
United States Patent [19]
Dickson, Jr. et al.

US005974567A

5,974,567
Oct. 26, 1999

[11] Patent Number:

[45] Date of Patent:

[54] GHOST PARTITION

[75] Inventors: Charles Hudgens Dickson, J r., Spring;
J. Scott Harsany; Matthew W.
Armold, both of Houston; Anthony Ty
Marler, Montgomery, all of Tex.

[73] Assignee: Compaq Computer Corporation,
Houston, Tex.

[21] Appl. No.: 08/879,912

[22] Filed: Jun. 20, 1997

[51] Int. Cl.6 G06F 11/22; G06F 11/267

[52] US. Cl. 714/27; 714/36; 713/1;
713/100

[58] Field of Search 395/18301, 183.06,

395/183.03—183.12; 713/1, 2, 100; 711/173

[56] References Cited

U.S. PATENT DOCUMENTS

4,057,847 11/1977 Lowell et al. 395/18322

4,823,343 4/1989 Takahashi 395/18322
5,021,997 6/1991 Archie et al. 395/18307

5,124,622 6/1992 Kawamura et al. 318/569

5,361,358 11/1994 Cox et al.

5,367,667 11/1994 Wahlquist et al. .. .
5,371,883 12/1994 Gross et al. 395/183.14

(List continued on next page.)

FOREIGN PATENT DOCUMENTS

0 794 484 A2 9/1997 European Pat. Off. G06F 3/06

OTHER PUBLICATIONS

Quarterdeck Corp., “Clean Sweep 95 User’s Guide”, pp.
69—82, 1994—95.
Olsen, J.W., “UnInstaller 3 Slowly Cleans, Moves and
Archives”, PC Magazine, v14 n14 p42(1), Aug. 1995.

Primary Examiner—Robert W. Beausoliel, Jr.
Assistant Examiner—Scott T. Baderman
Attorney, Agent, or Firm—Akin, Gump, Strauss, Hauer, &
Feld

[57] ABSTRACT

An apparatus and a method for storing diagnostic software
on a data storage device provides one or more ghost parti
tions overlapping a user partition on a data storage device.
During a factory download of the application software as
well as the diagnostics software, the apparatus creates a user
partition and one or more overlapping ghost partitions. Next,
it determines a minimum and maximum partition siZe for the
ghost partition(s) and allocates the ghost partition siZe(s)
appropriately. The apparatus then creates one or more master
boot records (MBRs), one for each created partition. The
ghost partition containing the diagnostics software is set as
the active partition to allow the diagnostic software to be
executed. Upon completion of the diagnostics process, the
MBR for a second ghost partition is enabled so that upon
reboot, download veri?cation software located on a second
ghost partition can be executed to ensure the correctness of
the software downloading process. Next, the ghost partitions
are disabled to reclaim storage space back to the user
partition and the MBR for the user partition is set as the
active partition so that upon reboot, only user partitions are
visible. Further, in the event that the diagnostics software
needs to be executed for quality control purposes, the MBR
containing data on the ghost partition with the diagnostics
software replaces the MBR for the user partition so that the
ghost partition with diagnostics software can be resurrected
after it has been previously disabled. No master boot records
for any of the user or system partitions are modi?ed at any
time during the process. Additionally, the MBR and ?le
allocation table (FAT) for the ghost partition may be cleared
so test data cannot be accessed after the factory test pro
cesses. Since the ghost partitions overlap user partitions,
after the ghost partitions have been disabled, data storage is
automatically reclaimed by the user partitions when needed.
The ghost partitions can properly function while overlapping
the user partitions because while in the controlled environ
ment of the factory, data will not be arbitrarily written to the
user partition (otherwise both user and ghost partition data
could become corrupt). Thus, the present invention avoids
the need to set up a large system partition and avoids wasting
disk space associated with manufacturing diagnostics.

30 Claims, 7 Drawing Sheets

450

a j“
454

EXECUTE 50mm: mum
mm: DRIVE

sour wwoows 95 mm "55
BOOLGUI=U /

455

cm WINPREP mu AUTOEXEQBAT /

450
lM/UKE REGEDIT wlm UPDATEJN/ /

I 452

sxscrns wmoows L15 7/
FROM Al/TOEXEQBAT

4
REPOM ERRORS AND UPDATK /
snmms w FACTORYJN!

454
/

DELETE mum/1.00M mu ‘58
wmcau mm snosr PAMITION

FIX PARUTIDN mu m
POINT m USER PARWMN

DISABLE sHu? PAFWIDN //

.474

470

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 1

5,974,567
Page 2

5,388,252
5,390,324
5,455,933
5,469,573

US. PATENT DOCUMENTS

2/1995 Dreste et a1. 395/183.22

2/1995 Burckhartt et a1. 395/18508
10/1995 Schieve et a1. 395/1832
11/1995 McGill, III et la. 395/700

5,513,319
5,574,914
5,629,878
5,657,473
5,675,769
5,826,012

4/1996
11/1996
5/1997
8/1997
10/1997
10/1998

Finch et a1. 395/185.08

Hancock et a1. 395/650

Kobrosly 395/183.01

Killean et a1. 395/490

Ruff et a1. . 395/497.04

Lettvin 395/186

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 2

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 3

U.S. Patent Oct.26, 1999 Sheet 2 of7 5,974,567

2N 3:95.913 2848 SN gamma 3.5.

a 383 25 § 335a § % asala 21

SN .25: E05: SN Egg xm?

Q § SE31: 2516 as: §E=
,, -

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 4

U.S. Patent Oct.26, 1999 Sheet 3 of7 5,974,567

300 302 304 306 FIG}

r118

———310

L312
#314

316
.318

320

ROOT DIRECTORY 360 BOOT SECTOR
DATA AREA ROOT DIRECTORY

DIRECTORY

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 5

U.S. Patent

FIG. 48

Oct. 26, 1999 Sheet 4 0f 7

366

BEGIN ALLOCATION OF
GHOST PARTITION 370

NOTE LAST SECTOR WITH
DATA WRITTEN TO IT

SAVE SECTOR 0 OF HARD
DRIVE TO SECTOR 2

3 72
/

374 FIG.5
/

3 76

READ MINIMUM AND MAXIMUM
PARTITION SIZE FROM DIAC.MAP

/

ATTEMPT TO ALLOCATE

3 78

(MAXIMUM PARTITION SIZE
.380

NO PARTITION
CREATED?

YES

SAVE NEW PARTITION TABLE
IN SECTOR 0 AND SECTOR 3

OF THE HARD DRIVE

.386 / @388 EXIT

382
SUBTRACT 1 Mb FROM
MAXIMUM PARTITION

SIZE

384 \
MAXIMUM PARTITION SIZE NO
< MINIMUM PARTITION

SIZE?
YES

390

I EXIT WITH ERROR V

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 6

U.S. Patent

FIG.6

Oct. 26, 1999 Sheet 5 0f 7

420

(PRE-TEST)/

422

POWER ON COMPUTER

424
BOOT FROM FLOPPY DISK /

426
EXECUTE FROM HARD DRIVE /

428
BOOT wmoows 95 /
WITH BOOT_GUI=0

430

READ SERIAL NO. FROM FLOPPY -/

432
SAVE SERIAL NO. ON

A FACTORYJNI

434

GENERATE UPDATE. INI

436

INVOKE REGEDIT WITH UPDATEJNI

4-38
START WINDOWS 95 FROM /

AUTOD(EC.BAT

440/ RUN DIAGNOSTICS

442 @NE? NO 7
YES

REPORT ERRORS AND UPDATES TEST /
STATION DATA IN FACTORYJNI

446
EXIT

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 7

U.S. Patent

FIG. 7

041.26, 1999 Sheet 6 0f 7 5,974,567

450

(RUN-TEST P’

BOOT FROM DISKEITE

452

454

/ EXECUTE SOFTWARE FROM
HARD DRIVE

456

/ BOOT WINDOWS 95 WITH
BOOT_GUI=0

458
CALL WINPREP FROM AUTOEXEC.BAT /

460
INVOKE REGEDIT WITH UPDATEJNI —/

62
EXECUTE WINDOWS 95 d/4
FROM AUTOEXECBAT

464

RUN DIAGNOSTICS /

466
REPORT ERRORS AND UPDATE _/

STATIONS IN FACTORYJNI

DELETE COMMAND.COM AND 468
wmcom FROM GHOST PARTITION

47o
FIX PARTITION TABLE TO /
POINT TO USER PARTITION

472

DISABLE GHOST PARTITION

@474

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 8

U.S. Patent Oct.26, 1999 Sheet 7 0f 7 5,974,567

@1480 [496
482 sTART wINDOws 95

B001 FROM 013K575 ,/ FROM AUTOEXEC.BAT

484 498
REsTORE PARTmON / \ RUN DIAGNOSTICS

TABLE

500
485 \ REPORT ERRORS AND

RESTORE COMMANQCOM ,/ UPDATE sTATIONs IN
AND WIN.COM FACTORYJNI

—/486 502 R M DELETE COMMAND.COM
EBOOT FRO DIsKETrE \ AND WIN'COM FROM

GHOST PARTITION
488

ExEcuTE APPLICATION /
FROM HARD DRIvE

504\ FIX PARTITION TABLE
490 TO POINT TO usER
J PARTITION

BOOT wINDOws 95
WITH BOOT_GUI=O 506

492 DISABLE GHOST J
PARTmON

CALL WINPREP J

494 MT 508 J (3/
COPY .INI FILE TO

uPDATEINI

d/495 REOEDIT Is INVOKED
WITH UPDATEINI F IG.8

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 9

5,974,567
1

GHOST PARTITION

CROSS-REFERENCE TO RELATED
APPLICATIONS

The following disclosures are hereby incorporated by
reference:

US. application Ser. No. 08/774,808, ?led on Dec. 31,
1996, entitled “MULTI-TASKABLE DIAGNOSTICS
MODULE,” by J. Scott Harsany, Robert Perugini, and
Robert E. Supak;

US. application Ser. No. 08/777,902, ?led on Dec. 31,
1996, entitled “DIAGNOSTICS MODULE
DISPAT CHER,” by J. Scott Harsany, Robert Perugini,
and Robert E. Supak; and

US. application Ser. No. 08/775,778, ?led on Dec. 31,
1996, entitled “TEST DEFINITION TOOL,” by A. Lee
Jenkins, J. Scott Harsany, and Robert Perugini.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention is directed in general to computer
diagnostics system, and more particularly, to an apparatus
and a method for creating and deleting a partition on a data
storage device With the diagnostic system.

2. Description of the Related Art
The continual reduction in siZe and cost of personal

computers has been instrumental in the rapid acceptance of
computer technology by corporations and consumers. Even
With ultra large scale integration technology, Which reduces
the number of components in personal computers, these
personal computers are still highly complex hardWare
assemblies. Thus, even computers assembled using high
quality components and careful assembly procedures are
still subject to occasional manufacturing defects and failures
during use.

The costs associated With such defects and failures in
terms of manufacturer Warranty obligations and end user
doWn time are relatively high. Thus, users are demanding
that their computer be reliable and be available at virtually
any time. Computers, hoWever, can experience problems
associated With any one of their major components, such as
the hard drive, the display, the memory, and the processor.
It is important, therefore, to provide a diagnostic capability
for the computer system that can test the operation of the
computer in a multi-tasking environment to closely simulate
the actual environment that the computer system operates in.

To satisfy such requirements, prior to the delivery of the
computers to end users folloWing the manufacture or sub
sequent repair, the computer circuit boards are normally
subjected to functional tests to determine Whether they
operate properly. Furthermore, during use, the user may
experience problems relating to either hardWare problems or
improper softWare con?gurations. To isolate the fault, the
user may Wish to subject his or her computer system to the
functional tests to satisfy the user that the hardWare or driver
level softWare is not the culprit of the problems.

One type of diagnostic program is embedded into a
non-volatile memory of the computer. In an IBM compatible
personal computer, the test is called “PoWer On Self Test”
(POST) and is arranged in personal computers as a portion
of the basic input/output system (BIOS). Such BIOS-POST
diagnostic program is executed automatically and manda
torily When the computer system boots. One problem that
occurs With the placement of test codes in the BIOS-POST
diagnostic program is the execution speed and the siZe of the

10

15

20

25

30

40

45

50

55

60

65

2
actual code. First, users do not Want to Wait for an extensive
diagnostic testing during each boot. Therefore, the POST
diagnostics routines cannot be as sophisticated and as thor
ough as possible. Furthermore, the POST diagnostics routine
is constrained by tight memory requirements, and therefore
is limited to simple and time-ef?cient tests Without an easy
to use graphical user interface inherently present in the
WindoWs interface.

Another functional testing method employs specialiZed
diagnostics softWare Which is transferred to the computer
system under test via one or more disks. The testing softWare
is typically loaded onto the computer to be tested and a
technician or a user initiates the execution of the softWare for
testing the computer. The diagnostic softWare is designed to
test the operation and interconnection of the circuit board
components and other hardWare, and to provide graphic
displays on the monitor indicating the nature of any identi
?ed faults. Diagnostic softWare of this type is commercially
available for most computer system manufacturers and
original equipment manufacturers. Additionally, after
market diagnostic softWare is also commercially available
from independent softWare vendors.
One disadvantage caused by disk-based test or diagnostics

tools is the need to completely remove the test softWare from
the data storage device upon completion of such test.
Traditionally, such removal entails the execution of an
uninstall softWare Which ensures that various WindoWs ?les
relating to the test softWare are removed that the WindoWs
INI ?le is properly updated. The execution of such uninstall
softWare in a production environment is undesirable due to
the time and expense associated With executing and moni
toring the uninstall softWare. Further, the user’s WindoWs
INI ?les may become corrupted during the uninstall process.
Thus, it is desirable to install the disk operating system as
Well as the test softWare on the target computer at once and
quickly and completely reclaim the space taken by the
disk-based diagnostics routines after the completion of the
factory tests.
One alternative to storing diagnostics softWare in the

user’s partition is to store the softWare in a system partition.
The system partition needs to be small to minimiZe the
usurpation of disk space from user applications. As prior
diagnostics softWare required less than 20 megabytes, the
system partition can be kept at a manageable siZe. HoWever,
With the advent of graphically orientated operating systems
such as WindoWs 95, a partition With a minimum siZe of 25
megabytes or greater could be needed for diagnostic soft
Ware during the manufacturing phase. Due to the siZe and
the number of operating system ?les required to start the
operating system and the siZe and number of ?les required
to run modern diagnostic softWare, traditional provisions on
the disk drive’s system partition are insuf?cient to load the
diagnostic softWare. HoWever, the setup of a larger system
partition Would deprive the user of much needed disk drive
space after diagnostics has been executing in the manufac
turing phase. Thus, What is needed is an apparatus and a
method for minimiZing the amount of disk space ultimately
lost to manufacturing diagnostics ?les.

SUMMARY OF THE INVENTION

An apparatus and a method for storing diagnostic soft
Ware on a data storage device provides one or more ghost
partitions overlapping a user partition on a data storage
device. During a factory doWnload of the application soft
Ware as Well as the diagnostics softWare, the apparatus
creates a user partition and one or more overlapping ghost

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 10

5,974,567
3

partitions. Next, it determines a minimum and maximum
partition siZe for the ghost partition(s) and allocates the
ghost partition siZe(s) appropriately. The apparatus then
creates one or more master boot records (MBRs), one for
each created partition. The ghost partition containing the
diagnostics softWare is set as the active partition to alloW the
diagnostic softWare to be executed. Upon completion of the
diagnostics process, the MBR for a second ghost partition is
enabled so that upon reboot, doWnload veri?cation softWare
located on a second ghost partition can be executed to ensure
the correctness of the softWare doWnloading process.

Next, the ghost partitions are disabled to reclaim storage
space back to the user partition and the MBR for the user
partition is set as the active partition so that upon reboot,
only user partitions are visible. Further, in the event that the
diagnostics softWare needs to be executed for quality control
purposes, the MBR containing data on the ghost partition
With the diagnostics softWare replaces the MBR for the user
partition so that the ghost partition With diagnostics softWare
can be resurrected after it has been previously disabled. No
master boot records for any of the user or system partitions
are modi?ed at any time during the process. Additionally,
the MBR and ?le allocation table (FAT) for the ghost
partition may be cleared so test data cannot be accessed after
the factory test processes.

Since the ghost partitions overlap user partitions, after the
ghost partitions have been disabled, data storage is auto
matically reclaimed by the user partitions When needed. The
ghost partitions can properly function While overlapping the
user partitions because While in the controlled environment
of the factory, data Will not be arbitrarily Written to the user
partition (otherWise both user and ghost partition data could
become corrupt). Thus, the present invention avoids the
need to set up a large system partition and avoids Wasting
disk space associated With manufacturing diagnostics.

BRIEF DESCRIPTION OF THE DRAWINGS

A better understanding of the present invention can be
obtained When the folloWing detailed description of the
preferred embodiment is considered in conjunction With the
folloWing draWings, in Which:

FIG. 1 is a schematic illustration of a computer system
executing a Diagnostics for WindoWs softWare in accor
dance With the present invention;

FIG. 2 is a diagram illustrating in more detail components
of the Diagnostics for WindoWs softWare in accordance With
the present invention;

FIG. 3 is an illustration of partitions Within a multiplatter
disk drive;

FIG. 4A is an illustration of regions Within a partition of
the disk drive of FIG. 3;

FIG. 4B is an illustration of a user partition, a ghost
partition and a system partition Within the data storage
device of FIG. 1;

FIG. 5 is a How chart of the process for allocating the siZe
of the ghost partition;

FIG. 6 is a How chart illustrating the process in a pre-test
station for performing interactive tests With the machine and
the tests;

FIG. 7 is a How chart illustrating the process at a run-in
station for burning-in the computer under test; and

FIG. 8 is a How chart illustrating the process for resur
recting the ghost partition after the burn-in process of FIG.
7.

15

25

35

45

55

65

4
DETAILED DESCRIPTION OF THE

PREFERRED EMBODIMENT
A. Glossary of Terms

For ease of reference, terms as de?ned for use in describ
ing the present invention are set forth beloW. As Will be
evident to those skilled in the art, the de?nitions incorporate
both current standard meanings as Well as extended mean
ings as prove necessary. They include the folloWing:

Disabling: removing a ghost partition and restoring the
space formerly occupied by the ghost partition back to the
user partition. The disabling of the ghost partition still
alloWs the possibility for resurrecting the ghost partition as
subsequently needed;

Ghost Partition: a partition created during the manufac
turing phase Which is adapted to receive manufacturing
diagnostics and other softWare. The ghost partition is not
readily accessible by the user;

System Partition: a hidden partition storing con?guration
and related information and program accessible at boot-up
by pressing a F10 key on certain computers such as those
available from Compaq Computer Corporation;

User Partition: a partition on the data storage device
Which is adapted to receive applications visible to the user
after boot-up.
B. The Computer With Ghost Partition(s)

Turning noW to the draWings, a computer system S is
disclosed in FIG. 1. The computer system S of FIG. 1
deploys one or more processors such as the Pentium ProTM
processor available from Intel Corporation located in Santa
Clara, Calif. The Pentium ProTM processors reside on a
processor card C Which is plugged into one of tWo P6 slots
100—102. The P6 slots 100—102 are connected to a 72-pin
Pentium ProTM host bus called the P6 bus 103. The P6 bus
103 is a high performance bus Which can support tWo
processor cards mounted on slots 100—102. Each processor
card C supports tWo Pentium ProTM processors.

In addition to the processors, the P6 bus 103 is connected
to a memory controller 104 and a data path device 106 Which
collectively form a DRAM control subsystem. The illus
trated DRAM controller is an 82453GX and the data path
device 106 is an 82452GX, both of Which are available from
Intel Corporation.
The DRAM controller 104 provides control and timing to

the memory subsystem, While the data path device 106
interfaces the 72-bit P6 host bus to the memory array. The
memory controller 104 and the data path 106 are capable of
taking a memory request from the CPU, queuing it, and
responding after the requested operation has completed.
Additionally, the controller 104 provides memory error
correction Which is vital in error-free applications, including
the capability of single-bit error correction and multi-bit
error detection on the ?y. The memory controller 104 can
handle up to four gigabytes of page mode DRAM. Memory
arrangements having non-interleaved, x2 and x4 interleav
ing con?gurations are supported by the memory control
sub-system.

Aplurality of memory modules 110—112 are connected to
memory slots 108 to provide up to four gigabytes of
memory. These modules often have a standard Width of 9
bits, With a relevant number of times 1 or times 4 chips,
allocated to reach the indicated storage capacity, such as one
megabyte, four megabytes or 16 megabytes. Thus, a 1M><9
module may comprise nine 1 Mb chips With the organiZation
of 1 Mb><1, or tWo four-megabyte chips With the organiZa
tion of 1 Mb><9 for data, as Well as one megabit chip With the
organiZation of 1 Mb><1 for parity information. The SIMM
modules must be inserted into the intended sockets of the

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 11

5,974,567
5

banks. Internally, the modules often combine pair by pair or
four by four to realize a main memory With a data Width of
16 or 32 bits. Thus, SIMM modules offer versatility in
con?guring the computer memory and are available in
individual siZes from one megabyte to 64 megabytes per
SIMM. Further, DIMMs or other memory technology can be
used.

The CPU stores data and programs in the RAM. Accesses
to the data and programs are accomplished by instructing the
memory Which data the CPU needs prior to sending the
memory an address, akin to a “house number” of the data
unit requested. The address information is provided from the
CPU by an address bus, and the transfer of data from the
RAM to the CPU is performed using a data bus. Generally,
in computer terms, a bus means a number of lines through
Which related data and signals are transferred. The address
bus consists of 32-bit address lines in the case of 386, 486
or Pentium processors. The data bus for these processors is
also 32-bits in Width. During operation, the actual perfor
mance of the memory subsystem Will depend in part on the
mix of read and Write operations and the memory access
patterns for a given application. The controller 104 mini
miZes the impact of the idle cycles by alloWing read opera
tions to bypass the Write operations and be completed ?rst as
long as the memory addresses for the read/Write pair do not
match.

In addition to the memory controllers, a robust input/
output system is needed for the computer system S. TWo PCI
buses 115 and 117 provide a combination of high perfor
mance and scalable I/O for the demanding environment
faced in high performance applications. To provide PCI
connections, one or more PCI bridges 114 are connected to
the P6 bus 103. The peer-to-peer arrangement of the PCI
buses eliminates one or more levels of arbitration present in
the hierarchical arrangement, resulting in higher system
performance.
As in the DRAM controller 104, the PCI bridge 114

supports a full 64-bit interface to the CPU bus, including
support for all protocols as Well as error correction. The PCI
bridge 114 supports an 8-deep transaction in-order queue as
Well as separate 4-deep queues for both outbound (processor
to PCI) and inbound (PCI to processor) transactions that are
for the I/O bus agent. Also, like the DRAM controller 104,
the PCI bridge 114 provides four 32-byte data buffers in both
the inbound and outbound directions.

Attached to the secondary PCI bus 115 is a SCSI disk
controller 116. The SCSI controller 116 provides the capa
bility of handling simultaneous disk commands Which is
necessary in a multi-threaded, multi-tasking operating sys
tem. The illustrated SCSI controller 116 is a 53C825 avail
able from NCR Corporation. Attached to the 53C825 is one
or more SCSI data storage devices 118 Which can support
the host system’s simultaneous issuance of multiple com
mands to one or more SCSI devices. In addition to the SCSI
controller 116, a plurality of devices may be plugged into the
secondary PCI bus 115 over a plurality of secondary PCI
slots 122.
On the primary PCI bus 117, an interrupt controller 124

handles interrupt requests coming into the PCI bridge 114
for eventual transmission to one of the processors in slots
100—102. The interrupt controller 124 routes interrupt
requests from devices located on PCI buses 115—117 to the
processors on slots 100—102 during multiprocessor opera
tion. Additionally, a number of PCI peripherals may be
plugged into a plurality of primary PCI slots 126.
An EISA system controller (ESC) 128, preferably the

Intel 82374EB device, and a PCI-EISA bridge (PCEB) 130,

10

15

25

35

45

55

65

6
preferably the Intel 82375EB, are also connected to the
primary PCI bus 117. The ESC 128 and the PCEB 130 Work
in tandem to provide an EISA I/O subsystem interface for
the computer system S. The combination of the ESC 128 and
the PCEB 130 provides an I/O subsystem capable of taking
advantage of the poWer of the PCI bus architecture While
maintaining access to a large base of EISA and ISA expan
sion cards, and the corresponding softWare applications.
The ESC 128 and the PCEB 130 are connected to a

plurality of EISA slots 132. Additionally, the ESC 128 also
generates chip selects for certain functions that typically
reside on an X bus. The ESC 128 generates chip select
signals from an integrated system management unit (ISM)
158, a keyboard controller 156, a ?ash ROM 154, a non
volatile RAM 152, and a general purpose I/O device 144
Which supports ?oppy drives, serial ports, and parallel ports
over ?oppy connectors 146, serial connectors 148, and
parallel connectors 150.
A video controller 140 is connected to X bus address

lines, the EISA/132 system data lines, and the latched
address lines. The illustrated video controller is a Cirrus
Logic 5424 controller. The video controller 140 is connected
to a video RAM 142 Which is 512 kilobytes in siZe. Turning
noW to hardWare details on the video display system, video
information is typically generated via the graphics adapter
140. In general, four main types of graphic adapters are
commonly used in personal computers. The older graphics
adapters include CGA for color graphics adapter Which has
a resolution of 300x200 four color screen or 640x200 tWo
color screen. Yet another class of display called multicolor
graphics array (MCGA) is available. The MCGA is essen
tially an analog superset of the CGA. Next in line in the
evolution of display standard is an enhanced graphics
adapter (EGA). The EGA adapter provides the 320x200 four
color and the 600x200 tWo color modes of the CGA, in
addition to the four EGA graphics mode. Currently, the
graphics standard in personal computing is called video
graphics array (VGA). The VGA adapter provides all modes
of EGA, CGA and MCGA graphics, as Well as one addi
tional graphics modes: a 640x480 sixteen color mode.

Given the complexity of the computer system S, it is
possible for the computer system S to experience problems
associated With any one of its major components, such as the
hard drive, the display, the memory, and the CPU. It
becomes increasingly important, therefore, to provide a
diagnostic capability for the computer system S for testing
at the factory before the computer system S leaves the
factory.

Turning noW to FIG. 2, the interaction betWeen the
various modules of the Diagnostics for WindoWs (DFW)
architecture is shoWn. The high level operation of this
softWare is further described in the previously incorporated
copending United States patent application having Ser. No.
08/774,808, entitled “MULTI-TASKABLE DIAGNOS
TICS MODULE.” As it pertains to the present invention, it
is important to note that these diagnostics typically require
over tWenty ?ve megabytes of disk space. In FIG. 2, a front
end module 170 is provided as a main program and user
interface. The front end module 170 initialiZes the DFW and
veri?es that all of the DLLs are valid. Furthermore, the front
end 170 is responsible for all user interactions and interface
functionalities, The front end 170 communicates With a test
dispatcher 172. The test dispatcher 172 is responsible for
dispatching diagnostic tests, managing test threads, and
other aspects relating to the management of the system tests.
The front end 170 and the test dispatcher 172 further
communicate With a test engine 174 Which is a depository of

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 12

5,974,567
7

all diagnostic test information. The test engine 174 deter
mines Which tests are valid, as gathered from various
diagnostic libraries (DLs 190). The front end 170 uses the
depository in the test engine 174 to determine Which diag
nostics test to run.

The front end 170 also communicates With a data engine
176. The data engine 176 is a depository for all system
inspection information as gathered by the product identi?
cation and the diagnostic libraries. The front end 170 uses
the depository in the data engine 176 to report inspection
information to the user. Additionally, the front end 170 also
communicates With a 16-bit ID module 178 Which in turn
drives the data engine 176. The 16-bit ID unit 178 inspects
relevant hardWare/?rmWare/softWare information in the
computer, and is responsible for gathering all of the infor
mation relating to 16-bit peripheral type. The 16-bit ID
module 178 in turn communicates With a 32-bit ID module
180. The 32-bit ID module 180 further communicates With
the data engine 176 for reporting relevant hardWare/
?rmWare/softWare information not gathered by the 16-bit ID
module 178.

The front end module 170 also communicates With a
product ID module 182 Which identi?es the product cur
rently being tested. The product ID module 182 also sets the
product name and processor speed and initialiZes the internal
tables and variables for the DFW program. Additionally, the
front end 170 communicates With a recommended action
module 184, Which is a simpli?ed expert system to display
to the user recommended choices for recovering from errors
reported during testing. The recommended module 184 and
the front end module 170 also communicate With an error
handler 186, Which is a depository of all error information.
The error handler 186 is responsible for reporting errors to
the user including both the error code and the recommended
actions, as provided by the recommended action module
184. The Diagnostics for WindoWs architecture further pro
vides a plurality of diagnostic library components 192—219.
Afactory support components 220 is also provided generally
for manufacturing and assembly related processes. A data
collection module 222 is provided to provided to report test
information such as pass or fail, and error code, among
others in the factory testing process. The data collection
module 222 comprehends the netWork and database schemes
in the factory for recording this information. Additionally, a
con?guration veri?cation module 224 is provided for veri
fying that the system has been built according to the bill of
material (BOM). Thus, the con?guration veri?cation mod
ule 224 veri?es that the computer under test has the correct
hardWare, softWare and ?rmWare as needed. Furthermore,
the factory support component 220 has a test pro?le con
?guration module 226 Which is responsible for reading the
test pro?le con?guration ?le produced by the test de?nition
tool (TDT) and converting the con?guration ?le into a form
usable by the test dispatcher 172. Additionally the Diagnos
tic for WindoWs softWare contains a plurality of V><D
components 240 With a V><D interface module 250. The
V><D interface module 250 interfaces to the operating sys
tems speci?c device driver.

The front end 170 is also responsible for displaying
inspection information, interacting With a user, loading and
initialiZing the diagnostic library components, alloWing
selection and speci?cation of diagnostic tests, launching and
monitoring diagnostic tests, displaying test status, and dis
playing all errors and recommended actions to the user. In
turn, the diagnostic 190 are responsible for identifying all
hardWare devices, specifying valid tests for hardWare
devices, relaying all information needed by the front end 170

10

15

25

35

45

55

65

8
to display and alloW selection of diagnostic tests, executing
diagnostic tests and relaying the test status and errors to the
front end module 170.

All of the inspection information in the diagnostic for
WindoWs softWare is gathered upon the execution of the
Diagnostics for WindoWs and stored in a data engine 176.
The front end module 170 uses the inspect engine 176 to
display information to the user during the execution of the
diagnostics. The inspect engine thus resides in the data
engine 176 and contains information needed by the front end
module 170. All of the diagnostic test information for
Diagnostics for WindoWs is gathered upon the execution of
diagnostics and stored in the test engine 174. The front end
module 170 uses the test engine 174 to display hardWare
devices and associated diagnostic tests to the user during
that execution of diagnostics. The test engine 174 contains
information that the front end module 170 needs to display
the hardWare devices and associated diagnostics to the user.
The test dispatcher 172 is responsible for scanning the

lists of tests to be run and calling the individual diagnostic
library components 190 to dispatch the diagnostic tests. The
test dispatcher 172 is responsible for controlling a number of
active threads as Well as monitoring and reporting the status
of the diagnostics tests.
The error handler 186 is responsible for logging and

reporting all errors When a diagnostic test fails. Thus, it is the
responsibility of the components of the diagnostic library
190 to relay all error information to the error handler 186.
The error handler 186 contains information that the front end
module 170 needs for reporting the error and determining a
recommended action from the recommended action module
184. The recommended action module 184 holds several
possible recommendation for each possible error. The
handier 184 Will interact With a small engine for ?eld tests
and use the netWork to access more complete information in
factory tests.
As discussed above, the softWare for diagnosing the

computer system S of the present invention is quite complex
and can take over tWenty-?ve megabytes of disk space.
Thus, it is desirable that the softWare for testing the com
puter system S be removed and reinstated as easily as
possible afterWards. The present invention provides a ghost
partition Which supports such ease of storing and removing
test softWare, as discussed beloW.

FIG. 3 illustrates in detail the organiZation of data storage
tracks on the data storage device 118 for ?exibly storing and
removing large diagnostics packages such as the Diagnostics
for WindoWs softWare. In the computer system S, the hard
disk 118 is typically divided into partitions Which generally
start and end at cylinder boundaries. For storing the partition
information, a unique location Which is de?nitely present on
every hard disk is chosen as the ?rst sector for head 0 and
track 0. This is a ?rst physical sector of the hard disk. This
?rst physical sector, or a partition sector, contains informa
tion about individual partitions by means of partition entries
in a partition table. In the IBM personal computer, the
partition table is 64 bytes long and can accommodate four
partitions at most, held in an inverse order. Besides the
partition table, the partition sector contains a small program
as Well as a tWo-byte signature 0xAA55. Upon poWer-up of
the IBM PC, the BIOS calls the partition sector program
Which checks the internal consistency of entries in the
partition table and then boot loads the boot strap loader from
the boot sector. If the partition table is damaged or
inconsistent, the program issues an error message and ter
minates the load process.

In the IBM PC, the partition table holds entries for a
maximum of four partitions. They specify the physical start

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 13

5,974,567
9

and end sector of each partition in a compressed three byte
format. If several operating systems reside in separate par
titions on the disk, then the IBM PC must be able to
determine which of the various systems is to be loaded. To
resolve this issue, a boot indicator is provided. Thus, in the
IBM PC an entry 80h indicates a bootable active partition,
and entry 0h indicates a non-bootable (inactive) partition.
The program at the beginning of the partition sector deter
mines during the boot phase where the bootable partition is
located, and then actively loads the routine to boot the
system.

Referring back to FIG. 3, the hard disk 118 has three
platters, each with two sides. Thus, the hard drive 118 of
FIG. 3 can be accessed by six heads in total: head 0 310 on
the upper surface of the ?rst platter and head 1 312 on the
bottom side of the ?rst platter, head 2 314 on the top side of
the second platter and head 2 316 on the bottom side of the
second platter, head 4 318 on the top side of the third platter
and head 5 320 on the bottom side of the third platter of the
hard drive 118 of FIG. 3. The heads 310—320 can move over
the surfaces of the platters and retrieve information as
necessary. Further, as shown in FIG. 3, the hard drive 118
has a ?rst physical partition 300, a second physical partition
302, a third physical partition 304 and a fourth physical
partition 306. The partition table would then be set up to
point to the following physical partitions as follows:

First Partition 300: System Partition
Second Partition 302: Users Primary Boot Partition
Third Partition 304: Extended Partition
Fourth Partition 306: Extended Partition
In the event that the data storage device has 2 gigabyte or

more capacity, the ?rst partition 300 is a big ?le allocation
table (FAT) type for supporting a larger capacity partition,
while the third partition 304 is a 12 or 16 bit FAT, depending
on the siZe required. In the disclosed embodiment, the fourth
partition 306 is not used.

Referring now to FIG. 4A, the boot portion of a partition
of the hard drive 118 is illustrated in more detail. As shown
in FIG. 4A, the portion containing the boot information has
a plurality of root directories 350, a plurality of ?rst ?le
allocation tables (FATS) 352, a plurality of second FATs 356
and a boot sector 358.

The boot sector of every ?oppy or every hard drive
partition contains the program for loading the disk operating
system, regardless of whether the ?oppy or partition is
bootable or not. Only the loaded program in the boot sector
determines whether the required system data is actually
present on the disk or in the partition. During boot from a
?oppy disk, the loaded program in the boot sector 358
checks whether system ?les are present, indicating that the
appropriate OS is present on the disk. If the loaded program
?nds the required system ?les, then these ?les and the
operating system are loaded into the main memory.
Alternatively, in the event that the system is booting from
the active partition of the hard drive 118, the BIOS start
routine branches through the program at offset 0H in the
partition sector. The program then investigates the partition
table, determines the bootable partition and branches to the
bootable partition to complete.

The various partitions, root directory, FATS, and boot
sector of the hard drive 118 are set up during a software
install process called a software download (or surrogate)
process. The surrogate process ?rst sets up the user partition
300. It then invokes the process of FIG. 5 for determining
the appropriate ghost partition siZe and setting of the appro
priate ghost partition. This action results in a ghost partition
364 of FIG. 4B. As shown in FIG. 4B, a user partition 362

10

15

25

35

45

55

65

10
overlaps with the ghost partition 364. As is apparent, if the
user partition 362 were to be ?lled with data, that data would
corrupt the data in the ghost partition 364. Because of the
controlled factory environment, however, appropriate pre
cautions can be taken to assure that such events will not
happen.

Additionally, a system partition 366 borders with the user
partition 362. The system partition 366 allows the system
set-up software to be stored for system con?guration pur
poses immediately upon boot-up. The system set-up soft
ware is invocable upon boot up by pressing a F10 key.
Although extended user partitions are not shown, the present
invention contemplates that primary and extended user
partitions can co-exist. Further, the present invention con
templates that computer systems which do not offer the
system partition 366 can still utiliZe the advantages of the
invention disclosed herein.

Continuing with the download process, the surrogate
process next copies appropriate ?les to the data storage
device 118, which at this point is connected to a factory
computer network rather than the computer of FIG. 1. In this
process, a central source or copy system running on the
network downloads all user software as well as diagnostics
software onto the data storage device 118. Once the data
storage device 118 has been properly set up and appropriate
data and software transferred to the data storage device 118,
the data storage device 118 is installed into the computer
system of FIG. 1 before it is tested using the processes of
FIGS. 6—8.

Preferably, the present invention stores four master boot
records (MBRs), each of which is used in a different phase
for the computer under test. The four phases include a test
phase where diagnostics routines are executed from the
ghost partition; a software veri?cation phase where a routine
is executed to verify the integrity of the downloaded soft
ware using suitable error checking code such as cyclic
redundancy code (CRC) or a CRC like code such as a MD5
code; a user phase where only user partitions (such as a C:
drive and/or a D: drive, among others) are visible; and a
statistical sampling phase where the ghost partition is
restored to its con?guration and diagnostics software made
available for further testing of the computer under test in
accordance with quality control procedures. The following
table illustrates the partitions, as well as the contents of each
of the four MBR designations:

MBR 4
Statistical

MBR 2 Sampling
Software Phase

MBR 1 Veri?cation MBR 3 (same as Test
Partition Test Phase Phase User Phase Phase)

1 D: Primary D: Primary C: Primary D: Primary
2 C: Diagnostics C: Software — C: Diagnostics

Veri?cation
3 E: System E: System — E: System
4 _ _ _ _

In the preferred embodiment, each of the MBR designa
tions contains a partition table, each of which stores data
relating to the four partitions to be speci?ed. The MBR
partition tables preferably reside on the ?rst four sectors of
the data storage device, with the ?rst physical sector con
taining MBR 1 as the partition sector addressed on system
boot. As the title of the table indicates, MBR 1 is associated
with the test phase, while MBR 2 is associated with the
software veri?cation phase, MBR 3 is associated with the
user phase, while MBR 4 is associated with the statistical
sampling phase (being the same partition table as used in the
test phase).

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 14

5,974,567
11

The surrogate computer sets up partitions, downloads
software to the partitions, and sets up the MBRs. Further, at
the end of the download process, the diagnostics partition
(partition 2) for the ?rst MBR is the active (boot) partition.
At this stage, diagnostics softWare is available on drive C:
after boot-up. It is to be noted that although diagnostics
softWare is shoWn in the preferred embodiment, the present
invention is not limited to diagnostics softWare. Thus, a
variety of softWare can be installed on the ?rst ghost
partition.

Once the tests are completed, the present invention moves
to the neXt stage Where it veri?es the integrity of the
doWnloaded softWare. This is performed by copying MBR 2
over MBR 1. Thus, the partition sector then holds a copy of
the contents of MBR 2. Further, to provide more security,
after the contents of MBR 2 has been copied to MBR 1, the
content of MBR 2 may be cleared so that the softWare
veri?cation softWare and history information become inac
cessible to the user. After the copying of MBR 2 to MBR 1,
the computer is rebooted. Upon boot-up, the integrity veri
?cation softWare becomes visible as softWare in drive C:.
Once the integrity veri?cation softWare becomes visible, it
can be eXecuted. It is to be further noted that although
doWnload veri?cation softWare is shoWn in the second ghost
partition, the present invention is not limited to veri?cation
softWare. Thus, a variety of softWare can be installed on the
second ghost partition.
Upon the completion of the integrity veri?cation, the

system of the present invention copies MBR 3 over MBR 1
to set up the computer for the user prior to shipping.
Particularly, after MBR 1 receives the content of MBR 3,
only the user partition C: or D:, among others, is visible
upon boot-up. The system partition E: is not visible to the
user on a normal boot-up, but is accessible When the user

presses an F10 key during poWer-on or eXecutes a set-up
diskette during poWer-on.
On occasions, the diagnostics softWare needs to be res

urrected after the computer system has been prepared for
shipping, i.e., after MBR 3 has been copied over MBR 1.
These events may be required by a quality control process
Which randomly samples the computer products and requires
the suite of diagnostics to be run to verify the quality of the
production. In this case, MBR 4 is copied over MBR 1 to
restore the ghost partition and the diagnostics softWare suite
on the ghost partition. After MBR 1 has been updated to
point to the ghost partition, the computer system is rebooted
and the diagnostics softWare becomes visible in drive C:.
Upon the completion of the statistical sampling process,
MBR 3 is copied over MBR 1 to once more set up the
computer for the user prior to shipping.

The MBR copying or moving process is illustrated in
more detail in the folloWing eXample. It is to be noted that
speci?c cylinder and sector characteristics of the data stor
age device 118 is provided as exemplary values only and is
not intended to limit the scope of the present invention to
any speci?c data storage device. Referring noW to the
eXample beloW, as usual, When the computer under test is
about to undergo testing, the surrogate computer copies user
application softWare as Well as test softWare into the disk
drive. At this stage, before the ghost partition allocation
processes, for an illustrative data storage device 118 With
525 cylinders and 63 sectors, the layout for the ?rst four
physical sectors of the data storage device 118 is as follows:

10

25

35

45

55

65

12

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 2:

‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O 0

Physical Sector 3:

‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O 0

Physical Sector 4:

‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O O
‘.7 No 0 O O O O 0

Thus, at the beginning, only the partition table for MBR
1 is de?ned, While the partition tables associated With the
remaining MBRs are unde?ned. Further, according to MBR
1, the ?rst partition containing BIGiDOS is bootable. At
this stage, the beginning and ending sector(s) for the ghost
partition(s) must be calculated. These sector ranges Will
overlap the primary user partition, presently the ?rst parti
tion pointed to by the ?rst MBR illustrated above. This is
done by the routine discussed beloW in conjunction With
FIG. 5.
Once the respective siZe(s) of the ghost partition(s) has

been computed, appropriate alternative partition tables are
stored to the physical sectors of the data storage device as
shoWn beloW:

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 2:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 3:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 4:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 15

5,974,567
13

-continued

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

At this stage, it is seen that the partition sector is set to
boot from a ?rst ghost partition spanning from cylinders 450
to 525, which overlaps the primary user partition spanning
cylinders 2 to 525. Further, a copy of this partition table (the
“software diagnostics” table) is stored in Sector 4. Sector 3
has a partition table suitable for the end user, with the
enabled primary user partition spanning from cylinder 2 to
525 while the system diagnostics partition (accesible by
pressing F10 at boot) is found on cylinders 0 to 1. Note that
no ghost partitions are speci?ed. The second sector includes
a ghost partition as the second partition table entry spanning
cylinders 350—449 (again, overlapping the primary user
partition). The ghost partition in this sector is for software
veri?cation purposes.

With these partition tables in place, once the computer
system of FIG. 1 is powered up, it can execute the test
process of FIG. 6. As the ?rst ghost partition is con?gured
to be the active partition, the computer system of FIG. 1
boots up using the ghost partition such that the computer
system of FIG. 1 is ready to run factory diagnostics.

Once the factory diagnostics tests are successfully
executed, the present invention moves to the next stage
where it veri?es the integrity of the downloaded software.
This is performed by copying MBR 2 over MBR 1. Further,
to provide more security, after the content of MBR 2 has
been copied to MBR 1, MBR 2 can be cleared so that the
software veri?cation software and history information are
inaccessible to the user. After the copying of MBR 2 to MBR
1, the computer is reset. Upon boot-up, the integrity veri?
cation software becomes visible as software in drive C. Once
the integrity veri?cation software becomes visible, they can
be executed. Thus, after MBR 2 has been copied over MBR
1, the sector layout becomes as follows:

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 2:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 3:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

15

25

35

45

55

65

14
-continued

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 4:

BIGDOS No 0 2 1 63 525 63

BIGDOS Yes 0 450 1 63 525 63

FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0

Upon the completion of the integrity veri?cation, the
present invention copies MBR 3 over MBR 1 to set up the
computer for the user prior to shipping. Particularly, after
MBR 1 receives the content of MBR 3, only the user
partition C: or D:, among others, is visible upon boot-up.
The system partition E: is not visible to the user on a normal
boot-up, but is accessible when the user presses an F10 key
during power-on or executes a set-up diskette during power
on. Thus, the sector layout becomes:

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 2:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 3:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 4:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0

On occasions, the diagnostics software need to be resur
rected after the computer system has been prepared for
shipping, i.e., after MBR 3 has been copied over MBR 1.
These events may be required by a quality control process
which randomly samples the computer products and cause
the suite of diagnostics to be run to verify the quality of the
production. In this case, MBR 4 is copied over MBR 1 to
restore the ghost partition and the diagnostics software suite
on the ghost partition. After MBR 1 has been updated to
point to the ghost partition, the computer system is rebooted
and the diagnostics software becomes visible in drive C:.
The simulated partition layout after the copying of MBR 4
over MBR 1 is illustrated below:

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 16

5,974,567
15

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 2:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 3:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 4:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0

Upon the completion of the statistical sampling process,
MBR 3 is copied over MBR 1 to once more set up the
computer for the user prior to shipping. As discussed earlier,
after MBR 1 receives the content of MBR 3, only the user
partition C: or D:, among others, is visible upon boot-up.
The system partition E: is not visible to the user on a normal
boot-up, but is accessible When the user presses an F10 key
during poWer-on or executes a set-up diskette during poWer
on. Thus, in accordance With the present invention, after
manufacturing diagnostics have been executed and the ghost
partition “disabled”, the sectors are mapped as follows:

Ending Location

Starting Location Sec

System Boot Side Cylinder Sector Side Cylinder tor

Physical Sector 1:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 2:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 350 1 63 449 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O 0
Physical Sector 3:

BIGDOS Yes 0 2 1 63 525 63
‘.7 No 0 O O O O O

FATi12 No 1 O 1 63 1 63
‘.7 No 0 O O O O 0

Physical Sector 4:

BIGDOS No 0 2 1 63 525 63
BIGDOS Yes 0 450 1 63 525 63
FATi12 No 1 O 1 63 1 63

‘.7 No 0 O O O O O

In this manner, When the user receives the computer, he or
she only observes the partition With the user partition C: or

10

15

25

35

45

55

65

16
D: Turning noW to FIG. 5, the process for allocating the
space of the ghost partition is illustrated in more detail. In
FIG. 5, from the entry step 370, the routine of FIG. 5 checks
on the last sector With data Written to it in step 372. From
step 372, the routine proceeds to step 374 Where it saves
sector 0 of the hard drive 118 to a second sector. From step
374, the routine proceeds to step 376 Where it reads the
minimum and maximum partition siZe available from a ?le
(DIAG.MAP) or an equivalent database Which contains the
folloWing information: MODL, DIRPATHl,
OPTIONALDIRPATH2, BOOTFILEPATH,
OPTIONALBOOTFILEPATH2, MINPARTSIZE, and
OPTIONALMAXPARTSIZE.
MODL relates the model number of the computer being

tested and are used as a cross reference to ?nd the product
line among all the other model number possibilities. Next
comes the primary directory path DIRPATHl to ?nd the
diagnostics. A secondary directory path can also be option
ally provided after DIRPATHl. These tWo directory speci
?cations can be used in combination to specify hoW the
?nished partition should be installed. An example of a use of
these tWo directories might be a ‘common’ directory and a
‘speci?c to model number’ directory. This alloWs more
intelligent version management by having a common core of
?les (WIN95 for example) and some speci?c ?les (the
diagnostics themselves and separated in directories by
machine type). Although hierarchical directory ?le organi
Zation is preferred, the present invention contemplates all
?les may be stored in one directory for each model.
The BOOTFILEPATH ?eld speci?es the name and path

on the factory server Where the speci?c boot ?le necessary
for the manufacturing diagnostics ghost partition can be
found. There Will most likely be only tWo boot ?les for all
versions: WIN95 or NT. If a particular installation of DIAGS
calls for both WIN95 and NT to live in the same partition,
the boot sector speci?ed recites the operating system Which
Will be booted ?rst. After that, the manufacturing diagnostic
softWare’s responsibility replaces the master boot record to
designate the second operating system Which must be
booted.

To facilitate dual-boot systems (especially Windows NT),
an OPTIONALBOOTFILEPATH2 ?eld can be provided. If
this is speci?ed, the designated boot ?le Will be read and
treated as a normal boot sector. HoWever this Will not be
Written to the boot sector of the partition but Will instead be
Written back to the drive to alloW dual-boot functionality to
Work. Next is the mandatory MINPARTSIZE or minimum
partition siZe for this particular diagnostic/model. If this
value cannot be obtained by the surrogate loader from the
last valid partition on the drive, an exception error Would be
generated.
OPTIONALMAXPARTSIZE can be given to specify a

partition siZe that Would be the optimum to obtain for the
manufacturing diags. If it is not speci?ed, a comma after
MINPARTSIZE should be given to indicate a blank value. If
it is speci?ed, it is given as With MINPARTSIZE as a round,
Whole number of megabytes. An example might be 600 for
600 megabytes. The partitioning process then takes the
partition siZe and attempts to create the ‘ghost’ partition With
that siZe. If the process cannot do so, it reduces the requested
partition siZe by a megabyte at a time until it obtains the ?rst
siZe Which does not con?ict With the last data stored in the
last shippable partition of the drive. As With the behavior of
partition creation When only MINPARTSIZE is speci?ed, if
by some chance the doWnshifted value should fall beloW
MINIPARTSIZE, the surrogate softWare generates an
exception and halts the installation process—along With that
line on the factory.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 17

5,974,567
17

In FIG. 5, from step 376, the routine of FIG. 5 then
proceeds to step 378 Where it attempts to allocate the
maximum partition siZe available. The routine then proceeds
to step 380 Where it checks if the partition has been
successfully created. If not, the routine proceeds from step
380 to step 382 Where it subtracts one megabyte from the
maximum partition siZe. From step 382, the routine proceeds
to step 384 Where it checks if the maximum partition siZe is
less than the required minimum partition siZe. Preferably, in
the present invention, the minimum partition siZe is 25
megabytes. From step 384, in the event that the maximum
partition siZe has not been reached, the routine loops back to
step 378 to continue its attempt to allocate the maximum
alloWable partition siZe. Alternatively, in the event that the
maximum partition possible siZe is less than the required
minimum partition siZe in step 384, the routine proceeds to
step 390 Where it exits and indicates an error that it is out of
disk space. Alternatively, from step 380, in the event that the
partition Was successfully created, the routine proceeds to
step 386 Where it saves the neW partition in sector 0 and
sector 3 of the hard drive 118 before the routine exits in step
388. Once the maximum ghost partition siZe has been
determined, in the event that n ghost partitions are needed
(in the preferred embodiment tWo are used), the siZe of each
on the n ghost partitions can be established by dividing up
the maximum ghost partition siZe as needed.

In this manner, the ghost partition allocation is performed
at the end of the softWare doWnload process. During the
doWnload process, the location of the last sector Written to
on the drive is saved to mark the end of the Written part of
the drive. After all ?les have been doWnloaded to the unit,
the partition table Which is preferably sector 0 of the drive
118 is stored in another sector, preferably sector 1 of the
drive. Further, during this process, the DIAG.MAP ?le is
read and the siZe of the ghost partition is determined based
on the parameters given in the DIAG.MAP ?le. To allocate
the ghost partition, the doWnload tools Will attempt to
allocate the maximum siZe speci?ed. If this fails, the ghost
partition siZe to be allocated is decreased in one megabyte
decrements until the ghost partition can be allocated. If the
siZe to be allocated drops beloW a minimum partition siZe,
the ghost partition allocation process is halted and an error
message is displayed. After the partition has been allocated
the ?les for the ghost partition are copied to the partition.
The ghost partition table is then stored in another sector,
preferably sector 4 for manufacturing diagnostics so it can
be restored later, if needed.

Turning noW to FIG. 6, the routine to perform diagnostics
in a pre-test mode is illustrated in detail. In FIG. 6, from step
420, personnel at the factory insert a common surrogate
diskette (CSD) Which contains the diagnostic softWare and
necessary ?les. From step 420, the routine proceeds to step
422, Where the computer under test is poWered on. From step
422, the routine proceeds to step 424, it boots from a ?oppy
diskette. Next, in step 426, the routine executes on the hard
drive 118 and boots WindoWs 95 With the BootiGUI=0 in
step 428. The setting of the BootiGUI to Zero causes
WindoWs 95 to boot up DOS rather than the WindoWs
interface.
From step 428, the routine proceeds to step 430 Where it

reads the serial number of the machine in the test from the
?oppy diskette. Further, from the AUTOEXECBAT the
system executes a WINPREP softWare. The WINPREP
softWare detects differences in the computer models and
copies an appropriate registry to the host prior to booting.
The softWare then reads the serial number from a SN.TXT
?le on the ?oppy diskette and creates a FACTORY.REG ?le

15

25

35

45

55

65

18
in the WindoWs subdirectory. The serial number is then
placed in a FACTORY.REG ?le in step 432. From step 432,
the routine of FIG. 6 proceeds to step 434 Where the routine
WINPREP then uses the con?guration code portion of the
serial number to reference the correct REG ?le used to
update the WindoWs registry ?le. The correct REG ?le is
then renamed to a ?le called “UPDATE.REG” in step 434
for use in the folloWing steps. From step 434, the routine of
FIG. 6 proceeds to step 436 Where it invokes a REGEDIT,
a registry editor, to process UPDATE.REG as a parameter to
update the registry ?les of WindoWs. From step 436, the
routine of FIG. 6 proceeds to step 438 Where it starts
WindoWs 95 using a WIN command as the last command in
the AUTOEXECBAT ?le. From step 438, the diagnostics
are executed in step 440. The routine of FIG. 6 continues the
diagnostics in step 440 until the testing processor is com
pleted in step. 442. In that event, the routine of FIG. 6
proceeds from step 442 to step 444 Where it reports errors
and updates the test station data in the FACTORY.REG ?le
before the routine of FIG. 6 exits in step 446.

Turning noW to FIG. 7, the routine for performing the test
during a testing period in the factory is illustrated in more
detail. In FIG. 7, from step 450, the routine boots from the
diskette in step 452. Next, the routine of FIG. 7 executes
softWare from the hard drive in step 454. Next, the routine
of FIG. 7 boots WindoWs 95 from AUTOEXECBAT With
the BootiGUI=0 to alloW the system to get to the disk
operating system.
From step 456, the AUTOEXEC calls the WINPREP

softWare in step 458. WINPREP then determines that the
serial number from SN.TXT ?le is not present on the ?oppy
and hence it has nothing, except to copy an empty .REG ?le
to the UPDATE.REG ?le for the next step. From step 460,
WindoWs 95 is started using the WIN command as the last
command in the AUTOEXECBAT ?le in step 462.

After step 462, the routine of FIG. 7 invokes the diag
nostics of FIG. 2 in step 464. Once the diagnostics complete
their operation, errors are reported and station information is
updated in the FACTORY.REG ?le in step 466. From step
466, the routine of FIG. 7 then deletes the COMMAND
.COM and the WIN.COM from the ghost partition in step
468. From step 468, it then ?xes the partition table to point
to the use of partition in step 470 before the ghost partition
is disabled in step 472. The ghost partition is disabled by
modifying the partition table to point back to the user
partition as the primary active partition. Once the ghost
partition has been disabled in step 472, the routine of FIG.
7 exits in step 474. At this point, information stored on the
ghost partition is no longer accessible by the user.

Turning noW to FIG. 8, the routine to retrieve diagnostic
routines stored in the ghost partition after the ghost partition
has been erased is illustrated in more detail. The process of
FIG. 8 is necessary for factory quality control (QC)
purposes, as the QC process requires a random sampling of
the quality of the computers produced by the factory. The
QC process requires that the computer system be retested
during the random sampling process. As such, the diagnos
tics softWare located on the ghost partition deleted in FIG.
7 needs to be resurrected.

In FIG. 8, from the factory process integrated audit
(FPIA) entry step 480, the routine poWers on the computer
system under test and boots from the ?oppy diskette in step
482. Next, from step 482, the routine restores the partition
table in step 484 to re-enable the ghost partition. From step
484, the routine then restores the COMMAND.COM and the
WIN.COM in step 485. This is accomplished by copying
these tWo ?les from the ?oppy back to the ghost partition on
the hard drive 118.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 18

5,974,567
19

From step 485, the computer under test is rebooted in step
486. The application then is executed from the hard drive
118 in step 488. From step 488, the routine of FIG. 8 then
boots WindoWs 95 With the BootGUI=0 to get the softWare
back to the disk operating system. Next, from step 490, the
routine calls WINPREP from the AUTOEXECBAT ?le in
step 492. The WINPREP routine simply determines that the
serial number from SN.TXT ?le is not present on the ?oppy
disk. Hence, it does nothing except copy an empty.REG ?le
to the UPDATEREG ?le for the steps beloW. From step 494,
the routine of FIG. 8 proceeds to step 495 Where REGEDIT
softWare is invoked With the UPDATEREG as a parameter
to update the WindoWs 95 registry. Next, from step 495, the
routine of FIG. 8 proceeds to start WindoWs 95 using the
WIN.COM as the last command in the AUTOEXECBAT
?le in step 496.
From step 496, the diagnostic softWare is executed in step

498. Next, errors are reported and stations are updated in the
FACTORYREG ?le in step 500. From step 500, the routine
of FIG. 8 deletes COMMANDCOM and WIN.COM from
the ghost partition in step 502. This step effectively disables
the ghost partition from being able to boot up. Next, from
step 502, the routine proceeds to step 504 to ?x the partition
table to point back to the user partition. The ghost partition
is ?nally disabled in step 506 before the routine of FIG. 8
exits in step 508.

Thus, as demonstrated above, after completion of manu
facturing diagnostics, the present invention replaces the
original partition table With the saved version. No master
boot records for any of the user or system partitions is
modi?ed at any time during the process. Additionally, the
factory test team also clears out the master boot record
(MBR) and ?le allocation table (FAT) for the ghost partition
so test data cannot be accessed after the factory test pro
cesses. Hence, the present invention avoids the need to set
up a large system partition and avoids Wasting disk space
associated With manufacturing diagnostics.

The foregoing disclosure and description of the invention
are illustrative and explanatory thereof, and various changes
in the siZe, shape, materials, components, circuit elements,
Wiring connections and contacts, as Well as in the details of
the illustrated circuitry and construction and method of
operation may be made Without departing from the spirit of
the invention.
What is claimed is:
1. Amethod for storing softWare on a data storage device,

comprising:
creating a user partition;
creating a ghost partition overlapping said user partition;
transferring said softWare to said ghost partition; and
disabling said ghost partition after said ghost partition is

not needed.
2. The method of claim 1, Wherein said softWare is a

diagnostics softWare.
3. The method of claim 1, Wherein said ghost partition

creating step creates a plurality of ghost partitions.
4. The method of claim 3, Wherein one of said ghost

partitions is adapted to contain diagnostics softWare and
Wherein another of said ghost partitions is adapted to contain
doWnload veri?cation softWare.

5. The method of claim 1, further comprising the step of
creating one or more master boot records (MBRs) on said
data storage device.

6. The method of claim 5, Wherein said data storage
device is used in one or more phases, further comprising the
step of creating one MBR for each of said phases.

7. The method of claim 5, further comprising an extended
partition and a system partition, Wherein said MBRs point to

10

15

3O

35

45

55

65

20
said user partition, said ghost partition, said system partition
and said extended partition.

8. The method of claim 5, Wherein said data storage
device is used in a ?rst phase and a second phase With
corresponding MBRs, further comprising the step of copy
ing the MBR for said second phase over the MBR for said
?rst phase after the completion of said ?rst phase.

9. The method of claim 1, further comprising the step of
determining a minimum and maximum partition siZe for said
ghost partition.

10. The method of claim 9, Wherein said determining step
further comprises:

(a) determining a last sector containing data;
(b) determining a minimum and maximum partition siZe

for said ghost partition;
(c) allocating said maximum partition siZe;
(d) if said allocating step failed, subtracting a predeter

mined amount from said maximum partition siZe;
(e) repeating step (c) until said allocating step succeeds or

until said subtracted maximum partition siZe equals
said minimum partition siZe; and

indicating an error if said minimum partition siZe exceeds
said subtracted maximum partition siZe.

11. Aprogram storage device having a computer readable
code embodied therein for storing softWare on a data storage
device, said program storage device comprising:

code for creating a user partition; and
code for creating a ghost partition overlapping said user

partition, said ghost partition adapted to receive said
softWare, said ghost partition further adapted to be
disabled after said ghost partition is no longer needed
to release data storage space occupied by said ghost
partition to said user partition.

12. The program storage device of claim 11, Wherein said
softWare is a diagnostics softWare.

13. The program storage device of claim 11, further
comprising code for creating a plurality of ghost partitions.

14. The program storage device of claim 13, Wherein one
of said ghost partitions is adapted to contain diagnostics
softWare and Wherein another of said ghost partitions is
adapted to contain doWnload veri?cation softWare.

15. The program storage device of claim 11, further
comprising code for creating one or more master boot
records (MBRs) on said data storage device.

16. The program storage device of claim 15, Wherein said
data storage device is used in one or more phases, further
comprising a code for creating one MBR for each of said
phases.

17. The program storage device of claim 15, further
comprising an extended partition and a system partition,
Wherein said MBRs point to said user partition, said ghost
partition, said system partition and said extended partition.

18. The program storage device of claim 15, Wherein said
data storage device is used in a ?rst phase and a second
phase With corresponding MBRs, further comprising a code
for copying the MBR for said second phase over the MBR
for said ?rst phase after the completion of said ?rst phase.

19. The program storage device of claim 11, Wherein said
ghost partition occupies a space betWeen a minimum and a
maximum partition siZe.

20. The program storage device of claim 19, Wherein said
maximum partition siZe is determined by iteratively sub
tracting a predetermined amount from said maximum par
tition siZe until said maximum partition siZe is allocable or
until said minimum partition siZe exceeds said subtracted
maximum partition siZe.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 19

5,974,567
21

21. Acomputer system for downloading software to a disk
drive, comprising:

a processor; and

a data storage device coupled to said processor, said data
storage device having a computer readable code
embodied therein for transferring softWare onto said
disk drive, including:
a code for creating a user partition on said disk drive;
a code for creating a ghost partition overlapping said

user partition on said disk drive;
a code for transferring said softWare to said ghost

partition; and
a code for disabling said ghost partition after said ghost

partition is not needed.
22. The computer system of claim 21 Wherein said

softWare is a diagnostics code.
23. The computer system of claim 21, Wherein said ghost

partition creating code creates a plurality of ghost partitions
on said disk drive.

24. The computer system of claim 23, Wherein one of said
ghost partitions on said disk drive is adapted to contain
diagnostics softWare and Wherein another of said ghost
partitions on said disk drive is adapted to contain doWnload
veri?cation softWare.

25. The computer system of claim 21, further comprising
a code for creating one or more master boot records (MBRs)
on said disk drive.

26. The computer system of claim 25, Wherein said data
storage device is used in one or more phases, further
comprising a code for creating one MBR for each of said
phases.

15

25

22
27. The computer system of claim 25, further comprising

an extended partition and a system partition on said disk
drive, Wherein said MBRs point to said user partition, said
ghost partition, said system partition and said eXtended
partition.

28. The computer system of claim 25, Wherein said data
storage device is used in a ?rst phase and a second phase
With corresponding MBRs, further comprising a code for
copying the MBR for said second phase over the MBR for
said ?rst phase after the completion of said ?rst phase.

29. The computer system of claim 21, further comprising
a code for determining a minimum and maXimum partition
siZe for said ghost partition.

30. The computer system of claim 29, Wherein said
determining code further comprises:

(a) a code for determining a last sector containing data;

(b) a code for determining a minimum and maXimum
partition siZe for said ghost partition;

(c) a code for allocating said maXimum partition siZe;
(d) a code for subtracting a predetermined amount from

said maXimum partition siZe if said allocating step
failed;

(e) a code for repeating code (c) until said allocating code
succeeds or until said subtracted maXimum partition
siZe equals said minimum partition siZe; and

a code for indicating an error if said minimum partition
siZe eXceeds said subtracted maXimum partition siZe.

* * * * *

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 20

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1091, p. 21

