
USENIX Summer Conference
June 11-15, 1990 swm: An X Window

Manager Shell Anaheim, California

Thomas E. LaStrange - Solbourne
Computer Inc.

ABSTRACT

swm is a policy-free, user configurable window manager client for the X Window
System. Besides providing basic window manager functionality, swm introduces new
features not found in existing window managers. First and foremost, swm has no
default look-and-feel. Like the X Window system itself, swm does not dictate policy
(look-and-feel); rather, it provides the mechanism for implementing window
management policy. Users are not required to learn a new programming language to
modify its behavior; instead, simple objects with associated actions determine swm's
operation. Its major advantage over other window managers is a feature called the
Virtual Desktop. The Virtual Desktop effectively makes the X root window larger
than the physical limits of the display and can be panned in a number of ways,
including scrollbars, a panner object, or window manager commands. Besides window
management, swm also provides primitive session management. It can save a user's
current window layout and restart those clients when X is restarted. swm can restart
clients regardless of what toolkit they were built on or what remote host (if any) they
were running on. All relevant client information is restored, including window
position and size, icon position, and the state of the client.

Introduction

Why another window manager? That is certainly a
valid question given the number of window
managers currently available for the X Window Sys
tem. Current window managers fall into two
categories: easy to use but not very configurable, or
very configurable but complicated to use. Two
currently available window managers that illustrate
this point are twm[LaSt89] and gwm[Naha89]. twm
is easy to use, but different window management
policies are next to impossible to implement. gwm
is policy-free, but requires command of the Lisp,
language to implement a particular look-and-feel.
swm shares the best attributes of both of these popu
lar window managers: it is very easy to implement
a particular window management policy without the
need to learn a new programming language.

swm is also a primitive session manager, a client
that can save the current "session" of a user and
restart that session sometime later. Users of Sun
View are familiar with the toolplaces program that
allows users to move and resize windows and then
save the current window layout such that each time
they log in, the environment is remembered. This
operation is much more difficult in the X Window
environment for two reasons: first, client programs
may have been built with different toolkits, each
having a different set of command line options.
Second, clients in the X Window environment are
not constrained to be run on the same system that is
actually running the X server; in fact, the system on
which the client is running may not even be running
the same operating system. swm solves both of

USENIX - Summer '90

these problems and saves the configuration informa
tion in a file suitable to replace the ".xinitrc" file
commonly used to store X start-up information.

Architecture

swm is written in C++ using the Object Interface
library (OI) [Aitk90]. As will be discussed in fol
lowing paragraphs, swm is object oriented in that it
deals with four basic objects to implement window
manager appearance and behavior. The small
number of objects used by swm helps reduce confu
sion for users. This object oriented approach is
facilitated by or because once a specific object is
created, it can be treated as a generic base class
object when dealing with attribute settings. This
makes the interface to all objects consistent. It not
only makes life easier for the user, but internally for
swm also. When laying out panels, objects can be
treated as base class objects without having to know
the particular derived type of object actually being
manipulated.

Configuration

All of swm's configuration information is specified
through the X resource database. This virtually
eliminates the need for separate configuration files,
such as the .twmrc file required by twm, and makes
architecture-based configuration much easier.
Because swm manages multiple screens on a multi
screen X server, there should be some easy way to
specify resources on a per screen basis. All swm
resources begin with the class of the window
manager, either "Swm" or "swm", the latter

299

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 1

swm: An X Window Manager Shell

having precedence. Following that, two strings indi
cate the screen number and whether or not the
screen is monochrome. Some examples might
include:

swm.monochrome.screenO
swm.color.screen1

This allows users to define the appearance or
behavior of swm objects on a per-screen basis if
desired.

swm resources fall into two categories: specific and
non-specific. Specific resources are those associated
with a client window such as an xclock. Non
specific resources deal with operational parameters
of swm. Specific resources differ from non-specific
resources in that both components of the
WM _CLASS property of the client are included in
the resource string. The syntax of specific and non
specific resources is:

Non-specific
swm.type.screen-number. resource:

Specific
swm .type.screen -number. class. instance. resource:

A full resource specification for the decoration of an
xclock might look like this:

swm.monochrome.screenO.XCiock.xclock.decoration:
noTitlePanel

Using specific resources, one can specify different
decorations, icons, behavior, and color for different
application classes and instances of classes.

Several template files are supplied with swm to get
the user up and running quickly. If no swm
configuration resources have been specified, a default
configuration can be loaded. In order to use one of
the standard template files, a one line addition to the
appropriate X resource file is all that is required. If
a user wants to customize swm, they can either
write their own configuration from scratch, or
include and then override defaults in a standard tem
plate file. Among the template files are emulations
for both the OPEN LOOK and OSF/Motif window
managers.

Objects

swm deals with four basic objects: panels, buttons,
text objects, and menus. From these four basic
objects, an infinite number of window management
policies can be implemented. Objects are arranged
in hierarchies and can be stacked to any depth.
Each object has its own set of attributes, such as
color, font, and cursor. Each object also has a
"bindings" attribute that describes the actions to be
taken when mouse buttons or keyboard keys are used
while the pointer is in the object.

300

La Strange

Panel Object

The panel is the most basic object in swm. It is
nothing more than a container for other objects.
Objects within panels are organized into rows. A
row within a panel is made up of one or more other
objects. Panels can be divided into five distinct
classes:

1. Decoration
2. Icon appearance
3. Root icons
4. Root panels
5. Icon holders

The syntax for defining a panel is the same regard
less of what panel class is being created. The syntax
specifies the objects within the panel and how they
are positioned. The syntax for a panel definition is:

swm *panel.panel-name: \
object-type object-name
object-type object-name
object-type object-name

position\
position\
position\

panel-name is the name used to reference this panel.
Each object within a panel has three components:
object-type defines the type of object created. Valid
object types include panel, button, and text.
object-name defines the name used to reference the
subcomponent; and position is a geometry string
describing the position of the object within the
panel. The X and Y components of the geometry
map to the column and row position within the
panel.

Decoration Panels

Decoration panels describe what client windows look
like after they are reparented; they describe the
"decoration" the window manager places around
given client windows. The syntax for specifying a
decoration panel is exactly like any other panel

1 (21 xclock T T..,

......

Figure 1: OpenLook+ Decoration

except that it contains an interior panel object called
"client." For example, the definition below
specifies the default decoration for a client window
in the OpenLook+ template, which is supplied with
swm. Figure 1 shows what a decorated window
looks like using this panel definition.

USENIX - Summer '90

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 2

LaStrange

Swm*panel.openLook: \
button pullDown +0+0 \
button name +C+O \
button nail -0+0 \
panel client +0+ 1

Swm*panel.openLook.resizeCorners: True

The openLook panel defined above is made up of
four objects. In the above example, the button
object called "name" has the letter "C" as its
column coordinate, meaning to center the object
within the row.

As noted earlier, the decoration panel must contain a
panel object called "client." This special panel is
where the client window is placed in the decoration
panel. In the above example, the client window is
placed in column 0 of row 1. Keep in mind that
because the "client" panel is a generic panel object,
there are no limits on what a decoration panel must
look like. Objects can easily be placed to the sides
or below the client window in addition to the more
traditional ''title-bar'' appearance.

Another special object that can be used in a decora
tion panel is a button or text object called "name."
This object displays the WM_NAME property of the
client and can be seen in the above example. The
"pullDown" and "nail" objects provide other func
tionality for this panel.

Icon Appearance Panels

swm has no concept of what an icon should look
like; it is up to the user to describe how icons should
be represented. Icon appearance panels serve this
purpose. The default icon of the OpenLook+ tem
plate is defined as follows:

Swm*panel.Xicon: \
button iconlmage +C+O \
button iconName +C+1

Swm *defaultlconlmage: @xlogo32

In the above example, the Xicon panel contains two
buttons, both of which have special meanings. The
iconName button displays the contents of the
WM_ICON_NAME property. If the client has
specified a pixmap to display as the icon or has
specified its own icon window, that image is
displayed in the iconlmage button. In our example,
if the client has not specified an icon, the iconlmage
button will contain the image of the xlogo32 bitmap
file.

As with the decoration panels, there are no limits on
how complex icon appearance panels may be.

Root Icons

The Icon Appearance panels described above are
used when a corresponding client application has
been placed in an iconic state. Root icons are sim
ply icon appearance panels that do not correspond to
any client application. Because of this they cannot
be deiconified. Since they are icons, they can be

USENIX - Summer '90

swm: An X Window Manager Shell

moved, have bindings associated with them and can
use icon holder panels (see below). What good are
they? In particular, they can have bindings describ
ing actions such as what should happen when they
are the destination of an operation such as drag-and
drop.

Root Panels

Root panels are static panels (usually containing but
tons) that are always visible on the root window.
One can think of a root panel as a menu that is
always visible. Root panels differ from Root icons
in that they are treated like other client windows,
i.e., they get reparented, can be iconified, etc. Fig
ure 2 shows a reparented root panel and its
definition:

Swm *panel.RootPanel: \
button quit +0+0 \
button restart + 1 +0 \
button iconify +2+0 \
button deiconify +3+0 \
button move +0+ 1 \
button resize + 1 + 1 \
button raise + 2+ 1 \
button lower +3+ 1

Figure 2: Root Panel Example

Icon Holder Panels

Icon holder panels are special root panels that con
tain icons. They provide an optional scrolling win
dow in which icons can be deposited and managed.
Icon holder panels are similar to the Icon Manager
feature of twm but more flexible in that actual icons
are managed rather than a fixed-appearance icon
representation. Icon holder panels have many
options, including being not displayed when empty,
and sizing to fit all the icons rather than presenting a
scrolling window. Icon holder panels can be created
to contain specific classes of client icons. In this
way you can do things such as group all xterm icons
in one panel, and other icons in a separate panel.

Button Object

The button object can contain either text or a bitmap
image. Buttons are heavily used in defining window
manager decoration and icon appearance. The but
ton object is unique in that its appearance can be
changed dynamically through the use of window
manager functions. This allows window manager
decorations to change depending on the state of the

301

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 3

swm: An X Window Manager Shell

client application. Like other swm objects, the but
ton object can also have its bindings (functions)
changed dynamically. With these two features, but
tons can not only dynamically change appearance,
but they can also change functionality.

Object Attributes
Each object, when created, queries the X resource
database for a number of attributes. These attributes
include color, font, cursor, and bindings. Among
these attributes, the bindings attribute is the most
interesting. The binding attribute defines the
behavior of the window manager. Most other win
dow managers, provide mouse and keyboard bind
ings in a particular context, i.e., window manager
frame, icon, or client window. In swm you can
think of each object as being its own context with its
own set of actions. swm does not know that an
object is within a window decoration panel or an
icon, all it knows is that some object requested that
a specific action take place when a mouse button or
key event is detected within it. Object bindings are
specified in an X Toolkit Intrinsics[McCo]90 format
so that those familiar with the Xt syntax will not
have to learn yet another way of specifying actions:

swm *button.foo.bindings: \
<Btnl> f.raise \
<Btn2> f.save f.zoom \
<Key> Up f. warpvertical(-50)

This example shows bindings for a button object
called ''foo.'' Assuming that the button is in a win
dow manager decoration panel, if mouse button one
is clicked, the window is raised to the top of the
stack. If mouse button two is clicked, the window's
location and size are saved and the window is
expanded to the full size of the screen. If the Up
key is pressed while the pointer is over the button,
the pointer will be warped "up" 50 pixels. It is
useful to note that any number of bindings can be
specified and that any number of functions can be
specified per binding.

Window Manager Functions

All window managers provide functions allowing the
user to do basic operations such as moving and
resizing windows. In swm, functions are specified
via a bindings attribute as shown in the previous
paragraph. swm functions can be invoked in several
modes. Using the f.iconify function as an example,
here are the possible ways to execute the command:

f.iconify
Iconify the current window

f.iconify(multiple)
Iconify multiple windows, prompting for each
window

f. iconify(blob)
Iconify all windows whose class matches "blob"

f.iconify(#$)
Iconify the window under the mouse

302

LaStrange

f.iconify(#Oxl234)
Iconify a particular window ID

Another important feature of swm's command exe
cution is that commands can be executed on behalf
of an outside client. By writing a special property
on the root window, swm interprets its contents and
executes commands. A simple client has been writ
ten called swmcmd that provides a way to execute
window manager commands by typing them into a
shell running in an xterm. This provides a mechan
ism for executing any command at any time; it is
particularly useful when you have forgotten to add
the command to one of your pop-up menus. By sim
ply moving your pointer into any xterm and typing:

swmcmd f.raise

The pointer would be changed to a question mark
prompting you to select a window to be raised. This
interface could also be used for things such as
changing the shape of a button to indicate the status
of a process.

SHAPE Support

swm provides support for the SHAPE extension,
allowing non-rectangular windows. Each object can
have a separate shape mask attribute which is simply
a bitmap image of the shape of the object. In addi
tion to the shape mask, if a panel object is to be
shaped and no shape mask is specified, it is shaped
to contain its children.

swm recognizes if a client window is shaped and
adds the string "shaped" to the beginning of the
resource strings used to obtain attributes. This
allows attributes to be specified for shaped client
windows. A useful example would be to provide
shaped decoration for shaped clients:

swm*shaped*decoration: shapeit
swm*panel.shapeit: panel client +0+0
swm*panel.shapeit*shape: True

This particular decoration allows invoking the
X11R4 oclock or xeyes clients and they would be
displayed without visible decoration.

The Virtual Desktop

Probably the single most exciting feature provided
by swm is the "Virtual Desktop." This feature
effectively makes the X root window larger than the
physical limits of the display. This large "root"
window can be panned using scrollbars, a two
dimensional panner object, or window manager func
tions. Using the Virtual Desktop, it is very easy to
implement a "rooms" like environment by grouping
windows into various quadrants of the desktop.

USENIX - Summer '90

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 4

La Strange

Virtual Desktop Panner

The panner object provides several important
features of the Virtual Desktop.

Figure 3: Virtual Desktop Panner

The panner shows a miniature representation of all
windows currently on the Virtual Desktop. It also
displays an outline indicating your current position
within the desktop. When the pointer is in the
panner and mouse button one is pressed, the current
position outline can be moved to view another por
tion of the desktop. If mouse button two is pressed
while the pointer is over one of the miniature win
dows, a move operation is started on the window. A
small outline appears under the pointer representing
the window shape that is being moved; it can be
dropped anywhere in the panner and the actual client
window is repositioned. If the pointer is moved out
of the panner during the move operation, a full size
outline of the window is displayed, allowing the user
to move and fine tune the placement on the current
visible portion of the desktop. This feature also
works when the window move was started on a
client window and the pointer is moved into the
panner, allowing the user to move the client window
to any portion of the desktop.

The panner is reparented so it can be moved,
iconified, and resized just like any other client win
dow. The act of resizing the panner object causes
the underlying Virtual Desktop window to resize.
This allows resizing the desktop at run time depend
ing on the user's needs. Because the Virtual Desk
top is an X window different from the actual root
window, the size of the Virtual Desktop is limited
only by the usable area of an X window, 32767 x
32767 pixels.

Sticky Windows

One might wonder why it is that the panner does not
scroll off the display when the desktop is panned. In
conjunction with the Virtual Desktop, swm intro
duces a feature called "sticky" windows. Sticky
windows appear as though they are stuck to the glass
of the display. When the Virtual Desktop is
scrolled, sticky windows do not move. They allow
the user to set up a standard environment that can be
used regardless of the current position of the desk
top. This standard environment might contain things

USENIX - Summer '90

swm: An X Window Manager Shell

such as a clock and mail notifier, which would then
be visible no matter which portion of the Virtual
Desktop is being viewed. Windows can be stuck
and unstuck interactively by the user. Classes of
windows can also be specified to start up as sticky
and decorations can be dependent on whether or not
the client window is sticky. Consider the following
resources:

swm*xclock*sticky: True
swm *sticky *decoration: sticky Panel

These resources tell swm that any client that has the
class "xclock" should start up as a sticky window.
When swm finds that it is reparenting a sticky win
dow, it places the string "sticky" in the resource
string so that decoration and other attributes can be
dependent on whether or not a client window is
sticky.

Virtual Desktop vs. ICCCM

The Inter-Client Communications Conventions
Manual (ICCCM)[Rose89] outlines a specific
client/window manager communication protocol.
The Virtual Desktop provides many challenges to
both swm and clients in deciding exactly what
should be done to remain ICCCM compliant.

Window Positions

Window positioning is probably the most common
problem applications will encounter when running
under swm with the Virtual Desktop enabled. Many
clients monitor their position on the root window to
allow intelligent positioning of dialog boxes or pop
up menus. When clients are moved to other portions
of the desktop, they get positioning information
which leads them to believe that they have been
moved off the visible portion of the root window.
When popping up a dialog box, the client may detect
that its window is off the screen and attempt to posi
tion the dialog box back on the screen. This may
cause it to be displayed in the upper-left quadrant of
the desktop, possibly making it nonvisible.

Besides large position coordinates, other problems
arise when the desktop is panned. If the desktop is
positioned at 0,0, a window at location 100, 100 on
the desktop is also at location 100, 100 relative to
the real root window. If the desktop is panned to
location 25, 25, the client window is still at location
100, 100, with respect to the "root" window onto
which it has been placed, but is now at location 75,
75 with respect to the real root window. The win
dow gets no ConfigureNotify events, real or syn
thetic, because it hasn't moved with respect to its
root. If the client window is monitoring its position
for use in popping up a menu or dialog box, its posi
tion with respect to the real root has changed and the
popup window will probably be placed improperly.

swm and the OI toolkit have attempted to solve
these problems. When swm reparents a window it
places a property on the window indicating the

303

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 5

swm: An X Window Manager Shell

window ID of its "root" window. This will be the
window ID of the real root window or the ID of the
Virtual Desktop window. The toolkit then reparents,
maps, and positions popup menus and dialog boxes
with respect to the window ID specified in the pro
perty rather than always using the actual root win
dow. In addition, this property is updated whenever
the root window for a client changes. This occurs,
for example, when a window is made sticky or
unsticky. Besides solving the window positioning
problems, this would also allow swm to implement
multiple Virtual Desktops, although at this point in
time we're not sure how useful such a feature would
be.

USPosition vs. PPosition
The ICCCM specifies two methods for X clients to
request window positions: User Specified Position
(USPosition) or Program Specified Position (PPosi
tion). Both of these flags exist in the
WM_NORMAL_HINTS property. These hints allow
the user or application writer to request window
positions that may or may not be honored by the
window manager. The idea behind these hints is
that if a user requested a window at a given location,
it would presumably have priority over a default
window location requested by the X client, which in
turn might have priority over default window
manager placement. Previous to X11R4, the X
Toolkit Intrinsics always set the PPosition hint,
effectively making the hint useless as all window
managers simply ignored it.

swm uses these hints to determine window place
ment on the Virtual Desktop. If USPosition hints
are specified, the window is placed at the absolute
location requested by the user, even if the coordi
nates on the desktop are not currently visible. If
PPosition hints are specified, the window coordinates
are assumed to be relative to the current visible por
tion of the Virtual Desktop. For example, if the
desktop is positioned such that the upper left corner
of the display corresponds to pixel location 1000,
1000 on the desktop, a USPosition of +100+100
would place the window at 100, 100 on the desktop.
If a PPosition of + 100+ 100 is used, the window
would be placed at 1100, 1100.

Because of the problems mentioned previously,
multi-window applications wanting a default window
layout usually set the USPosition hints to achieve
their layout. While in most cases this presents no
problems, it has the effect of making the application
usable only in the upper-left quadrant of the Virtual
Desktop, something many users will no doubt find
objectionable.

Application writers needing a default window layout
should make use of the PPosition hints and only use
USPosition if the window positions have been
requested by the user, either through the X resource
database or through command line options. If

304

LaStrange

compatibility with older window managers is
desired, an option should be added to such applica
tions so that the older behavior can be selected
through a "bug compatibility" mode or something
similar.

Session Management

There does not currently exist a standard mechanism
in X for a user to save a "session" and then later
restart the session. The most desired type of session
management is one in which the locations of all
client windows are saved, plus the state of each
client. This would allow a window based editor to
be shut down and brought up at some later date,
editing the same files at the same positions within
the files. Within the next few years this type of ses
sion management will gradually be designed, pro
posed, discussed, revised, and finally implemented.
Until this happens, users have absolutely no standard
way to do even basic session management, such as
that provided by the SunView toolplaces program.

There are several reasons why even simple session
management in X is difficult. First, since there is no
standard toolkit, there are no standard command line
options. The xplaces client attempts to do simple
session management but assumes that X Toolkit
Intrinsics options are used. This leaves users of the
XView toolkit or other non-intrinsic based toolkits
out in the cold. Second, client programs are not
constrained to run on the same host as the X server
and may even be using different operating systems.

swm attempts to solve both of these problems. It
implements session management using a two step
approach: first, an swmhints program provides swm
with hints about the client's previous state; and
second, swm interprets those hints to restore client
windows to their previous state and location. The
swm command f.places causes a file to be written
which can be used as an .xinitrc replacement. This
file contains two lines for each client to be restarted:
an swmhints invocation with appropriate options,
and the actual invocation of the client. The client is
invoked with the exact command string found in the
WM_COMMAND property. This allows restarting
of clients regardless of the command line options
they understand. An example client startup script
might look like this:

swmhints -geometry 120x120+ 1010+359 \
-iconGeometry +0+0 -state NormalState \
-cmd "oclock -geom 100x100 "

oclock -geom 100x100 &

This example shows that the client oclock was origi
nally started with a geometry of 100x100. Some
time later it was resized to 120x120 and positioned
at location 1010, 359. If iconified, its icon would be
positioned at 0, 0. Its state is NormalState as
opposed to iconic. The -cmd option to swmhints

USENIX - Summer '90

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 6

La Strange

simply echoes the WM_COMMAND property string
looked for by swm. All of the information given to
the swmhints program is appended to a property on
the root window. When swm starts up, it reads this
property and stores the information in an internal
table. When a client window is reparented, the table
is searched for a matching WM_COMMAND string
and possibly a matching WM_CLIENT_MACHINE
property. If a match is found, the entry is removed
from the table and the window is sized and posi
tioned to its old location. When restarting a client,
swm restores the following attributes to the client
window: window size, window location, icon loca
tion, whether or not the icon was on the root win
dow, window sticky state, and the normal or iconic
state of the window.

The scheme outlined above breaks down if two win
dows have identical WM_COMMAND properties.
In this case, swm cannot distinguish between the
two windows as they are being reparented. In prac
tice this does not appear to be a problem for most
users.

Restarting Remote Clients

Remote clients provide a challenge for session
management. In a UNIX environment, if a user per
forms an rlogin to a system and then starts a client
by simply typing the client name with no options,
the client starts correctly if the DISPLAY, PATH,
and any other environment variables needed by the
client are set properly. In this case the
WM_COMMAND property contains the client name
and the WM_CLIENT_MACHINE property contains
the name of the machine on which the client is run
ning. This information by itself is not sufficient to
restart the client. If the shell being used only reads
an initialization file for login shells, it is very possi
ble that the PATH and DISPLAY environment vari
ables of the shell used for the remote startup will not
be set or will not contain enough information for the
client to run properly. swm provides the user with a
resource that allows a customizable string to be used
when starting remote clients. This string could be
set up to include PATH and DISPLAY environment
variable settings although this may limit portability
when using the same startup file on different
machines.

Evaluation

swm was developed, tested, and refined in approxi
mately nine man-months. This relatively short
development time was due to two factors: previous
window manager design experience, and use of the
OI Library. While this library provides the objects
and interface to the window system that make it
easy to write applications, there is certainly some
performance penalty to be paid because of the extra
overhead. swm, like any toolkit based window
manager, has somewhat slower performance than a

USENIX - Summer '90

swm: An X Window Manager Shell

window manager written directly on top of Xlib or
one that is kernel based. However, the added func
tionality and flexibility is well worth the speed
trade-off, especially with the performance of newer
machines.

One of the biggest mistakes made with twm was
using a separate initialization file rather than the
more general X resource database for configuration.
The X resource database provides the user with
many more configuration options, and makes extend
ing swm's capabilities easier.

Conclusion

In the introduction I posed the question, "Why
another window manager?" The answer is relatively
simple. The battle between user interfaces has not
yet been won. swm was developed with this in
mind. It is able to adapt to most any user interface.
It also introduces new features, such as the Virtual
Desktop, that are designed to improve user produc
tivity. In addition, these features can all be
configured by a standard method, the X resource
data base.

References

[Last89] LaStrange, Tom, "An Overview of twm
(Tom's Window Manager)," Xhibition '89
Conference Proceedings.

[Naha89] Nahaboo, Colas, "GWM, The Generic
Xll Window Manager," Xhibition '89
Conference Proceedings.

[Aitk90] Aitken, Gary, "OI: A Model Extensible
C++ Toolkit for X Windows," 1990 X
Technical Conference proceedings.

[McCo90] McCormack, Joel, Asente, Paul, and
Swick, Ralph, "Xt Toolkit Intrinsics - C
Language Interface," X11R4 documentation

[Rose89] Rosenthal, David, "Inter-Client Communi
cation Convention Manual," X Window Sys
tem documentation

Tom LaStrange received a B.S.
in Computer Science from the
University of Utah in 1981. He
got involved with X while
working at Evans & Sutherland
where he developed graphics
microcode for the DEC VaxSta
tion 8000 workstation to sup
port XllRl. During his time at
Evans & Sutherland, he also
developed the initial version of
the twm window manager for X. This window
manager is now supported by MIT as the standard X
window manager for X11R4. Following Evans &
Sutherland, he worked for Hewlett Packard's Graph
ics Technology Division where he was involved in
optimizing X server performance for HP's high-end

305

i
,t'

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 7

..

swm: An X Window Manager Shell

graphics workstations. He is currently working in
the User Interfaces and Applications group at Sol
bourne Computer, where he is involved in 01 toolkit
development and application design, as well as his
work on swm. Reach Tom at 1900 Pike Road,
Longmont, CO 80501. His electronic address is
toml@Solbourne.COM.

306

LaStrange

USENIX - Summer '90

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 8

JUt 3 1990

I

u ;:

I

USENIX Association

Proceedings of the
Summer 1990 USENIX Conference

June 11- June 15, 1990
Anaheim, California, USA

IPR2013-00292, IPR2013-00293, IPR2013-00294 and IPR2013-00295
Petitioner Microsoft Corporation - Ex. 1099, p. 9

