degree of overlap. But users of desktop
models pay a price for this flexibility, especially when
large numbers of windows need to be accommodated.
The desk top can become messy, forcing the user to
constantly locate and rearrange windows.

Tiling offers a potential solution to the problem of
messy desk tops. Tiling is especially useful for applica-
tions that generate large numbers of small, short-lived
windows. The application specifies the constraints on its
windows in a constraint language (though the user can
modify the windows and constraints dynamically). Over-

make use of those constraints. e o lapping windows may be more useful above the applica-
— tion level, for systems with small screens, or for applica-
May 1986 0272-1716/86/0500-0035501.00 © 1986 IEEE 35

Petitioner Microsoft - Ex. 1073, p. 2

tions that use few windows over a long period of time.
There is no denying that overlapped windows have their
benefits, and that tiling presents problems of its own. In
this article we will try to show that the benefits of
overlapped windows can be provided by tiled systems
(though the techniques may be quite different), and that
the use of constraints solves most of the problems asso-
ciated with tiled systems.

One approach to building a tiled system allows (and
forces) the user to control the tiling. Each readjustment
of window sizes must be done explicitly. This approach is
useful and safe, but can require enough work of the user
to become frustrating.

Another approach automatically retiles the screen,
based upon the user’s actions. This approach has a
serious problem: It can do the wrong thing, ¥équiring the
user to readjust the layout manually. Fortunately, this
problem is not inherent in automatic retiling. With the aid
of constraints, the user rarely should have to fiddle with
the layout, because the constraints can ensure that the
right windows are on the screen in the right place with
the right size.

Many users find tiled window
systems quite frustrating at
first, but later prefer them to
window-overlaying systems.

Constraints are the key to making tiling work, and a
large part of this article discusses the kinds of constraints
that are needed. Briefly, the constraints we discuss
specify

which windows must be present on the screen

their size and location

adjacency and alignment requirements

limits on the ways in which the system may auto-
matically change the layout

@ particular organizations of windows on the screen

Since window managers are real-time systems that
must respond immediately to changes on the screen, not
much time can be spent solving the constraint problem.
Constraint systems that work—and don't take an ex-
ponential amount of time in the process—use domain-
specific knowledge to reduce the work needed to satisty
the constraints. This article describes in some detail how
we propose to use such knowledge in a tiled-window
implementation.

We will describe tiling systems as if they use the entire
screen. However, it is reasonable to expect—especially on
large screens—that tiling will be applied within a window,
by an application to its subwindows. We are not going to
insist that tiling replace overlaying. There are good rea-
sons for using both mechanisms.

Our system takes ideas from both architecture layout
systems'? and VLSI layout systems?™ First a rule-based
component is established to adjust the configuration of
the windows. Then algorithms related to those used for
VLSI compaction are used for determining window sizes
once the configuration has been decided.

36

Why tile?

Tiling is not universally recognized as a good method. If
the user is provided with a quick and easy mechanism fo,
changing the size and location of his windows in ap
overlapping desktop environment, why would he want »
tiling mechanism? The reasons for having a tiling mecha.
nism are somewhat more convincing when there are a |ot
of windows on the screen, but the arguments remaip
valid even when the number of windows is small.

Managing windows. Whenever there are more than
few windows on the screen, managing them for effective
viewing can be a burden for the user. Users end up
spending much of their time manipulating the windows
and window structure rather than working with the
contents of the windows. Tiling offers the option of
automatic control of windows, benefitting users who do
not need to arrange and rearrange windows all the time,

Finding hidden windows. The desktop metaphor is all
too real an analogy. Any of us whose desks get messy are
familiar with the problem of locating a paper that is not
right on top. The same situation arises when some win-
dows are hiding under others. In a tiled window system,
windows for which there is no room on the screen are
automatically closed and iconized so they can easily be
located.

Wasted screen space. Partially overlaid windows are all
too often simply wasting space. Since tiling systems work
by filling the screen with windows, screen space is always
going to be allocated to some useful purpose.

Automatic placement. When a new window is opened
in an overlaying desktop system, the user is usually asked
to use the mouse to indicate the size and location of the
window. This is flexible, but can become boring and
annoying. Some systems provide the option of not asking
and always put the same window in the same place, or try
to put it where there is some semblance of open screen
space. :

The most convincing evidence for tiling comes from
users. Many people who have used tiled window systems
find them quite frustrating at first. The Andrew System’
occasionally retiles automatically in unexpected ways
(especially for novice users)® Quite a few people have
found it difficult and unpleasant to use at first, and few
would claim that it represents a really good tiling system.
Nonetheless, those who persevered have learned to tame
it, and many now prefer it to the competing candidate,
Sun’s window-overlaying system.

Even more convincing evidence comes from former
users of the Cedar system’™ who were initially reluctant
to use tiling, but came to like it. Some who have returned
to overlapping windows are now annoyed at having to
spend so much time moving and reshaping windows to
make the screen appear tiled.

Tiling models

A system can provide different ways to tile a screen and
different degrees of automatic retiling. In this section we
look at a number of tiled window systems that already
exist. In particular, it should help readers new to tiled

*We are referring to the initial version of the Andrew System.
The latest version of the system uses a tiling system similar to the
Cedar system.

IEEE CG&A
Petitioner Microsoft - Ex. 1073, p. 3

windows to identify the strengths and weaknesses of
such systems, understand their user interface require-
ments, and recognize how and where constraints can

help.
Tiling organizations. Systems have been built to sup-
port four different kinds of tiling organizations.

Single column. Windows are lined up vertically in a
single column. Most EMACS-like editors fall into this
category, as does the virtual terminal manager of the RIG
system.!’

Multicolumn. The screen is divided into multiple col-
umns, and windows are lined up vertically in each col-
umn. This model is used by Xerox PARC'’s Cedar System*!
(with a limit of two columns) and the Microsoft Windows
System’ (with a limit of 12 columns).

Hierarchical. The screen is divided either vertically or
horizontally into partitions, and each partition is then
recursively divided into subpartitions. Windows corre-
spond to the final set of undivided partitions. Each
partition corresponds to a node in a hierarchy, with
windows at the leaves. The CMU/ITC Andrew System?®
uses this window organization.

Nonhierarchical. Any rectangular tiling can appear in
this system. We have built such a system—RTL/RTL, or
Siemens Research and Technology Laboratories/Rec-
tangular Tiled Layout—on top of PERQ Systems’ Sap-
phire Window System.? The system we describe in this
article and are now building—RTL/CRTL, or Siemens
Research and Technology Laboratories/Constrained
Rectangular Tiled Layout—will also use this window
organization.

Single-column systems are generally adequate for text
windows on standard 80-column terminals. With wider
screens or graphics multiple columns often become use-
ful. Multicolumn layouts are certainly an improvement
and are quite adequate in the majority of cases. They
provide a clear, understandable layout and user interface.
But there are cases where columns are not the best
solution.

Figure 1 shows two cases where hierarchical layouts
would be more useful than multicolumn layouts. In each
case the screen is more or less divided into two columns.
However, in the first case window E needs to be very
wide (perhaps because it contains a strip graph for music
or speech analysis). In a pure multicolumn system A and
D would have to be in one column, giving them unneces-
sary additional width while reducing their height.

In the second case windows B and C contain related
information and need to be placed side by side. If they
were forced into the two major columns in the layout (i.e.,
C would stay in the right column with D while B and A
would be placed in the same column), space would be
wasted by making B and C each wider, and valuable
height might be taken away from window A by placing B
in the same column with it. Though these have not tended
to be major problems for most Cedar users, they do
suggest that there may be some advantages to a more
general layout scheme.

Our choice, then, is between a hierarchical and a
nonhierarchical system. There are two ways in which
these differ. First, there are some inherently nonhier-
archical window layouts. Figure 2 is one such layout.
Where windows have minimum size constraints, a non-

(E needs to be wide)

(B & C need to be close)

Figure 1. A hierarchical layout.

hierarchical layout can sometimes accommodate more -

windows than a hierarchical one.

May 1986

Figure 2. An inherently nonhierarchical layout.

37
Petitioner Microsoft - Ex. 1073, p. 4

[i]
1]
v

Figure 3. A layout change that alters the hierarchy.

In addition, certain layout changes that ought to be
very easy tend to be difficult to make in hierarchical
systems.

For example, in Figure 3 it should be possible to first
widen B, lining its left edge up with D’s, and then to
lengthen it, shrinking D in the process. This is very easy to
do in our nonhierarchical RTL/RTL system, but almost
impossible to do in Andrew, which is hierarchical. The
reason is that the horizontal line separating A and B from
C and D defines the top level in Andrew's hierarchy. An
attempt in Andrew to pull B down would require chang-
ing the hierarchy completely, pulling down A as well.

In RTL/RTL this is not a problem. When the user first
tries to widen B and align its edge with that of D, the
system provides a gravity feature to help. When the left
edge of B gets close to the edge of D (currently within 20
pixels), the system lines them up, and the internal
representation (a variant of the corner-stitch represen-
tation used in the Magic VLSI Layout Systent)is modi-
fied accordingly. In pulling down B in RTL/RTL, only B is

38

enlarged (although if while pulling down that edge, the
cursor is moved into C, A’s edge will begin to be pulleq
down along with B's).

Manual versus automatic tiling. The appearance of the
screen in a tiled window can be manually controlled by
the user, or can be automatically controlled by the
system. \

Resizing and locality. When a window is resized, will
space be given to or taken away from the adjacent
window (a manual, local effect), or can other windows
potentially change their size and location (an automatic,
global effect)?

Typically, to resize a window along one dimension, the
user grabs a window edge with a mouse and then moves
the mouse, pulling the window edge along. As the mouse
moves, some indication of the new border is indicated:
either a dotted line or cross-hatching. Resizing is finalized
when the mouse button is lifted.

In Andrew and RTL/RTL effects are manual and local.
As the window edge is moved, one window is enlarged
and the adjacent window is shrunk. Other windows are
not affected. This reduces repainting costs, which can be
time-consuming for low-end workstations.

Gosling’s EMACS uses an interesting compromise: It is
as local as possible. As a window is enlarged, it bites into
the adjacent window until the adjacent window is only
one line high, and then that window is “plowed” along,
biting into the next adjacent window.

In Cedar and RTL/CRTL, effects are automatic and
global. When a window is enlarged, all the remaining
windows are shrunk by a proportional amount.

Global changes make the most sense when there are
minimum size constraints that prevent windows from
being shrunk below a useful size. Both Cedar and
RTL/CRTL have minimum size constraints. In both sys-
tems extra space (the space left over after satisfying each
window's size constraints) is prorated among the win-
dows, although in RTL/CRTL options may control the
degree of prorating.

Window placement. When a window is opened, can or
must the user manually indicate where it goes? Or is the
decision made automatically, and if so, how?

Systems differ widely in the way they deal with an
Open. RTL/RTL is the most explicit. After specifying a
window to open, the user places it in a crack between two
tiles and then pulls on the edge to make space for it. The
new window is effectively enlarged from a starting
dimension of zero.

Both Cedar and Microsoft Windows support automatic
placement, placing the new window at the bottom of a
column. Cedar takes space away from the other windows
proportionately; Microsoft Windows splits the bottom
one.

Microsoft Windows also supports two manual place-
ment techniques. In one the window is simply dropped in
the crack, and space for the window is taken away
equally from the windows on both sides of it. Microsoft
Windows also allows the user to drop the window on top
of an existing window, and the old and new windows then
change places.

Andrew supports both manual and automatic place-
ment. For automatic placement, it finds a window large
enough to be split so that even after space for the new
window is taken away from it, it is still larger than its size
constraints specify. In manual placement the specified
location is used to find a location in the window hierarchy,
which determines the actual placement.

IEEE CG&A
Petitioner Microsoft - Ex. 1073, p. 5

|

In RTL/CRTL we will support both manual and auto-
matic placement. For automatic placement, we find the
best place to put the window—a region where existing
windows can give up space to the new window and still
satisfy sizz constraints.

Manual placement in RTL/CRTL can be either exact
(the window is placed exactly where the user specified) or
approximate (it may be moved slightly to accommodate
surrounding wmdows) In either case, we prorate space
for the remaining windows, taking enough space away
from each to accommodate the new one.

Closing windows. Must windows be closed explicitly
(by clicking on a close “gadget” or selecting a menu item),
or can a window be closed automatically as a result of
enlarging or opening another window?

Enlarging or opening a new window must take space
from other windows. If the system imposes minimum size
constraints, and there is no space available, then either
the system must not allow the window to be resized or
opened, or some other window must be closed auto-
matically.

In systems where resizing has local effects, enlarging a
window means taking a bite out of an adjacent window.
When the adjacent window becomes too small, either
enlargement is prohibited (as in Gosling Emacs when
there is no room left to plow), or the adjacent window is
automatically closed, as in Andrew and RTL/RTL.
Andrew also may close windows when another window is
opened, and it appears to be hard to tell in advance which
windows will be closed.

Neither Cedar nor Microsoft Windows automatically
closes windows. Cedar will not allow a window to be
enlarged if it would force all the other windows in the
column to be shrunk below their minimum. Cedar is less
conservative about opening windows. It will open a new
window even if it means shrinking the remaining windows
below their minimums. On the other hand, Microsoft
Windows will not open the window if there is no space
available for it.

RTL/CRTL has a variety of options for treating auto-
matic closure. If explicit closure is required, then mini-
mum size constraints will be violated. Alternatively, limits
will be placed on enlargement, and windows that are too
large will not be allowed to be opened until the user
closes other windows.

If the user chooses to permit automatic window closure
in RTL/CRTL, then the windows to be closed may be
required to be local so that only windows adjacent to the
opened window will be closed. Alternatively, windows
will be closed on the basis of age and priority.

Window management techniques

When working with overlaying window systems, users
develop various personal styles for shaping and position-
ing windows to make the most use of the screen space
available. As a result, the features of overlaid windows
that we have previously described as disadvantages have
become useful properties to many users. The t111r1g system
can often provide the same effects, though in different
and sometimes more elegant ways.

Peeking. Users can “peek” at what is going on in a
window by overlaying all but a sliver of it. In the desktop
model, a user can move windows relatively easily to
obtain just the sliver or slivers desired. In a tiled window
system, as long as the sliver is rectangulau the window

can simply be shrunk to the sliver size. However, there *

are a number of difficulties.

May 1986

1. Multiple slivers. Sometimes the user wants to peek
at multiple slivers—on both the bottom and the left
side, for example. There is no easy solution to this,
but this does not appear to be a major problem.

2. Virtual mapping. In a desktop system the sliver
shown is just the part of the window that remains
visible. But when the window is shrunk, it is not clear
whether it should show the left, right, or middle of
the original image. The simplest answer would be to
think of the image as fixed on the screen, with the
movement of the window edges determining what is
covered up. Alternatively, the window can determine
the direction of shrinkage (or expansion). If the user
desires a different sliver, the window must provide
scrolling.

The best solution is of course a semantic one. The
window menu could include one or more summarizing
commands. Each such command would shrink the win-
dow and replace its contents with some sort of summary.
To provide complete support, the process controlling the
window should update the summary in a way corre-
sponding to how it updates the full contents. This is really
just a generalization of the “smart icon” approach used in
systems such as Cedar!'and Sapphire,'* except that the
summary window appears in the main region of the
screen rather than in an icon area.

Retained size. In a desktop system the user adjusts the
size of a window to one appropriate for its use. It can
always be overlaid by other windows. When it needs to be
used again, it is brought to the top where it has its original
size. In a tiled system, the window may be shrunk to its
minimum size or even iconized when it is not in use, and
needs to be explicitly resized when opened.

There are two closely related solutions. Both depend
upon retaining the current size.

1. The user or application can easily set the minimum
size to the current size. Even if the window is
iconized, it will have this size as a minimum when it
is reconstituted.

2. In addition to the ordinary minimum window size, a
window has a use size which is set whenever the
window is explicitly resized. We can opt to make the
window at least this large if it is being used. The
window may shrink (or be iconized) if it is not in use.
However, when the mouse is buttoned within the
window (or when it is reconstituted), it will be
enlarged to the use size.

By employing use sizes and setting the minimum width
to sliver sizes, an effect very similar to overlaying can be
achieved. In Figure 4 window A is being used, while B has
been allowed to shrink and appears as if it were partly
overlaid by A. When the mouse is clicked in window B, B
expands to its use size. A is allowed to shrink and appears
as if it had been partly overlaid by B.

After A has shrunk, the same contents may be mapped
to the upper part of A, giving the same effect as overlay-
ing. Or, the contents may be shifted or even summarized.
This choice is a property of the window, and is aimed at
ensuring that the most useful information always remains
visible.

Window families. Users often create a stack of win-
dows, with one of the windows in the family on top.

‘Desktop models trivially allow for such windows to be

shown as an overlapped stack of windows, each offset by

39
Petitioner Microsoft - Ex. 1073, p. 6

(A is input focus) (Input focus changes

to B)

Figure 4. Overlay effects with tiled windows.

the desired amount so some portion of each window is
visible.

This functionality can be supported through the use-
size mechanism discussed above. The window currently
in use can be shown full size while the remaining windows
in the stack are shown as adjacent slivers.

Another approach provides family windows. A family
window displays a single window of the family (the one
on top in the desktop model). In addition to showing the
header of the top window, the family window has its own
header containing index tabs for the other windows. To
switch to a different window, the tab for that window is
selected and the contents of the selected window replace
the current window. Naturally it is possible to move
additional windows into a family, and to remove a win-
dow from a family and display it separately on the screen.

Stability. In a desktop system windows don’t change
their size or location unless the user moves them, even
when other windows are being created or destroyed.
Since tiling systems can reconfigure the entire screen at
each window creation or destruction, all windows on the
screen can be shifting constantly. This can result in a
much more confusing display for the user, even overrid-
ing the advantage of using screen space efficiently.

To deal with this problem, a tiled window system must
explicitly address stability. In a later section we introduce
two types of stability constraints. One ensures that the
layout of the windows changes minimally, and the other
retains the size and location of as many windows as
possible.

Repainting. When the size or location of a window
changes, repainting the window is necessary. In a tiling
system many windows may change as a side effect of
creating, destroying, or resizing a single window. This
necessitates a great deal of repainting, and can"be espe-
cially costly for programs that paint their windows dif-
ferently depending on the size available.

This problem can be avoided by fixing, or appearing to
fix, the window size or location. J

40

1. The size or location of a window can be locked S0
that resizing will only occur at the user’s commang
A less absolute approach is to set appearance stabilit\;
(see the section on stability below) very high so that
resizing or relocation occurs only as a last resort,

2. A virtual image can be interposed between the
application and the screen to hide resizing from the
application. When the actual window is smaller thap
the virtual image, the image is clipped (in a manney
specified by the window’s properties). When the
actual window is larger, the virtual image is dis-
played inside the window surrounded by a blank
mat®

Temporary enlargement. Users sometimes want to
temporarily enlarge a window, work with it for a while,
and then return to the original configuration. In the
desktop model the window is enlarged, but the con-
figuration of the windows beneath it remains unchanged.
When the window is shrunk, the original configuration is
again visible. A pure tiling system would be forced to
shrink or iconize all other windows.

There are a variety of solutions to this problem. They
are each quite different and place different requirements
on the overall window manager.

1. If a window is enlarged (especially if it is enlarged
substantially), other windows are very likely to be
iconized. When room is once again available on the
screen (perhaps by shrinking the enlarged window),
certain iconized windows (in particular, those forced
off the screen) can be automatically reconstituted.
Each icon retains the size and location of its cor-
responding window when last displayed. By having
the system place iconized windows back in their
prévious location when reconstituted after the en-
larged window is shrunk, the resulting configuration
is likely to be the same before and after.

2. Perhaps the simplest solution is to allow any single
tiled window to be enlarged to the size of the screen.
Deleting it brings back the original tiling.

3. Another option is to support separate desk tops (as in
SmallTalk, Cedar, and RIG VTMS), each one the size
of the screen, and allow a window to be in several
desk tops at once. Rather than being temporarily
enlarged, the window is explicitly put into a new or
existing desk top along with any other windows
needed when working with it. In this other desk top,
the window can be made as large as necessary.
Switching back to the original desk top returns to
the previous configuration. Desk tops can be built
very easily if the system provides the ability to take a
“snapshot” of a configuration (remembering the size
and location of each window on the screen) and save
it as a desk top.

4. A fourth option is to integrate tiling with overlaying
rather than having a pure tiled system. In its simplest
form this could mean having two layers: a layer on
the bottom holding only tiled windows, and another
layer above it in which windows are overlaid. In
more general window systems, tiled and overlaid
windows can be arbitrarily nested inside one
another.

Constraints

In the RTL/CRTL system we are now building, con-
straints are used to control the layout of the system.
Constraints can be specified in several ways. A constraint
language can be used by an application to specify a

., . . CG 5 A
Petitioner Microsoft - Ex. 1073,I Ff)EE7)

——-

default window layout. Constraints can also be specified
dynamically so that the layout can be adjusted as execu-
tion of the application proceeds. In addition the user
implicitly asserts constraints when resizing or moving a
window.

Constraints have priorities, and the system attempts to
satisfy the constraints in priority order. Constraints as-
serted by a user action (such as explicitly moving or
resizing a window) initially have very high priorities to
ensure that the window remains as the user indicated.

Constraints specify

e which windows must be present on the screen

@ their size and location

e adjacency and alignment requirements &

e limits on the ways in which the system may change
the layout

e particular organizations of windows on the screen

Presence constraints. In a tiled window system not all
windows may be able to fit on the screen. The remainder
are not displayed and may be iconized in a special icon
area. To help the system decide which windows should be
displayed, a variety of presence constraints can be
specified.

Window priorities. The simplest form of presence con-
straint specifies the priority of a window. When a visible
window is explicitly enlarged, or a new window is opened,
there may no longer be space for all the remaining
windows. The window with the lowest priority is usually
closed and iconized.

The priority of a window can be thought of as constant:
Some windows are inherently more important than
others. However, no matter how inherently unimportant,
a window currently in use must remain on the screen. In
effect, window priorities must be based on an aging
scheme. On use, a window attains the maximum priority.
When it is not in use, its priority is reduced to the level of
its inherent worth. There are two things the system might
allow the user to specify here: aging and what constitutes
use.

The aging function would generally be linear, in which
case the user would specify the rate down to some
specific minimum value. Use probably means input, so
that aging should start just after a window has lost the
input focus. Use might also include output, so that the
user might want the window to remain present as long as
output is being directed to it.

Required presence. Often the presence of one window
requires the presence of another. Joint windows can be
most easily arranged by making them subwindows of a
larger windows. SmallTalk’s browsers'® are a prime exam-
ple of this. This approach is certainly adequate, but
independent windows have some advantages. One is that
an unnecessary window can easily be deleted. This may
not be so easy if it is a subwindow of a larger window.

Another advantage is that independent windows are
not forced to be adjacent. Adjacency is desired for related
windows, but presence may be more important. There
could be cases where a window might be forced off the
screen to satisfy an adjacency requirement. An applica-
tion may want to place all windows of one kind at one end
of the screen, and windows of another kind at-the
opposite end. For each window of the first kind present,
there would be a requirement that a corresponding
window of the other kind be present. In this case;required
presence is desired, but adjacency is not desired at all.

Consequently, we provide required presence con-

May 1986

straints. These constraints have priorities which interact
with window priorities.

Automatic reconstitution. When a window is explicitly
shrunk or closed, more space becomes available on the
screen. Iconized windows can be reopened, perhaps
automatically. Automatically reopening windows can
sometimes be disconcerting, especially if the user no
longer wants to see those windows. The priority of icon-
ized windows may not in itself be a good indicator for
determining which windows to automatically reconsti-
tute. It may be desirable to have a global “aggressiveness”
setting the user can set to control how aggressively
iconized windows can be reconstituted.

Layout constraints. Window layout is controlled by a
group of layout constraints that constrain the appearance
of an individual window, or that establish geometric
relationships among windows.

Appearance constraints. These determine the appear-
ance (size and location) of an individual window. Size
constraints constrain the height, width, aspect ratio, or
area of a window. Location constraints constrain the
location of a window’s edge, corner, or center.

Association constraints. These specify relations be-
tween windows. Adjacency constraints specify that two
windows must be adjacent, and can additionally constrain
their degree of adjacency (how much of their borders
must be in common). Alignment constraints specify that
edges of two windows must be aligned, or constrain the
distance between them.

Priorities and inconsistency. Constraints may be in-
consistent. In some constraint-satisfaction systems,
inconsistency will simply halt the system. Smarter sys-
tems continue by arbitrarily breaking constraints. The
IDEAL system!* a picture-specification system, even
allows the user to tag constraints that may be broken.

We go a step further. Every constraint may have a
priority associated with it. These priorities may be fixed,
they may be tied to the priorities of the windows they
constrain, or they may be aged in some independent way.

Constraints are satisfied in priority order. Any number
of low-priority constraints may be left unsatisfied to
satisfy a higher priority constraint. Even if a high-priority
constraint cannot be satisfied, an attempt should still be
made to satisfy lower priority constraints.

Layout constraints interact with presence constraints.
If the priority of a layout constraint involving a window is
higher than the priority of the window itself, the layout
requirement is more important than the presence of the
window itself. If the layout constraint cannot be satisfied,
the window is iconized.

Stability constraints. A small enlargement of a single
window could cause the constraints of adjacent windows
(typically minimum width or height constraints) to be
violated. The subsequent reconfiguration could conceiv-
ably shuffle the entire layout to best satisfy the con-
straints. Such behavior would almost guarantee that
users will avoid window tiling systems. Stability con-
straints prevent gross reshuffling and allow the tiled-
window model to be usable.

Global stability. Unlike other constraints, stability is

_primarily global, determining the appearance of the

screen as a whole. Nonetheless, individual windows may
participate in global stability to a greater or lesser degree.

Petitioner Microsoft - Ex. 1073, p. él

Initial Configuration

Appearance Stability

Configuration Stability

Figure 5. Configuration vs. appearance stability.

1. Configuration stability requires that the adjacency
relationships between windows remain the same (as
much as possible) even though the size and locations
of the windows may change. The priority determines
how many adjacency relationships can be changed.
(For more details see the description of realignment
in the adjustment model in a subsequent section of
this article.)

2. Appearance stability (possibly divided into size sta-
bility and location stability). This requires that the
appearance (the size and/or location) of as many
windows as possible remains the same. The priority
determines how much the appearance must stay the
same. In essence, constraints whose priority is lower
than that of global appearance stability may be
ignored to maintain the appearance.

3. Presence stability can be used to control which
windows may be closed when other windows are
enlarged or opened. By setting the priority of
presence stability low, we allow all but high-priority
windows to be closed automatically. By setting
presence stability at its maximum priority, no auto-
matic closure of windows will occur. Other con-
straints (generally size constraints) will be violated
instead.

Some of the differences between these can be. illus-
trated in Figure 5. Imagine that the screen is initially laid
out as a row of four windows all having exactly the same

42

.

size constraints. The user then explicitly enlarges windoy
A. Configuration stability requires only that the adjacency
relationships between the windows be retained. In thig
case it is easy as long as B, C, and D can all be made
smaller. Since they all have the same size constraintg
they are shrunk the same amount. If they could not be
made this narrow, then the one with the lowest presence
priority would be deleted.

When appearance stability is made very important, the
system tries to retain the size and/or location of as many
windows as possible. In this example C and D retain thejy
size and location while B is greatly reduced in size, even
though B, C, and D all have the same size constraints.

Windows and the constraint language. Windows are
tiled within a desk top. In the simplest system there will be
exactly one of these at a time, and it will be the size of the
screen. In a more general system an entire tiled desk top
may be a window that is itself part of a parent desk top
(either tiled or untiled).

A tiled desk top has a set of constraints associated with
it that control tiling within the desk top. These constraints
may be described by a constraint language. This article
does not include the details of that language (it is still in
flux), but the language is similar in spirit to those used by
others to specify floor and VLSI layout (see Roach in
particular'?).

A specification in the constraint language is used to
initialize the constraint set of a newly defined desk top.
This is typically done when an application starts up.
However, the constraints may be changed dynamically
by an application or by the user.

Explicitly resizing a window asserts a size constraint,
and explicitly moving a window asserts a location con-
straint. In addition, through a menu associated with each
window, the user can lock the presence, size, or location
of a window. This can have the effect of asserting at high
priority the corresponding constraints. If two windows
are placed so that they are aligned or adjacent, they can
be constrained to remain this way.

Windows may be organized in a hierarchy of window
classes. In addition applications may dynamically asso-
ciate attributes with windows. Constraints may be written
so that they refer to windows in a particular class and/or
with a particular attribute.

Binary relations may be defined between windows, and
an application can dynamically include or remove a pair
of windows. A constraint can be limited to window pairs
that take part in a relation. For example, in a debugging
situation, a stack frame window may be related to its
corresponding source code window, and a constraint
may require such pairs of windows be adjacent when
present.

Finally, there is one language feature we believe to be
important, but which seems guaranteed to impose cost
penalties on any tiling algorithm: support for constraint
alternatives. An example of this is a constraint that
requires a window to be either at the top left or bottom
right of the screen. We can minimize the cost of allowing
alternate groups of constraints if each constraint in the
first group has a higher priority than any constraint in the
second group (and so on if there are more than two
groups). Since we try to satisfy constraints in priority
order, this ensures that the group of constraints is tried
only if a preceding group cannot first be satisfied.

Reconfiguration. Constraints may change in many
ways. Applications or the user can add or change them,

Petitioner Microsoft - Ex. 1073E5¢ goiA

and their priorities can also be changed explicitly as a
result of aging. Each change could have an effect on the
Jayout, but a continuously changing layout would not
please the user. The layout ought to change only at the
following times:

1. when the user or application directs the windows to
be reconfigured

2. when a window is explicitly moved, resized, opened,
or closed

3. when the input focus is changed to a window, and
when a value or priority of that window’s size
constraints has been changed in a way that would
enlarge it along some dimension

An implementation:
The adjustment model of RTL/CRTL

The problem of window tiling is very closely related to
the architectural floor layout problem,"'*!” and to VLSI
Jayout problems when treated as floor layouts>'*!* The
floor layout problem specifies a numbeér of rooms; mini-
mum length, width, and area constraints on each room;
adjacency requirements between rooms; and the dimen-
sions of the floor in which the rooms are to be placed.
There are systems that solve floor layout problems with
modest efficiency, but none run in anything like the
response time that is our goal: well under a second with a
reasonable number of windows and straightforward
repainting. Two major differences between the window
tiling problem and the floor layout problem permit retil-
ing to be done quickly.

1. Stability. Stability limits the extent of layout changes.
So far, we have viewed this as a human engineering
feature to prevent user confusion and frustration. It
also limits the search space for solutions so that
relatively cheap heuristics can be used.

2. Presence. Not all windows need be present. Usually,
of course, not all windows can be present. The
highest priority windows are displayed, while the
rest are iconized. It would be best if as many win-
dows as possible could be fit on the screen. However,
it is acceptable if a fast heuristic approach puts up
one less window than could be squeezed in by an
exhaustive search.

Consequently, our implementation is based on an ad-
justment model, which reconfigures by making local
changes, or adjustments, to the existing layout. By making
only local changes, the adjustment approach is inherently
geared toward maintaining configuration stability. Ad-
justment is divided into four separate phases.

1. Prorating. When constraints change, typically due to
the resizing of a window, we try to maintain essen-
tially the same configuration by adjusting the sizes
of the other windows.

2. Realignment. If a constraint cannot be satisfied even
after prorating, a local change (possibly including
the closing of a window) is made to the configuration
aimed at satisfying the broken constraint.

3. Placement. This determines the best place for a
window to be opened. Placement may also be used
to find a new location for a window which has been
forcibly closed during realignment, and as a first
step in reconfiguring the screen around a window
which the user has explicitly relocated.

4. Initial partitioning. When the screen changes.in a
major way, the windows are partitioned hierarchi- -

cally from scratch with a fast but approximate

May 1986

Figure 6. Configuration before widening A.

technique. The other phases are then used to pro-
duce the resulting configuration.

Prorating. When a window is resized, other windows
must be resized to make room for it. Prorating is similar
in some ways to VLSI compaction. As in the Earl VLSI
Layout System* we deal with the horizontal and vertical
dimensions separately.

We find the most constrained path along a particular
dimension and allocate space to the windows along that
path. Ignoring those windows, we again find the most
constrained path and allocate space along it, iterating
until the size of each window in that dimension is deter-
mined.

We can solve for horizontal and vertical dimensions
separately because, for a given configuration, almost all
the constraints operate in one dimension only. Only
aspect and area constraints operate in two dimensions,
and these do require special treatment. (Because our
constraints can be represented algebraically, we con-
sidered solving both dimensions simultaneously by using
constraint networks such as those in Magritte* and
ThingLab?! However, the use of priorities and alternatives
complicates these techniques.)

Realignment. If prorating alone cannot resatisfy con-
straints, realignment attempts to move a window out of
the way. In Figure 6, B may be required to have a certain
width. The widening of A makes it impossible for that
constraint to be satisfied in the current configuration. As
a result, realignment tries to move B out of the way, as
demonstrated in Figure 7, so that A can be made wider.
Prorating is then performed once again.

Redlignment may not be possible due to additional
constraints. For example, if B is required to be at the top
right of the screen, there is generally no reason to try to
push it down out of the way. This depends upon priorities,
of course. If B’s presence constraint were at a higher

43
Petitioner Microsoft - Ex. 1073, p. 10

| I
| A =) |
| |
| |
| | | |
| 1 E 1 B |
1 | | 1
I D | + |
| | | |
1 | c | F |
| | | |

Figure 7. Squeezing B to make room for A.

priority than its requirement to be at the top of the
screen, realignment would be tried. If its presence were at
a lower priority, B would be closed instead. This would
leave a hole which would probably be filled at the next
prorating—in this case, E or F would expand into it.

A realignment or a move (closing and placement) may
be conditionally tried even if it would break a new
constraint. In this example, suppose that B is 1ot required
to be at the top right of the screen, and so could be
squeezed down to make room for A. It could be that both
B and F have high-priority minimum-height constraints,
and cannot both fit below A. There are two possibilities:

1. Realignment can be tried again, this time moving F
out of the way of B by squeezing C and F next to one
another. It should be clear that this could be con-
tinued for quite a few iterations. The extent of
iterated realignments and moves depends upon the
level of configuration stability that has been set.

2. If additional realignment would exceed the level of
configuration stability, either B or F would be closed
and iconized.

Placement. Placement decides where to put a window
when it is opened, when it is to be moved after being
forcibly closed during realignment, or when the user has
explicitly relocated it. Constraints (in priority order) that
relate the window to others already on the screen are
used to determine where to place it. Initially it will have
either zero height or width. Prorating is then used to
adjust its dimensions. Additional realignment and more
prorating can then follow. We plan to use a rule-based
system to determine the initial placement of a window.
Some example rules follow:

1. If it must be adjacent to the left of some window,

place it there with zero width and height equal to'the
height of the window.

44

2. 1f it must be adjacent to two windows at right angleg
to each other, place it in the corner along the edge of
one of them.

3. If it must be adjacent to two currently adjacent
windows, place it along the edge between them,

4. If it must be adjacent to two windows separated by
one or more windows, and if there is an edge which
connects the two windows, then place the ney
window along the edge, (and if there is more thap
one edge, use additional constraints to pick one).

5. If it must be located at a particular position (for
example, when the user has explicitly opened oy
moved it there), place it along the existing window
edge whose center is nearest to the required center
of the window to be placed.

Often there will be more than one possible placement
site. If a new window is required to be adjacent to one
already on the screen, it can be placed on any side of it. In
the absence of additional constraints, information re-
tained from the previous prorating is used to make the
decision. It would make more sense to place it above or
below the window if there were greater slack for squeez-
ing horizontally than vertically. Constraints on the win-
dows to be squeezed out of the way in each case can also
be used.

Even with placement realignments it may not be possi-
ble to satisfy all constraints, and in that case we simply
place the window where it satisfies the highest priority
constraints. We can now close the existing window that
is responsible for the highest priority constraint broken
by the addition of the new window, and apply placement
to it. Depending upon the level of configuration stability,
this can be continued as long as necessary.

Initial partitioning. The adjustment model works best
when the changes to the screen are relatively minor.
Major changes can occur for a number of reasons.

1. putting up the initial configuration

2. automatically reconstituting a number of windows
when closing or shrinking a large window

3. significantly enlarging a window or opening a large
window, forcing windows already on the screen to
be closed.

When major changes occur we first use a separate
initial partitioning phase. Initial partitioning produces a
hierarchical layout approximately satisfying the con-
straints. Prorating and realignment are then applied to
produce the final configuration.

When it appears that a major change will occur, we
first approximately determine the windows to be dis-
played when we are finished. If we err, it is because we
assume that slightly more, rather than fewer, windows
will end up being displayed. (Any extra windows can
easily be deleted at the end during the realignment
phase.)

To initially partition, the screen is divided into two parts
and the windows to be tiled are allocated between them.
Each part is then divided into two subparts, and this
continues until each part has one and only one window in
it. This creates a strict hierarchical division of the screen.

At each cut, a number of decisions must be made:

@ the cut direction (whether to split the partition hori-
zontally or vertically)
e what size to make each partition

e _ IEEE CG&A
Petitioner Microsoft - Ex. 1073, p. 11

e how to allocate the windows between the two par-
titions
e which cut to make next

In making these decisions, the greatest emphasis is on
satisfying adjacency and alignment constraints. If con-
figuration stability has high priority, we also try to main-
tain existing adjacencies and alignments. If appearance
stability has high priority, we assign windows to partitions
containing their original location. High-priority location
constraints also serve to place a window in the partition
containing the specified location.

Size constraints are primarily used to determine parti-
tion size, but even here they are less important than
adjacency and alignment. We can take this approach
because prorating will be able to adjust window- sizes
after initial partitioning is completed.

Final remarks

In this article we have described RTL/CRTL, a con-
straint-based nonhierarchical tiled window system we
are now building at Siemens RTL. The prototype system,
RTL/RTL (built on top of the Sapphire Window System
on the PERQ), was built in the summer of 1984. An early
version of the RTL/CRTL system is planned for release in
the spring of 1986. Running on the Sun and MicroVAX
workstations, it performs prorating based on size con-
straints, and also supports the manual tiling features of
RTL/RTL.

Acknowledgments

We are grateful to Dave Emery for his useful comments
and careful reading of this article, and to Guillermo
Irisarri for emphasizing the importance of supporting
features that are natural to overlapping windows. Keith
Lantz provided many helpful comments in reviewing an
earlier version of the article.

References

1. C.M. Eastman, “Preliminary Report on a System for General
Space Planning,” Comim. ACM, Vol. 15, No. 2, Feb. 1972.

2. C.E. Pfefferkorn, “A Heuristic Problem Solving Design Sys-
tem for Equipment or Furniture Layouts,” Comin. ACM, Vol.
18, No. 5, May 1975.

3. C. Kingsley, Earl: A Language for Integrated Circuit Design,
PhD dissertation, California Institute of Technology, Pasa-
dena, 1981.

4. C. Kingsley, “A Hierarchical Error-Tolerant Compactor,”
Proc. 21st Design Automation Conf., June 1984.

5. J.K. Ousterhout, G.T. Hamachi, R.N. Mayo, W.S. Scott, and
G.S. Taylor, “Magic: A VLSI Layout System,” Proc. 21st
Design Automation Conf., June 1984.

6. User's Manual for Release 1 of the Information Technology
Center Prototype Workstation, Information Technology Cen-
ter, Carnegie-Mellon University, Pittsburgh, Pa., 1984.

7. D.C. Smith, C. Irby, R. Kimball, and B. Verplank, “Designing
the Star User Interface,” Byte, Vol. 7, No. 4, Apr. 1982.

8. R. Levin, private communication, summer 1985.

9. S. McGregor, private communication, summer 1985.

10. K. Lantz and R. Rashid, “Virtual Terminal Management in a

Multiple Process Environment,” Proc. 7th ACM Symposiuni
on Operating Systems Principles, Dec. 1979.

11. W. Teitelman, “A Tour Through Cedar,” IEEE Software, Vol.
1, No. 2, Apr. 1984. y

12. B. Myers, “The User Interface for Sapphire,” IEEE CG&A,)

Vol. 4, No. 12, Dec. 1984.

May 1986

13. L. Tesler, “The SmallTalk Environment,” Byte, Vol. 6, No. 8,
Aug. 1981.

14. CJ. Van Wyk, “A Graphics Typesetting Language,” Proc.
ACM Sigplan Symposium on Text Manipulation, June 1981.

15. J.A. Roach, “The Rectangle Placement Language,” Proc. 21st
Design Automation Conf., June 1984.

16. J. Grason, “A Dual Linear Graph Representation for Space-
Filling Location Problems of the Floor Plan Type,” in Emerg-
ing Methods of Environmental Design and Planning, G.J.
Moore, ed., The MIT Press, Cambridge, Mass., 1970.

17. P. Galle, “An Algorithm for Exhaustive Generation of Building
Floor Plans,” Conm. ACM, Vol. 24, No. 12, Dec. 1981.

18. K. Kozminski and E. Kinnen, “An Algorithm for Finding the
Rectangular Dual of a Planar Graph for Use in Area Planning
for VLSI Integrated Circuits,” Proc. 21st Design Automation
Conf., June 1984,

19. SM. Leinwand and T.T. Lai, “An Algorithm for Building
Rectangular Floor Plans,” Proc. 21st Design Automation
Conf., June 1984,

20. J. Gosling, Algebraic Constraints, PhD dissertation, Carnegic-
Mellon University, Pittsburgh, Pa., May 1983.

21. A. Borning, THINGLAB—A Constraint Oriented Simulation
Laboratory, PhD dissertation, Stanford University, Stanford,
Calif., July 1979.

Ellis S. Cohen is a senior research scientist at
Siemens Research and Technology Labo-
ratories. His research interests include
window managers, user interfaces, program-
ming languages and environments, and dis-
tributed systems. Prior to joining Siemens, he
taught and did research at Brandeis Univer-
sity, Carnegie-Mellon University, and the Uni-
versity of Newcastle upon Tyne. At Carnegie-
. == Mellon, he was part of the Hydra project. He

has also worked at a day care center, been a venereal disease
counselor, and run a salad restaurant.

Cohen received a PhD in computer science from Carnegie-
Mellon in 1976. He is a member of the IEEE and the ACM.

Cohen can be contacted at Siemens Research & Technology
Laboratories, 105 College Rd. East, Princeton, NJ 08540; (609)
734-6524.

=

Edward T. Smith is a research associate in
the Computer Science Department at Car-
negie-Mellon University. His teaching and
research interests are in network operating
systems, graphics, user interface manage-
ment systems, and window managers. He
received a BS in computer science from the
. University of Oregon in 1977 and an MS and
« a PhD in computer science from the Univer-
. sity of Rochester in 1979 and 1982, respec-

tively.

Smith can be contacted at the Computer Science Dept., Car-
negie-Mellon University, Pittsburgh, PA 15213.

Lee A. Iverson works in the Computer Vision
 and Robotics Laboratory at McGill Univer-
sity, where he studies computer models for
visual motion processing. His work in proto-
yping RTL/RTL was done on an internship
with Siemens during the summer of 1984. He
received a BSE (magna cum laude) in electri-
cal engineering and computer science from
= Princeton University in 1984. He is now work-
ing towards a PhD at McGill.

Iverson can be contacted at the Computer Vision and Graphics
Laboratory, Dept. of Electrical Engineering, McGill University,
Montreal, PQ, Canada.

45
Petitioner Microsoft - Ex. 1073, p. 12

