USENIX Association

Summer Conference Proceedings

Atlanta 1986

June 9 - 13, 1986
Atlanta, Georgia USA

Petitioner Microsoft - Ex. 1074, p. 1

For additional copies of these proceedings, write:

USENIX Association
P.O.Box 7
El Cerrito, CA 94530 USA

Price: $25.00 plus $25.00 for overseas mail

© Copyright 1986 by The USENIX Association
All rights reserved.
This volume is published as a collective work.
Rights to individual papers remain

with the author or the author's employer.

UNIX® is a registered trademark of AT&T.

Other trademarks are noted in the text.

Petitioner Microsoft - Ex. 1074, p. 2

ACKNOWLEDGEMENTS

Sponsor: The USENIX Association
P.0.Box 7
El Cerrito, CA 94350

Program Chairperson: Mike O'Dell
Program Committee: John Chambers MCC
Mike Hawley Lucasfilm, Ltd.
Sam Leffler Lucasfilm, Ltd.
Jim McKie Bell Communications Research
Dennis Ritchie AT&T Bell Laboratories
Spencer Thomas University of Utah, Computer
Science Department
Tutorial Coordinator: Michael Tilson Human Computing Resources Corp.
USENIX Meeting Planner: Judith DesHarnais

Vendor Exhibition Manager: John Donnelly

Conference Hosts: Paul Manno Medical Systems Development Corp.
Dan Forsyth

Terry Countryman, Peter Wan, and Lillie Elliot of Medical Systems Development Corporation assisted in the
production of these proceedings. Brent Laminack of In Touch Ministries graciously provided assistance in
producing the table of contents. Ralph Amiel of Standard Press patiently answered many dumb questions on the

production of a volume this size.

To all of the authors: You deserve many thanks and much appreciation. You have made an otherwise
impossible task relatively easy by providing the camera-readies in plenty of time to meet the printing deadlines.

To those authors who forgot to clean their laser printers before generating their copy: Yes, it does show. What
you see is what the camera sees. Please remember next time.

il

Petitioner Microsoft - Ex. 1074, p. 3

Uwm: A User Interface for X Windows

Michael Gancarz

Ultrix Engineering Group
Digital Equipment Corporation
Merrimack, New Hampshire 03054

ABSTRACT

Uwm is a user-programmable user interface client application for
X windows. It provides standard functions for moving, resizing. iconi-
fying. raising. and lowering windows, as well as more exotic functions
to accommodate specialized window management tasks. These can be
bound to mouse buttons and control keys in combinations of your own
choosing. Uwm also offers pop-up menus of the “slip-off” variety.
Menus may contain shell commands. window manager functions. cut
buffer strings. and even references to other menus.

Nearly every aspect of wwm allows tailoring by the individual
user: menu selections and headings, styles of highlighters. font choices,
amount of text padding, function contexts, modes of operations. etc.,
etc. And. if using color hardware, the user has complete control over
color choices. a highly subjective area at best. Uwm solves the works-
tation user interface problem in the true UNIX tradition by giving the
choices. and ultimately the power, to the user.

Uwm is included in the 4.3 Berkeley distribution along with X
windows as user-contributed software.

1. Introduction

X 1s a network transparent windowing system developed at the Massachusetts
Institute of Technology that runs under ULTRIX-32 Version 1.2, 4.2BSD and
4.3BSD UNIX. It provides the familiar model of overlapping windows, as well as
many services for the graphics applications programmer. X display servers run on
computers with either color or monochrome bitmap terminals. The server multi-
plexes user input and output requests to and from various client programs located
either on the same machine or elsewhere on the network. While a client normally
runs on the same machine as the X server it is communicating with. this need not
be the case.

A particularly useful feature of X is that, unlike most other windowing systems,
the user interface is not part of the server but is a separate client program.
Hence, you can choose from a variety of user interfaces, and run them singly or in
tandem, on a local or remote machine.

Current user interfaces for X include xwm, xnwm, and. of course, wwm. All pro-
vide provide basic window management functions, such as moving, resizing, stacking
and iconifying windows. Each interface is, to a lesser or greater degree, user-

t ULTRIX-32 is a trademark of Digital Equipment Corporation.
UNIX is a trademark of AT&T Bell Laboratories.

- 429 Petitioner Microsoft - Ex. 1074, p. 4

programmable. Xwm, the ancestor of both xnwm and wwm, provides a compact
environment with minimum user flexibility and rapid startup. Xnwm offers popup
menus for window management functions, as well as the ability to tailor mouse but-
ton bindings in a dynamic fashion. Uwm, too. incorporates popup menus for window
management functions, but it carries the popup metaphor one step further by allow-
ing you to specify UNIX commands and “cut buffer” operations in menus. To com-
plement the enhanced menu implementation, wwm employs a more sophisticated
scheme for specifying mouse button bindings in a variety of contexts.

One design goal of wwm was that. for wwm to be a truly "user-programmable”
interface, it should be capable of emulating nearly every aspect of its X predeces-
sors’ functional capabilities. In that respect, it succeeded admirably. It is possible
for a user to configure wwm to perform identically to xwm. and you can create
popup menus with wuwm that incorporate the same functions found in xnwm’s pop-
ups. Differences remain, but they are largely matters of style, not functionality.
However, lest you think that we're playing a game of one-upmanship here, remember
that you may still run all of these window managers with the others. None of
these interfaces is a “loser” and the user wins in every way.

2. What the User Sees

2.1. The Startup File Search Path

You specify mouse button bindings and menu selections for wwm with internal
“defaults and external bindings found in startup files. The defaults and startup files
are recognized in the following order:

Default fusr/liblawm/
bindings system.uwmrc

$SHOME/ uwmrc -f filename

Uwm writes the internal default bindings out to a temporary file, parses the
file, then unlinks the temporary file. While this might seem inefficient. it insures
that the internal defaults have been correctly entered by the wwm developer by forc-
ing them to pass through the same error-checking mechanisms that the parser uses
for all startup files. The temporary file usually gets no farther than the disk buffer
cache before the file is unlinked (except on “write-through” file systems).

System administrators can provide for global default window environments with
the file Jusrlib/uwm/system.uwmre. SHOME/uwmre contains the bindings and menu
specifications for an individual user. Using -/ filename. you can specify an alternate
startup file on the command line for use in. say. a programming or text processing
environment. If either of ‘usrlib/uwm/system.uwmre or $HOME/wwmre doesn't exist.
the program quietly proceeds. A missing filename is flagged as an error.

Bindings and menus in the various components of the search path are cumula-
tive. This allows later elements in the chain to take advantage of pre-defined
notions of variables, menus and bindings found in earlier files. There are also provi-
sions for overriding anything specified in a previous component.

Uwm uses yacc(l) and lex(l) to parse the startup files. The parser strips the
input of comments, blank lines, and unquoted whitespace, then builds singly-linked
lists of menus and mouse button bindings. Illegal mouse binding combinations, refer-
ences to non-existent menus. and other errors are flagged before the program begins
sending commands to the X window server. All errors in the startup file specifica-
tions are considered fatal. However. to simplify debugging. wwm attempts to report
all errors it finds before it exits.

430 Petitioner Microsoft - Ex. 1074, p. 5

2.2. What’s in the Startup File

The startup file may contain variables, mouse button/key binding information,
and menu specifications. These may be specified in any order. It isn’t necessary to
declare a menu before referencing it.

2.2.1. Variables

Uwm supports several variable types. These variables generally have a global
effect on wwm functions. Boolean, numeric and string types are supported. The
variables are covered in detail in the wwm manual page, so we'll touch on them
briefly here.

The boolean variables, if present, declare that functions will generally have cer-
tain characteristics. One example is the freeze variable. When freeze is set, all
“rubber-band boxes” used in resizing or moving windows have a solid appearance;
otherwise, the boxes flicker during the operation. Most of the boolean variables can
be negated by specifying them as “no<variable>”. The grid variable, when present,
causes an expandable grid to used instead of a box when resizing. Thus, grid can
be overridden by specifying nogrid.

Numeric variables are used to fine-tune the positions and movements of screen
objects. such as windows and icons. Another use for numeric variables is for denot-
ing the amount of “padding” around text used in icons and menus. Uwm lets you
tailor the placement of text within popup menus and text-style icons. This becomes
especially useful when dealing with the more than several dozen text fonts supplied
in the typical X implementation.

The most common use of string variables in the startup file is that of specify-
ing fonts. The text fonts used in menus, the text icons supplied by wwm, and the
font used in a window sizing indicator are all user-programmable. This tends to be
a popular feature with users, as font selection is one area where it is impossible to
please all the people all the time. Uwm responds to this need in a non-dictatorial
fashion by saying “Have it your way.” For the sake of consistency, however, all
menus use the font specified with the menufonr variable.

2.2.2. Mouse Button/Key Bindings

Mouse button usage under wwm is determined by button/key bindings specifica-
tions in the startup file search path. It is theoretically possible to tie any built-in
window management function to any button combination. Uwm owes much of its
success (and its criticism) to this feature. You have total control over whether, say,
the left mouse button moves windows, the middle button iconifies them, and the
right button resizes them. The resultant flexibility, while enormously powerful, has a
drawback: The unsuspecting user has no idea what the mouse buttons are used for
unless he’s using a set of bindings known to him. For this reason, wwm is the
bane of trade show demonstrators and the joy of experienced users.

The standard format for a mouse/button key binding looks like this:

<function> = [<keyspec>] : [<context>] : <button action> [<menu>]

The keyspec, context, and menu fields are optional, but you must include the
colon separators regardless. Note that the colon before the menu field is required
only if the menu field exists.

Function is any one of the many window management functions provided.
There are functions for moving, resizing, iconifying, and stacking windows in a
variety of ways. You can move windows in any direction by fixed increments. rela-
tive increments. or by manually positioning them. Windows can be resized by
“stretching” one or two sides at a time. Icons normally appear in default positions.

- 431 Petitioner Microsoft - Ex. 1074, p. 6

but their positions can be changed during “shrink window to icon” operations by
using the fnewiconify function. An fmenu function makes it easy to bind one or
more popup menus to a given button combination. All in all, there are more than a
dozen different operations you can choose from, and the number keeps growing as
people find more creative things to do with windows.

The keyspec field denotes which key(s). if any. on the keyboard must be held
down during an entire wwm operation. Mouse button presses that occur when the
mouse cursor is in an application window could possibly go to the client running in
the window or to the window manager. Uwm sidesteps the potential conflicts by
insisting that when one or two user-specified keyboard “control” keys are held down,
all button presses are intercepted by the window manager. The keys are chosen
from a group of four possibilities, one of which is the LOCK key. This yields
nearly a dozen chording opportunities. If the LOCK key is specified, it makes a
handy switch for turning the window manager “off” and “on” while working within
an application window. But suppose you aren’t using any applications that require
the use of the mouse buttons? Fine. A null keyspec lets you bypass the use of
the keyboard keys at the expense of disallowing the use of the mouse buttons
within applications windows.

The context field pertains to the position of the mouse cursor when a mouse
button action has occurred. The window manager assumes that three possible con-
texts exist: window. icon and the root {(background) window. When the cursor is in
a normal window--as opposed to an icon window--when a button is pressed or
‘released, then it is considered to be in a window context. Icon and root contexts
apply in a like manner. This capability allows you to specify different actions
depending on where the mouse cursor is. For example. when the Jleft button is
pressed while the cursor is in a window. you may wish to lower the window in the
window stack. But if the left button is pressed while the cursor is in the back-
ground, then you may want a full-screen refresh to occur instead. A convenient
shorthand makes it easier to include multiple contexts in a binding by combining
them with the ’" character. Leaving the context field blank means that all contexts
are valid for a binding. This is often done when you want a popup menu to appear
when a button is pressed. regardless of the mouse cursor position.

Button actions are formed by combining a button (left, middle, or right) with an
action of up, down, or delta type. The down and up actions are intuitive: They
occur when a mouse button is pressed or released. respectively. The delta action’s
purpose isn’t apparent at first, but it is useful. If the mouse is moved more than n
pixels in any direction while the button is held down. then the delta action takes
place. The most common use of this is in binding two different functions to the
same button. one to the up action and the other to the delta action. For example.
if the function bound to the delta action is f.iconify and the function bound to the
up action is flower, then the window will be lowered in the window stack if you
simply pushed and released the mouse button without moving the mouse. However,
it the mouse is moved n pixels before releasing the button., then the window will be
iconified. Like nearly everything else in wwm, n is a user-selectable quantity.

Some subtleties exist regarding the relationship of the context field and the
button action field. When you press a button, the current location of the mouse
cursor is read by the window manager to determine the relevant context. Upon
releasing the button. the location of the cursor is again read to determine the (possi-
bly changed) context. This is done because the function bound to the button down
action may have altered the context. ie.. the window or icon may no longer be
there after the function has taken effect. A still more useful aspect of this is that
the user may move the mouse to a different context for the button wup action. Con-
sider the following bindings:

432 Petitioner Microsoft - Ex. 1074, p. 7

ficonify = ctrl : window : left down
ficonify = ctrl : window : left up

The ficonify function “iconifies” a window; i.e.. it turns a window into an icon.
When the left button is pressed with the cursor within a window. that window is
iconified. If the user moves the mouse cursor to a different window and then
releases the button, the new window will also be iconified. The result is that you
have accomplished two functions with one button click. The visual effect on the
screen reminds one of a highly adept sleight-of-hand artist.

The thoughtful reader at this point is probably wondering: What context is
used for a delta action? For a delta action to occur. you recall. the mouse. cursor
must have been moved n pixels. In doing so. the context may have changed.
After a fair amount of experimentation {and not a little frustration)., it was deter-
mined that the proper context for the delte action is the context when the button
was originally pressed. Early wwm uvsers found that the position of the mouse cur-
sor when the delta action was actually invoked was too unpredictable to used as the
point in time to read the context.

The menu field in a mouse button binding is required only when using the
f-menu function. This function paves the wayv for user-defined menus bound to favor-
ite binding combinations. When the button action bound to the menu function
occurs, a popup menu appears on the screen at the mouse cursor position. Which
popup menu appears depends on the name in the menu field.

You may specify different mouse button bindings with similar mcnu names. as
well as similar mouse button bindings with different menu names. As an example,
consider the following hindings:

fmenu= meta : root : middle down: "CREATE SMALL WINDOWS”

fmenu= cls » root : right down : "CREATE SMALL WINDOWS”
fmenu= ¢s » root : right down : "CREATE LARGE WINDOWS”
fmenu= c¢s : root : right down : "CREATE MANUALLY-SIZED WINDOWS”

The first binding shows that pressing the middle mouse button while holding
the META key causes the "CREATE SMALL WINDOWS” popup menu to appear.
If you select nothing on the menu. the menu disappears and that is that. The last
three bindings are an example of wwm’s notion of “slip-off” menus. The "CREATE
SMALL WINDOWS” popup menu appears when both the CONTROL and SHIFT
keys are held down and the right mouse button is pressed. (That may sound
confusing. but it's really very simple in practice.) By moving the mouse cursor off
the menu without selecting an item. the "CREATE SMALL WINDOWS” menu
disappears and the "CREATE LARGE WINDOWS” popup appears in its place.
Likewise, the "CREATE MANUALLY-SIZED WINDOWS” popup menu replaces the
"CREATE LARGE WINDOWS” menu if no selection is made. The user merely has
to brush the mouse to the right to move rapidly from one menu to the next.
Hence the name “slip-off” menus. The menus pop into place extremely quickly,
even on slow hardware implementations. The reason it works is because. since the
user programmed the menus himself, he knows what to expect.

2.2.3. User-programmable Menus

Uwm uses a simple syntax for specifying menus in the startup file. Experience
has shown that even unsophisticated UNIX users can create complex menu struc-
tures using the commands available. Rather than describe the syntax in detail. let's
look at a tvpical menu:

- 433 Petitioner Microsoft - Ex. 1074, p. 8

menu "EASY COMMANDS” = ¢

Move a window: f.move

Create a window: xterm &”

Edit UWM startup file: !"xterm =65x80+5+5 -¢ vi $HOME/uwmre &”
Access BIGVAX: xterm =24x80+5+5 -e rlogin bigvax &”
Xterm...: |"xterm -fn 6x10 -i -fg Blue -bg White ”

Clear Screen: “clear

More -->: f.menu: "MORE EASY COMMANDS”

t

Phrases appearing before the first colon are what the user sees in the popup
menu. The portion after the first colon represents the action to be taken when that
menu item is selected. The first item shows how the built-in window manager func-
tion, fmove, can be invoked via a menu to move a window. In fact, all window
manager functions may be placed on menus, if desired. The next three lines show
how to create various windows via menu selections: One creates a plain window;
another runs the ui editor on the window manager startup file (notice the shell vari-
able globbing): the third runs an rlogin in a window to another host machine. The
"Xterm...” item isn't a UNIX command at all. The '|" symbol causes the text fol-
lowing to be placed in the X window server’'s “cut buffer”. The cut buffer’'s con-
tents can be retrieved at any time and dropped into a terminal emulator window as
if the string had been typed on the keyboard. “Clear Screen” is a special instance
- of a cut buffer operation that appends a newline to the string as it places it in the
cut buffer. When the buffer contents are dropped in a window. the UNIX command
clear(1) is immediately executed. Finally. the “More -->" entry. when selected.
erases the current popup menu on the screen and replaces it with vet another menu
of commands.

There is tremendous flexibility here. The user can define menus containing
items that are most useful for his or her particular operating environment. Window
manager functions., UNIX shell commands. text strings. and references to other
menus can be freely mixed in any order you wish. Several window managers may
be run simultaneously. allowing myriad possibilities--without any knowledge of pro-
gramming whatsoever.

3. User Interfaces for X-perts

Finding the right interface for every possible user is a formidable task indeed.
X windows deals with this issue by not dealing with it. It assumes that an applica-
tions developer will write his own user interface and run it as a separate client that
exists outside the window server itself. However, most users have neither the time
nor the desire to create such a client. Those who have a strict user interface defin-
ition will undoubtedly take the time to do so. The rest will probably use wwm until
something better comes along.

Uwm embodies the same user interface philosophy that X windows does, only
at a higher level, i.e.. you can't please all the people all the time. But if you let
all the pecople at least have a say in what pleases them. you're well on your way to
providing the ideal. Uwm gives the user plenty of opportunities for choices. This
makes it easy to find an interface that works for him. It may not work well for
the next guy. but he'll be quite content with his own environment because he
created it.

Most of the complaints we've received about wim to date are of the "Why
can't 1 do this or that?” varietv. Usuallv. vou can do this or that and much more.
But it takes a certain amount of experience with the program to realize its poten-
tial. In the interest of speeding up that realization. Appendix A is a copv of the

434 Petitioner Microsoft - Ex. 1074, p. 9

author’s own startup file, edited for brevity. It contains numerous examples of
mouse button/key bindings and menus used daily in a software engineering environ-
ment. Some of the menus in the example also use color specifications for individual
menu items. See the X documentation for details on using color menus in wwm, as
adequate coverage would require more space than we have here.

The button/key bindings are largely self-explanatory. given a little study. You
can guess at what the functions do. as their actions are not so important as the
way they are bound. Again. notice that binding different functions to button down
and button up lets you combine multiple capabilities on a single button. By press-
ing a second button before releasing the first. you can abort the button up opera-
tion. Also, the ordering of the fmenu bindings is significant. That is the order in
which they will appear in the “slip-off” sequence.

Smart folks bhind the most often used window management functions to
button/key combinations and relegate the lesser-used functions to menu items. That
way you can invoke them quickly. Uwm is perhaps the fastest window manager on
today’s workstations because of that simple capability.

Most of the menu specifications are straightforward. although some menu selec-
tions tend to be a bit creative. One instance is that of the “STDFILE” notion.
The STDFILE menu contains an entry that stashes a text string. usually a
filename. in & file called STDFILE. Other entries in the STDFILE menu can be
used to operate on that text string. The possibilities for creating a dynamic com-
mand invocation mechanism here are obvious.

The "HANDY COMMANDS” menu contains a potpourri of commands that are
usually too painful to type manually. It contains a call to a "SHUTDOWN: Are
you sure?” menu which queries the user before running shutdown to prevent
accidents. A calendar window is available by running a “browser” program on cal(l).
The browser program is really a shell script that exec’s its arguments. then waits
for a RETURN to be typed on the keyboard. The "=67x38+2+2" modifier places
the calendar at the upper left hand corner of the screen.

Xset(l) is a program that changes various characteristics of the screen interface,
such as the background color, keyboard click volume., mouse acceleration, and so on.
The numerous references to xset show how easy it is to change those characteristics
via menu items.

There is much more that can be done in startup files that hasn’t even been
explored yet. For example. it should be possible to create menu entries that would
replace the current startup file with a different one, then restart wwm with the new
set of bindings. The ability to do shell “globbing” with a menu command bears
some experimentation. as do self-modifying startup files. When you combine normal
UNIX text processing tools with startup files, the potential increases by an order of
magnitude, to say the least. Appendix B contains a shell script that uses awk(l)
and ctags(l) to generate a startup file containing menus which contain names of all
functions in a directory full of C source files. Selecting a menu item causes an edi-
tor window to be opened with the cursor sitting on the C function in the correct
file.

4. Things We'd Like to See Dept.

While wiwm does a fair amount of work as distributed. there are some features
that time did not allow us to put in. Those with source code may feel inclined to
make changes. Uwm was designed with that goal in mind. Following are some
suggestions for those with the urge to hack.

) 435 Petitioner Microsoft - Ex. 1074, p. 10

Double Click Action

The mouse button wup, down, and delta actions supported suffice for most cases.
But just as programmers benefit from more RAM. wwm users would like yet another
button action. X/ib(3) doesn’t currently support the kind of lookahead mechanisms
needed to do this well. The window manager would have to maintain its own event
queue.

Bitmap Menu Items

Text menu items work adequately in most environments. But once in a while
it is desirable to add a graphic or two to a menu item for effect.

Dynamic Button/Key Bindings

It would be useful to be able to modify the bindings on the fly and change the
run-time environment dynamically. The possibilities for confusing the user would be
limitless. Some sort of visual feedback would help.

Alternate Menu Styles

While the built-in “slip-off” menus have proven to be verv efficient. why not
add a modifier to the menus which would denote an alternate style of display? Pull-
downs. dropdowns. and horizontal popups should be fairly easy to implement. Some
people have also asked for the slip-off menus to be “reversible”. Currently. if you
. accidentally fall off a menu, you must restart the sequence to return to the original
menu. A minor annovance. but a fix is justifiable.

b. Acknowledgements

The author is deeply grateful to the following individuals and organizations: Paul
Asente. DECWRL & Stanford University. for ideas contributed indirectly through
xnwmfl): Tony Della Fera, MIT Project Athena & DEC. for ideas borrowed from
xwmf(l): Jim Gettys. MIT Project Athena & DEC, for general suggestions and test-
ing. Rich Hyde. DEC Ultrix Engineering Group. for parser contributions; Bob
Scheifler. MIT Laboratory for Computer Science, for numerous bug reports; members
of the Ultrix Base Workstations Group at DEC Merrimack for their day-to-day test-
ing and support; and Jesus Christ. Heaven, for answering my prayers on how to pull
it all together.

6. References

James D. Foley, Andries Van Dam. Fundamentals of Interactive Computer Graphics.
Addison-Wesley Publishing Company. Reading. Mass.. 1982

Michael J. Hawley, Samuel J. Leffler, Windows for UNIX at Lucasfilm, Usenix
Proceedings, Summer, 1985

Jim Gettys, Ron Newman, Tony Della Fera. Xlib - C Language X Interface. MIT
Project Athena, 1986

Bob Scheifler. X manual page. MIT-LCS, 1985

436 Petitioner Microsoft - Ex. 1074, p. 11

APPENDIX A - Sample Startup File

#

GLOBAL VARIABLES
#
resetvariables:resetbindings:resetmenus
#reverse

autoselect

delta=25

freeze

grid

normali

nonormalw
hiconpad=5
hmenupad=6
iconfont=oldengssx
menufont=timrom12b
push=1

pushabsolute
resizefont=helv12b
viconpad=5
vmenupad =3
volume=4

#zap

maxcolors =0

#
BUTTON-KEY BINDINGS
#

MOUSE BUTTON ACTIONS
. left delta

left up

: middle delta
: middle down
: middle up

. right down

right up

. left down

. right down

. left delta

: left up

: middle down

right down

. left down

: middle down
: right down

. left down

. left down

. left down

: middle down
: right down

» middle down

FUNCTION KEYS CONTEXT
f.newiconify= meta : window|icon
f.lower= meta : windowlicon :
f.iconify= meta : window
f.iconify= meta : icon

f.iconify = meta : windowlicon
f. moveopaque= meta : windowlicon
fraise= meta : windowlicon :
f.circledown= meta : root
f.circleup= meta root
f.newiconify = lock : windowlicon
f.lower= lock : window|icon
f.iconify = lock : window|icon
f. move= lock : windowlicon :
f.circleup= lock : root

fheep = lock : root
f.circledown= lock : root
f.menu= m|s

f.menu= mis

f.menu= mis

t.pushleft= mis : windowiicon
f.pushright= mis : window/icon
f.pushup= mic : windowlicon
f.pushdown= mic : windowjicon

. right down

437

:"WINDOW OPS"
" MISCELLANEOUS "
" XTERMS"

Petitioner Microsoft - Ex

. 1074, p. 12

#
MENU SPECIFICATIONS

#

menu = "WINDOW OPS” (White:Black:Black:White) §
"(Dellconify ”:(White: " #21012f"): f.iconify
Move:(White: " #410f41") f.move
Resize:(White: " #6f0{6{"): f.resize
Lower:(White: " #8f0f8f"): f.lower
Raise:(White: " #afOfaf”): f.raise

Solid Move:(White:” #ctOfcf”): f.moveopaque
"Others --> " (White:"#cfOfct”}): fmenu:"EXTENDED WINDOW QPS”
2

¢

menu = "EXTENDED WINDOW OPS” (White:Black:Black:Turquoise) |

Iconify at New Position:(White:” #ff0000"). f.newiconify
Focus Keyboard on Window:(White:”#d00000”): f.focus
Freeze Server:(White:”#b00000"}: f.pause
UnFreeze Server:{White:"#900000"): f.continue
Circulate Windows Up:(White:”"#700000"): f.circleup
Circulate Windows Down:(White:”#500000”): f.circledown
Refresh Entire Screen:iWhite:”#300000"): f.refresh

i
]

menu = ” XTERMS” (White:Black:Red:White) |

Local:(White:Black): !"xterm =80x24+0+0 -n local&”
Antic:{White:Blue): "xterm =80x24+0+0 -s -e antic&”
Decvax:iWhite:Black): !"xterm =80x24+0+0 -s -e decvax&”

"Unsized ->"(White:”#222222"}). fmenu:”UNSIZED XTERMS”
"Full-sized ->":(White:”#666666"”): f.menu:"LONG XTERMS”

]
!

menu = "LONG XTERMS” {
Local: ""xterm =80x65+0+0 -n Local -bw 5 -bd Black -cr Black&”
Antic: ""xterm =80x65+0+0 -s -bw 5 -bd Blue -cr Blue -e antic&”

Decvax: !"xterm =80x65+0+0 -n Decvax -s -e decvax&”
1

!
menu = "UNSIZED XTERMS” {

Local: !"xterm -n local -bw 5 -bd Black -cr Black&”
Antic: "xterm -s -bw 5 -bd Blue -cr Blue -e antic&”

Decvax: ""xterm -s -bw 5 -bd Black -cr Black -e decvax&”
t

menu = ” MISCELLANEOUS ” (White:Black:Black:White){

"Cut Buffer Strings -->":(White:SkyBlue): f.menu:”"CUT BUFFER STRINGS”
"Handy Commands -->":(White:CornflowerBlue): f.menu:"HANDY COMMANDf
"STDFILE Menu -->":(White:SkyBlue): f.menu:"*STDFILE’ MENU"

"User Preferences -->":(White:CornflowerBlue): f.menu:"PREFERENCES”

4
§

menu = “'STDFILE" MENU” (White:Black:Yellow:Black) !
Edit STDFILE: !""xterm -1 =80x65+5+5 -e vi ‘cat $HOME/STDFILE‘&”
Set & Edit STDFILE: ""xterm -1 =80x65+5+5 -e¢ esetstdfile&”

Set STDFILE: !"xterm -1 =40x3+100+100 -e setstdfile&”

438 Petitioner Microsoft - Ex. 1074, p. 13

!
1

menu = "CUT BUFFER STRINGS” (White:Black:White:Red) 4
"Make > tmp &”:(Black:White): “"rm -f tmp:make >tmp&”

“tail -f tmp”:(Black:White): ~“clear:tail -f tmp”
"Xted”:(Black: White): “rxted i &”

"biff n”:(Black:White): " “biff n”

"xterm -fn 9x15 ..":Black:White): |”xterm -fn 9x15 ”
"Clear Screen”:(Black:White): “clear

i
{

menu = "HANDY COMMANDS” (White:Black:Black:White) !
Edit .uwmre: !"xterm -1 =80x65+5+5 -e vi $HOME/.uwmre&”
Restart Window Manager: f.restart

Exit Window Manager: f.exit

Vi Editor: !"xterm -1 =80x65+5+5 -¢ vi&”

Mail Window: !"xterm =+0+0 -e rsh antic mail&”

Restart X Server: fmenu:"RESTART SERVER: Are you sure?”
Shutdown:f.menu: “SHUTDOWN: Are vou sure?”

Xted Editor: !"xted -1 &~

1986 Calendar: !"xterm =67x38+2+2 -n 1986 -¢ browse cal 1986& "
1

menu = "SHUTDOWN: Are you sure?” (White:Black:White:Red) !
No:(Black: White): v
Yes:(Black: White): "sudo Jete/shutdown -h now”

§

menu = "RESTART SERVER: Are you sure?” (White:Black:White:Red) !
No:(Black: White}: v
Yes:{Black:White}): "$SHOME/bin/restartX&”

8
)

menu = "PREFERENCES” (White:Black:White:Blue) !

Bell Loud: "xset b 7&"
Bell Normal: "xset b 3&”
Beli Off: "xset b off&”
Mouse Fast: "xset m 4 2&”
Mouse Normal: Yxset m 2 5&”
Mouse Slow: xset m 1 1&”

{
s

i 439 Petitioner Microsoft - Ex. 1074, p. 14

APPENDIX B

func.mm - “menu maker” script for 'uwm’ window manager
Uses ctags to create a series of menus for a uwm startup
file. Selecting an item off the menu invokes 'vi -ta’
on the appropriate function. The slip-off menus are bound
to ’ctrlishift’ on the left button in any context.

To change the bindings, alter the print statements in the
awk portion.

M Je I Fp I Ik In I Ik I

FILE =functions.uwmrc

MENUSIZE=10

if test -s $FILE : then uwm -f $FILE

else

ctags *.c

cat >awktmp <<!

BEGIN |

print “resetvariables:resetbindings:resetmenus;autoselect”

print “delta=25:freeze;grid:hiconpad=5:hmenupad=6"

print “iconfont=oldeng:menufont=timrom12b;resizefont=helv12b”
print “viconpad=5:vmenupad=3:volume="7:zap”

print “f.menu=c|s::left down:\"EDIT FUNCTIONS\""

print “menu=\"EDIT FUNCTIONS\ "(White:Black:White:Red)}"”
i=2

1
H

{if (NR > $MENUSIZE) !
print “}”
printf “f.menu=c|s::left down:\”EDIT FUNCTIONS #%d\”“\n". i
printf “menu=\"EDIT FUNCTIONS #%d\"”(White:Black:White:Red)}{\n", i
NR =1
++i
f
:.
tprintf “%s:(Black:White):!\ "xterm =80x65+0+0 -e vi -ta %s&\"\n” \$1,\$1}
END {print "!”}
t

awk -f awktmp tags >>functions.uwmrc
rm -f awktmp &

uwm -f functions.uwmrc

fi

ssoPetitioner Microsoft - Ex. 1074, p. 15

