US 20030110234A1

a2 Patent Application Publication o) Pub. No.: US 2003/0110234 Al

a9 United States

Egli et al.

(43) Pub. Date: Jun. 12, 2003

(54) SYSTEM AND METHODOLOGY FOR
DELIVERING MEDIA TO MULTIPLE
DISPARATE CLIENT DEVICES BASED ON
THEIR CAPABILITIES

(75) Inventors: Paul A. Egli, Scotts Valley, CA (US);
Shekhar Kirani, Capitola (IN); Venkat
V. Easwar, Cupertino, CA (US)

Correspondence Address:

JOHN A. SMART

708 BLOSSOM HILL RD., #201
LOS GATOS, CA 95032 (US)

(73) Assignee: LightSurf Technologies, Inc.

(21) Appl. No.: 10/010,616
(22) Filed: Nov. 8, 2001
Publication Classification
(51) Int. CL7 e GO6F 15/16

G2 YR VAT o) K 709/217

(57) ABSTRACT

An online media delivery system incorporating combining
on-the-fly media reformatting with advanced client detec-
tion capabilities enabling delivery of appropriate media
content to connected client devices is described. The system
receives requests from client devices for media documents
or objects, identifies the client device requesting particular
media objects from an HTTP request, determines the media
output capabilities of the client device, reformats the source
media according to those capabilities and delivers the refor-
matted media to the client device. The system provides
access to media content for multiple disparate client devices
of varying hardware and software capabilities. The system
enables delivery of appropriate media content to practically
any device with connectivity capability.

BEGIN) 400

A 4

/— 401

URLS FOR MULTIMEDIA OBJECTS IN WEB PAGES AT AN
INTERNET SITE ARE ENCODED TO BE SERVED BY THE MEDIA
DELIVERY SYSTEM

A

/ 402

AN HTTP REQUEST FROM A CLIENT DEVICE 1S RQUTED TO THE
MEDIA DELIVERY SYSTEM

A 4

/ 403

THE CCM REVERSES THE ENCODING PROCESS AND
DETERMINES THE FULL URL TO THE SOURCE IMAGE

A 4

/- 404

THE CCM RETRIEVES THE CLIENT CAPABILITY CONFIGURATION
FROM THE DATA STORE USING THE HTTP HEADER AS A KEY

b

/— 405

THE CCM CONSTRUCTS A URL CONTAINING INSTRUCTIONS FOR
TRANSFORMATION OF THE SOURCE MEDIA OBJECT TO
CONFORM TO THE CAPABILITIES OF THE CLIENT DEVICE

THE GCM (OPTIONALLY) CONSULTS A CACHE FOR AN OBJECT
MATCHING THE CONSTRUCTED URL AND, IF AVAILABLE,
RETURNS IT TO THE CLIENT. IF A MATCHING OBJECT 1§ NOT
IN CACHE, THE METHOD PROCEEDS TO STEP 407

406
! -

CONTINUED ON

}

OpenTV Exhibit 1005

Page 1

US 2003/0110234 A1

Jun. 12,2003 Sheet 1 of 6

Patent Application Publication

(LHY HOIHd)
I Ol4
HALNIYd AV1dSId
A r A ,{
L0} +0I SOt
IJ
80 901 AHOWIW
r N ™\ O3aAIA
9Ll
20IA3a AUVOIAT "3ldvav
B ONILNIOd o3alA
3 A
sS3anid vivd
SNOILYDIddY o
H3AIHA
SHan SO JOVHOLS N .
aaxid
JOVHOLS N (ndd) J
JIgGVYAONTH Amv._._ZD
gL — ONISSIO0Hd IVHINID
]
101 L
Y A
WOYH Nvd
001
g0l \\ c0l1 k

Okl
)

30V4H31NI

WINOD

LhL
A

J0V443LNI

MHOML3IN

Page 2

OpenTV Exhibit 1005

Patent Application Publication Jun. 12,2003 Sheet 2 of 6 US 2003/0110234 A1

200
/— 201a /—-201b /- 201c /—- 201d
APPLICATION APPLICATION BROWSER [.] APPLICATION
PROGRAM 1 PROGRAM 2 PROGRAM PROGRAM N

A A I 3

1

Y A 4 y
OPERATING SYSTEM
(e.g., WINDOWS 9X/NT/2000/XP, SOLARIS, UNIX, LINUX, MAC OS5, OR LIKE)

GRAPHICAL
USER INTERFACE

~

T 3
| 220 L 215 \ 210

DEVICE DRIVERS
(6.9., WINSOCK)

[LS

r

DISPLAY MONITOR
NETWORK INTERFACE
COMM PORT
KEYBOARD

MODEM

MOUSE

DiISKS

PRINTER

FIG. 2

OpenTV Exhibit 1005 Page 3

Patent Application Publication Jun. 12,2003 Sheet 3 of 6 US 2003/0110234 A1

300

/— 301 / 320

MEDIA DELIVERY SYSTEM

/‘321 /’ 322 323

FFS*?DNET- CLIENT
*,| CAPABILITIES
A cacne MODULE
(CCM)

\ DATA STORE
325
,/' 326
MEDIA
TRANSFORMATION
MODULE
(MTM)
BACKSIDE /
CACHE 1
,(327
330 NON- INTERNET
/— CONNECTION

P

CLIENT DEVICE(S)

INTERNET)'
SITE
(SERVER)

FIG. 3

OpenTV Exhibit 1005 Page 4

Patent Application Publication Jun. 12,2003 Sheet 4 of 6 US 2003/0110234 A1

C BEGIN) 400
401
! -

URLS FOR MULTIMEDIA OBJECTS IN WEB PAGES AT AN
INTERNET SITE ARE ENCODED TO BE SERVED BY THE MEDIA
DELIVERY SYSTEM

402
v /-

AN HTTP REQUEST FROM A CLIENT DEVICE 1S ROUTED TO THE
MEDIA DELIVERY SYSTEM

403
‘ -

THE CCM REVERSES THE ENCODING PROCESS AND
DETERMINES THE FULL URL TO THE SOURCE IMAGE

404
A 4 /-

THE CCM RETRIEVES THE CLIENT CAPABILITY CONFIGURATION
FROM THE DATA STORE USING THE HTTP HEADER AS A KEY

l /- 405

THE CCM CONSTRUCTS A URL CONTAINING INSTRUCTIONS FOR
TRANSFORMATION OF THE SOURCE MEDIA OBJECT TO
CONFORM TO THE CAPABILITIES OF THE CLIENT DEVICE

406
v /—

THE CCM (OPTIONALLY) CONSULTS A CACHE FOR AN OBJECT
MATCHING THE CONSTRUCTED URL AND, IF AVAILABLE,
RETURNS IT TO THE CLIENT. IF A MATCHING OBJECT IS NOT
IN CACHE, THE METHOD PROCEEDS TO STEP 407

CONTINUED ON
FIG. 4B

!

FiG. 4A

OpenTV Exhibit 1005 Page 5

Patent Application Publication Jun. 12,2003 Sheet 5 of 6 US 2003/0110234 A1

FROM FIG 4A

l K 407

THE CCM PROXIES THE ORIGINAL CLIENT REQUEST TO THE
MTM, REPLACING THE URL SENT BY THE CLIENT WITH THE
RECONSTRUCTED URL

408
' -

THE MTM RECEIVES THE RECONSTRUCTED URL AND MAKES AN
HTTP REQUEST THROUGH A BACKSIDE CACHING SERVER FOR
THE ORIGINAL MEDIA OBJECT. IF THE OBJECT IS NOT IN
CACHE, THE CACHING SERVER REQUESTS IT FROM THE
SERVER [DENTIFIED IN THE ORIGINAL CLIENT REQUEST

409
/

THE MTM PERFORMS THE MEDIA TRANSFORMATION AS
SPECIFIED IN RECONSTRUCTED URL

410

—

THE NEWLY-TRANSFORMED VERSION OF THE MEDIA OBJECT IS
RETURNED TO THE CLIENT DEVICE AND (OPTIONALLY) IS
COPIED INTO CACHE

(=)

FIG. 4B

OpenTV Exhibit 1005 Page 6

Patent Application Publication Jun. 12,2003 Sheet 6 of 6 US 2003/0110234 A1

(BEGIN)
501
v -

AN HTTP REQUEST FROM A NON-COMPLIANT CLIENT DEVICE 1S
FORWARDED FROM AN INTERNET OR WAP SITE TO THE
SYSTEM

502
‘ -

THE CCM RETRIEVES DETERMINES THE CAPABILITIES OF THE
CLIENT DEVICE BY CONSULTING THE DATA STORE USING THE
HTTP HEADER AS A KEY

503
\ -

THE CCM SUPPLEMENTS THE CLIENT REQUEST WITH THE
DETERMINED INFORMATION ON THE CAPABILITIES OF THE
CLIENT DEVICE

504
v -

THE CCM FORWARDS THE SUPPLEMENTED REQUEST TO THE
DESTINATION ADDRESS INDICATED IN THE CLIENT REQUEST

O
(o
(e

\ 4
oo)

FiG. 5

OpenTV Exhibit 1005 Page 7

US 2003/0110234 A1

SYSTEM AND METHODOLOGY FOR
DELIVERING MEDIA TO MULTIPLE DISPARATE
CLIENT DEVICES BASED ON THEIR
CAPABILITIES

RELATED APPLICATIONS

[0001] The present application is related to the following
commonly-owned application(s): application Ser. No.
09/588,875 (Docket No. LS/0003.01), filed Jun. 6, 2000,
entitled “System and Methodology Providing Access to
Photographic Images and Attributes for Multiple Disparate
Client Devices”; and application Ser. No. 09/489,511
(Docket No. LS/0002.00), filed Jan. 21, 2000, entitled
“Improved Digital Camera Device with Methodology for
Efficient Color Conversion”. The disclosures of each of the
foregoing applications are hereby incorporated by reference
in their entirety, including any appendices or attachments
thereof, for all purposes.

COPYRIGHT NOTICE

[0002] A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent document or the patent
disclosure as it appears in the Patent and Trademark Office
patent file or records, but otherwise reserves all copyright
rights whatsoever.

COMPUTER PROGRAM LISTING APPENDIX

[0003] A Computer Program Listing Appendix A contain-
ing computer program listings is included with this appli-
cation. The disclosure of the Computer Program Listing
Appendix A is hereby incorporated by reference.

BACKGROUND OF THE INVENTION

[0004] The present invention relates generally to informa-
tion processing and, more particularly, to an online system
providing methodology for improving online access to digi-
tal media and related information.

[0005] A variety of digital image, digital video and digital
audio products are currently available to consumers.
Regardless of how digital media is recorded, at some later
point in time, the information must become available to
other devices—that is, become available to a larger network
of digital devices, so that such information may be displayed
on a screen, printed to hard copy, stored, or shared with other
people. Today, a large number of Web sites exist on the
Internet with server computers having the capability to
organize and display images, video, audio, and other types
of media and digital objects. In a complementary manner, a
multitude of different client devices exist with sufficient
graphics capabilities for potentially viewing (and/or listen-
ing to) this media. For instance, such client devices range
from desktop or laptop computers running Web browser
software to handheld devices (e.g., personal digital assis-
tants running under Palm or Windows CE), all connected to
the Internet over TCP/IP, each with the capability of dis-
playing information.

[0006] More recently, a newer class of devices has been
introduced with wireless data capabilities as well as display
capabilities. These devices connect to the Internet typically
over WAP (Wireless Application Protocol). WAP is a com-

Jun. 12, 2003

munication protocol, not unlike TCP/IP, that was developed
by a consortium of wireless companies, including Motorola,
Ericsson, and Nokia, for transmitting data over wireless
networks. For a description of WAP, see e.g., Mann, S., The
Wireless Application Protocol, Dr. Dobb’s Journal, pp.
56-66, October 1999, the disclosure of which is hereby
incorporated by reference.

[0007] All told, a plethora of graphics-equipped devices
exist today that may be connected to the Internet, through
both wireless (e.g., 9600 baud) and wireline connections
(e.g., 56 k baud, DSL, and cable modem). These devices are
capable of displaying graphics, including digital images.
Recent advances in handheld computing and wireless tech-
nologies have enabled manufacturers to embed or include
Web browsers in a wide array of devices, including palm-
type organizers, wireless phones, and two-way pagers.
While all of these Web-enabled clients are capable of at least
rudimentary display of text, some also support various
multimedia content such as images, video, and sound. Faster
wireless Internet access will drive development of client
devices capable of playing larger, richer media formats.

[0008] However, a fundamental problem exists with cur-
rent approaches to displaying images and other digital media
on many of these devices. Some devices such as personal or
laptop computers are capable of receiving and rendering a
number of different types of media, including digital images,
streaming audio, and streaming video. However, other
devices have much more limited capabilities to render
digital media. In addition, different devices often support
different formats and communication transport protocols.

[0009] Consider, for instance, the example of a Palm
handheld device. Suppose a user has a “true-color” (e.g.,
32-bit depth) 1024 by 768 digital photograph of his or her
family on the Web. If the user connects to the Internet using
the Palm device, he or she cannot display the photograph
because the Palm device may only support four-level or
sixteen-level grayscale. Even if the image could be dis-
played, the transmission time for downloading the image to
the Palm device would be impractical. Still further, even if
the image could be downloaded, the display for the Palm
may be physically too small to render the image in a manner
that is acceptable to the user.

[0010] This problem is not limited to just image data but
also applies to other types of digital objects. Many Internet
sites display multi-colored images, streaming video, stream-
ing audio, and other content that is targeted primarily at
users with desktop and laptop computer devices and Web
browser software. A desktop or laptop computer has signifi-
cant processing, storage, and display resources and is
capable of rendering large images and video files in multiple
colors and formats. On the other hand, a smaller device such
as a cellular phone or a personal digital assistant (“PDA”)
typically does not have the necessary capabilities to display
colors or to handle media in particular formats. For example,
a cellular phone, which typically has a small screen for
display of messages, does not have the software or display
capabilities to render a JPEG image. Currently, a user with
a PDA or cellphone is typically unable to access much of the
information available on many Internet sites.

[0011] Certain content providers that are focused prima-
rily on cellular telephone and PDA users do offer Internet
sites that display media appropriate for these users. These

OpenTV Exhibit 1005 Page 8

US 2003/0110234 A1

sites include images with lower resolution and fewer colors
in formats supported by these types of devices. However,
even content providers focused on cellular telephone and
handheld device users have problems supporting the wide
number of devices currently in use. Numerous different
types of cellular telephones and handheld devices are in use,
each having different specifications and capabilities. These
devices have different screen sizes, resolution, and color
capabilities. Thus, even if a content provider is focused on
cellular telephone users, that content provider often must
create images and other media offerings geared towards the
least capable devices in order to serve the broadest number
of users.

[0012] Another particular problem in the delivery of
media to wireless users is limited bandwidth. In addition to
the image display and audio output limitations of many
wireless devices, the available bandwidth also limits the
ability of these devices to access and use richer media
formats. Thus even for devices with better audio and video
capabilities, bandwidth considerations may still significantly
constrain the types of media that may be supplied to these
devices. Even if a user’s wireless device is capable of
displaying a high-resolution image, he or she may request a
lower resolution image because of the time required to
download the image given the limited available bandwidth.

[0013] In addition to these problems stemming from lim-
ited bandwidth and display resources available to many
wireless devices, another problem is that present-day Inter-
net services do not attempt to understand the capabilities of
particular connected devices. Moreover, even if such Inter-
net services understand some of the capabilities of a par-
ticular client device, present-day servers are not designed to
act on that information and transmit information only in the
format that is meaningful for such client device. As more
and more classes of network-connected devices come to
market, this problem can be expected to grow as each device
has its own particular characteristics.

[0014] What is needed is a solution that combines on-the-
fly media reformatting with advanced client detection to
enable the delivery of the appropriate and best possible
incarnation of a provider’s media to every connected client
device. The present invention fulfills this and other needs.

Glossary

[0015] The following definitions are offered for purposes
of illustration, not limitation, in order to assist with under-
standing the discussion that follows.

[0016] Apache: Apache is a public domain Web server
developed by a group of volunteer programmers called the
Apache Group. The initial version of the Apache server was
developed in 1995 based on the httpd Web server developed
at the National Center for Supercomputing Applications,
University of Illinois, Urbana-Champaign. Additional infor-
mation on the Apache Web server and copies of the source
code for this Web server are currently available on the
Internet at http://www.apache.org.

[0017] CC/PP: CC/PP is an abbreviation for Composite
Capabilities/Preference Profiles, a proposed standard being
developed by the World Wide Web Consortium (W3C). A
CC/PP profile is a description of device capabilities and user
preferences that can be used to guide the adaptation of

Jun. 12, 2003

content presented to that device. The current proposed
specification is described by “Composite Capability/Prefer-
ence Profiles (CC/PP): A user side framework for content
negotiation”, W3C Note, 27 July 1999, available from the
World Wide Web Consortium (W3C), the disclosure of
which is hereby incorporated by reference. A copy of the
proposed standard can be currently found on the Internet at
http://www.w3.0rg/TR/NOTE-CCPP/.

[0018] HTML: HTML stands for HyperText Markup Lan-
guage. Every HTML document requires certain standard
HTML tags in order to be correctly interpreted by Web
browsers. Each document consists of head and body text.
The head contains the title, and the body contains the actual
text that is made up of paragraphs, lists, and other elements.
Browsers expect specific information because they are pro-
grammed according to HITML and SGML specifications.
Further description of HTML documents is available in the
technical and trade literature; see e.g., Ray Duncan, Power
Programming: An HTML Primer, PC Magazine, Jun. 13,
1995, the disclosure of which is hereby incorporated by
reference.

[0019] HTTP: HTTP stands for HyperText Transfer Pro-
tocol, which is the underlying communication protocol used
by the World Wide Web on the Internet. HTTP defines how
messages are formatted and transmitted, and what actions
Web servers and browsers should take in response to various
commands. For example, when a user enters a URL in his or
her browser, this actually sends an HTTP command to the
Web server directing it to fetch and transmit the requested
Web page. Further description of HTTP is available in RFC
2616: Hypertext Transfer Protocol—HTTP/1.1, the disclo-
sure of which is hereby incorporated by reference. RFC
2616 is available from the World Wide Web Consortium
(W3 O), and is currently available via the Internet at
http://www.w3.org/Protocols/. Additional description of
HTTP is available in the technical and trade literature; sce
e.g., William Stallings, The Backbone of the Web, BYTE,
October 1996, the disclosure of which is hereby incorpo-
rated by reference.

[0020] JPEG: Full-size digital images are maintained in a
Joint Photographic Experts Group or JPEG format. See e.g.,
Nelson, M. et al., The Data Compression Book, Second
Edition, Chapter 11: Lossy Graphics Compression (particu-
larly at pp. 326-330), M&T Books, 1996. Also see e.g.,
JPEG-like Image Compression (Parts 1 and 2), Dr. Dobb’s
Journal, July 1995 and August 1995 respectively (available
on CD ROM as Dr. Dobb’s/CD Release 6 from Dr. Dobb’s
Journal of San Mateo, Calif.). The disclosures of the fore-
going are hereby incorporated by reference.

[0021] SMTP: SMTP stands for Simple Mail Transfer
Protocol, a protocol for sending e-mail messages between
servers. Most e-mail systems that send mail over the Internet
use SMTP to send messages from one server to another; the
messages can then be retrieved with an e-mail client using
either POP or IMAP. In addition, SMTP is generally used to
send messages from a mail client to a mail server.

[0022] TCP: TCP stands for Transmission Control Proto-
col. TCP is one of the main protocols in TCP/IP networks.
Whereas the IP protocol deals only with packets, TCP
enables two hosts to establish a connection and exchange
streams of data. TCP guarantees delivery of data and also
guarantees that packets will be delivered in the same order

OpenTV Exhibit 1005 Page 9

US 2003/0110234 A1

in which they were sent. For an introduction to TCP, see,
e.g., RFC 793, the disclosure of which is hereby incorpo-
rated by reference.

[0023] TCP/IP: Stands for Transmission Control Protocol/
Internet Protocol, the suite of communications protocols
used to connect hosts on the Internet. TCP/IP uses several
protocols, the two main ones being TCP and IP. TCP/IP is
built into the UNIX operating system and is used by the
Internet, making it the de facto standard for transmitting data
over networks. For an introduction to TCP/IP, see e.g., RFC
1180: A TCP/IP Tutorial, the disclosure of which is hereby
incorporated by reference. A copy of RFC 1180 is currently
available at ftp://ftp.isi.edu/in-notes/rfc1180.txt.

[0024] UAProf: UAProf or WAG UAProf refers to the
proposed Wireless Access Group User Agent Profile Speci-
fication about how devices such as cellular phones should
describe their capabilities to servers. The current proposed
specification is described as “WAG UAProf” (Wireless
Application Group User Agent Profile Specification), Wire-
less Application Protocol Forum, L.td., Proposed Version
May 30, 2001, available from the WAP Forum, the disclo-
sure of which is hereby incorporated by reference. A copy of
the specification can currently be found on the Internet at
http://wwwl.wapforum.org/tech/documents/WAP-248-UA-
Prof-20010530-p.pdf.

[0025] URL: Abbreviation of Uniform Resource Locator,
the global address of documents and other resources on the
‘World Wide Web. The first part of the address indicates what
protocol to use, and the second part specifies the IP address
or the domain name where the resource is located.

[0026] WAP: WAP stands for Wireless Application Pro-
tocol, which is a communication protocol, not unlike TCP/
1P, that was developed by a consortium of wireless compa-
nies, including Motorola, Ericsson, and Nokia, for
transmitting data over wireless networks. For a description
of WAP, see e¢.g., Mann, S., The Wireless Application Pro-
tocol, Dr. Dobb’s Journal, pp. 56-66, October 1999, the
disclosure of which is hereby incorporated by reference.
More particularly, WAP includes various equivalents of
existing Internet protocols. For instance, WML is a WAP
version of the HTML protocol. Other examples include a
‘WARP browser that is a WAP equivalent of an HIML browser
and a WAP gateway (on the server side) that is a WAP
equivalent of an HTTP server. At the WAP gateway, HTTP
is translated to/from WAP.

[0027] XML: Short for Extensible Markup Language, a
specification developed by the W3C. XML is a pared-down
version of SGML, designed especially for Web documents.
It allows designers to create their own customized tags,
enabling the definition, transmission, validation, and inter-
pretation of data between applications and between organi-
zations. For further description of XML, see, e.g., Extensible
Markup Language (XML) 1.0 specification which is avail-
able from the World Wide Web Consortium (www.w3.0rg),
the disclosure of which is hereby incorporated by reference.
The specification is also currently available on the Internet
at http://www.w3.org/TRIREC-xml.

SUMMARY OF THE INVENTION

[0028] The present invention provides an online system
incorporating improved methodologies enabling content

Jun. 12, 2003

providers to effectively serve the widest array of clients. It
combines on-the-fly media reformatting with advanced cli-
ent detection capabilities to enable the delivery of the
appropriate and best possible incarnation of a provider’s
media content to every connected client device.

[0029] The online media delivery system of the present
invention (commercially embodied in eSwitch™-brand
media delivery system) receives requests from client devices
for media documents or objects, determines the media
output capabilities of the device making the request, and
serves a transformed version of the media object appropriate
for the requesting client device. The system includes a client
capabilities module (CCM) and a media transformation
module (MTM). These two modules cooperate to identify a
client from an HTTP request, determine its media output
capabilities, and reformat the source media according to
those capabilities. The system also includes a data store
containing information on the capabilities of various client
devices, an (optional) front-side cache for storing trans-
formed media content, and a backside cache for local storage
of original items of content.

[0030] The system provides access to media content for
multiple disparate client devices—that is, to target devices
of varying hardware and software capabilities. The system
enables delivery of appropriate media content to practically
any device with connectivity capability. The target devices
may include both wireless devices (e.g., cellular phone,
handheld personal digital assistant (PDA), and pager) as
well as wireline devices (e.g., desktop computer, laptop
computer, and videophone).

[0031] The improved methodology of the system in pro-
viding media content appropriate to a particular device can
be summarized as follows. Initially, the URLs of particular
full-format multimedia objects on an Internet Web site are
modified to be served by the system of the present invention.
This is accomplished by modifying the HTML pages on the
Web site to replace the URLs of these full-format multime-
dia objects with URLs which point to the server on which
the media delivery system is installed and contains the path
to the media objects. The system acts as an HT'TP proxy to
those original objects, intercepting requests for the original
content and serving a transformed version of the content
applicable to the requesting client.

[0032] When a client device receives user input (e.g., a
click) invoking the modified URL for requesting a particular
multimedia document, the media output capabilities are
communicated to the system by the device or are surmised
by the system’s client capabilities module. If the device is
communicating its capabilities, it does so during the initia-
tion or during every interaction. Alternatively, the device’s
capabilities are previously stored in the system’s data store
based on prior knowledge of the device. Based on the
information communicated to or surmised by the system, an
information record is created describing the target device’s
capabilities. This information indicates to the system what
transformation (if any) is required for translating the original
item of media content into a format suitable for the target
device.

[0033] After the appropriate media format required by the
device is determined, the client capabilities module (option-
ally) checks the front-side cache to see whether the cache
already stores a version of the object that has been translated

OpenTV Exhibit 1005 Page 10

US 2003/0110234 A1

into a format suitable for this particular target device. If the
object (transformed for the target device) already exists in
the front-side cache, then the client capabilities module may
simply return that object to the client device. However, if an
appropriate transformed object is not in the cache, then the
client capabilities module proceeds to pass the object iden-
tifier and the client device parameters on to the media
transformation module.

[0034] The media transformation module receives
requests for a particular item of media content in a particular
format from the client capabilities module. The media
transformation module obtains the original media object,
transforms the object from its original format into the format
that is desired for the target device (based on the specified
target device capabilities), and returns the converted object
to the client device. The media transformation module
utilizes a backside cache as an optimization to provide
increased efficiency. Media objects are retained in the back-
side cache to avoid having to retrieve frequently or recently
requested items in response to each request. Use of this
backside cache reduces the number of calls over the network
and expedites conversion and return of media objects to
client devices.

BRIEF DESCRIPTION OF THE DRAWINGS

[0035] FIG. 1 is a block diagram of a computer system in
which software-implemented processes of the present inven-
tion may be embodied.

[0036] FIG. 2 is a block diagram of a software system for
controlling the operation of the computer system.

[0037] FIG. 3 is a block diagram illustrating an online
media delivery system of the present invention.

[0038] FIGS. 4A-B comprise a single flowchart illustrat-
ing the detailed method steps of the system in determining
the capabilities of a target device and transforming and
delivering content to such target device in an appropriate
format.

[0039] FIG. 5 is a flowchart illustrating the operations of
the client capabilities module of the present invention in
acting as a proxy for incoming HTTP requests from non-
compliant devices.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

[0040] The following description will focus on the pres-
ently-preferred embodiment of the present invention, which
is implemented in a desktop application operating in an
Internet-connected environment running under a desktop
operating system, such as the Microsoft® Windows operat-
ing system running on an IBM-compatible PC. The present
invention, however, is not limited to any one particular
application or any particular environment. Instead, those
skilled in the art will find that the system and methods of the
present invention may be advantageously embodied on a
variety of different platforms, including Macintosh, Linux,
BeOS, Solaris, UNIX, NextStep, FreeBSD, and the like.
Therefore, the description of the exemplary embodiments
that follows is for purposes of illustration and not limitation.

Jun. 12, 2003

[0041]

[0042] A. Basic System Hardware (e.g., for Desktop and
Server Computers)

I. Computer-Based Implementation

[0043] The present invention may be implemented on a
conventional or general-purpose computer system, such as
an IBM-compatible personal computer (PC) or server com-
puter. FIG. 1 is a very general block diagram of an IBM-
compatible system 100. As shown, system 100 comprises a
central processing unit(s) (CPU) or processor(s) 101 coupled
to a random-access memory (RAM) 102, a read-only
memory (ROM) 103, a keyboard 106, a printer 107, a
pointing device 108, a display or video adapter 104 con-
nected to a display device 105, a removable (mass) storage
device 115 (e.g., floppy disk, CD-ROM, CD-R, CD-RW,
DVD, or the like), a fixed (mass) storage device 116 (e.g.,
hard disk), a communication (COMM) port(s) or interface(s)
110, a modem 112, and a network interface card (NIC) or
controller 111 (e.g., Ethernet). Although not shown sepa-
rately, a real-time system clock is included with the system
100, in a conventional manner.

[0044] CPU 101 comprises a processor of the Intel Pen-
tium® family of microprocessors. However, any other suit-
able processor may be utilized for implementing the present
invention. The CPU 101 communicates with other compo-
nents of the system via a bi-directional system bus (includ-
ing any necessary input/output (I/O) controller circuitry and
other “glue” logic). The bus, which includes address lines
for addressing system memory, provides data transfer
between and among the various components. Description of
Pentium-class microprocessors and their instruction set, bus
architecture, and control lines is available from Intel Cor-
poration of Santa Clara, Calif. Random-access memory 102
serves as the working memory for the CPU 101. In a typical
configuration, RAM of sixty-four megabytes or more is
employed. More or less memory may be used without
departing from the scope of the present invention. The
read-only memory (ROM) 103 contains the basic input/
output system code (BIOS)—a set of low-level routines in
the ROM that application programs and the operating sys-
tems can use to interact with the hardware, including reading
characters from the keyboard, outputting characters to print-
ers, and so forth.

[0045] Mass storage devices 115, 116 provide persistent
storage on fixed and removable media, such as magnetic,
optical or magnetic-optical storage systems, flash memory,
or any other available mass storage technology. The mass
storage may be shared on a network, or it may be a dedicated
mass storage. As shown in FIG. 1, fixed storage 116 stores
a body of program and data for directing operation of the
computer system, including an operating system, user appli-
cation programs, driver and other support files, as well as
other data files of all sorts. Typically, the fixed storage 116
serves as the main hard disk for the system.

[0046] In basic operation, program logic (including that
which implements methodology of the present invention
described below) is loaded from the removable storage 115
or fixed storage 116 into the main (RAM) memory 102, for
execution by the CPU 101. During operation of the program
logic, the system 100 accepts user input from a keyboard
106 and pointing device 108, as well as speech-based input
from a voice recognition system (not shown). The keyboard
106 permits selection of application programs, entry of

OpenTV Exhibit 1005 Page 11

US 2003/0110234 A1

keyboard-based input or data, and selection and manipula-
tion of individual data objects displayed on the screen or
display device 105. Likewise, the pointing device 108, such
as a mouse, track ball, pen device, or the like, permits
selection and manipulation of objects on the display screen.
In this manner, these input devices support manual user
input for any process running on the system.

[0047] The computer system 100 displays text and/or
graphic images and other data on the display device 105. The
video adapter 104, which is interposed between the display
105 and the system/s bus, drives the display device 105. The
video adapter 104, which includes video memory accessible
to the CPU 101, provides circuitry that converts pixel data
stored in the video memory to a raster signal suitable for use
by a cathode ray tube (CRT) raster or liquid crystal display
(LCD) monitor. A hard copy of the displayed information, or
other information within the system 100, may be obtained
from the printer 107, or other output device. Printer 107 may
include, for instance, an BP LaserJet® printer (available
from Hewlett-Packard of Palo Alto, Calif.), for creating hard
copy images of output of the system.

[0048] The system itself communicates with other devices
(¢.g., other computers) via the network interface card (NIC)
111 connected to a network (e.g., Ethernet network, Blue-
tooth wireless network, or the like), and/or modem 112 (e.g.,
56K baud, ISDN, DSL, or cable modem), examples of
which are available from 3Com of Santa Clara, Calif. The
system 100 may also communicate with local occasionally-
connected devices (e.g., serial cable-linked devices) via the
communication (COMM) interface 110, which may include
a RS-232 serial port, a Universal Serial Bus (USB) interface,
or the like. Devices that will be commonly connected locally
to the interface 110 include laptop computers, handheld
organizers, digital cameras, and the like.

[0049] IBM-compatible personal computers and server
computers are available from a variety of vendors. Repre-
sentative vendors include Dell Computers of Round Rock,
Tex., Compaq Computers of Houston, Tex., and IBM of
Armonk, N.Y. Other suitable computers include Apple-
compatible computers (e.g., Macintosh), which are available
from Apple Computer of Cupertino, Calif., and Sun Solaris
workstations, which are available from Sun Microsystems of
Mountain View, Calif.

[0050] B. Basic System Software

[0051] TIlustrated in FIG. 2, a computer software system
200 is provided for directing the operation of the computer
system 100. Software system 200, which is stored in system
memory (RAM) 102 and on fixed storage (e.g., hard disk)
116, includes a kernel or operating system (OS) 210. The OS
210 manages low-level aspects of computer operation,
including managing execution of processes, memory allo-
cation, file input and output (I/O), and device I/O. One or
more application programs, such as client application soft-
ware or “programs”201 (e.g., 201a, 2015, 201c, 201d) may
be “loaded” (i.e., transferred from fixed storage 116 into
memory 102) for execution by the system 100.

[0052] System 200 includes a graphical user interface
(GUI) 215, for receiving user commands and data in a
graphical (e.g., “point-and-click”) fashion. These inputs, in
turn, may be acted upon by the system 100 in accordance
with instructions from operating system 210, and/or client

Jun. 12, 2003

application module(s) 201. The GUI 215 also serves to
display the results of operation from the OS 210 and
application(s) 201, whereupon the user may supply addi-
tional inputs or terminate the session. Typically, the OS 210
operates in conjunction with device drivers 220 (e.g., “Win-
sock” driver—Windows’ implementation of a TCP/IP stack)
and the system BIOS microcode 230 (i.e., ROM-based
microcode), particularly when interfacing with peripheral
devices. OS 210 can be provided by a conventional operat-
ing system, such as Microsoft® Windows 9%, Microsoft®
Windows NT, Microsoft® Windows 2000, or Microsoft®
Windows XP, all available from Microsoft Corporation of
Redmond, Wash. Alternatively, OS 210 can also be an
alternative operating system, such as the previously-men-
tioned operating systems.

[0053] The above-described computer hardware and soft-
ware are presented for purposes of illustrating the basic
underlying desktop and server computer components that
may be employed for implementing the present invention.
For purposes of discussion, the following description will
present examples in which it will be assumed that there
exists a “server” (e.g., Web server) that communicates with
one or more “clients” (e.g., media display devices). The
present invention, however, is not limited to any particular
environment or device configuration. In particular, a client/
server distinction is not necessary to the invention, but is
used to provide a framework for discussion. Instead, the
present invention may be implemented in any type of system
architecture or processing environment capable of support-
ing the methodologies of the present invention presented in
detail below.

[0054] T1I. Online Rendering of Media Tailored to Capa-
bilities of Various Devices

[0055] A. Introduction

[0056] Today, a great volume of various types of media
content is available on a multitude of Internet sites. At the
same time, a wide range of target devices exist that are
capable of displaying (rendering) media to users. These
devices include personal computers, laptop computers, per-
sonal digital assistants (PDAs), two-way pagers, and cellular
telephones. However, several problems exist in the delivery
of media content to these devices. Given the vastly different
capabilities of the various target devices in use and the
different types of images and other media content available
on the Internet, content providers currently have problems
delivering media content in a manner suitable for display (or
rendering) to the user of a particular target device in a
satisfactory manner.

[0057] One solution for these problems is for an Internet
site to display information in a number of different formats.
However, this solution requires an Internet content provider
to display a large number of copies of the same media object
in order to address the various types of devices on the market
and their wide range of capabilities. Among the disadvan-
tages of this approach are that it requires the content
provider to create, store, and manage multiple pre-rendered
versions of the same media in various formats depending on
the number of devices to be supported.

[0058] The present invention allows a content provider to
develop content in one form and deliver the content in
multiple forms based on the capabilities of the client device

OpenTV Exhibit 1005 Page 12

US 2003/0110234 A1

requesting the content. The present invention includes an
online system and methodology for providing a client device
with media content appropriate for the media output capa-
bilities of the device. The system includes a client capabili-
ties module (CCM) to determine the capabilities of con-
nected client devices and a media transformation (or
transcoding) module (MTM) that renders the appropriate
media on-the-fly and delivers it to the client device in the
appropriate format.

[0059] The operations of the present invention can be
illustrated by the following example of rendering a digital
image to a particular client device. In this example, the
original item of media content on an Internet site is a 24-bit
color JPEG image and the client device requesting this
image is a Palm PDA that supports 16-level grayscale. The
client device connects wirelessly to the Internet site and
invokes the URL for this JPEG image. The Internet content
provider using the present invention has previously revised
the Uniform Resource Locator (URL) for this image to refer
to the machine on which the client capabilities module of the
present invention is installed. As a result, this URL request
is routed to the CCM, which identifies the requested image
and the client device from this request. The CCM determines
the capabilities of the client device in an intelligent fashion
by examining the client request to the server to obtain
information about the client device and by comparing this
information to known device characteristics and capabilities
stored in its data store. In this case, the CCM recognizes this
device as a specific type of Palm PDA and looks up the
device’s capabilities in the system’s database. Based upon
this information, the CCM determines that the JPEG image
should be supplied to this Palm device in a 16-level gray-
scale format.

[0060] After the appropriate media format required by the
device is determined, the CCM (optionally) checks a front-
side cache to see whether the cache already stores a version
of the image in the required format. If an appropriate
transformed image is not in the cache, then the CCM
requests the image from the media transformation module in
a 16-level grayscale format suitable for rendering to this
type of Palm PDA device. The MTM obtains the appropriate
image, converts it to the appropriate format and serves it to
the client device. The system includes intelligence that
allows it to optimally translate the images (from their
original format) into a format suitable for use by the par-
ticular target device. The overall translation or transforma-
tion process is performed in a manner that preserves per-
formance and scalability criteria desired for the system.

[0061] B. Overview of Media Delivery System
[0062] 1. Basic Architecture

[0063] FIG. 3 illustrates an online environment 300 suit-
able for implementing the present invention. As shown, the
environment 300 includes an online media delivery system
320 connected via the Internet (shown at 310) to one or more
client devices 301 and at least one Internet site (server) 330.
Each of these components will next be described in greater
detail.

[0064] Client device 301 represents one of a variety of
target devices (or “clients”) that are capable of connecting
over the Internet and accessing online content. For example,
client devices may include both wireless devices (e.g.,

Jun. 12, 2003

cellular phone, handheld PDA (personal data assistant), and
pager) as well as wireline devices (e.g., desktop computer,
laptop computer, and videophone). Although a single client
device is shown in the figure, typically the environment 300
would operate with a multitude of such devices connected.

[0065] The Internet server 330 represents a Web server at
which items of media content (e.g., audio, video, documents,
blob objects, or other items of interest) are stored. During
operation, the Internet server 330 typically stores a number
of different items of media content that are to be made
available to a wide range of client devices. Actual connec-
tion between the Internet server 330 and the online media
delivery system 320 may occur over the Internet or, option-
ally, occur via a non-Internet (e.g., WAN) connection as
illustrated by the dashed connection line in the figure. In
either instance, the Internet server 330 may be housed at the
same site as the online media delivery system 320, or may
be housed at a remote site, as desired.

[0066] The online media delivery system 320 functions to
detect client device capabilities and, based on that determi-
nation, transforms and delivers media content to such
devices in appropriate formats to the client device 301. As
shown, the media delivery system 320 includes a client
capabilities module (CCM) 322, a media transformation
module (MTM) 325, and a device capabilities data store
324. As also shown, the client capabilities module 322 is in
direct communication with a front-side cache 321 and a
CCM log 323, the media transformation module 325, simi-
larly, is in direct communication with backside cache 327
and MTM log 326.

[0067] 2. Basic Operation

[0068] During basic system operation, items containing
and/or referencing media content (e.g., Web pages) on the
Internet server 330 are encoded with a URL that directs
clients requesting such items to the system 320. The Internet
server 330 may also include the original items of media
content, which may be any type of content including digital
images, video, audio, documents, “blob” objects, or the like.
Alternatively, original items of media content may be stored
locally on the system 320 or on another local or remote
server to which the system 320 is connected. When a request
(e.g., HTTP request) for an item of content is made by the
client 301, the request is routed to the client capabilities
module 322 of the media delivery system 320. Responsive
to the request received from the client device 301, the client
capabilities module 322 identifies the (client) device and
obtains available information about the device’s capabilities.
Based on this identification, the client capabilities module
322 retrieves additional information about the capabilities of
the client device for displaying or outputting media from the
data store 324.

[0069] The data store 324 includes media output capabili-
ties of various devices. In the currently preferred embodi-
ment, a corresponding device identifier is employed to index
this information. The capabilities stored in data store 324
include information regarding screen resolution, screen
color depth, whether images should be rotated to fit on the
device’s screen display, and other such information as
described in more detail below. The data store 324 is field
upgradable so that as new devices are introduced into the
market, the profiles of such devices and their capabilities can
be added. The client capabilities log 323 includes a record of

OpenTV Exhibit 1005 Page 13

US 2003/0110234 A1

any client devices that could not be identified or for which
capabilities are not available. These log records enable any
omitted devices to be identified so that information on these
devices can be obtained and added to the data store 324.

[0070] After the capabilities of client device 301 have
been determined, client capabilities module 322 (optionally)
looks into the front-side cache 321, which stores previously
converted content, to see if the object is available in the
appropriate format. The front-side cache 321 is an (optional)
optimization in which previously converted media objects
are retained for supply in response to future requests. The
front-side cache 321 may be implemented using least-
recently used (LRU) technique to “age out” (i.e., remove)
the least-recently used items. If the client capabilities mod-
ule 322 determines that the appropriate object is not avail-
able in the front-side cache 321, it requests the media
transformation module 325 to perform an on-the-fly trans-
formation that will supply the object.

[0071] The media transformation module (MTM) 325
receives requests for a particular item of media content in a
particular format from client capabilities module 322. The
media transformation module 325 obtains an original copy
of the requested media object, converts it into the requested
format, and returns the converted media object to the client
device 301. The backside cache 327 is an optimization to
provide increased efficiency; it may also be implemented
using LRU technique. Original objects retrieved from the
Internet server 330 (or another source) are retained in the
backside cache 327 to avoid having to retrieve a copy of
each requested item in response to each request. Use of this
backside cache reduces the number of calls over the net-
work. It also expedites conversion and return of available
objects by the media transformation module 325 by avoiding
the retrieval of large objects (such as high quality color
images) from a remote server.

[0072] C. Methodology for Detecting Capabilities of
Devices and for Delivering Appropriate Media Objects

[0073] FIGS. 4A-B comprise a single flowchart of the
detailed method steps of the operations of the system in
detecting the capabilities of connected client devices and
delivering media objects to such devices in appropriate
formats. In step 401, URLs for multimedia objects in Web
pages at an Internet site are modified so that such objects
will be served by the media delivery system of the present
invention. In the currently preferred embodiment, the URLs
are prepended with the server name on which the media
delivery system is installed. For example, if the subscriber’s
site contained a logo normally accessed by the URL: http://
www.subscriber.com/img/logo.gif, the modified URL would
be: http://eswitch.com/www.subscriber.com/img/logo.gif.

[0074] In step 402, an HTTP request from a client device
is routed to the media delivery system when a Web page
containing these rewritten URLs is opened or the client
device selects (clicks on) a rewritten URL. In step 403, the
client capabilities module (CCM) reverses the encoding
process performed in step 401 and determines the full URL
to the source image. In the currently preferred implementa-
tion, this consists of removing the “/eswitch.com” from the
request URL.

[0075] Instep 404, the CCM retrieves the client capability
configuration from the data store using the HTTP User-

Jun. 12, 2003

Agent header as a key. The configuration information speci-
fies the playback capabilities of the client device, such as
display size, color depth, audio channels, and so forth. The
configuration information may require examination of addi-
tional HTTP request headers to determine the complete
capabilities of the client device. Information gathered during
this step allows the CCM to understand exactly what capa-
bilities are supported in the target device. In particular, this
information indicates to the system what particular trans-
formation operation(s) is required in order to translate the
original media object into a format suitable for the target
device.

[0076] In step 405, the CCM constructs a URL containing
commands specific to the media transformation module
(MTM). These commands instruct the MTM to transform
the source media document or object to conform to the
capabilities of the client device that requested the document.
This URL points to the MTM server specified in the con-
figuration file. The MTM module can be on the same server
or a different server than the CCM. In (optional) step 406,
the CCM consults a front-side cache for an object matching
the constructed MTM URL. In other words, it looks to see
if the front-side cache already stores a version of the media
object that has been translated in a manner suitable for this
particular target device.

[0077] In the currently preferred embodiment, the URL
strings used internally within the system are encoded to
serve as an index for particular object in a particular format.
In this manner, an encoded URL string can indicate that a
particular document in a particular format is stored at a
particular location. For example the CCM can check for a
URL that includes a transformed version of logo.gif with the
characteristics: size=100 pixels, color depth=8, and color=
false. If the document or object (translated for the target
device) already exists in the front-side cache, the CCM may
simply return the document to the target device. However, if
a matching item is not found in the cache, then the method
continues as described in step 407.

[0078] In step 407, the CCM proxies the original client
request, replacing the URL sent by the client with the
reconstructed URL created by the CCM. This process is
completely transparent to the client: the client device mak-
ing the request is not informed or aware that the request has
been passed on to the MTM. Rather, this transfer is a
back-end process in which the CCM forwards the request
made by the client device for fulfillment by the MTM. In
step 408, the MTM receives the constructed URL and makes
an HTTP request through a backside-caching server for the
original media object. If the object is present in the backside
cache, it is served from local disk. If not, the caching server
requests the object from the Internet site identified in the
original URL and caches it for future use. The task of the
MTM, at this point, is to transform the media object from its
original format into the format that is desired for the target
device (based on target device capabilities). In step 409, the
MTM performs the media transformation as specified in the
reconstructed URL that it received. Once the MTM has
carried out this task, in step 410 the newly-transformed
version of the media object is returned to the client device
and (optionally) is also copied into the front-side cache.

OpenTV Exhibit 1005 Page 14

US 2003/0110234 A1

[0079] D. Use of System to Determine and Provide Infor-
mation on Client Capabilities

[0080] In addition to serving the role described above, the
present invention may also be used to determine the capa-
bilities of client devices and supply this client capabilities
information to other systems or devices. For further descrip-
tion about how devices such as cellular phones should
describe their capabilities to servers, see, e.g., WAG UAProf
(Wireless Application Group User Agent Profile Specifica-
tion), Wireless Application Protocol Forum, Ltd., Proposed
Version May 30, 2001, available from the WAP Forum, the
disclosure of which is hereby incorporated by reference. A
copy of the specification can currently be found on the
Internet at http://wwwl.wapforum.org/tech/documents/
‘WAP-248-UAProf-20010530-p.pdf. A similar specification
is described by Composite Capability/Preference Profiles
(CC/PP): A user side framework for content negotiation,
‘W3C Note, Jul 27, 1999, available from the World Wide
Web Consortium (W3C), the disclosure of which is hereby
incorporated by reference. A copy of the specification can be
currently found on the Internet at http://www.w3.org/TR/
NOTE-CCPP/.

[0081] One or both of these proposed standards may be
supported by new devices and device software in the future,
but current support for such standards is very limited. Until
the device support of these standards is universal, server
applications will not be able to take advantage of the
standardized device information. This problem can be
addressed by configuring the system of the present invention
to act as a proxy for incoming HTTP requests from non-
compliant devices. When a request is forwarded to the media
delivery system with partial or no UAProf or CC/PP infor-
mation, the client capabilities module looks up the required
data and attaches this information to the request before
forwarding the request on to its eventual destination. This
enables the system to act as a bridge between the non-
compliant client device and those Internet and WAP sites
that require compliance with UAProf, CC/PP, or other
comparable standards.

[0082] FIG. 5 is a flowchart illustrating the operations of
the client capabilities module of the media delivery system
in acting as a proxy for incoming HTTP requests from
non-compliant devices. In step 501, an HTTP request from
a non-compliant client device is forwarded from an Internet
or WAP site to the system. For these purposes a “non-
compliant” client device is one that is not in compliance with
UAProf, CC/PP, or similar standards requiring such device
to identify its capabilities.

[0083] Instep 502, the system’s client capabilities module
(CCM) retrieves the client capability configuration from the
data store using the HTTP User-Agent header as a key. The
configuration information specifies the capabilities of the
client device, such as display size, color depth, audio chan-
nels, and so forth. The configuration information may
require examination of additional HTTP request headers to
determine the complete capabilities of the client device.
Information gathered during this step allows the CCM to
understand exactly what capabilities are supported in the
target device.

[0084] In step 503, the CCM supplements the request
made by the particular client device with information
regarding the specific capabilities of such client device as
illustrated below. In step 504, the CCM returns the supple-
mented request including details on the client capabilities to
the destination specified in such client request.

Jun. 12, 2003

[0085] The following is an example of how the system can
be used to append device capabilities information to a
request. An example of an incoming request forwarded to
the system is as follows:

GET /index.wml HTTP/1.1

Host: www.lightsurf.com

Accept-Charset: ISO-8859-1

Accept-Language: en

x-up-subno: pegli_pegli-nt4.office.lightsurf.com
x-upfax-accepts: none

x-up-uplink: none

x-up-devcap-smartdialing: 1
x-up-devcap-screendepth: 1
x-up-devcap-iscolor: 0
x-up-deveap-immed-alert: 1
x-up-devcap-numsoftkeys: 2
x-up-devcap-screenpixels: 171,108
x-up-deveap-msize: 8,18

User-Agent: UP.Browser/3.1-UPG1 UP.Link/3.2

[0086] As shown, the incoming information reports device
capabilities including, for example, color support (“0” or
none, for the above device) and screen pixels (171 by 108
pixels for the above device).

[0087] Following receipt of the above request, the client
capabilities module determines the capabilities of the par-
ticular client device in the manner described above. The
CCM then attaches this information to the request and
forwards the supplemented request on to its eventual desti-
nation. A sample request showing the information appended
by the CCM is as follows:

GET /index.wml HTTP/1.1

Host: www.lightsurf.com

Accept-Charset: ISO-8859-1

Accept-Language: en

User-Agent: UP.Browser/3.1-UPG1 UP.Link/3.2
x-wap-profile: http://www.eswitch.com/profiles/0A3F362B.xml

[0088] In this instance, “OA3F362B.xml” is a generated
document containing either the UAProf or CC/PP profile
information. A sample UAProf file for this request is as
follows:

<?xml version=“1.0"/>
<RDF xmlns=“http://www.w3.01g/1999/02/22-rdf-syntax-ns#’
xmlns:rdf=“http://www.w3.0rg/1999/02/22-rdf-syntax-ns#”
xmlns:pri=“http://www.wapform.org/profiles/UAPROF/ccppschema-
20010430#">
<rdf:Description id=“WAP-enabled cellular phone’>
<rdfitype
resource="http://www.wapform.org/profilesyUAPROF/ccpschema-
20010430#Hardware
Platform™/>
<prf:ScreenSize>171x108 </prf:ScreenSize>
<prf:ColorCapable>No</prf:ColorCapable>
<prf:NumberOfSoftKeys>2</prf:NumberOfSoftKeys>
<prf:ScreenSizeChar>8x18</Prf:ScreenSizeChar>

</tdf:Description>
</RDF>

OpenTV Exhibit 1005 Page 15

US 2003/0110234 A1

[0089] The generated document is populated with infor-
mation from the device’s HT'TP request and the data store or
knowledgebase maintained by the media delivery system.
Because the system maintains a knowledgebase of client
device characteristics, it is much more capable of creating a
complete UAProf or CC/PP document than a server which
simply transcodes the information in the HTTP headers.

[0090] E. Detailed Methods of Operation of CCM and
MTM Modules

[0091] 1. Client Capabilities Module

[0092] The client capabilities module (CCM) identifies a
client device from an HTTP request. The CCM uses infor-
mation supplied in the request, together with media output
capability information stored in the data store, to determine
the media output capabilities of a particular client device.
This enables the CCM to determine the optimal transmission
size and playback format for the particular type of client
device requesting the item of interest (e.g., media object).
For example, an HTTP browser may indicate the browser
name (e.g., “Netscape Navigator” or “Microsoft Internet
Explorer”), the browser version, and the graphic types it
supports. This information is helpful in instances where
graphic support is limited, such as a browser running on a
set-top box having very limited graphic support (e.g., JPEG
support only). In the case that the target device is not able to
indicate its capabilities, it will at least indicate its device
class, such as a Palm handheld device, a set-top box, a phone
with a WAP browser, or the like.

[0093] Based on the device class, the CCM obtains infor-
mation about the capabilities of the device from the device
capabilities data store. For example, the device class may be
a Palm handheld device of a particular model. Based on this
information, the CCM may discern, by looking up the device
class in the knowledgebase maintained in the data store, the
capabilities of the device, such as display capability (e.g.,
16-color), device memory (e.g., 4-8 MB), and display size
(e.g., 300x500).

[0094] The CCM also includes methods to log unidenti-
fied clients in the CCM log and to provide notifications at
regular intervals to ensure that the knowledgebase is as
up-to-date as possible. As new client devices are introduced,
the configuration information in the knowledgebase can be
updated to add information on these new client devices. The
CCM supports either a “push” or a “push/pull” scheme for
updating its configuration files. The “push” scheme consists
of a secure HTTP POST request or SMTP message sent to
the data store containing the replacement configuration file.
The “push/pull” scheme consists of sending an HTTP GET
request or SMTP message to the data store which causes the
server to schedule an update of the local configuration files.

[0095] The CCM relies primarily on HTTP headers, par-
ticularly the User-Agent header, to identify clients. The
CCM also examines information in the protocol layer below
HTTP (for example, the origin of the request’s IP packets).
Once the device has been identified, the CCM consults a
hierarchical configuration file (in the data store) which
supplies default values for the device’s capabilities and
specifies additional headers, such as the Accept header,
which can also be used to determine the proper output
format for media content. Once the device’s capabilities
have been determined, the CCM constructs a request to the

Jun. 12, 2003

MTM for the specified media document including the proper
reformatting information. The CCM then forwards the client
connection to the MTM with the reconstructed request.

[0096] In the currently preferred embodiment, the CCM
may be implemented as an Apache module with access to the
full HTTP request made by the client. The information
contained in that request is used to identify the client device
making the request through a series of queries against a
configuration file. The HTTP User-Agent header is the
primary indicator of the requesting client. While User-Agent
is an optional header in both HTTP/1.0 and HTTP/1.1, in
practice all Web client software send some identifying
information in that header on each request. Many clients also
send custom headers describing the physical capabilities of
their devices. For example, the UP browser (Unwired Planet
browser supplied by Openwave Systems, Inc. of Redwood
City, Calif.), which is a WAP browser used in mobile
phones, sends out “non-standard” heads in the request.
“Non-standard” in this context means that such headers are
not covered by the HTTP specification. An example of one
of these headers is as follows:

User-Agent: UP.Browser/3.04-SC02 UP.Link/3.2.3.8
x-up-devcap-charset: US-ASCII
x-up-devcap-immed-alert: 1

x-up-devcap-max-pdu: 1472

x-up-devcap-msize: 8,10

x-up-devcap-numsoftkeys: 2
x-up-devcap-screenchars: 15,5
x-up-devcap-screenpixels: 120,50
x-up-devcap-smartdialing: 1
x-up-devcap-softkeysize: 7

x-up-fax-accepts: none

x-up-fax-limit: 0

x-up-subno: RzOyzSrSj-ARAs01__up2.upl.sprintpcs.com
x-up-uplink: up2.upl.sprintpcs.com

[0097] The “x-up-devcap-screenpixels” portion of the
above header specifically indicates how many pixels in
width and height (120x50) the client device is capable of
displaying. The header shown in the above example contains
several details about the capabilities of this particular client
device. However, in many cases headers do not include all
of these details, and thus the CCM must refer to information
stored in the data store to obtain device characteristics.
However, the CCM uses information in the headers like
“x-up-devcap-screenpixels” portion of the above header
whenever possible.

[0098] In the currently preferred implementation, the
CCM configuration file (or knowledge base) in the data store
is written in XML to take advantage of that language’s
hierarchical features. The file consists of a series of <user-
agent> entries. An example <user-agent> entry might appear
as follows (line numbers are for reference only):

1 <user-agent header="User-Agent’ pattern=‘UP.Browser’ >>
2 <device-class>wap</device-class>

3 <content-type pattern=" Aimage/’>

4 <capability name="color-depth” default="8"/>

5 <capability name=*display-height” default=*100">

OpenTV Exhibit 1005 Page 16

US 2003/0110234 A1

-continued
6 <header name="x-up-devcap-screenpixels’
pattern=*(\d+),\d+"/>
7 </capability>
8 <capability name="display-width’ default="100">
9 <header name="x-up-devcap-screenpixels’
pattern="d+,(\d+)’/>
10 </capability>
11 <capability name="output-format” default="image/bmp’/>

12 </content-type>
13 </user-agent>

[0099] In general, tag attribute naming patterns indicate
that the values provided to those attributes will be treated as
regular expressions. In the case where information must be
extracted from the regular expression, standard “match
remember” syntax (parentheses) is used. For example, on
line 9 above, the pattern attribute matches the string “120,
507 and indicates that the substring “50” is to be used to set
the enclosing capability value.

[0100] When the CCM receives a request, it runs through
the configuration file, checking each <user-agent> tag in turn
by comparing the value of the HTTP header specified by the
header attribute to the string specified in the value attribute.
In the majority of cases, the <user-agent> tag is matched
against the HT'TP User-Agent header, and matching the tag
against the HTTP User-Agent header is the default behavior
if the header attribute is omitted. Each <user-agent> block is
processed in the order it appears in the configuration file, so
<user-agent> tags with more restrictive value attributes
appear before <user-agent> tags with less-restrictive value
attributes. For example, a <user-agent> tag which reads
value=‘UP.Browser/3.1° is placed before a <user-agent> tag
which reads value="UP.Browser’. The <device-class> ele-
ment is used to separate the different clients into arbitrary
groupings based on their capabilities. Some examples of
<device-class> wvalues might be “WAP”, “i-mode”,
“HDML”, and “j-phone.”

[0101] Once a matching <user-agent> tag is found, the
CCM determines the MIME type of the media document
being requested, generally by issuing an HTTP HEAD
request to the document source. Once the MIME type is
known, the CCM looks up the appropriate <content-type>
block inside the <user-agent> block. In the example above,
any request for MIME types that start with “image/” will
match the regular expression defined in the pattern attribute
of the first <content-type> tag. An actual configuration file
may have separate blocks for each supported media type or
subtype.

[0102] Client capabilities are defined inside the <content-
type> tag by one or more <capability> tags. Each media type
may require different capabilities. To properly display
images, one needs to know display width, height, and color
depth. To supply appropriate audio streams, one needs to
know bandwidth and whether the device is capable of
playing multiple channels. In the simplest case, the configu-
ration file provides previously-stored values for each capa-
bility through the mandatory default attribute. Lines 4 and 11
of the above example illustrate this case, setting the color
depth and output format for all UP.Browser user agents to 8
bits per pixel and image/bmp, respectively. As described
above, some user agents provide additional information to

Jun. 12, 2003

the server in the form of non-standard HTTP headers. The
<header> tag can be used inside of a <capability> tag to
instruct the CCM to parse these headers and set the device
capabilities depending on the header values. In the example,
line 6 indicates that the non-standard “x-up-devcap-screen-
pixels” header should be used, if present, to set the device
display width by applying the regular expression provided in
the pattern attribute to that header’s value. Parentheses are
used to isolate a part of the header value to assign to the
capability.

[0103] Although not specifically shown above, the under-
lying communication transport may also be inferred from
the class or type of device. For example, if the target device
is a cellular phone, the system may infer that the underlying
communication transport is wireless. As another example, if
the target device is a pager that is communicating using
WAP, the system may infer that the target device uses
wireless communication with limited bandwidth (as com-
pared to a cellular phone). Based on the device class and the
incoming request, the system may usually discern whether
the communication transport is wireless or wireline. More-
over, very few devices have both wireless and wireline
capability. Typical wireline connections include T1, DSL,
cable modem and dial-up connections. On the wireless side,
typical connections include 9600-baud circuit-switched data
call, 9600-baud packet-switched data call, or the newer 64K
baud GPR call.

[0104] The client capabilities module is also responsible
for verifying the source of the original content so that the
system can only be used to reformat content of authorized
participating sites and not of third parties. Security is
enforced by only activating the CCM in response to specific
URLs containing the name of a designated server for which
content is to be transformed.

[0105] The CCM uses the information it derives about the
capabilities of a particular client device to construct a
request to the media transformation module for the
requested media document. This CCM forwards this con-
structed request, including the proper reformatting informa-
tion and the client connection to the MTM. The client
capabilities module (optionally) implements a front-side
cache for transformed media documents. This front-side
cache is consulted for transformed document meeting the
criteria of the constructed request before the request is
forwarded to the MTM. The purpose of this front-side cache
is to minimize the load on the MTM module.

[0106] 2. Media Transformation Module

[0107] The media transformation (or transcoding) module
(MTM) accepts HTTP requests for media documents, which
contain formatting instructions as request parameters, and
reformats the media according to those instructions. The
MTM may specialize in a single media type, such as image
or video or may support multiple types of media. In basic
operation, the media transformation module supports image
reformatting by: converting images both to and from the
following MIME types: image/jpg, image/bmp, image/gif,
image/tiff, image/wbmp, image/iff, image/pcx, and image/
png; decreasing image dimensions and increasing image
dimensions; supporting rotation of images to conform to the
aspect ratio of the client display; and supporting decreasing
image color depth and increasing of image color depth. The
MTM supports audio reformatting by: converting audio files

OpenTV Exhibit 1005 Page 17

US 2003/0110234 A1

and streams both to and from the following MIME types:
audio/aiff, audio/au, audio/mpeg, audio/wav; and decreasing
audio bit rate.

[0108] The MTM supports video reformatting by convert-
ing video files and streams both to and from the following
MIME types: video/mpeg, video/quicktime, video/x-ms-
video (AVI), video/x-ms-asf, video/rm, and video/mjpeg.
The MTM can also support reformatting of additional mul-
timedia content types and streams as defined by RFC 2046,
Multipurpose Internet Mail Extensions (MIME), the disclo-
sure of which is hereby incorporated by reference. A copy of
RFC 2046 is currently available on the Internet at http://
www.ietf.org/rfc/rfc2046.1xt.

[0109] An example of the operation of the media trans-
formation module demonstrating its operation is set forth
below. In this example, the MTM receives is translating a
JPEG image and receives as input the following:

[0110] Dimensions of output (width and height);
[0111] Type of output device;

[0112] Color space (e.g., RGB or Grayscale),
[0113] Color palette (e.g., True color or indexed); and
[0114] Compression technique.

[0115] From these inputs, the MTM may output a picture
in the specified output format at the specified size. Note that
some devices may be characterized differently than their
native characteristics. For example a device with a 16-color
LCD display may prefer to be characterized as a true-color
device. It is then the responsibility of the device to convert
the true-color mode image transmitted by the MTM to its
internal 16-color mode using internal software/hardware.
Any suitable compression scheme may be employed, includ-
ing proprietary or non-proprietary schemes. Examples
include JPEG, JBIG, GIF, or the like. See, e.g., JPEG-like
Image Compression (Parts 1 and 2), Dr. Dobb’s Journal, July
1995 and August 1995 respectively (available on CD ROM
as Dr. Dobb’s/CD Release 6 from Dr. Dobb’s Journal of San
Mateo, Calif)). The disclosure of the foregoing is hereby
incorporated by reference.

[0116] The specific operations of the MTM in translating
the above-mentioned JPEG image are as follows. First, the
input picture is decompressed to generate a bitmap in the
color space that was employed. For example, Clikpix uses
GUV color space; JPEG supports multiple color space,
including YUV and RGB. GUV color space is described in
commonly-owned application Ser. No. 09/489,511, filed
Jan. 21, 2000, the disclosure of which is hereby incorporated
by reference; a description of industry-standard color spaces
may also be found in that application. The picture is then
converted to a “standard” intermediate format, typically in
one of the industry-standard color spaces. Examples include:

[0117] L,a,b 16 bits/pixel/channel (e.g., used in
Adobe Photoshop);

[0118] SRGB 8 bits/pixel/channel (e.g., used by
Microsoft, HP, and others); and

[0119] YUV

Jun. 12, 2003

[0120] The intermediate format is then mapped to the
format required by the output device with the following
processing;:

[0121] 1. Image scaling—to scale the image to the
desired output size.

[0122] 2.If only monochrome information is desired,
then a monochrome version of the image is gener-
ated using standard conversion methods (e.g., using
International Telecommunication Union (ITU) rec-
ommendations for generating luminance signal Y
from R, G, B signals, see, ¢.g.: ['TU-Recommenda-
tion BT.601-1 Encoding parameters of Digital Tele-
vision for studio).

[0123] 3. If the bits/pixel is fewer than 8—then
dithering techniques (such as error diffusion, blue
noise masking, or the like—see, e.g., Recent
Progress in Digital Halfroning, 1994, The Society of
Imaging Science and Technology, compiled and
edited by Reiner Eschbach, ISBN 0-892080-181-3).

[0124] 4.If the output device has a color palette (e.g.,
supporting only 256 colors) then color dithering
schemes are used. Such schemes are discussed in
some detail in Computer Graphics—Principles and
Practice, Second Edition, 1990, Foley, van Dam, et
al., Addison-Wesley, Reading, Mass., ISBN 0-201-
12110-7.

[0125] 5. Compression is optionally performed
before data is streamed out. For true-color images,
the preferred compression scheme is JPEG. For
indexed images GIF, PNG are the preferred methods.
For halftoned images, the preferred approach is JBIG
compression.

[0126] (The disclosures of the above-mentioned refer-
ences are hereby incorporated by reference.)

[0127] Finally, the generated picture is outputted, and is
ready for streaming to a target device for ultimate rendering
on that device’s display.

[0128] An example of the operations of the media trans-
formation module in reformatting an item of media content
is shown by the following “AutoRotateOp” function:

: #include “autorotateop.h”

1
2:
3: AutoRotateOp::AutoRotateOp()
4: {
5:}
6:

7: AutoRotateOp::i~AutoRotateOp ()
8: {
9: }
11: const char *AutoRotateOp::Name()
12:

13: return “autorotate’;

16: const char *AutoRotateOp::Args()

18: return “displayWidth(160),displayHeight(120),clockwise(1)”;
19: }

21: const char *AutoRotateOp::Example()

OpenTV Exhibit 1005 Page 18

US 2003/0110234 Al
-continued

22: {

23: return “autorotate=118,1577;

24:

25:

26: void AutoRotateOp::Process(IMG__image *img)

27:

28: int32 w, h, cw;

29: float displayAspect, photoAspect;

30:

31: GetArg(&w, 160);

32: GetArg(&h, 120);

33: GetArg(&cw, 1);

34:

35: displayAspect = (float)w / (float)h;

36: photoAspect = (float) (img->width) / (float) (img->height);

37

38: if ((displayAspect > 1.0f && photoAspect < 1.0f) ||

39: (displayAspect < 1.0f && photoAspect > 1.0f))

40:

41: if (cw)

42: IMG__RotateRight(img);

43: else

44: IMG_ RotateLeft(img);

45}

46: }

47:

[0129] The above AutoRotateOp function automatically
rotates an image to better fit the available display of a
particular device. As shown on line 26 above, the function
receives a pointer to an image as a parameter. On lines 28 to
36, the display characteristics of the device are obtained. The
condition on lines 38 to 39 evaluates whether or not the
image should be presented in portrait orientation (i.e., to
display the image vertically) or landscape orientation (i.e., to
display the image horizontally) to better fit the device
display. Depending on the outcome of this evaluation, a call
is made to IMG RotateRight or IMG RotateLeft as shown on
lines 41 to 44 and the image is rotated either clockwise or

12

Jun. 12, 2003

counterclockwise to fit the display of a particular device.
Source code listings providing further details on the IMG
RotateRight and IMG Rotateleft functions are attached
hereto as Appendix A.

[0130] The MTM uses cached versions of the original
media objects whenever possible. The MTM caches source
media objects in the backside cache to reduce the time
required to read the source media and to reduce Internet
bandwidth consumption by the media delivery system. This
backside caching can be performed by the MTM or by an
intermediate reverse proxy cache. The source objects are
cached according to the directives specified in their HTTP
cache-control headers. In the currently preferred embodi-
ment, an Apache HTTP server configured as a reverse proxy
cache is deployed “between” the Internet and the MTM
module, so any requests for source multimedia documents
are first compared to a local disk cache. The Apache reverse
proxy cache module decouples the caching task from the
media transformation task for better scalability and main-
tainability.

[0131] Appended herewith is Computer Program Listing
Appendix A containing source listings, in the C/C++ pro-
gramming language, providing further description of the
present invention. A suitable environment for creating and
building C/C++ programs is available from a variety of
vendors, including Borland® C++ Builder available from
Borland Software Corporation of Scotts Valley, Calif., and
Microsoft® Visual C++ available from Microsoft Corpora-
tion of Redmond, Wash.

[0132] While the invention is described in some detail
with specific reference to a single-preferred embodiment and
certain alternatives, there is no intent to limit the invention
to that particular embodiment or those specific alternatives.
For instance, those skilled in the art will appreciate that
modifications may be made to the preferred embodiment
without departing from the teachings of the present inven-
tion.

OpenTV Exhibit 1005 Page 19

US 2003/0110234 A1
13

Jun. 12, 2003

COMPUTER PROGRAM LISTING APPENDIX A

IMGXFORM

#include *vimage.h"
#include "imglib.h*

IMGLIB_API void IMG_FlipH(IMG_image *img)
{

if {img->pixelBytes != 4)
{
DEBUG_IMG_FORMAT;
return;
}
int32 x, y, w;
uint8 *rowPtr;
uint32 *pixPtr, *pixPtr2, tempPix;
w = img->width >> 1;
rowPtr = img->baseAddr;
for (y = 0; v < img->height; y++)
{
pixPtr = pixPtr2 = (uint32 *)rowPtr;
pixPtr2 += img->width - 1;
for (x = 0; x < w; x++)
tempPix = *pixPtr;
*PixPtr++ = *pixPtr2;
*pPixPtr2-- = tempPilx;
rowPtr += img->rowBytes;
1

}
IMGLIB_API void IMG_FlipV(IMG_image *img)
{
img->baseAddr += img->rowBytes *
img->rowBytes = -img->rowBytes;
}

IMGLIB_API void IMG_RotateLeft (IMG_image *img)
{

1f (img->pixelBytes != 4)

{
DEBUG_IMG_FORMAT;
return;

}

IMG_image tempImg;

if (!IMG_DuplicateImage (img, &tempImg))
return;

int32 x, y;

uint® *rowPtr, *srcRow, *srcPix;

uint32 *pixPtr;

if (img->rowBytes < 0)

{
img->baseAddr += (img->height - 1)
img->rowBytes = -img->rowBvtes;

}

img->width = tempImg.height;
img->height = tempImg.width;
img->rowBytes = img->pixelBytes * img->width;

rowPtr = img->baseAddr;

srcRow = templmg.baseAddr + tempImg.pixelBytes *
1);

for (y = 0; v < img->height; y++)

{

Page 34 of 53

{(img->height - 1);

* img->rowBytes;

(tempImg.width -

OpenTV Exhibit 1005

Page 20

US 2003/0110234 A1 Jun. 12, 2003
14

pixPtr = (uint32 *)rowPtr;
srcPix = srcRow;

for (x = 0; x < img->width; x++)
{

*pixPtr = *((uint32 *)srcPix);
PLxXPLr++;
srcPix += tempImg.rowBytes:;

}
rowPtr += img->rowBytes;
srcRow -= templmg.pixelBytes:

}
IMG_FreeImage (&tempImg) ;
}

IMGLIB_API void IMG_RotateRight (IMG_image *img)
if (img->pixelBytes != 4)

({
DEBUG_IMG_FORMAT;

return;
}
IMG_image tempImg;

if (1IMG_DuplicateImage(img, &tempImg))

return;
int32 x, vy
uint8 *rowPtr, *srcRow, *srcPix;
uint32 *pixPty;

if (img->rowBytes < 0)

img->baseAddr += (img->height - 1) * img->rowBytes:
img->rowBytes = -img->rowBytes;

}

img->width = tempImg.height;

img->height = tempImg.width;

img->rowBytes = img->pixelBytes * img->width;

rowPtr = img->baselddr;
srcRow = templmg.baseAddr + tempImg.rowBytes * (tempImg.height - 1);:
for (y = 0; y < img->height; y++)
{
pixPtr = (uint32 *)rowPtr;
srcPix = sSrcRow;
for (x = 0; x < img->width; x++)

*pixPtr = *((uint32 *)srcPix);
PixPtr++;
srcPix -= templmg.rowBytes;

}
rowPtr += img->rowBytes;
srcRow += tempImg.pixelBytes;

}
IMG_FreeImage (&tempImg) ;
}
IMGLIB_APTI void IMG_Rotatel80 (IMC_image *img)
{
IMG_FlipV(img) ;
IMG_FlipH (img) ;
}

IMGLIB_API void IMG_Resize(IMG_image *img, int32 newWidth, int32
newHeight, bool highQuality)
{

if {(img->pixelBytes != 4)

DEBUG_IMG_FORMAT;
return;

Page 35 of 53

OpenTV Exhibit 1005 Page 21

US 2003/0110234 A1 Jun. 12, 2003
15

if (img->width == newWidth && img->height == newHeight)
return;

IMG_image tempImg;

if (1 IMG_AllocateImage (&tempImg, newWidth, newHeight, img-
>imgFormat))
return;

//IMG_StretchBlit (img, &tempImg, 0, 0, newWidth, newHeight, true);
if {(highQuality)
{

Vimage vImg;
vImg.Import (img) ;
vImg.Scale (newWidth, newHeight, CImageServer: :CUBIC);
vImg.Export (&tempImg) ;
b

else
IMC_StretchBlit (img, &tempImg, 0, 0, newWidth, newHeight,
false);
IMG_CopyTags(img, &tempImg) ;
IMC_FreeImage(img);
*img = tempImg;
}

IMGLIB_API void IMG ClampResize(IMG_image *img, int32 maxWidth, int32
maxHeight, bool highQuality)
{

float £, aspect, newAspect;
int32 width, height;

aspect = (float) (img->width) / (float) (img->height);
newAspect = {(float)maxWidth / (float)maxHeight;
if (aspect > newAspect)

width = maxWidth;

f = (float)width / aspect;

height = ROUND(Ef) ;

height = CLAMP (height, 1, maxHeight);

else
height = maxHeight;
f = (float)height * aspect;
width = ROUND(f) ;
width = CLAMP(width, 1, maxWidth};

}
IMG Resize (img, width, height, highQuality):

Apache_Module

/**
* This function creates a device capabilities object

* and constructs the URL that is passed to the
* Media Transcoding Module.

*

* @param v

* @return

*/

static int uts_rewrite_uri (request_rec *r} {
int status;

// skip if already a proxy
if {(r->proxyreqg != NOT_PROXY) {

return OK;
3

Page 36 of 53

OpenTV Exhibit 1005 Page 22

US 2003/0110234 A1 Jun. 12, 2003
16

// skip all but GET reguests
if (strcasecmp (*GET*, r->method) != 0) {
return OK;

}

// get config file

uts_dir config *cfg = (uts_dir_config *) ap_get_module_config(r-
>per_dir_config, &uts_module);

uts_server_config *scfg = (uts_server_config *)

ap_get_modulevconfig(r—>server—>module_config, suts_module) ;

// (subrequest for content type)

string contentType = "image/Jjpeg":
/**
* first, parse the full incoming URI. We're going to treat the
path+args
* of this URI as the full URI for the proxy request
*/

uri_components uc;
status = ap_parse_uri_components (r->pool, r->uri, &uc);
if (status != HTTP_OK) {
ap_log_error {APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, r->server,
"Bad input URT: %s", r->uri);
return DECLINED:;
}

char *path = ap_pstrdup(r->pool, uc.path);

// pass in headers, get device_capabilities back
Deviceldentifier::DeviceCapabilities devcap:;
status = dev_ident->getDeviceCapabilities(&devcap, r, contentType);
if (status != DI_SUCCESS) {
ap_log_error (APLOG_MARK, APLOG_ERR | APLOG_NOERRNO, r->server,
"Device capabilities lookup failed");
ap_log_error (APLOG_MARK, APLOG_ERR [APLOG_NOERRNQO, r->server,
"Recording headers") ;
logHeaders (r) ;
return DECLINED;
3

ap_log_error (APLOG_MARK, APLOG_DEBUG] APLOG_NOERRNO, r->gerver, "%s*,
devcap.toString() .c_str()):

char *sub;
// pop off initial slash
sub = ap_getword_nc (r—->pool, &path, '/'}: // initial slash

// if we have an additional subscriber ID, pop it off, too
if (cfg->subgcriber_id_on_url) {
sub = ap_getword_nc(r->pool, &path, '/'); // subscriber ID

}

I/

// Build option list.

// TODO: This should really be a function that returns a string.

/7

char *cfg_clamp, *cfg mimetype, *cfg_path, *cfg_guality,
*cfg_argparam, *cfg_rotate, *cfg_scale, *cfg_filesize ;

char blank = *‘\0' ;

// Clamp or scale?
if (!'devcap.scale_to_width)

cfg_clamp = ap_psprintf (r->pool, *$sclampsize=%d&",
(strchr (cfg->media_transcoder_uri, '?') != NULL ? "&" : "?"},
(devcap.display_height > devcap.display_width ?
devcap.display_height : devcap.display_width));
cfg_scale = ap_psprintf (r->pool, "%c", blank) ;
} else {
cfg clamp = ap_psprintf (r->pool, "%s",

Page 37 of 53

OpenTV Exhibit 1005 Page 23

US 2003/0110234 A1 Jun. 12, 2003
17

{(strchr (cfg->media_transcoder_uri, '?') !s NULL ? "&" : *20))
cfg_scale = ap_psprintf (r->pool, "limitsize=%i, 0&",
devcap.display _width) ;
}

// Path
if (pathlistrlen(path)-2] == '."')

switch (pathlstrlen(path)-1])
{

case 'b':
cfg_path = ap_psprintf (r->pool, rin=\"http://%smp\"&", path)
break ;

case 'g':
cfg_path = ap_psprintf (r->pool, "in=\"http://%sif\"&", path) :
break ;

case 'j':
cfg_path = ap_psprintf (r->pool, "in=\"http://%spg*&", path) ;
break ;

case 'p':
cfg_path = ap_psprintf (r->pool, tin=\"http://%sng\"&", path) ;
break ;

case 't':
cfg_path = ap_psprintf (r->pool, "in=\"http://%sif\"&", path) ;
break ;

}
} else {
cfg_path = ap_psprintf (r->pool, "in=\'http://%s\"&", path) ;

// Mime Type
cfg_mimetype = ap_psprintf (r->pool, *outformat=%s&",
devcap.mime_type.c_str())

// Quality
if {(devcap.image_guality != -1)
cfg_cquality = ap_psprintf (r->pool, "outguality=%i&",
devcap.image_guality) ;
else
cfg_quality = ap_psprintf (r->pool, "outquality=%i&",
devcap.color_depth})

// Rotate?
if (devcap.rotate_to_£fit)
¢fg _rotate = ap_psprintf (r->pool, "autorotate=%i, %i, 0&",
devcap.display_width,
devcap.display_height) ;
else
cfg_rotate = ap_psprintf (r->pool, "%c", blank)

// Arguments
if (r->args)

cfg_argparam = ap_psprintf (r->pool, "%s&", r->args) :
else

cfg_argparam = ap_psprintf (r-»pool, "%c", blank) ;

// Filesize
if (devcap.maximum file_size)
ctg_filesize = ap_psprintf (r-»pool, "filesize=%i&",
devcap.maximum_file_size) ;
else
cfg_filesize = ap_psprintf (r->pool, "%c", blank) ;

End option list build

create URL for lsps

RN NN TN
~ NN

[ljURL[Z]Clamp[B]path[4]format[5]quality[61rotate[7]argparam[8]scale[9]fil
eslze

Page 38 of 53

OpenTV Exhibit 1005 Page 24

US 2003/0110234 A1 Jun. 12, 2003
18

char *url = ap_psprintf (r->pool, "%s5%s%s%s¥s¥s¥s¥sis”,
cfg->media_transcoder_uri,
cfg_clamp,
cfg_path,
cfg_mimetype,
cfg_quality,
cfg_rotate,
cfg_argparam,
cfg_scale,
cfg_filesize) ;

ap_log_error (APLOG_MARK, APLOG_DEBUG | APLOG_NOERRNO, r->server,
"proxying: %s", url);

// double-check that this is a valid URL
status = ap_parse_uri_components(r->pool, url, &uc):
if (status != HTTP_OK) {
ap_log_error (APLOG MARK, APLOG_ERR | APLOG_NCERRNO, r->server,
"Bad proxy URI: %s", url);
return DECLINED;
}

// internal redirect won't work for remote servers, so

// set this up as a proxy

/* example of working request member variables

r->proxyreq PROXY_PASS;

r->uri "/lsps";

r->filename "proxy:http://pegli-
ntd.office.lightsurf.com:10104/1sps";

r->args =
"clampsize=100&in=http://www.lightsurf.com/images/misc/pk_sunset.jpg";
r->handler = “proxy-server";
*/

PROXY_PASS;

ap_pstrdup (r->pool, uc.path);

ap_pstrcat (r->pool, "proxy:", uc.scheme, "://",
NULL) ;

ap_pstrdup (r->pool, uc.query);

"proxy-server';

r->proxyreq
r->uri
r->filename

uc.hostinfo, uc.path
r->args
r->handler

nnn

no-

return DECLINED;

DeviceIdentifier

/**

* Deviceldentifier.cpp

* implementation of Deviceldentifier and DeviceCapabilities classes
* 472372001 pae

*/

#include <string>
#include <strstream.h>
#include <stdlib.h>

#include "httpd.h"
#include "http_log.h"

#include "Regex.hpp"
#include "DevicelIdentifier .hpp”

static Regex regex;

DeviceIdentifier::DevicelIdentifier(const char * filename) {
try {
config = new XMLConfigFile(filename) ;

Page 39 of 53

OpenTV Exhibit 1005 Page 25

US 2003/0110234 A1 Jun. 12, 2003
19

1
catch (...} {
}
}
DeviceIdentifier: :Deviceldentifier() {

config = new XMLConfigFile("/lsurf/uts/conf/devices.xml") ;

}

DeviceIdentifier::~DeviceIdentifier() {
if (config != NULL) {
delete config;
}

/**

* Retrieve a named capability value from the configuration
* file. This function will first find the <capabilitys>
* node identified by <code>capabilityName</code>, then

* determine if any <header> tags apply. The

* value is returned as a string, which can then be

* converted to the appropriate type.

*

* @param r

* @param baseXPath

* @param capabilityName

* @return

*/

string DeviceIdentifier::getCapability(request_rec *r, string baseXPath,
string capabilityName) {

/**
* The device capabilities data storage is implemented as an XML file.
* A member variable named "config" allows us to make XPath queries
* against the XML file.
*/
string cguery =
baseXPath +
string("/capability[éname=\""} +
capabilityName +
String("\“]");

string value;

// first, look through headers (if any)
XMLConfigFile: :StringVectorType headernames = config->query (cquery +
string (" /header/@name")) ;
for {(unsigned int i=0; i < headernames.size(}; 1++) {
const char *headerval = ap_table_get (r->headers_in,
headernames[i] .c_str());
if (headerval != NULL} {
// found a matching header, so grab the pattern and run the

regex

XMLConfigFile: :StringVectorType patterns = config-
squery (cquery + string("/header[@name=\"") + headernames[i] +
string{("\"]/@pattern")) ;

if (regex.group(patterns[0}, string(headerval), &value)) {
// ves, there is a match between the <header pattern="">
and the header value
if (value.size(} > 0) {
// value now contains the matched substring
break;
} else {
// there was a pattern match, but no parenthesized
substring, so use the value of the "default" attribute
XMLConfigFile: :StringVectorType defaults = config-
>query (cquery + string("/header[@name=\"") + headernames[1] +
string{("\"]/@default")};
value = defaults([0];
}

Page 40 of 53

OpenTV Exhibit 1005 Page 26

US 2003/0110234 A1 Jun. 12, 2003
20

}

// if we didn't get anything from the headers, use the default value
XMLConfigFile: :StringVectorType defaults = config->query (cquery +
string("/@default"));
if (defaults.size() > 0) {
value = defaults[0];
}

// TODO: if there isn't a default, die a horrible death
// this may not be necessary if we publish a schema for the config
file

return value;

Convert the result of <code>getCapability()</code>
to an integer.

@param r
@param baseXPath
@param capabilityName
* @return
*/
int DeviceTIdentifier::getCapabilityInt(request_rec *r, string bageXPath,
string capabilityName) (
string value = getCapability(r, baseXPath, capabilityName) ;
if (value.size() > 0) {
return atoi (value.c_str(});
} else {
return -1;

* ok % % % A #

Convert the result of <code>getCapability()</code>
to a boolean.

@param r
@param baseXPath
@param capabilityName
* @return
*/
int DeviceIdentifier::getCapabilityBool (request_rec *r, string baseXPath,
string capabilityName) {
string value = getCapability(r, baseXPath, capabilityName);
return(!value.compare("true") || tvalue.compare("l*)): // anything
but true or 1 is considered false

}

* % ok ok ok Ak

*

Fill in a DeviceCapabilites structure based on the

HTTP request headers and the content type of the

requested document. The main job of this function

is to find the correct node in the config file for

the given User-Agent header, then call
<code>getCapabilityStr()</code>, <code>getCapabilityInt()</code>,
and <code>getCapabilityBool () </code> to fill in

the device capabilities.

@param devcap
@param r

% % %X X % F % % %

Page 41 of 53

OpenTV Exhibit 1005 Page 27

US 2003/0110234 A1 Jun. 12, 2003

21

* @param contentType

*/

int
DeviceIdentifier::getDeviceCapabilities(DeviceIdentifier::DeviceCapabiliti
es *devcap, request_rec *r, string contentType)

if (devcap == NULL) {
// sorry, no can do
ap_log_error (APLOG_MARK, APLOG_ERR, r->server, "Cannot call
getDeviceCapabilities() with a null DeviceCapabilities parameter"):
return DI_ERROR;
}

XMLConfigFile::StringVectorType xpath_results;
string base_xpath_query:;

// find the correct user-agent node
const char *ua_header = ap_table_get(r—>headers_in, "User-Agent") ;

xpath_results = config->query ("//user-agent/@pattern®) ;
int found = FALSE;
for (unsigned int i=0; 1 < xpath_results.size(); i++) {
if (regex.match(xpath _results[il], string(ua_header))) {
base_xpath_query.append("//user—agent[@pattern=\"“);
base_xpath_query.append(xpathﬁresults[i]);
base_xpath_query.append ("\"1%};
found = TRUE;
break;
1 else if (regex.last_error.size() > 0) {
// this will complain a lot if there are regex errors
ap_log_error (APLOG_MARK, APLOG_ERR, r->server, "Regular
expression error: %s", regex.last_error.c_str());
ap_log_error (APLOG_MARK, APLOG_DEBUG, r->server, "Regex: %s",
xpath_results[il.c_str()} ;

}
if (!'found) {
ap_log_error (APLOG_MARK, APLOG DEBUG, r->server, "Could not find
configuration entry for User-Agent \'%s\"", ua_header);
// TODO: log or send email
return DI_NOTFOUND;

// within that node, find the correct mime-type node
xpath _results = config->query(base xpath_query + string (" /mime-
type/@pattern”));

found = FALSE;
for (unsigned int i=0; i < xpath_results.size(); i++) {
if (regex.match(xpath_results[i], contentType)) {
base_xpath_query.append(“/mime—type[@pattern=\"");
base_xpath_query.append (xpath_results[i]);
base_xpath_guery.append("\"1");
found = TRUE;
break;
} else if (regex.last_error.size{} > 0} {
// again, here's another big complainer
ap_log_error {APLOG_MARK, APLOG_ERR, r->server, "Regular
expression error: %s", regex.last_error.c_str{));
ap_log_error (APLOG_MARK, APLOG_DEBUG, r->server, "Regex: %s",
xpath_results{i].c_str{}) :
}

}
if (1found) {
ap_log_error (APLOG_MARK, APLOG_DEBUG, r->server, "Could not find
<mime-type> entry in config file for document MIME type \"Es\"",
contentType.c_str());
// 'TODO: log or send email
return DI_NOTFOUND;

Page 42 of 53

OpenTV Exhibit 1005 Page 28

US 2003/0110234 A1 Jun. 12, 2003

22

ap_log_error (APLOG_MARK, APLOG_DEBUG, r->server, *Successfully
identified device, User-Agent: \"%s\"", ua_header);

// £ill in the DeviceCapabilities structure
// note defaults are: string="", int=-1, bool=false

devcap->mime_type = getCapability(r, base_xpath_gquery,
"output-mime-type") ;

devcap->disgplay width = getCapabilityInt(r, base_xpath_guery,
"display-width");

devcap->display_height = getCapabilityInt{r, base_xpath_guery,
"display-height") ;

devcap->color_depth = getCapabilityInt({r, base_xpath_guery,
"*color-depth");

devcap->image_quality = getCapabilityInt(r, base_xpath_gquery,
"image-quality");

devcap->color_capable = getCapabilityBool (r, base_xpath_query,
"color-capable");

devcap->rotate_to_fit = getCapabilityBool (r, base_xpath_guery,
"rotate-to-fit");

devcap->scale_to_width = getCapabilityBool (r, base_xpath_guery,
"scale-to-width") ;

devcap->palette = getCapability(r, base_xpath_query,
'"palette") ;

devcap->maximum_file_size = getCapabilityInt(r, base_xpath_guery,
"maximum-size") ;

devcap->video_frame rate = getCapabilityInt{r, base_xpath query,
"video-frame-rate"} ;

devcap->audio_encoding_rate = getCapabilityInt(r, base xpath query,
"audio-enceding-rate*) ;

devcap->audio_channels = getCapabilityInt(r, base_xpath_query,
"audio-channels®) ;

return DI_SUCCESS;

/**************************************k***********************************
******/

// utility functions to print out the DeviceCapabilities object

void DeviceIdentifier::DeviceCapabilities::print(ostream *os) {
*ogs << this->toString();

}s
string Deviceldentifier::DeviceCapabilities::toString() {
std::ostrstream buffer;
buffer << "DeviceCapabilites ("
<< " mime-type: " << mime_type
<< "; display width: " << display_width
<< "; display height: " << display_height
<< "; color depth: " << color_depth
<< "; color capable? " << (color_capable ? "yes" : "no")
<< "; rotate to fit? " << (rotate_to_fit ? "yes" : "no")
<< "; video frame rate: " << video_frame_rate
<< *"; audio encoding rate: " << audio_encoding rate
<< "; audio channels: " << audio_channels
<< " }Il
<< |I\OII;
return buffer.str();
}:
ostream &operator<<(ostream &os, Deviceldentifier::DeviceCapabilities
&devcap)

devcap.print{&os) ;
return os;

Y

Page 43 of 53

OpenTV Exhibit 1005 Page 29

US 2003/0110234 A1

‘What is claimed is:

1. In an online system, a method for determining the
capabilities of client devices and supplying media content in
a format suitable for such devices, the method comprising:

receiving a request to provide a target device with a copy
of a particular media object;

determining capabilities of the target device;

based on the capabilities of the target device, determining
a format that is desired for providing the target device
with a copy of the media object;

translating the particular media object into a copy having
said determined format; and

providing the target device with the copy having said
determined format.
2. The method of claim 1, further comprising

storing the copy having said determined format in a cache
memory.
3. The method of claim 2, further comprising:

receiving from a target device a subsequent request for the
particular object in the determined format; and

providing the target device with the copy stored in said
cache memory.
4. The method of claim 1, further comprising:

obtaining a copy of said particular media object from a
connected server for translation of said media object.
5. The method of claim 4, further comprising:

storing in cache memory a cached copy of said media
object received from said connected server; and

in response to subsequent requests for translation of said
media object, using the copy of said media object
stored in cache memory.

6. The method of claim 1, wherein the capabilities of the
target device include screen resolution.

7. The method of claim 1, wherein the capabilities of the
target device include screen size.

8. The method of claim 1, wherein the capabilities of the
target device include color support.

9. The method of claim 1, wherein the capabilities of the
target device include bit rate.

10. The method of claim 1, wherein the capabilities of the
target device include currently-available communication
medium that the target device employs to transmit its
request.

11. The method of claim 10, wherein currently-available
communication medium comprises wireless communica-
tion.

12. The method of claim 10, wherein currently-available
communication medium comprises wireline communica-
tion.

13. The method of claim 1, wherein said step of deter-
mining capabilities of the target device includes examining
the request submitted by the device

14. The method of claim 1, wherein said step of deter-
mining capabilities of the target device includes examining
the HTTP header submitted by the device.

15. The method of claim 14, wherein examining the
HTTP header submitted by the device includes examining
the HTTP User-Agent header.

Jun. 12, 2003

16. The method of claim 1, wherein said step of deter-
mining capabilities of the target device includes querying
the device for its capabilities.

17. The method of claim 1, wherein said step of deter-
mining capabilities of the target device includes determining
capabilities from a knowledgebase, based on a device class
for the target device.

18. The method of claim 17, further comprising:

recording a log record of target devices that are not
recognized to enable the capabilities of said devices to
be added to the knowledgebase.

19. The method of claim 18, further comprising:

automatically issuing notifications regarding said target

devices that are not recognized.

20. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining an
appropriate resolution for rendering the particular image at
the target device.

21. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining an
appropriate color space for rendering a particular image at
the target device.

22. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining an
appropriate image size for rendering the particular image at
the target device.

23. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining whether
to rotate the particular image to conform to the aspect ratio
of the target device display.

24. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining the
appropriate bit rate for the target device.

25. The method of claim 1, wherein said step of deter-
mining a format that is desired includes determining com-
munication bandwidth available for transmitting a copy of
the particular media object to the target device.

26. The method of claim 25, wherein the communication
bandwidth available is determined, at least in part, based on
the HTTP request header received from the target device.

27. The method of claim 25, wherein the communication
bandwidth available is determined, at least in part, based on
a device class for the target device.

28. The method of claim 1, wherein said target device
includes a handheld computing device having display capa-
bility.

29. The method of claim 1, wherein said target device
includes a handheld computing device having digital audio
capability.

30. The method of claim 1, wherein said target device
includes a cellular phone device having display capability.

31. The method of claim 1, wherein said target device
includes a cellular phone device having digital audio capa-
bility.

32. The method of claim 1, wherein said target device
includes a pager device having display capability.

33. The method of claim 1, wherein said target device
includes a personal computer having display capability.

34. The method of claim 1, wherein said target device
includes a personal computer having digital audio capability.

35. The method of claim 1, wherein said target device
includes WAP (Wireless Application Protocol) support.

OpenTV Exhibit 1005 Page 30

US 2003/0110234 A1

36. The method of claim 1, wherein said media objects
include digital images.

37. The method of claim 1, wherein said digital objects
include digital video.

38. The method of claim 1, wherein said digital objects
include digital audio.

39. An online system for providing digital media to target
devices, the system comprising:

a capabilities module for determining the capabilities of a
particular target device;

a transformation module for:

automatically retrieving a copy of a particular media
object; and

providing the target device with a copy of said object,
said copy being automatically translated into a par-
ticular format based on the capabilities of the target
device.
40. The system of claim 39, further comprising:

a cache memory for storing copies of media objects that

have been translated.

41. The system of claim 40, wherein said system first
attempts to satisfy the request by retrieving a copy of the
particular object in the particular format from the cache
MEemory.

42. The system of claim 39, further comprising:

a cache memory for storing copies of media objects that

have been retrieved.

43. The system of claim 42, wherein said system first
attempts to retrieve a copy of the particular media object
from the cache memory before retrieving a copy from a
remote server.

44. The system of claim 39, wherein each digital object
stored by said system is identified by a unique uniform
resource locator (URL).

45. The system of claim 44, wherein said unique URL is
encoded with the characteristics of said digital object.

46. The system of claim 44, wherein said unique URL
includes the color depth of said digital object.

47. The system of claim 44, wherein said unique URL
includes the image size of said digital object.

48. The system of claim 44, wherein said unique URL
includes the resolution of said digital object.

49. The system of claim 44, wherein said unique URL
includes the bit rate of said digital object.

50. The system of claim 44, wherein said system stores
URLs for each of the digital objects, and wherein the
capabilities module is capable of determining the particular
digital object that may be provided to the target device from
said URLs.

51. The system of claim 39, wherein the capabilities of the
target device include screen resolution.

52. The system of claim 39, wherein the capabilities of the
target device include screen size.

53. The system of claim 39, wherein the capabilities of the
target device include color support.

54. The system of claim 39, wherein the capabilities of the
target device include bit rate.

55. The system of claim 39, wherein the capabilities of the
target device include currently-available communication
medium that the target device employs to transmit its
request.

Jun. 12, 2003

56. The system of claim 55, wherein currently-available
communication medium comprises wireless communica-
tion.

57. The system of claim 55, wherein currently-available
communication medium comprises wireline communica-
tion.

58. The system of claim 39, wherein said capabilities
module includes the ability to determine the capabilities of
the target device from its HTTP header.

59. The system of claim 58, wherein said capabilities
module includes the ability to determine the capabilities of
the target device from its HTTP User-Agent header.

60. The system of claim 39, wherein said capabilities
module includes the ability to query the target device for its
capabilities.

61. The system of claim 39, wherein said capabilities
module includes a knowledgebase for determining the capa-
bilities of the target device based on its device class.

62. The system of claim 61, further comprising:

a log record for recording target devices that are not
recognized to enable the capabilities of said devices to
be added to the knowledgebase.

63. The system of claim 39, wherein said particular format
is selected based on an appropriate resolution for rendering
the particular media object at the target device.

64. The system of claim 39, wherein said particular format
is selected based on an appropriate color space for rendering
the particular media object at the target device.

65. The system of claim 39, wherein said particular format
is selected based on an appropriate image size for rendering
the particular media object at the target device.

66. The system of claim 39, wherein said particular format
is selected based on an appropriate bit rate for rendering the
particular media object at the target device.

67. The system of claim 39, wherein said particular format
is selected based on communication bandwidth available for
transmitting a copy of the particular media object to the
target device.

68. The system of claim 67, wherein the communication
bandwidth available is determined, at least in part, based on
a device class for the target device.

69. The system of claim 39, wherein said target device
includes a handheld computing device having display capa-
bility.

70. The system of claim 39, wherein said target device
includes a handheld device having digital audio capability.

71. The system of claim 39, wherein said target device
includes a cellular phone device having display capability.

72. The system of claim 39, wherein said target device
includes a cellular phone device having digital audio capa-
bility.

73. The system of claim 39, wherein said target device
includes a pager device having display capability.

74. The system of claim 39, wherein said target device
includes a personal computer having display capability.

75. The system of claim 39, wherein said target device
includes a personal computer device having digital audio
capability.

76. The system of claim 39, wherein said target device
includes WAP (Wireless Application Protocol) support.

OpenTV Exhibit 1005 Page 31

US 2003/0110234 A1

77. In an online system, a method for determining the
capabilities of client devices, the method comprising:

receiving an original request from a target device in which
said target device does not include information regard-
ing its capabilities;

determining capabilities of the target device;

supplementing said original request received from said
target device with information about the capabilities of
said target device; and

forwarding said supplemented request to a destination
specified in said original request.
78. The method of claim 77, wherein said step of deter-
mining capabilities of the target device includes examining
the request submitted by the device

Jun. 12, 2003

79. The method of claim 77, wherein said step of deter-
mining capabilities of the target device includes examining
the HTTP header submitted by the device.

80. The method of claim 79, wherein examining the
HTTP header submitted by the device includes examining
the HTTP User-Agent header.

81. The method of claim 77, wherein said step of deter-
mining capabilities of the target device includes querying
the device for its capabilities.

82. The method of claim 77, wherein said step of deter-
mining capabilities of the target device includes determining
capabilities from a knowledgebase, based on a device class
for the target device.

OpenTV Exhibit 1005 Page 32

