for the
CD—ROM Features

Valuable Source Code \ il H O r k i n g

Plus CGl Programming &
Tools & Utilities N ; programmer

g1
Ak
\ I o N sTM
)
Rl

i World Wide Web
Programming

&COY

4
4

.- , J;/'J
Get Complete Coverage of Forms-H:yg Gl

Learn How to-Wriie'u Database Frop ‘End

Find Special Coverage of Wwwzr/ogrumming
Languages: Perl, Java, Python,/C, and UNIX Shells

PROGRAMMERS & /
P R .E S, S|

Facebook, Inc. - Ex. 1007

= J for the R

CD-OM Features . °
Valuable Source Code _ w O r k I n g
Plus CGl Programming ¥ &
Tools & Utilities JEEEASE : programmer

5

world Wide Web
Programming

e

i ' o | T }

I b f A ! £] ool

Y B | i e il A | || I
i » ey i)

w

Find Special Coverage of WWW Programming
Languages: Perl, Java, Python,/C, and UNIX Shells

PROGRAMMERS &«

ED TITTEL, MARK GAITHER, |
SEBASTIAN HA$SINGER, & MIKE ERWIN

FOUNDATIONS
World Wide Web
Programmlng

RRRRRRRRRRR

SSSSS

Foundations of World Wide Web Programming with HTML and CGI

Published by

IDG Books Worldwide, Inc.

An International Data Group Company
919 East Hillsdale Boulevard, Suite 400
Foster City, CA 94404

Copyright

Copyright © 1995 by IDG Books Worldwide. All rights reserved. No part of this book
(including interior design, cover design, and illustrations) may be reproduced or trans-
mitted in any form, by any means, (electronic, photocopying, recording, or otherwise)
without the prior written permission of the publisher. For authorization to photocopy
items for internal corporate use, personal use, or for educational and/or classroom
use, please contact: Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923 USA, Fax 508-750-4470.

Library of Congress Catalog Card No.: 95-077530
ISBN 1-56884-703-3
Printed in the United States of America

Second Printing, November, 1995
1098765432

Distributed in the United States by IDG Books Worldwide, Inc.

Limit of Liability/Disclaimer of Warranty: The authors and publisher of this book
have used their best efforts in preparing this book. IDG Books Worldwide, Inc.,
International Data Group, Inc., and the authors make no representation or warranties
with respect to the accuracy or completeness of the contents of this book or the
material on the CD-ROM included with this book, and specifically disclaim any
implied warranties of merchantability or fitness for any particular purpose, and shall
in no event be liable for any loss of profit or any other commercial damage, including
but not limited to special, incidental, consequential or other damages.

Trademarks: All brand names and product names used in this book are trademarks,
registered trademarks, or trade names of their respective holders. IDG Books
Worldwide, Inc., is not associated with any product or vendor mentioned in this
book.

="- PROGRAMMERS
({.]
IDG Published in the United States of America
BOOKS NN
WORLDWIDE

003 Facebook, Inc. - Ex. 1007

Table of Contents

I“'Ropucrlo“ ..O'.0..........C.O.lﬂl....G...Ot....l........C.....B..xxxv'l .

Part ! Founpations ofF HTML AND €Gll.ccococcsococs 1

Chapter 1 Basics of the World Wide Web ...ccccceceucucseccrosesaonse 3
The Internet: An Amorphous Blob ..., 4
The HyperText Transfer Protocol (HTTP) ... 5

HOW HTTP WOTIKS ...ovviiiiiii e 6
HTTP CharaCter SETSoooiiiiuiiiiiiiiine ettt 9
The Common Gateway Interface ..., 9
The HyperText Markup Language (HTML) ... 10
How to Read an HTML Documentoooiinnns 11
Descriptive Markup ... 12
Hierarchical Document Structure Plus Interconnections 13
The Formal Specificationccccioiiiiiiiiiiiniini . 14
Human- and Computer-Readable Representation 14
SUMMALY oovvieinieneinnn. e e 15

Chapter 2 An Introduction 10 SCGML ..cccoveucuruercscncencasassoncancnnes 17

WHAt IS SGML? ot 17
The SGML PhilosOPphy ...oooviiiiiiiiiiiiii e 19
SGML's Primary CharaCteristiCscoviiviiiiiiiiiiiiiiiiiiene 19
Descriptive Markupooooiiii 20
Hierarchical Plus Interconnectionscoccoeviiinicioinieinnnn. 23

004 Facebook, Inc. - Ex. 1007

Founpations of Worip Wine Wee Procramming with HTML anp CGL

FIEXibDle TAZS oo 24
Formal Document Specificationooooiiiin, 26
Human and Computer Readable Representations 26
SGML DOCUMENT STIUCTULE ..uuitiiiiiiiiiiiiiieen et aeinerereaanereans 27
The SGML Declarationooviiiiiiiiiiieieiieee e eeeeeieaeanaans 28
The DT D e e e 29
EIEMENTS .ottt 33
Element ATEriDULES ...o.iiiiiiiiiieee e 36
EOITIES L.ttt et 40
Marked SECHiONS ..o 43
General SGML RULESoiiiiiiiicecie e 45
SGML and HTMLcocoeiveinnnnnn. J 46
SUITUMIATY oottt e et e e et e e et e e e s e et e eaae e et e eaa e eaeeraneaeneees 46
A Brief SGML Bibliographycooiiiiiiiiiiiie e, 47
Chapter 3 The HTML DTDs ..cocouoccnces cesosasssssses cossessssesssssssssss 49
History of HTML ... a e eas 49
Workings of the IETF HTML Working Groupcccovvreiinnnenn. 51
IETE Level 1 DTD oo et e e 53
TEEIIS <.ttt e 54
The Level 1T DTD oot 55
TIETF Level 2 DTD e 63
DTD Feature Test ENtiti€scooviiiiieieiiiiieeiiieeeeieeeiiieeeennn 64
New Elements of HTML 2.0coooiiiiiiieiieiiieeieeeieeiieeeiieeann 66
Enhanced Elements of HTML 2.0 ..o, 72
Deprecation in HTML 2.0 ..o 72
TIETF Level 3 DTD oo eae e 74
Netscape EXTeNSIONSooooiiiiiiiiiiiiiiriiiiiiiiiiii e 76
Migrating from HTML 2.0 t0 3.0 ...coooiiiiiiiiiiieeeeee e 76
N EE1 8 F s B O OO PO PP TP PPN 78

Chapter 4 HTML and Validation .c..cceecesesccsssssscssssssssssoscoscsssnss 79

What Is HTML, and How Should You Use It7 ...ooooviviiiirieiiniinnnnnn. 79
What Is Valid HTML? ... e ean e 80
Doing the “DTD Thing” . .oovveiiiiiiiieie e eas 81
Testing for Compliance ... 81

005 Facebook, Inc. - Ex. 1007

TapiLe oF CONTENTS 0 &

HTML 2.0:The Reigning DTD ... 82
HTML 3.0: The Coming DTD ..., 83
It’'s No Accident that Mozilla Is Named after a Monster! 83
Choosing an HTML DTD ... 83
Adding Value to Your Web Site€cccocooiiiiiiiiiii, 86
Advantages of Validation ..o 86
Disadvantages of Validationocoooviiin 89
Validation TOOIS ..o 90
Ignorance Isn’t Always BliSS! ... 90
Get the Right Tool for the Job ... 91
The Not-So-Hidden Beauties of Compliance 91
HaLSoft HTML Validation Serviceccoccooviiiiiiiiiiinicinn, 92
HaLSoft HTML Check ToolKitcovviiiinieen 93
WEDLINL .ottt et et 94
RtMICREK oot 95
HOTMETAL oottt et 96
SGMIS ANA SP oo ieee ittt e 96
The DTD is Prolog to the Futureocooviiiiiiiinn. 97
DTD Reference Methodso.oooiiiiiiiiiii 99
Validation Alone Is Not Enoughccoooiiiiii, 99
WHhat's i1 @ PrOCESS? .ooovieiiiiiieie e et 100
100 01 11 V2§ O 0 P R PERRR 101

Chapter 5 The Future of HTML ...ccoveereeucncncusasncccconsasasososcsces 103

A Closer Look at HTML 3.0 ..o 103
New HTML 3.0 EIEMENTS ..ot eaeriei e aens 104
A IS oottt 104
PRRUIFES evverierirerorumnseseeresriossisionransscisssenmansnnssnisssossansassonsaoassss 116
M AT H > ottt e e 122
HTML Style SheEts. ...t 123
SUITMTIATY « ettt e et et et e e e et e s e e st e e e e e e e e e e e e s e 124

Chapier 6 The Common Gateway Inferface .c.coeveecuccscsnscsosossss 123

The Hidden Life of HTML . ..o 125
What Is the Common Gateway Interface?ooooiveiinieinnn. 126
The CGI Specification: Extending HTTP URUUPPTRROR PR 128

006 Facebook, Inc. - Ex. 1007

Founpations of WorLd Wine Wes Procrammine with HTML anp CGL

A Cast of Environment Variablescocooiiiiiiiinnn, 128
Accessing CGI variablescooooiiiiiiiiiiiii e 129
The CGI Command LiNeoeviiiiiiiiiiiieiiieiiieeiieeraneeeieenan. 141
CGI Data INPUL ..ot e 142
CGI Data OULPUL ..ottt e e 143
SUMIMIATY oottt ettt e e e e e e et e e e et e et e et e et e nnesanananns 144

Chapter 7 CGI Programming LONGUAGES ceceecsccsssossscssososossocsoss 145

Choosing a CGI Programming Languageccccoeevvvnienneennennnn. 146
The Five Primary Considerationscc.ccooeieiiviinieiinaennn. 146
Public Source Code Repositoriescoocoviviiieriiinniniinnnnnnn. 147
Language SUPPOIT ..oiveeiiiiiiiieiiie et eee e e rre e 148
Your Level of Knowledge and Understanding 149
Desirable Data Throughput ... 149
Desirable “TIHties” . ..o 150

Compiled CGI Programming Languagesccoveviivniieiinnninnn, 150
L O R S T OSSP UPPITPPT 151
L 00 T DU PO 151

Interpreted CGI Programming Languagescoevvvevviiiinenennnnns 153
P Ll e 153
UNIX Shell Scripting Languagescccoeeveiiiiiicneninainennnnn., 155
o] O T PP TP SOPRN 156
PYLRON oo 158

Compiled/Interpreted CGI Programming Languages 159
JAVA Lo e 159

SUMMALY .ovvieeeeieieiiiiiiiiiie e, e 160

Chapter 8 CGI Input and Qutput .ccceeecocccncsnscossosacssscasosssosncss 101

A Different Sort of Input Methodccccovviivieiiiiiiiiiiiiiiiee, 161
GET It While YOu Canccoooeviiiiiiiiiiiieieeiiiie e, 162
Using the GET methodc.oooiiiiiiiiiiiie e 163
They're at the POST! .. 168

The Ins and Outs of <FORM> Datacooviiiiiiiiiiiiiiiiiiieeinens 170
<FORM> Tags and Attributesoocociiiiiiiiii e, 173
An Example FOM ..ot 174

The Inside Scoop on CGI OULPULiiiiiiiiiiiiiiiiii e, 177

SUMMIALY L ettt et et enas 181

007 Facebook, Inc. - Ex. 1007

TaBLE oF CONTENTS

Chapter 9 Designing CGl Applicationsccceccescsecnssnscsuosecscones 183

The Requirements Analyzed ..., 183
A Language for All S€asonsccooooviiiiiiiiiiiiiniine 183
Design of the Registration Formcoccoooiiiiiii. 185
Mapping Fields to Variables PO SOOI 190
Variable Error ChecCKingccooooiiiiiii e 191
Alternate Methods of Data Captureccooviiiiiiiiiiiiiennn 192
Designing the Output File Format ..o, 193
Designing a Report WIiter ..., 194
Building in Counters and Statusoooviiiiiiiii, 195
Overall Design Thoughts ..., 195

Reusability ..o 195

POrtability ..oooiiiiiiieee oo 196

Expandabilityccoooiiiiiiiii e 196

Libraryizingoooviiiii 197
Y114 030'0 12§ o OO OPPPPP 197

Part Il Twe BRiDGE 70 CGI IMPLEMENTATION ccocoee 199

Chapter 10 Building and Insialling CGI Applicationscccccoccece. 201

html4dum.register.pl Anatomy of a Perl Script 202
Setup and Initialization ... 202
Processing User Input ... 205
CloSing ATZUIMENTSiuuiitiiiiiiiiiieiiee e aane 211
Debugging Is a State of Mind ... 212

The Raw Data File ... 213

Registration Statistics SUMMArizerc.oooooveeiiiiniiniiiinnnn. 214
The Final Output ... 221

Final TOUCKES ..o 222

WWHAT'S INEXE? oottt et et ea e ie e e e s eane e 222

SUMMIALY ottt et e et e a e s e e e eeane 223

Chapter 11 Testing and Installing CGI Applications ...c.ceeeeueeee 225
It°s @ Dirty JOD, DUL... oo 226
Setting Up a Test ENVIironmentcoooviiiiiniineiiiiiiineieinn. 226

008 Facebook, Inc. - Ex. 1007

= = Founparions of Wortp Wine Wes Procramming with HTML anp CGL

The Test Web Is the Best Web! ... 227
Installing a TeSt SEIVETciiiiiiiiiiiiiiii e 228
The Root Of AIITESTING ..ooooviiiiiiiei e 230
An Alias by Any Other Namecoooiiiiiiiiiin, 231
The Act of Creation Is Best Done in Private 233
The Good, the Bad, and the Boundaryccoooeiiiiiiiiiiiiiin 234
A SIMPIe TEST STIATEZY «oovrvvreiiiiiireeeeeeeeeeiiiiiiae e e e e e e eaeeeaeea e as 236
Test Plan for register.pl CGI Application 237
Installing Your CGI Applicationcoviviiiiiiiiiiiiiiiiiceciians 238
AL EE ' § 80§ S 239

Chapter 12 Our Foundations Development Environment 241

BasiC ASSUMPLIONS ...oouiiiiiiiiiiiiiiiiii e 241
For Better or Worse, Our Platform Is UNIXccooviiininnn. 241
Our Language of Choice Is Perldcc.ooiiiiiiiiiiiincnnn. 243
We’'ll Work with Either CERN or NCSA httpdccooiiiinnn. 244
We Take Good Tools Wherever We Can Get Them! 245

SUIIIMIALY ooovteieeieeeeseeie e e e e s ees e eee e eeeeaeia e e e eeata e e e eeaansneeeeaennd 246

Chapter 13 Locating CGl ReSoUrces cccocscensosscnsnsonssnsosssnnssns 247

Going Straight to the Internet SOUrCesc.ovvviiviiiiiiiiiiiiniaienn, 248
Internet Resource TYPESooiiiiiiiiiiiiiiiiiiiiii s 249
Focused NEWSZIOUPS ..uuiietiiiiaiiieiiiaeiieeiiaa e et eenaeaanaaaanns 249
Focused Mailing LiSESccooiiiiiiiiiiieiieieeieee e eene s 250
Information Collections from “Interested Parties” 250
Information from Special Interest Groupscoceeeveiniennn, 250
Other Sources Worth Investigatingcoccoviiiiiiiinnicinnnn. 251
For Every Resource Type, There’s a Search Method 251

CGI-Related NEWSZIOUPS ..uiiiiiniiiiiiiiiiinriie s iie e 252

CGI-Related Mailing LiStSc.viiviviiniiiiiieiiiiriin it 254

Parties Interested in CGI ..., 255

CGI-Focused Groups and Organizationscccoeeeviiiiiennenn.. 256

CGI-Related Publications and Off-Line Resources 257

Searching for SatisfaCtionccooiiiiiiiiiiiiiieieeieee e 259

SUITMTIATY oeoetieeeitseeeeetei e e eeeetae e e etseeeeseees e e eeaan e e e eeenrreeeeaanens 260

009 Facebook, Inc. - Ex. 1007

TapLe oF ConTENTS [

Chapter 14 CGI Return Page Templaies ..cccccecvecsucsncusccscncnccss 263

WHhat's in @ PAZE? oo 264
Static Versus Dynamic CONTENTuuiuiriiiiiiiiiiiiiiiiiieeeeene 264
Give Me Some Static! ... 265
The Happy Medium: Dynamic but Constant 266
The Truly DYNamiCooooooeiiiiiiiiiiiiiii e 267
Building the HTTP Headercooooiiiiiiiieiiiiiiiiinieeiiiiieeaennanans 268
Building the HTML Headerccoooiiiiiiiiiii i 270
The HTML Document BOdyccoiiiiiiiiiiiiiiccciee 270
The Beginning of the Bodycoioiiiiiiiiiiiiiiiiiee, 270
Dealing with Recurrent Elementscocooovviiviviiiiiiienn. 271
Incorporating Preformatted TexXtccooooiiiiiiiiniiiiiannnnn, 272
Encoding HTML Markupooooooviiiiiiii e 273
Handling HTML Document FOOtErsccooviviiiiiiiiiiiiniiieinann.. 274
Other Template TriCKS ...oiiiiiiiii e 274
10110005 o T PO 275

Chapier 15 The Major CGI Librarieseccscevecccssssnssccossacncees 277

Looking for CGI Nirvanacocooeiiiiiiiiiiiiiiiiiee e, 278
Round Up the Usual SUsSpectsccoocovviiiiiiiiiiniiii.. 278
Ask an Expert! ... 279
Do Some Readingooooviiiiiiiiiiiieii e 279

Some Select CGI SIS ..ot 280
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html 280

http://www-genome.wi.mit.edu/ftp/pub

/software/WWW/cgi_docs.html ..., 281
http://www.cosy.sbg.ac.at/www-doku/tools
/bjscripts.html PP PP 283
http://www.oac.uci.edu/indiv/ehood/perlWWW/ ... 284
http://WWW.Stars.com/Vlib/Providers/CGLhtml 285
http://www.w3.org/hypertext/WWW/
Daemon/User/CGI/Overview.html ...t 286
http://www.webedge.com/web.dev.html ... 286
http://www.yahoo.com/Computers/World_Wide_Web/
CGI_Common_Gateway_Interface/ ..., 287

010 Facebook, Inc. - Ex. 1007

@ = Founpations of Wortd Wine Wee Procrammineg with HTML anp CGL

Using CGI Programs Effectivelyocooiviiiiiiiiiiiiiiicin, 288
Publish and/or PeriSh! oo 289
N YT 00001 D O OO PSPPSRI 290

Chapter 16 <FORM> Alternaiives...c.eccscssscsssonsssssssonssnsonsoaces 291

From <FORM> 10 TeXEP .. .0ttt et e e e 292
From HTML Back tO TeXE ..., 292
Registration Form, Part 1.o 297
Registration Form, Part 2........oviiiiiiiiiiiie i 298
Registration Form, Part 3. 300
Registration Form, Part 4.........occivimiiiiiiiiiiiiiiiiciiiieie e, 301
Registration Form, Part 5.... ... 302
Shipping the Text-Only Form File ..o 304
SUIMIMIATY .+t et e b e e 305
Chapter 17 Gotchas, Warnings, and No-Nos wos 307
HTML's Barest NECESSItIeSiviiiiiiiiii e 307
CGI Programming Gotchas ..., 309
MiSCEHANEOUS ..o e 312
SUIMMMMATY o oetiiti et et et e ettt e et e e e e et e e e s e e e e s e eaeetaneeannns 314

Part 111 Basic CGIl ProGRAMMING ELEMENTS
AND TECHNIQUES coccoccosccccosccssosscsscssce & I D

Chapter 18 Mastering MIMEccceococcnsecccosonssascassnsossnsoncossss 317

Extending Internet and Electronic Mailoooviiiiiiiiininn. 317
The Marriage of MIME and HTTP ..., 319
Divergence of HTTP from MIMEocoiiiiiiiiiiiinininnn., 321
MIME and CGI ApplCationscoccoveviiiiiciiiiiiiiiiiiiiieienan. 323
The MIME .mailcap File ..o 330
Global and Personal .mailcap Filescooo. 331
Y Te1F 41 2§ o PSPPI 332

(hupier 19 USing WAIS With CGIS 0000000000000 000000000000000000000OD 333
Welcome to the Wide World of WAIS ..o, 333
WAIS Architecture Unmaskedooiiiiiiiiiiai e 334

011 Facebook, Inc. - Ex. 1007

TaBLE oF CONTENTS

&

WAILS ProtOCOIS .ooviiiiiiiii e 336
WAIS as a Client and 2 SeIVer ... ieireneees 337
WAIS Databases Revealedcoooiiiiiiiiiiiiiice, 337
How Is the Index Used? ..., 338
Do I Need a Gateway? What for?ccccooeiiiiiiniiiniinnnn. 340
Finding WAIS GAtEWaAYS ..ooiiiniiiiiiiieiiieii et et tiis e s s cn s 340
WALS. Pl oo 340
SON-Of-WaisS. Pl oo 341
KIAOFWAIS. PL oot 341
SEGALE ittt 343
FOAIS. Pl oottt 345
WWWWAIS.C, VEISION 2.5 .ot eeeeeeie e ieienanas 345
WAISGate (WEB-tO-WAIS GAtEWAY)uivvniiiiiiiiieiiiieiaieriinens 346
EXploring WAIS as @ USETo.ooiiiiiiieieiiiiiiieeeiiiiii e e ea e 346
What's the Difference Between waisq and waissearch? 350
OthEr TOPICS ittt e ei e 351
S TS H ot 351
Indexing Hierarchies of HTML Documentscooeevennnnn. 351
WAIS and HTTP INtegrationccoovviviiiiiiiiiiniiiiiiiiiiienaanans 352
Usenet News Archives ..., 352
Mailing LiSTS ..uiiiiiiiiiiiiii et e et et eeeaeaeaas 352
Futures and Cool Engines ..., 353
SUMMATY oot e e e e e e et e e 353

Chapter 20 Indexing Your Web Site ..c.cccccsccccucsscsccessucsecavonses 333

Lost in the FunhouSecoooiiiiiiiiiiiii e 355
What tO INCIUAE ... 356
Installing and Configuring freeWAIS ..., 359
Using CGIs to Format the Outputococoiiiiiiiiiniiiiis 361
Using SWISH t0 INDEX YOUT SIL€ ...vvvvvvvvvrviieriiineeeenirnriiieriarninns 365

Customizing Search Resultscccooiiiiiiiiiiiiieiiiiieeeeaiee e, 368
Other OS OPLIONS .ouvuriieiaeieiieiiie ittt ae e e e 369

Apple MacintoShooooiiiiiiiiiii e 369

DOS/Windows/Windows NTcooviiiimiiiiiiiiieieaeanann. 369
SUMIMATY - ottt e e ea s a e aas 370

012 Facebook, Inc. - Ex. 1007

Founparions of Wortp Wine Wes Procramming with HTML anp CGL

Chapter 21 Getting Hyper: Principles of Hypertext Design 371

Stringing Pages Together, the Old-Fashioned Wayccooooe.. 372
Hierarchies Are Easy to Model in HTMLcccooiiiiiiiiiininnns 373
Multiple Tracks for Multiple Audiencescccoeeiiiiiiiinn, 374
The RFC LIDTALY .ooioiiiiiiiiiiiiiii e 376
The Principles of HYPertexXtcociiiiiiiiiiiiiiiniiiiiiiiciieeieiieeenne. 380
Annotate All External Referencescoooiiiiiiiiin.. 380
Indicate the Scope and Size of Your Materials 380
Limit the Complexity of Your Indexooeiiiiiiiin. 381
Match Your Structure to Your Contentococeveiiiniinianannn. 381
Present Distinct Topics as Distinct Documents 382
Provide Appropriate Access Methodsccoooviiiiiiiiinnnn.. 382
Supply Easy, Consistent Navigation Toolsc.coeevviinennnn. 383
Use Links as Referencescoooooiiiiiiiiiiiiiiiciiiiniiieiieiieenn 383
SUIMMIIATT .ottt e e e e e e e s e e e e e e e e e e e e e e e e e e e aans 384

Chapter 22 Monitoring Web Server AcHiVItY cccccocsossscsssnsssccsss 385

Who's That Knocking at My DOOI?ccocoevriiiiiiieriiiiiicnereiicinnen 385

Talking with the Log Lady: HTTP Log Analysis,

Parsing, and SUMMATIEScoeevviiiieiriiiiiieeeerriiieeeereieeaeeraninnns 386
What's @ WAMP? ..o ee e eanes 387
Swiss Army Statistics from getstatscociviiiiiiiiiiiienn., 389
Bean Counter’s Wet Dream: WWWsStatcoocviiiniviiiiiiininnnnn. 391
Mac See, Mac DO:WebStatoveiiiiiiiiiiiii e 392

Figure Painting: Making the Leap from ASCII to GIF 393
getgraph.pl oo 394
EWSTAT Lottt ettt a et aa e aae 395
TWUISAZE 1eterinerrsneeeran e eeset e e s teeeaat e e s sat e e e e e eea et e esann e ennnn e eeanens 396
VB-STAT ottt e a e aaes 397

For Those of You Who Can’t Get Enough Data 398
Professional Help ..ot 398
CaSe STUAICS ..ottt 399
Future Logging MOAEISooviiiiiiiiiiiiiiieice e 399

Chapter 23 Robots, Spiders, and WebCrawlersccoooecoccossceee 401
A RODOTE TAXOMOMY .oouiiiiiiiiiiiiiieeiiiee e eee e et e eeie e e e e e eeneeeaneaaeas 402

Is the World Ready F t ther R [RO - ||
> the Wot cady Drgﬁi{mo <t DE%cebook,]nc.-Ex.’lOO? 3

TaBLe oF CONTENTS = =

A Rationale for Robot Creationcccoovviiiiiiiieiieiiieeinn, 404
Identify Yourself and Your Robot ..., 404
Spread the Word ... 405
Stay in TOUCKH ..o 405
Notify the Authoritiesoooiii 405
Don’t Be a Resource HOZoooviiiiiiiiiiiiiiiiiiiii 406
Stay in CRAIZECoiiiiiiiiiie e 408
Share Your Robot’s Wealth ..., 409

A Standard for Robot EXClusionooooiiiiiiiiiiiiieeee, 410

More RODOt HANGOULS ...uiitiiiiiiiii e e e e e 412

SUMMMATY ettt ettt e e e e e e e e et e e e e 413

Chapter 24 Webifying DOCUMERTS .cocoecscsssssssssssssasonsonsasassasss 415

The Zen of Webification ... 416
(010) 187 w3 Lo) s NN S U OPP P PPPPRN 417
TransfOrmMatiONooiieiiniiiiii ettt e ee e e e e e 418
Translation ..o 418
FIEETINE ooiiti ettt 420

Tools and EnVIrONmMENTSooeieieiiieeiiiiieiieiae e eee et e eanaaneas 420
The Integrated Chameleon Architecturecooooveenn. 422
RAINDOW oo 424
Other Publicly Available Tools ..., 424

Life After Translationocooiiiiiiiiie e, 426
CRUNKINE oottt e e e e e e e e eaeaes 426
INTEGIATION ittt e e e e 427

00311 4 1 o PSSP 429

Chapter 25 Image MaPs ...ccccoecescencsscssnssssscsnsonsussnsssosssssnsens 431

The Art of GIF-GIVINEoiiviiiiiiieiiiiie et 431
AidSs 0 NAVIGATION ..ottt e 431
Great Frames for Interactive Inputo.coooiiiiii., 432
Other Exotic AppCAtIONSoooiiiiiiiiiiiiiii i, 433
Making Image Maps WOrkcooooiiiiiiiiiiiiii e 434

Creating Hot Spot Definitions ..., 435
WebMap for Macintosh ... 435
Image Map Editors on the Web: MapMakerooevveee. 436

014 Facebook, Inc. - Ex. 1007

Fdd

m = Founparions ofF Wortp Wine Wee Procrammine wiry HTML anp CGL

mapedit: Creating Image Maps in Windowsoeeniis 437
IMagemap CGIS ..oooviviiiieiiiiiiiiiiiiic et 438
NCSA IMAZEIMAD «ovvvnieeeeeiiie e ee e et 438
CERN NEIMAZE ..ievniiiiiiiiit e eiie i e e ie et e e i e e e eaaeeens 441
Image Maps on Macintosh Web Serversccocooeeviiiicinnnnes 442
Oddities and Cool Stuff ..., 444
GlOTZOX oottt e e ettt et e e 444
Cyberview3D Document GENeratorcccoeeevuieeirnrceannne 445
Caveats and Tips tO CHCK ...oo.oiiiiiiiiiii e 446
Small Is Beautifulccooiiiiiiieiiiieieiee e 446
Present AILEINATIVESvieeeieieiiiiiiiieeeeeeeeereriiirii e eseeereraianes 446
Keep It SIMPLE ..oiiiiiiiieieiiirie et e areeaeas 446
Keep It Professionalc.cooiiiiiiiiiiiiiiieiiiiiiccii i 447
Use Your IMagination!ccccocveerevereeeeeeeeeeseeesees i 447
One More Very Important POintccceoeeviiieiereiiiniiniiinnennn. 447

Chapter 26 HTML Document Creation On-the-Flyccccevseeucseee 449

Browsing Mailcoooiiiiiiiiii e e 450
MATIZREMI e 450
Webified Man PAgESooooiiiiiiiiiiiiii e 454
Man2Rtml e 454
FTP BIOWSIIG oottt ettt ettt ettt e et e e s ea e aa e 457
1105 S S SRRSO PR OPOROPPPPPON 457
Oddments, Helpers, and HOrizonsccocoeiiiiiiiiniiieineann.. 460
Ghostscript: GIFs-on-the-FIycccooooiiiiiiiiini. 460
NEECIOAK oottt e 462
SUIMMIMATY o.vetitneteititeeeetstieeeeeseaeeeetets e eeeanse e e eanaebaeetenaatnseeeanaans 462

Chapter 27 Getting the Best Buy For Your Bucksccccceveusecceee 465

WHELE 1O BEEGIM .ouvniiiiiiiiieiiieeiii e et e et e e eeas 469
Getting CONNECLEA ...iiiiiiiiiit e 470
Throughputs and COStSocoiiiiiiiiiiiiiiiiiiniiee e 470
Line Speeds and Latencycooviviiriiiiiiiiiiiiiiieiiiriiiiee, 471
Housing a Server at YOUr Sit€cooiiviiiiiiiiiiiiniiiiiiiensineeans 471
Housing Your Server at the ISP ... 473
What Do I Need to Watch FOI?ooooovveiiiiiiiiiiiiiiiicceieeee 473

015 Facebook, Inc. - Ex. 1007

TasiLe ofF CoNTENTS = =

Why Not Lease Space on a SEIrver?cooveeeveiiiiiiiinieeiiaenann... 474
What Do I Need to Watch FOr?ooooiiviiiiiiiiiiiiiiieeeeee, 474
Comparing UNIX SEIVELSoviiiiiiiiieiiiieieiieeeieeerieeeie e eeieeeinas, 475
Other PlatfOrms ..o i 475
Choosing @ MaC SEIVELcviiviiiiiiiii e 475
Choosing a DOS/Windows PC Serverccooveveviieeeeinnnn., 476
Choosing a Windows NT SEIrveroooccoeiviiereeeiiieeiiieeanenns 476
Web Server MiSCEIAnycooooiiiiieiiiiriiiiiiieeiiiiee e e eeaeaens 477
PrOXICS 1ouiiiiiiiie ettt 477
Load Balancing Strat€@i€sccooooiiiiiiiiiieieiiieiaiiiieeaiiinnns 477
SUIMMMIALY - ettt et e e e e et e e e e e e e e e e e aaeeeaes 478

Part IV Apvancep CGI PrRoGRAMMING TOOLS
AND TECHNIQUES coocococsocc000000000000000000 U7 9

Chapter 28 File Access Through the Web ...c.cccccecsconcnccecncsncss 481

The Software and HOw to Get Itooooiiiiiiiiiiiiiiiiiiieiieci, 481
All Browsers Are Not Created Equal ... 482
Through a Glass, Darklyccoooiiiiiiiiiiiiiee e 483
The Whole FTP Boatloadccooiiiiiiiiiiiice 484
CGIs: the Benedictine Monks of the Webcooeivnnn. 484
Mirror Decisions and ISSUESccooviiiiiiiiiiiiiiiiieieeeeine, 486
FTP Versus HTTP as a File Retrieval Protocol 487
Less Automation, MOIre SWeatcoviviiiiiiiiiiiiiniinieieiiaas 488
More Automation, NO SWEALcciiiiiiiiie e ens 489
Lister, You Lazy Sod! ..o 490
File Index SearChingcooiiiiiiiiiiiiiiiiie et eaeas 492
ATCRIC Lo 492
SH A SE e 493
Local IndiCes ..o 494
Individual File Retrieval and Whatnotsocovveiiiiiiiiieiniannn. 495
Attack of the Killer httpd SErveroooooiieiiiiiiiiiiiiiieiiiineieannn. 495

Chupier 29 Dutubuse Mu“ugemen' TOOIS 00000000000 000000C000000000B0SO 497
What Makes One Database Unlike Another?ooooviviiiiien... 498 :
Relational Databases OVerVICW ..ottt et aaens 498

016 Facebook, Inc. - Ex. 1007

Founpations oF WorLd Wine Wee Procrammine with HTML anp CGL

]
Soli

i

Why Connect a DBMS to the Web? ... 500
Composing an Interface ..., 501
Create YOur Own CGI ... 501
Consult the Oracle ... 506
Oracle World Wide Web Interface Kitcocooviiniiniiiniiniann. 507
What Is OraPerl? ... e 508
SV DASE e 508
SY D P Il e 508
WED/GEINEIA oottt a e ans 509
GO i e e e e e 509
N 1808 10 o PP 510

Chapter 30 Audio-Video Capture and Real-Time Pages ..cccoeeee 511

T 0 o 511
Refreshed Images at a Click and a Glanceoovvvennnnnn. 512
Real-Time Traffic WatChccoooiiiiiiiiiiiiic e 518
Constantly Refreshed Picturesooooviviiiiiiiniiiciiecin 518
Real-Time VIACO ..ot 520
Some Implementation Examplesc.cocooiiniiiiiiiiiinnn. 521
The Future of Net VId€Ocooiiiiiiiiiiii e 522

AAIO oottt 523
Interactive Sound Sit€Scooiiiiiiiiiiiiiiii 523
|35 47 w21 N 0} o USSP 524

AV: Together at LaStiiiiiiii e 526
CU-SEEIME .. oovveniiiie ettt et e aeanees 526

SUMMEATY oottt et e et e e et e e e e sb e aaaas 527

Chapter 31 Electronic Mail Gatewaysccccccecccncscsscscssnsoncsnses 329

The Proto-WeDb ..o 529
Have Your CGI Mail My CGI ..o 530
Proprietary Taggingcocooiiiiiiiiiiiiiiic e, 532
Building a Better Mail Handlercocoiiiiiiiiiiiiniiiiininnnnn, 533
Too Complex? E-Mail Gets Simplercocovviiiiiiiiiiiniininn.. 535
Next Verse, Same as the First (on MacOS)o.covviiiiiiiininnn. 537
Mailing List Interface ... 538

017 Facebook, Inc. - Ex. 1007

TaBLE oF CONTENTS

Search and Retrieval e 540
List Administration TOOIS ..ottt 542
SUMIMATY oottt e e e e e e e b e e e eraas 543

Chapter 32 WWW Server and CGl Securityccccecccsccosscnosoce 345

An Open Door Is Not Always Good...oocciviiiiiiiiiiiiiinniinicin 545
Security Is Like Mowing the Lawn...occooiiiiii .. 546
A Typical UNIX httpd Configurationcccoovevvieiiiiiieenennnn... 547
STIML.CONE Lo e 550
UNIX Permissions and Ownershipsccooovvvieiiiciiiniiiieeieeennnn, 553
Limiting Access to Internal Serverscocoveeiiieiieiiiiiieiinanss, 553
ACCESS.CONT Lot 554
Jhtaccess GIives YOU POWET ..o.oiiiiiiiiiiiiiiiii e 555
What Does .htaccess CONtain?ccccoeeieiiieieiiiiieiiiinnnns 556
How Would You Employ the .htaccess File? 557
To UNIX or Not to UNIX? ... 558
The Benefits of Secure Transitoccoiiiiiiiiiiiiiiee e 559
Secure-HTTP i 559
Other WWW Security Mechanismscoooceeivieiiieiinnnnn. 560
The S-HTTP Specification and Design Goals 560
What Can We Do with SSHTTP?oooiiiiiiiiiieeeeeeee 561
SOME PIACES 1O GO... wovvieiiiiiiiee e 561
SUMMATY . oiitiiiititiitii et e ettt e e e e e e e e e eeetee e as 562

Chapter 33 User Interaction Through HTMLcccoocecccncenocecss 563

Everybody’s Doing Itcoooiiiiiiiiiiiiiiiiie e 563
Basic Interaction Through HTMLccccooeeiiiiiiieieiiiee e 564
AddlnkK ..o e 564
GUESTDOOK ..o 565
The Current State Of the Interactive Webcooooiivviiiiiiiiinniiinnnn. 567
NYPEIMEWS it 568
WEDCRAT ..ot 570
IRC W3 Gateway and Talkeroocoiviiiiiiiiiiiiiiiiiins 572
Storybase ANNOtationcoooiiiiiiiiiiiii e 573
The Future: Shared Space ..., 574
Commercial Products CroSSOVErcoccoeiiieiiieiineiieinnannn.. 574
SUIMIMIALY ©.eeeteiiite et e et e e e e e e e e e e e e ee e 576

018 Facebook, Inc. - Ex. 1007

= Founparions o Wortp Wipe Wee Procrammineg with HTML anp CGL

Chapter 34 Foundations of WWW Programming

with HTML and €GBl ...cececcranccnccsasccsesconcosssssssssossas 577

GO HOMIC .. oottt e 577
SUIMMIATY +oettteteitie ettt e e et e e et e e e e e e ae s e e s s e s e e s aan e eaaaaes 579
Glossury 000000000000 00000200000000000000 Q0000000000000 0O0D00DOOD 58]
Contact List..ccecccconns esesec00s8s0000sssnasssnssassssssassssssasossnsssss vsscccsnss 009
License Agreement .eeeeseeses sosssssssossssssssasansassesnssssssssassasenssnsane 621
IndEX CCO2CC000000C0000000000000DDR0E0CO0ODODDODOD 0000000000000 0000C000DPORDODODODODOODOOODOD 623
CD Errutu...d... Q0000000000000 000000000000000Q0CDDO00O0D00OO00000OD 649

019 Facebook, Inc. - Ex. 1007

The Common
Gateway Interface

nline WWW documents lead a completely different life than their
conventional, print-bound counterparts. They can change with a

orld. Since server programs can generate custom-built Web documents
‘on-the-fly in response to interaction with end users, this makes online
"WWW publishing much more responsive and open-ended than traditional
“publishing.
Quick response to change and dynamic behavior are the under-
-pinnings of the power behind the WWW. But unless you implement the
nghtapproach to building and maintaining Web documents, your infor-
-.f,'.;mlat-i»oz;_‘ -caﬁn just lie stagnant and be virtually “dead to the world.”
: Dynarmc behavior is a vital aspect of the Web that is sometimes
hard fo’ i'd‘entify or appreciate, This is particularly true when documents
..'are' created on-the-fly, usually in response to some event on the WWW.
_,Although =What appears to a user in response to a query may look like
“just another Web page,” it might actually be an evanescent document
created for one-time use in direct response to that query.

The same is often true for the results of a Web search, or even
when clicking a link or a button on a particular page. The result is a
custom-built response, tailored around previous interaction with the
user (or from information provided by users, even if they're blissfully
unaware of the underlying communications involved).

What makes all this possible is a special mechanism that supports
the dynamic creation of HTML documents. This mechanism is based on

020 Facebook, Inc. - Ex. 1007

] Part | * Founparions oF HTML anp CGI

the invocation of external applications that run under the auspices of a
WWW server, called by the browser in the form of an ordinary-looking
URL on the Web document currently in use. Each of these external
applications can be tailor-made to deliver customized, on-demand HTML
documents.

Today, many commercial institutions realize the wealth and value of
information that resides in their customer and product databases. Many of
them want to provide this ancillary information for public consumption.
Some key questions they're grappling with are: “How can we make this
information accessible?” and “What's the best way to present it for easy
consumption and use?” and “How can we make money on this thing?”

The WWW provides the infrastructure and mechanisms for seamless
integration of this kind of information, along with typical sales docu-
ments like spec sheets, brochures, testimonials, technical documents,
and whatnot (which we'll refer to rather loosely as collaterals). A key
technology underlying the WWW permits static information to be
queried and imported on demand and also supports custom construction
of Web documents on-the-fly. This technology is called the Common
Gateway Interface (CGI), the subject of this chapter.

What Is the Common Gateway
Interface?

The Common Gateway Interface (CGI) supplies the middleware among
WWW servers, external databases, and information sources. CGI scripts or
programs may be considered to be extensions to the core functionality of
a WWW server, like that supplied in the CERN or NCSA htipd packages.
CGI applications perform specific information-processing, retrieval, and
formatting tasks on behalf of their WWW servers. The CGI interface
defines a method for the Web server to accommodate additional programs
and services that may be used to access external applications from within
the context of any active Web document.

The term gateway describes the relationship between the WWwW
server and the external applications that handle data access and manipu-
lation chores on its behalf. This gateway incorporates enough built-in

021 Facebook, Inc. - Ex. 1007

CHAPTER 6 © THE CoMMON GATEWAY INTERFACE W

intelligence to guarantee successful communication between the server
and the external application. Normally, a gateway handles information
requests in some orderly fashion and then returns an appropriate
response — for example, an HTML document generated on-the-fly that
includes the results of a query applied against an external database.

In other words, CGI allows a WWW server to provide information to
WWW clients that would not otherwise be available to those clients in a
readable form. This could, for example, allow a WWW client to issue a
query to an Informix database and receive an appropriate response in the
form of a custom-built Web document. That's why we believe that CGI's
main purpose is to support communications with information and ser-
vices outside the normal purview of WWW, ultimately to produce HTTP
objects from non-HTTP objects that a WWW client can render. In short,
CGI opens up a door to the whole world of information and services that
would otherwise be inaccessible to Web clients and servers alike.

Gateways can be designed and deployed for a variety of purposes,
but the most common is the handling of <ISINDEX> and <FORM> HTTP
requests. Some common uses of CGI include:

= Gathering user feedback about your product line or your WWW
server through an HTML form.

= Dynamic conversion of your system’s documentation (for example,
man pages) into HTML, for easy Web-based access.

= Querying Archie or WAIS databases and rendering results as HTML
documents.

Working in tandem with the HTTP server application (bttpd), CGI
applications service requests made by WWW clients by accepting
requests for services at the server's behest, handling those requests, and
sending appropriate responses back to the client. A client HTTP request
consists of the following elements:

® 2 Universal Resource Identifier (URI)
= a request method

» other important information about the request provided by the
transport mechanism of the HTTP

022 Facebook, Inc. - Ex. 1007;

HE Part | * Founpartions oF HTML anp CGI

In the sections that follow, you’ll have a chance to understand all of
these elements in detail as you become familiar with the structure and
function of a client HTTP request.

The CGI Specification:
Extending HTTP

The CGI specification was created and documented by the main HTTP
server authors: Tony Sanders, Ari Luotonen, George Phillips, and John
Franks. These folks discovered that they didn't want to keep adding
functionality to their HTTP servers every day, in keeping with the needs
of one particular Web activity or another. They decided to build a clearly
defined core of WWW server functionality and to provide a way to
extend services and capabilities from there.

They needed an application programming interface (API) available to
any Perl, C, or shell hacker willing to learn the appropriate interface
details. Hence, the creation of CGI as a formal, rigorous specification
that includes some nasty notation and grammar.

For more information about the CGI specification, please consult the
following URL:

http://hoohoo.ncsa.uiuc.edu/cgi/interface.html

In the subsections that follow, you'll have a chance to cover the ele-
ments of the specification, as we prepare you to build CGI programs of
your own.

A Cast oF ENVIRONMENT VARIABLES

Environment variables are entities that exist within a particular user’s
computer environment. Many of these variables attain their values
whenever a user logs into a computer, or when the computer is booted
for a single-tasking operating system like DOS. Environment variables

023 Facebook, Inc. - Ex. 1007

Cuapter 6 o The Common Gareway Interrace m m |[[BT]

are pervasive within UNIX, where they are used to pass information to
applications from the runtime environment.

Because the environment persists even as execution threads come
and go, environment variables sometimes function as placeholders, to
pass data from one application to another within the same user session.
In the case of CGI, environment variables known to the server and CGI
are used to pass data about an HTTP request from a server to the CGI
application. These variables are accessible to both the server and any
CGI application it may invoke.

The WWW server may also use command-line arguments, as well as
environment variables, to pass data about an information request from a
WWW client. This allows specific control over program parameters or
execution to originate with the server, as well as providing a mechanism
for clients to pass short input sequences to the CGI program involved.
Likewise, these variables may also be set (or assigned their values) when
the server actually executes a CGI application.

AccessiNG CGI VARIABLES

The requirements of a specific WWW server control how CGI applica-
tions access variables. If a variable does not have a value, this indicates
a zero-length value (NULL in the UNIX realm). If the variable is not
defined in the server’s system (omitted or missing), it is assumed to have
a zero-length value and hence, is also assumed to be NULL. As with
variable access, the system requirements for the WWW server dictate the
means of value representation for CGI variables.

Likewise, the names for environment variables are system specific.
For historic reasons, we will discuss UNIX environment variables in
detail. Please notice that these names are case sensitive, so they must be
reproduced exactly in order to reference the correct information. Table
6-1 is a quick reference to the standard environment variables that are
specific to each request handled by a CGI application.

024 Facebook, Inc. - Ex. 1007;’

H B Part | ¢ Founparions oF HTML anp CGI

Table 6-1

Standard Environment Variables Quick Reference
Environment Variable Description
AUTH_TYPE access authentication type
CONTENT_LENGTH size in decimal number of octets of any attached entity
CONTENT_TYPE the MIME type of an attached entity
GATEWAY _INTERFACE * server's CGl spec version
HTTP_(string) client header data
PATH_INFO path to be interpreted by CGI app
PATH_TRANSLATED virtual to physical mapping of file in system
QUERY_STRING URL-encoded search string
REMOTE_ADDR IP address of agent making request
REMOTE_HOST fully qualified domain name of requesting agent
REMOTE_IDENT identity data reported about agent connection to server
REMOTE_USER user |D sent by client
REQUEST_METHOD request method by client
SCRIPT_NAME URI path identifying a CGI app
SERVER_NAME * server name; host part of URI; DNS alias
SERVER_PORT server port where request was received
SERVER_PROTOCOL name and revision of request protocol
SERVER_SOFTWARE * name and version of server software

* not request-specific (set for all requests).

AUTH_TYPE

This variable is used to provide various levels of server access secu-
rity. If your server supports user authentication, this environment vari-
able value indicates the protocol-specific authentication method used
to validate a user.

HTTP provides a simple challenge-response authorization mecha-
nism. This mechanism can be used by a server to challenge a client’s
request or by a client to provide authentication information to a server.
The variable’s value is deciphered from the HTTP auth-scheme token in
the client’s request HTTP header. If no access authorization is required,
the value is set to NULL.

For example, a server may require a client to provide a user ID and

password to access a specific fgp5of its Web. FacaBook) neke Exs 1007

Cunpter 6 © The Common Gareway Inverrace m m|[[EX]

happen, the client must set the AUTH_TYPE environment variable to a
value that matches the supported protocol of the server. For HTTP
applications, the most common value is:

AUTH_TYPE = Basic

This provides a basic authentication scheme where the client must
authenticate itself with a user ID and password pair. For more informa-
tion on this (and other) environment variables, please consult section
10.1 of the HTTP 1.0 specification at the following URL:

http://www.w3.org/hypertext/WWW/Protocols/HTTP1.0/HTTP1.0/draft-ietf-http-
spec.html{fBasicAA

CONTENT_LENGTH

This variable’s value equals the decimal number of octets for the
attached entity, if any. If there is no attached entity, it is set to NULL.
For example:

CONTENT_LENGTH =

CONTENT_TYPE

The value of this variable indicates the media type of the attached entity,
if any. If there is no attached entity, it is also set to NULL. HTTP 1.0 uses
MIME Content-Types, which provide an extensible and open mechanism
for data typing and for data type negotiation.

With HTTP, you can represent different media like text, images,
audio, and video. Within such media, there often exist various encoding
methods. For instance, images can be encoded as jpeg, gif, ief, or tiff.
The value of the CONTENT_TYPE variable for an attached gif image file
could therefore be:

CONTENT_TYPE = image/gif

For HTTP requests, a client may provide a list of acceptable media
types as part of its request header. This allows the client more autonomy
in its use of unregistered media types. Although data providers are
strongly encouraged to register their unique media types and subtypes
with the Internet Assigned Numbers Authority (IANA), this does provide :
additional flexibility. But since both @28t and serveF acRbPBOKHRGH EX. 1007

HE Part | o Founparions oF HTML ano CGI

handle unregistered items, media types registered with the IANA are
preferred over unregistered extensions.

See Table 6-2 for the seven standard predefined MIME Content-Types.
(The primary subtype is presented in italics.)

Table 6-2
MIME Registered Content-Types Used by HTTP
Type Subtypes Description
application octet-stream transmit application data
text plain textual information
multipart mixed, alternative, multiple parts of independent data types
digest, parallel
message rfc822, partial, an encapsulated message
external-body
image gif, jpeg image data
audio basic sound data
video mpeg video data
application

This MIME Content-Type describes transmitted application data. This is
typically uninterpreted binary data. The primary subtype is 'octet-stream'
intended to be used in the case of uninterpreted binary data. An
additional subtype, 'PostScript', is defined for transporting PostScript
documents within MIME bodies.

Subtype Specifications

Whenever an environment variable sup-
ports subtyping, note that some subtype
specification is mandatory for that variable.
That is, there are no default subtypes.

All type, subtype, and parameter names are
case insensitive. For example, 'IMAGE’,

‘Image’, and ‘image’ are all equivalent. The
only constraint on subtype names is that
their uses must not conflict. It would be
undesirable to have two different uses of
‘Content-Type: application/grunge’. The
name provides a simple mechanism for
publicizing its uses, not constraining them.

027

Facebook, Inc. - Ex. 1007

CHAPTER 6 © THE Common GATEWAY INTERFACE H H m

The simplest and most common action when a client requests 'appli-
cation' MIME Content-Type data is to offer to write the information to a
file. For example, the environment variable:

CONTENT_TYPE = application/octet-stream

would result in the client asking the user if he or she would like to save
the binary data to a local file on his or her hard drive.

Other expected uses for 'application' could include things like
spreadsheet data, data for mail-based scheduling systems, compressed
binary data such as gzip, and languages for “active” e-mail.

text
This MIME Content-Type describes textual data. The primary subtype is
'plain'. This unformatted text requires no special software to render the
text, although the indicated character set must be supported by the client.
Text subtypes are forms of enriched text where software may enhance
the presentation of the text. The most common non-registered text sub-
type used on the Web is ‘html (text/html). This software must not be
required in order to grasp the general idea of the text’'s content. One
such possible subtype is 'richtext' which was introduced by RFC 1341.
An example of this environment variable is:

CONTENT_TYPE = text/plain; charset=us-ascii
For more information about 'richtext' and RFC 1341 see this URL:
http://www.cis.ohio-state.edu/htbin/rfc/rfcl34l.html

Please note that since its publication, RFC 1341 has been superseded
by RFC 1521, which incorporates some new material not mentioned in
1341. For current implementation details, please consult the most current
version of any RFC. The full collection, which includes pointers from
obsolete to current versions, can be accessed through the following URL:

http://www.cis.ohio-state.edu/hypertext/information/rfc.html

multipari
This MIME Content-Type describes data consisting of multiple parts of

independent data types. There are four common subtypes.
028 Facebook, Inc. - Ex. 1007

ParT | ° Founparions oF HTML anp CGI

'mixed' is the primary subtype.
'alternative' represents the same data type in multiple formats.

. 'parallel' for parts intended to be viewed at the same time.

Aw N e

. 'digest' for parts of type ‘message’.

message

This MIME Content-Type subtype is an encapsulated message. A MIME

body of Content-Type 'message' is itself all or part of a fully formatted

message. This message must comply with the Internet Mail Header pro-

tocol described in RFC 822. This RFC 822—compliant message may con-

tain its own completely different MIME Content-Type header field.
There are three subtypes:

1. 'rfc822' is the primary subtype.

2. 'partial' is defined for partial messages that allow fragmented trans-
mission of MIME bodies deemed too large for normal mail transport
facilities.

3. 'external-body’ is for specifying large MIME bodies by reference to
an external data source such as an image repository.

Here’s an example of a standard e-mail text message:

CONTENT_TYPE = message/rfc822

image
This MIME Content-Type describes image data. The MIME Content-Type
image requires a display device such as a graphical display, a FAX
machine, or a printer to view the image data. There are two subtypes
that are defined for two widely used image formats, jpeg and gif.

For example, data of a gif encoded image would be:

CONTENT_TYPE = image/gif

029 Facebook, Inc. - Ex. 1007

CHAPTER 6 © THe Common GATEWAY INTERFACE B ® m

avdio
This MIME Content-Type describes audio or sound data. The primary
subtype is 'basic'. Audio requires an audio output device such as a
speaker to display the contents.

An example of a MIDI-attached MIME body would be:

CONTENT_TYPE = audio/x-midi

NOTE: the “x” prefix declares this MIME Content-Type subtype to be
an extended data type.

video
This MIME Content-Type describes video data. Video requires the capa-
bility to display moving images. This is typically accomplished with spe-
cialized hardware and software. The primary subtype is 'mpeg'.

An example of a video data entity would be:

CONTENT_TYPE = video/mpeg
For more information about the IANA, see this URL:

http://ds.internic.net/rfc/rfcl590.txt

GATEWAY _INTERFACE

This environment variable represents the version of the CGI specification
to which the server that supplies this value complies. This variable is not
request-specific and is set for all HTTP requests. An example value
would be:

GATEWAY_INTERFACE = CGI/I1.1

http_(string)

CGI environment variables beginning with the string 'HTTP_' contain

HTTP header information supplied by the client. These are the MIME

Content-Types that the client will accept, as supplied in HTTP request

030 Facebook, Inc. - Ex. 1007

HE Part | » Founpations oF HTML anpo CGI

headers. Each data type in this list should be separated by a comma as
required in the HTTP 1.0 specification.

The HTTP header name is converted to all uppercase characters. All
“” (hyphen) characters are replaced with “_" (underscore). Finally, the
'HTTP_' string is prepended, resulting in the set of HTTP_string environ-
ment variables.

The HTTP request header data sent by the client may be preserved,
or it may be transformed, but it will not change its meaning. An exam-
ple of this behavior occurs when a server may strip comment data from
an HTTP request header. If necessary, the receiving server must trans-
form the HTTP request header data to be consistent with the legal syn-
tax for a CGI environment variable.

In the course of its operation, the WWW server handles many HTTP
request headers. It is not required to create CGI environment variables
for all received header data. In particular, the server should remove any
headers containing authentication data such as 'Authorization'. This is
valuable information that should not be available to other CGI applica-
tions. The following example identifies the MIME Content-Types that a
server supports and services:

HTTP_ACCEPT = application/zip, audio/basic, audio/x-midi, application/x-rtf,
video/msvideo, video/quicktime, video/mpeg, image/targa, image/x-win-bmp,
image/jpeg, image/gif, application/postscript, audio/wav, text/plain,
text/html, audio/x-aiff, audio/basic, application/x-airmosaic-patch, applica-
tion/binary, application/http, www/mime

PATH_INFO
This variable represents extra path information, provided by a requesting
client. It describes a resource to be returned by a CGI application once
it completes successfully. Clients can access CGI applications using virtu-
al pathnames, followed by extra information appended to this path.
Because URLs use a special encoding method for character data, this
path information will be decoded by the server if it comes from a URL
before it is passed to a CGI application.

The value of the PATH_INFO variable can be one of the following:

1. It may be contained in some trailing part of the requesting
client’s URI.

031 Facebook, Inc. - Ex. 1007

Cunpter 6 o The Common Gareway Interrace m m|[(EYA

2. It may be some string provided by the client to the server.

3. It may be the entire client’s URL

A CGI application cannot decipher how PATH_INFO was chosen or
constructed based solely on its value. As a CGI programmer, you must
determine the context in which this variable is to be used in your CGI
application. An example of a valid PATH_INFO variable is:

PATH_INFO = /raising/arizona/

PATH_TRANSLATED

This variable represents the operating system path to a file on the sys-
tem that a server would attempt to access for a client requesting an
absolute URI containing the PATH_INFO data. The server provides a
translated version of PATH_INFO, which takes the path data and does
any virtual-to-physical file system mapping.

For security reasons, some servers do not support this variable and
will set it to NULL. This variable need not be supported by a server. The
algorithm a server uses to decode PATH_TRANSLATED is invariably
operating-system dependent. Therefore, CGI applications utilizing
PATH_TRANSLATED may have limited portability. Here’s an example of
an NCSA server’s 'DocumentRoot' equal to '/u/Web' that builds on the
preceding example:

PATH_TRANSLATED = /u/Web/raising/arizona/

QUERY_STRING

This variable represents a URL-encoded search string. The value of this
variable follows the “?” character in the URL that referenced a CGI
search application. The value of this variable is not decoded by the
server, but is passed onto the CGI application untouched.

The information after the “?” in a URL can be added by one of the
following:

= an HTML <ISINDEX> document
= an HTML <FORM> CGI application (using the GET method)

032 Facebook, Inc. - Ex. 1oo7§

HE Part | » Founparions ofF HTML anp CGI

= manually appended by the HTML document’s author in which the
reference occurs, in an <A> (anchor statement)

The value of QUERY_STRING is encoded in the standard URL format
of replacing a space with a “+” and encoding nonprintable characters
with the hexadecimal encoding scheme of '%dd' where “d” is a digit.
You will need to decode this hexadecimal information before you use it.
(You will learn how to do this in Chapter 8.)

This variable is always set when there is query information
requested by a client, regardless of any command-line decoding by the
CGI application. An example of a client's query URL for a CGI search
application ('places.pl') to locate a place named “Sunset Crater” could
look like this:

http://www.flagstaff.az.us/cgi-bin/places.pl?Sunset_Crater
The resulting QUERY_STRING value for this URL would be:

QUERY_STRING = Sunset_Crater

REMOTE_ADDR

This CGI environment variable represents the Internet Protocol (IP)
address for a requesting agent. This is not necessarily the address of the
client, but could be the address of the host for that client, depending on
the type of connection and operating system the client is using. Here’s
an example:

REMOTE_ADDR = 199.1.78.25

REMOTE_HOST

This variable represents the fully qualified domain name for a requesting
agent. If the server cannot decipher this information, REMOTE_ADDR is
set to NULL. Domain names are case insensitive. Here’s an example:

REMOTE_HOST = pppl.aus.sig.net

This is the address of the machine of one of the author’s Internet
service providers, where the client actually resides on his machine at

033 Facebook, Inc. - Ex. 1007

Cuaprer 6 © Tue Common Gareway Interrace = m|[(EX]

home. It communicates to the Internet through the host via the Point to
Point Protocol (PPP) — in this case, using connection 1 (which is why
the first term in the domain name is “pppP1”). Thus, the agent is not
necessarily the client.

REMOTE_IDENT

This variable represents the remote user’s name retrieved from the
server. This RFC 931 (Authentication Server) identification must be sup-
ported by the HTTP server. It is highly recommended that use of this
CGI environment variable be limited to logging actions. The current RFC
931 documentation implies that the HTTP server must attempt to retrieve
the identification data from the requesting agent if it supports this fea-
ture. Finally, the value of this variable is not appropriate for user authen-
tication purposes. An example would be:

REMOTE_IDENT = inmate.state.prison.az.us

REMOTE_USER

The value of this environment variable is the authenticated user's name.
Two conditions must apply for this variable’s value to be set:

1. The server must support user authentication.

2. The CGI application must be protected from unauthorized access.

If the AUTH_TYPE variable’s value is 'Basic', then the value for
REMOTE_USER will be the user’s identification sent by the requesting client:

REMOTE_USER = gail_snokes

REQUEST_METHOD

The value of this CGI environment variable represents the method with
which the client request was made. For HTTP 1.0, this is GET, HEAD,
POST, PUT, DELETE, LINK, and UNLINK. The method name is case sen-
sitive. An example for a client posting HTML form data to a server is:

REQUEST_METHOD = POST

034 Facebook, Inc. - Ex. 100?

H N Part | © Founpations oF HTML anp CGI

SCRIPT_NAME

This variable’s value is the URI path that identifies a CGI application. It
is the virtual path to a CGI application being executed by a server. In
this example, the client’'s query URL of a CGI application that calculates
an engine’s maximum horsepower is:

http://www.muscle.cars.org/cgi-bin/calc_max_hp.pl
and the corresponding SCRIPT_NAME variable’s value is:

SCRIPT_NAME = /cgi-bin/calc_max_hp.pl

SERVER_NAME

This variable represents the server’s hostname, DNS alias, or IP address
as it would appear in URLs. This variable is not request-specific and is
set for all requests. An example is:

SERVER_NAME = www.hal.com

SERVER_PORT

This variable is the port on which a client request is received. This is
deciphered from the appropriate part of a URL. Most HTTP server
implementations use port 80 as the default port number. URLs that do
not explicitly specify a port can be accessed via port 80. For example,
the following URL specifies that port 8119 is the designated HTTP
server port:

http://www.chevelle.org:8119/index.html

SERVER_PROTOCOL

This variable’s value represents the name and revision of the information
protocol that the requesting client utilizes. The protocol is similar to the
URL scheme used by a requesting client, and it is case insensitive. An
example is:

SERVER_PROTOCOL = HTTP/1.0

035 Facebook, Inc. - Ex. 1007

CHAPTER 6 © THE ComMON GATEWAY INTERFACE ® m m

SERVER_SOFTWARE

This variable represents the name and version of the information server
software. This variable is not request-specific and is set for all requests:

SERVER_SOFTWARE = NCSA/1.4

THE CGI Commanp LINE

Some operating systems support methods for providing data to CGI
applications via the command line. This technique is used only in the
case of an HTML <ISINDEX> query.

A server identifies this type of request by the GET method, accom-
panied by a URI search string that does not contain any unencoded “=
characters. This method trusts the clients to encode the “=” character in
an <ISINDEX> query. This practice was considered safe at the time of
the design of the CGI specification and requires that you, as a CGI pro-
grammer, be careful to observe this restriction. .

A server parses this string into words using the rules in the CGI
specification, as follows:

1. The server decodes the query information by first splitting the string
on the “+” characters in the URL (which map to spaces, following
URL encoding techniques).

2. The server then performs any additional decoding before placing
each split string into an array named 'argv'.

¢ Typically, this consists of separating out individual variable strings
by splitting the input stream at each ampersand (“&”).

¢ Then, the resulting substrings must be split again (at the equal
sign “=" character) to establish name and value pairs, where the
left-hand-side value provides the name of the variable, and the
right-hand-side value supplies its corresponding value.

This approach follows the UNIX method for passing command-line
information to applications. 'argv' is an array of pointers to strings,

036 Facebook, Inc. - Ex. 1007

HE Part | ¢ Founparions ofF HTML anp CGI

where the length of the 'argv' array is stored in the environment variable
'argc'. (Love that UNIX!)

If the server finds that it cannot send the 'argv' array to the CGI appli-
cation, it will include no command-line information. Instead, it will pro-
vide the non-decoded query information within the environment variable
QUERY_STRING. This failure may be attributed to internal limitations of
the server like those imposed by exec() or /bin/sh command-line restric-
tions. Another example of such a failure occurs when the number of argu-
ments sent by the server to the CGI application may exceed the operating
system’s or server’s limitations. It may also occur when a string in the
'argv' array is not a valid argument for the CGI application that it enters.

For demonstrated examples of command-line usage see this URL:

http://hoohoo.ncsa.uiuc.edu/cgi/examples.html

Make sure when you run these examples that you pay close atten-
tion to the values for the command-line variables 'argc' and 'argv'. We'd
argue strongly that the first integrity check on accepting CGI input in a
program is to make sure that 'argv' is non-zero, and that the number
matches the expected number of arguments to your program!

It's also noteworthy that this command-line data-passing is seldom
used for handling HTML forms, which can contain arbitrarily large amounts
of data. HTML forms normally utilize environment variables to pass data
using the POST method, because this method bypasses command-line
length restrictions and the occasional data-passing problem that context-
switching can sometimes cause in the UNIX runtime environment.

CGI Dara InNPUT

For requests with data attached following the HTTP request header, like
HTTP POST or PUT, the data is delivered to the CGI application using a
standard input file descriptor. All CGI applications follow this method of
reading data. For UNIX operating systems, this uses the so-called stan-
dard input device, commonly referred to as stdin.
The server will send a number of bytes of information, at least as

long as the value specified by the variable CONTENT_LENGTH, using
the stdin file descriptor to pass the data to the CGI application. The CGI

037 Facebook, Inc. - Ex. 1007

CHaPTER 6 © THE Common Gareway Interrace = m|[JEE}

application is not required to read all of this data, but neither must it
attempt to read more than CONTENT_LENGTH bytes.

The server also provides the CONTENT_TYPE for data passed to the
CGI application. This permits the application to use this information to
decide how to interpret the data it receives. At the end of the data
stream, the server is not required to transmit an end-of-file marker; both
server and application assume that reading will cease immediately after
the CGI application reads the number of bytes specified by the value of
CONTENT_LENGTH.

For example, let’s assume you are working with an HTML form that
provides its data using the <FORM> METHOD="POST". Let’s say this
form’s results are 15 bytes encoded, and look like "one=bob&two=cat"
(in decoded form).

In this example, the server will set CONTENT_LENGTH to '15' and
CONTENT_TYPE to 'application/x-www-form-urlencoded'. The first byte
on the script’s standard input file descriptor will be the character “O”,
followed by the rest of the encoded string.

CGI Dara Outpur

A CGI application always returns something to the client that invokes it,
or to the server. The CGI application sends its output to a standard out-
put file descriptor. UNIX calls this stdout. The CGI application output
might be a document generated by the application (typically HTML, des-
tined for delivery to the client) or it might be data retrieval instructions
to the server (e.g., to transfer a file to the client).

Output is usually returned in one of two ways. The first form is non-
parsed header output. Using this form, a CGI application must return a
complete HTTP response message.

The second form of returned data is parsed header output. A server is
only required to support this form. In this case, the CGI application
returns a CGI response message. This response consists of headers and a
body, separated by a blank line. These headers are either CGI headers
that will be interpreted by a server or they are HTTP headers to be includ-
ed within the response message. Here, the body is optional; but if it is
supplied, the body must be prefaced by a MIME Content-Type header.

038 Facebook, Inc. - Ex. 1007

N Part | Founparions oF HTML anpo CGI

If the body is excluded, the CGI application must transmit either a
Location or Status header. The Location header is used to indicate to the
server that the CGI application is returning a reference to a document
rather than the document’s bits and pieces. The Status header is utilized to
provide information to the server about the status code the server should
use in its response message to the client. For information about the syntax
of these CGI headers, please consult the CGI specification (or at least
Chapter 8, which covers CGI input and output in considerable detail).

Summary

In this chapter we presented the middleware needed to bridge the abyss
between Web and non-Web information repositories. In the next chapter,
we introduce you to some old and proven programming languages and
also to some new and exciting programming languages that you can use
to implement CGI applications.

039 Facebook, Inc. - Ex. 1007

