
« 18 Partitioning

18.2 Partitioning Types »

Section Navigation [Toggle]

• 18 Partitioning

• 18.1 Overview of Partitioning in
MySQL

• 18.2 Partitioning Types

• 18.3 Partition Management

• 18.4 Partition Pruning

• 18.5 Restrictions and
Limitations on Partitioning

MySQL 5.1 Reference Manual :: 18 Partitioning :: 18.1 Overview of Partitioning in MySQL

18.1. Overview of Partitioning in
MySQL

This section provides a conceptual overview of partitioning in
MySQL 5.1.

For information on partitioning restrictions and feature
limitations, see Section 18.5, “Restrictions and Limitations on
Partitioning”.

The SQL standard does not provide much in the way of
guidance regarding the physical aspects of data storage. The
SQL language itself is intended to work independently of any
data structures or media underlying the schemas, tables, rows, or columns with which it works.
Nonetheless, most advanced database management systems have evolved some means of determining
the physical location to be used for storing specific pieces of data in terms of the file system, hardware or
even both. In MySQL, the InnoDB storage engine has long supported the notion of a tablespace, and the

MySQL Server, even prior to the introduction of partitioning, could be configured to employ different
physical directories for storing different databases (see Section 8.9.6, “Using Symbolic Links”, for an
explanation of how this is done).

Partitioning takes this notion a step further, by enabling you to distribute portions of individual tables
across a file system according to rules which you can set largely as needed. In effect, different portions
of a table are stored as separate tables in different locations. The user-selected rule by which the division
of data is accomplished is known as a partitioning function, which in MySQL can be the modulus, simple
matching against a set of ranges or value lists, an internal hashing function, or a linear hashing function.
The function is selected according to the partitioning type specified by the user, and takes as its
parameter the value of a user-supplied expression. This expression can be a column value, a function
acting on one or more column values, or a set of one or more column values, depending on the type of
partitioning that is used.

In the case of RANGE, LIST, and [LINEAR] HASH partitioning, the value of the partitioning column is

passed to the partitioning function, which returns an integer value representing the number of the
partition in which that particular record should be stored. This function must be nonconstant and
nonrandom. It may not contain any queries, but may use an SQL expression that is valid in MySQL, as
long as that expression returns either NULL or an integer intval such that

-MAXVALUE <= intval <= MAXVALUE

(MAXVALUE is used to represent the least upper bound for the type of integer in question. -MAXVALUE

represents the greatest lower bound.)

For [LINEAR] KEY, the partitioning expression consists of a list of one or more columns, and the

partitioning function is supplied by MySQL.

For more information about permitted partitioning column types and partitioning functions, see
Section 18.2, “Partitioning Types”, as well as Section 13.1.17, “CREATE TABLE Syntax”, which provides

partitioning syntax descriptions and additional examples. For information about restrictions on partitioning
functions, see Section 18.5.3, “Partitioning Limitations Relating to Functions”.

This is known as horizontal partitioning—that is, different rows of a table may be assigned to different
physical partitions. MySQL 5.1 does not support vertical partitioning, in which different columns of a table

MySQL :: MySQL 5.1 Referen... http://dev.mysql.com/doc/refma...

Monday, January 20, 2014 Page 1 of 3

Surfcast Ex. 2069,
Microsoft v. SurfCast IPR2013-00292, page 1

are assigned to different physical partitions. There are not at this time any plans to introduce vertical
partitioning into MySQL 5.1.

For information about determining whether your MySQL Server binary supports user-defined partitioning,
see Chapter 18, Partitioning.

For creating partitioned tables, you can use most storage engines that are supported by your MySQL
server; the MySQL partitioning engine runs in a separate layer and can interact with any of these. In
MySQL 5.1, all partitions of the same partitioned table must use the same storage engine; for
example, you cannot use MyISAM for one partition and InnoDB for another. However, there is nothing

preventing you from using different storage engines for different partitioned tables on the same MySQL
server or even in the same database.

MySQL partitioning cannot be used with the MERGE or CSV storage engines. Beginning with MySQL

5.1.15, FEDERATED tables also cannot be partitioned (Bug #22451). Prior to MySQL 5.1.6, it was also not

feasible to create a partitioned table using the BLACKHOLE storage engine (Bug #14524). See

Section 18.5.2, “Partitioning Limitations Relating to Storage Engines”.

Partitioning by KEY or LINEAR KEY is possible with NDBCLUSTER, but other types of user-defined

partitioning are not supported for tables using this storage engine. In addition, an NDBCLUSTER table that

employs user-defined partitioning must have an explicit primary key, and any columns referenced in the
table's partitioning expression must be part of the primary key. However, if no columns are listed in the
PARTITION BY KEY or PARTITION BY LINEAR KEY clause of the CREATE TABLE or ALTER TABLE

statement used to create or modify a user-partitioned NDBCLUSTER table, then the table is not required to

have an explicit primary key. For more information, see Section 17.1.6.1, “Noncompliance with SQL
Syntax in MySQL Cluster”.

To employ a particular storage engine for a partitioned table, it is necessary only to use the [STORAGE]

ENGINE option just as you would for a nonpartitioned table. However, you should keep in mind that

[STORAGE] ENGINE (and other table options) need to be listed before any partitioning options are used

in a CREATE TABLE statement. This example shows how to create a table that is partitioned by hash into

6 partitions and which uses the InnoDB storage engine:

CREATE TABLE ti (id INT, amount DECIMAL(7,2), tr_date DATE)

 ENGINE=INNODB

 PARTITION BY HASH(MONTH(tr_date))

 PARTITIONS 6;

Each PARTITION clause can include a [STORAGE] ENGINE option, but in MySQL 5.1 this has no effect.

Important

Partitioning applies to all data and indexes of a table; you cannot partition only the data
and not the indexes, or vice versa, nor can you partition only a portion of the table.

Data and indexes for each partition can be assigned to a specific directory using the DATA DIRECTORY

and INDEX DIRECTORY options for the PARTITION clause of the CREATE TABLE statement used to

create the partitioned table.

Prior to MySQL 5.1.18, these options were permitted even when the NO_DIR_IN_CREATE server SQL

mode was in effect (Bug #24633).

The DATA DIRECTORY and INDEX DIRECTORY options have no effect when defining partitions for tables

using the InnoDB storage engine.

MySQL :: MySQL 5.1 Referen... http://dev.mysql.com/doc/refma...

Monday, January 20, 2014 Page 2 of 3

Surfcast Ex. 2069,
Microsoft v. SurfCast IPR2013-00292, page 2

DATA DIRECTORY and INDEX DIRECTORY are not supported for individual partitions or subpartitions on

Windows. Beginning with MySQL 5.1.24, these options are ignored on Windows, except that a warning is
generated (Bug #30459)-

In addition, MAX_ROWS and MIN_ROWS can be used to determine the maximum and minimum numbers of

rows, respectively, that can be stored in each partition. The MAX_ROWS option can be useful for causing

MySQL Cluster tables to be created with extra partitions, thus allowing for greater storage of hash
indexes. See the documentation for the DataMemory data node configuration parameter, as well as

Section 17.1.2, “MySQL Cluster Nodes, Node Groups, Replicas, and Partitions”, for more information.

Some advantages of partitioning are listed here:

• Partitioning makes it possible to store more data in one table than can be held on a single disk or

file system partition.

• Data that loses its usefulness can often be easily removed from a partitioned table by dropping the

partition (or partitions) containing only that data. Conversely, the process of adding new data can

in some cases be greatly facilitated by adding one or more new partitions for storing specifically

that data.

• Some queries can be greatly optimized in virtue of the fact that data satisfying a given WHERE

clause can be stored only on one or more partitions, which automatically excludes any remaining

partitions from the search. Because partitions can be altered after a partitioned table has been

created, you can reorganize your data to enhance frequent queries that may not have been often

used when the partitioning scheme was first set up. This ability to exclude non-matching partitions

(and thus any rows they contain) is often referred to as partition pruning, and was implemented in

MySQL 5.1.6. For more information, see Section 18.4, “Partition Pruning”.

Other benefits usually associated with partitioning include those in the following list. These features are
not currently implemented in MySQL Partitioning, but are high on our list of priorities.

• Queries involving aggregate functions such as SUM() and COUNT() can easily be parallelized. A

simple example of such a query might be SELECT salesperson_id, COUNT(orders) as

order_total FROM sales GROUP BY salesperson_id;. By “parallelized,” we mean that the

query can be run simultaneously on each partition, and the final result obtained merely by

summing the results obtained for all partitions.

• Achieving greater query throughput in virtue of spreading data seeks over multiple disks.

Be sure to check this section and chapter frequently for updates as MySQL Partitioning development
continues.

Copyright © 1997, 2014, Oracle and/or its affiliates. All rights reserved. Legal Notices

Previous / Next / Up / Table of Contents

User Comments

Add your own comment.

Top / Previous / Next / Up / Table of Contents

 © 2014, Oracle Corporation and/or its affiliates

MySQL :: MySQL 5.1 Referen... http://dev.mysql.com/doc/refma...

Monday, January 20, 2014 Page 3 of 3

Surfcast Ex. 2069,
Microsoft v. SurfCast IPR2013-00292, page 3

