
US007949687B1

(12) Ulllted States Patent (10) Patent N0.: US 7,949,687 B1
Sinclair (45) Date of Patent: May 24, 2011

(54) RELATIONAL DATABASE SYSTEM HAVING (58) Field of Classi?cation Search 707/803
()VERLAPPING PARTITIONS See application ?le for complete search history.

(75) Inventor: Paul L. Sinclair, Manhattan Beach, CA (56) References Cited
US

() U.S. PATENT DOCUMENTS

(73) Assignee: Teradata US, Inc., Dayton, OH (US) 6,014,656 A * 1/2000 Hallmark et a1. l/l
7,774,379 B2 * 8/2010 Basu et a1. 707/803

(*) Notice: Subject to any disclaimer, the term of this * Cited by eXaminer
patent is extended or adjusted under 35
U'S'C~ 154(1)) by 618 days' Primary Examiner * Apu M Mo?Z

Assistant Examiner * Monica M Pyo

(21) App1_ NO; 12/105,939 (74) Attorney, Agent, or Firm * Perkins Coie, LLP

(22) Filed: Apr. 18, 2008 (57) ABSTRACT
In a relational database system, data is logically represented

Related US. Application Data as a single table, but physically stored as a plurality of over
lapping partitions. In some embodiments, the table is created

(60) Provisional application NO‘ 61/018331’ ?led on Dec‘ by an instruction de?ning the table’ s structure and specifying
31> 2007' a plurality of partitions in Which to store duplicate copies of

some data and in some embodiments, the table is accessed

(51) 7/30 (2006 01) Without referencing the overlapping partitions.

(52) US. Cl. 707/803; 707/758; 707/999.002 12 Claims, 5 Drawing Sheets

Partition 2

A
f \

Partition 1 Partition 3
A A

5 6

605

1

Partition 1 Partition 1

Partition 2 ' ' ' Partition 2

Partition 3 Partition 3

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 1

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 2

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 3

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 4

US. Patent May 24, 2011 Sheet 4 of5 US 7,949,687 B1

w .2... 3mm. BECm $26265 QEmSQQxm
P

m; ENMEMEO
» 0:‘ 5x020 bmcozo? Ema »

mow LBEEBE
Ema 65cm wcosusbwg mwmnm?mo

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 5

US. Patent May 24, 2011 Sheet 5 of5 US 7,949,687 B1

m 6-...
m 5:561 m coatmm mcoEtmm . . . mcoatmm r EEEQ P 55am

2min, _ 6% : $3 : 5% >

cm 9 M: C m: 2 E 2 Q I E m w > w m w m N H K > |\\ < <1 m coEtwm r :oEtmm [\ < w coEtmm

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 6

US 7,949,687 B1
1

RELATIONAL DATABASE SYSTEM HAVING
OVERLAPPING PARTITIONS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to US. Provisional Patent
Application No. 61/018,331, ?led on Dec. 31, 2007, the dis
closure of Which is hereby incorporated by reference in its
entirety.

BACKGROUND

Response time and throughput are common measures used
to evaluate the performance of a relational database system.
In general, a relational database system’s response time is a
measure indicating the amount of time that it takes the system
to respond to user instructions such as queries, and its
throughput is a measure indicating the volume of user activity
that the system is able to handle over a period of time. As an
illustration of the response time measure, a relational data
base system that takes a relatively long time to retrieve and
output data in response to a user query may be considered to
have relatively poor response time and vice versa. As an
illustration of the throughput measure, a relational database
system that is able to complete only a relatively small number
of user queries over a period of time may be considered to
have relatively poor throughput and vice versa.

Because modern relational database systems often store
massive and complex datasets, the response time and
throughput of these systems can vary dramatically based on
the Way that data is stored, organiZed, and accessed. For
instance, the response time of a relational database system
may be unacceptably sloW Where data is organiZed such that
each query requires the system to scan through vast amounts
of non-requested data in order to retrieve requested data, or
Where data is organiZed such that each query requires the
system to perform several logical operations to join, aggre
gate, or otherWise manipulate data that is dispersed through
out the system. Similarly, the throughput of a relational data
base system may be unacceptably loW Where data is stored
and accessed such that successive queries often cause
resource con?icts such as memory bus congestion.

In efforts to improve the performance of relational data
base systems, researchers have proposed a variety of tech
niques for storing and organiZing data such that common
queries can be e?iciently completed Without scanning
through volumes of un-requested data or performing costly
logical operations such as joins, aggregations, and so on.
Examples of some of these techniques include storing related
data in independent tables to limit the amount of data that has
to be scanned in response to each query, and maintaining
frequently accessed data in readily accessible materialiZed
vieWs or join indexes established by a database administrator.

Although many of the proposed techniques provide rela
tively e?icient database performance, these techniques still
tend to suffer from a variety of shortcomings such as
increased administrative overhead, excessive redundancy of
data storage, and some remaining requirement to perform
costly logical operations When accessing data.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an example computing environment in
Which selected embodiments of the invention may be imple
mented.

20

25

30

35

40

45

50

55

60

65

2
FIG. 2 illustrates an example database table storing infor

mation regarding customers’ day-to-day usage of cell-phone
minutes.

FIG. 3 illustrates an example relational database system
having a parallel architecture designed for ef?cient data stor
age and retrieval.

FIG. 4 illustrates an example instruction processing engine
for a relational database management system.

FIG. 5 illustrates the partitioning of an example table
across a plurality of data storage resources.

DETAILED DESCRIPTION

This disclosure presents various techniques and technolo
gies for storing, accessing, and managing data using a rela
tional database system. Within the relational database system,
data is logically represented as a single database table, but
physically stored as a plurality of partitions possibly having
overlapping datasets, i.e., datasets With some mutually redun
dant portion. Because the plurality of partitions have overlap
ping datasets, the relational database system stores more than
the minimum amount of data required to maintain the data
base table. HoWever, by storing redundant copies of some
data in multiple different partitions, the relational database
system may be able to satisfy queries more e?iciently than
conventional relational database systems.

In this Written description, the term “database table”, or
more simply “table”, refers to a logical data structure used to
facilitate access to stored data organiZed in a plurality of
logically de?ned roWs and columns. Typically, a table is
created by submitting an instruction to a relational database
system specifying a logical structure for the table such as a set
of named columns to be populated With data. The table is then
populated With data by submitting instructions and data to the
relational database system, Wherein the instructions specify
speci?c logically de?ned columns or roWs of the table into
Which the data is to be inserted. Data is said to be stored or
inserted in a table (or in roWs and columns of the table) When
the data is stored in physical locations corresponding to the
logically de?ned roWs and columns of the table.

To illustrate the general concept of partitions having over
lapping datasets, We ?rst note that the term “partition” as used
in this Written description refers to a physical copy of some
portion of a database table. In general, this copy should store
information in a retrievable format, but this format may vary
from the data’s con?guration in other copies. For instance, in
some examples the data stored in a particular partition may be
compressed or processed in a variety of Ways. As an example
of overlapping partitions, a table comprises ten columns of
data C1 through C10, With a ?rst partition PART1 including a
stored copy of the data in columns C1 through C6 and a
second partition PART2 including a stored copy of the data in
columns C5 through C10. Because partitions PART1 and
PART2 include duplicate copies of the data in columns C5
and C6, partitions PART1 and PART2 are considered to have
overlapping datasets. Within this Written description, parti
tions having overlapping datasets Will be referred to as “over
lapping partitions”.

To illustrate some bene?ts of organiZing data in partitions
PART1 and PART2, assume that the users of a relational
database system frequently submit queries to access columns
C1 through C6 of the above-described table, and the users
frequently submit other queries to access columns C5 through
C10 of the table. Under these circumstances, it may be advan
tageous to create partitions PART1 and PART2 each With
duplicate copies of columns C5 and C6 in order to alloW these
frequent queries to access requested data through a single

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 7

US 7,949,687 B1
3

partition and to prevent these queries from being required to
scan through unneeded data. In other Words, the arrangement
of partitions PART1 and PART2 alloWs queries involving
columns C1 through C6 to access all needed data Without
accessing, comparing, and joining multiple partitions, and
Without scanning through extra columns such as columns C7
through C10. As a result, the arrangement of partitions
PART1 and PART2 tends to decrease the amount of memory
bus bandwidth and processor bandWidth required to perform
queries in the relational database system.

In general, the data Within a partition is not required to
reside in a localized or contiguous region of a single data
storage resource. Thus, the concept of a partition as used in
this Written description should not be confused With the divid
ing of data storage resources such as disk drives into discrete
contiguous blocks or units (traditionally referred to as “disk
partitioning”). On the contrary, the data Within a partition as
described herein could be arbitrarily fragmented or distrib
uted across several different data storage resources While still
being recognized by a relational database system as a coher
ent logical unit. Nevertheless, in order to provide a concise
and clear illustration of various inventive concepts, several of
the disclosed embodiments include simple partitions stored in
localized regions of storage resources such as a single disk or
memory block.

Additionally, While several of the disclosed embodiments
shoW partitions formed by data from groups of adjacent col
umns in a table, it should be recognized that a partition can be
formed by any arbitrary subset of the data Within a table. For
example, using the above-described table including columns
C1 through C10, a partition could be formed by the even
columns C2, C4, . . . , C10, or by some combination of column

segments and roW segments. That said, in vieW of the logical
tools and data organization commonly used in relational data
base systems, certain types of partitions may be more conve
niently used in particular applications. For instance, in appli
cations Where adjacent columns tend to be accessed as a
group, it may be convenient to organize partitions as groups of
adjacent columns or column segments, a technique knoWn as
“vertical partitioning”. Similarly, in applications Where adja
cent roWs are accessed as a group, it may be convenient to
organize partitions as groups of adjacent roWs or roW seg
ments, a technique knoWn as “horizontal partitioning”.

In some embodiments, a table and a corresponding set of
overlapping partitions are created or de?ned through a single
database instruction submitted to a relational database sys
tem. In general, a database instruction comprises an instruc
tion that is interpreted by database softWare to generate
executable instructions. The single instruction may de?ne, for
example, the roWs and columns for the table and a distribution
of the roWs and columns across the overlapping partitions. In
one example, the single instruction is an extended version of
a “CREATE TABLE” statement provided by the structured
query language (SQL).

In some embodiments, the table and corresponding parti
tions are created, accessed, and updated through a database
administrator (DBA) comprising a human operator and/or
one or more softWare agents. The DBA generally creates,
accesses, and updates the table by submitting instructions to
the relational database system. As an example, these instruc
tions may be submitted in the form of a softWare script to be
interpreted by the relational database system. The script may
include, for example, SQL statements such as a “CREATE
TABLE” statement for creating the table and partitions,
“INSERT” statements for populating the partitions, and
“SELECT” statements for retrieving data from the partitions.
Often, statements such as “SELECT” statements and other

20

25

30

35

40

45

50

55

60

65

4
query instructions refer to properties of stored data such as
particular ranges or values of the stored data. Accordingly,
stored data can be accessed based on particular properties
possessed by or associated With the data.

Selected embodiments of the invention Will noW be
described With more particularity in order to illustrate various
inventive concepts. These embodiments are presented as
teaching examples and should not be construed to limit the
scope of the invention as de?ned by the claims.

FIG. 1 illustrates an example computing environment in
Which some embodiments of the invention may be imple
mented. Computing environment 100 is only one example of
a suitable computing environment and is not intended to
suggest any limitation as to the scope of use or functionality
of the embodiments. Neither should the embodiments be
interpreted as having any dependency or requirement relating
to any one or combination of components illustrated in com
puting environment 100.

Selected embodiments of the invention may be operational
With numerous other general purpose or special purpose com
puting environments or con?gurations. Examples of comput
ing systems, environments, and/or con?gurations that may be
suitable for use With these embodiments include, but are not
limited to: stand-alone personal computers, server comput
ers, hand-held or laptop devices, programmable consumer
electronics, mainframe computers, distributed computing
environments that include any of the above systems or
devices, and the like. In addition, selected components in the
described embodiments may be eliminated or replaced With
various alternative components. For example, netWork com
ponents in the illustrated embodiments may be eliminated in
favor of direct connections, or the network components may
be implemented using any of various available alternative
netWork architectures, protocols, technologies, and con?gu
rations. Similarly, softWare components in the illustrated
embodiments may be implemented using any of several avail
able softWare architectures, languages, and con?gurations.

Referring to FIG. 1, computing environment 100 com
prises a plurality of client computers 105 connected to a
relational database system 120 through a netWork 115. At
least one of client computers 105 includes one or more client
applications 110 designed to interact With relational database
system 120.

Relational database system 120 comprises a relational
database 130 and a relational database management system
(RDBMS) 125. Relational database 130 typically comprises
both data stored in relational database system 120 and infor
mation relating to the data’s schema, i.e., its physical and
logical structure and organization. Alternatively (or addition
ally), the information relating to the data’s schema may be
stored in RDBMS 125. RDBMS 125 comprises softWare
and/or hardWare used to control storage, access, and manage
ment of data in relational database 130. Although not shoWn,
relational database system 120 typically further comprises an
operating system, local memory, and other “application host
ing resources” used to facilitate the operation of the hardWare
and softWare associated With relational database 130 and
RDBMS 125.

In typical operation, RDBMS 125 receives instructions
input to relational database system 120 and initiates opera
tions on relational database 130 based on the instructions.
Relational database system 120 may receive the instructions
from any of several different sources. For example, relational
database system 120 may receive the instructions directly
from client application 110, from a netWork server in netWork
115, or from an intermediate softWare layer in relational
database system 120.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 8

US 7,949,687 B1
5

The instructions received by RDBMS 125 typically
include statements such as “CREATE TABLE” statements

for creating a table and corresponding partitions in relational
database 130, “SELECT” statements for retrieving data
stored in database 130, “INSERT” instructions forpopulating
a table in relational database 130 or updating existing data,
and so forth.

One example of an existing relational database system that
could be modi?ed to incorporate some of the functionality
provided by embodiments of the invention is Teradata© Data
base l2.0. For example, functions such as the processing of
instructions and the creation and management of tables could
be performed using Teradata© Database 12.0.

FIG. 2 illustrates an example of a table that couldbe created
using relational database system 120. This table is presented
as a simple conceptual illustration to help explain the opera
tion relational database system 120 in accordance With some
embodiments.

The table in FIG. 2 is named “MinutesTable” and it
includes information regarding customers’ day-to-day usage
of cell-phone minutes (or more generally, simply cell phone
usage). In the table “MinutesTable”, the ?rst and second
columns include the customers’ names and telephone num
bers, and the remaining columns include the number of cell
phone minutes (or usage) for voice, text, pictures, video,
doWnloads, and customer service.

For explanation purposes, it Will be assumed that the table
“MinutesTable” is frequently accessed to analyZe usage of a
speci?c type (e.g., voice, text, etc.). Queries for voice and text
usage occur much more often than queries for other types of
usage. Text usage may be combined and stored together With
other types of usage.

In order to facilitate ef?cient access to the data in the table
“MinutesTable”, the voice minutes are stored in a ?rst parti
tion P1, the minutes for text are stored in a second partition
P2, and the minutes for text and other types of usage are stored
in a third partition P3 . As a result, data can be collected for the
voice minutes by accessing a single partition, data can be
collected for text minutes by accessing a single partition, and
data can be collected for text minutes and other types of usage
can be collected by accessing a single partition. Because the
text minutes are stored in both third partition P3 and second
partition P2, partitions P2 and P3 constitute overlapping par
titions. Although not speci?cally illustrated, customer name
information may be duplicated in all partitions.

In one example embodiment, the table “MinutesTable” is
created by submitting a CREATE TABLE statement to rela
tional database 120, Where the statement has a syntax such as
that shoWn in Examples 1 and 2 beloW.

Example 1

CREATE TABLE MinutesTable
PARTITION CustomerInfo

(cust_name CHAR(l0), cust_phone_num INTEGER,
cust_addr

VARCHAR(120), cust_acct INTEGER, cust_phone_type
INTEGER)

END
PARTITION P1

(cust_name, voice INTEGER)
END
PARTITION P2

(cust_name, text INTEGER)
END

5

20

25

30

35

40

45

50

55

60

65

6
PARTITION P3

(cust_name, text, pictures INTEGER, video INTEGER,
doWnloads INTEGER, customer_service INTEGER)

END
UNIQUE PRIMARY INDEX(cust_name)

Example 2

CREATE TABLE MinutesTable
(cust_name CHAR(l0), cust_phone_num INTEGER,

voice INTEGER, text INTEGER, pictures INTEGER,
video INTEGER, doWnloads INTEGER, customer_ser
vice INTEGER, cust_addr VARCHAR(120), cust_acct
INTEGER, cust_phone_type INTEGER)

PARTITION CustomerInfo
(cust_name, cust_phone_num, cust_addr, cust_acct,

cust_phone_type)
END
PARTITION P1

(cust_name, voice)
END
PARTITION P2

(cust_name, text)
END
PARTITION P3

(cust_name, text, pictures, video, doWnloads, customer_
service)

END
UNIQUE PRIMARY INDEX(cust_name)
Having created the table “MinutesTable” as described

above and illustrated in FIG. 2, relational database system
120 Will include four partitions stored in one or more data
storage resources, Where the fourth partition is formed by data
from the “customer name” and “telephone number”, and
other customer information columns. As an example, a single
disk drive could include four separate regions for storing the
respective four partitions. Alternatively, as illustrated in FIG.
5, data Within each of the partitions could be distributed
across different storage resources to facilitate parallel access
to data stored in each partition.
The table “MinutesTable” is typically populated With data

by submitting database instructions to relational database
system 120. For example, the table may be populated by
submitting SQL “INSERT INTO” statements to relational
database system 120. Similarly, in some embodiments, once
the table “MinutesTable” is populated With data, the data can
be accessed by submitting database query instructions such as
SQL SELECT statements to relational database system 120.
When relational database system 120 receives instructions

to populate or access the table “MinutesTable”, relational
database uses information about de?ned partitions to control
its internal operations such that data is inserted or read in a
desired Way. For example, When adding data to the table,
relational database system 120 may ensure that the data is
added to all partitions designated to store the data, and When
reading data from the table, relational database 120 may
determine from Which partition the data is to be read. As an
example, Where data is to be inserted into the column for text
minutes, relational database system 120 typically inserts the
data into partitions P2 and P3. Similarly, Where data is to be
read from the columns for text and video in response to a
single query, relational database system 120 typically reads
the data from third partition P3 so that the data can be read
from a single partition.

Relational database system 120 generally relies on a query
optimizer to decide Which partition(s) to access in response to
a particular query. A query optimiZer (or “optimizer” for
short) comprises one or more softWare and/or hardWare com

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 9

US 7,949,687 B1
7

ponents adapted to determine how to e?iciently respond to a
query. This determination is typically made by searching
through a list or other data structure including a set of possible
actions that could be taken in order to satisfy the query. For
instance, it may be possible to satisfy a particular query by
accessing any of several different partitions and by perform
ing operations such as joins, selections, and aggregations on
any accessed data; hence an optimizer may determine how to
respond to a query by choosing a most ef?cient set of these
operations from among several possibilities. Because the
amount of time and resources required to satisfy a particular
query may vary greatly based on the partitions accessed, the
order and nature of operations performed, and the computa
tional resources that are available to assist in the query, an
optimizer’s performance can have a profound impact on the
overall performance of a relational database system.

In general, a query optimizer can take advantage of infor
mation regarding overlapping partitions in order to avoid
accessing some partitions, and to avoid performing certain
operations such as unnecessary joins and aggregations. To
provide the optimizer with this information, a system such as
relational database system 120 may store a representation of
the structure of the partitions (i.e., rows, columns, etc., in each
partition) either in a memory such as a local memory of
RDBMS 125, or a data dictionary of database 130.

FIG. 3 illustrates an example of computing environment
100 in which RDBMS 125 comprises an instruction process
ing engine 305 and a plurality of processing modules
335l _ _ _ m, and relational database 130 comprises a plurality of

data storage resources 345 l _ _ _ m corresponding to processing

modules 335l _ _ _ m

The example of FIG. 3 is presented to illustrate how the
data in a table may be bene?cially organized across different
physical and logical resources to improve the performance of
relational database system 120. For instance, the average
speed with which relational database system 120 responds to
user queries may be improved by storing frequently accessed
data in physical storage media having relatively fast response
and throughput times, and by storing logically adjacent data
(e.g., adjacent columns in the same partition) in physically
parallel devices to take advantage of parallel data transfer
bandwidth. A variety of different bene?ts and other potential
aspects of the organization of components shown in FIG. 3
can be understood by reference to related and commonly
assigned patents including, for example, U.S. Pat. Nos. 7,092,
951, 7,203,686, and 7,213,025.

In some embodiments, relational database system 120
includes more processing modules and storage resources than
those shown in FIG. 3. In such embodiments, the additional
modules and resources may be included in physically or
logically separate “database nodes” connected in parallel
with processing modules 335l _ _ _ m through a bus 310. These

additional features can be controlled either through instruc
tion processing engine 305 or through another instruction
processing engine connected to network 115 in parallel with
instruction processing engine 305. In general, the additional
features may be implemented using any of several available
connection architectures or topologies. For instance, they
may be distributed across a relatively complex computing
platform such as a multiprocessor system, a distributed net
work, or a local area network. Notwithstanding the number of
possible variations that could be made to the example of FIG.
3, the following discussion will focus mainly on the illus
trated features in order to provide a clear and concise expla
nation.

In the example of FIG. 3, instruction processing engine 305
serves as a logical gateway for processing modules 335 1 _ _

20

25

30

35

40

45

50

55

60

65

8
In particular, instruction processing engine 305 receives
instructions input to relational database system 120 and pro
cesses the instructions by performing operations such as
interpretation, syntax checking, semantics checking, data
dictionary checking, and query optimization. Upon process
ing each instruction, instruction processing engine 305 gen
erates executable instructions to be performed by processing
modules 335l _ _ _ m to retrieve, update, and otherwise pro

cesses stored data.
Although FIG. 3 shows a strict division between instruc

tion processing engine 305, processing modules 335l _ _ _ m,
and data storage resources 345l _ _ _ m, the division of labor

between these features may be varied. For example, some
instruction processing could be performed by processing
modules 335l _ _ _ m and some instruction execution could be

performed by hardware and/or software associated with data
storage resources 345l _ _ _ m.

Processing modules 335l _ _ _ m each typically comprises a

processor or a virtual processor. Examples of processing
modules 335 1 _ _ _m include access module processors (AMPs)

used in Teradata’s Active Data Warehousing System. Each of
processing modules 335l _ _ _ m manages data stored in the

corresponding data storage resource 345l _ _ _ m in response to

the executable instructions generated by instruction process
ing engine 305. For example, processing modules 335l _ _ _ m

may perform operations to scan, store, retrieve, and logically
process data in storage resources 345l _ _ _ m. Each of data

storage resources 345l _ _ _ m typically comprises one or more

disk drives or other physical storage media.
In the example of FIG. 3, each of data storage resources

345l _ _ _ m stores a plurality of rows of data from a table. This

organization of rows can be achieved, for example, by assign
ing each row to a data storage resource based on a data
distribution function de?ned in instruction processing engine
305. As one example of such a data distribution function,
suppose that each row is associated with a ?rst index. Using
the example table of FIG. 2, the ?rst index for the rows in
partitions P1 through P3 may be the corresponding customer
name. By treating these ?rst indices as “keys” for a hash
function and by treating each of the data storage resources as
a “hash bucket”, instruction processing engine 305 can assign
each row to a data storage resource using the hash function on
the ?rst index as the distribution function for distributing the
data. As a simple example, the hash function could hash the
customer name so that the customer rows are distributed

across data storage resource 3451, data storage resource 3452,
and so on.

Although the above data distribution example uses a rela
tively simple hash function and indexing scheme, data distri
bution could alternatively be accomplished through a variety
of other, perhaps more complicated, indexing schemes and/or
distribution functions. For instance, the distribution function
could distribute data to different storage resources based on
index ranges, a list of indices, or some predetermined map
ping between indices and data storage resources. In a similar
vein, the organization of data within partitions on data storage
resources 345l _ _ _ m can also be accomplished, for example,

through a variety of different partition indexing schemes and/
or distribution functions.

FIG. 4 is a conceptual illustration showing an example of
instruction processing engine 305. In the example of FIG. 4,
instruction processing engine 305 comprises several software
modules including an interpreter 405, a data dictionary
checker 410, and an optimizer 415. As indicated by the ellip
sis in FIG. 4, instruction processing engine 305 may include
additional modules not shown such as speci?c syntax and
semantics checking components.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 10

US 7,949,687 B1

Interpreter 405 receives and interprets instructions and/or
data input to relational database system 120. After an instruc
tion has been interpreted, data dictionary checker 410
inspects a data dictionary to identify the logical structure and
organization of resources that may need to be accessed in
response to the instruction. For instance, Where the instruc
tion is a query instruction, data dictionary checker 410 may
consult the data dictionary to identify the potential locations
for data needed to satisfy the query. Assuming that all of the
necessary components exist for carrying out the instruction,
optimiZer 415 determines a plan for carrying out the instruc
tion. Then, based on the plan, executable instructions are
generated and transmitted to a dispatcher or other instruction
execution softWare or hardWare to carry out the instruction.
Where the instruction identi?es portions of a database table

that reside in multiple overlapping partitions, the optimiZer
may be required to determine Which partitions to access in
order to e?iciently carry out the instruction. Typically, the
optimiZer can make this determination by accessing stored
information regarding the structure of any relevant partitions.
As described above, this information may be stored, for
example, in a local memory of RDBMS 125 or in a data
dictionary of relational database 130. In addition to (or as an
alternative to) storing information regarding the structure of
partitions in a local memory of RDBMS 125 or in a data
dictionary of relational database 130, the structure of parti
tions and the relationship betWeen partitions can be implicitly
de?ned by data Within the partitions themselves. For instance,
relationships betWeen roW segments in different partitions
can be re?ected by roW identi?ers stored in each roW segment.

FIG. 5 is a conceptual illustration shoWing the partitioning
of an example table 605 across data storage resources
345l _ _ _ m. This illustration is provided to shoW one Way that

the parallelism of relational database 130 shoWn in FIG. 3 can
be used to provide ef?cient access to stored data partitions. In
the example of FIG. 5, three partitions each comprising ten
columns of data are stored in ten data storage resources
345l _ _ _ m. The roWs in each partition can be accessed and

processed in parallel to provide relatively e?icient perfor
mance for operations on a single partition.

Speci?c techniques and technologies presented in this dis
closure can be used to improve both the throughput and
response time of a relational database system. These improve
ments can be accomplished, for example, by storing data in
overlapping partitions to reduce the number of partitions
accessed in some queries and to reduce the number of logical
operations required to join, aggregate, and otherWise process
data for some queries. In addition, certain aspects of these
techniques and technologies can reduce the amount of admin
istrative overhead required to organiZe, maintain, and access
stored data in a relational database system. For instance,
various embodiments alloW database administrators to create
and access a database table including overlapping partitions
using relatively simple instructions such as a single table
creation instruction capable of generating multiple overlap
ping partitions, and data input instructions and query instruc
tions capable of inputting and accessing data into multiple
overlapping partitions Without referring speci?cally to the
overlapping partitions.
From the foregoing, it Will be appreciated that speci?c

embodiments of the invention have been described herein for
purposes of illustration, but that various modi?cations may be
made Without deviating from the spirit and scope of the inven
tion. Accordingly, the invention is not limited except as by the
appended claims.

20

25

30

35

40

45

50

55

60

65

10
I claim:
1. A method of accessing data in a relational database

system, comprising:
receiving an instruction identifying a portion of a database

table stored in the relational database system, Wherein
the portion includes a plurality of data elements, and a
copy of one or more data elements of the portion is
stored in each of a plurality of overlapping partitions
Within the relational database system, each partition
among the plurality of overlapping partitions including a
copy of one or more of the same columns or column
segments of the database table, the plurality of overlap
ping partitions being created by the relational database
system in response to an instruction identifying a set of
columns to be included in the database table and speci
fying one or more columns to be included in multiple
partitions; and

in response to the instruction, identifying the plurality of
overlapping partitions and reading the portion of the
database table by accessing only a subset of the plurality
of partitions, the subset of the plurality of overlapping
partitions being chosen from among the plurality of
overlapping partitions based on a determination of query
ef?ciency made by a query optimiZer.

2. The method of claim 1, Wherein eachpartition among the
plurality of overlapping partitions includes a copy of one or
more of the same roWs or roW segments of the database table.

3. The method of claim 1, Wherein the plurality of parti
tions are identi?ed by accessing information stored in a local
memory of a relational database management system Within
the relational database system.

4. The method of claim 1, Wherein the relational database
system comprises a plurality of data storage resources con
nected in parallel to a relational database management sys
tem, and Wherein the portion of the database table is read by
accessing one or more of the plurality of data storage
resources.

5. The method of claim 1, Wherein the instruction identi
fying a portion of a database table stored in the relational
database system does not explicitly refer to any of the plural
ity of overlapping partitions.

6. A method of operating a relational database system,
comprising:

receiving a table creation instruction, the table creation
instruction specifying a structure for a database table
stored in the relational database system and identifying
one or more portions of the database table to be stored in
each of a plurality of overlapping partitions;

in response to the table creation instruction, creating the
database table by generating the overlapping partitions
and by generating a data structure identifying the struc
ture of the database table and a correspondence betWeen
roWs and columns of the database table and the plurality
of overlapping partitions;

receiving a data input instruction including input data and
indicating one or more roW or column segments of the
database table in Which to store the input data; and

in response to the data input instruction, storing the input
data in each of the plurality of overlapping partitions,
Wherein each of the plurality of overlapping partitions
includes the roW or column segments;

receiving a query instruction identifying a portion of the
database table from Which to read data, Wherein at least
part of the portion is stored in each of multiple partitions
among the plurality of overlapping partitions; and

in response to the query instruction, identifying the mul
tiple partitions and reading the portion of the database
table by accessing only a subset of the multiple parti

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 11

US 7,949,687 B1
11

tions, the multiple partitions being chosen from among
the plurality of overlapping partitions based on a deter
mination of query ef?ciency made by a query optimizer.

7. The method of claim 6, Wherein the relational database
system comprises a plurality of data storage resources con
nected in parallel to a relational database management sys
tem, and Wherein the plurality of overlapping partitions are
stored among the plurality of data storage resources.

8. The method of claim 7, Wherein at least one of the
plurality of overlapping partitions is stored across multiple
data storage resources.

9. A relational database system, comprising:
a data storage resource,
a database table, stored Within the data storage resource,

comprising a plurality of logically de?ned roWs and
columns;

a plurality of overlapping partitions adapted to store data
corresponding to the plurality of roWs and columns,
Wherein data corresponding to each of multiple roWs or
roW segments and/or multiple columns or column seg
ments is stored in each of multiple partitions among the
plurality of overlapping partitions, each partition among
the plurality of overlapping partitions including a copy
of one or more of the same columns or column segments

of the database table, the plurality of overlapping parti
tions being created by the relational database system in
response to an instruction identifying the plurality of
logically de?ned roWs and columns and indicating the
multiple roWs or roW segments and/ or multiple columns

15

20

25

12
or column segments for Which data is to be stored in each
of the multiple partitions among the plurality of over
lapping partitions;

a relational database management system adapted to
receive a database instruction identifying a portion of the
database table, Wherein at least part of the portion is
stored in each of multiple partitions among the plurality
of overlapping partitions and further adapted to generate
one or more executable instructions for reading from
said data storage resource the portion of the database
table by accessing only a subset of the plurality of par
titions; and

a query optimiZer adapted to identify a subset of the over
lapping partitions to access in response to a query
instruction based on an estimation of query ef?ciency.

10. The relational database system of claim 9, Wherein the
one or more executable instructions are executed by one or

more processing modules each corresponding to a different
data storage resource connected to the relational database
management system in parallel.

11. The relational database system of claim 10, Wherein at
least one of the one or more processing modules comprises a
virtual microprocessor.

12. The method of claim 9, Wherein each partition among
the plurality of overlapping partitions includes a copy of one
or more of the same roWs or roW segments of the database

table.

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1094, p. 12

