Visit the book’s companion Web site at www.wiley.com/compbooks/martiner:

Visual Basic |
Programmer’s Guide
to Web Development

William Martiner

Create powerful Web applications using:
m Visual Basic 5, ActiveX controls, ActiveX documents, and VBScript
= Visual InterDev and Active Server Scripting to create dynamic Web content

Facebook, Inc. - Ex.1008

Visit the book’s companion Web site at www.wiley.com/compbooks/martiner:

Visual Basic |
Programmer’s Guide

to Web Development

William Martiner

Create powerful Web applications using:

m Visual Basic 5, ActiveX controls, ActiveX documents, and VBScript

m Visual InterDev and Active Server Scripting to create dynamic Web content

= ADO and Visual InterDev’s Data Management Tools for fast, robust data access

William Martiner

WILEY COMPUTER PUBLISHING

john Wiley & Sons, Inc.

New Yorlk * Chichester * Weinheim + Brisbane ¢ Singapore * Toronto

002 Facebook, Inc. - Ex.1008

Executive Publisher: Robert Ipsen

Editor: Robert Elliott

Assistant Editor: Pam Sobotka

Managing Editor: Mark Hayden

Electronic Products, Associate Editor: Mike Green

Text Design & Composition: SunCliff Graphic Productions

Designations used by companies to distinguish their products are often claimed as
trademarks. In all instances where John Wiley & Sons, Inc. is aware of a claim, the product
names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

This text is printed on acid-free paper.

Copyright © 1997 by William Martiner.
Published by John Wiley & Sons, Inc.

All rights reserved. Published simultaneously in Canada.
This publication is designed to provide accurate and authoritative information in regard to the
subject matter covered. It is sold with the understanding that the publisher is not engaged in

rendering legal, accounting, or other professional service. If legal advice or other expert
assistance is required, the services of a competent professional person should be sought.

Reproduction or translation of any part of this work beyond that permitted by section 107 or
108 of the 1976 United States Copyright Act without the permission of the copyright owner
is unlawful. Requests for permission or further information should be addressed to the
Permission Department, John Wiley & Sons, Inc.

Library of Congress Cataloging-in-Publication Data

ISBN: 0-471-19382-8

Printed in the United States of America

10987654321

003 Facebook, Inc. - Ex.1008

Contents

Acknowledgments XV
l. Introduction I
The New Web 2
The Active Web 3
The Visual Basic Web 4
How This Book Is Organized 5
Chapter Outlines 6

Who Should Read This Book? 7
Road Map for Readers 8

What Tools Will You Need? 8
What’s on the Web Site? 9
Summary 9

2. A New Tool for Development: Using Visual InterDev 11
Visual InterDev Highlights 11
RAD Tools 12
Database Tools 13
Extensiblity 13

The Nickel Tour 13

A Panoramic View 14

The Project 16

Using Visual InterDev to Generate HTML Files 18

Using Visual InterDev to Work with ActiveX Components 23

Using Visual InterDev to Create Client-Side Scripts (VBScript) 25

Using Visual InterDev to Create Active Server Pages 27

Using Visual InterDev to Work with Data 32

Using the Visual InterDev Query Designer 35

Data Access Helper Tools 39
Summary 45

vii

004 Facebook, Inc. - Ex.1008

viii

Co_ntents

3.

4.

5.

Laying the Framework: HTTP and HTML

Hypertext Transfer Protocol (HTTP)
The HTTP Conversation
HTTP Summary

Hypertext Markup Language (HTML)
The HTML Document’s Basic Structure
Creating Links between Documents
Creating Tables
Creating Forms
The Input Element
The Select Element
The TextArea Element

Summary

Expanding Limits with ActiveX Components

The <Object> Tag
PARAM Tags

Using Visual InterDev to Insert an ActiveX Component
Specialized ActiveX Controls

The Preloader Control

The HTML Layout Control

How the HTML Layout Control Works
The Way That ActiveX Works

Drawbacks and Disadvantages

Versioning Concerns

Using ActiveX Components with Various Browsers
Security

Protecting Yourself

The Authenticode Model
Summary

Activating the Desktop with Visual Basic Script

The Placement of Code

Differences between VBScript and Visual Basic for Applications

Type Variables
Variable Scope and Lifetime
The Functions Available to VBScript
Additional VBScript Intrinsic Functions
Objects Provided by the VBScript Engine
The Dictionary Object
The Err Object
Error Trapping in VBScript

005 Facebook, Inc. - Ex.1008

47
48
49
57
58
60
62
63
66
67
70
70
72

75
76
79
80
81
82
82
84
87

89
90
92
93
94
97

929
100
102
103
104
105
105
106
106
108
108

Contents ix

Debugging VBScript 110
Using VBScript with HTML Forms 112
The Microsoft Internet Explorer Object Model 113
Elements 122
Building a Simple Form 129
Using the Visual InterDev Script Builder to Perform Validation 131
Using VBScript to Write to the HTML Document 134
The Complete Sample Form 137
Scripting ActiveX Controls 139
The Script Wizard 140
Scripting Cookies 143
Sending Cookies 143
Using Links to Trigger Code 144
Sending Cookies to the Server 148
Summary 152
Taking Control: Building ActiveX Controls with Visual Basic 5 153
Using Visual Basic 5.0 IDE 154
Creating an ActiveX Control Project 154
Adding a Test Project 155
Events: A Day in the Strange Life of a UserControl 158
The UserControl’s Key Events 159
Web Page Events 160
Building a Control: Sample Code for the Resize Event 161
Error Trapping 162
Properties 163
The Extender Object 164
The UserControl Object 166
Ambient Properties 167
Custom Properties 169
The PropertyBag Object 170
Creating Custom Methods and Properties 173
Events 174
Creating Property Pages 175
Advanced Issues 177
Using Enums 177
Creating Object Structures and Runtime Properties 179
Using Classes and Collections in the SlideShow Control 180
Distributing ActiveX Controls on the World Wide Web 189
Marking Your File as Safe for Initialization and Scripting 190
Summary 192

006 Facebook, Inc. - Ex.1008

X

Contents

7. Porting Visual Basic to the Browser with ActiveX Document Objects
Understanding the Document
Implications
Creating an ActiveX Document
High-Level Overview of Creating ActiveX Documents
Creating a UserDocument Project
Creating the ActiveX Document’s Interface
The UserDocument, Itself
Similarities
The Key Events of the UserDocument Object
The Properties of the UserDocument
The Methods of the UserDocument
The PropertyBag and Persisting Data
UserDocument Oddities
An Open Back Door Will Get Your Documents Cold
Do Something before It Becomes Really Strange
Testing and Debugging
Debugging Oddities
Flushing the Cache
Distribution
Summary

8. Activating the Server with Active Server Scripting
The Active Server Scripting Model
Coding the ASP
Using Server-Side Includes (SSI)
The Request and Response Objects
The Request Object
Retrieving Data from the Client
The Response Object
Cookies Collection
Code Example: Error Trapping the ASP Using the Request and
Response Objects
The Generic Error Trap
Creating an Error-Trapped .ASP Template
The Application Object
The Global.asa File
The Session Object
Code Example: Using the Application Object to Create a Chat
Application
Establishing the Application’s Variables
Determining How the ASP Will Be Processed
Determining the Speaker

007 Facebook, Inc. - Ex.1008

193
194
196
197
197
197
199
201
201
202
204
207
209
210
217
221
223
223
224
224
227

229
230
231
234
236
236
237
241
245

247
248
255
256
258
259

260
260
262
262

_ Contents xi

Dealing with Concurrent Edits to Application-Level Variables 263
Processing the User’s Input 264
Writing the Contents of the Application-Level Array to
the Client’s HTML 265
The Full Code for the ASPChat Application 266
Using the Server Object 268
HTMLEncode 268
URLEncode 269
MapPath 269
CreateObject 270
Active Server Components 271
The FileSystem and TextStream Objects 271
The Browser Capabilities Component 272
Creating an ASP Value Spy 274
Summary 286
9. Wheting Your Data Handling Appetite: The Internet Database
Connector (IDC) 287
ODBC and Data Source Names 289
No New News 291
The Files of IDC 291
HTML Files 292
IDC Files 293
HTX Files 293
Statements, Operators, and Variables 295
Data Manipulation Using IDC 297
Creating a Data Entry Form 297
Creating the IDC Script 299
Creating the HTX File 299
Editing Data 303
Creating the IDC File 303
Creating the HTX File 304
Deleting Records 304
Creating the IDC File 304
Summary 305
10. Gaining Powerful Data Access with Active Data Objects 307
ADO under the Hood 308
Overview of the ADO Programming Model 309
A Quick Summary of Interfaces 310
The Individual Creation of Interfaces 311
Object Scoping 313
The Importance of a Data Server 315

008 | Facebook, Inc. - Ex.1008

xiiT Contents

Getting Ready to Work with ADO
Creating a System DSN Using Visual InterDev
The AOVBS.INC File
Danger, Danger, Danger, Danger, Danger,...
ADO Interfaces
Dynamic Properties
The Connection Interface
Connection Object Methods
Connection Object Properties
Connection Pooling
The Errors Collection and the Error Object
Command Object Properties
Command Object Methods
The Parameters Collection
The Parameter Object
Summary

Il. Working with Advanced Cursors: The Active Data Object’s
RecordSet
RecordSet Object Properties
Propeties That Define the RecordSet
Properties That Define the Behavior of the RecordSet
Properties Used in Record Navigation
Properties That Provide Information about Data Manipulation
RecordSet Object Methods
Methods That Create, Destroy, and Copy the RecordSet
Methods That Navigate through the RecordSet and Return or
Refresh Data
Methods That Modify Data
Methods that Report on the RecordSet’s Abilities
The Fields Collection
Fields Collection Properties
Fields Collection Methods
The Field Object
Field Object Properties
Field Object Methods
Summary

12. Putting the Pieces Together and Building 2 Web Application

What the Media Drag and Drop Library Does
Assumptions about the Users of This System
The Structure of the Application

009 Facebook, Inc. - Ex.1008

315
316
318
318
319
319
321
323
330
337
338
344
346
352
354
359

361
364
365
367
373
380
382
382

384
388
398
398
399
400
401
401
403
406

409

410
411

411

Contents xiii

Getting Started: Logging In and Establishing Session-Level Variables 414

Login.asp 415
The Log-in Form 415
Validating the User 417
Passing Parameters to the Main ASP File to Allow Navigation
between the Application’s Pages 418
Querying the Library 420
Constructing the ASP file 420
Uploading Materials to the Media Library 423
Creating the ActiveX Control 424
Construcing the UserControl Interface 424
Constructing the Form Interface 427
Using the Microsoft Internet Transfer Control 427
Siting the ActiveX Control in HMTL 431
Constructing the Data-Handling ASP File 432
Creating the WebUtils Component 433
Building the Script 435
Getting a New ID Value 435
Retrieving the Values Passed in the Request.QueryString Collection 436
Copying and Renaming the File 436
Inserting Data into the Database 437
Summary 437
A. Shotgun HTML: A Quick Reference 439
Basic Tags 439
Relative Tags 439
Text Formatting Tags 440
References (Links and Graphics) 441
Breaks and Dividers 442
Lists and Numbering 443
Colors and Background Images 444
Form Tags 444
Table Tags 446
Frame Elements 447
Objects 449
Miscellaneous 449
Index 451

010 Facebook, Inc. - Ex.1008

ogether, the HTTP protocol and the HTML markup language

form the basis of communication and interface design on the
World Wide Web. The Hypertext Transfer Protocol (HTTP) governs
the way that hypermedia (i.e., Web pages) are transferred over the
Internet and the way in which the HTTP server and the HTTP client
interact. Hypertext Markup Language (HTML) is the common format-
ting language of the World Wide Web, defining how a Web page will

appear to the browser by “marking it up” with a series of tags.

In a real sense, the World Wide Web is nothing more than a set of stan-
dards. So, although HTTP and HTML are both relatively limited and simple,
these standards are really what the World Wide Web /s. Just as the HTTP proto-
col is the basis of the Web, the Post Office Protocol (POP) and the Simple Mail
Transfer Protocol (SMTP) form the standards of e-mail; files are sent and
received on the Internet using File Transfer Protocol (FTP) and people are able
to send and receive messages from newsgroups because they adhere to the
Networlk News Transfer Protocol (NNTP). Each of these standards has its posi-
tive and negative features. However, from the standpoint of the World Wide
Web developer, the abilities of the standards are not as important as the fact
that they are universally understood. It’s not as if you have to decide whether
to use these standards. The simple fact is that if you want to communicate to
the largest audience, then you have to play by the rules.

The rules in the case of development on the World Wide Web are HTTP
and HTML. This is why an understanding of both of these standards is crucial
to beginning to work the Web. As you will soon see, it is this simple protocol

47

011 Facebook, Inc. - Ex.1008

and markup language that will either act as the building blocks or will be used as the end
result of the all of the technologies that frame the World Wide Web.

ypertext Transfer Protocol (HTTP)

HTTP has only been around since 1989 when Tim Bernes-Lee proposed the protocol. Since
then, it has become the standard for all things Web. The HTTP draft that was current at the
writing of this chapter defines HTTP as “an application-level protocol with the lightness and
speed necessary for distributed, collaborative, hypermedia information systems. It is generic,
stateless, object oriented protocol. . .

This definition is qualified with a date because new proposals are currently being devel-
oped for the standards used on World Wide Web. These standards are constantly being revised
and expanded by the members of the Internet Engineering Task Force (IETF). This group is a
collection of academic and industry leaders who are assembled to guide the standards used
on the Internet. If you are curious about the newest proposals for these standards, you can
find them at the W3C (World Wide Web Consortium) Web site at www.w3.0rg.

However, there are good reasons why vou should not be alarmed with this constant revi-
sion. The first is that whenever a standard changes, the governing body of the World Wide
Web takes great pains to provide backward compatibility. You can also take comfort in the
fact that changes to HTTP and HTML move very slowly because of the nature of their users.
As long as there is diversity in the browsers being used to view World Wide Web content,
these standards will be driven by consensus and use rather than the fast-paced proposal of
new academic standards.

The HTTP protocol basically defines a client-server model that is designed for the most
rapid and efficient means of delivering World Wide Web content. Like any transaction
between a server and a client, the HTTP transaction can be most easily understood as a
conversation in which the client asks the server for something and where the server gives
what was asked to the client.

As stated in the earlier definition of the protocol, HTTP is a stateless protocol. This means
that the conversations between the HTTP client and the HTTP server are succinct and non-
persistent. That is, when a server returns what a client has asked, then the connection is
broken and there is no memory of the exchange. It's sort of like asking a drunk college
roommate to borrow some money because when the exchange is over, your roommate may
(with some luck) have no memory of the transaction. Since there is normally no persistent

012 Facebook, Inc. - Ex.1008

2. The client makes the
request to the server

3. Server responds to
the request

1. Client establishes
contact with the
server

4. The connection between
client and server is closed

Figure 3.1 The HTTP Conversation.

data between requests to the server, HI'TP’s statelessness males it difficult to program data-
base applications that need to maintain some connection to their data in order to guard
against problems like multiuser contention.

The HTTP Conversation

The conversation between the HTTP server and the HTTP client goes something like this
(see Figure 3.1):

1. The client establishes a contact with the server using the Internet address of the server
and port number that the server application is “listening to” (That’s right; it’s just
connecting to a socket.)

2. After the connection is made, the client makes a request for a resource (file or program)
on the server. This resource is typically a HTML file or some type of gateway program.
In addition to the request, the client sends the server some information about itself in
the form of header fields. This request is made using one of the HTTP metbods that will
be discussed later in this chapter.

013 Facebook, Inc. - Ex.1008

3. When the server receives this request, it responds with information about the state of
the transaction (success, fail, or something in between) and the data requested by the
client. The data is transmitted as a stream of 8-bit characters called ocfets. This format

allows for the transmission of virtually all forms of data, whether the data that is being
transferred is an image, a HTML file, or an executable program.

4. After the server makes its response, it closes the connection and does not retain any
information about the transaction.

These steps are taken for each request that the client makes of the server. This means that
if a HTML document contains several different images, Java appletts, and ActiveX controls,
then these steps must be taken for each object. So, although the HTTP server is fast in getting
data to the HTTP client, once a connection is made, a separate connection must be made for
each resource being requested. This unhacky behavior of HTTP is blamed for much of the
slow response time of the Web. Howevey, it is also this behavior that allows for the web
server 1o be able to satisfy the requests of many concurrent clients because, in a rather social-
ist manner, everyone gets a little piece of his or her request and everyone is made to wait.

Getting in Touch with the Server The first step of the HTTP client-server conversation
is the client opening a connection with the server. In a HTTP transaction, the server is identi-
fied just like a server in any sockets application; you can connect using a combination of an
address (or name) and a socket. The subject of addressing becomes somewhat complex on
the World Wide Web, as there are an unfathomable number of addresses to which a client
may connect,

To seclve this problem, the World Wide Web uses a form of address called a Universal
Resource Identifier (URD). And, a common form of URI used on the Web is a Universal
Resource Locator (URL). The difference between a URI and a URL is that the URL includes
information about how the resource should be received from the server. For example, the
following URIs are simply addresses of objects on the Wingspan Web server. There is no
information in the URI about the protocols being used to transfer these files.

//207.87.44.198/Bi1l/Xmass . htm
/4207.87.44.198/Bill/Xmasstree.gif

In contrast, the following URLs contain both the address and the protocol that should be
used to retrieve the file from the server:

Http://207.87.44.198/Bill/Xmass.htm
Fip://207.87.44.198/Bill/Xmasstree.gif

014 Facebook, Inc. - Ex.1008

The URL, Itself The HTTP URL is a format that can identify any object on any server on
the Internet:

Http://<IP address>/{<port>]/[<path>][?<query information>]

The first part of the URL identifies what type of protocol should be used to retrieve the
object. In the case of a World Wide Web document, this would be HTTP. The second part is
the machine name (IP address) of the machine upon which the desired object exists.

When a request to a named URL (like www. WingSpan-T.com) is made, the request is first
handled by a Domain Name Server. This DNS takes the name requested by the client and
resolves it with the IP address of the server before a formal request is made. The result of
this is that the World Wide Web is 2 much more friendly place to visit because Web sites
have memorable names like www.microsoft.com rather then being identified with an IP
address like 270.87.44.198.

The protocol and the IP address are the only mandatory portions of the URL because if
an URL does not specify a file name, the HTTP server will respond with a default file. In
most circumstances, this file will either be named INDEX or DEFAULT. However, the person
maintaining the HTTP (Web) server can set the default file name to anything that he or she
wishes.

Also, because you are connecting to a socket when you request something from a HTTP
server, you must specify not only 2 machine name and a resource, but also a port. However,
it’s not necessary to include the port of the URL, either. This is because the default port of a
HTTP server is port 80. So, since both resource and port are specified by default, the user
can enter www.MSN.com into the top of the browser’s screen and he or she will be
connected to the Microsoft Network’s Web server at port 80 and sent its default file.

The last portion of the URL can contain query information that is being sent to a resource.
We will be exploring the implementation of this later in this chapter.

Making Your Order When you go to the deli, very few people simply step to the counter
and say “tunafish” without first seeing how the tuna looks and without specifying the right
type of bread, cheese, condiments, and tomatoes (if they look good, and never after Novem-
ber). it’s the same way when you request something from a Web server; not only do you
want the content of the Web page, but you might want to limit the types of files that can be
sent (let’s say you have a text-only browser). You might want to tell the server how you got
to a specific page. Or, you might not even want what you are asking for if it hasn’t been
updated since the last time you made a request.

015 Facebook, Inc. - Ex.1008

For all of these reasons, when you send a request to a server for a resource, you are not
only sending the name of the file that you would like to have returned, but you are also
giving the HTTP server information about the client asking for the resource. Therefore, a
request goes to the server not only with the name of the resource, but also with information
about the client doing the asking.

This information is sent to a server in a HTTP request header containing several fields that
make the request to the server and tell the server details about the order. The most impor-
tant thing that a HTTP request header will send is a HTTP method. For example, when you
type an URL into the top of a browser and hit enter, a GET method is sent to the server.
There are several different HTTP methods that can be used to make a request:

* GET: This method instructs the server to return the resource specified by the client. If
the resource specified by the request is an application, then the server will return the
output of the application rather that the application file, itself.

° HEAD: The HEAD method is like GET, but will return only the header information of
the requested resource. Often, the HEAD method is used by spiders and other search
agents to return general information about a Web site.

¢ POST: This method will send data to a specified URL and is often used with HTML
forms to send information to the server. Typically, this method is used with some type of
gateway application to handle the data POSTED to it appropriately.

° PUT: PUT writes data sent by the client into the specified URL. Few HTTP servers
implement the PUT method.

* DELETE: Deletes the resource at the specified URL. Thankfully, this is not currently
used by many HTTP servers.

o 1INK: Links one existing object to another object. This method is not used by many
HTTP servers.

¢ UNLINK: Removes link information inserted by the LINK method. Like its counterpart,
this method is not currently implemented in many HTTP servers.

Aside from the method that the request header sends to the server, there are also a
number of header fields sent in a HTTP request. These header fields provide the server with
information about the specifics of what the client wants and what type of a client is making
the request. One of the types of header ficlds that can exist in a request header is the
General Message header fields that can be inserted into either request headers that are sent
to the server by the client or response headers that are sent to the client by the server. These
general message header fields are:

016 Facebook, Inc. - Ex.1008

DATE: Specifies the date and time that the request was made.

PRAGMA: Designed for passing implementation-specific information to servers. This
field can also be used to tell a proxy server to always fetch the source from the actual
server and not from its cache.

FORWARDED: Can be used to trace the message through machines other than the
client and the server. This could be used to trace the route of a message through proxy
SCIVErS.

MESSAGEID: Used to uniquely identify the message.

Aside from these general HTTP header fields, messages will carry other types of header

fields. Each of these fields will tell the server more about the capabilities of the client that

made the request. (Table 3.1 highlights some of the common header fields that a client can

use to add detail to the request that it is making of the server.)

L

ACCEPT: A number of fields sent to the server to notify it of what data types and the
size types that can be accepted by the client. Most modern browsers will send */* in this
field to designate that they will accept all types.

AUTHORIZATION: Used to present some type of information to the server to bypass
security and encryption. If this is not required by the server, then this field will be
absent.

FROM: Used if the client application wishes to provide the server with information
about its email address. Typically, HTTP clients will not send this header field. However,
web crawlers and other robots should provide this field to designate the email address
of the person who started it.

IE-MODIFIED-SINCE: Used to provide a conditional GET. If the document being
requested has not been changed since the specified date, then the server will not send
the object. If the date sent is in some invalid format or if the date sent is later than the
server’'s date, then this field is ignored by the server.

REFERRER: The object from which the request from the server resource was made.

MIME-VERSION: The MIME protocol version that is used to work with files of different
types. The current version is 1.0.

USER-AGENT: Information about the client (i.e., browser) that is making the request.

Getting Your Stuff As soon as the server receives a request, it interprets the method
being used by the request and begins to process its response. Just as with the request

message from a client, the response message from the server includes information about the

017 Facebook, Inc. - Ex.1008

018 Facebook, Inc. - Ex.1008

Status Code Reason Phrase and Meaning

502 Bad Gateway:
In an attempt to satisfy the client’s request, the server attempted to gain
access to a resource from another server, or through a gateway. This
secondary server or gateway did not return a response.

503 Service Unavailable:
The server is too busy to respond to the request. In this case, the server
may respond with this code, a reason phrase and a refry-after header
that can be used by the browser application to govern the time that it
should wait before trying to request the resource from the server again.

message in the form of header fields. These resporse header fields are included to inform
the client of the server’s status, the type of information that it is returning, the tine at which
its response was returned, and other data about the message.

The first line of the response header is the status line and usually follows the following
format:

<HTTP Version» <Status-Code> <Reason-Phrase>

The status code returned from the server is a three-digit code that can be used by the
client to determine how the server was able to handle its request. The first digit of this code
indicates the broad category of the status of the response message. The numbers following
the first provide further detail about the status of the server’s response. Status codes are split
into four basic types:

1. If the number starts with a 2, then the request was processed successfully.
2. If the status code begins with a 3, then the request was redirected.

3. A status code starting with 4 indicates that the request from the client was in some way

Crroncous.

4. Finally, if the status code begins with a 5, then the server has failed to fulfill the request.

Along with the status code, a reason phrase will be returned with the message to
provide some human readable explanation of the status code. The browser application
will usnally display this reason phrase to the user when a problem is encountered with the
response (i.e., a status code is returned designating some type of failure). Table 3.1 details
some common server responses, their associated reason phrase, and the reason for the
code.

019 Facebook, Inc. - Ex.1008

Aside from the status code that the HTTP server will return, there are several other
header fields that will be returned to the client. Many of these header fields are only used
under the circumstance that the server has passed a status code other than OK (i.e., 200).
However, others fields exist to provide the browser application with information about data
about to be sent. The following list details some of the Response Header Fields that can be
sent to the client:

o STATUS CODE /REFASON PHRASE: Indicates the status of the response (success/fail or
somewhere inbetween) and a human readable explanation of the status.

= DATE: The date and time upon which the data was sent to the client.

¢« LAST MODIFIED: Just as it sounds, this field will give the date and time when the
resource was last modified. Note that this is always given in Greenwich Mean time.
(After all, what is the local time of the World Wide Web?)

¢ SERVER: Information about the server from which the data originated.
= CONTENT_TYPE: Designates the type of data that will be sent in the response.

¢« RETRY_AFTER: This field is returned if the server was too busy to handle the response
(status code 503). The information returned in this field is used by the client to deter-
mine how long it should wait before retrying the server.

* WWW_AUTHENTICATE: This header field is sent when the server’s security requires
that the client pass some authentication (status code 401). It is basically a challenge to
the browser to return authentication data.

Of course, this is not all of what the server returns to the client. The bulk of the traffic on
the World Wide Web is made in the form of response messages. This is because, aside from
the header information that is returned to the client, the server also includes Entigy informa-
tion. Essentially, entity information in a response message is the contents of a resource on
the HT'TP server. In other words, this is the stuff that you asked for in the first place.

Entity information is also sometimes used in a request message. This happens when a
HTML form uses a2 POST method to pass data to some server resource like a server-side script
or a gateway program. In this instance, the information that the user input into the form’s
controls is submitted to the server as the request message’s entity.

However, more typically, this information is sent from the server to the client as a text file
formatted with HTML tags or some type of information that the client application has
requested (e.g., .avi files, .gif files, Java appletts, . .). Later, there will be an examination of
exactly how HTML is used to format these documents being delivered as the entity section
of the HTTP response message.

020 Facebook, Inc. - Ex.1008

What follows is an example of what a server’s response message may look like. Notice
that the header information comes first and allows the browser to know about the message
before the bulk of it is processed. The remainder of the response message is the contents of
a HTML document that will serve as the message’s entity.

HTTP/1.,0 200 Document Follows

Date: Thu, 26 Dec 1996 01:35:15 GMT

Server: NCSA/1.4.1

Content-type: text/html

Last-Modified: Wed, 25 Dec 1596 12:59:15 GMT
Content length: 344

<html>

<head>

<title> Now What?? </title>

</head>

<body bhackground = xmasstree.gif>

<hl>Boxing Day???</hl>

<p>What exactly does cne do on boxing day?
<p>It happens to be my wife’s birthday, but what do the rest of you poor slobs
do?

<FORM METHOD="Post" Action="Boxing.ASP">
<textarea name="Boxing" Rows=25 Cols=50></textarea>
<input type=submit value="Tell me, please."
</ form>

</hody>

</html=>

Goodbye The last step in the HTTP transaction is simple. Once the server sends the appro-
priate header fields and entity contents to the client, the connection is dropped. Remember
that HTTP has been defined as a stateless protocol. So, once the transaction is finished, the
conventional HTTP server will forget that it ever happened and will move quickly to the
next request.

TTP Summary
I know that this protocol material makes for a fairly dry and difficult way to make entry into
this new technology. I feel your pain and I have tried to keep it short.

However, in a real sense, Web-based programming is simply the different creative imple-
mentations of this messaging technology. So, HTTP (or future derivatives of this protocol) is

021 Facebook, Inc. - Ex.1008

the enabling technology of development on the Web. As you will see when you begin to actu-
ally build Web-based applications, a basic understanding of this type of protocol is crucial.

What you see in Figure 3.2 is HTML in action. The first part of this chapter dealt with the
way that the World Wide Web data is requested and transferred. The final section of this
chapter will deal with the creation of the documents that usually make up the entity section
of the HTTP response message. A full explanation and exposition of style in the creation of
Web pages is certainly beyond the scope of this book. Therefore, it is not my intention to
deal with the height and breadth of HTML, but simply to give you a foundation from which
to begin your work. If you want more information on HTML and how to use it, please visit

Figure 3.2 HTML in action.

022 Facebook, Inc. - Ex.1008

the official HFTML resource at the W3C Web site
(HTTP://WWW. W3 org/pub/www/markup/). This site can provide you with guides, tutori-
als, and style manuals.

Hypertext Markup Language or HTML is a structured markup language that defines the
various components of a Web page. As a markup language, HTML must contain embedded
instructions about the appearance of the document to be presented.

These formatting instructions are implemented as tags that can be used by inserting them
at either end of the text to be formatted. For example, the tags that I would use to underline
text are <U> and </U>. Tags come in pairs; the first tag begins the section to be formatted
and the last tag ends the formatting. So, if I wanted to underline a sentence, I would enclose
the sentence between the <U> and </U> tags:

<u>Here 1s an example of an underlined sentence.</u>

This is a rather simple example of using HTML. Believe me, it is capable of much more than
simple underlining. HTML is able to format rich user interfaces using tables, frames, and
even forms.

When an HTML is sent to a browser application as the entity section of a HTTP response
message, it is the job of the browser to parse and interpret the HTML code. Different
browsers will view HTML code in different ways. This is why much of the skill involved in
creating HTML documents is understanding the ways that popular browsers will interpret
the code that you write. So, the HTML code that you write is more like giving formatting
hints to the browser application than it is really like creating a user interface with Visual
Basic forms.

That is true, if you are in the unlucky situation of creating either an Internet application
or an intranet application that will be used in conjunction with a variety of browsers.
However, if you are creating an intranet application that will be viewed by only one type of
browser (e.g., Internet Explorer), then you are in luck. If you only write HTML for one type
of browser, then you can know with relative certainty that your design will be viewed as it
was intended. Further, you will be able to take advantage of the specifics of the HTML that is
implemented in the browser. For example, if | were writing an application that I knew was
only going to be viewed by Microsoft Internet Explorer, I would be at liberty to use {rames,
style sheets, and other niceties of the browser at present.

At the most basic level, HTML documents consist of a HTML element, a document head, a
document body, heading elements, and formatting tags. These tags work together to specify

023 Facebook, Inc. - Ex.1008

that the text is in HTML format, to specify titles and document body sections, and to format
the text in the browser. HTML formatting tags are used within a hierarchy to describe the
format of the document and the style of the text. These tags are case-insensitive and are
almost always paired in a <Format> </Format> syntax.

The HTML Document’s Basic Structure

Any HTML document must begin and end with the <HTML> </HTML> tags. These tags indi-
cate to the browser that what is enclosed in them is HTML code. This may be necessary for a
number of reasons, including when a browser requests a file that does not have a name that
specifies it as a HTML document (€.g., webpage.txt) and in circumstances where the server
is able to send documents that exist in other markup languages (e.g., SGML).

After the <HTML> tag, there is usually a document head section contained in <Head >
</Head> tags. This section serves as a header and is able to provide the browser with infor-
mation about the document, itself. This section can be used to provide the browser with a
title for the document that will be displayed separately from the rest of the HTML text, typi-
cally in the browser application’s title bar:

<HTML:>
<HEAD»<TITLE>This 1s my document’s title!</TITLE><HEAD>
<HTML>

The next element included in a HTML document is the body element, defined by
<Body></Body> rags. This section is where the user-viewed text of the HTML document is
placed.

Inside the body of the document, formatting logical headings can be defined. That is, these
special tags do not define text in a static format (like 12 Point Courier), but rather, they leave
the formatting up to the browser (see Figure 3.3). Headings are called logical formats because
every browser will format the higher level headings such as Heading 1 (<H1>) and Heading 2
(<H2>) more prominently than the lowest level headings like Heading 5 (<H5>) and Heading
6 (<H6>). So, the following HTML code will be displayed in a similar format in all browsers:

<html>

<head> <title>This is an example of headings<title></head>
<body>

<hl>Heading 1</hl> <h2>Heading 2</h2> <h3>Heading 3</h3>
<h4>»Heading 4</hé4> You get the idea.

</body>

</html>

024 Facebook, Inc. - Ex.1008

Back " fovind. Step’ Reliesk' Homs Seatch Favoites Pt Ford ;
|| Adetes [ovwinoowsDESKTOP RN

=

L o S T -

Figure 3.3 The HTML example code as interpreted by Internet Explorer.

Not only are you able to make use of the heading tags to format the text of your docu-
ment, but also you can use a wide assortment of other tags that allow you to explicitly
format font and size of font, insert horizontal lines, designate background colors, and
include pictures. HTML is quickly becoming a rich formatting language that, through the
use of its large and growing library of formatting tags, is capable of constructing elegant
matter for the Web.

If you need more particulars about using HTML to create artractive documents, the Web is
brimming with HTML guides. Once again, the resources that are available to you at
HTTP://WWW.W3.org/pub/www/markup/ are exhaustive. Also, for your convenience, this
book includes a quick reference to HTML in Appendix A.

However, if you really want to learn HTML quickly, spend more time surfing. When you
come upon a page that is particularly attractive for some reason, find out why. If you are
using Netscape Navigator, go to your View menu and select your View Source option to see
the underlying HTML. If vou are using Microsoft Internet Explorer, simply right-click on the
page and select View Source from your popup menu. You will be amazed by how quickly
you learn just by being nosy.

So, with HTML you can develop richly formatted documents that use tags to format the
way that the text appears. Whoopee.

025 Facebook, Inc. - Ex.1008

The fact is that if you can use Microsoft Word, Excel, PowerPoint, or Access, you already
can create dynamite looking HTML by simply upgrading to Microsoft Office 97. The Office
97 package allows you to create HI'ML as easily and as seamlessly as you can now print from
these applications. Further, if you have an eye for design and the time to invest in learning
Microsoft FrontPage, you will be able to develop Web content in a WYSIWYG interface that
will rival anything that you see on even the most professional Web sites.

That’s OK because, as a developer, you are probably not as interested in creating nice
documents as you are with creating a workable interface for your applications. If you are a
database developer (like myself) you probably care a lot less about including pretty pictures
in your HTML than you are worried about feeding your addiction to grids and intuitive,
useful forms. As you know, to provide a robust solution to most programming situations, you
need 1o work with code. These tools may be very helpful in creating interfaces, but you will
still have to know your stuff when you want to make use of more advanced options like
creating these interfaces-on-the-fly.

This is not to say that these advanced Web site designing tools are not extremely helpful.
Relieve me, it is much easier to create an attractive HTML document using the intuitive,
WYSIWYG interface of Visual InterDev or the advanced features of other tools like HomeSite
than it is to continue using Notepad (my personal favorite up to just last year). These tools
allow for fast formatting, error checking, link checking, and a lot of ready-done programming
that will allow you to be much more productive in much less time than would be otherwise
possible. It’s just that it has become so easy to create attractive HTML, that it doesn’t really
warrant discussion in the context of a book like this one.

That is why I am going to skip a lot of the particulars of how you format text, create hori-
zontal lines, and include pictures on your Web pages, and include them in the appendix at
the back of the book. At a really basic level, most of the formatting work that you do is just
using the design tool of your choice to put the right tags in the right place.

However, this view of HTML starts to break down when you begin to work with advanced
features. In other words, to be able to provide real solutions int this technology, things are
going to get a little more complicated.

Creating Links between Documents

Probably one of the first things that you are wondering about if you have never worked with
HTML before is how links between documents are created. This ability to link regions of text
or images to other related documents on the World Wide Web is one or the chief powers of
HTML. Once again, this is a type of special formatting done through the use of tags.

026 Facebook, Inc. - Ex.1008

In this case, the tags are Anchor tags that are added into a HTML document through the
use of <A> and tags. Inside the initial tag you specify the document to which you want
to link entering the HREF= parameter and the URL of the document. Then, you can enclose
in those tags either the text that will serve as the link or a reference to a graphic element. In
the following example, the first line of the body will use the text “Link to Wingspan” as its
link and the second line will use an embedded image as a link:

<HTML>

<HEAD><Title>Link Example</Title></Head>

<Body>

Link to Wingspan

</Body>

</HTML>

When these links are displayed in the browser, they will appear as in Figure 3.4. When
cither of these links is clicked upon, the browser application will send a HTTP request
message to the appropriate server using a GET method. When the contacted server responds
with its HTTP response message, the browser will interpret the new document’s HTML and
display it again in the browser.

Creating Tables

The use of HTML tables is becoming almost universal. As you would expect, tables are used
to display data in a grid. However, because of the nature of formatting text and graphics in

HTML, they also have wide use in the creation of user interface. The reason for the latter is

33 Back. Shop s Pelresh Home . 5é
| oo [C\Wngweb\Unttedhim

| i W

Higroiaht

Figure 3.4 Text and a graphic element used as links.

027 Facebook, Inc. - Ex.1008

that the exact placement of text and graphical elements in an HTML document is probiem-
atic. The physical placement of text in a HTML file doesn’t correspond exactly to what the

user will see because it’s the browser that decides where the elements are shown, not really
the HTML.

That is, it's not the HTML as long as the placement of elements is outside of a table.
Because the cells of a table can be used to designate exactly where a certain element should
be placed, tables can be used for both the organization and display of data, and of graphical
information on the screen.

The table is a relative newcomer to HTML, being introduced only in HTML 3.0. This new
feature provides the developer with a number of table ¢lements that allow for the creation of
simple, vet effective tables. Tables are defined through the use of four separate tags:

1. <Table></Table>: This is the outermost element of the table that surrounds the other
elements used in the creation of a table. The table tag can have the following attributes:

* Border: This attribute designates the thickness of the border that is drawn around
each cell of the table. If this attribute is set to 0, then no cell borders will be drawn.

* Cellpadding: Defines the thickness of the space left in-between the cell border
and the content of the cell.

¢ Cellspacing: Like the Border attribute, this attribute describes the space left
between the individual cells in a table.

e Width: Describes the desired width of the table. This measurement can either be
made in pixels or as a percentage of total space.

2. <TR></TR>: This element defines the table row, which can contain table headers (<TH>)
and table data (<TD>) elements. This element can accept the following attributes:

o Align: This attribute defines the alignment of the content of every cell in the row.
The Align attribute can accept “right,” “left] and “center” as values.

e Valign: Defines the vertical alignment of the contents of every cell in the row.
Valign accepts “bottom,” “middle,” and “top” as values.

3. <TH></TH> and <TD></TD>: The table header and table data elements define the
individual cells in a table’s row. Like the table row element, the table data and the table
header elements have align and valign elements. However, when these attributes are
included with the table header or the table data elements, the alignment is only defined

028 Facebook, Inc. - Ex.1008

Figure 3.5 The Internet Explorer’s rendition of the HTML.

for the individual cell. Aside from align and valign, the table header and the table data
elements have the following attributes:

* Colspan: This attribute defines the number of column widths spanned by the indi-
vidual cell. The default value for this attribute is 1.

° Rowspan: Like the Colspan attribute, the Rowspan attribute defines the number
of rows that the cell will cover. The default value for this attribute is also 1.

4. BGColor: Defines the background color of the cell. The colors can either be specified by
RGB (red-green-blue) triplet values or (more simply) by the name of the color you would
like in quotes. The supported colors for this attribute are : “red;” “green” “blue.” “black,”
“white,” “gray,” “silver,” “yellow;” “aqua,” “navy, “lime.” “teal” “fuchsia” and “olive”

The following HTML defines a simple table that forms a calendar for the month of Decem-
ber. Notice that the holidays will appear in the table as white cells. Figure 3.5 shows the
Internet explorer’s preserntation of this HTML.

<TABLE CELLPADDING=2 WIDTH=50 BORDER=5 ALIGN="LEFT">
<TR>

<TH ALIGN="Center" VALIGN="Middle" BECOLOR="Yellow" COLSPAN=7>DECEMBER</TH>
</TR>

<TR Align="center">

029 Facebook, Inc. - Ex.1008

<TH>Monday</TH><TH>Tuesday</TH><TH>Wednsday</TH>
<TH>Thursday</TH><TH>Friday</TH>

<TH>Saturday</TH><TH>Sunday</TH>

</TR>

<TR VALIGN="top">
<TD>1</TD><TD>2</TD><TD>3</TD><TD>4</TD>

<TD>5</TD><TD>6</TD><TD>7</TD>

</TR>

<TR VALIGN="top">
<TD>8</TD><TD>»9</TD><TFD>10</TD><TD>11</TD>
<TD>12</TD><TD>13</TD><TD>14</TD>

</TR>

<TR VALIGN="top"'>
<PD>15</TD><TD>16</TD><TD>17</TD><TD>18</TD>
<TD>19</TD><TE»20</TD><TD>21</TD>

</TR>

<TR VALIGN="top">
<TD>22</TD> <TD>23</1TD><TD BGCOLOR="white">24</TD>

<TD BGCOLOR="white">25</TD><TD BGCOLOR="white">26</TD>

<TD>27</TD><TD>28</TD>

</TR>

<TR VALIGN="top">
<TD=28</TD><TD>30</TD><TD BGCOLOR="white">31</TD>
<TD»</TD><Th></TD><TD></TD><TD></TD>

</TR>

</TABLE>

Creating Forms

By far, the most important HTML elements to the serious Web developer are those involved
in the creation of forms. If you remember from earlier in this chapter, World Wide Web docu-
ments can be used to send information to HTTP (Web) servers. The HTML elements that are
responsible for calling HTTP methods are those involved in the creation of forms.

The topmost level of a form is the <Form></Form> element, itself. You can place any of
the control tags inside these two tags to create control on your form. The form element has
three attributes that govern what the form does when it is submitted and the type of data
that it will send to the server.

030 Facebook, Inc. - Ex.1008

Action The action attribute specifies the URL of the server resource to which the data filled
into the form should be submitted. Typically, this is some type of gateway program. A gate-
way program is one that can receive information from the HT'TP method and do something .
with the information. Typically, gateway programs are either Perl scripts, CGI (common gate-
way interface) programs or, in the case of a site being installed on a Microsoft Internet Infor-
mation Server, it could be some type of ISAPI (Internet server application programming
Interface) program typically written in C. However, this book will concentrate on the newest
generation of gateway interfaces, in particular, the creation of Active Server Scripts.

Method This attribute defines the HTTP method used to submit data to the server. If you
use a GET method, then the information typed into the form’s controls by the user is submit-
ted to the server as part of the URL in the HTTP request header:

Get vb-bin/input/pslobs.pl?textl=Bill&text2=Martiner HTTP/1.0

In contrast, if the POST method is used, then the information filled into the form’s
controls is sent to the server as the HTTP request method’s entity (not in its header informa-
tion, but in its body).

There is an advantage to using the POST method to send large amounts of information
because transmitting information in the body of the HTTP message is more efficient for most
servers. However, if you wish for your users to be able to put the results of some server
process (e.g., the results of a search) into their collection of “favorites” or “bookmarks,” then
you should use the GET method because all of the information sent to the server is transmit-
ted with the URL and can be stored as a string to be returned to at some later time. (This is
why you can store the results of a search in many Web searching utility sites.)

Enctype This rarely used attribute can specify the type of data sent via the form’s method.
If this attribute is not included, then it will pass the default value of application/x-
www~form-urlencoded which is what you will want (unless you are doing something
very specialized) anyway.

So, the first element in the creation of a form typically looks something like this:

<FORM METHOD=POST ACTION="www.wingspan-t.com/vb-bin/scam.asp">
</FORM>

The Input Element
Now that you have specified the resource that the form will be acting upon and the HTTP
method that it will be using, you can make use of the <Input></Input> clement to design

031 Facebook, Inc. - Ex.1008

your form’s user interface. Although this is just one element, when it is combined with its
Type attribute, it can be used to create textboxes, submit and reset command buttons, invisi-
ble textboxes, checkboxes, image controls, password-type textboxes, and radio buttons. The
<Input> clement’s common attributes are as follows:

o Name: Assigns the variable name specified to be equal to the contents of the control.
For example, if I created a textbox named txtFirstname, then when the user typed infor-
mation into the textbox and submitted the form, the server would receive the siring
txtFirstnamesWhatWasEntered in the client’s HITP request message.

o Type: Designates the control’s type. The various types are as follows:

checkbox: Will create a checkbox on the form. A HTML checkbox is by default
off. When the form is submitted, only checkboxes with a value of on are submit-
ted, This type will take a Checked attribute that will turn the checkbox to on.

radio: Will create a radio button (i.¢., option button) type of control. Radio
elements can be made mutually exclusive by assigning them the same name. If this
is done, then, when one radio button in the group is on, all the others will be set
to fulse. Like the checkbox type, this type also supports a Checked attribute. A
Value attribute must be added to a radio button. This value will reflect the data to
be passed to the server when the form is submitted.

text: A normal, single-line Visual Basic type textbox is created. This type takes an
additional Size attribute which defines the maximum size that is to be displayed,
an Align attribute that can be used to define the alignment of the text input to the
control, and a Maxlength attribute that specifies the maximum number of charac-
ters that can be input into the control.

hidden: Like a textbox, but it is not displayed to the user. This type of control is
helpful for passing hidden information to the server.

password: This is another control like a textbox. However, the text entered into
this element will be obscured by asterisks.

image: ‘The use of this attribute has the exact same effect as using the Ismap
attribute of the tag (used for inserting images). When this element is
clicked upon, the form is submitted immediately, sending the X, Y coordinates to
the form’s Action attribute. The gateway program on the server can use these coor-
dinates to judge where the user has clicked on the image and respond appropri-
ately.

032 Facebook, Inc. - Ex.1008

¢ reset: When this attribute is used, a command button that will clear the user’s
input into the form will be created. This type of element will take a Value attribute
that will define the command button’s text.

= submit: This attribute will create a command button that will submit the data
typed into the form’s controls to the server using the form’s HTTP method.

So, through the use of the <Form></Form: and the <Input></Input> elements, a robust
form interface can be built for your Web-based applications. The following is an example of
the use of these elements to create a simple form interface and Figure 3.6 shows the docu-
ment.

<FORM METHOD=POST ACTION="www.wingspan-t.com/vb-bin/creditscam.asp">
<H1»Be Careful!</H1l>

Please input your first name:<INPUT TYPE="TEXT" NAME="txtFirstName" VALUE=""
SIZE=10>

Please input your last name:<INPUT TYPE="TEXT" NAME=‘txtLastName' VALUE=""
SIZE=20>

Please input your Social Security number:<INPUT TYPE="TEXT" NAME="txLSS#"
VALUE="" SIZE=11 MAXLENGTH=11>

I trust you absolutely with this information. <INPUT TYPE="CHECKBOX"
NAME="chkTrust" >

Are you really sure that you want te do this?

Yes<INPUT TYPE="RADIO" NAME="optSure" VALUE="vyes"> No<INPUT TYPE="RADIQ"
NAME="optSure" VALUE="no">
<RBR>

<INPUT TYPE="SUBMIT" NAME="cmdOK" VALUE="QK">

</FORM>

Figure 3.6 Display of the document shown in the HTML.

033 Facebook, Inc. - Ex.1008

The Select Element

Aside from the types of the <Input> element, there are two other types of HTML form
controls. The first of these is the <Select> element that can be used to create a Visual Basic
type listbox. The <Select> element is used to allow the user to select one or many prede-
fined values. The value that is currently selected when the form is submitted will be passed
to the server as the value of the control. The attributes of this form element are:

« Name; As with the <Input> element, this attribute defines the variable name that will
be associated with this control.

e Size: This attribute is used to define the number of values that the listbox will display. If
this attribute is given the value of 1, then the control will act as a drop-down listbox.

o Multiple: If this attribute is present, then multiple values can be selected from the list-
box. The default value for this element is single value selection.

The available values of the listbox are defined as <Option> elements that exist within the
<Select></Select> tags. <Option:> elements can only be text; no markup can be included.
The attributes of the <Option> element are:

» Value: This attribute defines a paired value of the <Option> element’s text. For exam-
ple, if you had a listbox that showed your users a list of products, but stored the users’
selections in your database as SKU numbers, you would place the name of the product
between the <Option></Option> tags and you would designate the SKU number as the
Value of the <Option> e¢lement.

e Selected: A true value for this attribute will define the <Option> element as the
currently selected option when the form is displayed.

» Disabled: A #rue value for this attribute will define the <Option> element as disabled. A
disabled element will be displayed in the list as grayed or faded.

The TextArea Element

The final type of HTML defined form control is the <TextArea></TextArea> element. This
element is used to create a form control that allows the user to input a large amount of text.
The amount of text that can be input into a <TextArea> control is virtually unlimited. If
more text is input into the control than can be displayed in the control, then scrollbars will
appear to allow easy navigation through the text. By default, the textina <TextArea>
control will not wrap. The attributes that allow you to format that control are:

034 Facebook, Inc. - Ex.1008

*» Name: As with every other form element, the <TextArea> control has 2 mandatory
Name attribute that can be used to define the variable name that will carry the content
of the control to the server.

¢ Rows: This attribute is vsed to specify the height of the <TextArea> control in rows.
This attribute is mandatory for the creation of the control.

¢ Columns: Like the Rows atiribute, the Columns attribute defines the dimensions of the
control. The Columns attribute will define the width of the control in columns.

* Wrap: Defines the way that text will “wrap” in the control. If you define this attribute
to be ¢off , then word wrapping will be completely disabled. When its value is set to
virtual then new line characters are inserted to achieve the effect of word wrapping on
the client machine. However, these line characters will not be returned to the server
when the form is submitted. Finally, when the value of the Wrap attribute is set to pbysi-
cal then line characters will cause word wrapping both in the client interface and in the
data sent to the server.

In this final document, a combobox and a textarea control are added to the form.

<HTML:>
<BODY>
<FORM METHOD=POST ACTICN="www.wingspan-t.com/vh-bin/creditscam.asp">
<H1l> Be Careful |Hi>
Please input your first name:
<INPUT TYPE="TEXT" NAME="txtFirstName" VALUE="" SIZE=1{0>

Please input your last name:
<INPUT TYPE="TEXT" NAME="txtLastName" VALUE="" SIZE=20>

Please input your Social Security number:
<INPUT TYPE="TEX?" NAME="txtSS#" VALUE="" SIZE=11 MAXLENGTH=11>

I trust you absolutely with this information. <INPUT TYPE="CHECKBOX"
NaME="chkTrust" >

Are you really sure you want to do this? Yes<INPUT TYPE="RADIO" NAME="optSure"
Value="ves"> No<INPUT TYPE="RADIO" NAME="optSure" Value="no">

Now that I have this information, how would vou like to be abused?

<SELECT NAME="cboAbuse">

<OPTION>Apply for cards and trash your credit rating

<QPTION>Bury you in marketing

<OPTICN>Find out private information

035 Facebook, Inc. - Ex.1008

<OPTION>Sell it to those more devious than myself
</SELECT>

Do you have any comments on our service?

<TEXTAREA NAME="taComments" ROWS=2 COLS=50>

</ TEXTAREA>

<INPUT TYPE="SUBMIT" NAME="cmdGCK" VALUE="0OK">
< /FORM>

</BODY>

</HTML>

Figure 3.7 displays the HTML document seen earlier, complete with the recent additions.
Notice how the <Select>> element is displayed as a drop-down list because only one row is
being displayed.

Ul ary

HTTP and HTML define the foundations of development on the World Wide Web. Now that
you have been introduced, you will see them (in one form or another) throughout the
remainder of this book. This is not to say that these two technologies are perfect, easy to
work with, easily made secure, efficient, or wonderfully powerful. However, since the Inter-
net is built on commonality, it is not always the best technologies that become dominant; it
is simply the ones that are agreed upon. Really, it is not all that different from the rest of the

Figure 3.7 The finished HTML form.

036 Facebook, Inc. - Ex.1008

world of development, in which technology that becomes dominant is the one that becomes
most popular.

Some of these problems with the HTTP/HTML technologies have been solved through the
adoption of new standards. Other problems will be solved through the creation of smart
servers and gateway applications that will work within the boundaries of the current HTTP
and HTML specifications, but will provide documents most appropriate for the browser
making the request. Another way of dealing with the problems of HT'TP and HTML is to use
the ability of these technologies to serve ActiveX objects, developed in traditional develop-
ment environments, like Visual Basic 5.0.

The Microsoft technologies that have been created to assist in these sochations deal exten-
sively with Visual Basic syntax and other Visual Basic paradigms. You will be able to move
from development using HTML and HTTP to an event-driven paradigm using event proce-
dures for controls written in Visual Basic Script. The HTTP server can be programmed using
a combination of HTML and Visual Basic Script. Finally, ActiveX components can be inserted
into HTML documents and served to the browser. Through the use of these technologics and
others being developed by Microsoft, we are beginning to see a model of the World Wide
Web that is not so centered around the formats and protocols, but rather one that is focused
on the creation of solutions. But, I guess that’s why you're reading this book.

037 Facebook, Inc. - Ex.1008

038 Facebook, Inc. - Ex.1008

 oming from a community that has a long history with the use of

2 custorn controls, the inclusion of ActiveX controls on the Web
may seem like an obvious solution to the limits of HTML.

However, it represents sweeping change for the Internet because,
when you use an ActiveX component in a Web page, you change the
way that the World Wide Web works. HTTP is still the basis of the
Web, but since this protocol can be used to transmit anything, you no
longer need to be tied to the sole use of HTML. In fact, ActiveX repre-
sents such a fundamental change in the way that the World Wide Web
works that some see it as the death of HTML and the birth of 2 more

active, useful Internet,

It also represents a paradigm shift away from the Internet’s traditional mass
of development tools, towards the tools and thinking that the Visual Basic
development community espouses. In Figure 4.1, you can see the inclusion of
two familiar entities from Visual Basic: the RichTextBox control and the Grid
Control. The inclusion of these types of components in Web pages and the
ability to use Visual Basic Script to set properties, call methods, and react to
events should make you feel right at home.

Since Visual Basic can now be used to create these components and script
their interactions, the model of the new World Wide Web is not built only on
the clumsy implementations of HTML, but also on the robust and familiar envi-
ronment of Visual Basic. More important than this is the fact that through the
use of this technology, the Visual Basic community is given access to one of
the largest promises of development on the World Wide Web-—the powerful

75

039 Facebook, Inc. - Ex.1008

Figure 4.1 The RichTextBox and Grid Control .ocx controls at play on the Web,

ability to maintain an application from one location. If you can imagine making a bug fix on
one machine and that fix seamlessly exporting itself to 10,000 of your users, then you have a
basic understanding of what this technology is going to be able to do for your application
development.

Ee@$> EX-.

You are able to integrate ActiveX components into your HTML through the use of the
<Object></Object> tag. This tag is used not only to deliver ActiveX objects but also Java
applets and even images. Like any of the complex HTML tags, the <Object> tag takes many
different attributes. It is through these attributes that the component is downloaded and
given the properties that you desire on your Web page. The following code is an example of
the use of the <Object> tag and its attributes to embed a Timer ActiveX control into a Web
page, enable it, and set its Interval property to 200:

<OBJECT ID="timerl" CLASSID="clsid:59CCB4A0-727D~11iCF-AC36-00AAG0A4TDDZ"
CODEBASE=
"http://activex.microsoft.com/controls/iexplorer/ietimer.ocxfiVersion=4,70,0,1161"
ALIGN=middie>

<PARAM NAME="Interval" VALUE="200">

<PARAM NAME="Enabled" VALUE="True">
</QOBJECT>

The attributes that can be used with the <Object> tag are as follows:

040 Facebook, Inc. - Ex.1008

Table 4.1 Align Values

Align Value What it does

Baseline Aligns the bottom of the object witlt the baseline of the surrounding text,
Center Centers the object between the left and right margins.
Left Aligns the object with the left margin and causes the surrounding text to

wrap along the right side of the object.
Middle The middie of the object aligns to the baseline of surrounding text.
Right Aligns the object to the right margin of the page.
TextBottom The bottom of the object aligns with the botiom of the text.
TextMiddle The middle of the object aligns with the middle of the surrounding text.

TextTop The top of the object aligns with the top of the surrounding text.

* ALIGN: Assigns the placement of the object on the Web page. The values that can be
set to this attribute are detailed in Table 4.1.

« BORDER: Defines the width of the border around the object.

» CLASSID: When any ActiveX component is added to the system, it must first be added
to the Windows Registry and given a global unique identifier (GUID). As is defined
under the Common Object Model (COM), GUID can be used to instance its correspond-
ing ActiveX class. In this way, the process of instancing an ActiveX class in the context
of the browser is just like using an OLE component on a Visual Basic form. When the
browser requires the creation of an ActiveX class, the Windows Registry is consulted
and the ActiveX component’s class will be instanced.

As the browser receives information about an ActiveX component embedded in a Web
page, it first uses the CLASSID attribute in conjunction with a call to the CoGetClassOb-
ject API function to query the Windows Registry. If it has already been installed and regis-
tered, the browser will use the CLASSID attribute to instance the ActiveX component.
Only if this attribute does not correspond to a GUID in the Windows Registry will the
Internet Download Service be employed to download, validate, and install the control.

« CODEBASE: As was previously stated, if the client system has not yet installed the
component, then the browser must first download and install the component before it is

041 Facebook, Inc. - Ex.1008

used. For this reason, when you include an ActiveX component in a Web page, you must
also specify the CodeBase (i.e., URL) from which the browser application can download
the control.

If you look at the HTML example that preceded Table 4.1, you will see that the Codebase is

defined as follows:

CODEBASE=
"http://activex.microsoft. com/controls/iexplorer/ietimer.ocx#Version=4,70,0,1161"

So, when the browser application receives an object tag that includes an ActiveX compo-

nent that it does not yet have, it calls the CoGetClassObjectFromURL API function and
passes it the information about the location of the control.

CODETYPE: Used to ensure that the viewing application is compatible with the object
to be downloaded.

DATA: This property can be used to specify a file containing information that is used by
the object. For example, if 2 Multimedia control was being instanced, then the control’s
Data property would specify a .avi (video) file.

DECLARE: Specifies that the object is not to be instanced; only its class is to be declared
in the context of the page. This can be used when creating cross-teferences to the
object later in the document or when using the object as a parameter to another object
in VBScript.

HEIGHT: This is used to define the height of the object as it will appear on the Web
page.

HSPACE: Defines the space to keep between the right and left borders of the visible
area of the object.

ID: This attribute defines the name of the object that will be used in scripting the
object. This ID value is very much like the Name property of .ocx controls in Visual
Basic as it is the name of the control that is used when properties are set or methods are
called in code.

NAME: If the object exists within a <Form></Form> block, it will be submitted to the
server in the HTTP method if it is supplied with this attribute. By using this property,
you are able to use ActiveX controls rather than HTML controls in your on-line forms.

SHAPES: This attribute can be used to assign anchor tags over certain areas of the
embedded object.

042 Facebook, Inc. - Ex.1008

e STANDBY: Defines the text that will appear on the Web page as the object is download-
ing or instancing.
» TYPE: Specifies the Internet Media Type.

« VSPACE: Defines the space to keep between the top and bottom borders of the visible

area of the object.

« WIDTH: Defines the width of the object.

PARAM tags allow you to set the properties of the object that you have instanced in your
HTML. The PARAM tag is used in conjunction with its NAME attribute to set the value of a
certain property of the embedded control. The following code uses the PARAM attribute of
the Microsoft Label control to format a label (Figure 4.2).

<QBJECT ID="MyShinyNewLabel" WIDTH=116 HEIGHT=24
CLASSID="CLSID: 978C3E23-D4B0-11CE-BF2D-00AA003F40D0 " >
<PARAM NAME="Captlon" VALUE="Impressive!">
<PARAM NAME="Size" VALUE="3069;635">
<PARAM NAME="FontName" VALUE="Braggadocio"=>
<PARAM NAME="FontHelght" VALUE="225">
<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily® VALUE="2">

</0OBJECT=
Hr}ﬁ@aﬁ
| oo e Step Bebesh Heme o Seach Favester Pad
| ftdhes: [CWINDOWS\DESKTOPNabel kit i “l Lk
=l

Bmagrrrarniniwa!

. . ._-.J.
Trone) E

Figure 4.2 The described instance of the Microsoft Label control.

043 Facebook, Inc. - Ex.1008

onditional Range Headsr Contiol
ala Command Conticl
ata Range Footer Contiol

Figure 4.3 The Insert ActiveX dialog.

Just like .ocx controls that can be used in a Visual Basic form, every ActiveX component
has its own set of properties that can be set. So, in order to effectively use ActiveX controls,
you must also know the properties that can be written to or read from for each component.
As you can imagine, this would be a daunting task if it was not for the help of design tools.

Jsing Visual InterDev to Insert an
Component

The process of inserting new ActiveX content into a HTML document is much like inserting
a custom control into a Visual Basic form. You can start by either selecting Insert ActiveX
Control from the File Window’s Popup Menu or selecting Into HIML, ActiveX Control from
the Insert menu. Once you have done this, you will be presented with the Insert ActiveX
Control dialog shown in Figure 4.3.

If you select the control that you wish to insert and click on the OK button, you will find
that the File Window changes and becomes an interface like the Visual Basic IDE form build-
ing interface. In this window, you can size the control and set its properties using property
sheets that are very similar to the ones that you are used to in Visual Basic (Figure 4.4).

Once you are finished using this interface, you can finally add the HTML <OBJECT> tag t0
your HTML document by clicking on the window’s close button on the upper right corner.
Once this interface is closed, Visual InterDey will insert the HTML code describing the
control into the HTML document (Figure 4.5).

Once again, Visual InterDev is easy to use and it provides a valuable resource. If it were
not for this tool, not only would you have to remember the different parameters that each
ActiveX control was able to take, but you would also have to find the appropriate GUID for
each control. If you think for 2 moment about the number of ActiveX components that are
available for your use, the value of this tool becomes immediately apparent.

044 Facebook, Inc. - Ex.1008

”ﬁ. P

Era— - A

I @ e meisy cim@e sl e w0 w06 m
e 1T I RN PR R
| @8 Developer Products F ixd
2
Freqseaty YYalue
Agcelerator
AutoSize False
BackEolor 0x8000000F
| BackStyle 1 - Opagque
_______ BordeiColor 0x50000006
BordeiSiyle 0 - None
el Helo
: CodeBaze
.) Enablzg Trus +]
. 2 Irdoiiew

._ Fleady

Figure 4.4 The ActiveX Insertion Interface.

yecialize: ontrols

Although there are many noteworthy ActiveX controls currently available that handle every-

thing from data manipulation to the display of multimedia, there are two particular controls
that I would like to highlight. The first is important because it can have the effect of dramati-

IHE} Ele Edt Wiew Inted Proiect Tools Window Help :‘iﬂj_ﬁ

- I e v g 1 ___—__“-m‘,“ .\ - o ———— . -._.____
[é'%{@a@@! My | - (MBS e RdE s
: N <HTHL > =
. A2 ChEans =
£0- (] Developer Pracucts <META MAME="GENERATOR” Content="Hicrosoft Developsr Studic” :

¢METH ETTE-EQUIV="Content—Type" content="text-htnl; charset=I150-88!
<TITLEsDocurent Title<sTITLE> :
</HEAD>
<EODY >

<OBJECT ID="Labell" WIDTH=96 HEIGHT=24
CLASSID="CLSID:978C9E23-D4B0-11CE-EF2D-00AL003F40D0" >
<PARAM NAHME="Caption" VALUE="Hello":
<PARAH HNAHE="Size" VALUE="Z540;635">
<PARAH HAHE="FontCharSet" VALUE="0":
¢PARAH NAME="FontPitchindFanily" VALUE="2">
<PARAH HAME="FontUeight" VALUE="0">

</OBJECT»
<~/ECDY >
<HTHL>
. o Itz e . . . _’_f--
Feady Lnt7 Lol il

Figure 4.5 The resulting <OBJECT> code.

045 Facebook, Inc. - Ex.1008

cally optimizing the performance of your Web-based application, The second is important
because it is used extensively by the visual design environment of Visual InterDev and it
marks a significant advancement in the way that World Wide Web documents can be created.

The Preloader Control

If you have ever surfed the Web using a slow connection, you have probably spent hours
cursing at your screen as images or other large files crawled their way to your browser. This
is exactly the reason why Microsoft has created the Preloader Control.

This control is able to download a specified file into the browser’s cache while another
page is viewed. Although this is not actually increasing the speed at which information is
downloaded from the Web, it does make your users feel as if you have found them some
extra bandwidth. The Preloader control is invisible to your users when viewed in a Web
page and it will fire a COMPLETE event when it is finished downloading its file. If something
happens (such as the Internet connection being broken) to stop the preloading, then the
Preloader control will fire an ERROR event.

The Preloader control’s only four properties (<PARAM> attributes) are shown in Table 4.2.

The HTML that follows is an example of using the Preloader control to download a large
amount of information into the browser’s cache for later viewing:

<OBJECT

ID=Preloadl

ClassID="clsid;16E349E0-702C-11CF~A3A9~00A0CS034920"
CODEBASE="http://www.microscft.co/jp/ie/download. activex/ieprld. ccx"
width=1

height=1

<PRRAM NAME ="URL" wvalue="huge.htm">»

<PARAM NAME="ENABLE" value="1">

</QBJECT>

The HTML Layout Control

One of the most difficult things about working with HTML is the small amount of control that
vou really have in constructing your interface. Although, this type of fixed two-dimensional
layout is simply assumed in every other modern development environment, it was only
recently that such innovations as tables and frames became available for the reliable two-dimen-
sional formatting of Web content. Still, these innovations do not come close to providing HTML
with the type of formatting strength that is expected in a modern development tool.

046 Facebook, Inc. - Ex.1008

Table 4.2 PRELOADER Control Param Attritbutes

Property What It Defines

URL The URL that is to be downloaded into the browscer's cache.

ENABLE Can be set either to enable (ENABLE=1) or disable (ENABLE=0) the
Preloader control.

CACHEFILE The read-only name of the locally cached file

DATA The read-only contents of the cached file

The World Wide Web Consortium (W3C) is very aware of this problem and has already
proposed a solution by extending the HTML language to include full two-dimensional layout
capabilities. However, the universal adoption of this proposal has been slow in coming.

So, Microsoft has created an ActiveX Control that provides a preliminary implementation
of this new technology. The HTML Layout control allows developers t¢ work in the
proposed syntax and thereby create more compelling and controllable World Wide Web
matter as they wait for the newest implementations of HTML to be accepted by the general
public. Microsoft is committed to supporting the finally adopted W3C format and will
provide a free utility for the conversion of the HTML Layout Control to the W3C format at
the time that the new standard is widely accepted.

However, when the time comes that you no longer need the HTML layout control, you
may miss it because it has advantages other than simply providing the correct space between
controls on a Web page. First, because it is an ActiveX control, it is able to supply efficien-
cies in the speed at which graphical data can be displayed. Secondly, the idea of implement-
ing an interface in a control allows for significant reuse. For example, if you created an
HTML Layout that defined a simple name and address form, then you could simply drop it
onto any page that had a need for that type of interface again and again.

icrosoft Internet Explorer

The 4.0 version of Microsoft Internet Explorer supports all of the features available to many
browsers through the HTML Layout Control. Once again, if you are able to develop 2 Web
application that needs only to cater to one type of browser, then Microsoft Internet Explorer

4.0 allows you to work with the VBScript language and all of the features of dynamic HTML.

047 Facebook, Inc. - Ex.1008

How the HTML Layout Control
Aside from being able to format and display the new two-dimensional layout of HTML, the
HTML Layout control also acts as a container for all of the other controls that you place in it.
The way that this control works is through the use of two files. The first file is the ActiveX
component and the other is a text file with a .ALX extension. This text file formats the layout
of HTML components using the preliminary HTML syntax for two-dimensional layout.
Although this currently requires the use of these two files, when the 2-D layout specification
is widely accepted, most browsers will support it directly.

The first thing that must be done to be able to use this control is to insert the ActiveX
component in the native HTML. As with any ActiveX component, the HTML Layout control
is defined by the <OBJECT> tag and <PARAM> tags that define the propertics of the control,
itself. Aside from the attributes that any object can have, the following list describes the
parameters and attributes that the HTML Layout Control supports:

« ID: An optional ID or name to identify the control for the use with scripting (Visual
Basic Script or JavaScript).

« Style: Inline style for the HTML Layout control. This attribute has LEFT, TOF, WIDTH,
and HEIGHT attributes that define the control’s placement in the HTML document.

» AIXPATH: The URL of the .AIX file that will be used in the instance of the HTML
Layout Control.

The following code is an example of the object tag that would be used to define a basic
HTML Layout Control embedded into a HTML document:

<QBJECT CLASSID=YCLSID:8123AE312~8B8E~11CF-93CB-00AAQCCOSFDEF"
codebase="http://activex.microsoft.com/controls/mspertl(.cab#version=1,0,5,1"
ID="download_alx" STYLE="LEFT:0;TOP:0">
<PARAM NAME="ALXPATH" REF VALUE="layout.alx">
</0OBRJECT>

The .ALX File This supporting file includes objects and event procedure code that will be
displayed and run when HTML Layout Control is viewed. According to the preliminary speci-
fications of the W3C, this file is defined within a pair of <DIV> tags. The objects that are
included within this tag take additional style attributes that define their placement in the
HTML Layout Control. What follows is a .ALX <DIV> tag that defines the placement of an
ActiveX label, an ActiveX textbox, and an ActiveX command button:

048 Facebook, Inc. - Ex.1008

<DIV ID="Layoutl" STYLE="LAYQUT:FIXED;WIDTH:173pt;HEIGHT:53pt;">

<QBJECT ID="Labell"
CLASSID="CLSID:878C9o9E23-D4B0-11CE-RF2D-00AA003F40D0"
STYLE="TQOP:8pt;LEFT: Bpt;WIDPH: 41pt ;HETGHT : 8pt; ZTNDEX: 0; ">
<PARAM NAME="Caption" VALUE="First Name:">
<PARAM NAME="Size" VALUE="1455;2%1">
<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">
<PARAM NAME="FontWeight" VALUE="0">
</OBJECT>

<OBJECT ID="txtFirstName"
CLASSID="CLSID:8BD21D10-EC42-11CE-SE0D-00ARO06002F3 "
STYLE="TOP:17pt; LEFT: 8pt; WIDTH: 74dpt ; HEIGHT: 17pt ; TABINDEX: 1; ZINDEX:1; ">
<PARAM NAME="VariousPropertyBits" VALUE="746604571">
<PARAM NAME="S8ize" VALUE="2620;582">
<PARAM NAME="FeontCharSet” VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">
<PARAM NAME="FontWeight" VALUE="0">
</QBJECT>

<OBJECT ID="CommandButtonl®
CLASSID="CLSID:D7053240-CE69-11CD-AR777~00DD01143C57"
STYLE="TOP:17pt; LEFT: 91pt ;WIDTH: 41pt; HEIGHT: 17pt; TABINDEX: 2; ZINDEX: 2; ">
<PARAM NAME="Caption" VALUE="OK">
<PARAM NAME="Size" VALUE="1455;582">
<PARAM NAME="FontCharSet" VALUE="0">
<PARAM NAME="FontPitchAndFamily" VALUE="2">
<PARAM NAME="Paragraphalign" VALUE="3">
<PARAM NAME="FontWeight" VALUE="{">
</OBJECT>
</DIV>

As you can see in the preceding code, there are many attributes that must be used in
order to define the placement of ActiveX components inside <DIV> tags. Luckily, Visual

049 Facebook, Inc. - Ex.1008

InterDev provides a visual interface for the creation of these files. Remember, there are two
parts to a HTML Layout control. So, before the control can be placed, the .ALX file must be
created.

Using Visual InterDev to Create .ALX Files and Place HTML Layout Controls
You can use Visual InterDev to create a .ALX file by first selecting New from the File menu,
then selecting HTML Layout from the New dialog. After you click on the OK button on the
bottom of this dialog, an interface for building the .ALX file is presented that appears very
much like the Visual Basic form design environment (Figure 4.6). You can use this interface
just as you would create a form in Visual Basic; through the addition and placement of
controls in the window and the setting of the control’s properties.

Once you have finished building the .ALX file in this interface, you can save the file that
you created and close the window. If you want to view the .ALX code that was generated
with this interface, select the newly created file in the Project Window and select Open
With from that file’s popup menu. When the Open With dialog is shown, select the Source
Editor and click on the Open button. By doing this, the .ALX code will not be shown in its
visual design representation, but rather as a text file displayed and color-coded in the normal
Visual InterDev file editor.

Once you have a .ALX file built, you can insert it into any number of HTML documents.
When you wish to insert a HTML Layout control into an HTML document, simply display the

AuloSize Falze
BackColor 0:2000000F
BackSiyle 1 - Opaque
Caplion CK
CodzBase
Enablad Trug

Font MS Sans Serif
Fatelelor xB0D00G12

Figure 4.6 The .ALX Visual design environment.
050 Facebook, Inc. - Ex.1008

i Broects Conterts of remaiAMingzpan-t

- [rematifvingzpant © [PSlopor st
: F-(] imagee

| URLTupe fiesolyoo [HTML Lapouts by -]

T [t stomariAvingspantdLaoutabe T
Eratio: | .Il
URL Preview. thitiy /wmatifVingipan-Whayoul sl =t
: g |

Figure 4.7 The Insert HTML Layout dialog.

document in the Visual InterDev File Window and place your cursor where you would like
to insert the control. Then select Into HTML, HIML Layout from the Insert menu. When the
Select HTML Layout dialog is displayed, select the appropriate .ALX file and click the OK
button and Visual InterDev will insert the HTML Layout Control into your HTML document
(Figure 4.7).

orls

Through the creation of the ActiveX standard, Microsoft has moved its Windows operating

system from the desktop to the Internet. This technology is basically OLE (i.e., ActiveX) at
work on the Internet. Because the Visual Basic community is so used to working with this
Windows service, the movement of this technology to the Internet represents a very smooth
transition from desktop Visual Basic development to Visual Basic development on the World
Wide Web.

Visual Basic forms can be used as OLE containers. For example, when yon place 2 .ocx
control on a Visual Basic 4.0 form, it is instanced as an embedded, in-process OLE. Once an
.ocx control is sited on a form, the client (the Visual Basic .exe) can use the server by chang-
ing properties and calling methods of the embedded object. So, if you have ever used an
OLE custom control in Visual Basic development, the idea of using OLE components in
World Wide Web development should seem natural. Microsoft has been able to integrate

051 Facebook, Inc. - Ex.1008

ActiveX controls into its browser because its browser, like a Visual Basic form, is an OLE
container. In fact, the component that is responsible for the display of Web content in the

Microsoft Internet Explorer is an ActiveX component itself.

When an HTTP message is sent to the client for viewing, it may carry with it a call to
instance an ActiveX object class. If you already have that type of object on your system, then
it is created in the context of the browser, However, if you do not have that component, or
(in some situations) the most recent version of the control on your system, then the compo-
nent will be downloaded, validated, and instanced in your browser. Once you have the
component installed on your system, the next time that your browser needs to instance that
type of component, no download is needed; it is simply instanced when it is called. Since
this file transfer only needs to happen once over the Internet, the client perceives ActiveX
controls as being loaded very quickly.

Through this behavior, the browser provides a flexible and intriguing interface with
which to develop. Although a browser works in a way much like the Visual Basic form, it is
also much more like a television screen than a conventional form. That is, in conventional
programming, a different form is used for each screen in your application. In contrast, when
you are developing content for the Web, the browser interface is as constant as a television
screen. It is only the content shown through the interface that is changing as it receives

information from a remote Server.

rawbacks and Disadvantages

Don’t get me wrong, ActiveX is not the answer to every problem. In fact, this technology
serves to create a fair number of problems. The first major problem with this technology is
that every time a user travels to a page that uses a new ActiveX component, that component
is downloaded and registered on the user’s system. Although this will make the loading of

052 Facebook, Inc. - Ex.1008

these components very fast, it also requires that the user is constantly consuming his or her
hard disk’s free space with new components.

The second problem with ActiveX techinology is that not every browser is able to use it.
Remember, the industry’s browsers have been fed a steady diet of HTML for years. The
weaning process may be slow. However, the two largest browsers already support this tech-
nology: Microsoft’s Internet Explorer was built for this technology and the Netscape Naviga-
tor can support these components through the use of plug-ins.

The third and scariest problem is that using ActiveX components means that there is
often somebody that you don’t know installing software on your machine. It goes without
saying that this is probably one of the best situations for spreading a virus that has ever been
conceived. However, be sure that Microsoft is working very hard to come up with solutions
for this problem. At present, most creators of ActiveX components can at least be held
accountable for their work.

What is important to keep in mind about these drawbacks is that they are all problems
that occur only on the Internet (the mean, dangerous world) and a large portion of what you
may be developing in the future may be applications for your company’s internal Web. When
ActiveX components are used on an intranet, most of these problems are eliminated. Your IS
division can monitor exactly what is downloaded onto the desktop and the number of
components that are used. So, as ActiveX still has many issues for its implementation on the
World Wide Web, this technology already provides a powerful and elegant solution for the
internal Web.

Versioning Concerns

A real concern with the use of any software is the distribution of the most up-to-date, bug-
free version available. This is especially true of ActiveX controls as they may be used in any
number of applications and Web pages. For this reason, not only does the Internet Down-
load Service look to see if a component is installed on the system, but it also checks to
ensure that the most recent version of the control is present.

When a new version is created for a control, you can include the version information
directly in the CODEBASE attribute. As you see in the following code, the version number is
simply placed in a position after the URL of the CODEBASE attribute:

<0OBJECT
CODEBASE="www.wingspan-t.com/controls/nboard.cablversion=5,0,0,5"
WIDTH=460

053 Facebook, Inc. - Ex.1008

HEIGHT=60

DATA=" www.wingspan-t.com /AdviWorks/Controls/billboard.ods”
CLASSID="clsid:6059B947~EC52-11CF-B50%-00A024488F73">
</0OBJECT>

So, the browser will check that the class associated with the GUID is on the system and
has 2 version number that is greater than or equal to the version number specified in the
object’s CODEBASE attribute. If the GUID specified is not already in the registry, or if the
type library of the object describes an object of an earlier version, then the system will
employ the Internet Download Service.

There may be some occasions when you wish to download no matter what version is
currently loaded on the machine. You are able to achieve this type of behavior by simply
making the version number equal to -1,-1,-1,-1. Although you are able to do this, you should
not do it often. Remember that one of the real advantages of ActiveX over rivaling technolo-
gies Java Appletts) is that it needs to be downloaded only once.

Using ActiveX Components with Various

SrOwWsSers

One of the weaknesses of using ActiveX components in your Web development is the fact
that not every browser can use them. Until recently, only the Microsoft Internet Explorer
was able to make use of these components. As was previously stated, this is a concern only
when developing content for the World Wide Web, not when you arc developing internal
applications using this technology. When you are developing Web-based applications for
internal use, you can decide what web client to use and tailor your code accordingly.

Unfortunately, you cannot choose the client for every user that might use your applica-
tion. For this reason, you may have some concerns about including ActiveX components in
World Wide Web applications. Even though the large proportion of your users will view your
page through a browser that can use ActiveX components, some users may not see the same
content and others may not see any content at all.

At the time of this writing, Microsoft is the only company that supports ActiveX natively
in its browser. However, Netscape can use ActiveX components through the use of plug-ins.
So, if you want to include ActiveX content for the Netscape Navigator, you can simply make
use of the <Embed> tag instead of the Microsoft Internet Explorer’s <Object> tag,

Unfortunately, other browsers have no means by which to provide ActiveX content. This
is unfortunate because when you are developing content for the World Wide Web, one of

054 Facebook, Inc. - Ex.1008

your goals is to communicate with the largest number of people possible. So, it is important
not to exclude anyone looking at your content with a browser that doesn’t support ActiveX
technology.

Luckily, we can fix this because one of the really nice features of HTML is that it will never
“blow up.” That is, if a browser doesn’t understand tags in HTML, it won’t stop processing
and crash the browser. Instead, browsers often simply ignore tags that they don’t recognize.
It is this feature of the browser that can be used to provide a number of different options to
users depending on the client application they are using to view your page.

In the following HTML sample, you can see how this is done. Both the <EMBED> and the
 tags are used inside of the <OBJECT>> tag. At the highest level in this nesting struc-
ture, the <OBJECT> tag is used so that if the client is using Microsoft Internet Explorer, this
will identify an ActiveX object. If this HTML is viewed by a browser that cannot use the
<OBJECT> tag, then the browser being used may be the Netscape Navigator and Navigator
can make use of the <EMBED?>> tag. If the user is viewing the page with a browser that
supports neither the <OBJECT> nor the <EMBED> tag, you can provide the user with an
image of what he or she is missing through the use of an tag.

<0QBJECT
classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http: //www, futurewave.com/fsplash.cab"
width=350 height=150>
<PARAM NAME="Movie" VALUE="wing.spl">
<PARAM NAME="Loop" Value="False">»
<PARAM NAME="Play" Value="True">
<PARAM NAME="BGColor® value="ffffff">
<PARAM NAME="Quality" Value="2utohigh">
<PARAM NAME="Scale" Value="Showall'>
<PARAM NAME="SAlign" Value="">

<!-- The EMBED tag is used for the Netscape Navigatecr Plug-in -->
<EMBED src="wing.spl" width=350 height=150
Loop="False" Play="True" BGColor="ffffff" Quality="Autchigh"
Scale="showall® SAlign=""

pluginspage="http://www.futurewave.com/downloadfs.htm">

<!-- The IMG tag is used for all other browsers -->

055 Facebook, Inc. - Ex.1008

<NOEMBED:>

<IMG sre="wing.gif" width=100 height=100 ALT="Hey, it's time to upgrade or
get a faster connection.">

< /NOEMBED:>
< /OBJECT>

Of course, it is conceivable that someone is using a browser that cannot even accept
graphical information. For this reason, the tag is used with the ALT attribute to
define the text that will be viewed if a really, really old browser is being used to view your
content or if the user disabled graphics on his or her browser in order to avoid the overhead
of downloading graphic material.

Okay, so this ActiveX technology is powerful, but is it safe? Just as much of ActiveX’s power
comes from the fact that it can work with all of the client’s resources, it is also its largest
liability. Since any component is able to manipulate the client’s file system and memory,
ActiveX is the perfect vehicle for both revolutionizing the Internet and destroying it with

computer virus.

As discussed, when you are implementing ActiveX components on an internal web, it is
certainly safe. However, on the Internet, Microsoft has had to make some decisions about
this technology and implement a special model for its safe use. Under the ActiveX model,
the component is able to use the full resources of the system, but it must first be validated as
safe before it is used by the system. This model is in contrast to the Java Sandbox model.

Under the later model, the safety of downloaded code is achieved by limiting its abilities
to working with only a portion of system resources—a sandbox where downloaded code
can make a mess without affecting the rest of the system. Although sandboxing is included
in the Microsoft Internet Explorer, the decision has been made not to use it with ActiveX
components, thereby enabling the creation of a more powerful component model for the
World Wide Web.

Of course, that’s all fine until somebody gets hurt. So, what can be done to protect the
masses while not hobbling the technology out of paranoia? Well, under the model that
Microsoft has developed, people are made to be responsible for their actions through the
use of certificates and the digital signing of the component. (This sort of registration scems
to work with handguns most of the time. Right?)

056 Facebook, Inc. - Ex.1008

Protecting Yourself

The way that Microsoft has decided to implement this type of Active content has taken the
onus of safery away from the technology and placed it on the implementers of the technol-
ogy and those who use it. ‘To do this, Microsoft has come up with the scheme of dutbenti-
code, a system by which code must be sigred by the author and validated by the user. The
system of Authenticode demands that the author of the ActiveX component identify her- or
himself and verify that the control has not been modified since it was signed. By doing this,
something akin to a tamper-proof cap is placed on the component.

The Microsoft Internet Explorer has been fully integrated with the use of Authenticode,
So, Microsoft has allowed its user base to decide for themselves how safe they want to be.
Figure 4.8 shows the Microsoft Internet Explorer’s Options dialog’s Secutity tab. This is
where the user can choose exactly how to use the Authenticode system to protect his or her
system.

The simplest level of security can be implemented by clicking on the Safety Level button
on this dialog and setting the security level to either High, Medium, or None, If your security
is set on High and the component to be viewed has not been signed, then the browser will
not display the control. If the user has set the security of the system to Medium, then the

Gem:zz!z lfm'n'ucc!if:;;u] mmgmtur.\ni Puoguame Secuily lhdvz;w:-;w:i}

- Coaerd advicor [
o Ratngs hely vou contiel what bind of Internet content the
3*@« wrets of your compuler are alswed 1o vigw
Enatte Fianng: Bething: !
- Eaific gty ———————mme—n s e
Lze eobheates o postively e bby stes publshas and !
yposacell i
Petsonat. Sl Pubilichies. ‘ i
S S |

B L A

5 You can choosn what tepe of seltesaie el otes can
3 davatoad and tun un pour campter

v tdow dovninatng of actve content
v Erable faehived cantted and plugans
I Run Actvel senpts

v Enable Java prooram: Sakety Lewad

or b o 1L !

Figure 4.8 The Microsoft Internet Explorer’s Safety Settings tab.

057 Facebook, Inc. - Ex.1008

Microsoft Internet Explorer will first display a dialog to the user explaining that the control
may be dangerous and giving the user the option whether to download the control or to
pass it by for safety’s sake. Finally, if the security of the browser has been set to Noae, then
the ActiveX component will be slapped right onto the user’s system without a complaint.

Once a control has been installed on the system, it will not be checked again to see if it
has been signed. However, when the client instances the component, it will be checked to
see if it has been marked as safe for initializing and scripting. Once again, the security
levels set in the Safety Settings tab have impact when the control is to be instanced.

If an unmarked component is to be instanced by a client with security set on High, then
the component will not be instanced and any scripting that refers to the control will fail.
Likewise, an unmarked control being viewed by a client with a security setting of Medium
will prompt the Microsoft Internet Explorer to first warn of possible danger, then allow the
user to make a decision. Finally, if the user has elected to have a security setting of None,
then there is no protection provided to the client.

So, if 2 component is to be viewed and scripted by clients, then it must be both signed
and marked as safe for use. Once again, all that this does is to demand that the developers
identify themselves and be held accountable for any damage that they cause. However, it
does in no way guarantec that the authors of the controls are not complete incompetents
who have somehow bumbled their way through the ActiveX SDX to sign and mark their
control, in error, as safe. Still, since controls are signed by their authors, at least you now
know exactly who you can tell your lawyer to contact.

So, you can think of the security that is employed for ActiveX as something like trick-or-
treating. ‘That is, your users scurry around the Web, picking up goodies and dropping them
into their baskets (Registry). The only real protection that they have is that if one of the
goodies that they have picked up has a razor blade (virus) in it, then at least you can find out
where they got it.

The Authenticode Model

Much has been said about the relatively unsecured nature of ActiveX components. As was
previously stated, ActiveX is less secure than the “Secure Sandbox” model employed in Java
(even though Java security is far from absolute). Rather than preaching that ActiveX is secure,
1 would rather expose you to the model used for the secure transmission of code from the
software manufacturer to the client machine and [et you draw your own conclusions.

The First Step: Getting a Certificate Getting the code to be distributed from the soft-
ware publisher to the secure client system is a tree step process. The first step is getting a

058 Facebook, Inc. - Ex.1008

certificate from a Certification Authority (CA). A CA is simaply a trustworthy person or orga-
nization that issues certificates to software publishers. Each certificate is linked to the CA
that issued it. In this way, CAs act like notary publics for ActiveX components.

The primary responsibilities of a CA include publishing their criteria for certification and
granting certificates. CAs store information about the publisher of the software and will
provide it to you if needed. Therefore, if an ActiveX component causes damage to your
system, at least you can identify the liable party.

Class 2 Certification There are two basic levels of certification. The first and lowest
certification is the Individual Certificate (Class 2 certification). This type of certification will
cost the owner around $20 a year. Applicants for this type of certificate only need to meet
the following criteria:

+ Identification: The publishers of the ActiveX component must submit their name,
address, and other personally identifying information that will be checked against an
independent consumer database for validity.

= Pledge: The publishers must pledge that they are not distributing a component that can,
in any way, harm the user’s system.

Class 3 Certification The other level of certification is for commercial software publish-
ers. The Commercial Certificate (Class 3) is needed for the distribution of components to
even the most secure clients. This type of certification allows for tight verification of the
safety of a component and the verification of sufficient financial standing of the component
publisher. Also, at about $400 a year, it is significantly more expensive than a Class 2 certifi-
cate. In order for a CA to grant a Class 3 certificate, the following criteria must be met:

« Identification: Applicants must provide their name, address, and materials that establish
them as representatives of the applying organization, This proof of identity requires that
the person applying for the certification is physically present or registered materials veri-
fying the identity of the applying party be sent to the CA.

« Pledge: Like with a Class 2 certificate, the applicants must pledge that they know that
the component is not capable of doing anything that would damage the user’s system.

« Dun and Bradstreet Rating: This is used to verify that the publisher has achieved a suffi-
cient level of financial standing and is still in business.

* Private Key Protection: ‘The publisher must verify the security of its cryptographic key
to its signature.

The Second Step: Signing Code Once a software publisher has been granted a certifi-
cate, it is the publisher’s job to sign the code. This can be accomplished through the ActiveX

059 Facebook, Inc. - Ex.1008

SDK and results in a Sigrature Block being inserted into the original file that will be
checked when the client downloads the component and runs the WinVerifyTrust function
to ensure that it is safe.

This Signature Block is the key to verifying that the code has been generated by a defined
publisher that currently holds a certificate and that the code has not been altered since the
time of the signing. Since all of the security of the Authenticode model rests with the secu-
rity of the Signature Block, its creation is both complicated and secure.

The first step of the signing process is running the code through an algorithm that
produces a fixed-length digest of the code. This digest will be the essential key for the verifi-
cation of the code. If the digest cannot be recreated at the client by running the algorithm
on the code, then the code is not matched to the certificate or the code has changed since
the time that the certificate was created.

Next, this digest is encrypted through the use of public and private keys. These are
matched sets of keys created by the software publisher and used expressly for the encryp-
tion and decryption of the digest into the signature block. The private key is used to encrypt
the code and is never exposed to an outside party. In fact, some CAs require, or strongly
suggest, that this private key be kept on a dedicated and isolated hardware solution.

This encrypted digest of the original code is now combined into a signature block with
the name of the algorithm used to digest the code and the certificate granted {rom the CA.
The certificate (also known as the X.509 certificate) contains the following information.

The version of the certificate format
The serial number used by the CA to identify the certificate being used

The identification of the algorithm used to sign the certificate, along with any needed
parameters

The name of the CA

A pair of dates signifying the time during which the certificate is valid

The name of the software publisher

The publisher’s public key name, any necessary parameters, and the public key

The signature of the CA

Afrer the X.500 Certificate is added to the encrypted digest of the code, it is inserted back
into the original code in a special reserved section.

060 Facebook, Inc. - Ex.1008

The Third Step: Verifying the Code at the Client The third and last step of the
secure transmission of code from software publisher to client machine is the verification of
code on the client machine. This is done at the client through the use of the WinVerifyTrust
APL This API function first extracts the signature from the code being downloaded and
determines the CA that authenticated the certificate. Then, it obtains the software
publisher’s public key as it is distributed by the CA.

After the public key is gained, the function uses this key to decrypt the digest of the origi-
nal code. The next step is to run the algorithm used to create the original digest on the code
that was downloaded to the system. Last, this new digest is compared against the decrypted
digest sent in the signature block.

If these two digests are not an exact match, then either the code has been modified since
the time it was signed, or the public and private keys are not a match. In either circum-
stance, the downloaded code becomes suspect and will either not be installed or the user
will be warned.

Al y

This is not the last that we will see of ActiveX technologies. In fact, this book is very much
about the use of ActiveX and it will be looking at this technology from a number of different
standpoints. In Chapter 5 these controls will be used in conjunction with VBScript. Chapter
6 deals with the creation of these controls using Visual Basic 5. Finally, Chapter 7 deals with
a newer feature of VB called an ActiveX document.

In each of these chapters you will be dealing with the same basic phenomena; the move-
ment of the Windows operating system and ActiveX (OLE) onto the Internet. As you see this
type of technology implemented, you can begin to understand what an important develop-
ment this really is.

061 Facebook, Inc. - Ex.1008

