The ‘442 Patent Claim(s)

The Hellman Reference

causing a copy of the particular file to be provided
to the requester,

Hellman teaches that “a user at a base unit obtains a
software package...over telephone line, or in some
similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

wherein the requested file is not provided to
unlicensed parties, and

Hellman teaches that “a user...is prevented from
using software for which he does not have current
authorized use.” [10:53-54].

Hellman therefore teaches that files are only
distributed to licensed parties.

wherein the contents of the file may represent: a
page in memory, a digital message, a digital image,
a video signal or an audio signal.

Hellman teaches that the distributed software can
include programs, videogames, music, movies, elc.
[See Abstract]. “Software player will vary from
application to application. For example, if the
software is recorded music then software player
would be a record player; if the software is a
computer program, then software player would be a
microprocessor or central processing unit (CPU).”
[10:66-11:3].

8.
Cheriton

Claim 9 of the ‘442 patent is obvious over Hellman in view of

Claim 9 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple servers in a network. The claim recites that the locations of files

with contextual names in the network are specified. The ‘442 patent describes a “contextual

name” as a name which identifies a file relative to a specific context, e.g. a pathname. ‘442

patent, 2:3-8. The method includes obtaining a different name for a file. The claim recites that

the name is based on function of the data within the file, i.e., derived from the contents of the

file. The method also includes providing a copy of the file in response to a request for the file

including the name and the contextual name, provided that the requestor is a licensed party.

22

RACK-1003

Page 556 of 738

Hellman discloses a software distribution system where software is distributed to various
base units. Hellman, 5:39-6:30. Hellman also discloses that an authorization unit and multiple
base units are connected by any means of communication, such as a modem or telephone line.
Id. at 5:39-50. A software package is given a name derived from a one-way hash function
applied to the data within the software package. Id. at 6:31-35. Any type of hash function may
be used for this purpose. /d. at 7:67-8:1. The software package may be obtained by
downloading it from the authorization unit. /d. at 5:51-53. To access a software package, the
base unit sends a request to the authorization unit. /d. at 5:57-59. The request includes the
software name, which may be either the name derived from the contents of the software
package by the hash function, or the standard software name. /d. at 9:66-10:1 and 5:59-63. In
response to the request, the authorization unit permits authorized access to the software. Id. at
9:16-18.

Cheriton teaches a new method of naming files in a file distributipn system. Cheriton,
149. Files in a file distribution system are commonly given character-string names that identity
locations of the files. /d. at 147-148.

Claim 9 is therefore obvious over Hellman in view of Cheriton as illustrated by the

following claim chart:

The ‘442 Patent Claim(s) The Hellman Reference
9. A content delivery method, comprising: “The user at a base unit obtains software package
distributing files across a network of servers. by purchasing it at a store, over telephone line, or

in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30]. An authorization
unit acts as a server by authorizing access to
software in client base units. [6:3-8].

Thus Hellman teaches a file distribution system in
which some computers act as servers and some
computers act as clients.

23

RACK-1003

Page 557 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

for a particular file having a contextual name
specifying locations in the network at which the file
may be located,

Hellman teaches that software packages stored on a
base unit are assigned a SOFTWARE NAME.
[5:62-63].

Cheriton teaches that “[n]aming is an important
aspect of distributed system design.” [147]. It is
common to assign character-string names to files,
and to use those string names to refer to the files.
[147]. Character string names can specify the
locations of a file in a network. [148-149].

The ‘442 patent teaches that files in a distribution
system can have contextual names which specify
the location of a file. Hellman does not disclose
that the SOFTWARE NAME is a contextual name.
However, given that contextual naming was a
common practice per Cheriton, it would have been
obvious to one skilled in the art that a possible
name for the software packages located at both the
authorization unit and base units is a contextual
name.

determining another name for the particular file, the
other name including at least a data identifier
determined using a given function of the data,
where said data used by the given function to
determine the other name comprises the contents of
the particular file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

obtaining a request for the particular file, the
request including the contextual name and the other
name of the particular file;

Hellman teaches that a base unit requests access to
software from a remote authorization unit. [5:57-
59]. To access the software, the base unit sends a
request to a remote authorization unit wherein the
request includes the software name. [5:59-60]. A
generated hash value can be used as the software
name. [9:66-10:1]. Alternatively a standard name
can be supplied in the request. [5:59-63].

Hellman inherently teaches that a request for a file
can include both a hash value name and the
standard name of the file.

24

RACK-1003

Page 558 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and responsive to the request, providing a copy of
the particular file from one of the servers of the
network of servers, said providing being based, at
least in part, on the other name of the particular
item,

Hellman teaches that “a user at a base unit obtains a
software package...over telephone line, or in some
similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together, Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

wherein the requested file is not provided to
unlicensed parties.

Hellman teaches that “a user...is prevented from
using software for which he does not have current
authorized use.” [10:53-54].

Hellman therefore teaches that files are only
distributed to licensed parties.

9. Claims 10-11 of the ‘442 patent are obvious over Hellman

Claim 10 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers. The method includes obtaining a name for a data file.

The claims recite that the name is based on a function of the data within the file, i.e., derived

from the contents of the file. The method includes determining if a copy of that fileis on a

computer in the distribution system. This determination is made using at least the content-

derived name. The method also includes determining if an unauthorized or unlicensed copy of

that file is on any computer in the distribution system using the content-derived name.

Claim 11 of the ‘442 patent teaches a method as in claim 10, wherein files may be

provided to computers in the system from a computer with an authorized or licensed copy of the

file.

Claims 10-11 of the ‘442 patent are obvious over Hellman as illustrated by the following

claim chart:

25

RACK-1003

Page 559 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

10. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function
comprises the contents of the particular file,

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

determining, using at least the name, whether a
copy of the data file is present on at least one of
said computers;

When a base unit sends a request containing the
hash value name, the authorization unit verifies the
identity of the software on the base unit by
verifying the hash value. [6:23-27].

Hellman teaches determining whether a copy of a
file is located on any computer by comparing a
generated hash value name of the file to file names
stored on the computers in the distribution system.

and determining, using at least the name, whether
an unlicensed or unauthorized copy of the data file
is present on a particular computer.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

26

RACK-1003

Page 560 of 738

The ‘442 Patent Claim(s) The Hellman Reference

11. A method as in claim 10 further comprising:

allowing the file to be provided from one of the Hellman teaches that “a user at a base unit obtains a
computers having an authorized or licensed copy of | software package...over telephone line, or in some
the file. similar manner.” [3:51-53]. The distribution unit (

i.e., software manufacturer) has a copy of the
requested package, which is by definition
authorized. [5:51-57].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

10. Claim 12 of the ‘442 patent is inherently anticipated by and/or
obvious in view of Hellman

Claim 12 of the ‘442 patent teaches a method as in claim 10 where the file distribution
occurs across multiple computers in a peer-to-peer network. The ‘442 patent defines a peer-to-
peer network as a relationship between computers in which a computer can sometimes act as a
server and sometimes act as a client. The ‘442 patent, 5:5-17.

While Hellman does not expressly disclose peer-to-peer networking, the reference
discloses a client-to-server relationship between a base unit and an authorization unit. Hellman,
6:3-8. However, the ‘442 patent defines a peer-to-peer network as a network in which
computers can act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason
why it would not be obvious to one of ordinary skill in the art to adjust the client-to-server
model in Hellman to a peer-to-peer model because peer-to-peer networking as defined by the
‘442 patent is nothing more than a client-to-server relationship in which the client and server
roles can change.

Claim 12 of the ‘442 patent is therefore obvious over Hellman as illustrated by the

following claim chart:

27

RACK-1003

Page 561 of 738

The ‘442 Patent Claim(s) The Hellman Reference

12. A method as in claim 10 wherein at least some | “The software package produced at the

of the plurality of computers comprise a peer-to- authorization unit and billing unit is an exact

peer network. replica of software which is available at base unit.”
[6:27-30]. An authorization unit acts as a server by
authorizing access to software in client base units.

[6:3-8].

The “442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that
the roles of the authorization and base unit change.

11. Claim 13 of the ‘442 patent is inherently anticipated by and/or
obvious in view of Hellman

Claim 13 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a peer-to-peer network. The method includes obtaining
a True Name for a data file. The claims recite that the True Name is based on a function of the
data within the file, i.e., derived from the contents of the file. The method includes determining
if an unauthorized or unlicensed copy of that file is on any computer in the distribution system
using the content-derived name.

While Hellman does not expressly disclose peer-to-peer networking, the reference
discloses a client-to-server relationship between a base unit and an authorization unit. Hellman,
6:3-8. However, the ‘442 patent defines a peer-to-peer network as a network in which
computers can act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason
why it would not be obvious to one of ordinary skill in the art to adjust the client-to-server
model in Hellman to a peer-to-peer model because peer-to-peer networking as defined by the
‘442 patent is nothing more than a client-to-server relationship in which the client and server

roles can change.

28

RACK-1003
Page 562 of 738

Claim 13 of the ‘442 patent is therefore inherently anticipated and/or obvious over

Hellman as illustrated by the following claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

13. A method, in a system in which a plurality of
files are distributed across a plurality of computers
which form a peer-to-peer network, the method
comprising:

“The software package produced at the
authorization unit and billing unit is an exact
replica of software which is available at base unit.”
[6:27-30]. An authorization unit acts as a server by
authorizing access to software in client base units.
[6:3-8].

The 442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that
the roles of the authorization and base unit change.

obtaining a True Name for a data file, the True
Name being based at least in part on a given
function of the data, wherein the data used by the
given function comprises the contents of the
particular file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and determining, using at least the name, whether
an unlicensed or unauthorized copy of the data file
is present on a particular computer.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

29

RACK-1003

Page 563 of 738

12. Claims 14-21 of the ‘442 patent are anticipated by Hellman

Claim 14 of the ‘442 patent recites a method of obtaining a name for a data file. The
claim recites that the name is based on a function of the data within the file, i.e., derived from
the contents of the file. The method also includes providing a copy of the file in response to a
request for the file including the name.

Claim 15 of the ‘442 patent recites a method as in claim 14 wherein the function used to
derive a new name for a data file is either a message digest function or a hash function.

Claims 16-18 of the ‘442 patent recite a method as in claim 14 wherein the function used
to derive a new name for the data file is either an MD4, MD35, or SHA function, a function that
randomly distributes its outputs, or a function that produces a substantially unique value for
cach unique data file. A message digest function has the property the “range of the function [is]
large enough, to make the probability arbitrarily small that actual inputs encountered...will
form a colliding set.” ‘442 patent, 13:34-37. Thus for every unique data file, a substantially
unique digest value is produced. See /d.

Claim 19 of the ‘442 patent recites a method as in claim 14 wherein a data file may
consist of “a portion of a file, a page in memory, a digital message, a digital image, a video
signal or an audio signal.”

Claim 20 of the ‘442 patent recites a method as in claim 14 where some computers in the
network are capable of communicating through TCP/IP communication.

Claim 21 of the ‘442 patent recites a method as in claim 14 where the derived name
changes if the data file is modified. A message digest function has the property the “range of
the function [is] large enough, to make the probability arbitrarily small that actual inputs
encountered...will form a colliding set.” ‘442 patent, 13:34-37. Thus if the contents of a data

file changes, there is a high probability that the hash value will change. See Id.
30

RACK-1003
Page 564 of 738

Hellman discloses a software distribution system where software is distributed to various
base units. Hellman, 5:39-6:30. Hellman also discloses that an authorization unit and multiple
base units are connected by any means of communication, such as a modem or telephone line.
Id. at 5:39-50. The software may consist of programs, video games, music, movies, etc. /d. at
Abstract and 10:67-68. A software package is given a name derived from a one-way hash
function applied to the data within the software package. Id. at 6:31-35. Thus the hash value
generated is unique for any particular data file. Id. at 6:35-42. Any type of hash function may
be used for this purpose. /d. at 7:67-8:1. The software package may be obtained by
downloading it from the authorization unit. /d. at 5:51-53. To access a software package, the
base unit sends a request to the authorization unit. /d. at 5:57-59. The request includes the
software name which is derived from the contents of the software package by the hash function.
Id. at 9:66-10:1. In response to the request, the authorization unit permits authorized access to
the software. /d. at 9:16-18.

Hellman does not expressly disclose TCP/IP communication, although it discloses
various forms of network communications. See 5:39-50. Therefore, Hellman either inherently
teaches TCP/IP communication, or it would have been obvious to one skilled in the art to use
Hellman in conjunction with TCP/IP communication.

Claims 14-21 are therefore inherently anticipated by or obvious over Hellman because it

discloses all elements of the claims as illustrated by the following claim chart:

31

RACK-1003
Page 565 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

14. A method comprising:

obtaining a name for a data file, the name being
based at least in part on a function of the data,
wherein the data used by the function comprise at
least the contents of the file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and in responsg o a request for the data file, the
request including at least the obtained name of the
data file,

Hellman teaches that a base unit requests access o
software from a remote authorization unit. [5:57-
59]. To access the software, the base unit sends a
request to a remote authorization unit wherein the
request includes the software name. [5:59-60]. A
generated hash value can be used as the software
name. [9:66-10:1].

Hellman teaches that a computer unit can request a
data file using a name for the data file that is
determined by applying a hash function to the data
file.

causing the contents of the data file to be provided
from a computer having a licensed copy of the data

file.

Hellman teaches that “a user at a base unit obtains a
software package...over telephone line, or in some
similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

15. A method as in claim 14

wherein the function is a message digest function
or a hash function.

Hellman teaches that software can be renamed such
that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

32

RACK-1003

Page 566 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

16. A method as in claim 14

wherein the function is selected from the functions:

MD4, MD3, and SHA.

“While DES is used here for illustrative purposes,
many other methods and apparatus for generating a
one-way hash function are known to exist.” [7:67-
8:11.

While Hellman does not specifically disclose an
MD4, MDS5 or SHA function, it discloses that any
hash function can be used for the purposes of
renaming the software. The ‘442 patent discloses
that MD4,MD35 or SHA is a hash function. *442
patent, 13:13-29. Therefore Hellman’s teaching
that any hash function may be used inherently
meets this limitation.

17. A method as in claim 14

wherein the given function randomly distributes its
outputs.

The 442 patent teaches that a desirable property of
a hash function or message digest function is to
randomly distribute outputs. [13:6-9]. Hash
functions or message digest functions (e.g., MD4,
MD35, or SHA) have these properties. [13:13-17].

Hellman teaches the use of hash functions which
therefore inherently have the property of randomly
distributing its outputs.

18. A method as in claim 14

wherein the function produces a substantially
unique value based on the data comprising the data
file.

Hellman teaches that a name for a data file is
generated by applying a one-way hash function to
the data within the file. [6:31-35]. “While DES is
used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist.” [7:67-8:1].

Hellman does not expressly disclose that a one-way
hash function produces a substantially unique
value. The ‘442 patent teaches that message digest
functions have the property of producing
substantially unique values. ‘442 patent, 13:13-37.
Thus, Hellman inherently discloses a message
digest function that produces a substantially unique
value based on the contents of a data file.

RACK-1003

Page 567 of 738

The ‘442 Patent Claim(s) The Hellman Reference

19. A method as in claim 14

wherein a data file may comprise a file, a portion of | Hellman teaches that the distributed software can

a file, a page in memory, a digital message, a include programs, videogames, music, movies, etc.
digital image, a video signal or an audio signal. [See Abstract]. “Software player will vary from
application to application. For example, if the
software is recorded music then software player
would be a record player; if the software is a
computer program, then software player would be a
microprocessor or central processing unit (CPU).”
[10:66-11:3].

20. A method as in claim 14

wherein certain processors in the network Hellman teaches “a pay per use software control
communicate with each other using a TCP/IP system...in which communication takes place over
communication protocol. an insecure communication channel, for example a

telephone line.” [5:39-5:42]. Authorizations may
be sent via telephone line, mail, or whatever form
of communication is most suited to the
application.” [Abstract]. The communication may
include modems. [5:42-46].

Although Hellman does not expressly teach the use
of TCP/IP communication, Hellman does teach
various other forms of computer network
communication. Therefore, Hellman either
inherently teaches TCP/IP communication, or it
would have been obvious to one skilled in the art to
sue the Hellman system in conjunction with a
TCP/IP network.

21. A method as in claim 14

wherein said name for said data file, as determined | See Claim 18.
using said function, will change when the data file
is modified.

13. Claim 22 of the ‘442 patent is obvious over Hellman

Claim 22 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes obtaining a name for a data file.
The claims recite that the name is based on an MD35 function of the data within the file, i.e.,
derived from the contents of the file. The method also includes determining if an unauthorized
or unlicensed copy of that file is on any computer in the distribution system using the content-

derived name.

34

RACK-1003
Page 568 of 738

Hellman discloses a software distribution system where software is distributed to various

base units. Hellman, 5:39-6:30. Hellman also discloses that an authorization unit and multiple

base units are connected by any means of communication, such as a modem or telephone line.

Id. at 5:39-50. The software may consist of programs, video games, music, movies, etc. /d. at

Abstract and 10:67-68. A software package is given a name derived from a one-way hash

function applied to the data within the software package. /d. at 6:31-35. Thus the hash value

generated is unique for any particular data file. Id. at 6:35-42. Any type of hash function may

be used for this purpose. Id. at 7:67-8:1. An authorization unit, using the content-derived name

can verify that the base unit contains an authorized copy of the software package when access to

the software is requested. Hellman, 6:23-27 and 9:66-10:1.

Claim 22 of the ‘442 patent is therefore obvious over Hellman as illustrated by the

following claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

22. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit,” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

35

RACK-1003

Page 569 of 738

obtaining a name for a data file, the name being
based at least in part on an MD35 function of the
data which comprises the contents of the particular
file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. “While DES
is used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist.” [7:067-8:1].

While Hellman does not specifically disclose an
MD5 function, it discloses that any hash function
can be used for the purposes of renaming the
software. The ‘442 patent discloses that MD5 is a
hash function. *442 patent, 13:13-29. Therefore
Hellman’s teaching that any hash function may be
used inherently meets this limitation.

and determining, using at least the obtained name,
whether an unauthorized or unlicensed copy of the
data file is present on a at least one of said
computers.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

14. Claims 23-30 of the ‘442 patent are obvious over Hellman

Claim 23 of the ‘442 patent recites a method of obtaining a list of file names. The claim

recites that the list names are based on a function of the data within each file, i.e., derived from
the contents of the file. The method also includes determining if an unauthorized or unlicensed
copy of that file is on any computer in the distribution system using the content-derived list of

names.

36

RACK-1003
Page 570 of 738

Claim 24 of the ‘442 patent recites a method as in claim 23 where a computer can request
a copy of a file using at least the content-derived file name. The file can be provided from a
computer having an authorized or licensed copy of the file.

Claim 25 of the ‘442 patent teaches a method as in claim 23 wherein the computers
containing copies of the files are in a peer-to-peer network.

Claim 26 of the ‘442 patent recites a method as in claim 23 which includes the
recordation of information about any computer in the system found to have an unauthorized or
unlicensed copy of any file.

Claim 27 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file is either a message digest function or a hash function.

Claim 28 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file is either an MD4, MDS5, or SHA function.

Claim 29 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file randomly distributes its outputs.

Claim 30 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file produces a substantially unique value based on the data within
the file.

Hellman discloses that a software package is given a name derived from a one-way hash
function applied to the data within the software package. /d. at 6:31-35. Thus the hash value
generated is unique for any particular data file. Id. at 6:35-42. Any type of'hash function may
be used for this purpose. Id. at 7:67-8:1. The authorization unit contains a list of all software

packages distributed across a plurality of base units. /d. at 6:21-27. Because the software

37

RACK-1003
Page 571 of 738

package names can be given a content-based name, it is inherent that files in the list of software
packages on the authorization unit are given a hash value name. See 9:66-10:1.

The software package may be obtained by downloading it from the authorization unit. /d.
at 5:51-53. To access a software package, the base unit sends a request to the authorization unit.
Id. at 5:57-59. The request includes the software name which is derived from the contents of
the software package by the hash function. Id. at 9:66-10:1. In response to the request, the
authorization unit permits authorized access to the software. /d. at 9:16-18.

Hellman contemplates that some users may tamper with the base unit to gain
unauthorized access to a software package. Id. at 11:13-14. Hellman discloses a software
distribution in which an authorization unit, using the content-derived name, can verify that the
base unit contains an authorized copy of the software package when access to the software is
requested. /d. at 6:23-27 and 9:66-10:1. Id. at 6:23-27. Thus, it would be obvious to one skilled
in the art that that the mechanisms to determine if authorized copies of software packages are
installed on base units could be used to detect tampering and unauthorized access.

While Hellman does not expressly disclose the recordation of information pertaining to a
computer found to have an unauthorized copy of a file, Hellman teaches that file requests from a
base unit include “SOFTWARE NAME, SERTAL NUMBER, N, R, and BILLING
INFORMATION.” Id. at 5:59-63. It would have been obvious to one skilled in the art to store
this information in memory when an unauthorized copy of the file was found on a base unit.

While Hellman does not expressly disclose peer-to-peer networking, the reference
discloses a client-to-server relationship between a base unit and an authorization unit. Hellman,
6:3-8. However, the ‘442 patent defines a peer-to-peer network as a network in which

computers can act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason

38

RACK-1003
Page 572 of 738

why it would not be obvious to one of ordinary skill in the art to adjust the client-to-server

model in Hellman to a peer-to-peer model because peer-to-peer networking as defined by the

‘442 patent is nothing more than a client-to-server relationship in which the client and server

roles can change.

Claims 23-30 of the ‘442 patent are obvious over Hellman as illustrated by the following

claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

23. A method comprising:

obtaining a list of file names, name for each of a
plurality of files, each of said file names having
been determined, at least in part, by applying a
function to the contents of the corresponding file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. The
authorization unit contains a table (i.e., list) of
software which enables identification of software
packages located at a base unit. [6:16-30]. The
software in the table are given names based on the
data within a given software file. [6:31-34].

Hellman teaches obtaining a name for a file by
applying a hash function to the file. In addition,
Hellman teaches that the derived software names
can be stored in a list of file names.

39

RACK-1003

Page 573 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and using at least said list to determine whether
unauthorized or unlicensed copies of some of the
plurality of data files are present on a particular
computer.

Hellman teaches that software, distributed to base
units, is named according to generated hash values.
[6:31-6:35]. A request by a base unit for access to
the software includes the hash value name. [5:59-
60, and 9:66-10:1].

Tiles in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

The ‘442 patent teaches that a generated unique file
name based on the data within the file can be used
to determine if unauthorized copies of the file are
present on a given computer. Hellman teaches that
files can be named according to the data within the
data file so as to give those files unique names.
Those derived file names can be stored in a list of
file names. Hellman also contemplates that some
users may attempt to gain unauthorized access to
software by tampering with the hardware. It would
have been obvious to one skilled in the art that the
use of the unique hash value names in a list of file
names in Hellman could be used to verify that
software on any given base unit is authorized or
licensed software by re-generating the hash value
name of the software located on the base unit and
comparing the hash values between the
authorization unit and the base unit.

24. A method as in ¢laim 23 further comprising:

in response to a request for a particular data file,
allowing the contents of the data file to be provided
from a computer determined to have a licensed or
authorized copy of the data file.

Hellman teaches that “a user at a base unit obtains a
software package...over telephone line, or in some
similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
Tequest.

40

RACK-1003

Page 574 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

25. A method as in claim 23

wherein the particular computer is part of a peer-to-
peer network of computers.

“The software package produced at the
authorization unit and billing unit is an exact
replica of software which is available at base unit.”
[6:27-30]. An authorization unit acts as a server by
authorizing access to software in client base units.

[6:3-8].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that

26. A method as in claim 23 further comprising:

the roles of the authorization and base unit change.

if the computer is found to have a file that it is not
authorized or licensed to have, recording
information about the computer and about the file.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERIAL NUMBER, N, R, and BILLING
INFORMATION to the authorization unit. [5:59-
62].

Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

27. A method as in claim 23

wherein the function is a message digest function
or a hash function.

Hellman teaches that software can be renamed such
that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

28. A method as in claim 23

41

RACK-1003

Page 575 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

wherein the function is selected from the functions:
MD4, MDS35, and SHA.

“While DES is used here for illustrative purposes,
many other methods and apparatus for generating a
one-way hash function are known to exist.” [7:67-
8:1].

While Hellman does not specifically disclose an
MD4, MDS5 or SHA function, it discloses that any
hash function can be used for the purposes of
renaming the software. The ‘442 patent discloses
that MD4,MD35 or SHA is a hash function. *442
patent, 13:13-29. Therefore Hellman’s teaching
that any hash function may be used inherently
meets this limitation.

29. A method as in claim 23

wherein the given function randomly distributes its
outputs.

The ‘442 patent teaches that a desirable property of
a hash function or message digest function is to
randomly distribute outputs. [13:6-9]. Hash
functions or message digest functions (e.g., MD4,
MDS5, or SHA) have these properties. [13:13-17].

Hellman teaches the use of hash functions which
therefore inherently have the property of randomly
distributing its outputs.

30. A method as in claim 23

wherein the function produces a substantially
unique value based on the data comprising the data
file.

Hellman teaches that a name for a data file is
generated by applying a one-way hash function to
the data within the file. [6:31-35]. “While DES is
used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist.” [7:67-8:1].

Hellman does not expressly disclose that a one-way
hash function produces a substantially unique
value. The ‘442 patent teaches that message digest
functions have the property of producing
substantially unique values. ‘442 patent, 13:13-37.
Thus, Hellman inherently discloses a message
digest function that produces a substantially unique
value based on the contents of a data file.

15. Claims 31-34 of the ‘442 patent are obvious over Hellman

Claim 31 of the ‘442 patent recites a method of obtaining a list of True Names. The

claim recites that the True Names are based on a function of the data within each file, i.e.,

derived from the contents of the file. The method also includes determining if an unauthorized

42

RACK-1003

Page 576 of 738

or unlicensed copy of that file is on any computer in a peer-to-peer network using the content-
derived list of names. The method includes the recordation of information by any computer in
the system found to have an unauthorized or unlicensed copy of any file.

Claims 32-33 of the ‘442 patent recite a method és in claim 31 wherein the function used
to derive a True Name for a data file is either a message digest function or a hash function, or an
MD4, MDS5, or SHA function.

Claim 34 of the ‘442 patent teaches a method as in claim 31 where a computer can
request a copy of a file. The file can be provided from a computer having an authorized or
licensed copy of the file.

Hellman discloses that a software package is given a name derived from a one-way hash
function applied to the data within the software package. Id. at 6:31-35. Thus the hash value
generated is unique for any particular data file. Id. at 6:35-42. Any type of hash function may
be used for this purpose. Id. at 7:67-8:1. The authorization unit contains a list of all software
packages distributed across a plurality of base units. 7d. at 6:21-27. Because the software
package names can be given a content-based name, it is inherent that files in the list of software
packages on the authorization unit are given a hash value name. See 9:66-10:1.

While Hellman does not expressly disclose peer-to-peer networking, the reference
discloses a client-to-server relationship between a base unit and an authorization unit. Hellman,
6:3-8. However, the ‘442 patent defines a peer-to-peer network as a network in which
computers can act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason
why it would not be obvious to one of ordinary skill in the art to adjust the client-to-server

model in Hellman to a peer-to-peer model because peer-to-peer networking as defined by the

43

RACK-1003
Page 577 of 738

‘442 patent is nothing more than a client-to-server relationship in which the client and server
roles can change.

Hellman contemplates that some users may tamper with the base unit to gain
unauthorized access to a software package. /d. at 11:13-14. Hellman discloses a software
distribution in which an authorization unit, using the content-derived name, can verify that the
base unit contains an authorized copy of the software package when access to the software is
requested. Id. at 6:23-27 and 9:66-10:1. Id. at 6:23-27. Thus, it would be obvious to one skilled
in the art that that the mechanisms to determine if authorized copies of software packages are
installed on base units could be used to detect tampering and unauthorized access.

While Hellman does not expressly disclose the recordation of information pertaining to a
computer found to have an unauthorized copy of a file, Hellman teaches that file requests from a
base unit include “SOFTWARE NAME, SERIAL NUMBER, N, R, and BILLING
INFORMATION.” Id. at 5:59-63. It would have been obvious to one skilled in the art to store
this information in memory when an unauthorized copy of the file was found on a base unit.

Claims 31-34 of the ‘442 patent are obvious over Hellman as illustrated by the following

claim chart:

44

RACK-1003
Page 578 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

31. A method comprising:

obtaining a list of True Names, one for each of a
plurality of files, wherein, for each of the files, the
True Name for that file is determined using a
function of the contents of the file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. The
authorization unit contains a table (i.e., list) of
software which enables identification of software
packages located at a base unit. [6:16-30]. The
software in the table are given names based on the
data within a given software file. [6:31-34].

Hellman teaches obtaining a name for a file by
applying a hash function to the file. In addition,
Hellman teaches that the derived software names
can be stored in a list of file names.

for at least some computers that make up part of a
peer-to-peer network of computers,

“The software package produced at the
authorization unit and billing unit is an exact
replica of software which is available at base unit.”
[6:27-30]. An authorization vnit acts as a server by
authorizing access to software in client base units.
[6:3-8].

The 442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that
the roles of the authorization and base unit change.

comparing at least some of the contents of the
computers to the list of True Names to determine
whether unauthorized or unlicensed copies of some
of the plurality of data files are present on those
computers;

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27 and 9:66-10:1]. Hellman also teaches that
tampering and unauthorized copies are likely and
desirably avoided. Therefore, it would have been
obvious to one skilled in the art to use the
mechanism used to detect authorized copies to also
detect unauthorized copies. Therefore, it would
have been obvious to one skilled in the art to detect
unlicensed copies using the content-derived name.

45

RACK-1003

Page 579 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and based at least in part on said comparing, if a
computer is found to have content that it is not
authorized or licensed to have, recording
information about the computer and about the
unauthorized or unlicensed content.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERTAL NUMBER, N, R, and BILLING
INFORMATION” to the authorization unit. [5:59-
62].

Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

32. A method as in claim 31

wherein the True Names are determined using a
message digest function or a hash function.

Hellman teaches that software can be renamed such
that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

33. A method as in claim 31

wherein the function is selected from the functions:

MD4, MD5, and SHA.

“While DES is used here for illustrative purposes,
many other methods and apparatus for generating a
one-way hash function are known to exist.” [7:67-
8:1].

While Hellman does not specifically disclose an
MD4, MD5 or SHA function, it discloses that any
hash function can be used for the purposes of
renaming the software. The ‘442 patent discloses
that MD4,MD35 or SHA is a hash function. *442
patent, 13:13-29. Therefore Hellman’s teaching
that any hash function may be used inherently
meets this limitation.

34. A method as in claim 31, further comprising:

46

RACK-1003

Page 580 of 738

The 442 Patent Claim(s) The Hellman Reference

in response to a request for the data file, allowing a | Hellman teaches that “a user at a base unit obtains a
copy of the file to be provided from a given one of | software package...over telephone line, or in some
the plurality of computers having an authorized or | similar manner.” [5:51-53].

licensed copy of the file.
Because the software can be downloaded as can the

authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

16. Claim 35 of the ‘442 patent is obvious over Hellman

Claim 35 of the ‘442 patent recites a method of obtaining a list of True Names. The
claim recites that the True Names are based on an MD5 function of the data within each file,
i.e., derived from the contents of the file. The method also includes determining if an
unauthorized or unlicensed copy of that file is on any computer in the distribution system using
the content-derived list of names. The method includes the recordation of information by any
computer in the system found to have an unauthorized or unlicensed copy of any file.

Hellman discloses that a software package is given a name derived from a one-way hash
function applied to the data within the software package. Id. at 6:31-35. Thus the hash value
generated is unique for any particular data file. Id. at 6:35-42. Any type of hash function may
be used for this purpose. /d. at 7:67-8:1. The authorization unit contains a list of all software
packages distributed across a plurality of base units. /d. at 6:21-27. Because the software
package names can be given a content-based name, it is inherent that files in the list of software
packages on the authorization unit are given a hash value name. See 9:66-10:1.

Hellman contemplates that some users may tamper with the base unit to gain
unauthorized access to a software package. Id. at 11:13-14. Hellman discloses a software

distribution in which an authorization unit, using the content-derived name, can verify that the

47

RACK-1003
Page 581 of 738

base unit contains an authorized copy of the software package when access to the software 1s

requested. 7d. at 6:23-27 and 9:66-10:1. Id. at 6:23-27. Thus, it would be obvious to one skilled

in the art that that the mechanisms to determine if authorized copies of software packages arc

installed on base units could be used to detect tampering and unauthorized access.

While Hellman does not expressly disclose the recordation of information pertaining to a

computer found to have an unauthorized copy of a file, Hellman teaches that file requests from a

base unit include “SOFTWARE NAME, SERIAL NUMBER, N, R, and BILLING

INFORMATION.” Id. at 5:59-63. It would have been obvious to onc skilled in the art to store

this information in memory when an unauthorized copy of the file was found on a base unit.

Claim 35 of the ‘442 patent is therefore obvious over Hellman as illustrated by the

following claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

35. A method comprising:

obtaining a list of True Names, one for each of a
plurality of files, wherein, for each of the files, the
True Name for that file is determined using an
MD35 function of the contents of the file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. “While DES
is used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist.” [7:67-8:1].

While Hellman does not specifically disclose an
MDS5 function, it discloses that any hash function
can be used for the purposes of renaming the
software. The ‘442 patent discloses that MDS5 1s a
hash function. *442 patent, 13:13-29. Therefore
Hellman’s teaching that any hash function may be
used inherently meets this limitation.

The authorization unit contains a table (i.e., list) of
software which enables identification of software
packages located at a base unit. [6:16-30]. The
software in the table are given names based on the
data within a given software file. [6:31-34].

48

RACK-1003

Page 582 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

comparing the True Names of at least some of the
contents of a computer to the list of True Names to
determine whether unauthorized or unlicensed
copies of some of the plurality of data files are
present on that computer;

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this

| task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27 and 9:66-10:1]. Hellman also teaches that
tampering and unauthorized copies are likely and
desirably avoided. Therefore, it would have been
obvious to one skilled in the art to use the
mechanism used to detect authorized copies to also
detect unauthorized copies. Therefore, it would
have been obvious to one skilled in the art to detect
unlicensed copies using the content-derived name.

and based at least in part on said comparing, if a
computer is found to have content that it is not
authorized or licensed to have, recording
information about the computer and about the
unauthorized or unlicensed content.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERIAL NUMBER, N, R, and BILLING
INFORMATION” to the authorization unit. [5:59-
62].

Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

17.

Claim 36 of the ‘442 patent is obvious over Hellman

Claim 36 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers. The method includes obtaining a name for a data file.

The claims recite that the name is based on a function of the data within the file, i.e., derived

from the contents of the file. The method includes determining if an unauthorized or unlicensed

copy of that file is on any computer in the distribution system using the content-derived name.

49

RACK-1003

Page 583 of 738

Claim 36 of the ‘442 patent is therefore obvious over Hellman as illustrated by the

following claim chart:

The 442 Patent Claim(s)

The Hellman Reference

36. In a system in which a data file is distributed
across a plurality of computers, a method
comprising:

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

obtaining a name for the data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function which
comprise the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and determining, using at least the name, whether
an unauthorized or unticensed copy of the data file
is present on a particular one of said computers.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

18.

Claim 37 of the ‘442 patent is anticipated by Hellman

Claim 37 of the ‘442 patent recites a media which can be read by computers. The media

contains an executable program which can be opened by a computer. The executable program

contains code which obtains a name for a data file. The claims recite that the name is bascd on

50

RACK-1003

Page 584 of 738

a function of the data within the file, i.e., derived from the contents of the file. The method
also includes determining if an unauthorized or unlicensed copy of that file is on any computer
in the distribution system using the content-derived name.

Hellman discloses a software distribution system where software is distributed to various
base units. Hellman, 5:39-6:30. The software is executable by any authorized base unit. /d. at
5:57-5:59. Hellman also discloses that an authorization unit and multiple base units are
connected by any means of communication, such as a modem or telephone line. /d. at 5:39-50.
A software package is given a name derived from a one-way hash function applied to the data
within the software package. /d. at 6:31-35. The software package may be obtained by
downloading it from the authorization unit. Jd. at 5:51-53. To access a software package, the
base unit sends a request to the authorization unit. /d. at 5:57-59. The request includes the
software name which is derived from the contents of the software package by the hash function.
Id. at 9:66-10:1. Tn response to the request, the authorization unit permits authorized access to
the software. Id. at 9:16-18.

Hellman therefore anticipates claim 37 because it discloses all elements of the claim as

illustrated by the following claim chart:

The ‘442 Patent Claim(s) The Hellman Reference

37. Computer-readable media tangibly embodying | Hellman teaches that an authorization unit and a

a program of instructions executable by at least one | base unit contain executable software readable at
computer, the program comprising code to: the base unit. [6:27-30]. In addition, the
authorization unit contains instructions for
converting a software name to a hash value name
generated by applying a one-way hash function to
the data within a given file. [6:31:34]. The software
name at the base unit can also be replaced with a
hash value name. [9:66-10:1].

Hellman teaches media embodying a program
executable by at least one unit in a distribution
system.

51

RACK-1003

Page 585 of 738

The ‘442 Patent Claim(s) The Hellman Reference

obtain a name for a data file, the name being based | Hellman teaches computing an output signal H by

at least in part on a given function of the data, applying a one-way hash function to the data within
wherein the data used by the function comprises the | a software package. [6:31-6:35]. “Because different
contents of the data file; software packages have different H values, H can

be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and in response to a request for the a data file, the Hellman teaches that a base unit requests access to
request including at least the name of the particular | software from a remote authorization unit. [5:57-
file, 59]. To access the software, the base unit sends a

request to a remote authorization unit wherein the
request includes the software name. [5:59-60]. A
generated hash value can be used as the software
name. [9:66-10:1].

Hellman teaches that a computer unit can request a
data file using a name for the data file that is
determined by applying a hash function to the data

file.
cause a copy of the file to be provided from a given | Hellman teaches that “a user at a base unit obtains a
one of the plurality of computers, software package...over telephone line, or in some

similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the

request.
wherein the copy is only provided to licensed Hellman teaches that “a user...is prevented from
parties. using software for which he does not have current

authorized use.” [10:53-54].

Hellman therefore teaches that files are only
distributed to licensed parties.

19. Claims 38-41 of the ‘442 patent are obvious over Hellman

Claim 38 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a True Name for a data file. The claim recites that the True Name

is based on a function of the data within the file, i.e., derived from the contents of the file. The

52

RACK-1003
Page 586 of 738

method also includes determining if an unauthorized or unlicensed copy of that file is on any
computer in the distribution system using the True Name.

Claim 39 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code to obtain a list of file names. The claim recites that the list names are based on a
function of the data within each file, i.e., derived from the contents of the file. The method also
includes determining if an unauthorized or unlicensed copy of that file is on any computer in the
distribution system using the content-derived list of names.

Claim 40 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a name for a data file. The claim recites that the name is based on
a function of the data within the file, i.e., derived from the contents of the file. The method
also includes determining if an unauthorized or unlicensed copy of that file is on any computer
in the distribution system using the content-derived name.

Claim 41 of the ‘442 patent recites a computer readable media as in claim 40 wherein the
function used to derive a new name for the data file is cither a message digest function or a hash
function.

Hellman discloses a software distribution system where software is distributed to various
base units. Hellman, 5:39-6:30. The software is executable by any authorized base unit. /d. at
5:57-5:59. Hellman discloses that a software package is given a name derived from a one-way
hash function applied to the data within the software package. Id. at 6:31-35. Thus the hash
value generated is unique for any particular data file. Id. at 6:35-42. Any type of hash function

may be used for this purpose. /d. at 7:67-8:1. The authorization unit contains a list of all

53

RACK-1003
Page 587 of 738

software packages distributed across a plurality of base units. Id. at 6:21-27. Because the

software package names can be given a content-based name, it is inherent that files in the list of

software packages on the authorization unit are given a hash value name. See 9:66-10:1.

Hellman contemplates that some users may tamper with the base unit to gain

unauthorized access to a software package. /d. at 11:13-14. Hellman discloses a software

distribution in which an authorization unit, using the content-derived name, can verify that the

base unit contains an authorized copy of the software package when access to the software is

requested. /d. at 6:23-27 and 9:66-10:1. Id. at 6

:23-27. Thus, it would be obvious to one skilled

in the art that that the mechanisms to determine if authorized copies of software packages are

installed on base units could be used to detect tampering and unauthorized access.

Claims 38-41 of the ‘442 patent are therefore obvious over Hellman as illustrated by the

following claim chart:

The 442 Patent Claim(s)

The Hellman Reference

38. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Hellman teaches that an authorization unit and a
base unit contain executable software readable at
the base unit. [6:27-30]. In addition, the
authorization unit contains instructions for
converting a software name to a hash value name
generated by applying a one-way hash function to
the data within a given file. [6:31:34]. The software
name at the base unit can also be replaced with a
hash value name. [9:66-10:1].

Hellman teaches media embedying a program
executable by at least one unit in a distribution
system.

obtain a True Name for a data file, the True Name
being based at least in part on a given function of
the data, wherein the data used by the function
comprises the contents of the particular file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

54

RACK-1003

Page 588 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and determine, using at least the name, whether an
unauthorized or unlicensed copy of the data file is
present on a particular computer.

Hellman teaches that software, distributed to base
units, is named according to generated hash values.
[6:31-6:35]. A request by a base unit for access to
the software includes the hash value name. [5:59-
60, and 9:66-10:1].

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

The ‘442 patent teaches that a generated unique file
name based on the data within the file can be used
to determine if unauthorized copies of the file are
present on a given computer. Hellman teaches that
files can be named according to the data within the
data file so as to give those files unique names.
Hellman also contemplates that some users may
attempt to gain unauthorized access to software by
tampering with the hardware. It would have been
obvious to one skilled in the art that the use of the
unique hash value name in Hellman could be used
to verify that software on any given base unit is
authorized or licensed software by re-generating
the hash value name of the software located on the
base unit and comparing the hash values between
the authorization unit and the base unit.

39. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Hellman teaches that an authorization unit and a
base unit contain executable software readable at
the base unit. [6:27-30]. In addition, the
authorization unit contains instructions for
converting a software name to a hash value name
generated by applying a one-way hash function to
the data within a given file. [6:31:34]. The software
name at the base unit can also be replaced with a
hash value name. [9:66-10:1].

Hellman teaches media embodying a program
executable by at least one unit in a distribution
system.

55

RACK-1003

Page 589 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

obtain a list of file names, one for each of a
plurality of files, each of said file names having
been determined, at least in part, by applying a
function to the contents of the corresponding file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. The
authorization unit contains a table (i.e., list) of
software which enables identification of software
packages located at a base unit. [6:16-30]. The
software in the table are given names based on the
data within a given software file. [6:31-34].

and determine, using at least said list, whether
unauthorized or unlicensed copies of some of the
plurality of data files are present on a particular
computer.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27 and 9:66-10:1]. Hellman also teaches that
tampering and unauthorized copies are likely and
desirably avoided. Therefore, it would have been
obvious to one skilled in the art to use the
mechanism used to detect authorized copies to also
detect unauthorized copies. Therefore, it would
have been obvious to one skilled in the art to detect
unlicensed copies using the content-derived name.

40. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Hellman teaches that an authorization unit and a
base unit contain executable software readable at
the base unit. [6:27-30]. In addition, the
authorization unit contains instructions for
converting a software name to a hash value name
generated by applying a one-way hash function to
the data within a given file. [6:31:34]. The software
name at the base unit can also be replaced with a
hash value name, [9:66-10:1].

Hellman teaches media embodying a program
executable by at least one unit in a distribution
system.

56

RACK-1003

Page 590 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

obtain a name for the data file, the name being
based at least in part on a given function of the data
which comprise the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and determine, using at least the name, whether an
unauthorized or unlicensed copy of the data file is
present on a particular one of said computers.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

41. Media as in claim 40

wherein the given function is a message digest
function or a hash function.

Hellman teaches that software can be renamed such
that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

20.

Claims 42-44 of the ‘442 patent are anticipated by Hellman

Claim 42 of the ‘442 patent recites a method of obtaining a list of file names. The claim

recites that the list names are based on a function of the data within each file, i.e., derived from

the contents of the file. The method also includes determining if an unauthorized or unlicensed

57

RACK-1003

Page 591 of 738

copy of that file is on any computer in the distribution system using the content-derived list of

names.

Claim 43 of the ‘442 patent recites a computer system as in claim 42 wherein the function

used to derive a new names for data files in the list is either a message digest function or a hash

function.

Claim 44 of the ‘442 patent recites a computer system as in claim 42 wherein the function

used to derive a new names for data files in the list is an MDS5 function.

Claims 42-44 of the ‘442 patent are therefore obvious over Hellman as illustrated by the

following claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

42. A computer system programmed to:

obtain a list of file names for a plurality of files,
each of said file names having been determined, at
least in part, by applying a function to the contents
of the corresponding file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. The
authorization unit contains a table (7.e., list) of
software which enables identification of software
packages located at a base unit. [6:16-30]. The
software in the table are given names based on the
data within a given software file. [6:31-34].

and determine, using at least said list, whether
unauthorized or unlicensed copies of some of the
plurality of data files are present on a particular
computer.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

43. A computer system as in claim 42

58

RACK-1003

Page 592 of 738

The ‘442 Patent Claim(s) The Hellman Reference

wherein the function is a message digest function Hellman teaches that software can be renamed such
or a hash function. that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

44. A computer system as in claim 42

wherein the function is an MD3 function. “While DES is used here for illustrative purposes,
many other methods and apparatus for generating a
one-way hash function are known to exist.” [7:67-

8:1].

While Hellman does not specifically disclose an
MDS5 function, it discloses that any hash function
can be used for the purposes of renaming the
software. The ‘442 patent discloses that MDS5 is a
hash function. *442 patent, 13:13-29. Therefore
Hellman’s teaching that any hash function may be
used inherently meets this limitation.

21. Claims 45-46 of the ‘442 patent are obvious over Hellman

Claim 45 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a peer-to-peer network. The method includes obtaining
a name for a data file. The claims recite that the name is based on a function of the data within
the file, i.e., derived from the contents of the file. The method also includes providing a copy
of the file in response to a request for the file including the name, provided that the requestor is
a licensed party.

Claim 46 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in peer-to-peer network. The method includes obtaining
a name for a data file. The claim recites that the name is based on a function of the data within

the file, i.e., derived from the contents of the file. The method includes determining if a copy

59

RACK-1003
Page 593 of 738

of that file is on a computer in the distribution system. This determination is made using at least
the content-derived name. The method also includes determining if an unauthorized or
unlicensed copy of that file is on any computer in the distribution system using the content-
derived name.

While Hellman does not expressly disclose peer-to-peer networking, the reference
discloses a client-to-server relationship between a base unit and an authorization unit. Hellman,
6:3-8. However, the ‘442 patent defines a peer-to-peer network as a network in which
computers can act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason
why it would not be obvious to one of ordinary skill in the art to adjust the client-to-server
model in Hellman to a peer-to-peer model because peer-to-peer networking as defined by the
‘442 patent is nothing more than a client-to-server relationship in which the client and server
roles can change.

Claims 45-46 of the ‘442 patent arc obvious over Hellman as illustrated by the following

claim chart:
The ‘442 Patent Claim(s) The Hellman Reference
45, In a system in which a plurality of files are “The user at a base unit obtains software package
distributed across a plurality of computers, by purchasing it at a store, over telephone line, or

in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

60

RACK-1003

Page 594 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

at least some of the computers forming a peer-to-
peer network, a method comprising:

“The software package produced at the
authorization unit and billing unit is an exact
replica of software which is available at base unit.”
[6:27-30]. An authorization unit acts as a server by
authorizing access to software in client base units,
[6:3-8].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that
the roles of the authorization and base unit change.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

and in response to a request for the a data file, the
request including at least the name of the particular
file,

Hellman teaches that a base unit requests access to
software from a remote authorization unit. [5:57-
59]. To access the software, the base unit sends a
request to a remote authorization unit wherein the
request includes the software name. [5:59-60]. A
generated hash value can be used as the software
name. [9:66-10:1].

Hellman teaches that a computer unit can request a
data file using a name for the data file that is
determined by applying a hash function to the data
file.

attempting to cause a copy of the file to be
provided from a given one of the plurality of
computers,

Hellman teaches that “a user at a base unit obtains a
software package...over telephone line, or in some
similar manner.” [5:51-53].

Because the software can be downloaded as can the
authorization, these steps can be performed
together. Thus, Hellman inherently teaches
providing a copy of the file in response to the
request.

wherein the requested file is only provided to
authorized or licensed parties.

Hellman teaches that “a user...is prevented from
using software for which he does not have current
authorized use.” [10:53-54].

Hellman therefore teaches that files are only
distributed to licensed parties.

61

RACK-1003

Page 595 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

46. A method, in a system in which a plurality of
files are distributed across a plurality of computers,

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

at least some of the computers forming a peer-to-
peer network, the method comprising:

“The software package produced at the
authorization unit and billing unit is an exact
replica of software which is available at base unit.”
[6:27-30]. An authorization unit acts as a server by
authorizing access to software in client base units.
[6:3-8].

The “442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Hellman discloses a client-to-server model.
It would have been obvious to one skilled in the art
to adjust the client-to-server relationship such that
the roles of the authorization and base unit change.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function
comprises the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

determining whether a copy of the data file is
present on a at least one of said computers;

When a base unit sends a request containing the
hash value name, the authorization unit verifies the
identity of the software on the base unit by
verifying the hash value. [6:23-27].

Hellman teaches determining whether a copy of a
file is located on any computer by comparing a
generated hash value name of the file to file names
stored on the computers in the distribution system,

62

RACK-1003

Page 596 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and determining, using at least the name, whether a
copy of the data file that is present on a at least one
of said computers is an unlicensed copy of the file.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

22.

Claims 47-53 of the ‘442 patent are obvious over Hellman

Claim 47 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers. The method includes determining if a copy of a file is on

a computer in the distribution system. The method also includes obtaining a name for a data

file. The claim recites that the name is based on a function of the data within the file, i.e.,

derived from the contents of the file. The content-based name is used to determine if an

unauthorized or unlicensed copy of that file is on any computer in the distribution system.

Claim 48 of the ‘442 patent recites a method as in claim 47 wherein the function used to

derive a new name for a data file is either a message digest function or a hash function.

Claim 49 of the ‘442 patent recites a method as in claim 47 wherein the function used to

derive a new name for a data file can be an MD4, MD35, or SHA function.

Claim 50 of the ‘442 patent recites a method as in claim 47 which includes the

recordation of information about any computer in the system found to have an unauthorized or

unlicensed copy of any file.

RACK-1003

Page 597 of 738

Claims 51 and 53 of the ‘442 patent recite a method as in claim 47, where a computer in

the distribution system can maintain accounting information related to the data files in the

system. Such accounting includes tracking which files are stored on any given computer, and

which files have been delivered to any given computer.

Claim 52 of the ‘442 patent recites a method as in claims 4 and 51, where a computer in

the system uses accounting information as basis to charge users based on the identify of data

files in the system.

Claims 47-53 of the ‘442 patent are obvious over Hellman as illustrated by the following

claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

47. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system
in a multi-computer environment.

determining whether a copy of a data file is present
on a at least one of said computers;

When a base unit sends a request containing the
hash value name, the authorization unit verifies the
identity of the software on the base unit by
verifying the hash value. [6:23-27].

Hellman teaches determining whether a copy of a
file is located on any computer by comparing a
generated hash value name of the file to file names
stored on the computers in the distribution system.

obtaining a name for a data file, the name being
based at least in part on a given function of the data
which comprises the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

64

RACK-1003

Page 598 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and, using at least the name, attempting to
determine whether a copy of the data file that is
present on the at least one of said computers is an
unlicensed copy of the file.

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

48. A method as in claim 47

wherein the given function comprises a message
digest or a hash function.

Hellman teaches that software can be renamed such
that the software name is a value derived from a
one-way hash function applied to the data within
the software. [6:31-6:35]. “While DES is used here
for illustrative purposes, many other methods and
apparatus for generating a one-way hash function
are known to exist.” [7:67-8:1].

Thus Hellman teaches that a message digest
function or a hash function can be used.

49. A method as in claim 48

wherein the given function is selected from the
functions: MD4, MD35 and SHA.

“While DES is used here for illustrative purposes,
many other methods and apparatus for generating a
one-way hash function are known to exist.” [7:67-
8:1].

While Hellman does not specifically disclose an
MD4, MD5 or SHA function, it discloses that any
hash function can be used for the purposes of
renaming the software. The ‘442 patent discloses
that MD4,MD3 or SHA is a hash function. *442
patent, 13:13-29. Therefore Hellman’s teaching
that any hash function may be used inherently
meets this limitation.

50. A method as in c¢laim 47 further comprising:

65

RACK-1003

Page 599 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

if a computer is found to have a file that it is not
licensed to have, recording information about the
computer.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERIAL NUMBER, N, R, and BILLING
INFORMATION?” to the authorization unit. [5:59-
62].

Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

51. A method as in claim 47, further comprising:

maintaining accounting information relating to data
files in the system:.

Hellman teaches that the “[bJase unit generates and
communicates to authorization and billing unit a
signal representing a user originated request for
software use. This request consists of several parts
SOFTWARE NAME, SERTAL NUMBER, N, R,
and BILLING INFORMATION.” [5:57-61].The
billing unit is responsible for billing the base unit
client if authorization for software use is approved.
[5:68-6:2]. Both the authorization and billing unit
contain a table of public serial number’s which
identify base units, and a table of software which
enables identification of software packages located
at a base unit. [6:16-30]. The software in the table
are given names based on the data within a given
software file. [6:31-34].

Hellman teaches a billing structure in a software
distribution system where clients are billed from a
unit when given access to software. The
authorization and billing unit stores serial numbers
and software package names correlated with a
particular base unit.

52. A method as in any one of claims 4 and 51,
further comprising:

using the accounting information as a basis for a
system in which charges are based on an identity of
the data files.

See Claim 51.

53. A method as in claim 47, further comprising,
for at least one computer in the system:

(a) tracking which data files have been stored on a
computer; and

See Claim 51.

66

RACK-1003

Page 600 of 738

‘The ‘442 Patent Claim(s) The Hellman Reference

(b) tracking which data files have been transmitted | See Claim 51.
from a computer.

23. Claims 54-56 of the ‘442 patent are obvious over Hellman

Claim 54 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a network. The method includes determining if a copy
of a file is on a computer in the distribution system. The files may represent “a digital image, a
video signal, or an audio signal.” The method includes obtaining a name for a data file. The
claim recites that the name is based on an MD35 function of the data within the file, i.e., derived
from the contents of the file. The content-based name is used to determine if an unauthorized or
unlicensed copy of that file is on any computer in the distribution system. The method includes
the recordation of information by any computer in the system found to have an unauthorized or
unlicensed copy of any file.

Claim 55 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a network. The method includes determining if'a copy
of a file is on a computer in the distribution system. The method includes obtaining a name for
a data file. The claim recites that the name is based on an MD35 function of the data within the
file, i.e., derived from the contents of the file. The content-based name is used to determine if a
copy of the file found is unauthorized or unlicensed. If the copy is unauthorized or unlicensed,
the method includes the recordation of information pertaining to the computer in the system
found to have the unauthorized or unlicensed copy of the file.

Claim 56 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes obtaining a name for a data file.

The claim recites that the name is based on a function of the data within the file, i.e., derived

67

RACK-1003
Page 601 of 738

from the contents of the file. The content-based name is used to determine if a copy of a file

found is unauthorized or unlicensed.

Claims 54-56 of the ‘442 patent are obvious over Hellman as illustrated by the following

claim chart:

The ‘442 Patent Claim(s)

The Hellman Reference

54. A method, in network in which a plurality of
files are distributed across a phlarality of computers
of the network, the method comprising:

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-33]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Thus Hellman teaches a file distribution system in a
multi-computer environment.

determining whether a copy of a data file is present
on a at least one of said computers,

When a base unit sends a request containing the
hash value name, the authorization unit verifies the
identity of the software on the base unit by
verifying the hash value. [6:23-27].

Hellman teaches determining whether a copy of a
file is located on any computer by comparing a
generated hash value name of the file to file names
stored on the computers in the distribution system.

said data file representing one or more of a digital
image, a video signal or an audio signal;

Hellman teaches that the distributed software can
include programs, videogames, music, movies, etc.
[See Abstract]. “Software player will vary from
application to application. For example, if the
software is recorded music then software player
would be a record player; if the software is a
computer program, then software player would be a
microprocessor or central processing unit (CPU).”
[10:66-11:3].

68

RACK-1003

Page 602 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

obtaining a name for the data file, the name being
based at least in part on an MD5 function of the
data which comprises the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. “While DES
is used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist.” [7:67-8:1].

While Hellman does not specifically disclose an
MDS5 function, it discloses that any hash function
can be used for the purposes of renaming the
software. The ‘442 patent discloses that MDS5 is a
hash function. *442 patent, 13:13-29. Therefore
Hellman’s teaching that any hash function may be
used inherently meets this limitation.

and, when a copy of the data file is found to be
present on one of the computers, determining,
using at least the name, whether the copy of the
data file is an authorized or licensed copy of the
data file;

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

69

RACK-1003

Page 603 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

and if a computer is found to have a file that it is
not authorized or licensed to have, recording
information about the computer or the data file.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERIAL NUMBER, N, R, and BILLING
INFORMATION? to the authorization unit. [5:59-
62].

The ‘442 patent teaches that if unauthorized or
unlicensed copies of a file are found on a computer,
a second computer in the system can record
information pertaining to the former computer.
Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

55. In network in which a plurality of files are
distributed across a plurality of computers of the
network, a method comprising: for each file of a
plurality of data files,

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30]. An authorization
unit acts as a server by authorizing access to
software in client base units. [6:3-8].

Thus Hellman teaches a file distribution system in
which some computers act as servers and some
computers act as clients.

(a) determining whether a copy of the file data file
is present on a at least one of said computers;

When a base unit sends a request containing the
hash value name, the authorization unit verifies the
identity of the software on the base unit by
verifying the hash value. [6:23-27].

Hellman teaches determining whether a copy of a
file is located on any computer by comparing a
generated hash value name of the file to file names
stored on the computers in the distribution system.

70

RACK-1003

Page 604 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

(b) obtaining a name for the data file, the name
being based at least in part on an MDS function of
the data which comprises the contents of the data
file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1]. “While DES
is used here for illustrative purposes, many other
methods and apparatus for generating a one-way
hash function are known to exist,” [7:67-8:1].

While Hellman does not specifically disclose an
MD35 function, it discloses that any hash function
can be used for the purposes of renaming the
software. The ‘442 patent discloses that MD5 is a
hash function, 442 patent, 13:13-29. Therefore
Hellman’s teaching that any hash function may be
used inherently meets this limitation.

(¢) when a copy of the data tile is found to be
present on one of the computers, determining,
using at least the name, whether the copy of the
data file-is an authorized or licensed copy of the
data file; and,

Files in the system may be subject to tampering by
base unit customers in an attempt to gain
unauthorized access to the software. [11:4-8].
“Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therefore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

71

RACK-1003

Page 605 of 738

The ‘442 Patent Claim(s)

The Hellman Reference

(d) if a computer is found to have a file that it is not
authorized or licensed to have, recording
information about the computer or the data file.

Hellman teaches that the base units software name
and billing information are stored in memory.
[9:10-12]. When requesting access to software, the
billing unit transmits “SOFTWARE NAME,
SERIAL NUMBER, N, R, and BILLING
INFORMATION?” to the authorization unit. [5:59-
62].

Although Hellman does not specifically disclose
the recordation of information when an
unauthorized copy of a file is present on a
computer, it would be obvious to one skilled in the
art that the authorization unit and billing unit could
record information about a base unit if
unauthorized copies of a file are found given that
the billing unit receives accounting information
with respect to a base unit.

56. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising: V

“The user at a base unit obtains software package
by purchasing it at a store, over telephone line, or
in some similar manner.” [5:51-53]. “The software
package produced at the authorization unit and
billing unit is an exact replica of software which is
available at base unit.” [6:27-30].

Hellman therefore teaches a file distribution system

‘in a multi-computer environment.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the data file;

Hellman teaches computing an output signal H by
applying a one-way hash function to the data within
a software package. [6:31-6:35]. “Because different
software packages have different H values, H can
be used in place of SOFTWARE NAME to name
the software being used.” [9:66-10:1].

Hellman teaches obtaining a name for a file by
applying a hash function to the file.

72

RACK-1003

Page 606 of 738

The ‘442 Patent Claim(s) The Hellman Reference

and determining, based at least in part on the Files in the system may be subject to tampering by
obtained name, whether a copy of the data file that | base unit customers in an attempt to gain

is present on a at least one of said computers is an unauthorized access to the software. [11:4-8].
unauthorized or unlicensed copy of the file. “Detection of tampering is a simpler task and
techniques are well known for accomplishing this
task.” [11:13-14].

Hellman teaches verifying the presence of
authorized copies using the content-derived name.
[6:23-27]. Hellman also teaches that tampering and
unauthorized copies are likely and desirably
avoided. Therelore, it would have been obvious to
one skilled in the art to use the mechanism used to
detect authorized copies to also detect unauthorized
copies. Therefore, it would have been obvious to
one skilled in the art to detect unlicensed copies
using the content-derived name.

B. Claims 1-56 are obvious over Ross in view of Gramlich
1. Claims 1-5 of the ‘442 patent are obvious over Ross in view of
Gramlich

Claim 1 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes obtaining a name for a data file.
The claim recites that the name is based on a function of the data within the file, i.e., derived
from the contents of the file. The method also includes providing a copy of the file in response
to a request for the file including the name, provided that the requestor is a licensed party.

Claim 2 of the ‘442 patent teaches a method of file distribution as in claim 1, further
comprising the method step of determining if a copy of that file is on a computer in the
distribution system. This determination is made using at lcast the content-derived name.

Claim 3 of the ‘442 patent teaches a method of file distribution as in claim 1, further
comprising determining if an unauthorized or unlicensed copy of that file is on any computer in

the distribution system using the content-derived name.

73

RACK-1003
Page 607 of 738

Claims 4-5 of the ‘442 patent teach a method of distribution as in claim 1, where at least
one computer in the distribution system can maintain accounting information related to the data
files in the system. Such accounting includes tracking which files are stored on any given
computer, and which files have been delivered to any given computer.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. Id. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution can occur over any network or non-network environment. /d. at 1:49-52.
When a customer desires to purchase a license for a software package, a request is transmitted
to a reselling entity. /d. at 3:21-24. In response to the request, a reselling entity distributes the
requested license file to the customer. /d. at 3:38-40. A policy manager validates and manages
the licenses in the distribution system. /d. at 11:31-32. The policy manager maintains a license
identifier table stores information pertaining to every license file in memory. /d. at 11:41-64. If
a copy of the license file exists on a given computer, the policy manager is invoked to invalidate
the license installation. /d. at 10:42-51. The policy manager is capable of maintaining
accounting information with respect to license files, including tracking the distribution of
license files from reselling entities to purchasing customers. /d. at 11:37-47.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at

6:29-34.

74

RACK-1003
Page 608 of 738

Therefore, the combination of Ross and

Gramlich teaches all limitations of claims 1-5 as

set forth more completely in the claim charts below. Moreover, one of ordinary skill in the art

would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions

to generate unique hash values and/or signature for a data file. Ross teaches a license

distribution system wherein policy management and security is of concern as illustrated by the

use of a signature for quality assurance maintenance. It would be obvious to use the known

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

1. In a system in which a plurality of files are
distributed across a plurality of computers, a
method ¢comprising:

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the given function to
determine the name comprises the contents of the
data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and in response to a request for the a data file, the
request including at least the name of the particular
file,

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-24]. Tt is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

75

RACK-1003

Page 609 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

causing a copy of the file to be provided from a
given one of the plurality of computers,

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

wherein a copy of the requested file is only
provided to licensed parties.

Ross teaches that a license file cannot be accessed
by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

2. A method as in claim 1 further comprising:

determining, using at least the name, whether a
copy of the data file is present on a particular one
of said computers.

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system.

3. A method as in claim 1 further comprising:

determining, using at least the name, whether an
unauthorized or unlicensed copy of the data file is
present on a particular one of said computers.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, proéessin g continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

76

RACK-1003

Page 610 of 738

The ‘442 Patent Claim(s) The Ross and Gramlich References

4. A method as in claim 1, further comprising;

maintaining accounting information relating to the | Ross teaches that a policy manager “validates and
data files. manages licenses.” [11:31-32]. “[T]he policy
manager can monitor the number of connection
licenses previously granted, and determine which
license grants count toward the maximum number
of allowed licenses. In addition to implementing
license policies, the policy manager can display key
license information, respond to information
requests. .., maintain a valid license identifier table,
supply valid license identifier information to a
watchdog routine, and validate license identifiers.”
[11:37-47].

Thus Ross teaches that accounting information,
including tracking licenses granted to users and
tracking license files stored on a computer, can be
maintained by a policy manager.

5. A method as in claim 4, wherein the maintaining
of accounting information includes at least some
activities selected from:

(a) tracking which files have been stored on a See Claim 4.
computer; and

(b) tracking which files have been transmitted from | See Claim 4.
a computer.

2. Claim 6 of the ‘442 patent is obvious over Ross in view of Gramlich

Claim 6 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The files may represent “a digital message, a digital
image, a video signal, or an audio signal.” The method includes obtaining a name for a data
file. The claim recites that the name is based on an MD35 function of the data within the file,
i.e., derived from the contents of the file. The method also includes providing a copy of the file
in response to a request for the file including the name, provided that the requestor is a licensed
party.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are

distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.

77

RACK-1003
Page 611 of 738

Id. The distribution can occur over any network or non-network environment. /d. at 1:49-52.
When a customer desires to purchase a license for a software package, a request is transmitted
to a reselling entity. Id. at 3:21-24. Inresponse to the request, a reselling entity distributes the
requested license file to the customer. Id. at 3:38-40. For any given license file, a unique
license signature is generated by applying a message digest function, such as MDS5, to the data
within the file. /d. at 6:5-18. A policy manager validates and manages the licenses in the
distribution system. Id. at 11:31-32. The policy manager maintains a license identifier table
stores information pertaining to every license file in memory. /d. at 11:41-64. If a copy of the
license file exists on a given computer, the policy manager is invoked to invalidate the license
installation. /d. at 10:42-51. The policy manager is capable of maintaining accounting
information with respect to license files, including tracking the distribution of license files from
reselling entities to purchasing customers. Id. at 11:37-47.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. Id. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claim 6 as set
forth more completely in the claim charts below. Moreover, one of ordinary skill in the art
would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions
to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the

use of a signature for quality assurance maintenance. It would be obvious to use the known

78

RACK-1003
Page 612 of 738

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

6. A method, in a system in which a plurality of
files are distributed across a plurality of computers,

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

wherein data in a file in the system may represent a
digital message, a digital image, a video signal or
an audio signal, the method comprising:

Ross teaches that license files in a license
distribution system “can be any type of file (e.g.
text file, or an executable file).” [4:37-39]. This
expressly includes a “digital message.”

Thus Ross teaches that data in the system can
consist of any type of electronic file.

obtaining a name for a data file, the name having
been determined using an MDS5 function of the
data, wherein the data used by the MDS5 function
comprises the contents of the data file;

Ross teaches that license signatures can be
generated by applying an MD35 function to the data
within the file. [6:5-18].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source {ile. [6:7-11]. “Bach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that an MD35 function can be used to
generate a unique signature for a license file.
Gramlich teaches using a hash function to generate
a unique file name. It would be obvious to combine
Ross and Gramlich to use an MD35 function to
generate a unique file name.

and in response to a request for the data file, the
request including at least the name of the data file,

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-24]. It is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

79

RACK-1003

Page 613 of 738

The 442 Patent Claim(s) The Ross and Gramlich References

providing a copy of the data file from a given one Ross teaches that in response to request for a
of the plurality of computers, said providing being | license file from a software user, a copy of the
based at least in part on the obtained name, license file is provided to the user. [3:38-40].

“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

and wherein a copy of the requested file is only Ross teaches that a license file cannot be accessed
provided to licensed parties. by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

3. Claim 7 of the ‘442 patent is obvious over Ross in view of Gramlich

Claim 7 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a network wherein some computers are servers and
some computers are clients. Some computers in the systém may communicate through TCP/IP
communication. The method includes obtaining a name for a digital image file. The claim
recites that the name is based on a function of the data within the file, i.e., derived from the
contents of the file. The method also includes providing a copy of the file in response to a
request for the file including the name, provided that the requestor is a licensed party.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. 7d. at 1:49-52.

When a customer desires to purchase a license for a software package, a request is transmitted

80

RACK-1003
Page 614 of 738

to a reselling entity. /d. at 3:21-24. In response to a request for a license, a reselling entity

distributes the specified license to the customer. /d. at 3:38-40.

Although Ross does not specity how the license files are named, Gramlich teaches that

files can be named by incorporating a hash of the actual file data into the file name. Gramlich,

6:7-11. The hash value can be generated by applying a one way hash function to the data within

the source file. /d. The generated hash value is thereby unique for any given source file. Id. at

0:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claim 7 as set

forth more completely in the claim charts below. Moreover, one of ordinary skill in the art

would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions

to generate unique hash values and/or signature for a data file. Ross teaches a license

distribution system wherein policy management and security is of concern as illustrated by the

use of a signature for quality assurance maintenance. It would be obvious to use the known

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

7. A method, in a system in which a plurality of
files are distributed across a plurality of computers,

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

wherein some of the computers communicate with
each other using a TCP/IP communication
protocol, the method comprising,

Ross teaches a license file distribution system
which can function “in a network or non-network
environment.” [1:49-52]. This inherently includes
TCP/IP networks. Alternatively, TCP/IP networks
were well known at the time of filing of the ‘442
patent. Therefore it would also be obvious to use
the system of Ross in a TCP/IP network.

81

RACK-1003
Page 615 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a name for a data file, the contents of said
data file representing a digital image, the name
having been determined using at least a given
function of the data in the data file, wherein the
data used by the given function to determine the
name comprises the contents of the data file;

Gramilich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that license files in a license
distribution system “can be any type of file (e.g.
text file, or an executable file).” [4:37-39]. This
inherently includes digital image files.
Alternatively, because Ross teaches that it can be
used with any type of file, it would be obvious to
extend it to digital image files, even if they were
other than license files.

Ross teaches a distribution system where a file can
be any type of electronic file. Gramlich teaches
using a hash function to generate a unique file
name. It would be obvious to one skilled in the art
that Gramlich’s naming technique can be applied to
any type of data file, including a digital image.

and in response to a request for the data file, the
request including at least the name of the data file,

A software user can request license files, such asa
software anchor license, from a reselling entity.
[3:21-24]. Tt is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

providing a copy of the file from a given one of the
plurality of computers,

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

82

RACK-1003

Page 616 of 738

The ‘442 Patent Claim(s) The Ross and Gramlich References

wherein a copy of the requested file is not provided | Ross teaches that a license file cannot be accessed
to unlicensed parties or to unauthorized parties. by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the ncw license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

4. Claim 8 of the ‘442 patent is obvious over Ross in view of Gramlich

Claim 8 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a network wherein some computers are servers and
some computers are clients. Some computers in the system may communicate through TCP/IP
communication. A key is required to identify a file in the network. Copies of data files are
stored on multiple computers in the network. The method includes obtaining a different cache
key for a file. The claim recites that the key is based on an MD5 function of the data within the
file, i.e., derived from the contents of the file. The method also includes providing a copy of
the file in response to a request for the file including the name, provided that the requestor is a
licensed party. Data files in the system may consist of “a page in memory, a digital message, a
digital image, a digital image, a video signal or an audio signal.”

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimatcly to a purchasing customer.
Id. The distribution can occur over any network or non-network environment. /d. at 1:49-52. A
policy manager validates and manages the licenses in the distribution system. /d. at 11:31-32.

When a license file is installed on a purchasing computer, the license file serial key is matched

RACK-1003
Page 617 of 738

to the anchor license serial key. /d. at 10:33-36. If the keys do not match, the policy manager
invalidates the license installation. /d. at 10:50-51.

When a customer desires to purchase a license for a software package, a request is
transmitted to a reselling entity. /d. at 3:21-24. In response to the request, a reselling entity
distributes the requested license file to the customer. /d. at 3:38-40. For any given license file, a
unique license signature is generated by applying a message digest function, such as MD5, to
the data within the file. /d. at 6:5-18.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. Id. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claim 8 as set
forth more completely in the claim charts below. Moreover, one of ordinary skill in the art
would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions
to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s) The Ross and Gramlich References

8. A method, in a network comprising a plurality of | Ross teaches a license file distribution system

computers, some of the computers functioning as which can function “in a network or non-network

servers and some of the computers functioning as environment.” [1:49-52]. License files are

clients, distributed from a manufacturer (“content server”)
to purchasing customers (“clients”). [3:39-47].

84

RACK-1003
Page 618 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

wherein some computers in the network
communicate with each other using a TCP/IP
communication protocol,

Ross teaches a license file distribution system
which can function “in a network or non-network
environment.” [1:49-52]. This inherently includes
TCP/IP networks. Alternatively, TCP/IP networks
were well known at the time of filing of the ‘442
patent. Therefore it would also be obvious to use
the system of Ross in a TCP/IP network.

wherein a key is required to identify a file on the
network, the method comprising:

Ross teaches that to install a license file on a
computer in the nctwork, a serial key contained in
the license file must match to the serial key
contained in the anchor license installed on the
computer. [10:33-36].

Thus Ross teaches that a key is required to identify
files in a file distribution system.

storing some files on a first computer in the
network and storing copies of some of the files
from the first computer on a set of computers
distinct from the first computer;

Ross teaches that license files in a network are
distributed across a manufacturing entity, a
reselling entity, and a purchasing customer, [3:21-
47].

for a particular file, determining a different cache
key from an ordinarily used key for the file, the
different key being determined at least in part using
a message function MD35 of the data, wherein the
data used by the function to determine the name
comprises the contents of the particular file;

Ross teaches that license signatures can be
generated by applying an MD5 function to the data
within the file. [6:5-18]. In addition,
“[i]information from each valid license is added to
a license information store in memory.” [11:58-59].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that an MD5 function can be used to
gencrate a unique signature for a license file.
Gramlich teaches using a hash function to generate
a unique file name. It would be obvious to combine
Ross and Gramlich to use an MD5 function to
generate a unique file name. Ross also teaches that
license information can be stored in memory. It
would be obvious to one skilled in the art that
Gramlich’s renaming method can utilize an MDS5
function to generate a unique hash value name for a
file which can be stored in cache.

85

RACK-1003

Page 619 of 738

The ‘442 Patent Claim(s) The Ross and Gramlich References

and responsive to a request for the particular file, A software user can request license files from a

the request inctuding the different key for the file, resclling entity. [3:21-24]. It is inherent that the
software user must the identify license file to
receive the correct license. [3:3-6]. “For example, a
purchaser may purchase an initial number of
network connections for a network software
application. Subsequently, a purchaser may
determine that additional connections are needed to
support the number of users of the product.” [3:10-
14].

Ross teaches that a serial key is required to identify
files in a file distribution system. It is inherent that
Ross teaches that a request can include the serial

key.
causing a copy of the particular file to be provided | Ross teaches that in response to request for a
to the requester, license file from a software user, a copy of the

license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

wherein the requested file is not provided to Ross teaches that a license file cannot be accessed
unlicensed parties, and by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

wherein the contents of the file may represent: a Ross teaches that license files in a license
page in memory, a digital message, a digital image, | distribution system “can be any type of file (e.g.
a video signal or an audio signal. text file, or an executable file).” [4:37-39]. This

expressly includes a “digital message.”

Thus Ross teaches that data in the system can
consist of any type of electronic file.

5. Claim 9 of the ‘442 patent is obvious over Ross in view of Gramlich

Claim 9 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple servers in a network. The claim recites that the locations of files
with contextual names in the network are specified. The method includes obtaining a different

name for a file. The claim recites that the name is based on function of the data within the file,

86

RACK-1003
Page 620 of 738

i.e., derived from the contents of the file. The method also includes providing a copy of the file
in response to a request for the file including the name and the contextual name, provided that
the requestor is a licensed party. The ‘442 patent describes a “contextual name” as a name
which identifies a file relative to a specific context, e.g. a pathname. ‘442 patent, 2:3-8.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution can occur over any network or non-network environment. /d. at 1:49-52. In
response to a request for a license, a reselling entity distributes the specified license to the
customer. Id. at 3:38-40. License files are designated extension numbers to identify the order of
the license in a license chain. /d. at 9:22-25.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of th¢ actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claim 9 as set
forth more completely in the claim charts below. Moreover, one of ordinary skill in the art
would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions
to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the

use of a signature for quality assurance maintenance. It would be obvious to use the known

87

RACK-1003
Page 621 of 738

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

9. A content delivery method, comprising:
distributing files across a network of servers.

Ross teaches a license file distribution system
which can function “in a network or non-network
environment.” [1:49-52]. License files are
distributed from a manufacturer (“‘content server”
to purchasing customers (“clients”). [3:39-47].

for a particular file having a contextual name
specifying locations in the network at which the file
may be located,

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license. This
is a contextual name [9:22-25]. The file extension
“can be used to determine a sequential order for
validating licenses.” [9:26-28].

A “policy manager can monitor the number of
connection licenses previously granted.” [11:37-
38].

Ross teaches that files are given a contextual name.
Ross also teaches that distributed licenses are
monitored by a policy manager. It is either inherent
that the policy manager specifies the locations of
the distributed licenses, or it would be obvious to
one skilled in the art that the policy manager
specifies the locations of distributed license files.

determining another name for the particular file, the
other name including at least a data identifier
determined using a given function of the data,
where said data used by the given function to
determine the other name comprises the contents of
the particular file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

88

RACK-1003

Page 622 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a request for the particular file, the
request including the contextual name and the other
name of the particular file;

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-24]. It is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license. This
is a contextual name [9:22-25]. The file extension
“can be used to determine a sequential order for
validating licenses.” [9:26-28].

It would be obvious to one skilled in the art that a
user in the distribution system could request a file
by its contextual extension number.

and responsive to the request, providing a copy of
the particular file from one of the servers of the
network of servers, said providing being based, at
least in part, on the other name of the particular
item,

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

wherein the requested file is not provided to
unlicensed parties.

Ross teaches that a license file cannot be accessed
by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

89

RACK-1003

Page 623 of 738

6. Claims 10-13 of the ‘442 patent are obvious over Ross in view of
Gramlich

Claim 10 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes obtaining a name for a data file.
The claim recites that the name is based on a function of the data within the file, i.e., derived
from the contents of the file. The method includes determining if a copy of that fileison a
computer in the distribution system. This determination is made using at least the content-
derived name. The method also includes determining if an unauthorized or unlicensed copy of
that file is on any computer in the distribution system using the content-derived name.

Claim 11 of the ‘442 patent teaches a method as in claim 10, wherein files may be
provided to computers in the system from a computer with an authorized or licensed copy of the
file.

Claim 12 of the ‘442 pateht teaches a method as in claim 10 where the file distribution
occurs across multiple computers in a peer-to-peer network. The ‘442 patent defines a peer-to-
peer network as a relationship between computers in which a computer can sometimes act as a
server and sometimes act as a client. The ‘442 patent, 5:5-17.

Claim 13 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a peer-to-peer network. The method includes obtaining
a True Name for a data file. The claims recite that the True Name is based on a function of the
data within the file, i.e., derived from the contents of the file. The method includes determining
if an unauthorized or unlicensed copy of that file is on any computer in the distribution system
using the content-derived name.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-

4:10. The license files can be any type of electronic file. /d. at 4:37-39. The distribution can

90

RACK-1003
Page 624 of 738

occur over any network or non-network environment. /d. at 1:49-52. In response to a request
for a license, a reselling entity distributes the specified license to the customer. /d. at 3:38-40.
A policy manager validates and manages the licenses in the distribution system. /d. at 11:31-32.
The policy manager maintains a license identifier table which stores information pertaining to
every license file in memory. /d. at 11:41-64. If a copy of the license file exists on a given
computer, a policy manager is invoked to invalidate the license installation. /d. at 10:42-51.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash funcﬁon to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

While Ross does not expressly disclose peer-to-peer networking, the reference discloses a
client-to-server like relationship between a license distributor and a client. Ross, 3:31-37.
However, the ‘442 patent defines a peer-to-peer network as a network in which computers can
act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason why it would
not be obvious to one of ordinary skill in the art to adjust the client-to-server model in Ross to a
peer-to-peer model because peer-to-peer networking as defined by the ‘442 patent is nothing
more than a client-to-server relationship in which the client and server roles change.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 10-13
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the
art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest
functions to generate unique hash values and/or signature for a data file. Ross teaches a license

distribution system wherein policy management and security is of concern as illustrated by the

91

RACK-1003
Page 625 of 738

use of a signature for quality assurance maintenance. It would be obvious to use the known

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

10. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function
comprises the contents of the particular file,

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data eontent of the file.

determining, using at least the name, whether a
copy of the data file is present on at least one of
said computers;

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system.

and determining, using at least the name, whether
an unlicensed or unauthorized copy of the data file
is present on a particular computer.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

11. A method as in claim 10 further comprising:

92

RACK-1003

Page 626 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

allowing the file to be provided from one of the
computers having an authorized or licensed copy of
the file.

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].
The reselling copy is an authorized license file.

12. A method as in claim 10 wherein at least some
of the plurality of computers comprise a peer-to-
peer network.

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change,

13. A method, in a system in which a plurality of
files are distributed across a plurality of computers
which form a peer-to-peer network, the method
comprising:

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ¢442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change.

93

RACK-1003

Page 627 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a True Name for a data file, the True
Name being based at least in part on a given
function of the data, wherein the data used by the
given function comprises the contents of the
particular file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and determining, using at least the name, whether
an unlicensed or unauthorized copy of the data file
is present on a particular computer.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues. . .to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

7. Claims 14-21 of the ‘442 patent are obvious over Ross in view of

Gramlich

Claim 14 of the ‘442 patent recites a method of obtaining a name for a data file. The

claim recites that the name is based on a function of the data within the file, i.e., derived from

the contents of the file. The method also includes providing a copy of the file in response to a

request for the file including the name.

Claim 15 of the ‘442 patent teaches a method as in claim 14 wherein the function used to

derive a new name for a data file is either a message digest function or a hash function.

Claims 16-18 of the ‘442 patent teach a method as in claim 14 wherein the function used

to derive a new name for the data file is either an MD4, MD5, or SHA function, a function that

94

RACK-1003

Page 628 of 738

randomly distributes its outputs, or a function that produces a substantially unique value for
cach unique data file. A message digest function has the property the “range of the function [is]
large enough, to make the probability arbitrarily small that actual inputs encountered...will
form a colliding set.” ‘442 patent, 13:34-37. Thus for every unique data file, a substantially
unique digest value is produced. See /d.

Claim 19 of the ‘442 patent teaches a method as in claim 14 wherein a data file may
consist of “a portion of a file, a page in memory, a digital message, a digital image, a video
signal or an audio signal.”

Claim 20 of the ‘442 patent teaches a method as in claim 14 where some computers in the
network are capable of communicating through TCP/IP communication.

Claim 21 of the ‘442 patent teaches a method as in claim 14 where the derived name
changes if the data file is modified. A message digest function has the property the “range of
the function [is] large enough, to make the probability arbitrarily small that actual inputs
encountered...will form a colliding set.” ‘442 patent, 13:34-37. Thus if the contents of a data
file changes, there is a high probability that the hash value will change. See /d.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. /d. at 1:49-52.
When a customer desires to purchase a license for a software package, a request is transmitted
to a reselling entity. /d. at 3:21-24. In response to the request, a reselling entity distributes the
requested license file to the customer. /d. at 3:38-40. For any given license file, a unique

license signature is generated by applying a message digest function, such as MDS5, to the data

95

RACK-1003
Page 629 of 738

within the file. /d. at 6:5-18. The license signature is used as a quality assurance check of the
data upon data transfer from a manufacturer to a reseller. /d. at 9:2-11.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. Thé hash value can be generated by applying a one way hash function to the data within
the source file. Id. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 14-21
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the
art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest
functions to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s) The Ross and Gramlich References

14. A method comprising:

obtaining a name for a data file, the name being Gramlich teaches that a file can be given a name
based at least in part on a function of the data, that incorporates a hash function to the data within
wherein the data used by the function comprise at the source file. [6:7-11]. “Fach database component
least the contents of the file; file includes a hash value which, when combined

with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

96

RACK-1003

Page 630 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

and in response to a request for the data file, the
request including at least the obtained name of the
data file,

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-24]. It is inherent that the software user must
the identity license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

causing the contents of the data file to be provided
from a computer having a licensed copy of the data
file.

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

15. A method as in claim 14

wherein the function is a message digest function
or a hash function.

Gramlich teaches that “[e]ach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “the clear text portion of a license
is message digested using RSA’s MD5 algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. Tt would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

16. A method as in claim 14

wherein the function is selected from the functions:
MD4, MD3, and SHA.

See Claim 15.

97

RACK-1003

Page 631 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

17. A method as in claim 14

wherein the given function randomly distributes its
outputs.

The ‘442 patent teaches that a desirable property of
a hash function or message digest function is to
randomly distribute outputs. [13:6-9]. Hash
functions or message digest functions (e.g., MD4,
MD5, or SHA) have these properties. [13:13-17].

Ross expressly recites the MD5 function, which the
‘442 patent concedes has the property of randomly
distributing its outputs.

18. A method as in claim 14

wherein the function produces a substantially
unique value based on the data comprising the data
file.

“Fach database component file includes a hash
value which, when combined with the file name of
the source file results in a unique file name. The
hash value is computed as a function of the
contents of the source file wherein if the contents
of the source file changes, the hash code changes.”
[6:29-34],

Thus Gramlich teaches that the hash function
produces a substantially unique value for a data
file.

19. A method as in claim 14

wherein a data file may comprise a file, a portion of
a file, a page in memory, a digital message, a
digital image, a video signal or an audio signal.

Ross teaches that license files in a license
distribution system “can be any type of file (e.g.
text file, or an executable file).” [4:37-39]. This
expressly includes at least a digital message.

20. A method as in claim 14

wherein certain processors in the network
communicate with each other using a TCP/IP
communication protocol.

Ross teaches a license file distribution system
which can function “in a network or non-network
environment.” [1:49-52]. This inherently includes
TCP/IP networks. Alternatively, TCP/IP networks
were well known at the time of filing of the ‘442
patent. Therefore it would also be obvious to use
the system of Ross in a TCP/IP network.

21. A method as in claim 14

wherein said name for said data file, as determined
using said function, will change when the data file
is modified.

See Claim 18.

8. Claims 22-36 of the ‘442 patent are obvious over Ross in view of

Gramlich

Claim 22 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers. The method includes obtaining a name for a data file.

98

RACK-1003

Page 632 of 738

The claim recites that the name is based on an MDS35 function of the data within the file, i.e.,
derived from the contents of the file. The method also includes determining if an unauthorized
or unlicensed copy of that file is on any computer in the distribution system using the content-
derived name.

Claim 23 of the ‘442 patent recites a method of obtaining a list of file names. The claim
recites that the list names are based on a function of the data within each file, i.e., derived from
the contents of the file. The method also includes determining if an unauthorized or unlicensed
copy of that file is on any computer in the distribution system using the content-derived list of
names.

Claim 24 of the ‘442 patent recites a method as in claim 23 where a computer can request
a copy of a file using at least the content-derived file name. The file can be provided from a
computer having an authorized or licensed copy of the file.

Claim 25 of the ‘442 patent teaches a method as in claim 23 wherein the computers
containing copies of the files are in a peer-to-peer network.

Claim 26 of the ‘442 patent recites a method as in claim 23 which includes the
recordation of information about any computer in the system found to have an unauthorized or
unlicensed copy of any file.

Claim 27 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file is either a message digest function or a hash function.

Claim 28 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file is either an MD4, MDS5, or SHA function.

Claim 29 of the ‘442 patent recites a method as in claim 23 wherein the function used to

derive a new name for a data file randomly distributes its outputs.

99

RACK-1003
Page 633 of 738

Claim 30 of the ‘442 patent recites a method as in claim 23 wherein the function used to
derive a new name for a data file produces a substantially unique value based on the data within
the file.

Claim 31 of the ‘442 patent recites a method of obtaining a list of True Names. The
claim recites that the True Names are based on a function of the data within each file, i.e.,
derived from the contents of the file. The method also includes determining if an unauthorized
or unlicensed copy of that file is on any computer in a peer-to-peer network using the content-
derived list of names. The method includes the recordation of information by any computer in
the system found to have an unauthorized or unlicensed copy of any file.

Claims 32-33 of the ‘442 patent recite a method as in claim 31 wherein the function used
to derive a True Name for a data file is either a message digest function or a hash function, or an
MD4, MDS5, or SHA function.

Claim 34 of the ‘442 patent teaches a method as in claim 31 where a computer can
request a copy of a file. The file can be provided from a computer having an authorized or
licensed copy of the file.

Claim 35 of the ‘442 patent recites a method of obtaining a list of True Names. The
claim recites that the True Names are based on an MD35 function of the data within each file,
i.e., derived from the contents of the file. The method also includes determining if an
unauthorized or unlicensed copy of that file is on any computer in the distribution system using
the content-derived list of names. The method includes the recordation of information by any
computer in the system found to have an unauthorized or unlicensed copy of any file.

Claim 36 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers. The method includes obtaining a name for a data file.

100

RACK-1003
Page 634 of 738

The claim recites that the name is based on a function of the data within the file, i.e., derived
from the contents of the file. The method includes determining if an unauthorized or unlicensed
copy of that file is on any computer in the distribution system using the content-derived name.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be ahy type of electronic file. Id. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution can occur over any network or non-network environment. /d. at 1:49-52.
When a customer desires to purchase a license for a software package, a request is transmitted
to a reselling entity. Id. at 3:21-24. Inresponse to the request, a reselling entity distributes the
requested license file to the customer. 7d. at 3:38-40. For any given license file, a unique
license signature is generated by applying a message digest function, such as MDS3, to the data
within the file. /d. at 6:5-18. The license signature is used as a quality assurance check of the
data upon data transfer from a manufacturer to a reseller. Id. at 9:2-11.

A policy manager validates and manages the licenses in the distribution system. /d. at
11:31-32. The policy manager maintains a license identifier table which stores information
pertaining to every license file in memory. Id. at 11:41-64. If a copy of the license file exists on
a given computer, the policy manager is invoked to invalidate the license installation. /d. at
10:42-51. If a license installation is rejected, a computer records information pertaining to the
rejection. /d. at 12:47-50.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,

6:7-11. The hash value can be generated by applying a one way hash function to the data within

101

RACK-1003
Page 635 of 738

the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

While Ross does not expressly disclose peer-to-peer networking, the reference discloses a
client-to-server like relationship between a license distributor and a client. Ross, 3:31-37.
However, the ‘442 patent defines a peer-to-peer network as a network in which computers can
act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason why it would
not be obvious to one of ordinary skill in the art to adjust the client-to-server model in Ross to a
peer—to—ﬁeer model because peer-to-peer networking as defined by the ‘442 patent is nothing
more than a client-to-server relationship in which the client and server roles change.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 22-36
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the
art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest
functions to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s) The Ross and Gramlich References
22. A method, in a system in which a plurality of Ross teaches a license distribution system where
files are distributed across a plurality of computers, | license files are distributed across multiple
the method comprising: computers in a network. [3:59-4:10].
102

RACK-1003

Page 636 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a name for a data file, the name being
based at lcast in part on an MD3 function of the
data which comprises the contents of the particular
file;

Ross teaches that license signatures can be
generated by applying an MDS5 function to the data
within the file. [6:5-18].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that an MD3 function can be used to
generate a unique signature for a license file.
Gramlich teaches using a hash function to generate
a unique file name. It would be obvious to combine
Ross and Gramlich to use an MDS5 function to
generate a unique file name.

and determining, using at least the obtained name,
whether an unauthorized or unlicensed copy of the
data file is present on a at least one of said
computers.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

23. A method comprising:

103

RACK-1003

Page 637 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a list of file names, name for each of a
plurality of files, each of said file names having
been determined, at least in part, by applying a
function to the contents of the corresponding file;

Ross teaches that “information from each valid
license is added to a license information store in
memory.” [11:58-59] A policy manager
“maintain[s] a valid license identifier table.”
[11:41-44].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus Ross teaches that file information, which
includes names, are obtained and stored in lists.
Gramlich teaches naming a data file based on the
data content of the file. It would have been obvious
to one skilled in the art to use Gramlich’s naming
technique to create the lists disclosed by Ross.

and using at least said list to determine whether
unauthorized or unlicensed copies of some of the
plurality of data files are present on a particular
computer.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is present on a
particular computer.

24. A method as in claim 23 further comprising:

104

RACK-1003

Page 638 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

in response to a request for a particular data file,
allowing the contents of the data file to be provided
from a computer determined to have a licensed or
authorized copy of the data file.

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

25. A method as in claim 23

wherein the particular computer is part of a peer-to-
peer network of computers.

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change.

26. A method as in claim 23 further comprising:

if the computer is found to have a file that it is not
authorized or licensed to have, recording
information about the computer and about the file.

Ross teaches that “[w]hen an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

27. A method as in claim 23

105

RACK-1003

Page 639 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

wherein the function is a message digest function
or a hash function.

Gramlich teaches that “[e]ach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “the clear text portion of a license
is message digested using RSA’s MD5 algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. It would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

28. A method as in claim 23

wherein the function is selected from the functions:

MD4, MDS5, and SHA.

See Claim 27

29, A method as in claim 23

wherein the given function randomly distributes its
outputs.

The ‘442 patent teaches that a desirable property of
a hash function or message digest function is to
randomly distribute outputs. [13:6-9]. Hash
functions or message digest functions (e.g., MD4,
MD3, or SHA) have these properties. [13:13-17].

Ross expressly recites the MDS5 function, which the
‘442 patent concedes has the property of randomly
distributing its outputs.

30. A method as in claim 23

wherein the function produces a substantially
unique value based on the data comprising the data
file.

“Each database component file includes a hash
value which, when combined with the file name of
the source file results in a unique file name. The
hash value is computed as a function of the
contents of the source file wherein if the contents
of the source file changes, the hash code changes.”
[6:29-34].

Thus Gramlich teaches that the hash function
produces a substantially unique value for a data
file.

31. A method comprising:

106

RACK-1003

Page 640 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a list of True Names, one for each of a
plurality of files, wherein, for each of the files, the
True Name for that file is determined using a
function of the contents of the file;

Ross teaches that “information from each valid
license is added to a license information store in
memory.” [11:58-59] A policy manager
“maintain[s] a valid license identifier table.”
[11:41-44].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file, [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus Ross teaches that file information, which
includes names, are obtained and stored in lists.
Gramlich teaches naming a data file based on the
data content of the file. It would have been obvious
to one skilled in the art to use Gramlich’s naming
technique to create the lists disclosed by Ross.

for at least some computers that make up part of a
peer-to-peer network of computers,

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change.

107

RACK-1003

Page 641 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

comparing at least some of the contents of the
computers to the list of True Names to determine
whether unauthorized or unlicensed copies of some
of the plurality of data files are present on those
computers;

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues. ..to remove the
invalid license(s).”” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is present on a
particular computer. Ross also teaches that a policy
manager stores data information, including data
identity, in a table (i.e., list). [11:41-44]. Thus,
Ross inherently teaches use of the list to determine
if unauthorized copies of a file are present on a
computer in the system.

and based at least in part on said comparing, if a
computer is found to have content that it is not
authorized or licensed to have, recording
information about the computer and about the
unauthorized or unlicensed content.

Ross teaches that “[w]hen an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

32. A method as in claim 31

wherein the True Names are determined using a
message digest function or a hash function.

Gramlich teaches that “[e]ach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “‘the clear text portion of a license
is message digested using RSA’s MD5 algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. It would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

108

RACK-1003

Page 642 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

33. A method as in claim 31

wherein the function is selected from the functions:
MD4, MDS5, and SHA.

See Claim 32.

34. A method as in claim 31, further comprising:

in response to a request for the data file, allowing a
copy of the file to be provided from a given one of
the plurality of computers having an authorized or
licensed copy of the file.

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

35. A method comprising:

obtaining a list of True Names, one for each of a
plurality of files, wherein, for each of the files, the
True Name for that file is determined using an
MDS35 function of the contents of the file;

Ross teaches that “information from each valid
license is added to a license information store in
memory.” [11:58-59] A policy manager
“maintain[s] a valid license identifier table.”
[11:41-44].

Ross also teaches that license signatures can be
generated by applying an MDS5 function to the data
within the file. [6:5-18].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Fach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus Ross teaches that file information, which
includes names, are obtained and stored in lists.
Gramlich teaches naming a data file based on the
data content of the file. It would have been obvious
to one skilled in the art to use Gramlich’s naming
technique to create the lists disclosed by Ross,
while using an MD3 function.

109

RACK-1003

Page 643 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

comparing the True Names of at least some of the
contents of a computer to the list of True Names to
determine whether unauthorized or unlicensed
copies of some of the plurality of data files are
present on that computer;

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-306].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is present on a
particular computer.

and based at least in part on said comparing, if a
computer is found to have content that it is not
authorized or licensed to have, recording
information about the computer and about the
unauthorized or unlicensed content.

Ross teaches that “[w]hen an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

36. In a system in which a data file is distributed
across a plurality of computers, a method
comprising:

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

obtaining a name for the data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function which
comprise the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

110

RACK-1003

Page 644 of 738

The ‘442 Patent Claim(s) The Ross and Gramlich References

and determining, using at least the name, whether Ross teaches that an anchor license in a software
an unauthorized or unlicensed copy of the data file | program is given a “0.000” file extension identity
is present on a particular one of said computers. wherein the extension is incremented as license

files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues. ..to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

9. Claim 37 of the ‘442 patent is obvious over Ross in view of Gramlich

Claim 37 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a name for a data file. The claim recites that the name is based on
a function of the data within the file, i.e., derived from the contents of the file. The method
also includes determining if an unauthorized or unlicensed copy of that file is on any computer
in the distribution system using the content-derived name.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. Id. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. /d. at 1:49-52. The
license files can be distributed on any form of distribution media and then subsequently
extracted by a receiving entity. Id. at 8:24-27. When a customer desires to purchase a license

for a software package, a request is transmitted to a reselling entity. /d. at 3:21-24. In response

111

RACK-1003
Page 645 of 738

to the request, a reselling entity distributes the requested license file to the customer. /d. at 3:38-
40.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claim 37 as
set forth more completely in the claim charts below. Moreover, one of ordinary skill in the art
would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest functions
to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s) The Ross and Gramlich References

37. Computer-readable media tangibly embodying | Ross teaches that an inventory of license files are

a program of instructions executable by at least one | distributed on some form of distribution media, and
computer, the program comprising code to: subsequently extracted by a reselling entity.[8:24-
27].

Thus Ross teaches the distribution of computer
readable media which contains a program
executable by a computer.

112

RACK-1003

Page 646 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtain a name for a data file, the name being based
at least in part on a given function of the data,
wherein the data used by the function comprises the
contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and in response to a request for the a data file, the
request including at least the name of the particular
file,

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-247. Tt is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

cause a copy of the file to be provided from a given
one of the plurality of computers,

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
extraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entify extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

wherein the copy is only provided to licensed
parties.

Ross teaches that a license file cannot be accessed
by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues. ..to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

113

RACK-1003

Page 647 of 738

10. Claims 38-44 of the ‘442 patent are obvious over Ross in view of
Gramlich

Claim 38 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a True Name for a data file. The claim recites that the True Name
is based on a function of the data within the file, i.e., derived from the contents of the file. The
method also includes determining if an unauthorized or unlicensed copy of that file is on any
computer in the distribution system using the True Name.

Claim 38 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a True Name for a data file. The claim recites that the True Name
is based on a function of the data within the file, i.e., derived from the contents of the file. The
method also includes determining if an unauthorized or unlicensed copy of that file is on any
computer in the distribution system using the True Name.

Claim 39 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code to obtain a list of file names. The claim recites that the list names are based on a
function of the data within each file, i.e., derived from the contents of the file. The method also
includes determining if an unauthorized or unlicensed copy of that file is on any computer in the
distribution system using the content-derived list of names.

Claim 40 of the ‘442 patent recites a media which can be read by computers. The media
contains an executable program which can be opened by a computer. The executable program
contains code which obtains a name for a data file. The claim recites that the name is based on

a function of the data within the file, i.e., derived from the contents of the file. The method

114

RACK-1003
Page 648 of 738

also includes determining if an unauthorized or unlicensed copy of that file is on any computer
in the distribution system using the content-derived name.

Claim 41 of the ‘442 patent teaches a computer readable media as in claim 40 wherein
the function used to derive a new name for the data file is either a message digest function or a
hash function.

Claim 42 of the ‘442 patent recites a method of obtaining a list of file names. The claim
recites that the list names are based on a function of the data within each file, i.e., derived from
the contents of the file. The method also includes determining if an unauthorized or unlicensed
copy of that file is on any computer in the distribution system using the content-derived list of
names.

Claim 43 of the ‘442 patent recites a computer system as in claim 42 wherein the function
used to derive a new names for data files in the list is either a message digest function or a hash
function.

Claim 44 of the ‘442 patent recites a computer system as in claim 42 wherein the function
used to derive a new name for data files in the list is an MDS5 function.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. /d. at 1:49-52. The
license files can be distributed on any form of distribution media and then subsequently
extracted by a receiving entity. /d. at 8:24-27. For any given license file, a unique license

signature is generated by applying a message digest function, such as MD5, to the data within

115

RACK-1003
Page 649 of 738

the data file. Id. at 6:5-18. The license signature is used as a quality assurance check of the data
upon data transfer from a manufacturer to a reseller. 7d. at 9:2-11.

A policy manager validates and manages the licenses in the distribution system. /d. at
11:31-32. The policy manager maintains a license identifier table which stores information
pertaining to every license file in memory. /d. at 11:41-64. If a copy of the license file exists on
a given computer, a policy manager is invoked to invalidate the license installation. /d. at 10:42-
51.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. Jd. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 38-44
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the
art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest
functions to generate unique hash values‘ and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

116

RACK-1003
Page 650 of 738

The 442 Patent Claim(s)

The Ross and Gramlich References

38. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Ross teaches that an inventory of license files are
distributed on some form of distribution media, and
subsequently extracted by a reselling entity.[8:24-
27].

Thus Ross teaches the distribution of computer
readable media which contains a program
executable by a computer.

obtain a True Name for a data file, the True Name
being based at least in part on a given function of
the data, wherein the data used by the function
comprises the contents of the particular file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and determine, using at least the name, whether an

unauthorized or unlicensed copy of the data file is
present on a particular computer.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

39. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Ross teaches that an inventory of license files are
distributed on some form of distribution media, and
subsequently extracted by a reselling entity.[8:24-
27).

Thus Ross teaches the distribution of computer
readable media which contains a program
executable by a computer.

117

RACK-1003

Page 651 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtain a list of file names, one for each of a
plurality of files, each of said file names having
been determined, at least in part, by applying a
function to the contents of the corresponding file;

Ross teaches that “information from each valid
license is added to a license information store in
memory.” [11:58-59] A policy manager
“maintain[s] a valid license identifier table.”
[11:41-44].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus Ross teaches that file information, which
includes names, are obtained and stored in lists.
Gramlich teaches naming a data file based on the
data content of the file. It would have been obvious
to one skilled in the art to use Gramlich’s naming
technique to create the lists disclosed by Ross.

and determine, using at least said list, whether
unauthorized or unlicensed copies of some of the
plurality of data files are present on a particular
computer.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is present on a
particular computer.

40. Computer-readable media tangibly embodying
a program of instructions executable by at least one
computer, the program comprising code to:

Ross teaches that an inventory of license files are
distributed on some form of distribution media, and
subsequently extracted by a reselling entity.[8:24-
27].

Thus Ross teaches the distribution of computer
readable media which contains a program
executable by a computer.

118

RACK-1003

Page 652 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtain a name for the data file, the name being
based at least in part on a given function of the data
which comprise the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and determine, using at least the name, whether an
unauthorized or unlicensed copy of the data file is
present on a particular one of said computers.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues. ..to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

41. Media as in claim 40

119

RACK-1003

Page 653 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

wherein the given function is a message digest
function or a hash function.

Gramlich teaches that “[e]ach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “the clear text portion of a license
is message digested using RSA’s MDS algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. It would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

42. A computer system programmed to:

obtain a list of file names for a plurality of files,
each of said file names having been determined, at
least in part, by applying a function to the contents
of the corresponding file;

Ross teaches that “information from each valid
license is added to a license information store in
memory.” [11:58-59] A policy manager
“maintain[s] a valid license identifier table.”
[11:41-44].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus Ross teaches that file information, which
includes names, are obtained and stored in lists.
Gramlich teaches naming a data file based on the
data content of the file. It would have been obvious
to one skilled in the art to use Gramlich’s naming
technique to create the lists disclosed by Ross.

120

RACK-1003

Page 654 of 738

The ‘442 Patent Claim(s) The Ross and Gramlich References

and determine, using at least said list, whether Ross teaches that an anchor license in a software
unauthorized or unlicensed copies of some of the program is given a “0.000” file extension identity
plurality of data files are present on a particular wherein the extension is incremented as license
computer. files in a chain are added to the anchor license.

[9:22-257. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is present on a
particular computer.

43. A computer system as in claim 42

wherein the function is a message digest function Gramlich teaches that “[e]ach database component
or a hash function. file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “the clear text portion of a license
is message digested using RSA’s MD5 algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. It would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

44. A computer system as in claim 42

wherein the function is an MD5 function. See Claim 43.

11. Claims 45-53 of the ‘442 patent are obvious over Ross in view of
Gramlich

Claim 45 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers in peer-to-peer network. The method includes obtaining

121

RACK-1003
Page 655 of 738

aname for a data file. The claim recites that the name is based on a function of the data within
the file, i.e., derived from the contents of the file. The method also includes providing a copy
of the file in response to a request for the file including the name, provided that the requestor is
a licensed party.

Claim 46 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in peer-to-peer network. The method includes obtaining
a name for a data file. The claim recites that the name is based on a function of the data within
the file, i.e., derived from the contents of the file. The method includes determining if a copy
of that file is on a computer in the distribution system. This determination is made using at least
the content-derived name. The method also includes determining if an unauthorized or
unlicensed copy of that file is on any computer in the distribution system using the content-
derived name.

Claim 47 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes determining if a copy of a file is on
a computer in the distribution system. The method also includes obtaining a name for a data
file. The claim recites that the name 1is based on a function of the data within the file, i.e.,
derived from the contents of the file. The content-based name is used to determine if an
unauthorized or unlicensed copy of that file is on any computer in the distribution system.

Claim 48 of the ‘442 patent recites a method as in claim 47 wherein the function used to
derive a new name for a data file is either a message digest function or a hash function.

Claim 49 of the ‘442 patent recites a method as in claim 47 wherein the function used to

derive a new name for a data file can be an MD4, MD3, or SHA function.

122

RACK-1003
Page 656 of 738

Claim 50 of the ‘442 patent recites a method as in claim 47 which includes the
recordation of information about any computer in the system found to have an unauthorized or
unlicensed copy of any file.

Claims 51 and 53 of the ‘442 patent recite a method as in claim 47, where a computer in
the distribution system can maintain accounting information related to the data files in the
system. Such accounting includes tracking which files are stored on any given computer, and
which files have been delivered to any given computer.

Claim 52 of the ‘442 patent recites a method as in claims 4 and 51, where a computer in
the system uses accounting information as basis to charge users based on the identify of data
files in the system.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. /d. at 1:49-52. The
license files can be distributed on any form of distribution media and then subsequently
extracted by a receiving entity. /d. at 8:24-27. When a customer desires to purchase a license
for a software package, a request is transmitted to a reselling entity. /d. at 3:21-24. In response
to the request, a reselling entity distributes the requested license file to the customer. /d. at 3:38-
40. For any given license file, a unique license signature is generated by applying a message
digest function, such as MD5, to the data within the data file. /d. at 6:5-18. The license
signature is used as a quality assurance check of the data upon data transfer from a manufacturer

to areseller. /d. at 9:2-11.

123

RACK-1003
Page 657 of 738

A policy manager validates and manages the licenses in the distribution system. /d. at
11:31-32. The policy manager maintains a license identifier table stores information pertaining
to every license file in memory. /d. at 11:41-64. If a copy of the license file exists on a given
computer, a policy manager is invoked to invalidate the license installation. /d. at 10:42-51. If a
license installation is rejected, a computer records information pertaining to the rejection. Id. at
12:47-50. The policy manager is capable of maintaining accounting information with respect to
license files, including tracking the distribution of license files from reselling entities to
purchasing customers. /d. at 11:37-47.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

While Ross does not expressly disclose peer-to-peer networking, the reference discloses a
client-to-server like relationship between a license distributor and a client. Ross, 3:31-37.
However, the ‘442 patent defines a peer-to-peer network as a network in which computers can
act as both clients and servers. ‘442 patent, 5:5-17. Therefore, there is no reason why it would
not be obvious to one of ordinary skill in the art to adjust the client-to-server model in Ross to a
peer-to-peer model because peer-to-peer networking as defined by the ‘442 patent is nothing
more than a client-to-server relationship in which the client and server roles change.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 45-53
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the

art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest

124

RACK-1003
Page 658 of 738

functions to generate unique hash values and/or signature for a data file. Ross teaches a license

distribution system wherein policy management and security is of concern as illustrated by the

use of a signature for quality assurance maintenance. It would be obvious to use the known

techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s)

The Ross and Gramlich References

45. In a system in which a plurality of files are
distributed across a plurality of computers,

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

at least some of the computers forming a peer-to-
peer network, a method comprising:

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

125

RACK-1003

Page 659 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

and in response to a request for the a data file, the
request including at least the name of the particular
file,

A software user can request license files, such as a
software anchor license, from a reselling entity.
[3:21-24]. It is inherent that the software user must
the identify license file in order to receive the
correct license. [3:3-6]. “For example, a purchaser
may purchase an initial number of network
connections for a network software application.
Subsequently, a purchaser may determine that
additional connections are needed to support the
number of users of the product.” [3:10-14].

attempting to cause a copy of the file to be
provided from a given one of the plurality of
computers,

Ross teaches that in response to request for a
license file from a software user, a copy of the
license file is provided to the user. [3:38-40].
“Newly created licenses are stored in a license
exiraction database that can be subsequently
accessed to extract licenses.” [7:2-4]. The reselling
entity extracts a requested license, copies the
license to a distribution media, and delivers the
license to a requesting software user. [8:24-31].

Thus, Ross teaches that copies of files can be
distributed from one computer to another.

wherein the requested file is only provided to
authorized or licensed parties.

Ross teaches that a license file cannot be accessed
by a software user unless the underlying license is
valid. [9:30-36]. For example, “if the new license’s
serial number is not equal to the anchor license’s
serial number, processing continues...to remove
the invalid license(s).” [10:32-35].

Thus Ross teaches that license files are only
provided to licensed parties.

46. A method, in a system in which a plurality of
files are distributed across a plurality of computers,

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

126

RACK-1003

Page 660 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

at least some of the computers forming a peer-to-
peer network, the method comprising:

“[A] purchaser may purchase an initial number of
network connections for a network software
application.” [3:10-12]. “The manufacturer can
further adopt a flexible licensing policy that can be
used to determine licensing issues.” [3:30-32]. “A
policy manager validates and manages licenses.”
[11:31-32].

The ‘442 patent defines a peer-to-peer network as
one in which computers can act as both clients and
servers. Ross discloses a client-to-server model. It
would have been obvious to one skilled in the art to
adjust the client-to-server relationship such that the
roles of the license distributor and client change.

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the function
comprises the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

determining whether a copy of the data file is
present on a at least one of said computers;

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system.

127

RACK-1003

Page 661 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

and determining, using at least the name, whether a
copy of the data file that is present on a at least one
of said computers is an unlicensed copy of the file.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain arc added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

47. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

Ross teaches a license distribution system where
license files are distributed across multiple
compulers in a network. [3:59-4:10].

determining whether a copy of a data file is present
on a at least one of said computers;

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system.

obtaining a name for a data file, the name being
based at least in part on a given function of the data
which comprises the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

128

RACK-1003

Page 662 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

and, using at least the name, attempting to
determine whether a copy of the data file that is
present on the at least one of said computers is an
unlicensed copy of the file.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues. . .to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determme if an
unauthorized copy of that file is being present on a
particular computer.

48. A method as n claim 47

wherein the given function comprises a message
digest or a hash function.

Gramlich teaches that “[e]ach database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that “the clear text portion of a license
is message digested using RSA’s MDS5 algorithm.
However, any other method for generating a
message digest can be used.” [7:53-55].

Thus, Gramlich teaches naming a data file based on
the data content of the file. Ross teaches that any
message digest or hash function can be applied to
the data within a data file to produce a unique
value. It would be obvious to one of ordinary skill
in the art to combine Gramlich’s naming technique
with any message digest or hash function as
disclosed by Ross.

49. A method as in claim 48

wherein the given function is selected from the
functions: MD4, MD35 and SHA.

See Claim 48.

50. A method as in claim 47 further comprising:

if a computer is found to have a file that it is not
licensed to have, recording information about the
computer.

Ross teaches that “[w]hen an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

51. A method as in claim 47, further comprising;:

129

RACK-1003

Page 663 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

maintaining accounting information relating to data
files in the system.

Ross teaches that a policy manager “validates and
manages licenses.” [11:31-32]. “[TThe policy
manager can monitor the number of connection
licenses previously granted, and determine which
license grants count toward the maximum number
of allowed licenses. In addition to implementing
license policies, the policy manager can display key
license information, respond to information
requests. .., maintain a valid license identifier table,
supply valid license identifier information to a
watchdog routine, and validate license identifiers.”
[11:37-47].

Thus Ross teaches that accounting information,
including tracking licenses granted to users and
tracking license files stored on a computer, can be
maintained by a policy managet.

52. A method as in any one of claims 4 and 51,
further comprising;

using the accounting information as a basis for a
system in which charges are based on an identity of
the data files.

See Claim 51.

53. A method as in claim 47, further comprising,
for at least one computer in the system:

(a) tracking which data files have been stored on a
computer; and

See Claim 51

{(b) tracking which data files have been transmitted

See Claim 51.

from a computer,

12.
Gramlich

Claims 54-56 of the ‘442 patent are obvious over Ross in view of

Claim 54 of the ‘442 patent recites a method implemented in a system in which files are

distributed across multiple computers in a network. The method includes determining if'a copy

of a file is on a computer in the distribution system. The files may represent “a digital image, a

video signal, or an audio signal.” The method includes obtaining a name for a data file. The

claim recites that the name is based on an MD35 function of the data within the file, i.e., derived

from the contents of the file. The content-based name is used to determine if an unauthorized or

unlicensed copy of that file is on any computer in the distribution system. The method includes

130

RACK-1003

Page 664 of 738

the recordation of information by any computer in the system found to have an unauthorized or
unlicensed copy of any file.

Claim 55 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers in a network. The method includes determining if a copy
of a file is on a computer in the distribution system. The method includes obtaining a name for
a data file. The claim recites that the name is based on an MD35 function of the data within the
file, i.e., derived from the contents of the file. The content-based name is used to determine if'a
copy of the file found is unauthorized or unlicensed. If the copy is unauthorized or unlicensed,
the method includes the recordation of information pertaining to the computer in the system
found to have the unauthorized or unlicensed copy of the file.

Claim 56 of the ‘442 patent recites a method implemented in a system in which files are
distributed across multiple computers. The method includes obtaining a name for a data file.
The claim recites that the name is based on a function of the data within the file, i.e., derived
from the contents of the file. The content-based name is used to determine if a copy of a file
found is unauthorized or unlicensed.

Ross teaches a license file distribution system across a plurality of computers. Ross, 3:59-
4:10. The license files can be any type of electronic file. /d. at 4:37-39. The licenses are
distributed from a manufacturer to a reselling entity, and ultimately to a purchasing customer.
Id. The distribution occurs over any network or non-network environment. 7d. at 1:49-52. The
license files can be distributed on any form of distribution media and then subsequently
extracted by a receiving entity. /d. at 8:24-27. A policy manager validates and manages the
licenses in the distribution system. /d. at 11:31-32. The policy manager maintains a license

identifier table which stores information pertaining to every license file in memory. /d. at 11:41-

RACK-1003
Page 665 of 738

64. If a copy of the license file exists on a given computer, a policy manager is invoked to
invalidate the license installation. /d. at 10:42-51. If a license installation is rejected, a
computer records information pertaining to the rejection. /d. at 12:47-50. For any given license
file, a unique license signature is generated by applying a message digest function, such as
MDS5, to the data within the data file. /d. at 6:5-18. The license signature is used as a quality
assurance check of the data upon data transfer from a manufacturer to a reseller. /d. at 9:2-11.

Although Ross does not specify how the license files are named, Gramlich teaches that
files can be named by incorporating a hash of the actual file data into the file name. Gramlich,
6:7-11. The hash value can be generated by applying a one way hash function to the data within
the source file. /d. The generated hash value is thereby unique for any given source file. /d. at
6:29-34.

Therefore, the combination of Ross and Gramlich teaches all limitations of claims 54-56
as set forth more completely in the claim charts below. Moreover, one of ordinary skill in the
art would combine Ross and Gramlich. Both Ross and Gramlich utilize message digest
functions to generate unique hash values and/or signature for a data file. Ross teaches a license
distribution system wherein policy management and security is of concern as illustrated by the
use of a signature for quality assurance maintenance. It would be obvious to use the known
techniques of hash generation to establish unique file names to further enhance security and

quality of the system.

The ‘442 Patent Claim(s) The Ross and Gramlich References

54. A method, in network in which a plurality of Ross teaches a license file distribution system
files are distributed across a plurality of computers | which can function “in a network or non-network
of the network, the method comprising: environment.” [1:49-52]. License files are

distributed from a manufacturer (“content server”)
to purchasing customers (“clients”). [3:39-47].

132

RACK-1003
Page 666 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich Refercnces

determining whether a copy of a data file is present
on a at least one of said computers,

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system.

said data file representing one or more of a digital
image, a video signal or an audio signal;

Ross teaches that license files in a license
distribution system “can be any type of file (e.g.
text file, or an executable file).” [4:37-39]. This
expressly includes a “digital message.”

Thus Ross teaches that data in the system can
consist of any type of electronic file.

obtaining a name for the data file, the name being
based at least in part on an MD5 function of the
data which comprises the contents of the data file;

Ross teaches that license signatures can be
generated by applying an MDS function to the data
within the file. [6:5-18].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that an MD5 function can be used to
generate a unique signature for a license file.
Gramlich teaches using a hash function to generate
a unique file name. It would be obvious to combine
Ross and Gramlich to use an MD35 function to
generate a unique file name.

133

RACK-1003

Page 667 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

and, when a copy of the data file is found to be
present on one of the computers, determining,
using at least the name, whether the copy of the
data file is an authorized or licensed copy of the
data file;

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

and if a computer is found to have a file that it is
not authorized or licensed to have, recording
information about the computer or the data file.

Ross teaches that “[w]lhen an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

55. In network in which a plurality of files are
distributed across a plurality of computers of the
network, a method comprising: for each file of a
plurality of data files,

Ross teaches a license file distribution system
which can function “in a network or non-network
environment.” [1:49-52]. License files are
distributed from a manufacturer { “content server’)
to purchasing customers (“clients”). [3:39-47].

(a) determining whether a copy of the file data file
is present on a at least one of said computers;

Ross teaches that license files are given file
extensions that indicate their order in a chain of
licenses. [9:22-25]. If a license file is distributed to
a user and “it is determined that the new license
already exists...a policy manager is invoked to
validate the installed license(s).” [10:42-51]

Thus Ross teaches that a file name extension can be
used to determine if copy of the files are present on
a computer in a file distribution system,

RACK-1003

Page 668 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

(b) obtaining a name for the data file, the name
being based at least in part on an MDS5 function of
the data which comprises the contents of the data
file;

Ross teaches that license signatures can be
generated by applying an MDS35 function to the data
within the file. [6:5-18].

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Ross teaches that an MD35 function can be used to
generate a unique signature for a license file.
Gramlich teaches using a hash function to generate
a unique file name. It would be obvious to combine
Ross and Gramlich to use an MD5 function to
generate a unique file name.

(¢) when a copy of the data file is found to be
present on one of the computers, determining,
using at least the name, whether the copy of the
data file-is an authorized or licensed copy of the
data file; and,

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial

number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

(d) if a computer is found to have a file that it is not
authorized or licensed to have, recording
information about the computer or the data file.

Ross teaches that “[when an anchor license is
determined to be invalid,...an error message [is]
placed in a system error log and displayed on a
system console.” [12:47-50].

56. A method, in a system in which a plurality of
files are distributed across a plurality of computers,
the method comprising:

Ross teaches a license distribution system where
license files are distributed across multiple
computers in a network. [3:59-4:10].

135

RACK-1003

Page 669 of 738

The ‘442 Patent Claim(s)

The Ross and Gramlich References

obtaining a name for a data file, the name being
based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the data file;

Gramlich teaches that a file can be given a name
that incorporates a hash function to the data within
the source file. [6:7-11]. “Each database component
file includes a hash value which, when combined
with the file name of the source file results in a
unique file name. The hash value is computed as a
function of the contents of the source file wherein
if the contents of the source file changes, the hash
code changes.” [6:29-34].

Thus, Gramlich teaches naming a data file based on
the data content of the file.

and determining, based at least in part on the
obtained name, whether a copy of the data file that
is present on a at least one of said computers is an
unauthorized or unlicensed copy of the file.

Ross teaches that an anchor license in a software
program is given a “0.000” file extension identity
wherein the extension is incremented as license
files in a chain are added to the anchor license.
[9:22-25]. The file extension “can be used to
determine a sequential order for validating
licenses.” [9:26-28]. When a license file is being
installed to a computer, “if the new license’s serial
number is not equal to the anchor license’s serial
number, processing continues...to remove the
invalid license(s).” [10:34-36].

Thus Ross teaches that a computer in the system
can utilize the identity of a file to determine if an
unauthorized copy of that file is being present on a
particular computer.

136

RACK-1003

Page 670 of 738

VI. CONCLUSION
For the reasons set forth above, requestor contends that substantial new questions of
patentability have been presented for all claims at issue and the Examiner is respectfully

requested to reexamine claims 1-56 of the ‘442 patent.

Respectfully Submitted,

August 29, 2008 /Billy C. Allen II1/
Date Billy C. Allen I1I
Reg. No. 46,147

CUSTOMER NO. 29855

WONG, CABELLO, LUTSCH,
RUTHERFORD & BRUCCULERI, L.L.P.
20333 State Hwy 249, Suite 600
Houston, TX 77070

Phone 832/446-2400

Fax 832/446-2424
wepatent@counselip.com

137

RACK-1003
Page 671 of 738

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Reexamination of

U.S. Patent No. 6,928,442 Group Art Unit:

Inventor: David A. Farber, et al. Examiner:

Patentee: Kinetech, Inc. Atty. Dkt. No.: 788-0003

Application Serial No.: 987,723 Client Ref.
Filed: Apr. 11, 1995

Issued: August 9, 2005

For: ENFORCEMENT AND POLICING

OF LICENSED CONTENT USING
CONTENT-DERIVED IDENTIFIERS

Lon U LT LN O N N CON LN LN LN U A L L U

CERTIFICATE OF SERVICE

I hereby certify that on this 28™ day of August, 2008, the Request for Reexamination in
the above entitled matter is being deposited with the United States Postal Service, with sufficient
first-class postage, in an envelope addressed to:

DAVIDSON BERQUIST JACKSON & GOWDEY LLP
4300 WILSON BLVD., 7TH FLOOR
ARLINGTON VA 22203

-~ Ve y }
] ;“(f} f 4’77 g /f
P ‘ , I . :
N0 (1 [Jaia_
Sharon A. Vara
Assistant to Billy C. Allen III

RACK-1003
Page 672 of 738

Electronic Patent Application Fee Transmittal

Application Number:

Filing Date:

Title of Invention:

ENFORCEMENT AND POLICING OF LICENSE CONTENT USING CONTENT-

DERIVED IDENTIFIERS

First Named Inventor/Applicant Name:

David A. Farber

Filer:

Billy Collins Allen/Sharon Vara

Attorney Docket Number:

788-0003RX

Filed as Large Entity

ex parte reexam Filing Fees

Description Fee Code Quantity Amount Sullaj-s'l's(tsa)l in

Basic Filing:

Request for ex parte reexamination 1812 1 2520 2520
Pages:
Claims:
Miscellaneous-Filing:
Petition:
Patent-Appeals-and-Interference:
Post-Allowance-and-Post-Issuance:
Extension-of-Time: RACK-1003

Page 673 pf 738

o . Sub-Total in
Description Fee Code Quantity Amount USD($)
Miscellaneous:
Total in USD ($) 2520
RACK-1003

Page 674 of 738

Electronic Acknowledgement Receipt

EFSID: 3865886
Application Number: 90010260
International Application Number:
Confirmation Number: 9929

Title of Invention:

ENFORCEMENT AND POLICING OF LICENSE CONTENT USING CONTENT-

DERIVED IDENTIFIERS

First Named Inventor/Applicant Name:

David A. Farber

Customer Number:

29855

Filer:

Billy Collins Allen/Sharon Vara

Filer Authorized By:

Billy Collins Allen

Attorney Docket Number: 788-0003RX
Receipt Date: 29-AUG-2008
Filing Date:
Time Stamp: 16:24:05

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment

yes

Payment Type Deposit Account
Payment was successfully received in RAM $2520

RAM confirmation Number 1706

Deposit Account 501922

Authorized User

The Director of the USPTO is hereby authorized to charge indicated fees and credit any overpayment as follows:

Charge any Additional Fees required under 37 C.F.R. Section 1.20 (Post Issuance fees)

Charge any Additional Fees required under 37 C.F.R. Section 1.21 (Miscellaneous fees and charges)

RACHK

-1003

Page 675

bf 738

File Listing:

Document . L. . File Size(Bytes)/ Multi Pages
Document Description File Name . . .
Number Message Digest | Part/.zip| (ifappl.)
- o 10093638
. . PetitionforReexamination8_28
1 Reexam Miscellaneous Incoming Letter 08.0df no 138
- .p 08b23a845388f5f6cf498cdac520d4f372277
Tca
Warnings:
Information:
. " . 43300
") SignedCertificateofService8_28,
2 Reexam Certificate of Service no 1
_08.pdf
aa70ba445c820e7a73ae1a9da9433915621
adb67
Warnings:
Information:
30053
3 Fee Worksheet (PTO-06) fee-info.pdf no 2
€90c405155b6a787be33adb6b989ce8c878
ac30b
Warnings:
Information:
Total Files Size (in bytes); 10166991

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

RACK-1003
Page 676 of 738

Electronic Acknowledgement Receipt

EFSID:

3866532

Application Number:

90010262

International Application Number:

Confirmation Number:

1117

Title of Invention:

ENFORCEMENT AND POLICING OF LICENSED CONTENT USING CONTENT-

DERIVED IDENTIFIERS

First Na

med Inventor/Applicant Name:

David A. Farber

Customer Number:

29855

Filer:

Billy Collins Allen/Sharon Vara

Filer Authorized By:

Billy Collins Allen

Attorney Docket Number: 788-0003RX
Receipt Date: 29-AUG-2008
Filing Date:
Time Stamp: 17:03:37

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment no
File Listing:
Document . L. . File Size(Bytes)/ Multi Pages
Number Document Description File Name Message Digest | Part/.zip| (ifappl.)
1638941
1 Reexam Miscellaneous Incoming Letter 5553143.pdf no 22

188f455f8ebfc99b2455c61212cd559e89b6

d50e

Warnings:

Information:

Total Files Size (in bytes):| 1638941

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

RACK-1003
Page 678 of 738

US006928442B2

a2 United States Patent

Farber et al.

@10y Patent No.: US 6,928,442 B2
45) Date of Patent: Aug. 9, 2005

(54)

(75)

(73)

*)

eay
(22)

(65)

(63)

(D
(52)

(58)

(56)

ENFORCEMENT AND POLICING OF
LICENSED CONTENT USING
CONTENT-BASED IDENTIFIERS

Inventors: David A. Farber, Ojai, CA (US);
Ronald D. Lachman, Northbrook, IL

(US)

Assignees: Kinetech, Inc., Northbrook, IL (US);
Savvis, Inc., Town & Country, MO

(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 09/987,723

Filed: Nov. 15, 2001
Prior Publication Data

US 2002/0052884 Al May 2, 2002

Related U.S. Application Data

Continuation of application No. 09/283,160, filed on Apr. 1,
1999, now Pat. No. 6,415,280, which is a division of
application No. 08/960,079, filed on Oct. 24, 1997, now Pat.
No. 5,978,791, which is a continuation of application No.
08/425,160, filed on Apr. 11, 1995, now abandoned.

Int. CL7 .o,
US.Cl

........................... GOGF 17/30
........ 707/10; 707/3; 707/101;

707/200; 709/203; 709/219; 709/229

Field of Search

...................... 707/3, 6, 9, 10,

707/101, 200; 709/203, 219, 229

References Cited
U.S. PATENT DOCUMENTS

3,668,647 A 6/1972 Evangelisti
4215402 A 7/1980 Mitchell
4290,105 A 9/1981 Cichelli
4376299 A 3/1983 Rivest
4405820 A 9/1983 Rivest
4412285 A 10/1983 Neches
(Continued)

SIMPJ.E

FOREIGN PATENT DOCUMENTS
EP 0592045 4/1994

OTHER PUBLICATIONS

Gwertzman, James, et al. “The Case for Geographical Push—
Caching.” Technical Report HU TR 34-94 (excerpt), Har-
vard University, DAS, Cambridge, MA 02138, 1994, 2 pgs.

Grigni, Michelangelo, et al. “Tight Bounds on Minimum
Broadcasts Networks.” SIAM Journal of Discrete Math-
ematics, vol. 4, No. 2, May 1991, pp. 207-222.

Devine, Robert. “Design and Implementation of DDH: A
Distributed Dynamic Hashing Algorithm.” In Proceedings
of 4th International Conference on Foundations of Data
Organizations and Algorithms, 1993, pp. 101-114.

Deering, Stephen, et al. “Multicast Routing in Datagram
Internetworks and Extended LANs.” ACM Transactions on
Computer Systems, vol. 8, No. 2, May 1990, pp. 85-110.

(Continued)

Primary Examiner—uke S Wossum

Assistant Examiner—Khanh Pham

(74) Artorney, Agent, or Firm—Davidson Berquist Jackson
& Gowdey, LLP

(7) ABSTRACT

Data files are distributed across a plurality of computers. The
computers may form a network such as a content delivery
network (CDN) or a peer-to-peer network. The network may
operate as a TCP/IP network such as the Internet. Data files
may represent may represent digital messages, images,
videos or audio signals. For content—data items or files in
the system—a name is obtained (or determined), where the
name is based, at least in part, on a given function of the data
in a data item or file. The given function may be a message
digest or hash function, and it may be MD4, MD5, and SHA.
A cony of a requested file is only provided to licensed (or
authorized) parties. The system may check one or more
computers for unauthorized or unlicensed content. Content
is served based on a measure of availability of servers.

56 Claims, 31 Drawing Sheets

DATA ITEM

/ 212

; COMPUTE MD FUNGTION ON :
' DATA ITEM

A

8214

APPEND LENGTH MODULO 32 OF
DATA ITEM

L |

TRUE NAME

!

RACK-1003
Page 679 of 738

US 6,928,442 B2
Page 2

U.S. PATENT DOCUMENTS

4414624 A 11/1983 Summer, Jr.
4,441,155 A 4/1984 Fletcher

4,464,713 A 8/1984 Benhase

4,400,782 A 12/1984 Dixon

4,571,700 A 2/1986 Emry, Jr.

4577203 A 3/1986 Matick

4,642,793 A 2/1987 Meaden

4675810 A 6/1987 Gruner

4691209 A 9/1987 Rivest

4725945 A 2/1988 Kronstadt

4,773,039 A 9/1988 Zamora

4,887,235 A 12/1989 Holloway

4,888,681 A 12/1989 Barnes

4922414 A 5/1990 Holloway

4922417 A 5/1990 Churm et al.oounenee. 707/1
4972367 A 11/1990 Burke

5025421 A 6/1991 Cho

5,050,074 A 9/1991 Marca

5,050,212 A 9/1991 Dyson

5,057,837 A 10/1991 Colwell

5077658 A 12/1991 Bendert

5,129,081 A 7/1992 Kobayashi

5120082 A 7/1992 Tirfing

5144667 A 9/1992 Pogue, Ir.

5,179,680 A 1/1993 Colwell

5,202,982 A 4/1993 Gramlich et al. 707/2
5208858 A 5/1993 Vollert

5276901 A 1/1994 Howell

5,287,499 A 2/1994 Nemes ...ccoeeeeeeneeeeeeennens 707/2
5301,286 A 4/1994 Rajani

5301316 A 4/1994 Hamilton

5,341,477 A 8/1994 Pitkin et al. 709/226
5,343,527 A 8/1994 Moore

5,357,623 A 10/1994 Megory-Cohen

5,384,565 A 1/1995 Cannon

5,404,508 A 4/1995 Konrad

5,452,447 A 9/1995 Nelson et al. 707/205
5,459,860 A 10/1995 Burnett

5,542,087 A 7/1996 Neimat et al.cc..c.. 707/10
5,581,758 A 12/1996 Burnett

5,638,443 A 6/1997 Stefik et al.ouvvueenenn. 705/54
5,640,564 A 6/1997 Hamilton et al. 709/303
5,781,629 A * 7/1998 Haber et al. 713/177
5,802,291 A 9/1998 Balick et al. ... 709/202
5,809,494 A 9/1998 Nguyenccccceeeeeennn. 707/1
5,835,087 A * 11/1998 Herz et al.c.cc..... 345/810
5,907,704 A 5/1999 Gudmundson et al.

6,006,018 A 12/1999 Burnett et al. 395/200.49
6,134,603 A 10/2000 Jones et al. 709/330

OTHER PUBLICATIONS

Cormen, Thomas H., et al. Infroduction to Algorithms, The
MIT Press, Cambridge, Massachusetts, 1994, pp. 219-243,
991-993.

Naor, Moni, et al. “The Load, Capacity and Availability of
Quorum Systems.” In Proceedings of the 35th IEEE Sym-
posium on Foundations of Computer Science, Nov. 1994,
pp- 214-225.

Nisan, Noam. “Pseudorandom Generators for Space—
Bounded Computation.” In Proceedings of the Twenty—
Second Annual ACM Symposium on Theory of Computing,
May 1990, pp. 204-212.

Palmer, Mark, et al. “Fido: A Cache that Learns to Fetch.”
In Proceedings of the 17th International Conference on Very
Large Data Bases, Sep. 1991, pp. 255-264.

Peleg, David, et al. “The Availability of Quorum Systems.”
Information and Computation 123, 1995, 210-223.

Rabin, Michael. “Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance.” Journal of
the ACM, vol. 36, No. 2, Apr. 1989, pp. 335-348.

Ravi, R., “Rapid Rumor Ramification: Approximating the
Minimum Broadcast Time.” In Proceedings of the 35th
IEEE Symposium on Foundation of Computer Science, Nov.
1994, pp. 202-213.

Schmidt, Jeanette, et al. “Chernoff-Hoeffding Bounds for
Applications with Limited Independence.” In Proceedings
of the 4th ACS-SIAM Symposium on Discrete Algorithms,
1993, pp. 331-340.

Tarjan, Robert Endre, et al. “Storing a Sparse Table.”
Communications of the ACM, vol. 22, No. 11, Nov. 1979,
pp. 606-611.

Wegman, Mark, et al. “New Hash Functions and Their Use
in Authentication and Set Equality.” Journal of Computer
and System Sciences vol. 22, Jun. 1981, pp. 265-279.
Vitter, Jeffrey Scott, et al. “Optimal Prefetching via Data
Compression.” In Proceedings of 32nd IEEE Symposium on
Foundations of Computer Science, Nov. 1991, pp. 121-130.
Fredman, Michael, et al. “Storing a Sparse Table with 0(1)
Worst Case Access Time.” Journal of the Association for
Computing Machinery, vol. 31, No. 3, Jul. 1984, pp.
538-544.

Yao, Andrew Chi—Chih. “Should Tables be Sorted?” Journal
of the Association for Computing Machinery, vol. 28, No. 3,
Jul. 1981, pp. 615-628.

Floyd, Sally, et al. “A reliable Multicast Framework for
Light—Weight Sessions and Application Level Framing.” In
Proceeding of ACM SIGCOMM 95, pp. 342-356.
Feeley, Michael, et al. “Implementing Global Memory Man-
agement in a Workstation Cluster.” In Proceedings of the
15th ACM Symposium on Operating Systems Principles,
1995, pp. 201-212.

Carter, J. Lawrence, et al. “Universal Classes of Hash
Functions.” Journal of Computer and System Sciences, vol.
18, No. 2, Apr. 1979, pp. 143-154.

Patent Abstracts of Japan, “Electronic Mail Multiplexing
System and Communication Control Method in The Sys-
tem.” Jun. 30, 1993, JP 05162529.

Kim et al., “Experiences with Tripwire: Using Integrity
Checkers For Intrusion Detection”, COAST Labs. Dept. of
Computer Sciences Purdue University, Feb. 22, 1995, pp.
1-12.

Kim et al., “The Design and Implementation of Tripwire: A
file System Integrity Checker”, COAST Labs. Dept. of
Computer Sciences Purdue University, Nov. 19, 1993, pp.
1-21.

Bert dem Boer et al., Collisions for the compression function
of MDy, pp. 292-304.

Sakti Pramanik et al., Multi—Directory Hasing, 1993, Info.
Sys., vol. 18, No. 1, pp. 63-74.

Murlidhar Koushik, Dynamic Hashing with Distributed
Overflow Space: A File Organization with Good Insertion
Performance, 1993, Info. Sys., vol. 18, No. 5, pp. 299-317.
Witold Litwin et al., LH -Linear Hashing for Distributed
Files, HP Labs Tech. Report No. HPL-93-21, Jun. 1993, pp.
1-22.

Yuliang Zheng et al., HAVAL—A One—Way Hashing Algo-
rithm with Variable Length of Output (Extended Abstract),
pp. 83-105.

Chris Charnes and Josef Pieprzky, Linear Nonequivalence
versus Nonlinearity, Pieprzky, pp. 156-164.

RACK-1003
Page 680 of 738

US 6,928,442 B2
Page 3

Witold Litwin et al., Linear Hashing for Distributed Files,
ACM SIGMOD, May 1993, pp. 327-336.

Ming-Ling Lo et al., On Optimal Processor Allocation to
Support Pipelined Hash Joins, ACM SIGMOD, pp. 69-78,
May 1993.

Thomas A. Berson, Differential Cryptanalysis Mod 2> with
Applications to MDS5, pp. 69-81.

William Perrizo et al., Distributed Join Processing Perfor-
mance Evaluation, Twenty—Seventh Hawaii International
Conference on System Sciences, vol. II, pp. 236-244.
Vijay Kumar, A Concurrency Control Mechanism Based on
Extendible Hashing for Main Memory Database Systems,
ACM, vol. 3, 1989, pp. 109-113.

Birgit Pfitzman, Sorting Out Signature Schemes, Nov. 1993,
1°* Conf. Computer & Comm. Security "93, p. 74-85.
Zhiyu Tian et al., A New Hashing Function: Statistical
Behaviour and Algorithm, pp. 3-13.

G. L. Friedman, Digital Camera with Apparatu for Authen-
tication of Images Produced from an Image File, NASA
Case No. NPO-19108-1-CU, U.S. Appl. No. 08/159,980,
filed Nov. 24, 1993.

H. Goodman, Ada, Object—Oriented Techniques, and Con-
currency in Teaching Data Structures and File Management
Report Documentation p. AD-A275 385 — 94-04277.
Advances in Cryptology—Eurocrypt’93, Workshop on the
Theory and Application of Cryptographic Techniques
Lofthus, Norway, May 23-27, 1993 Proceedings.
Proceedings of the 1993 ACM SIGMOD International Con-
ference on Management of Data, vol. 22, Issue 2, Jun. 1993.

Advances in Cryptology—AUSCRYPT *92—Workshop on
the Theory and Application of Cryptographic Techniques
Gold Coast, Queensland, Australia, Dec. 13-16, 1992 Pro-
ceedings.

Peter Deutsch (peterd@bunyip.com), “Re: MD5 and LiFNs
(was: Misc Comments)”, www.acl.lanl.gov/URI/archive/
uri-94q2.messages/0106.html, Apr. 26, 1994.

Alexander Dupuy (dupuy@smarts.com), “RE: MD5 and
LIFNs (was: Misc Comments)”, www.acl.lanl.gov/URI/ar-
chive/uri—94q2.messages/0113.html, Apr. 26, 1994.
Alexander Dupuy (dupuy@smarts.com), “MD5 and LIFNs
(was: Misc Comments)”, www.acl.lanl.gov/URI/archive/
uri-94q2.messages/0081.html, Apr. 17, 1994.

Albert Langer (cmf851@anu.oz.au), http://groups.google-
.com/groups?selm=

1991 Aug7.225159.786%40newshost.anu.edu.au&oe=
UTF-8&output=gplain, Aug. 7, 1991.

Clifford Lynch (Calur@uccmvsa.bitnet), “ietf url/uri over-
view draft paper (long)”, www.acl.lanl.gov/URI/archive/
uri-93q1l.messages/0015.html, Mar. 25, 1993.

K. Sollins and L. Masinter, “Functional Requirements for
Uniform Resource Names”, www.w3.org/Addressing/
rfc1737.txt, Dec. 1994, pp. 1-7.

W3C:ID, HTTP: A protocol for networked information,
“Basic HTTP as defined in 19927, www.w3.org/Protocols/
HTTP2.html, 1992.

European Search Report issued Dec. 23, 2004.

* cited by examiner

RACK-1003
Page 681 of 738

US 6,928,442 B2

Sheet 1 of 31

Aug. 9, 2005

U.S. Patent

001
HOSS300Ud 40SSI00Ud YOSSI00Ud
Z01 20} 201
90}
FoAaa | L . . 301A2Q
H0SS3I00Yd HOSSI00Yd 1OVHOLS JOVNOLS
201 20} . Cpor >
(O)I Ol

™ ©
S ™
[SENS
NS}
S~
O
< ©
)
o)
©
o

US 6,928,442 B2

Sheet 2 of 31

Aug. 9, 2005

U.S. Patent

" 19
: 21}
“ 11
" 149 9l
: 2s)
" 1S
: aws el
! 951
1
" v 82}
! pel
: YL
" AV 9L
" ZEL
_ clig
! AUOWIN rel
| 0Ll
“ 204
L e
I

1442
ERIE
d9VHOLS
Ndd
801
d08s300dUd

1
|
'
)
1
b
]
1
]
'
L}
|
1
1
i
|
|
'
|
]
]
i
i
J
]
]
t
1
]
1
|
i
i
|
t
!
i
1
]
i
)
]
!
'
]
'
]
]
]
1
)
]
|
|
1

CHROIE

™ ©
S ™
[SENS
NS}
S o
O %
<< ©
)
o)
©
o

US 6,928,442 B2

Sheet 3 of 31

Aug. 9, 2005

U.S. Patent

ININO3S

(A4S

'hszwmm_ INIWOFS

(44"

(444

ERIE]

En

ENIE
0zi

0zl 0zZ)
AYOLOTNIA ANOLOTNIA ANOLOTNId
8Ll 8Ll 8Ll
NOIOZY NOIO3Y e NOI93Y NOI9TY
i LL L1 I
WILSAS 2 914
314

=19 %

™ ©
S ™
[SENS
NS}
S
O
<< ©
)
o)
©
o

U.S. Patent Aug. 9, 2005 Sheet 4 of 31 US 6,928,442 B2

FIG.3

Region ID
Pathname

True Name
Type

File ID

138 -

Time of last access

Time of last modification

Safe flag

Lock flag

Size

owner

FIG. 4

True Name

140

File ID

Compressed File ID

Source IDs

Dependent processors

Use count

Time of last access

Expiration

Grocming delete count

142

Region ID

Region file system

Region pathname

Region status

Mirror processor(s)

Mirror duplication count

Policy

FIG. S

RACK-1003
Page 685 of 738

US 6,928,442 B2

Sheet 5 of 31

Aug. 9, 2005

U.S. Patent

23SUSDTT

SWeN onJdy

0Gi

DWeEN SUIJ]

Lxqus jJo =dAj

AZju® 30 93ep

8bl

oueN endy,

sueuyjed

duelsauT.y,

QI J0S8S900Id

odAL

uotTjexado

aweN TeutbTao

ol

HUoT3eO0T {2ANOS

AJTITARTITRAR 20anos

SqUDTI ©2aNos

odA] 20anos

dal 90anos

4%

6 914

8 0l4

L 914

9914

™ ©
S ™
[SENS
NS}
S ©
O
<< ©
)
o)
©
o

U.S. Patent Aug. 9, 2005 Sheet 6 of 31 US 6,928,442 B2

FIG. 10(a)

SIMPL

DATA ITEM

5212 \

COMPUTE MD FUNCTION ON
DATA ITEM

A 4
S214

APPEND LENGTH MODULO 32 OF
DATA ITEM

‘——_—-—.‘---—"-—-—-—-—_'-

- v o e o - e de am e s Gn R W er W R @ e A e = O we wo we = =

RACK-1003
Page 687 of 738

U.S. Patent Aug. 9, 2005 Sheet 7 of 31 US 6,928,442 B2

5216

DATA ITEM
SIMPLE?

O—l FIG. 10(b)

PARTITION DATA ITEM INTO
SEGMENTS

$§222

ASSIMILATE EACH SEGMENT
(COMPUTING ITS TRUE NAME)

: COMPUTE TRUE '
' NAME OF SIMPLE !
\ DATAITEM | o7

--------------- CREATE INDIRECT BLOCK OF
SEGMENT TRUE NAMES

S226

ASSIMILATE INDIRECT BLOCK
(COMPUTING ITS TRUE NAME)

85228
REPLACE FINAL 32 BITS OF TRUE
NAME WITH LENGHT MOD 32 OF DATA
ITEM

RACK-1003
Page 688 of 738

US 6,928,442 B2

Sheet 8§ of 31

Aug. 9, 2005

U.S. Patent

$

ai 3714 3HO1S
6€¢CS

A

¢al 374 3AVH
AYLN3 S300d

t

al 3114 313734

8¢S

STA

S3A

LAULSIOFY

A7d 3NUL NI LSIX3
ANVN INYL S204d

ﬂ

SAT3A14d ¥3HLO0 13S »
ai 374 3H01S »

}k OL1NNOD ASN 13S &
AYINT MIN 31V3HO .

9€¢S

A

VN INYL
aNINY313a

0€2s

+

ON

11914

™ ©
S ™
[SENS
NS}
5o
O %
<< ©
)
o)
©
o

U.S. Patent Aug. 9, 2005 Sheet 9 of 31 US 6,928,442 B2

FIG.12

238 5240
YES
FILE UPDATE

5
LOCKED? DEPE::;ENCY
NO l

S242
SEND MESSAGE TO
v‘ CACHE SERVER TO
S244 UPDATE CACHE
COMPRESS
(IF DESIRED)
S246
MIRROR

(IF DESIRED)

RACK-1003
Page 690 of 738

U.S. Patent Aug. 9, 2005 Sheet 10 of 31 US 6,928,442 B2

l FIG.13
S250
SEARCH FOR
THE NOT EQUND » AL
PATHNAME

LDE INCLUDES
JRUE NAME?

NO

5258
¢—| ASSIMILATE LDE IDENTIFIES
FILE ID DIRECTORY?
S256
< FREEZE
DIRECTORY

RACK-1003
Page 691 of 738

U.S. Patent Aug. 9, 2005 Sheet 11 of 31 US 6,928,442 B2

S260

CONFIRM THAT
TRUE NAME
EXISTS LOCALLY

I3 FIG.14

SEARCH FOR
PATHNAME IN
LDE TABLE

S264

CONFIRM THAT
DIRECTORY
EXISTS

S266

5268

S

NAMED FILE vE »| DELETE
EXISTS? TRUE FILE

S270
CREATE
ENTRY IN LDE
& UPDATE

RACK-1003
Page 692 of 738

US 6,928,442 B2

Sheet 12 of 31

Aug. 9, 2005

U.S. Patent

Gl 914

(gauisaa
: p| AT g
dNYL AdIbd3A
O.LNI INYNLIY
314 INAL ¥3ILINT
9728
A
Tv4d
ASNOdSIY
JALISOd
FSNOdS3IY
U004 LivM
? IOVSSIN
414 aN3S
$22S ASNOdS3IH
FALLYO3IN
$H0SS3O0Y
Y NOLLYD01 SI

S3A

3714 dNId
082S

+.

INNOW
1s3and3ay

8.¢S

ON

™ ©
S ™
[SENS
NS}
S o
O 5
<< ©
)
o)
©
o

US 6,928,442 B2

Sheet 13 of 31

Aug. 9, 2005

U.S. Patent

(D)9l 914

v

ISNOdSTY
3ALISOd
SLIVAM
N3O]
8828 1NQImiL
+ 40
ISNOJSTY
sLsvoavods | FALY9IN
INTID
9828

S3A

a3aLoana
SHO0SS3a20Ud

ON ANY

G8¢S

(s)y0ssS3o0Nd
$10313S
IN3ITD

¥8¢S

?

™ ©
S ™
[SENS
NS}
S
O3
< ©
x g
o)
©
o

US 6,928,442 B2

Sheet 14 of 31

Aug. 9, 2005

U.S. Patent

1SI1 OL aav anv . JWILSAS Aoy
A niae Almm>|A asutend >—oNP| 3114 anuL 3AuIsaY
- SIEoAn OL A9VSSaN aNas
PL6CS < 9162S
IWYN 3NHL
04 Sal A9UNOS OL
al NOILYD01 304N0S
aav 8 IWYN AL
04 ¥4L dN OO
80628
SIA
NOILYNILSA
Q1 0SSIDONd
«— WOYA S34410 IWVN
o INYL 40 ADUNOS AH01S
082S

1

(94)9l O14

™ ©
S ™
[SENS
NS}
<15
O
< ©
x g
o)
©
o

US 6,928,442 B2

Sheet 15 of 31

Aug. 9, 2005

U.S. Patent

-y

dai3d

SSaUdN0D3d a3SSIYdNOD

8629 SIA 96¢S

JAULNG SIHL
d0d4 a1 3id

<INVYN
INYL YO ¥4L NI
AYULINI 3714 3Ny

L

(0)LI'O14

 ©
O™
SN
3%
X o
Q5
< ©
x g
o
@
o

US 6,928,442 B2

Sheet 16 of 31

Aug. 9, 2005

U.S. Patent

(9)L1 914

(s)anunos
Woud 314
INYL IZ1vaY

90€S

9

Sdi 32UN0S
10313s

v0OES

al 3dols
00€S

A

U3ASN
AdILLON
¢0€S

1

ar30unos_yf 1o SO
FHOW ON
80¢s
I S |

™ ©
S ™
[SENS
NS}
S~
O o
<< ©
)
o)
©
o

US 6,928,442 B2

Sheet 17 of 31

Aug. 9, 2005

U.S. Patent

aNOQ

—— a

Vo013 114 HOLVOS
ANYL INVIN P M3N ILVIUO
¢CES 0Z€eS
» 3143NYL »
0 31373a 0
8LES
¢and
234 3nuL ﬁ»
NOG tes3u<_ uoa @iz STA e
a4
3NY1 40 AdOD 39
@INOHS HOLVYD
(D)8l Old

™ ©
S ™
[SENS
NS}
S o
05
<< ©
)
o)
©
o

US 6,928,442 B2

Sheet 18 of 31

Aug. 9, 2005

U.S. Patent

AYLNZ
41 JAONIY
? 4l 3714 IAVS

8¢ES

A

LNNOD
asN INIW3IU03A
‘J1gv.L13a1NI
ai 3114 JyoLs ‘IFd

M3N O 3714 AdOD
0LES

il =

»

INNOD 3ASN

ON

(9)81 ©14

™ ©
S ™
[SENS
NS}
S o
O &
<< ©
)
o)
©
o

US 6,928,442 B2

Sheet 19 of 31

Aug. 9, 2005

U.S. Patent

— g

W31l vivd
AM3IN 3LYIHO
LEES

a

ﬁm_o.romm_o ZNZG/
FHL NI AYOL3=1a
aNv 311d

3714
QaLVIINISSYNN | >Mw.wwww_m <
ALVIINISSY 3233
9EeS
(D)6l 9ld

JLVNIGHOdNS
HOV3 {04

\ y

MO07 32334
LNIINFHONI

CGEES

I

o
S »
ISE
RS
5o
IORS)
< K
X o
o
©
o

US 6,928,442 B2

Sheet 20 of 31

Aug. 9, 2005

U.S. Patent

(9)6l

NOILYIWHOZNI
asisada
IVNOLLaav
qyooxn
0¥ES

9l4

K

W3all
viva maN
OL A¥LIN3I aav
8EES

e

‘

f

A001
3Z33Ud JHL
1N3NWIHO3AA

PyeS

W31l Viva M3N
JHL LVIINISSV

[A%%

a

AdO.LOFNIa zm>=.u/
3HL NI AYOLO3dIa
ANV 3714
JLVNIQHOoans
HOV3 ¥Ood

™ ©
S ™
[SENS
NS}
X

SR
< K
L)
o)
©
o

US 6,928,442 B2

Sheet 21 of 31

Aug. 9, 2005

U.S. Patent

JNVN INYL
OL HL1Vd XNIN

Z6GES

»

dNVNHLVd
TINd FLVAIO

0SES

*

Ad0103dId
avay

8YES

Allwm_m._.zm
JHON

\ 4

AYLN3
AYO.LOrI0
HOVA ¥O04d
€GeS

%

w201 37d
JNYL INVIN

oveES

I

S3ARILNA
40N ON

0¢ 9Old

™ ©
S ™
[SENS
NS}
S~
0o
< K
L)
o)
©
o

U.S. Patent Aug. 9, 2005 Sheet 22 of 31 US 6,928,442 B2

!

5354
WAIT FOR
FREEZE LOCK
TO TURN OFF

.o FIG.21

FIND TFR
ENTRY

5358
DECREMENT

REFERENCE
COUNT

REFERENCE COUNT IS YES DSES%E
ZERO & NO DEPENDENT TRUE FILE
SYSTEMS IN TFR?
NO
A 4
S364
REMOVE FILEID
¢ AND COMPRESSED
$ FILEID

RACK-1003
Page 703 of 738

U.S. Patent Aug. 9, 2005 Sheet 23 of 31 US 6,928,442 B2

!

S365
GET
OPERATION
S366 =555
CREATE OR YES >
MODIFY? ASSIMILATE
S369
NEW TRUE
COPY OR DELETE YES FILE
COMPOUND? l
§378 3370
NO MODIFY USE RECORD TRUE
COUNT OF EACH NAME IN AUDIT
COMPONENT FILE
> l
Y
S379
FOR EACH PARENT
DIRECTORY ORFILE,
UPDATE USE COUNT,
LAST ACCESS AND
MODIFY TIMES

'

RACK-1003
Page 704 of 738

U.S. Patent Aug. 9, 2005 Sheet 24 of 31 US 6,928,442 B2

v

S382

VERIFY
FIG. 23 GROOMING
LOGK OFF

S384
SET
GROOMING

LOCK

A 4
S386

SET GROOM
COUNTS

RACK-1003
Page 705 of 738

U.S. Patent Aug. 9, 2005 Sheet 25 of 31 US 6,928,442 B2

5388

FIND LDE
RECORD

FIG. 24

S390

FIND TFR
RECORD

S392

INCREMENT
GROOMING
DELETE COUNT

S394

ADJUST FILE
SIZES

RACK-1003
Page 706 of 738

U.S. Patent Aug. 9, 2005 Sheet 26 of 31 US 6,928,442 B2

FIG. 29

A 4
S398
UNLOCK
GROOMING

LOCK

RACK-1003
Page 707 of 738

US 6,928,442 B2

Sheet 27 of 31

Aug. 9, 2005

U.S. Patent

¢34

HOLVYOS
BIYS

N3dO B
LligiHO¥d a

(4445

AdOLIFAIU
ATINO-aVv3ay

ZATINO
—SIA avad ON

0LvS

NOI93Y N3dO 2q3aLvayo

=R ETE ligiHo¥d |[€—p oNIZg
80¥S LA 20S

ZATIVO01
’ S3A SisixXa 3Tl ON
(D)92 9I4 00¥S

™ ©
S ™
[SENS
NS}
S o
S
< K
L)
o)
©
o

™ ©
S ™
[SENS
NS}
5o
SR
< K
L)
o)
©
o

(9)9Z 914 1

US 6,928,442 B2

al
> p| T71d HOLVHOS g
NYNLIY |
LA S
¥4l Woud 3114 HOLVNOS
al 3714 NuNL3Y 31VIHO
2 NOISYH3A 90¥S
- ._<owm_vwx<s AdOD %
= HOLV¥OS |
* ﬂ JLVIUD 34 asva3a »
2 LIS .
=P)
= _ . A
s NILLRIME STA
0 A3131dWOD
ONIZg
wy
f]
[
2 — - -
o
&b
Z Q3aNO0T
1ON dIMo01
8IS
wlmm:

U.S. Patent

US 6,928,442 B2

Sheet 29 of 31

Aug. 9, 2005

U.S. Patent

(0)2¢ Old

NOWl313a

1igiHOdd [€—saxn

e

ANVYN
INYL oYL 3id
INYL AdILN3AI

¢A40L03UIa

AINO-QVvaY
NI ¥0 @axdo01 31d
HO QY023 341 Op

34
Y04 SQAEOI3Y
AYINT LY
’2 307 ANINYEL3Q
cers

I

™
oM
O~
T
5o
<~
Dne
()]
©
o

US 6,928,442 B2

Sheet 30 of 31

Aug. 9, 2005

U.S. Patent

»

aid Lanv

OL A¥IN3 aav| €

8¢ys

%

3714 40
AdOD HOLVHIS
31373ad

L2yS

ON

(q)Le Old
aNO Ag INNOD
asn 3ona3y
VEVS
EREENT] %
3a13713a
0EvS ON

S3A

SIWVN JNAUL
ON SVH 314

3NO
Sl INAOD ASN
SaTd IMAL

S3aA

™
oM
O~
T
S~
<~
Dne
()]
©
o

US 6,928,442 B2

Sheet 31 of 31

Aug. 9, 2005

U.S. Patent

ASNOdS3Y
JALLYOIN

8EYS

»

JAIMUYMUOS
39 01 1s3and3ay

1s3n03y
saa— P quvaoAd
Zrvs

8¢ 9ld

pers

ON

4aNNOd

JASNOdS3aY
JAILISOd

2aiamd
a3sSSxRIdNOD O
al 3114 S3aANON

JWVYN INAUL
dNAH0071

ZeYS

1

S3A

™ ©
S ™
[SENS
NS}
S~

o
< ~
L)
o)
©
o

US 6,928,442 B2

1

ENFORCEMENT AND POLICING OF
LICENSED CONTENT USING CONTENT-
BASED IDENTIFIERS

This is a continuation of application Ser. No. 09/283,160,
filed Apr. 1, 1999, now U.S. Pat. No. 6,415,280, which is a
division of application Ser. No. 08/960,079, filed Oct. 24,
1997, now U.S. Pat. No. 5,978,791 filed Oct. 24, 2001 which
is a continuation of Ser. No. 08/425,160, filed Apr. 11, 1995,
now abandoned.

BACKGROUND OF THE INVENTION

1. Field of the Invention

This invention relates to data processing systems and,
more particularly, to data processing systems wherein data
items are identified by substantially unique identifiers which
depend on all of the data in the data items and only on the
data in the data items.

2. Background of the Invention

Data processing (DP) systems, computers, networks of
computers, or the like, typically offer users and programs
various ways to identify the data in the systems.

Users typically identify data in the data processing system
by giving the data some form of name. For example, a
typical operating system (OS) on a computer provides a file
system in which data items are named by alphanumeric
identifiers. Programs typically identify data in the data
processing system using a location or address. For example,
a program may identify a record in a file or database by using
a record number which serves to locate that record.

In all but the most primitive operating systems, users and
programs are able to create and use collections of named
data items, these collections themselves being named by
identifiers. These named collections can then, themselves,
be made part of other named collections. For example, an
OS may provide mechanisms to group files (data items) into
directories (collections). These directories can then, them-
selves be made part of other directories. A data item may
thus be identified relative to these nested directories using a
sequence of names, or a so-called pathname, which defines
a path through the directories to a particular data item (file
or directory).

As another example, a database management system may
group data records (data items) into tables and then group
these tables into database files (collections). The complete
address of any data record can then be specified using the
database file name, the table name, and the record number of
that data record.

Other examples of identifying data items include: identi-
fying files in a network file system, identifying objects in an
object-oriented database, identifying images in an image
database, and identifying articles in a text database.

In general, the terms “data” and “data item” as used herein
refer to sequences of bits. Thus a data item may be the
contents of a file, a portion of a file, a page in memory, an
object in an object-oriented program, a digital message, a
digital scanned image, a part of a video or audio signal, or
any other entity which can be represented by a sequence of
bits. The term “data processing” herein refers to the pro-
cessing of data items, and is sometimes dependent on the
type of data item being processed. For example, a data
processor for a digital image may differ from a data pro-
cessor for an audio signal.

In all of the prior data processing systems the names or
identifiers provided to identify data items (the data items

10

15

20

25

30

35

40

45

50

55

60

65

2

being files, directories, records in the database, objects in
object-oriented programming, locations in memory or on a
physical device, or the like) are always defined relative to a
specific context. For instance, the file identified by a par-
ticular file name can only be determined when the directory
containing the file (the context) is known. The file identified
by a pathname can be determined only when the file system
(context) is known. Similarly, the addresses in a process
address space, the keys in a database table, or domain names
on a global computer network such as the Internet are
meaningful only because they are specified relative to a
context.

In prior art systems for identifying data items there is no
direct relationship between the data names and the data item.
The same data name in two different contexts may refer to
different data items, and two different data names in the
same context may refer to the same data item.

In addition, because there is no correlation between a data
name and the data it refers to, there is no a priori way to
confirm that a given data item is in fact the one named by a
data name. For instance, in a DP system, if one processor
requests that another processor deliver a data item with a
given data name, the requesting processor cannot, in
general, verify that the data delivered is the correct data
(given only the name). Therefore it may require further
processing, typically on the part of the requester, to verify
that the data item it has obtained is, in fact, the item it
requested.

A common operation in a DP system is adding a new data
item to the system. When a new data item is added to the
system, a name can be assigned to it only by updating the
context in which names are defined. Thus such systems
require a centralized mechanism for the management of
names. Such a mechanism is required even in a multi-
processing system when data items are created and identified
at separate processors in distinct locations, and in which
there is no other need for communication when data items
are added.

In many data processing systems or environments, data
items are transferred between different locations in the
system. These locations may be processors in the data
processing system, storage devices, memory, or the like. For
example, one processor may obtain a data item from another
processor or from an external storage device, such as a
floppy disk, and may incorporate that data item into its
system (using the name provided with that data item).

However, when a processor (or some location) obtains a
data item from another location in the DP system, it is
possible that this obtained data item is already present in the
system (either at the location of the processor or at some
other location accessible by the processor) and therefore a
duplicate of the data item is created. This situation is
common in a network data processing environment where
proprietary software products are installed from floppy disks
onto several processors sharing a common file server. In
these systems, it is often the case that the same product will
be installed on several systems, so that several copies of
each file will reside on the common file server.

In some data processing systems in which several pro-
cessors are connected in a network, one system is designated
as a cache server to maintain master copies of data items,
and other systems are designated as cache clients to copy
local copies of the master data items into a local cache on an
as-needed basis. Before using a cached item, a cache client
must either reload the cached item, be informed of changes
to the cached item, or confirm that the master item corre-

RACK-1003
Page 713 of 738

US 6,928,442 B2

3

sponding to the cached item has not changed. In other words,
a cache client must synchronize its data items with those on
the cache server. This synchronization may involve reload-
ing data items onto the cache client. The need to keep the
cache synchronized or reload it adds significant overhead to
existing caching mechanisms.

In view of the above and other problems with prior art
systems, it is therefore desirable to have a mechanism which
allows each processor in a multiprocessor system to deter-
mine a common and substantially unique identifier for a data
item, using only the data in the data item and not relying on
any sort of context.

It is further desirable to have a mechanism for reducing
multiple copies of data items in a data processing system and
to have a mechanism which enables the identification of
identical data items so as to reduce multiple copies. It is
further desirable to determine whether two instances of a
data item are in fact the same data item, and to perform
various other systems’ functions and applications on data
items without relying on any context information or prop-
erties of the data item.

It is also desirable to provide such a mechanism in such
a way as to make it transparent to users of the data
processing system, and it is desirable that a single mecha-
nism be used to address each of the problems described
above.

SUMMARY OF THE INVENTION

This invention provides, in a data processing system, a
method and apparatus for identifying a data item in the
system, where the identity of the data item depends on all of
the data in the data item and only on the data in the data item.
Thus the identity of a data item is independent of its name,
origin, location, address, or other information not derivable
directly from the data, and depends only on the data itself.

This invention further provides an apparatus and a method
for determining whether a particular data item is present in
the system or at a location in the system, by examining only
the data identities of a plurality of data items.

Using the method or apparatus of the present invention,
the efficiency and integrity of a data processing system can
be improved. The present invention improves the design and
operation of a data storage system, file system, relational
database, object-oriented database, or the like that stores a
plurality of data items, by making possible or improving the
design and operation of at least some or all of the following
features:

the system stores at most one copy of any data item at a

given location, even when multiple data names in the
system refer to the same contents;

the system avoids copying data from source to destination

locations when the destination locations already have
the data;

the system provides transparent access to any data item by

reference only to its identity and independent of its
present location, whether it be local, remote, or offline;
the system caches data items from a server, so that only
the most recently accessed data items need be retained;
when the system is being used to cache data items,
problems of maintaining cache consistency are
avoided,
the system maintains a desired level of redundancy of data
items in a network of servers, to protect against failure
by ensuring that multiple copies of the data items are
present at different locations in the system;

10

20

25

30

35

40

45

50

55

60

65

4

the system automatically archives data items as they are

created or modified;

the system provides the-size, age, and location of groups

of data items in order to decide whether they can be
safely removed from a local file system;

the system can efficiently record and preserve any col-

lection of data items;

the system can efficiently make a copy of any collection

of data items, to support a version control mechanism
for groups of the data items;

the system can publish data items, allowing other, possi-

bly anonymous, systems in a network to gain access to
the data items and to rely on the availability of the data
items;

the system can maintain a local inventory of all the data

items located on a given removable medium, such as a
diskette or CD-ROM, the inventory is independent of
other properties of the data items such as their name,
location, and date of creation;

the system allows closely related sets of data items, such

as matching or corresponding directories on discon-
nected computers, to be periodically resynchronized
with one another;

the system can verify that data retrieved from another

location is the desired or requested data, using only the
data identifier used to retrieve the data;

the system can prove possession of specific data items by

content without disclosing the content of the data items,
for purposes of later legal verification and to provide
anonymity;

the system tracks possession of specific data items accord-

ing to content by owner, independent of the name, date,
or other properties of the data item, and tracks the uses
of specific data items and files by content for account-
ing purposes.

Other objects, features, and characteristics of the present
invention as well as the methods of operation and functions
of the related elements of structure, and the combination of
parts and economies of manufacture, will become more
apparent upon consideration of the following description
and the appended claims with reference to the accompany-
ing drawings, all of which form a part of this specification.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a¢) and 1(b) depicts a typical data processing
system in which a preferred embodiment of the present
invention operates;

FIG. 2 depicts a hierarchy of data items stored at any
location in such a data processing system;

FIGS. 3-9 depict data structures used to implement an
embodiment of the present invention; and

FIGS. 10(2)-28 are flow charts depicting operation of
various aspects of the present invention.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EXEMPLARY
EMBODIMENTS

An embodiment of the present invention is now described
with reference to a typical data processing system 100,
which, with reference to FIGS. 1(a) and 1(b), includes one
or more processors (or computers) 102 and various storage
devices 104 connected in some way, for example by a bus
106.

Each processor 102 includes a CPU 108, a memory 110
and one or more local storage devices 112. The CPU 108,

RACK-1003
Page 714 of 738

US 6,928,442 B2

5

memory 110, and local storage device 112 may be internally
connected, for example by a bus 114. Each processor 102
may also include other devices (not shown), such as a
keyboard, a display, a printer, and the like.

In a data processing system 100, wherein more than one
processor 102 is used, that is, in a multiprocessor system, the
processors may be in one of various relationships. For
example, two processors 102 may be in a client/server,
client/client, or a server/server relationship. These inter-
processor relationships may be dynamic, changing depend-
ing on particular situations and functions. Thus, a particular
processor 102 may change its relationship to other proces-
sors as needed, essentially setting up a peer-to-peer relation-
ship with other processors. In a peer-to-peer relationship,
sometimes a particular processor 102 acts as a client
processor, whereas at other times the same processor acts as
a server processor. In other words, there is no hierarchy
imposed on or required of processors 102.

In a multiprocessor system, the processors 102 may be
homogeneous or heterogeneous. Further, in a multiprocessor
data processing system 100, some or all of the processors
102 may be disconnected from the network of processors for
periods of time. Such disconnection may be part of the
normal operation of the system 100 or it may be because a
particular processor 102 is in need of repair.

Within a data processing system 100, the data may be
organized to form a hierarchy of data storage elements,
wherein lower level data storage elements are combined to
form higher level elements. This hierarchy can consist of, for
example, processors, file systems, regions, directories, data
files, segments, and the like. For example, with reference to
FIG. 2, the data items on a particular processor 102 may be
organized or structured as a file system 116 which comprises
regions 117, each of which comprises directories 118, each
of which can contain other directories 118 or files 120. Each
file 120 being made up of one or more data segments 122.

In a typical data processing system, some or all of these
elements can be named by users given certain implementa-
tion specific naming conventions, the name (or pathname) of
an element being relative to a context. In the context of a
data processing system 100, a pathname is fully specified by
a processor name, a filesystem name, a sequence of zero or
more directory names identifying nested directories, and a
final file name. (Usually the lowest level elements, in this
case segments 122, cannot be named by users.)

In other words, a file system 116 is a collection of
directories 118. A directory 118 is a collection of named files
120—both data files 120 and other directory files 118. A file
120 is a named data item which is either a data file (which
may be simple or compound) or a directory file 118. A
simple file 120 consists of a single data segment 122. A
compound file 120 consists of a sequence of data segments
122. A data segment 122 is a fixed sequence of bytes. An
important property of any data segment is its size, the
number of bytes in the sequence.

A single processor 102 may access one or more file
systems 116, and a single storage device 104 may contain
one or more file systems 116, or portions of a file system 116.
For instance, a file system 116 may span several storage
devices 104.

In order to implement controls in a file system, file system
116 may be divided into distinct regions, where each region
is a unit of management and control. A region consists of a
given directory 118 and is identified by the pathname (user
defined) of the directory.

In the following, the term “location”, with respect to a
data processing system 100, refers to any of a particular

10

15

25

35

40

45

50

55

60

65

6

processor 102 in the system, a memory of a particular
processor, a storage device, a removable storage medium
(such as a floppy disk or compact disk), or any other physical
location in the system. The term “local” with respect to a
particular processor 102 refers to the memory and storage
devices of that particular processor.

In the following, the terms “True Name”, “data identity”
and “data identifier” refer to the substantially unique data
identifier for a particular data item. The term “True File”
refers to the actual file, segment, or data item identified by
a True Name.

A file system for a data processing system 100 is now
described which is intended to work with an existing oper-
ating system by augmenting some of the operating system’s
file management system codes. The embodiment provided
relies on the standard file management primitives for actu-
ally storing to and retrieving data items from disk, but uses
the mechanisms of the present invention to reference and
access those data items.

The processes and mechanisms (services) provided in this
embodiment are grouped into the following categories:
primitive mechanisms, operating system mechanisms,
remote mechanisms, background mechanisms, and extended
mechanisms.

Primitive mechanisms provide fundamental capabilities
used to support other mechanisms. The following primitive
mechanisms are described:

—

. Calculate True Name;

. Assimilate Data Item;

. New True File;

. Get True Name from Path;

. Link path to True Name;

. Realize True File from Location;
. Locate Remote File;

. Make True File Local;

. Create Scratch File;

0. Freeze Directory;

11. Expand Frozen Directory;

12. Delete True File;

13. Process Audit File Entry;

14. Begin Grooming;

15. Select For Removal; and

16. End Grooming.

Operating system mechanisms provide typical familiar
file system mechanisms, while maintaining the data struc-
tures required to offer the mechanisms of the present inven-
tion. Operating system mechanisms are designed to augment
existing operating systems, and in this way to make the
present invention compatible with, and generally transparent
to, existing applications. The following operating system
mechanisms are described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.

Remote mechanisms are used by the operating system in
responding to requests from other processors. These mecha-

— O 00 1 O AW

O~ & AW

RACK-1003
Page 715 of 738

US 6,928,442 B2

7

nisms enable the capabilities of the present invention in a
peer-to-peer network mode of operation. The following
remote mechanisms are described:

1. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;
. Acquire True File;

. Lock Cache;

. Update Cache; and

9. Check Expiration Date.

Background mechanisms are intended to run occasionally
and at a low priority. These provide automated management
capabilities with respect to the present invention. The fol-
lowing background mechanisms are described:

1. Mirror True File;

2. Groom Region;

3. Check for Expired Links; and

4. Verify Region; and

5. Groom Source List.

Extended mechanisms run within application programs
over the operating system. These mechanisms provide solu-
tions to specific problems and applications. The following
extended mechanisms are described:

o N O R W

—

. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize directories;

. Publish Region;

. Retire Directory;

. Realize Directory at location;

. Verify True File;

. Track for accounting purposes; and

. Track for licensing purposes.

The file system herein described maintains sufficient
information to provide a variety of mechanisms not ordi-
narily offered by an operating system, some of which are
listed and described here. Various processing performed by
this embodiment of the present invention will now be
described in greater detail.

In some embodiments, some files 120 in a data processing
system 100 do not have True Names because they have been
recently received or created or modified, and thus their True
Names have not yet been computed. A file that does not yet
have a True Name is called a scratch file. The process of
assigning a True Name to a file is referred to as assimilation,
and is described later. Note that a scratch file may have a
user provided name.

Some of the processing performed by the present inven-
tion can take place in a background mode or on a delayed or
as-needed basis. This background processing is used to
determine information that is not immediately required by
the system or which may never be required. As an example,
in some cases a scratch file is being changed at a rate greater
than the rate at which it is useful to determine its True Name.
In these cases, determining the True Name of the file can be
postponed or performed in the background.

Data Structures

The following data structures, stored in memory 110 of
one of more processors 102 are used to implement the
mechanisms described herein. The data structures can be
local to each processor 102 of the system 100, or they can
reside on only some of the processors 102.

Nelie TN Be MY I Y N)

10

15

20

25

30

35

40

45

50

55

60

65

8

The data structures described are assumed to reside on
individual peer processors 102 in the data processing system
100. However, they can also be shared by placing them on
a remote, shared file server (for instance, in a local area
network of machines). In order to accommodate sharing data
structures, it is necessary that the processors accessing the
shared database use the appropriate locking techniques to
ensure that changes to the shared database do not interfere
with one another but are appropriately serialized. These
locking techniques are well understood by ordinarily skilled
programmers of distributed applications.

It is sometimes desirable to allow some regions to be local
to a particular processor 102 and other regions to be shared
among processors 102. (Recall that a region is a unit of file
system management and control consisting of a given direc-
tory identified by the pathname of the directory.) In the case
of local and shared regions, there would be both local and
shared versions of each data structure. Simple changes to the
processes described below must be made to ensure that
appropriate data structures are selected for a given operation.

The local directory extensions (LDE) table 124 is a data
structure which provides information about files 120 and
directories 118 in the data processing system 100. The local
directory extensions table 124 is indexed by a pathname or
contextual name (that is, a user provided name) of a file and
includes the True Name for most files. The information in
local directory extension table 124 is in addition to that
provided by the native file system of the operating system.

The True File registry (TFR) 126 is a data store for listing
actual data items which have True Names, both files 120 and
segments 122. When such data items occur in the True File
registry 126 they are known as True Files. True Files are
identified in True File registry 126 by their True Names or
identities. The table True File registry 126 also stores
location, dependency, and migration information about True
Files.

The region table (RT) 128 defines areas in the network
storage which are to be managed separately. Region table
128 defines the rules for access to and migration of files 120
among various regions with the local file system 116 and
remote peer file systems.

The source table (ST) 130 is a list of the sources of True
Files other than the current True File registry 126. The
source table 130 includes removable volumes and remote
processors.

The audit file (AF) 132 is a list of records indicating
changes to be made in local or remote files, these changes to
be processed in background.

The accounting log (AL) 134 is a log of file transactions
used to create accounting information in a manner which
preserves the identity of files being tracked independent of
their name or location.

The license table (LT) 136 is a table identifying files,
which may only be used by licensed users, in a manner
independent of their name or location, and the users licensed
to use them.

Detailed Descriptions of the Data Structures

The following table summarizes the fields of an local
directory extensions table entry, as illustrated by record 138
in FIG. 3.

Field Description

Region ID

identifies the region in which this file is
contained.

RACK-1003
Page 716 of 738

US 6,928,442 B2

9

10

-continued -continued
Field Description Field Description
Pathname the user provided name or contextual name 5 the file or file segment. It is
of the file or directory, relative to the sufficient to use a filename in the
region in which it occurs. registration directory of the
True Name the computed True Name or identity of the underlying operating system. The
file or directory. This True Name is not True File ID is absent if the
always up to date, and it is set to a actual file is not currently
special value when a file is modified and 10 present at the current location.
is later recomputed in the background. Use count number of other records on this
Type indicates whether the file is a data file processor which identify this True
or a directory. File.
Scratch the physical location of the file in the
File ID file system, when no True Name has been . . .
calculated for the file. As noted above, 15 A region table 128, specified by a directory pathname,
] such a file is called a scratch file. records storage policies which allow files in the file system
Time of the last access time to this file. If this to be stored, accessed and migrated in different ways.
last file is a directory, this is the last . . .
; ; : Storage policies are programmed in a configurable way
access access time to any file in the directory. . 3
Time of the time of last change of this file. If using a set .Of rules described below. . .
last this file is a directory, this is the last - Each region table record 142 of region table 128 includes
modification modification time of any file in the the fields described in the following table (with reference to
directory. FIG. 5):
Safe flag indicates that this file (and, if this file
is a directory, all of its subordinate
files) have been backed up on some other
system, and it is therefore safe to remove
them. 25 Field Description
Lock flag indicates whether a file is locked, that - - - - -
is, it is being modified by the local pro- Region ID 1nte:rna11y used identifier for this
cessor or a remote processor. Only one . region.
processor may modify a file at a time. Region file system ﬁle_syste_m on _the _local processor of
Size the full size of this directory (including . which this reglon is a part.
all subordinate files), if all files in it 30 Region pathname a pathname.z relative to the region file
were fully expanded and duplicated. For a sy.stem _Wthh deﬁne:s the loc.anon of
file that is not a directory this is the this region. The region consists of
size of the actual True File. all files and directories subordinate
Owner the identity of the user who owns this to t.his pathnar.ne, except thOSf_’ ina
file, for accounting and license tracking . region subord%nate.to this region.
purposes. 15 Mirror processor(s) zero or more identifiers of processors

Each record of the True File registry 126 has the fields
shown in the True File registry record 140 in FIG. 4. The
True File registry 126 consists of the database described in
the table below as well as the actual True Files identified by
the True File IDs below.

Field Description

True Name computed True Name or identity of
the file.

Compressed compressed version of the True File

File ID may be stored instead of, or in
addition to, an uncompressed
version. This field provides the
identity of the actual
representation of the compressed
version of the file.

Grooming tentative count of how many

delete count

Time of last
access
Expiration

Dependent
processors

Source IDs

True File ID

references have been selected for
deletion during a grooming
operation.

most recent date and time the
content of this file was accessed.
date and time after which this file
may be deleted by this server.
processor IDs of other processors
which contain references to this
True File.

source ID(s) of zero or more
sources from which this file or
data item may be retrieved.
identity or disk location of the
actual physical representation of

40

45

50

55

60

which are to keep mirror or archival
copies of all files in the current
region. Multiple mirror processors

can be defined to form a mirror group.

Mirror duplication number of copies of each file in this

count region that should be retained in a
mirror group.

Region status specifies whether this region is local

to a single processor 102, shared by
several processors 102 (if, for
instance, it resides on a shared file
server), or managed by a remote
Processor.

Policy the migration policy to apply to this
region. A single region might
participate in several policies. The
policies are as follows (parameters in
brackets are specified as part of the

policy):

region is a cached version from
[processor ID];

region is a member of a mirror set
defined by [processor ID].

region is to be archived on
[processor ID].

region is to be backed up locally,
by placing new copies in [region
ID].

region is read only and may not be
changed.

region is published and expires on
[date].

Files in this region should be
compressed.

A source table 130 identifies a source location for True
Files. The source table 130 is also used to identify client
processors making reservations on the current processor.

RACK-1003
Page 717 of 738

US 6,928,442 B2

11

Each source record 144 of the source table 130 includes the
fields summarized in the following table, with reference to
FIG. 6:

Field Description

source ID internal identifier used to identify a
particular source.

type of source location:

Removable Storage Volume

Local Region

Cache Server

Mirror Group Server

Cooperative Server

Publishing Server

Client

includes information about the rights
of this processor, such as whether it
can ask the local processor to store
data items for it.

measurement of the bandwidth, cost,
and reliability of the connection to
this source of True Files. The availability
is used to select from among

several possible sources.

information on how the local processor
is to access the source. This may be,
for example, the name of a removable
storage volume, or the processor ID
and region path of a region on a
remote Processor.

source
type

source
rights

source
availability

source
location

The audit file 132 is a table of events ordered by
timestamp, each record 146 in audit file 132 including the
fields summarized in the following table (with reference to
FIG. 7).

Field Description

Original Name
Operation

path of the file in question.

whether the file was created, read,
written, copied or deleted.

specifies whether the source is a file
or a directory.

ID of the remote processor generating
this event (if not local).

Processor ID

Timestamp time and date file was closed (required
only for accessed/modified files).

Pathname Name of the file (required only for
rename).

True Name computed True Name of the file. This is

used by remote systems to mirror changes
to the directory and is filled in during
background processing.

Each record 148 of the accounting log 134 records an
event which may later be used to provide information for
billing mechanisms. Each accounting log entry record 148
includes at least the information summarized in the follow-
ing table, with reference to FIG. 8:

Field Description

date of entry date and time of this log entry.

type of Entry types include create file,
entry delete file, and transmit file.

True Name True Name of data item in question.
owner identity of the user responsible for

this action.

Each record 150 of the license table 136 records a
relationship between a licensable data item and the user

10

15

20

25

()
=1

35

40

45

50

55

60

65

12

licensed to have access to it. Each license table record 150
includes the information summarized in the following table
“with reference to FIG. 9:

Field Description
True Name True Name of a data item subject to license validation.
licensee identity of a user authorized to have

access to this object.

Various other data structures are employed on some or all
of the processors 102 in the data processing system 100.
Each processor 102 has a global freeze lock (GFL) 152
(FIG. 1), which is used to prevent synchronization errors
when a directory is frozen or copied. Any processor 102 may
include a special archive directory (SAD) 154 into which
directories may be copied for the purposes of archival. Any
processor 102 may include a special media directory (SMD)
156, into which the directories of removable volumes are
stored to form a media inventory. Each processor has a
grooming lock 158, which is set during a grooming opera-
tion. During this period the grooming delete count of True
File registry entries 140 is active, and no True Files should
be deleted until grooming is complete. While grooming is in
effect, grooming information includes a table of pathnames
selected for deletion, and keeps track of the amount of space
that would be freed if all of the files were deleted.
Primitive Mechanisms

The first of the mechanisms provided by the present
invention, primitive mechanisms, are now described. The
mechanisms described here depend on underlying data man-
agement mechanisms to create, copy, read, and delete data
items in the True File registry 126, as identified by a True
File ID. This support may be provided by an underlying
operating system or disk storage manager.

The following primitive mechanisms are described:

. Calculate True Name;
. Assimilate Data Item;
. New True File;
. Get True Name from Path;
. Link Path to True Name;
. Realize True File from Location;
. Locate Remote File;
. Make True File Local;
. Create Scratch File;
. Freeze Directory;
. Expand Frozen Directory;
. Delete True File;
. Process Audit File Entry;
. Begin Grooming;
15. Select For Removal; and
16. End Grooming.
1. Calculate True Name

A True Name is computed using a function, MD, which
reduces a data block B of arbitrary length to a relatively
small, fixed size identifier, the True Name of the data block,
such that the True Name of the data block is virtually
guaranteed to represent the data block B and only data block
B.

The function MD must have the following properties:

1. The domain of the function MD is the set of all data

e e o R

== = e e
A W= O

items. The range of the function MD is the set of True
Names.

RACK-1003
Page 718 of 738

US 6,928,442 B2

13

2. The function MD must take a data item of arbitrary
length and reduce it to an integer value in the range 0
to N-1, where N is the cardinality of the set of True
Names. That is, for an arbitrary length data block B,
0<MD(B)<N.

3. The results of MD(B) must be evenly and randomly
distributed over the range of N, in such a way that
simple or regular changes to B are virtually guaranteed
to produce a different value of MD(B).

4. It must be computationally difficult to find a different
value B' such that MD(B)=MD(B").

5. The function MD(B) must be efficiently computed.

A family of functions with the above properties are the
so-called message digest functions, which are used in digital
security systems as techniques for authentification of data.
These functions (or algorithms) include MD4, MDS5, and
SHA.

In the presently preferred embodiments, either MD5 or
SHA is employed as the basis for the computation of True
Names. Whichever of these two message digest functions is
employed, that same function must be employed on a
system-wide basis.

It is impossible to define a function having a unique
output for each possible input when the number of elements
in the range of the function is smaller than the number of
elements in its domain. However, a crucial observation is
that the actual data items that will be encountered in the
operation of any system embodying this invention form a
very sparse subset of all the possible inputs.

A colliding set of data items is defined as a set wherein,
for one or more pairs x and y in the set, MD(x)=MD(y).
Since a function conforming to the requirements for MD
must evenly and randomly distribute its outputs, it is
possible, by making the range of the function large enough,
to make the probability arbitrarily small that actual inputs
encountered in the operation of an embodiment of this
invention will form a colliding set.

To roughly quantify the probability of a collision, assume
that there are no more than 2°° storage devices in the world,
and that each storage device has an average of at most 22°
different data items. Then there are at most 2 > data items
in the world. If the outputs of MD range between 0 and 2%,
it can be demonstrated that the probability of a collision is
approximately 1 in 2*°. Details on the derivation of these
probability values are found, for example, in P. Flajolet and
A. M. Odlyzko, “Random Mapping Statistics,” Lecture
Notes in Computer Science 434: Advances in Cryptology—
Eurocrypt '89 Proceedings, Springer-Verlag, pp. 329-354.

Note that for some less preferred embodiments of the
present invention, lower probabilities of uniqueness may be
acceptable, depending on the types of applications and
mechanisms used. In some embodiments it may also be
useful to have more than one level of True Names, with
some of the True Names having different degrees of unique-
ness. If such a scheme is implemented, it is necessary to
ensure that less unique True Names are not propagated in the
system.

While the invention is described herein using only the
True Name of a data item as the identifier for the data item,
other preferred embodiments use tagged, typed, categorized
or classified data items and use a combination of both the
True Name and the tag, type, category or class of the data
item as an identifier. Examples of such categorizations are
files, directories, and segments; executable files and data
files, and the like. Examples of classes are classes of objects
in an object-oriented system. In such a system, a lower
degree of True Name uniqueness is acceptable over the

10

15

20

25

30

35

40

45

50

55

60

65

14

entire universe of data items, as long as sufficient uniqueness
is provided per category of data items. This is because the
tags provide an additional level of uniqueness.

A mechanism for calculating a True Name given a data
item is now described, with reference to FIGS. 10(a) and
10(b).

A simple data item is a data item whose size is less than
a particular given size (which must be defined in each
particular implementation of the invention). To determine
the True Name of a simple data item, with reference to FIG.
10(a), first compute the MD function (described above) on
the given simple data item (step S212). Then append to the
resulting 128 bits, the byte length modulo 32 of the data item
(Step S214). The resulting 160-bit value is the True Name of
the simple data item.

A compound data item is one whose size is greater than
the particular given size of a simple data item. To determine
the True Name of an arbitrary (simple or compound) data
item, with reference to FIG. 10(b), first determine if the data
item is a simple or a compound data item (Step S216). If the
data item is a simple data item, then compute its True Name
in step S218 (using steps S212 and S214 described above),
otherwise partition the data item into segments (Step S220)
and assimilate each segment (Step S222) (the primitive
mechanism, Assimilate a Data Item, is described below),
computing the True Name of the segment. Then create an
indirect block consisting of the computed segment True
Names (Step S224). An indirect block is a data item which
consists of the sequence of True Names of the segments.
Then, in step S226, assimilate the indirect block and com-
pute its True Name. Finally, replace the final thirty-two (32)
bits of the resulting True Name (that is, the length of the
indirect block) by the length modulo 32 of the compound
data item (Step S228). The result is the True Name of the
compound data item.

Note that the compound data item may be so large that the
indirect block of segment True Names is itself a compound
data item. In this case the mechanism is invoked recursively
until only simple data items are being processed.

Both the use of segments and the attachment of a length
to the True Name are not strictly required in a system using
the present invention, but are currently considered desirable
features in the preferred embodiment.

2. Assimilate Data Item

A mechanism for assimilating a data item (scratch file or
segment) into a file system, given the scratch file ID of the
data item, is now described with reference to FIG. 11. The
purpose of this mechanism is to add a given data item to the
True File registry 126. If the data item already exists in the
True File registry 126, this will be discovered and used
during this process, and the duplicate will be eliminated.

Thereby the system stores at most one copy of any data
item or file by content, even when multiple names refer to
the same content.

First, determine the True Name of the data item corre-
sponding to the given scratch Iile ID using the Calculate
True Name primitive mechanism (Step S230). Next, look for
an entry for the True Name in the True File registry 126
(Step S232) and determine whether a True Name entry,
record 140, exists in the True File registry 126. If the entry
record includes a corresponding True File ID or compressed
File ID (Step S237), delete the file with the scratch File ID
(Step S238). Otherwise store the given True File ID in the
entry record (step S239).

If it is determined (in step S232) that no True Name entry
exists in the True File registry 126, then, in Step S236, create
anew entry in the True File registry 126 for this True Name.

RACK-1003
Page 719 of 738

US 6,928,442 B2

15

Set the True Name of the entry to the calculated True Name,
set the use count for the new entry to one, store the given
True File ID in the entry and set the other fields of the entry
as appropriate.

Because this procedure may take some time to compute,
it is intended to run in background after a file has ceased to
change. In the meantime, the file is considered an unassimi-
lated scratch file.

3. New True File

The New True File process is invoked when processing
the audit file 132, some time after a True File has been
assimilated (using the Assimilate Data Item primitive
mechanism). Given a local directory extensions table entry
record 138 in the local directory extensions table 124, the
New True File process can provide the following steps (with
reference to FIG. 12), depending on how the local processor
is configured:

First, in step S238, examine the local directory extensions
table entry record 138 to determine whether the file is locked
by a cache server. If the file is locked, then add the ID of the
cache server to the dependent processor list of the True File
registry table 126, and then send a message to the cache
server to update the cache of the current processor using the
Update Cache remote mechanism (Step 242).

If desired, compress the True File (Step S246), and, if
desired, mirror the True File using the Mirror True File
background mechanism (Step S248).

4. Get True Name from Path

The True Name of a file can be used to identify a file by
contents, to confirm that a file matches its original contents,
or to compare two files. The mechanism to get a True Name
given the pathname of a file is now described with reference
to FIG. 13.

First, search the local directory extensions table 124 for
the entry record 138 with the given pathname (Step S250).
If the pathname is not found, this process fails and no True
Name corresponding to the given pathname exists. Next,
determine whether the local directory extensions table entry
record 138 includes a True Name (Step S252), and if so, the
mechanism’s task is complete. Otherwise, determine
whether the local directory extensions table entry record 138
identifies a directory (Step 5254), and if so, freeze the
directory (Step S256) (the primitive mechanism Freeze
Directory is described below).

Otherwise, in step S258, assimilate the file (using the
Assimilate Data Item primitive mechanism) defined by the
File ID field to generate its True Name and store its True
Name in the local directory extensions entry record. Then
return the True Name identified by the local directory
extensions table 124.

5. Link Path to True Name

The mechanism to link a path to a True Name provides a
way of creating a new directory entry record identifying an
existing, assimilated file. This basic process may be used to
copy, move, and rename files without a need to copy their
contents. The mechanism to link a path to a True Name is
now described with reference to I'IG. 14.

First, if desired, confirm that the True Name exists locally
by searching for it in the True Name registry or local
directory extensions table 135 (Step S260). Most uses of this
mechanism will require this form of validation. Next, search
for the path in the local directory extensions table 135 (Step
$262). Confirm that the directory containing the file named
in the path already exists (Step S264). If the named file itself
exists, delete the File using the Delete True File operating
system mechanism (see below) (Step S268).

Then, create an entry record in the local directory exten-
sions with the specified path (Step S270) and update the

10

15

20

25

30

35

40

45

50

55

60

65

16

entry record and other data structures as follows: fill in the
True Name field of the entry with the specified True Name;
increment the use count for the True File registry entry
record 140 of the corresponding True Name; note whether
the entry is a directory by reading the True File to see if it
contains a tag (magic number) indicating that it represents a
frozen directory (see also the description of the Freeze
Directory primitive mechanism regarding the tag); and com-
pute and set the other fields of the local directory extensions
appropriately. For instance, search the region table 128 to
identify the region of the path, and set the time of last access
and time of last modification to the current time.

6. Realize True File from Location

This mechanism is used to try to make a local copy of a
True File, given its True Name and the name of a source
location (processor or media) that may contain the True File.
This mechanism is now described with reference to FIG. 15.

First, in step S272, determine whether the location speci-
fied is a processor. If it is determined that the location
specified is a processor, then send a Request True File
message (using the Request True File remote mechanism) to
the remote processor and wait for a response (Step S274). If
a negative response is received or no response is received
after a timeout period, this mechanism fails. If a positive
response is received, enter the True File returned in the True
File registry 126 (Step S276). (If the file received was
compressed, enter the True File ID in the compressed File ID
field.)

If, on the other hand, it is determined in step S272 that the
location specified is not a processor, then, if necessary,
request the user or operator to mount the indicated volume
(Step S278). Then (Step S280) find the indicated file on the
given volume and assimilate the file using the Assimilate
Data Item primitive mechanism. If the volume does not
contain a True File registry 126, search the media inventory
to find the path of the file on the volume. If no such file can
be found, this mechanism fails.

At this point, whether or not the location is determined (in
step S272) to be a processor, if desired, verify the True File
(in step S282).

7. Locate Remote File

This mechanism allows a processor to locate a file or data
item from a remote source of True Files, when a specific
source is unknown or unavailable. A client processor system
may ask one of several or many sources whether it can
supply a data object with a given True Name. The steps to
perform this mechanism are as follows (with reference to
FIGS. 16(a) and 16(b)).

The client processor 102 uses the source table 145 to
select one or more source processors (Step S284). If no
source processor can be found, the mechanism fails. Next,
the client processor 102 broadcasts to the selected sources a
request to locate the file with the given True Name using the
Locate True File remote mechanism (Step S286). The
request to locate may be augmented by asking to propagate
this request to distant servers. The client processor then
waits for one or more servers to respond positively (Step
$288). After all servers respond negatively, or after a timeout
period with no positive response, the mechanism repeats
selection (Step S284) to attempt to identify alternative
sources. If any selected source processor responds, its pro-
cessor 1D is the result of this mechanism. Store the processor
ID in the source field of the True File registry entry record
140 of the given True Name (Step S290).

If the source location of the True Name is a different
processor or medium than the destination (Step S290q),
perform the following steps:

RACK-1003
Page 720 of 738

US 6,928,442 B2

17

(1) Look up the True File registry entry record 140 for the
corresponding True Name, and add the source location
ID to the list of sources for the True Name (Step
S290b); and

(ii) If the source is a publish ing system, determine the
expiration date on the publishing system for th ¢ True
Name and add that to the list of sources. If the source
is not a publishing system, send a message to reserve
the True File on the source processor (Step S290c¢).

Source selection in step S284 may be based on optimi-
zations involving general availability of the source, access
time, bandwidth, and transmission cost, and ignoring pre-
viously selected processors which did not respond in step
S288.

8. Make True File Local

This mechanism is used when a True Name is known and
a locally accessible copy of the corresponding file or data
item is required. This mechanism makes it possible to
actually read the data in a True File. The mechanism takes
a True Name and returns when there is a local, accessible
copy of the True File in the True File registry 126. This
mechanism is described here with reference to the flow chart
of FIGS. 17(a) and 17(b).

First, look in the True file registry 126 for a True File entry
record 140 for the corresponding True Name (Step $292). If
no such entry is found this mechanism fails. If there is
already a True File ID for the entry (Step S294), this
mechanism’s task is complete. If there is a compressed file
ID for the entry (Step S296), decompress the file corre-
sponding to the file ID (Step S296) and store the decom-
pressed file ID in the entry (Step S300). This mechanism is
then complete.

If there is no True File ID for the entry (Step S294) and
there is no compressed file ID for the entry (Step S296), then
continue searching for the requested file. At this time it may
be necessary to notify the user that the system is searching
for the requested file.

If there are one or more source IDs, then select an order
in which to attempt to realize the source ID (Step S304). The
order may be based on optimizations involving general
availability of the source, access time, bandwidth, and
transmission cost. For each source in the order chosen,
realize the True File from the source location (using the
Realize True File from Location primitive mechanism), until
the True File is realized (Step S306). If it is realized,
continue with step S294. If no known source can realize the
True File, use the Locate Remote File primitive mechanism
to attempt to find the True File (Step S308). If this succeeds,
realize the True File from the identified source location and
continue with step $296.

9. Create Scratch File

A scratch copy of a file is required when a file is being
created or is about to be modified. The scratch copy is stored
in the file system of the underlying operating system. The
scratch copy is eventually assimilated when the audit file
record entry 146 is processed by the Process Audit I'ile Lntry
primitive mechanism. This Create Scratch File mechanism
requires a local directory extensions table entry record 138.
When it succeeds, the local directory extensions table entry
record 138 contains the scratch file ID of a scratch file that
is not contained in the True File registry 126 and that may
be modified. This mechanism is now described with refer-
ence to FIGS. 18(@) and 18(b).

First determine whether the scratch file should be a copy
of the existing True File (Step S310). If so, continue with
step S312. Otherwise, determine whether the local directory
extensions table entry record 138 identifies an existing True

10

15

20

25

30

35

40

45

50

55

60

65

18
File (Step S316), and if so, delete the True File using the
Delete True File primitive mechanism (Step S318). Then
create a new, empty scratch file and store its scratch file ID
in the local directory extensions table entry record 138 (Step
$320). This mechanism is then complete.

If the local directory extensions table entry record 138
identifies a scratch file ID (Step S312), then the entry already
has a scratch file, so this mechanism succeeds.

If the local directory extensions table entry record 138
identifies a True File (S316), and there is no True File ID for
the True File (S312), then make the True File local using the
Make True File Local primitive mechanism (Step S322). If
there is still no True File ID, this mechanism fails.

There is now a local True File for this file. If the use count
in the corresponding True File registry entry record 140 is
one (Step S326), save the True File ID in the scratch file ID
of the local directory extensions table entry record 138, and
remove the True File registry entry record 140 (Step S328).
(This step makes the True File into a scratch file.) This
mechanism’s task is complete.

Otherwise, if the use count in the corresponding True File
registry entry record 140 is not one (in step S326), copy the
file with the given True File ID to a new scratch file, using
the Read File OS mechanism and store its file ID in the local
directory extensions table entry record 138 (step S330), and
reduce the use count for the True File by one. If there is
insufficient space to make a copy, this mechanism fails.
10. Freeze Directory

This mechanism freezes a directory in order to calculate
its True Name. Since the True Name of a directory is a
function of the files within the directory, they must not
change during the computation of the True Name of the
directory. This mechanism requires the pathname of a direc-
tory to freeze. This mechanism is described with reference
to FIGS. 19(a) and 19(b).

In step S332, add one to the global freeze lock. Then
search the local directory extensions table 124 to find each
subordinate data file and directory of the given directory, and
freeze each subordinate directory found using the Freeze
Directory primitive mechanism (Step S334). Assimilate
cach unassimilated data file in the directory using the
Assimilate Data Item primitive mechanism (Step S336).
Then create a data item which begins with a tag or marker
(a “magic number”) being a unique data item indicating that
this data item is a frozen directory (Step S337). Then list the
file name and True Name for each file in the current
directory (Step s338). Record any additional information
required, such as the type, time of last access and
modification, and size (Step S340). Next, in step S342, using
the Assimilate Data Item primitive mechanism, assimilate
the data item created in step S338. The resulting True Name
is the True Name of the frozen directory. Finally, subtract
one from the global freeze lock (Step S344).

11. Expand Frozen Directory

This mechanism expands a frozen directory in a given
location. It requires a given pathname into which to expand
the directory, and the True Name of the directory and is
described with reference to FIG. 20.

First, in step S346, make the True File with the given True
Name local using the Make True File Local primitive
mechanism. Then read each directory entry in the local file
created in step S346 (Step S348). For each such directory
entry, do the following:

Create a full pathname using the given pathname and the

file name of the entry (Step S350); and

link the created path to the True Name (Step S352) using

the Link Path to True Name primitive mechanism.

RACK-1003
Page 721 of 738

US 6,928,442 B2

19

12. Delete True File

This mechanism deletes a reference to a True Name. The
underlying True Pile is not removed from the True File
registry 126 unless there are no additional references to the
file. With reference to FIG. 21, this mechanism is performed
as follows:

If the global freeze lock is on, wait until the global freeze
lock is turned off (Step S354). This prevents deleting a
True File while a directory which might refer to it is
being frozen. Next, find the True File registry entry
record 140 given the True Name (Step S356). If the
reference count field of the True File registry 126 is
greater than zero, subtract one from the reference count
field (Step S358). If it is determined (in step S360) that
the reference count field of the True File registry entry
record 140 is zero, and if there are no dependent
systems listed in the True File registry entry record 140,
then perform the following steps:

() If the True File is a simple data item, then delete the
True File, otherwise,

(ii) (the True File is a compound data item) for each True
Name in the data item, recursively delete the True File
corresponding to the True Name (Step S362).

(iii) Remove the file indicated by the True File ID and
compressed file ID from the True File registry 126, and
remove the True File registry entry record 140 (Step
S364).

13. Process Audit File Entry

This mechanism performs tasks which are required to
maintain information in the local directory extensions table
124 and True File registry 126, but which can be delayed
while the processor is busy doing more time-critical tasks.
Entries 142 in the audit file 132 should be processed at a
background priority as long as there are entries to be
processed. With reference to FIG. 22, the steps for process-
ing an entry are as follows:

Determine the operation in the entry 142 currently being
processed (Step S365). If the operation indicates that a file
was created or written (Step S366), then assimilate the file
using the Assimilate Data Item primitive mechanism (Step
S368), use the New True File primitive mechanism to do
additional desired processing (such as cache update,
compression, and mirroring) (Step S369), and record the
newly computed True Name for the file in the audit file
record entry (Step S370).

Otherwise, if the entry being processed indicates that a
compound data item or directory was copied (or deleted)
(Step S376), then for each component True Name in the
compound data item or directory, add (or subtract) one to the
use count of the True File registry entry record 140 corre-
sponding to the component True Name (Step S378).

In all cases, for each parent directory of the given file,
update the size, time of last access, and time of last
modification, according to the operation in the audit record
(Step S379).

Note th at the audit record is not removed after
processing, but is retained for some reasonable period so that
it may be used by the Synchronize Directory extended
mechanism to allow a disconnected remote processor to
update its representation of the local system.

14. Begin Grooming

This mechanism makes it possible to select a set of files
for removal and determine the overall amount of space to be
recovered. With reference to FIG. 23, first verify that the
global grooming lock is currently unlocked (Step S382).
Then set the global grooming lock, set the total amount of
space freed during grooming to zero a nd empty the list of

15

20

25

30

35

40

45

50

55

60

65

20
files selected for deletion (Step S384). For each True File in
the True File registry 126, set the delete count to zero (Step
S386).
15. Select For Removal

This grooming mechanism tentatively selects a pathname
to allow its corresponding True File to be removed. With
reference to FIG. 24, first find the local directory extensions
table entry record 138 corresponding to the given pathname
(Step S388). Then find the True File registry entry record
140 corresponding to the True File name in the local
directory extensions table entry record 138 (Step S390). Add
one to the grooming delete count in the True File registry
entry record 140 and add the pathname to a list of files
selected for deletion (Step S392). If the grooming delete
count of the True File registry entry record 140 is equal to
the use count of the True File registry entry record 140, and
if the there are no entries in the dependency list of the True
File registry entry record 140, then add the size of the file
indicated by the True File ID and or compressed file ID to
the total amount of space freed during grooming (Step
S394).

16. End Grooming

This grooming mechanism ends the grooming phase and
removes all files selected for removal. With reference to
FIG. 25, for cach file in the list of files selected for deletion,
delete the file (Step S396) and then unlock the global
grooming lock (Step S398).

Operating System Mechanisms

The next of the mechanisms provided by the present
invention, operating system mechanisms, are now described.

The following operating system mechanisms are
described:

1. Open File;

. Close File;

. Read File;

. Write File;

. Delete File or Directory;
. Copy File or Directory;
. Move File or Directory;
. Get File Status; and

9. Get Files in Directory.
1. Open File

A mechanism to open a file is described with reference to
FIGS. 26(a) and 26(b). This mechanism is given as input a
pathname and the type of access required for the file (for
example, read, write, read/write, create, etc.) and produces
either the File ID of the file to be opened or an indication that
no file should be opened. The local directory extensions
table record 138 and region table record 142 associated with
the opened file are associated with the open file for later use
in other processing functions which refer to the file, such as
read, write, and close.

First, determine whether or not the named file exists
locally by examining the local directory extensions table 124
to determine whether there is an entry corresponding to the
given pathname (Step S400). If it is determined that the file
name does not exist locally, then, using the access type,
determine whether or not the file is being created by this
opening process (Step S402). If the file is not being created,
prohibit the open (Step S404). If the file is being created,
create a zero-length scratch file using an entry in local
directory extensions table 124 and produce the scratch file
ID of this scratch file as the result (Step S406).

If, on the other hand, it is determined in step S400 that the
file name does exist locally, then determine the region in
which the file is located by searching the region table 128 to

[C BN B SR, B P VS I]

RACK-1003
Page 722 of 738

US 6,928,442 B2

21

find the record 142 with the longest region path which is a
prefix of the file pathname (Step S408). This record identi-
fies the region of the specified file.

Next, determine using the access type, whether the file is
being opened for writing or whether it is being opened only
for reading (Step S410). If the file is being opened for
reading only, then, if the file is a scratch file (Step S419),
return the scratch File ID of the file (Step S424). Otherwise
get the True Name from the local directory extensions table
124 and make a local version of the True File associated with
the True Name using the Make True File Local primitive
mechanism, and then return the True File ID associated with
the True Name (Step S420).

If the file is not being opened for reading only (Step
$410), then, if it is determined by inspecting the region table
entry record 142 that the file is in a read-only directory (Step
S416), then prohibit the opening (Step S422).

If it is determined by inspecting the region table 128 that
the file is in a cached region (Step S423), then send a Lock
Cache message to the corresponding cache server, and wait
for a return message (Step S418). If the return message says
the file is already locked, prohibit the opening.

If the access type indicates that the file being modified is
being rewritten completely (Step S419), so that the original
data will not be required, then Delete the File using the
Delete File OS mechanism (Step S421) and perform step
S406. Otherwise, make a scratch copy of the file (Stop S417)
and produce the scratch file ID of the scratch file as the result
(Step S424).

2. Close File

This mechanism takes as input the local directory exten-
sions table entry record 138 of an open file and the data
maintained for the open file. To close a file, add an entry to
the audit file indicating the time and operation (create, read
or write). The audit file processing (using the Process Audit
File Entry primitive mechanism) will take care of assimi-
lating the file and thereby updating the other records.

3. Read File

To read a file, a program must provide the offset and
length of the data to be read, and the location of a buffer into
which to copy the data read.

The file to be read from is identified by an open file
descriptor which includes a File ID as computed by the Open
File operating system mechanism defined above. The File ID
may identify either a scratch file or a True File (or True File
segment). If the File ID identifies a True File, it may be
either a simple or a compound True File. Reading a file is
accomplished by the following steps:

In the case where the File ID identifies a scratch file or a
simple True File, use the read capabilities of the under-
lying operating system.

In the case where the File ID identifies a compound file,
break the read operation into one or more read opera-
tions on component segments as follows:

A. Identify the segment(s) to be read by dividing the
specified file offset and length each by the fixed size
of a segment (a system dependent parameter), to
determine the segment number and number of seg-
ments that must be read.

B. For each segment number computed above, do the
following:

i. Read the compound True File index block to
determine the True Name of the segment to be
read.

ii. Use the Realize True File from Location primitive
mechanism to make the True File segment avail-
able locally. (If that mechanism fails, the Read
File mechanism fails).

10

15

20

25

30

35

40

45

50

55

60

65

22

iii. Determine the File ID of the True File specified
by the True Name corresponding to this segment.
iv. Use the Read File mechanism (recursively) to
read from this segment into the corresponding
location in the specified buffer.
4. Write File

File writing uses the file ID and data management capa-
bilities of the underlying operating system. File access
(Make File Local described above) can be deferred until the
first read or write.

5. Delete File or Directory

The process of deleting a file, for a given pathname, is
described here with reference to FIGS. 27(a) and 27(b).

First, determine the local directory extensions table entry
record 138 and region table entry record 142 for the file
(Step S422). If the file has no local directory extensions table
entry record 138 or is locked or is in a read-only region,
prohibit the deletion.

Identify the corresponding True File given the True Name
of the file being deleted using the True File registry 126
(Step S424). If the file has no True Name, (Step S426) then
delete the scratch copy of the file based on its scratch file ID
in the local directory extensions table 124 (Step S427), and
continue with step S428.

If the file has a True Name and the True File’s use count
is one (Step S429), then delete the True File (Step S430), and
continue with step S428.

If the file has a True Name and the True File’s use count
is greater than one, reduce its use count by one (Step S431).
Then proceed with step S428.

In Step S428, delete the local directory extensions table
entry record, and add an entry to the audit file 132 indicating
the time and the operation performed (delete).

6. Copy File or Directory

A mechanism is provided to copy a file or directory given
a source and destination processor and pathname. The Copy
File mechanism does not actually copy the data in the file,
only the True Name of the file. This mechanism is performed
as follows:

(A) Given the source path, get the True Name from the

path. If this step fails, the mechanism fails.

(B) Given the True Name and the destination path, link
the destination path to the True Name.

(C) If the source and destination processors have different
True File registries, find (or, if necessary, create) an
entry for the True Name in the True File registry table
126 of the destination processor. Enter into the source
ID field of this new entry the source processor identity.

(D) Add an entry to the audit file 132 indicating the time
and operation performed (copy).

This mechanism addresses capability of the system to
avoid copying data from a source location to a destination
location when the destination already has the data. In
addition, because of the ability to freeze a directory, this
mechanism also addresses capability of the system imme-
diately to make a copy of any collection of files, thereby to
support an efficient version control mechanisms for groups
of files.

7. Move File or Directory

A mechanism is described which moves (or renames) a
file from a source path to a destination path. The move
operation, like the copy operation, requires no actual transfer
of data, and is performed as follows:

(A) Copy the file from the source path to the destination

path.

(B) If the source path is different from the destination
path, delete the source path.

RACK-1003
Page 723 of 738

US 6,928,442 B2

23

8. Get File Status

This mechanism takes a file pathname and provides
information about the pathname. First the local directory
extensions table entry record 138 corresponding to the
pathname given is found. If no such entry exists, 10 then this
mechanism fails, otherwise, gather information about the file
and its corresponding True File from the local directory
extensions table 124. The information can include any
information shown in the data structures, including the size,
type, owner, True Name, sources, time of last access, time of
last modification, state (local or not, assimilated or not,
compressed or not), use count, expiration date, and reser-
vations.

9. Get Files in Directory

This mechanism enumerates the files in a directory. It is
used (implicitly) whenever it is necessary to determine
whether a file exists (is present) in a directory. For instance,
it is implicitly used in the Open File, Delete File, Copy File
or Directory, and Move File operating system mechanisms,
because the files operated on are referred to by pathnames
containing directory names. The mechanism works as fol-
lows:

The local directory extensions table 124 is searched for an
entry 138 with the given directory pathname. If no such
entry is found, or if the entry found is not a directory, then
this mechanism fails.

If there is a corresponding True File field in the local
directory extensions table record, then it is assumed that the
True File represents a frozen directory.

The Expand Frozen Directory primitive mechanism is
used to expand the existing True File into directory entries
in the local directory extensions table.

Finally, the local directory extensions table 124 is again
searched, this time to find each directory subordinate to the
given directory. The names found are provided as the result.
Remote Mechanisms

The remote mechanisms provided by the present inven-
tion are now described. Recall that remote mechanisms are
used by the operating system in responding to requests from
other processors. These mechanisms enable the capabilities
of the present invention in a peer-to-peer network mode of
operation.

In a presently preferred embodiment, processors commu-
nicate with each other using a remote procedure call (RPC)
style interface, running over one of any number of commu-
nication protocols such as IPX/SPX or TCP/IP. Each peer
processor which provides access to its True File registry 126
or file regions, or which depends on another peer processor,
provides a number of mechanisms which can be used by its
peers.

The following remote mechanisms are described:

. Locate True File;

. Reserve True File;

. Request True File;

. Retire True File;

. Cancel Reservation;

. Acquire True File;

. Lock Cache;

. Update Cache; and

. Check Expiration Date.
1. Locate True File

This mechanism allows a remote processor to determine
whether the local processor contains a copy of a specific
True File. The mechanism begins with True Name and a flag
indicating whether to forward requests for this file to other
servers. This mechanism is now described with reference to
FIG. 28.

Nelo BN B Y R A

10

15

20

25

30

35

40

45

50

55

60

65

24

First determine if the True File is available locally or if
there is some indication of where the True File is located (for
example, in the Source IDs field). Look up the requested
True Name in the True File registry 126 (Step S432).

If a True File registry entry record 140 is not found for this
True Name (Step S434), and the flag indicates that the
request is not to be forwarded (Step S436), respond nega-
tively (Step S438). That is, respond to the effect that the True
File is not available.

One the other hand, if a True File registry entry record 140
is not found (Step S434), and the flag indicates that the
request for this True File is to be forwarded (Step S436),
then forward a request for this True File to some other
processors in the system (Step S442). If the source table for
the current processor identifies one or more publishing
servers which should have a copy of this True File, then
forward the request to each of those publishing servers (Step
S436).

If a True File registry entry record 140 is found for the
required True File (Step S434), and if the entry includes a
True File ID or Compressed File ID (Step S440), respond
positively (Step S444). If the entry includes a True File ID
then this provides the identity or disk location of the actual
physical representation of the file or file segment required.
If the entry include a Compressed File ID, then a com-
pressed version of the True File may be stored instead of, or
in addition to, an uncompressed version. This field provides
the identity of the actual representation of the compressed
version of the file.

If the True File registry entry record 140 is found (Step
S434) but does not include a True File ID (the File ID is
absent if the actual file is not currently present at the current
location) (Step S440), and if the True File registry entry
record 140 includes one or more source processors, and if
the request can be forwarded, then forward the request for
this True File to one or more of the source processors (Step
S444).

2. Reserve True File

This mechanism allows a remote processor to indicate
that it depends on the local processor for access to a specific
True File. It takes a True Name as input. This mechanism is
described here.

(A) Find the True File registry entry record 140 associated
with the given True File. If no entry exists, reply
negatively.

(B) If the True File registry entry record 140 does not
include a True File ID or compressed File ID, and if the
True File registry entry record 140 includes no source
IDs for removable storage volumes, then this processor
does not have access to a copy of the given file. Reply
negatively.

(C) Add the ID of the sending processor to the list of
dependent processors for the True File registry entry
record 140. Reply positively, with an indication of
whether the reserved True File is on line or off line.

3. Request True File

This mechanism allows a remote processor to request a
copy of a True File from the local processor. It requires a
True Name and responds positively by sending a True File
back to the requesting processor. The mechanism operates as
follows:

(A) Find the True File registry entry record 140 associated
with the given True Name. If there is no such True File
registry entry record 140, reply negatively.

(B) Make the True File local using the Make True File
Local primitive mechanism. If this mechanism fails, the
Request True File mechanism also fails.

RACK-1003
Page 724 of 738

US 6,928,442 B2

25

(C) Send the local True File in either it is uncompressed
or compressed form to the requesting remote processor.
Note that if the True File is a compound file, the
components are not sent.

(D) If the remote file is listed in the dependent process list
of the True File registry entry record 140, remove it.

4. Retire True File

This mechanism allows a remote processor to indicate
that it no longer plans to maintain a copy of a given True
File. An alternate source of the True File can be specified, if,
for instance, the True File is being moved from one server
to another. It begins with a True Name, a requesting pro-
cessor ID, and an optional alternate source. This mechanism
operates as follows:

(A) Find a True Name entry in the True File registry 126.
If there is no entry for this True Name, this mecha-
nism’s task is complete.

(B) Find the requesting processor on the source list and,
if it is there, remove it.

(O) If an alternate source is provided, add it to the source
list for the True File registry entry record 140.

(D) If the source list of the True File registry entry record
140 has no items in it, use the Locate Remote File
primitive mechanism to search for another copy of the
file. If it fails, raise a serious error.

5. Cancel Reservation

This mechanism allows a remote processor to indicate
that it no longer requires access to a True File stored on the
local processor. It begins with a True Name and a requesting
processor ID and proceeds as follows:

(A) Find the True Name entry in the True File registry
126. If there is no entry for this True Name, this
mechanism’s task is complete.

(B) Remove the identity of the requesting processor from
the list of dependent processors, if it appears.

(O) If the list of dependent processors becomes zero and
the use count is also zero, delete the True File.

6. Acquire True File

This mechanism allows a remote processor to insist that
a local processor make a copy of a specified True File. It is
used, for example, when a cache client wants to write
through a new version of a file. The Acquire True File
mechanism begins with a data item and an optional True
Name for the data item and proceeds as follows:
(A) Confirm that the requesting processor has the right to
require the local processor to acquire data items. If not,
send a negative reply.
(B) Make a local copy of the data item transmitted by the
remote Processor.
(C) Assimilate the data item into the True File registry of
the local processor.
(D) If a True Name was provided with the file, the True
Name calculation can be avoided, or the mechanism
can verify that the file received matches the True Name
sent.
(E) Add an entry in the dependent processor list of the true
file registry record indicating that the requesting pro-
cessor depends an this copy of the given True File.
(F) Send a positive reply.
7. Lock Cache

This mechanism allows a remote cache client to lock a
local file so that local users or other cache clients cannot
change it while the remote processor is using it. The
mechanism begins with a pathname and proceeds as follows:

(A) Find the local directory extensions table entry record
138 of the specified pathname. If no such entry exists,
reply negatively.

w

10

15

20

25

30

35

40

45

50

55

60

65

26

(B) If an local directory extensions table entry record 138
exists and is already locked, reply negatively that the
file is already locked.

(O) If an local directory extensions table entry record 138
exists and is not locked, lock the entry. Reply posi-
tively.

8. Update Cache

This mechanism allows a remote cache client to unlock a
local file and update it with new contents. It begins with a
pathname and a True Name. The file corresponding to the
True Name must be accessible from the remote processor.
This mechanism operates as follows:

Find the local directory extensions table entry record 138
corresponding to the given pathname. Reply negatively
if no such entry exists or if the entry is not locked.

Link the given pathname to the given True Name using
the Link Path to True Name primitive mechanism.

Unlock the local directory extensions table entry record
138 and return positively.
9. Check Expiration Date
Return current or new expiration date and possible alter-
native source to caller.
Background Processes and Mechanisms
The background processes and mechanisms provided by
the present invention are now described. Recall that back-
ground mechanisms are intended to run occasionally and at
a low priority to provide automated management capabilities
with respect to the present invention.
The following background mechanisms are described:
1. Mirror True File;
2. Groom Region;
3. Check for Expired Links;
4. Verity Region; and
5. Groom Source List.
1. Mirror True File

This mechanism is used to ensure that files are available
in alternate locations in mirror groups or archived on archi-
val servers. The mechanism depends on application-specific
migration/archival criteria (size, time since last access, num-
ber of copies required, number of existing alternative
sources) which determine under what conditions a file
should be moved. The Mirror True File mechanism operates
as follows, using the True File specified, perform the fol-
lowing steps:

(A) Count the number of available locations of the True
File by inspecting the source list of the True File
registry entry record 140 for the True File. This step
determines how many copies of the True File are
available in the system.

(B) If the True File meets the specified migration criteria,
select a mirror group server to which a copy of the file
should be sent. Use the Acquire True File remote
mechanism to copy the True File to the selected mirror
group server. Add the identity of the selected system to
the source list for the True File.

2. Groom Region

This mechanism is used to automatically free up space in
a processor by deleting data items that may be available
elsewhere. The mechanism depends on application-specific
grooming criteria (for instance, a file may be removed if
there is an alternate online source for it, it has not been
accessed 1n a given number of days, and it is larger than a
given size). This mechanism operates as follows:

Repeat the following steps (i) to (iii) with more aggressive
grooming criteria until sufficient space is freed or until

RACK-1003
Page 725 of 738

US 6,928,442 B2

27

all grooming criteria have been exercised. Use groom-
ing information to determine how much space has been
freed. Recall that, while grooming is in effect, groom-
ing information includes a table of pathnames selected
for deletion, and keeps track of the amount of space that
would be freed if all of the files were deleted.

(1) Begin Grooming (using the primitive mechanism).

(ii) For each pathname in the specified region, for the True
File corresponding to the pathname, if the True File is
present, has at least one alternative source, and meets
application specific grooming criteria for the region,
select the file for removal (using the primitive
mechanism).

(iif) End Grooming (using the primitive mechanism).

If the region is used as a cache, no other processors are
dependent an True Files to which it refers, and all such True
Files are mirrored elsewhere. In this case, True Files can be
removed with impunity. For a cache region, the grooming
criteria would ordinarily eliminate the least recently
accessed True Files first. This is best done by sorting the
True Files in the region by the most recent access time
before performing step (ii) above. The application specific
criteria would thus be to select for removal every True File
encountered (beginning with the least recently used) until
the required amount of free space is reached.

3. Check for Expired Links

This mechanism is used to determine whether dependen-
cies on published files should be refreshed. The following
steps describe the operation of this mechanism:

For each pathname in the specified region, for each True
File corresponding to the pathname, perform the following
step:

If the True File registry entry record 140 corresponding to
the True File contains at least one source which is a
publishing server, and if the expiration date on the depen-
dency is past or close, then perform the following steps:

(A) Determine whether the True File registry entry record
contains other sources which have not expired.

(B) Check the True Name expiration of the server. If the
expiration date has been extended, or an alternate
source is suggested, add the source to the True File
registry entry record 140.

(O) If no acceptable alternate source was found in steps
(A) or (B) above, make a local copy of the True File.

(D) Remove the expired source.

4. Verify Region

This mechanism can be used to ensure that the data items
in the True File registry 126 have not been damaged acci-
dentally or maliciously. The operation of this mechanism is
described by the following steps:

(A) Search the local directory extensions table 124 for
each pathname in the specified region and then perform
the following steps:

(1) Get the True File name corresponding to the path-
name;

(ii) If the True File registry entry 140 for the True File
does not have a True File ID or compressed file ID,
ignore it.

(iii) Use the Verify True File mechanism (see extended
mechanisms below) to confirm that the True File
specified is correct.

5. Groom Source List

The source list in a True File entry should be groomed
sometimes to ensure there are not too many mirror or archive
copies. When a file is deleted or when a region definition or
its mirror criteria are changed, it may be necessary to inspect

w

15

20

25

30

35

40

45

50

55

60

65

28

the affected True Files to determine whether there are too
many mirror copies. This can be done with the following
steps:

For each affected True File,

(A) Search the local directory extensions table to find

each region that refers to the True File.

(B) Create a set of “required sources”, initially empty.

(C) For each region found,

(a) determine the mirroring criteria for that region,

(b) determine which sources for the True File satisfy
the mirroring criteria, and

(c) add these sources to the set of required sources.

(D) For each source in the True File registry entry, if the

source identifies a remote processor (as opposed to

removable media), and if the source is not a publisher,

and if the source is not in the set of required sources,

then eliminate the source, and use the Cancel Reser-

vation remote mechanism to eliminate the given pro-

cessor from the list of dependent processors recorded at

the remote processor identified by the source.
Extended Mechanisms

The extended mechanisms provided by the present inven-
tion are now described. Recall that extended mechanisms
run within application programs over the operating system
to provide solutions to specific problems and applications.

The following extended mechanisms are described:

1. Inventory Existing Directory;

. Inventory Removable, Read-only Files;
. Synchronize Directories;
. Publish Region;
. Retire Directory;
. Realize Directory at Location;
. Verify True File;
. Track for Accounting Purposes; and
9. Track for Licensing Purposes.
1. Inventory Existing Directory

This mechanism determines the True Names of files in an
existing on-line directory in the underlying operating sys-
tem. One purpose of this mechanism is to install True Name
mechanisms in an existing file system.

An effect of such an installation is to eliminate immedi-
ately all duplicate files from the file system being traversed.
If several file systems are inventoried in a single True File
registry, duplicates across the volumes are also eliminated.

(A) Traverse the underlying file system in the operating

system. For each file encountered, excluding

directories, perform the following:

(1) Assimilate the file encountered (using the Assimilate
File primitive mechanism). This process computes
its True Name and moves its data into the True File
registry 126.

(i) Create a pathname consisting of the path to the
volume directory and the relative path of the file on
the media. Link this path to the computed True Name
using the Link Path to True Name primitive mecha-
nism.

2. Inventory Removable, Read-only Files

A system with access to removable, read-only media
volumes (such as WORM disks and CD-ROMS) can create
a usable inventory of the files on these disks without having
to make online copies. These objects can then be used for
archival purposes, directory overlays, or other needs. An
operator must request that an inventory be created for such
a volume.

This mechanism allows for maintaining inventories of the
contents of files and data items on removable media, such as

[N o e

RACK-1003
Page 726 of 738

US 6,928,442 B2

29

diskettes and CD-ROMs, independent of other properties of
the files such as name, location, and date of creation.

The mechanism creates an online inventory of the files on
one or more removable volumes, such as a floppy disk or
CD-ROM, when the data on the volume is represented as a
directory. The inventory service uses a True Name to iden-
tify each file, providing a way to locate the data independent
of its name, date of creation, or location.

The inventory can be used for archival of data (making it
possible to avoid archiving data when that data is already on
a separate volume), for grooming (making it possible to
delete infrequently accessed files if they can be retrieved
from removable volumes), for version control (making it
possible to generate a new version of a CD-ROM without
having to copy the old version), and for other purposes.

The inventory is made by creating a volume directory in
the media inventory in which each file named identifies the
data item on the volume being inventoried. Data items are
not copied from the removable volume during the inventory
process.

An operator must request that an inventory be created for
a specific volume. Once created, the volume directory can be
frozen or copied like any other directory. Data items from
either the physical volume or the volume directory can be
accessed using the Open File operating system mechanism
which will cause them to be read from the physical volume
using the Realize True File from Location primitive mecha-
nism.

To create an inventory the following steps are taken:

(A) A volume directory in the media inventory is created
to correspond to the volume being inventoried. Its
contextual name identifies the specific volume.

(B) A source table entry 144 for the volume is created in
the source table 130. This entry 144 identifies the
physical source volume and the volume directory cre-
ated in step (A).

(C) The filesystem on the volume is traversed. For each
file encountered, excluding directories, the following
steps are taken:

(i) The True Name of the file is computed. An entry is
created in the True Name registry 124, including the
True Name of the file using the primitive mecha-
nism. The source field of the True Name registry
entry 140 identifies the source table entry 144.

(i) A pathname is created consisting of the path to the
volume directory and the relative path of the file on
the media. This path is linked to the computed True
Name using Link Path to True Name primitive
mechanism.

(D) After all files have been inventoried, the volume
directory is frozen. The volume directory serves as a
table of contents for the volume. It can be copied using
the Copy File or Directory primitive mechanism to
create an “overlay” directory which can then be
modified, making it possible to edit a virtual copy of a
read-only medium.

3. Synchronize Directories

Given two versions of a directory derived from the same
starting point, this mechanism creates a new, synchronized
version which includes the changes from each. Where a file
is changed in both versions, this mechanism provides a user
exit for handling the discrepancy. By using True Names,
comparisons are instantaneous, and no copies of files are
necessary.

This mechanism lets a local processor synchronize a
directory to account for changes made at a remote processor.
Its purpose is to bring a local copy of a directory up to date

10

15

20

30

35

40

45

50

55

60

65

30

after a period of no communication between the local and
remote processor. Such a period might occur if the local
processor were a mobile processor detached from its server,
or if two distant processors were run independently and
updated nightly.

An advantage of the described synchronization process is
that it does not depend on synchronizing the clocks of the
local and remote processors. However, it does require that
the local processor track its position in the remote proces-
sor’s audit file.

This mechanism does not resolve changes made simulta-
neously to the same file at several sites. If that occurs, an
external resolution mechanism such as, for example, opera-
tor intervention, is required.

The mechanism takes as input a start time, a local
directory pathname, a remote processor name, and a remote
directory pathname name, and it operates by the following
steps:

(A) Request a copy of the audit file 132 from the remote
processor using the Request True File remote mecha-
nism.

(B) For each entry 146 in the audit file 132 after the start
time, if the entry indicates a change to a file in the
remote directory, perform the following steps:

(1) Compute the pathname of the corresponding file in
the local directory. Determine the True Name of the
corresponding file.

(i1) If the True Name of the local file is the same as the
old True Name in the audit file, or if there is no local
file and the audit entry indicates a new file is being
created, link the new True Name in the audit file to
the local pathname using the Link Path to True Name
primitive mechanism.

(iii) Otherwise, note that there is a problem with the
synchronization by sending a message to the opera-
tor or to a problem resolution program, indicating the
local pathname, remote pathname, remote processor,
and time of change.

(C) After synchronization is complete, record the time of
the final change. This time is to be used as the new start
time the next time this directory is synchronized with
the same remote processor.

4. Publish Region

The publish region mechanism allows a processor to offer
the files in a region to any client processors for a limited
period of time.

The purpose of the service is to eliminate any need for
client processors to make reservations with the publishing
processor. This in turn makes it possible for the publishing
processor to service a much larger number of clients.

When a region is published, an expiration date is defined
for all files in the region, and is propagated into the pub-
lishing system’s True File registry entry record 140 for each
file.

When a remote file is copied, for instance using the Copy
I'ile operating system mechanism, the expiration date is
copied into the source field of the client’s True File registry
entry record 140. When the source is a publishing system, no
dependency need be created.

The client processor must occasionally and in
background, check for expired links, to make sure it still has
access to these files. This is described in the background
mechanism Check for Expired Links.

5. Retire Directory

This mechanism makes it possible to eliminate safely the
True Files in a directory, or at least dependencies on them,
after ensuring that any client processors depending on those

RACK-1003
Page 727 of 738

US 6,928,442 B2

31

files remove their dependencies. The files in the directory are
not actually deleted by this process. The directory can be
deleted with the Delete File operating system mechanism.

The mechanism takes the pathname of a given directory,
and optionally, the identification of a preferred alternate
source processor for clients to use. The mechanism performs
the following steps:

(A) Traverse the directory. For each file in the directory,
perform the following steps:

(1) Get the True Name of the file from its path and find
the True File registry entry 140 associated with the
True Name.

(i) Determine an alternate source for the True File. If
the source IDs field of the TFR entry includes the
preferred alternate source, that is the alternate
source. If it does not, but includes some other source,
that is the alternate source. If it contains no alternate
sources, there is no alternate source.

(iii) For each dependent processor in the True File
registry entry 140, ask that processor to retire the
True File, specifying an alternate source if one was
determined, using the remote mechanism.

6. Realize Directory at Location

This mechanism allows the user or operating syslem (o
force copies of files from some source location to the True
File registry 126 at a given location. The purpose of the
mechanism is to ensure that files are accessible in the event
the source location becomes inaccessible. This can happen
for instance if the source or given location are on mobile
computers, or are on removable media, or if the network
connection to the source is expected to become unavailable,
or if the source is being retired.

This mechanism is provided in the following steps for
cach file in the given directory, with the exception of
subdirectories:

(A) Get the-local directory extensions table entry record
138 given the pathname of the file. Get the True Name
of the local directory extensions table entry record 138.
This service assimilates the file if it has not already
been assimilated.

(B) Realize the corresponding True File at the given
location. This service causes it to be copied to the given
location from a remote system or removable media.

7. Verify True File

This mechanism is used to verify that the data item in a
True File registry 126 is indeed the correct data item given
its True Name. Its purpose is to guard against device errors,
malicious changes, or other problems.

If an error is found, the system has the ability to “heal”
itself by finding another source for the True File with the
given name. It may also be desirable to verify that the error
has not propagated to other systems, and to log the problem
or indicate it to the computer operator. These details are not
described here.

To verify a data item that is not in a True File registry 126,
use the Calculate True Name primitive mechanism described
above.

The basic mechanism begins with a True Name, and
operates in the following steps:

(A) Find the True File registry entry record 140 corre-

sponding to the given True Name.

(B) If there is a True File ID for the True File registry
entry record 140 then use it. Otherwise, indicate that no
file exists to verify.

(C) Calculate the True Name of the data item given the file
ID of the data item.

10

15

20

25

30

35

45

50

55

60

32

(D) Confirm that the calculated True Name is equal to the
given True Name.

(E) If the True Names are not equal, there is an error in
the True File registry 126. Remove the True File ID
from the True File registry entry record 140 and place
it somewhere else. Indicate that the True File registry
entry record 140 contained an error.

8. Track for Accounting Purposes

This mechanism provides a way to know reliably which
files have been stored on a system or transmitted from one
system to another. The mechanism can be used as a basis for
a value-based accounting system in which charges are based
on the identity of the data stored or transmitted, rather than
simply on the number of bits.

This mechanism allows the system to track possession of
specific data items according to content by owner, indepen-
dent of the name, date, or other properties of the data item,
and tracks the uses of specific data items and files by content
for accounting purposes. True names make it possible to
identify each file briefly yet uniquely for this purpose.

Tracking the identities of files requires maintaining an
accounting log 134 and processing it for accounting or
billing purposes. The mechanism operates in the following
steps:

(A) Note every time a file is created or deleted, for
instance by monitoring audit entries in the Process
Audit File Entry primitive mechanism. When such an
event is encountered, create an entry 148 in the
accounting log 134 that shows the responsible party
and the identity of the file created or deleted.

(B) Every time a file is transmitted, for instance when a
file is copied with a Request True File remote mecha-
nism or an Acquire True File remote mechanism, create
an entry in the accounting log 134 that shows the
responsible party, the identity of the file, and the source
and destination processors.

(C) Occasionally run an accounting program to process
the accounting log 134, distributing the events to the
account records of each responsible party. The account
records can eventually be summarized for billing pur-
poses.

9. Track for Licensing Purposes

This mechanism ensures that licensed files are not used by
unauthorized parties. The True Name provides a safe way to
identify licensed material. This service allows proof of
possession of specific files according to their contents with-
out disclosing their contents.

Enforcing use of valid licenses can be active (for example,
by refusing to provide access to a file without authorization)
or passive (for example, by creating a report of users who do
not have proper authorization).

One possible way to perform license validation is to
perform occasional audits of employee systems. The service
described herein relies on True Names to support such an
audit, as in the following steps:

(A) For each licensed product, record in the license table
136 the True Name of key files in the product (that is,
files which are required in order to use the product, and
which do not occur in other products) Typically, for a
software product, this would include the main execut-
able image and perhaps other major files such as
clip-art, scripts, or online help. Also record the identity
of each system which is authorized to have a copy of
the file.

(B) Occasionally, compare the contents of each user
processor against the license table 136. For each True
Name in the license table do the following:

RACK-1003
Page 728 of 738

US 6,928,442 B2

33

(1) Unless the user processor is authorized to have a
copy of the file, confirm that the user processor does
not have a copy of the file using the Locate True File
mechanism.

(ii) If the user processor is found to have a file that it
is not authorized to have, record the user processor
and True Name in a license violation table.

The System in Operation

Given the mechanisms described above, the operation of
a typical DP system employing these mechanisms is now
described in order to demonstrate how the present invention
meets its requirements and capabilities.

In operation, data items (for example, files, database
records, messages, data segments, data blocks, directories,
instances of object classes, and the like) in a DP system
employing the present invention are identified by substan-
tially unique identifiers (True Names), the identifiers
depending on all of the data in the data items and only on the
data in the data items. The primitive mechanisms Calculate
True Name and Assimilate Data Item support this property.
For any given data item, using the Calculate True Name
primitive mechanism, a substantially unique identifier or
True Name for that data item can be determined.

Further, in operation of a DP system incorporating the
present invention, multiple copies of data items are avoided
(unless they are required for some reason such as backups or
mirror copies in a fault-tolerant system). Multiple copies of
data items are avoided even when multiple names refer to
the same data item. The primitive mechanisms Assimilate
Data Items and New True File support this property. Using
the Assimilate Data Item primitive mechanism, if a data item
already exists in the system, as indicated by an entry in the
True File registry 126, this existence will be discovered by
this mechanism, and the duplicate data item (the new data
item) will be eliminated (or not added). Thus, for example,
if a data file is being copied onto a system from a floppy
disk, if, based on the True Name of the data file, it is
determined that the data file already exists in the system (by
the same or some other name), then the duplicate copy will
not be installed. If the data item was being installed on the
system by some name other than its current name, then,
using the Link Path to True Name primitive mechanism, the
other (or new) name can be linked to the already existing
data item.

In general, the mechanisms of the present invention
operate in such a way as to avoid recreating an actual data
item at a location when a copy of that data item is already
present at that location. In the case of a copy from a floppy
disk, the data item (file) may have to be copied (into a
scratch file) before it can be determined that it is a duplicate.
This is because only one processor is involved. On the other
hand, in a multiprocessor environment or DP system, each
processor has a record of the True Names of the data items
on that processor. When a data item is to be copied to
another location (another processor) in the DP system, all
that is necessary is to examine the True Name of the data
item prior to the copying. If a data item with the same True
Name already exists at the destination location (processor),
then there is no need to copy the data item. Note that if a data
item which already exists locally at a destination location is
still copied to the destination location (for example, because
the remote system did not have a True Name for the data
item or because it arrives as a stream of un-named data), the
Assimilate Data Item primitive mechanism will prevent
multiple copies of the data item from being created.

Since the True Name of a large data item (a compound
data item) is derived from and based on the True Names of

10

15

20

25

30

35

40

45

50

55

60

65

34

components of the data item, copying of an entire data item
can be avoided. Since some (or all) of the components of a
large data item may already be present at a destination
location, only those components which are not present there
need be copied. This property derives from the manner in
which True Names are determined.

When a file is copied by the Copy File or Directory
operating system mechanism, only the True Name of the file
is actually replicated.

When a file is opened (using the Open File operating
system mechanism), it uses the Make True File Local
primitive mechanism (either directly or indirectly through
the Create Scratch File primitive mechanism) to create a
local copy of the file. The Open File operating system
mechanism uses the Make True File Local primitive
mechanism, which uses the Realize True File from Location
primitive mechanism, which, in turn uses the Request True
File remote mechanism.

The Request True File remote mechanism copies only a
single data item from one processor to another. If the data
item is a compound file, its component segments are not
copied, only the indirect block is copied. The segments are
copied only when they are read (or otherwise needed).

The Read File operating system mechanism actually reads
data. The Read File mechanism is aware of compound files
and indirect blocks, and it uses the Realize True File from
Location primitive mechanism to make sure that component
segments are locally available, and then uses the operating
system file mechanisms to read data from the local file.

Thus, when a compound file is copied from a remote
system, only its True Name is copied. When it is opened,
only its indirect block is copied. When the corresponding file
is read, the required component segments are realized and
therefore copied.

In operation data items can be accessed by reference to
their identities (True Names) independent of their present
location. The actual data item or True File corresponding to
a given data identifier or True Name may reside anywhere in
the system (that is, locally, remotely, offline, etc). If a
required True File is present locally, then the data in the file
can be accessed. If the data item is not present locally, there
are a number of ways in which it can be obtained from
wherever it is present. Using the source IDs field of the True
File registry table, the location(s) of copies of the True File
corresponding to a given True Name can be determined. The
Realize True File from Location primitive mechanism tries
to make a local copy of a True File, given its True Name and
the name of a source location (processor or media) that may
contain the True File. If, on the other hand, for some reason
it is not known where there is a copy of the True File, or if
the processors identified in the source IDs field do not
respond with the required True File, the processor requiring
the data item can make a general request for the data item
using the Request True File remote mechanism from all
processors in the system that it can contact.

As a result, the system provides transparent access to any
data item by reference to its data identity, and independent
of its present location.

In operation, data items in the system can be verified and
have their integrity checked. This is from the manner in
which True Names are determined. This can be used for
security purposes, for instance, to check for viruses and to
verify that data retrieved from another location is the desired
and requested data. For example, the system might store the
True Names of all executable applications on the system and
then periodically redetermine the True Names of each of
these applications to ensure that they match the stored True

RACK-1003
Page 729 of 738

US 6,928,442 B2

35

Names. Any change in a True Name potentially signals
corruption in the system and can be further investigated. The
Veritfy Region background mechanism and the Verify True
File extended mechanisms provide direct support for this
mode of operation. The Verify Region mechanism is used to
ensure that the data items in the True File registry have not
been damaged accidentally or maliciously. The Verify True
File mechanism verifies that a data item in a True File
registry is indeed the correct data item given its True Name.

Once a processor has determined where (that is, at which
other processor or location) a copy of a data item is in the
DP system, that processor might need that other processor or
location to keep a copy of that data item. For example, a
processor might want to delete local copies of data items to
make space available locally while knowing that it can rely
on retrieving the data from somewhere else when needed. To
this end the system allows a processor to Reserve (and
cancel the reservation of) True Files at remote locations
(using the remote mechanism). In this way the remote
locations are put on notice that another location is relying on
the presence of the True File at their location.

A DP system employing the present invention can be
made into a fault-tolerant system by providing a certain
amount of redundancy of data items at multiple locations in
the system. Using the Acquire True File and Reserve True
File remote mechanisms, a particular processor can imple-
ment its own form of fault-tolerance by copying data items
to other processors and then reserving them there. However,
the system also provides the Mirror True File background
mechanism to mirror (make copies) of the True File avail-
able elsewhere in the system. Any degree of redundancy
(limited by the number of processors or locations in the
system) can be implemented. As a result, this invention
maintains a desired degree or level of redundancy in a
network of processors, to protect against failure of any
particular processor by ensuring that multiple copies of data
items exist at different locations.

The data structures used to implement various features
and mechanisms of this invention store a variety of useful
information which can be used, in conjunction with the
various mechanisms, to implement storage schemes and
policies in a DP system employing the invention. For
example, the size, age and location of a data item (or of
groups of data items) is provided. This information can be
used to decide how the data items should be treated. For
example, a processor may implement a policy of deleting
local copies of all data items over a certain age if other
copies of those data items are present elsewhere in the
system. The age (or variations on the age) can be determined
using the time of last access or modification in the local
directory extensions table, and the presence of other copies
of the data item can be determined either from the Safe Flag
or the source IDs, or by checking which other processors in
the system have copies of the data item and then reserving
at least one of those copies.

In operation, the system can keep track of data items
regardless of how those items are named by users (or
regardless of whether the data items even have names). The
system can also track data items that have different names
(in different or the same location) as well as different data
items that have the same name. Since a data item is identified
by the data in the item, without regard for the context of the
data, the problems of inconsistent naming in a DP system are
overcome.

In operation, the system can publish data items, allowing
other, possibly anonymous, systems in a network to gain
access to the data items and to rely on the availability of

10

15

20

25

30

35

40

45

50

55

60

65

36

these data items. True Names are globally unique identifiers
which can be published simply by copying them. For
example, a user might create a textual representation of a file
on system A with True Name N (for instance as a hexadeci-
mal string), and post it on a computer bulletin board.
Another user on system B could create a directory entry F
for this True Name N by using the Link Path to True Name
primitive mechanism. (Alternatively, an application could
be developed which hides the True Name from the users, but
provides the same public transfer service.)

When a program on system B attempts to open pathname
P linked to True Name N, the Locate Remote File primitive
mechanism would be used, and would use the Locate True
File remote mechanism to search for True Name N on one
or more remote processors, such as system A. If system B
has access to system A, it would be able to realize the True
File (using the Realize True File from Location primitive
mechanism) and use it locally. Alternatively, system B could
find True Name N by accessing any publicly available True
Name server, if the server could eventually forward the
request to system A.

Clients of a local server can indicate that they depend on
a given True File (using the Reserve True File remote
mechanism) so that the True File is not deleted from the
server registry as long as some client requires access to it.
(The Retire True File remote mechanism is used to indicate
that a client no longer needs a given True File.)

A publishing server, on the other hand, may want to
provide access to many clients, and possibly anonymous
ones, without incurring the overhead of tracking dependen-
cies for each client. Therefore, a public server can provide
expiration dates for True Files in its registry. This allows
client systems to safely maintain references to a True File on
the public server. The Check For Expired Links background
mechanism allows the client of a publishing server to
occasionally confirm that its dependencies on the publishing
server are safe.

In a variation of this aspect of the invention, a processor
that is newly connected (or reconnected after some absence)
to the system can obtain a current version of all (or of
needed) data in the system by requesting it from a server
processor. Any such processor can send a request to update
or resynchronize all of its directories (starting at a root
directory), simply by using the Synchronize Directories
extended mechanism on the needed directories.

Using the accounting log or some other user provided
mechanism, a user can prove the existence of certain data
items at certain times. By publishing (in a public place) a list
of all True Names in the system on a given day (or at some
given time), a user can later refer back to that list to show
that a particular data item was present in the system at the
time that list was published. Such a mechanism is useful in
tracking, for example, laboratory notebooks or the like to
prove dates of conception of inventions. Such a mechanism
also permits proof of possession of a data item at a particular
date and time.

The accounting log file can also track the use of specific
data items and files by content for accounting purposes. For
instance, an information utility company can determine the
data identities of data items that are stored and transmitted
through its computer systems, and use these identities to
provide bills to its customers based on the identities of the
data items being transmitted (as defined by the substantially
unique identifier). The assignment of prices for storing and
transmitting specific True Files would be made by the
information utility and/or its data suppliers; this information
would be joined periodically with the information in the
accounting log file to produce customer statements.

RACK-1003
Page 730 of 738

US 6,928,442 B2

37

Backing up data items in a DP system employing the
present invention can be done based on the True Names of
the data items. By tracking backups using True Names,
duplication in the backups is prevented. In operation, the
system maintains a backup record of data identifiers of data
items already backed up, and invokes the Copy File or
Directory operating system mechanism to copy only those
data items whose data identifiers are not recorded in the
backup record. Once a data item has been backed up, it can
be restored by retrieving it from its backup location, based
on the identifier of the data item. Using the backup record
produced by the backup to identify the data item, the data
item can be obtained using, for example, the Make True File
Local primitive mechanism.

In operation, the system can be used to cache data items
from a server, so that only the most recently accessed data
items need be retained. To operate in this way, a cache client
is configured to have a local registry (its cache) with a
remote Local Directory Extensions table (from the cache
server). Whenever a file is opened (or read), the Local
Directory Extensions table is Used to identify the True
Name, and the Make True File Local primitive mechanism
inspects the local registry. When the local registry already
has a copy, the file is already cached. Otherwise, the Locate
True File remote mechanism is used to get a copy of the file.
This mechanism consults the cache server and uses the
Request True File remote mechanism to make a local copy,
effectively loading the cache.

The Groom Cache background mechanism flushes the
cache, removing the least-recently-used files from the cache
client’s True File registry. While a file is being modified on
a cache client, the Lock Cache and Update Cache remote
mechanisms prevent other clients from trying to modify the
same file.

In operation, when the system is being used to cache data
items, the problems of maintaining cache consistency are
avoided.

To access a cache and to fill it from its server, a key is
required to identify the data item desired. Ordinarily, the key
is a name or address (in this case, it would be the pathname
of a file). If the data associated with such a key is changed,
the client’s cache becomes inconsistent; when the cache
client refers to that name, it will retrieve the wrong data. In
order to maintain cache consistency it is necessary to notify
every client immediately whenever a change occurs on the
Server.

By using an embodiment of the present invention, the
cache key uniquely identifies the data it represents. When
the data associated with a name changes, the key itself
changes. Thus, when a cache client wishes to access the
modified data associated with a given file name, it will use
anew key (the True Name of the new file) rather than the key
to the old file contents in its cache. The client will always
request the correct data, and the old data in its cache will be
eventually aged and flushed by the Groom Cache back-
ground mechanism.

Because it is not necessary to immediately notify clients
when changes on the cache server occur, the present inven-
tion makes it possible for a single server to support a much
larger number of clients than is otherwise possible.

In operation, the system automatically archives data items
as they are created or modified. After a file is created or
modified, the Close File operating system mechanism cre-
ates an audit file record, which is eventually processed by
the Process Audit File Entry primitive mechanism. This
mechanism uses the New True File primitive mechanism for
any file which is newly created, which in turn uses the

10

15

20

25

30

35

40

45

50

55

60

65

38

Mirror True File background mechanism if the True File is
in a mirrored or archived region. This mechanism causes one
or more copies of the new file to be made on remote
processors.

In operation, the system can efficiently record and pre-
serve any collection of data items. The Freeze Directory
primitive mechanism creates a True File which identifies all
of the files in the directory and its subordinates. Because this
True File includes the True Names of its constituents, it
represents the exact contents of the directory tree at the time
it was frozen. The frozen directory can be copied with its
components preserved.

The Acquire True File remote mechanism (used in mir-
roring and archiving) preserves the directory tree structure
by ensuring that all of the component segments and True
Files in a compound data item are actually copied to a
remote system. Of course, no transfer is necessary for data
items already in the registry of the remote system.

In operation, the system can efficiently make a copy of
any collection of data items, to support a version control
mechanism for groups of the data items.

The Freeze Directory primitive mechanism is used to
create a collection of data items. The constituent files and
segments referred to by the frozen directory are maintained
in the registry, without any need to make copies of the
constituents each time the directory is frozen.

Whenever a pathname is traversed, the Get Files in
Directory operating system mechanism is used, and when it
encounters a frozen directory, it uses the Expand Frozen
Directory primitive mechanism.

A frozen directory can be copied from one pathname to
another efficiently, merely by copying its True Name. The
Copy File operating system mechanism is used to copy a
frozen directory.

Thus it is possible to efficiently create copies of different
versions of a directory, thereby creating a record of its
history (hence a version control system).

In operation, the system can maintain a local inventory of
all the data items located on a given removable medium,
such as a diskette or CD-ROM. The inventory is indepen-
dent of other properties of the data items such as their name,
location, and date of creation.

The Inventory Existing Directory extended mechanism
provides a way to create True File Registry entries for all of
the files in a directory. One use of this inventory is as a way
to pre-load a True File registry with backup record infor-
mation. Those files in the registry (such as previously
installed software) which are on the volumes inventoried
need not be backed up onto other volumes.

The Inventory Removable, Read-only Files extended
mechanism not only determines the True Names for the files
on the medium, but also records directory entries for each
file in a frozen directory structure. By copying and modi-
fying this directory, it is possible to create an on line patch,
or small modification of an existing read-only file. For
example, it is possible to create an online representation of
a modified CD-ROM, such that the unmodified files are
actually on the CD-ROM, and only the modified files are
online.

In operation, the system tracks possession of specific data
items according to content by owner, independent of the
name, date, or other properties of the data item, and tracks
the uses of specific data items and files by content for
accounting purposes. Using the Track for Accounting Pur-
poses extended mechanism provides a way to know reliably
which files have been stored on a system or transmitted from
one system to another.

RACK-1003
Page 731 of 738

US 6,928,442 B2

39

True Names in Relational and Object-Oriented Databases

Although the preferred embodiment of this invention has
been presented in the context of a file system, the invention
of True Names would be equally valuable in a relational or
object-oriented database. A relational or object-oriented
database system using True Names would have similar
benefits to those of the file system employing the invention.
For instance, such a database would permit efficient elimi-
nation of duplicate records, support a cache for records,
simplify the process of maintaining cache consistency, pro-
vide location-independent access to records, maintain
archives and histories of records, and synchronize with
distant or disconnected systems or databases.

The mechanisms described above can be easily modified
to serve in such a database environment. The True Name
registry would be used as a repository of database records.
All references to records would be via the True Name of the
record. (The Local Directory Extensions table is an example
of a primary index that uses the True Name as the unique
identifier of the desired records.)

In such a database, the operations of inserting, updating,
and deleting records would be implemented by first assimi-
lating records into the registry, and then updating a primary
key index to map the key of the record to its contents by
using the True Name as a pointer to the contents.

The mechanisms described in the preferred embodiment,
or similar mechanisms, would be employed in such a
system. These mechanisms could include, for example, the
mechanisms for calculating true names, assimilating,
locating, realizing, deleting, copying, and moving True
Files, for mirroring True Files, for maintaining a cache of
True Files, for grooming True Files, and other mechanisms
based on the use of substantially unique identifiers.

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiments, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the spirit
and scope of the appended claims.

What is claimed is:

1. In a system in which a plurality of files are distributed
across a plurality of computers, a method comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the given function to determine the name
comprises the contents of the data file; and

in response to a request for the a data file, the request

including at least the name of the particular file, causing
a copy of the file to be provided from a given one of the
plurality of computers, wherein a copy of the requested
file is only provided to licensed parties.

2. A method as in claim 1 further comprising:

determining, using at least the name, whether a copy of

the data file is present on a particular one of said
computers.

3. A method as in claim 1 further comprising:

determining, using at least the name, whether an unau-

thorized or unlicensed copy of the data file is present on
a particular one of said computers.

4. A method as in claim 1, further comprising:

maintaining accounting information relating to the data

files.

5. A method as in claim 4, wherein the maintaining of
accounting information includes at least some of activities
selected from:

10

15

20

30

35

40

45

50

55

60

65

40

(a) tracking which files have been stored on a computer;
and

(b) tracking which files have been transmitted from a

computer.

6. A method, in a system in which a plurality of files are
distributed across a plurality of computers, wherein data in
a file in the system may represent a digital message, a digital
image, a video signal or an audio signal, the method com-
prising:

obtaining a name for a data file, the name having been

determined using an MD5 function of the data, wherein
the data used by the MDS5 function comprises the
contents of the data file; and

in response to a request for the data file, the request
including at least the name of the data file, providing a
copy of the data file from a given one of the plurality
of computers, said providing being based at least in part
on the obtained name, and wherein a copy of the
requested file is only provided to licensed parties.

7. A method, in a system in which a plurality of files are
distributed across a plurality of computers, wherein some of
the computers communicate with each other using a TCP/IP
communication protocol, the method comprising:

obtaining a name for a data file, the contents of said data
file representing a digital image, the name having been
determined using at least a given function of the data in
the data file, wherein the data used by the given
function to determine the name comprises the contents
of the data file; and

in response to a request for the data file, the request

including at least the name of the data file, providing a
copy of the file from a given one of the plurality of
computers, wherein a copy of the requested file is not
provided to unlicensed parties or to unauthorized par-
ties.

8. A method, in a network comprising a plurality of
computers, some of the computers functioning as servers
and some of the computers functioning as clients, wherein
some computers in the network communicate with each
other using a TCP/IP communication protocol, wherein a
key is required to identify a file on the network, the method
comprising:

storing some files on a first computer in the network and

storing copies of some of the files from the first
computer on a set of computers distinct from the first
computer;
for a particular file, determining a different cache key
from an ordinarily used key for the file, the different
key being determined at least in part using a message
function MD5 of the data, wherein the data used by the
function to determine the name comprises the contents
of the particular file; and
responsive to a request for the particular file, the request
including the different key for the file, causing a copy
of the particular file to be provided to the requester,

wherein the requested file is not provided to unlicensed
parties, and

wherein the contents of the file may represent: a page in

memory, a digital message, a digital image, a video
signal or an audio signal.

9. A content delivery method, comprising:

distributing files across a network of servers;

for a particular file having a contextual name specifying
locations in the network at which the file may be
located, determining another name for the particular

RACK-1003
Page 732 of 738

US 6,928,442 B2

41

file, the other name including at least a data identifier
determined using a given function of the data, where
said data used by the given function to determine the
other name comprises the contents of the particular file;

obtaining a request for the particular file, the request
including the contextual name and the other name of
the particular file; and

responsive to the request, providing a copy of the par-

ticular file from one of the servers of the network of
servers, said providing being based, at least in part, on
the other name of the particular item, wherein the
requested file is not provided to unlicensed parties.

10. A method, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the function comprises the contents of the
particular file;

determining, using at least the name, whether a copy of

the data file is present on at least one of said computers;
and

determining whether a copy of the data file that is present

on a at least one of said computers is an unauthorized
copy or an unlicensed copy of the data file.

11. A method as in claim 10 further comprising:

allowing the file to be provided from one of the computers

having an authorized or licensed copy of the file.
12. A method as in claim 10 wherein at least some of the
plurality of computers comprise a peer-to-peer network.
13. A method, in a system in which a plurality of files are
distributed across a plurality of computers which form a
peer-to-peer network, the method comprising:
obtaining a True Name for a data file, the True Name
being based at least in part on a given function of the
data, wherein the data used by the given function
comprises the contents of the particular file; and

determining, using at least the name, whether an unli-
censed or unauthorized copy of the data file is present
on a particular computer.

14. A method comprising:

obtaining a name for a data file, the name being based at

least in part on a function of the data, wherein the data
used by the function comprise at least the contents of
the file; and

in response to a request for the data file, the request

including at least the obtained name of the data file,
causing the contents of the data file to be provided from
a computer having a licensed copy of the data file.

15. A method as in claim 14 wherein the function is a
message digest function or a hash function.

16. A method as in claim 14 wherein the function is
selected from the functions: MD4, MD5, and SHA.

17. A method as in claim 14 wherein the given function
randomly distributes its outputs.

18. A method as in claim 14 wherein the function pro-
duces a substantially unique value based on the data com-
prising the data file.

19. A method as in claim 14 wherein a data file may
comprise a file, a portion of a file, a page in memory, a digital
message, a digital image, a video signal or an audio signal.

20. A method as in claim 14 wherein certain processors in
the network communicate with each other using a TCP/IP
communication protocol.

21. A method as in claim 14 wherein said name for said
data file, as determined using said function, will change
when the data file is modified.

42

22. Amethod, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

5 least in part on an MD5 function of the data which
comprises the contents of the particular file; and

determining, using at least the obtained name, whether an
unauthorized or unlicensed copy of the data file is
present on a at least one of said computers.

10 23, A method comprising:

obtaining a list of file names, at least one file name for
each of a plurality of files, each of said file names
having been determined, at least in part, by applying a

15 function to the contents of the corresponding file; and

using at least said list to determine whether unauthorized
or unlicensed copies of some of the plurality of data
files are present on a particular computer.

24. A method as in claim 23 further comprising:

20 inresponse to a request for a particular data file, allowing
the contents of the data file to be provided from a
computer determined to have a licensed or authorized
copy of the data file.

25. A method as in claim 23 wherein the particular
computer is part of a peer-to-peer network of computers.

26. A method as in claim 23 further comprising:

25

if the computer is found to have a file that it is not
authorized or licensed to have, recording information
about the computer and about the file.

27. A method as in claim 23 wherein the function is a
message digest function or a hash function.

28. A method as in claim 23 wherein the function is
selected from the functions: MD4, MD5, and SHA.

29. A method as in claim 23 wherein the given function
randomly distributes its outputs.

30. A method as in claim 23 wherein the function pro-
duces a substantially unique value based on the data com-
prising the data file.

31. A method comprising:

obtaining a list of True Names, one for each of a plurality
of files, wherein, for each of the files, the True Name for
that file is determined using a function of the contents
of the file;
for at least some computers that make up part of a
peer-to-peer network of computers, comparing at least
some of the contents of the computers to the list of True
Names to determine whether unauthorized or unli-
censed copies of some of the plurality of data files are
present on those computers; and
based at least in part on said comparing, if a computer is
found to have content that it is not authorized or
licensed to have, recording information about the com-
puter and about the unauthorized or unlicensed content.
32. A method as in claim 31 wherein the True Names are
determined using a message digest function or a hash
function.
33. A method as in claim 31 wherein the function is
selected from the functions: MD4, MD5, and SHA.
34. A method as in claim 31, further comprising:

30

35

45

50

60
in response to a request for the data file, allowing a copy
of the file to be provided from a given one of the
plurality of computers having an authorized or licensed
copy of the file.
65 35. A method comprising:

obtaining a list of True Names, one for each of a plurality
of files, wherein, for each of the files, the True Name for

RACK-1003
Page 733 of 738

US 6,928,442 B2

43

that file is determined using an MD5 function of the
contents of the file;

comparing the True Names of at least some of the contents

of a computer to the list of True Names to determine
whether unauthorized or unlicensed copies of some of
the plurality of data files are present on that computer;
and

based at least in part on said comparing, if a computer is

found to have content that it is not authorized or
licensed to have, recording information about the com-
puter and about the unauthorized or unlicensed content.

36. In a system in which a data file is distributed across
a plurality of computers, a method comprising:

obtaining a name for the data file, the name being based

at least in part on a given function of the data, wherein
the data used by the function which comprise the
contents of the data file; and

determining, using at least the name, whether an unau-

thorized or unlicensed copy of the data file is present on
a particular one of said computers.

37. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a name [or a data file, the name being based at least

in part on a given function of the data, wherein the data
used by the function comprises the contents of the data
file; and

in response to a request for the a data file, the request

including at least the name of the particular file, cause
a copy of the file to be provided from a given one of the
plurality of computers, wherein the copy is only pro-
vided to licensed parties.

38. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a True Name for a data file, the True Name being

based at least in part on a given function of the data,
wherein the data used by the function comprises the
contents of the particular file; and

determine, using at least the name, whether an unautho-

rized or unlicensed copy of the data file is present on a
particular computer.

39. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a list of file names, one for each of a plurality of

files, each of said file names having been determined,
at least in part, by applying a function to the contents
of the corresponding file; and

determine, using at least said list, whether unauthorized or

unlicensed copies of some of the plurality of data files
are present on a particular computer.

40. Computer-readable media tangibly embodying a pro-
gram of instructions executable by at least one computer, the
program comprising code to:

obtain a name for the data file, the name being based at

least in part on a given function of the data which
comprise the contents of the data file; and

determine, using at least the name, whether an unautho-

rized or unlicensed copy of the data file is present on a
particular one of said computers.

41. Media as in claim 40 wherein the given function is a
message digest function or a hash function.

42. A computer system programmed to:

obtain a list of file names for a plurality of files, each of

said file names having been determined, at least in part,

10

15

25

30

45

50

55

60

65

44

by applying a function to the contents of the corre-
sponding file; and

determine, using at least said list, whether unauthorized or

unlicensed copies of some of the plurality of data files
are present on a particular computer.

43. A computer system as in claim 42 wherein the
function is a message digest function or a hash function.

44. A computer system as in claim 42 wherein the
function is an MD5 function.

45. In a system in which a plurality of files are distributed
across a plurality of computers, at least some of the com-
puters forming a peer-to-peer network, a method compris-
ing:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the given function comprises the contents
of the data file; and

in response to a request for the a data file, the request

including at least the name of the particular file,
attempting to cause a copy of the file to be provided
from a given one of the plurality of computers, wherein
the requested file is only provided to authorized or
licensed parties.

46. A method, in a system in which a plurality of files are
distributed across a plurality of computers, at least some of
the computers forming a peer-to-peer network, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the
data used by the function comprises the contents of the
data file;
determining whether a copy of the data file is present on
a at least one of said computers; and

determining, using at least the name, whether a copy of
the data file that is present on a at least one of said
computers is an unlicensed copy of the file.

47. Amethod, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

determining whether a copy of a data file is present on a

at least one of said computers;

obtaining a name for a data file, the name being based at

least in part on a given function of the data which
comprises the contents of the data file; and,

using at least the name, attempting to determine whether

a copy of the data file that is present on the at least one
of said computers is an unlicensed copy of the file.

48. A method as in claim 47 wherein the given function
comprises a message digest or a hash function.

49. A method as in claim 48 wherein the given function
is selected from the functions: MD4, MD5 and SHA.

50. A method as in claim 47 further comprising:

if a computer is found to have a file that it is not licensed

to have, recording information about the computer.

51. A method as in claim 47, further comprising:

maintaining accounting information relating to data files

in the system.

52. A method as in any one of claims 4 and 51, further
comprising:

using the accounting information as a basis for a system

in which charges are based on an identity of the data
files.

53. A method as in claim 47, further comprising, for at
least one computer in the system:

(a) tracking which data files have been stored on a

computer; and

RACK-1003
Page 734 of 738

US 6,928,442 B2

45

(b) tracking which data files have been transmitted from
a computer.
54. A method, in network in which a plurality of files are
distributed across a plurality of computers of the network,
the method comprising:

determining whether a copy of a data file is present on a
at least one of said computers, said data file represent-
ing one or more of a digital image, a video signal or an
audio signal;

obtaining a name for the data file, the name being based
at least in part on an MDS5 function of the data which
comprises the contents of the data file; and,

when a copy of the data file is found to be present on one
of the computers, determining, using at least the name,
whether the copy of the data file is an authorized or
licensed copy of the data file; and
if a computer is found to have a file that it is not
authorized or licensed to have, recording information
about the computer or the data file.
55. In network in which a plurality of files arc distributed
across a plurality of computers of the network, a method
comprising:

for each file of a plurality of data files,
(a) determining whether a copy of the file data file is
present on a at least one of said computers;

10

15

20

25

46

(b) obtaining a name for the data file, the name being
based at least in part on an MD5 function of the data
which comprises the contents of the data file;

(c) when a copy of the data file is found to be present
on one of the computers, determining, using at least
the name, whether the copy of the data file-is an
authorized or licensed copy of the data file; and,

(d) if a computer is found to have a file that it is not
authorized or licensed to have, recording information
about the computer or the data file.

56. A method, in a system in which a plurality of files are
distributed across a plurality of computers, the method
comprising:

obtaining a name for a data file, the name being based at

least in part on a given function of the data, wherein the

data used by the given function comprises the contents
of the data file; and

determining, based at least in part on the obtained name,
whether a copy of the data file that is present on a at
least one of said computers is an unauthorized or
unlicensed copy of the file.

#* #* #* #* #*

RACK-1003
Page 735 of 738

Electronic Acknowledgement Receipt

EFSID: 3866471
Application Number: 90010261
International Application Number:
Confirmation Number: 1093

Title of Invention:

ENFORCEMENT AND POLICING OF LICENSED CONTENT USING CONTENT-

DERIVED IDENTIFIERS

First Named Inventor/Applicant Name:

David A. Farber

Customer Number:

29855

Filer:

Billy Collins Allen/Sharon Vara

Filer Authorized By:

Billy Collins Allen

Attorney Docket Number: 788-0003RX
Receipt Date: 29-AUG-2008
Filing Date:
Time Stamp: 16:59:01

Application Type:

Reexam (Third Party)

Payment information:

Submitted with Payment no
File Listing:
Document . L. . File Size(Bytes)/ Multi Pages
D tD t File N . . .
Number ocument Lescription rle Mame Message Digest | Part/.zip| (ifappl.)
C f patent f hich inati 2981144
1 opy or pa en. or wnicn reexamination 6928442pdf no 57
is requested
9d85415f15¢f32d502987f1a10b5b5b35db
8e7fe
Warnings:
Information: RACK

-1003

6 of 738

905647

2 Reexam Miscellaneous Incoming Letter 4658093.pdf no 12

664fc70d2¢135d5f4a8224099¢ch 100182}
9d46

Warnings:

Information:

3794155
3 Reexam Miscellaneous Incoming Letter Cheriton.pdf no 37
a50c375f52854d1ebc073066252¢93a4752
13963
Warnings:
Information:
1528538
4 Reexam Miscellaneous Incoming Letter Gramlich5202982.pdf no 30
0cf2alea3af4774b98fabc5e784bf8774c422)
Warnings:
Information:
Total Files Size (in bytes): 9209484

This Acknowledgement Receipt evidences receipt on the noted date by the USPTO of the indicated documents,
characterized by the applicant, and including page counts, where applicable. It serves as evidence of receipt similar to a
Post Card, as described in MPEP 503.

New Applications Under 35 U.S.C. 111

If a new application is being filed and the application includes the necessary components for a filing date (see 37 CFR
1.53(b)-(d) and MPEP 506), a Filing Receipt (37 CFR 1.54) will be issued in due course and the date shown on this
Acknowledgement Receipt will establish the filing date of the application.

National Stage of an International Application under 35 U.S.C. 371

If a timely submission to enter the national stage of an international application is compliant with the conditions of 35
U.S.C. 371 and other applicable requirements a Form PCT/DO/EO/903 indicating acceptance of the application as a
national stage submission under 35 U.S.C. 371 will be issued in addition to the Filing Receipt, in due course.

New International Application Filed with the USPTO as a Receiving Office

If a new international application is being filed and the international application includes the necessary components for
an international filing date (see PCT Article 11 and MPEP 1810), a Notification of the International Application Number
and of the International Filing Date (Form PCT/RO/105) will be issued in due course, subject to prescriptions concerning
national security, and the date shown on this Acknowledgement Receipt will establish the international filing date of
the application.

RACK-1003
Page 737 of 738

Page 1 of 1

UNITED STATES PATENT AND TRADEMARK OFFICE

UNITED STATES DEPARTMENT OF COMMERCE

United States Patent and Trademark Office
Address: CONEMISSIONER FOR PATENTS

Box 1450

Alexnndnn, Virginia 22313-1450
SD‘V

WWW.USPtO.

| D O e CONFIRMATION NO. 9929
Bib Data Sheet
FILING OR 371(c)
SERIAL NUMBER DATE CLASS GROUP ART UNIT D’gggg{'ﬁ;
90/010,260 08/29/2008 707 3992 St
RULE
APPLICANTS

6928442, Residence Not Provided;

LEVEL 3 COMMUNICATIONS, LLC(OWNER), BROOMFIELD, CO;

WONG, CABELLO, LUTSCH, RUTHERFORD & BRUCCULER, L.L.P. (3RD PTY.REQ.), HOUSTON, TX;
WONG, CABELLO LUTSCH, HOUSTON, TX

i CONTINUING DATA dededdedededohdedededededod dedohd heddohhk

This application is a REX of 09/987,723 11/15/2001 PAT 6,928,442
which is a CON of 09/283,160 04/01/1999 PAT 6,415,280

which is a DIV of 08/960,079 10/24/1997 PAT 5,978,791

which is a CON of 08/425,160 04/11/1995 ABN

Tkl Fo R E IG N AP P L I CAT I O N S khkdhdkkhhkhhkhhhkkksk

Foreign Priority claimed d yes [[
35 USC 119 (a-d) conditions (] yes a no 0 Met after STATE OR SHEETS JLOJI':’I; IND(E:EERADSENT
met Allowance COUNTRY | DRAWING 56 24
Verified and
IAcknowledged Examiner's Signature initials
IADDRESS
42624 .
_—
TITLE

[ENFORCEMENT AND POLICING OF LICENSE CONTENT USING CONTENT-DERIVED IDENTIFIERS

ID All Fees

ID 1.16 Fees (Filing)

FILING FEE [FEES: Authority has been given in Paper O 1.17 Fees (Processing Ext. of
RECEIVED |No. to charge/credit DEPOSIT ACCOUNT |time)
2520 No. for following: 0 118 Foes (Issue)
U other
Q credit

RACK-1003
Page 738 of 738

