
draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 E. Rescorla, A. Schiffman
INTERNET-DRAFT Enterprise Integration Technologies
<draft-ietf-wts-shttp-01.txt> Feb 1996 (Expires August-96)

 The Secure HyperText Transfer Protocol

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as ``work in progress.''

 To learn the current status of any Internet-Draft, please check the
 ``1id-abstracts.txt'' listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ds.internic.net (US East Coast), or
 ftp.isi.edu (US West Coast).

 This document describes S-HTTP version 1.2. The original draft of
 this specification, defining S-HTTP version 1.0, was distributed by
 the CommerceNet Consortium in June 1994; in December 1994 a revised
 specification describing S-HTTP version 1.1 was published as an
 Internet Draft (draft-rescorla-shttp-00.txt). In July 1995, an
 updated version of that draft was published as an Internet Draft.
 That document deprecated some unimplemented facilities, provides
 additional clarifying material, and made minor corrections to the
 12/94 version.

 This document implements a decision reached at the December 1995 IETF
 WTS meeting to break up the single S-HTTP document into two docu-
 ments, one describing the S-HTTP messaging protocol and negotiation
 syntax and one describing extensions to HTML to facilitate the use of
 S-HTTP. The companion document is draft-ietf-wts-shtml-00.txt [23].

Abstract

 This memo describes a syntax for securing messages sent using the
 Hypertext Transfer Protocol (HTTP), which forms the basis for the
 World Wide Web. Secure HTTP (S-HTTP) is an extension of HTTP, provid-
 ing independently applicable security services for transaction confi-
 dentiality, authenticity/integrity and non-repudiability of origin.

Rescorla, Schiffman [Page 1]

Internet-Draft Secure HTTP

 The protocol emphasizes maximum flexibility in choice of key manage-
 ment mechanisms, security policies and cryptographic algorithms by
 supporting option negotiation between parties for each transaction.

1 MICROSOFT 1012

http://tools.ietf.org/html/draft-ietf-wts-shttp-01.txt
http://tools.ietf.org/html/draft-ietf-wts-shttp-01.txt
http://tools.ietf.org/html/draft-rescorla-shttp-00.txt
http://tools.ietf.org/html/draft-rescorla-shttp-00.txt
http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt
http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Rescorla, Schiffman [Page 2]

Internet-Draft Secure HTTP

1. Introduction

 The World Wide Web (WWW) is a distributed hypermedia system which has
 gained widespread acceptance among Internet users. Although WWW
 browsers support other, preexisting Internet application protocols,
 the native and primary protocol used between WWW clients and servers
 is the HyperText Transfer Protocol (HTTP) [18]. The ease of use of
 the Web has prompted widespread interest in its employment as a
 client/server architecture for many applications. Many such applica-
 tions require the client and server to be able to authenticate each
 other and exchange sensitive information confidentially. The original
 HTTP specification had only modest support for the cryptographic
 mechanisms appropriate for such transactions.

 Secure HTTP (S-HTTP) provides secure communication mechanisms between
 an HTTP client-server pair in order to enable spontaneous commercial
 transactions for a wide range of applications. Our design intent is
 to provide a flexible protocol that supports multiple orthogonal
 operation modes, key management mechanisms, trust models, crypto-
 graphic algorithms and encapsulation formats through option negotia-
 tion between parties for each transaction.

1.1. Summary of Features

 Secure HTTP supports a variety of security mechanisms to HTTP clients
 and servers, providing the security service options appropriate to
 the wide range of potential end uses possible for the World-Wide Web.
 The protocol provides symmetric capabilities to both client and
 server (in that equal treatment is given to both requests and
 replies, as well as for the preferences of both parties) while
 preserving the transaction model and implementation characteristics
 of HTTP.

 Several cryptographic message format standards may be incorporated
 into S-HTTP clients and servers, particularly, but in principle not
 limited to, PKCS-7 and PEM. S-HTTP supports interoperation among a
 variety of implementations, and is compatible with HTTP. S-HTTP
 aware clients can communicate with S-HTTP oblivious servers and
 vice-versa, although such transactions obviously would not use S-HTTP
 security features.

 S-HTTP does not require client-side public key certificates (or pub-
 lic keys), supporting symmetric session key operation modes. This is
 significant because it means that spontaneous private transactions

2

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 can occur without requiring individual users to have an established
 public key. While S-HTTP is able to take advantage of ubiquitous
 certification infrastructures, its deployment does not require it.

Rescorla, Schiffman [Page 3]

Internet-Draft Secure HTTP

 S-HTTP supports end-to-end secure transactions, in contrast with the
 original HTTP authorization mechanisms which require the client to
 attempt access and be denied before the security mechanism is
 employed. Clients may be "primed" to initiate a secure transaction
 (typically using information supplied in an HTML anchor); this may be
 used to support encryption of fill-out forms, for example. With S-
 HTTP, no sensitive data need ever be sent over the network in the
 clear.

 S-HTTP provides full flexibility of cryptographic algorithms, modes
 and parameters. Option negotiation is used to allow clients and
 servers to agree on transaction modes (should the request be signed?
 encrypted? both? what about the reply?); cryptographic algorithms
 (RSA vs. DSA for signing, DES vs. RC2 for encrypting, etc.); and cer-
 tificate selection (please sign with your "Mastercard certificate").

 S-HTTP attempts to avoid presuming a particular trust model, although
 its designers admit to a conscious effort to facilitate multiply-
 rooted hierarchical trust, and anticipate that principals may have
 many public key certificates.

1.2. Changes

 This document describes S-HTTP/1.2. The prior draft described S-
 HTTP/1.1. This version adds a number of minor changes, including a
 new hash construction and a new way of binding cryptographic parame-
 ters to HTML anchors. S-HTTP/1.2 messages will be readable by S-
 HTTP/1.1 agents and vice versa, provided that compatible algorithms
 are used.

1.3. Processing Model

1.3.1. Message Preparation

 The creation of an S-HTTP message can be thought of as a a function
 with three inputs:

 1. The cleartext message. This is either an HTTP message or some
 data object.
 2. The receiver's cryptographic preferences and keying material.
 This is either explicitly specified by the receiver or subject
 to some default set of preferences.
 3. The sender's cryptographic preferences and keying material.
 This input to the function can be thought of as implicit
 since it exists only in the memory of the sender.

 In order to create an S-HTTP message, then, the sender merges the

Rescorla, Schiffman [Page 4]

Internet-Draft Secure HTTP

 sender's preferences with the receiver's preferences. The result of
 this is a list of cryptographic enhancements to be applied and keying
 material to be used to apply them. This may require some user inter-
 vention. For instance, there might be multiple keys available to sign
 the message. (See Section 7 for more on this topic.) Using this data,
 the sender applies the enhancements to the message cleartext to
 create the S-HTTP message.

 The processing steps required to transform the cleartext message into
 the S-HTTP message are described in Sections 2 and 3. The processing
 steps required to merge the sender's and receiver's preferences are
 described in Sections 4 and 5.

3

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

1.3.2. Message Recovery

 The recovery of an S-HTTP message can be thought of as a function of
 four distinct inputs:

 1. The S-HTTP message.
 2. The receiver's stated cryptographic preferences and keying
 material. The receiver has the opportunity to remember what
 cryptographic preferences it provided in order for this document
 to be dereferenced.
 3. The receiver's current cryptographic preferences and keying
 material.
 4. The sender's previously stated cryptographic options.
 The sender may have stated that he would perform certain
 cryptographic operations in this message. (Again, see sections
 4 and 5 for details on how to do this.)

 In order to recover an S-HTTP message, the receiver needs to read the
 headers and discover what sorts of cryptographic transformations were
 performed on the message, then remove them using some combination of
 the sender's and receiver's keying material, in the process while
 taking note of what enhancements were applied.

 The receiver may also choose to verify that the applied enhancements
 match both the enhancements that the sender said he would apply
 (input 4 above) and that the receiver requested (input 2 above) as
 well as the current preferences to see if the S-HTTP message was
 appropriately transformed. This process may require interaction with
 the user to verify that the enhancements are acceptable to the user.
 (See Section 7 for more on this topic.)

1.4. Modes of Operation

 Message protection may be provided on three orthogonal axes:

Rescorla, Schiffman [Page 5]

Internet-Draft Secure HTTP

 signature, authentication, and encryption. Any message may be signed,
 authenticated, encrypted, or any combination of these (including no
 protection).

 Multiple key management mechanisms are provided, including password-
 style manually shared secrets, public-key key exchange and Kerberos
 [19] ticket distribution. In particular, provision has been made for
 prearranged (in an earlier transaction) symmetric session keys in
 order to send confidential messages to those who have no key pair.

 Additionally, a challenge-response (``nonce'') mechanism is provided
 to allow parties to assure themselves of transaction freshness.

1.4.1. Signature

 If the digital signature enhancement is applied, an appropriate cer-
 tificate may either be attached to the message (possibly along with a
 certificate chain) or the sender may expect the recipient to obtain
 the required certificate (chain) independently.

1.4.2. Key Exchange and Encryption

 In support of bulk encryption, S-HTTP defines two key transfer
 mechanisms, one using public-key enveloped key exchange and another
 with externally arranged keys.

 In the former case, the symmetric-key cryptosystem parameter is
 passed encrypted under the receiver's public key.

 In the latter mode, we encrypt the content using a prearranged ses-
 sion key, with key identification information specified on one of the
 header lines. Keys may also be extracted from Kerberos tickets.

1.4.3. Message Integrity and Sender Authentication

 Secure HTTP provides a means to verify message integrity and sender
 authenticity for a HTTP message via the computation of a Message
 Authentication Code (MAC), computed as a keyed hash over the document

4

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 using a shared secret -- which could potentially have been arranged
 in a number of ways, e.g.: manual arrangement or Kerberos. This
 technique requires neither the use of public key cryptography nor
 encryption.

 This mechanism is also useful for cases where it is appropriate to
 allow parties to identify each other reliably in a transaction
 without providing (third-party) non-repudiability for the transac-
 tions themselves. The provision of this mechanism is motivated by our
 bias that the action of "signing" a transaction should be explicit

Rescorla, Schiffman [Page 6]

Internet-Draft Secure HTTP

 and conscious for the user, whereas many authentication needs (i.e.,
 access control) can be met with a lighter-weight mechanism that
 retains the scalability advantages of public-key cryptography for key
 exchange.

1.4.4. Freshness

 The protocol provides a simple challenge-response mechanism, allowing
 both parties to insure the freshness of transmissions. Additionally,
 the integrity protection provided to HTTP headers permits implementa-
 tions to consider the Date: header allowable in HTTP messages as a
 freshness indicator, where appropriate (although this requires imple-
 mentations to make allowances for maximum clock skew between parties,
 which we choose not to specify).

1.5. Implementation Options

 In order to encourage widespread adoption of cryptographic facilities
 for the World-Wide Web, Secure HTTP deliberately caters to a variety
 of implementation options despite the fact that the resulting varia-
 bility makes interoperation potentially problematic.

 We anticipate that some implementors will choose to integrate an out-
 board PEM program with a WWW client or server; such implementations
 will not be able to use all operation modes or features of S-HTTP,
 but will be able to interoperate with most other implementations.
 Other implementors will choose to create a full-fledged PKCS-7 imple-
 mentation (allowing for all the features of S-HTTP); in which case
 PEM support will be only a modest additional effort. Without com-
 pletely prescribing a minimum implementation profile (although see
 section 8) then, we recommend that all S-HTTP implementations support
 the PEM message format.

2. HTTP Encapsulation

 A Secure HTTP message consists of a request or status line (as in
 HTTP) followed by a series of RFC-822 style headers followed by an
 encapsulated content. Once the content has been decoded, it should
 either be another Secure HTTP message, an HTTP message, or simple
 data.

 For the purposes of compatibility with existing HTTP implementations,
 we distinguish S-HTTP transaction requests and replies with a dis-
 tinct protocol designator ('Secure-HTTP/1.2'). However, if a future
 version of HTTP (i.e., 'HTTP/2.0') subsumes this document use of a
 new protocol HTTP designator would provide the same backwards compa-
 tibility function and a distinction between such a future version of
 HTTP and Secure-HTTP would be unnecessary.

Rescorla, Schiffman [Page 7]

Internet-Draft Secure HTTP

2.1. The Request Line

 For HTTP requests, we define a new HTTP protocol method, 'Secure'.
 All secure requests (using this version of the protocol) should read:

 Secure * Secure-HTTP/1.2

5

http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc822

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 All case variations should be accepted. The asterisk shown here is a
 placeholder and should be ignored by servers; proxy-aware clients
 should substitute the URL (and must provide at least the host+port
 portion) of the request when communicating via proxy, as is the
 current HTTP convention; (e.g. http://www.terisa.com/*) proxies
 should remove the appropriate amount of this information to minimize
 the threat of traffic analysis. See Section 8.2.2.1 for a situation
 where providing more information is appropriate.

2.2. The Status Line

 For server responses, the first line should be:

 Secure-HTTP/1.2 200 OK

 whether the request succeeded or failed. This prevents analysis of
 success or failure for any request. All case variations should be
 accepted.

2.3. Secure HTTP Header Lines

 We define a series of new header lines to go in the header of the
 Secure HTTP message. All except 'Content-Type' and 'Content-Privacy-
 Domain' are optional. The message body shall be separated from the
 header block by two successive CRLFs.

 All data and fields in header lines should be treated as case insen-
 sitive unless otherwise specified. Linear whitespace [6] should be
 used only as a token separator unless otherwise quoted. Long header
 lines may be line folded in the style of RFC822 [6].

 This document refers to the header block following the S-HTTP
 request/response line and preceding the successive CRLFs collectively
 as "S-HTTP headers".

2.3.1. Content-Privacy-Domain

 This header line exists to provide compatibility with PEM-based
 Secure HTTP systems. The two values defined by this document are
 'PEM' and 'PKCS-7'. PKCS-7 [2] refers to the privacy enhancement
 specified in section 3. PEM refers to standard PEM message format as

Rescorla, Schiffman [Page 8]

Internet-Draft Secure HTTP

 defined in RFC1421 [1]. Note that MOSS[25] could be accomodated sim-
 ply by adding a Content-Privacy-Domain: MOSS.

2.3.2. Content-Transfer-Encoding

 The PKCS-7 message format is designed for an 8-bit clear channel, but
 may be passed over other channels using base-64 encoding (see RFC1421
 [1] for a description of base-64).

 For 'Content-Privacy-Domain: PKCS-7', acceptable acceptable values
 for this field are 'BASE64','8BIT', or 'BINARY'. Unless such a line
 is included, the rest of the message is assumed to be 'BINARY'. (Note
 that the difference between 'BINARY' and '8BIT' has to do with line
 length.)

 For 'Content-Privacy-Domain: PEM', the only acceptable value for this
 field is '7BIT', since PEM messages are already encoded for RFC-822
 (and hence 7-bit) transport.

2.3.3. Content-Type

 Under normal conditions, the terminal encapsulated content (after all
 privacy enhancements have been removed) shall be considered to be an
 HTTP/1.0 message. In this case, there shall be a Content-Type line
 reading:

 Content-Type: application/http

 It is intended that this type be registered with IANA as a MIME con-
 tent type. For backwards compatibility, 'application/x-http' is also
 acceptable.

6

http://www.terisa/
http://www.terisa/
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc822

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 However, the terminal content may be of some other type provided that
 that type is properly indicated by the use of an appropriate
 Content-Type header line. In this case, the header fields for the
 last (most deeply encapsulated) HTTP or S-HTTP message should be
 applied to the terminal content. It should be noted that unless the
 (S-)HTTP message from which the headers are taken is itself
 enveloped, then some possibly sensitive information has been passed
 in the clear.

 This is a useful mechanism for passing pre-enhanced data (especially
 presigned data) without requiring that the HTTP headers themselves be
 pre-enhanced.

2.3.4. Prearranged-Key-Info

 This header line is intended to convey information about a key which

Rescorla, Schiffman [Page 9]

Internet-Draft Secure HTTP

 has been arranged outside of the internal cryptographic format. One
 use of this is to permit in-band communication of session keys for
 return encryption in the case where one of the parties does not have
 a key pair. However, this should also be useful in the event that the
 parties choose to use some other mechanism, for instance, a one-time
 key list.

 This specification defines three methods for exchanging named keys,
 Inband, Kerberos and Outband. Inband and Kerberos indicates that the
 session key was exchanged previously, using a Key-Assign header of
 the corresponding method. Outband arrangements imply that agents
 have external access to key materials corresponding to a given name,
 presumably via database access or perhaps supplied immediately by a
 user from keyboard input. The syntax for the header line is:

 Prearranged-Key-Info: <Hdr-Cipher>','<CoveredDEK>','<CoverKey-ID>
 <CoverKey-ID> := <method>':'<key-name>
 <CoveredDEK> := <hex-digits>
 <method> := 'inband' | 'krb-'<kv> | 'outband'
 <kv> := '4' | '5'

 While chaining ciphers require an Initialization Vector (IV) [16] to
 start off the chaining, that information is not carried by this
 field. Rather, it should be passed internal to the cryptographic for-
 mat being used. Likewise, the bulk cipher used is specified in this
 fashion.

 <Hdr-Cipher> should be the name of the block cipher used to encrypt
 the session key (see section 4.4.7).

 <CoveredDEK> is the protected Data Exchange Key (a.k.a. transaction
 key) under which the encapsulated message was encrypted. It should be
 appropriately (randomly) generated by the sending agent, then
 encrypted under the cover of the negotiated key (a.k.a. session key)
 using the indicated header cipher, and then converted into hex.

 In order to avoid name collisions, cover key namespaces must be main-
 tained separately by host and port.

2.3.5. MAC-Info

 This header is used to supply a Message Authenticity Check, providing
 both message authentication and integrity, computed from the message
 text, the time (optional -- to prevent replay attack), and a shared
 secret between client and server. The MAC should be computed over the
 encapsulated content of the S-HTTP message. S-HTTP/1.1 defined that
 MACs should be computed using the following algorithm ('||' means

Rescorla, Schiffman [Page 10]

Internet-Draft Secure HTTP

 concatenation):

7

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 MAC = hex(H(Message||[<time>]||<shared key>))

 The time should be represented as an unsigned 32 bit quantity
 representing seconds since 00:00:00 GMT January 1, 1970 (the UNIX
 epoch), in network byte order. The shared key format is a local
 matter.

 Recent research [21] has demonstrated some insecurities in this
 approach, and this draft introduces a new construction. In the name
 of backwards compatibility, we retain the previous constructions with
 the same names as before. However, we also introduce a new series of
 names (See Section 2.3.5 for the names) that obey a different (hope-
 fully stronger) construction.

 MAC = hex(H(K' || pad2 || H(K' || pad1 ||[<time>]|| Message)))
 pad1 = the byte 0x36 repeated enough times to fill out a
 hash input block. (I.e. 48 times for MD5, 44 for
 SHA)
 pad2 = the byte 0x5c repeated enough times to fill out a
 hash input block.
 K' = H(<shared key>)

 The original HMAC construction is for the use of a key with length
 equal to the length of the hash output. Although it is considered
 safe to use a key of a different length (Note that security cannot be
 increased past the length of the hash function itself, but can be
 reduced by using a shorter key.) [22] we hash the original key to
 permit the use of shared keys (e.g. passphrases) longer than the
 length of the hash. It is noteworthy (though obvious) that this tech-
 nique does not increase the security of short keys.

 The format of the MAC-Info line is:

 MAC-Info: [hex(<time>)],<hash-alg>, hex(<hash-data>),<key-spec>
 <time> := "unsigned seconds since Unix epoch"
 <hash-alg> := "hash algorithms from section 4.4.5"
 <hash-data> := "computation as described above"
 <Key-Spec> := 'null' | 'dek' | <Key-ID>

 Key-Ids can refer either to keys bound using the Key-Assign header
 line or those bound in the same fashion as the Outband method
 described later. The use of a 'Null' key-spec implies that a zero
 length key was used, and therefore that the MAC merely represents a

Rescorla, Schiffman [Page 11]

Internet-Draft Secure HTTP

 hash of the message text and (optionally) the time. The special
 key-spec 'DEK' refers to the Data Exchange Key used to encrypt the
 following message body (it is an error to use this key-spec in situa-
 tions where the following message body is unencrypted).

 If the time is omitted from the MAC-Info line, it should simply not
 be included in the hash.

 Note that this header line can be used to provide a more advanced
 version of the original HTTP Basic authentication mode in that the
 user can be made to provide a username and password. However, the
 password remains private and message integrity can be assured. More-
 over, this can be accomplished without encryption of any kind.

 In addition, MAC-Info permits fast message integrity verification (at
 the loss of non-repudiability) for messages, provided that the parti-
 cipants share a key (possibly passed using Key-Assign).

2.4. Content

 The content of the message is largely dependent upon the values of
 the Content-Privacy-Domain and Content-Transfer-Encoding fields.

 For a PKCS-7 message, with '8BIT' Content-Transfer-Encoding, the con-
 tent should simply be the PKCS-7 message itself.

8

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 If the Content-Transfer-Encoding is 'BASE64', the content should be
 preceded by a line that reads:

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----

 and followed by a line that reads

 -----END PRIVACY-ENHANCED MESSAGE-----

 (see RFC1421) with the content simply being the base-64 representa-
 tion of original content. If the inner (protected) content is itself
 a PKCS-7 message, than the ContentType of the outer content should be
 set appropriately. Else, the ContentType should be represented as
 'Data'.

 If the Content-Privacy-Domain is PEM, the content should consist of a
 normal encapsulated message, beginning with:

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----

 and ending with

Rescorla, Schiffman [Page 12]

Internet-Draft Secure HTTP

 -----END PRIVACY-ENHANCED MESSAGE-----

 as defined in RFC1421.

 It is expected that once the privacy enhancements have been removed,
 the resulting (possibly protected) contents will be a normal HTTP
 request. Alternately, the content may be another Secure-HTTP message,
 in which case privacy enhancements should be unwrapped until clear
 content is obtained or privacy enhancements can no longer be removed.
 (This permits embedding of enhancements, as in, for instance, sequen-
 tial Signed and Enveloped enhancements.) Provided that all enhance-
 ments can be removed, the final de-enhanced content should be a valid
 HTTP request (or response) unless otherwise specified by the
 Content-Type line.

 Note that this recursive encapsulation of messages potentially per-
 mits security enhancements to be applied (or removed) for the benefit
 of intermediaries who may be a party to the transaction between a
 client and server (e.g., a proxy requiring client authentication).
 How such intermediaries should indicate such processing is described
 in Section 6.2.4.

3. Message Format Options

3.1. Content-Privacy-Domain: PKCS-7

 Content-Privacy-Domain 'PKCS-7' follows the form of the PKCS-7 stan-
 dard (see Appendix).

 Message protection may proceed on two orthogonal axes: signature and
 encryption. Any message may be either signed, encrypted, both, or
 neither. Note that the 'auth' protection mode of S-HTTP is provided
 independently of PKCS-7 coding via the MAC-Info header of section
 2.3.5 since PKCS-7 does not support a 'KeyDigestedData' type,
 although it does support a 'DigestedData' type.

3.1.1. Signature

 This enhancement uses the 'SignedData' (or 'SignedAndEnvelopedData')
 type of PKCS-7. When digital signatures are used, an appropriate
 certificate may either be attached to the message (possibly along
 with a certificate chain) as specified in PKCS-7 or the sender may
 expect the recipient to obtain its certificate (and/or chain)
 independently. Note that an explicitly allowed instance of this is a
 certificate signed with the private component corresponding to the
 public component being attested to. This shall be referred to as a
 self-signed certificate. What, if any, weight to give to such a

9

http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Rescorla, Schiffman [Page 13]

Internet-Draft Secure HTTP

 certificate is a purely local matter. In either case, a purely
 signed message is precisely PKCS-7 compliant.

3.1.2. Encryption

3.1.2.1. Encryption -- normal, public key

 This enhancement is performed precisely as enveloping (using either
 'EnvelopedData' or 'SignedAndEnvelopedData' types) under PKCS-7. A
 message encrypted in this fashion, signed or otherwise, is PKCS-7
 compliant.

3.1.2.2. Encryption -- prearranged key

 This uses the 'EncryptedData' type of PKCS-7. In this mode, we
 encrypt the content using a DEK encrypted under cover of a prear-
 ranged session key (how this key may be exchanged is discussed
 later), with key identification information specified on one of the
 header lines. The IV is in the EncryptedContentInfo type of the
 EncryptedData element. To generate signed, encrypted data, it is
 necessary to generate the 'SignedData' production and then encrypt it
 (since PKCS-7 does not support a 'SignedAndEncryptedData' type).

3.2. Content-Privacy-Domain: PEM

 This Content-Privacy-Domain simply refers to using straight PEM mes-
 sages as per section 2.3.1. Note that clients and servers which
 implement the original HTTP access authorization protocols (as pro-
 posed by Tony Sanders and originally implemented by Rob McCool) can
 be converted to use S-HTTP (using this Content-Privacy-Domain) simply
 by changing the request/results lines to match S-HTTP and by adding
 the following three lines to the header:

 Content-Privacy-Domain: PEM
 Content-Type: application/http
 Content-Transfer-Encoding: 7BIT

 It would be helpful (but not necessary) to remove the 'authorization'
 line. No cryptographic transformations are necessary.

3.2.1. Correspondence of PEM and S-HTTP Modes

 S-HTTP message protection modes for the PEM Content-Privacy-Domain
 necessarily follow the enhancement modes of PEM, that is: S-HTTP mes-
 sages which are to be signed use PEM's MIC-ONLY (or MIC-CLEAR) mode;
 S-HTTP messages which are to be both signed and encrypted (using RSA
 key exchange) use PEM's misnamed ENCRYPTED enhancement mode.

Rescorla, Schiffman [Page 14]

Internet-Draft Secure HTTP

3.3. HTTP/1.1 Header Interaction

3.3.1. Overview

 HTTP/1.1 [23], while as yet in draft form, describes a number of
 header lines which have potential interactions with S-HTTP.

3.3.2. Content-Encoding

 The Content-Encoding line is described as intended for compression or
 encryption. Since S-HTTP has it's own syntax for describing encryp-
 tion, that use is inapplicable here. Compression is also in general
 inapplicable to encrypted data and, if desired, should be applied to
 the inner content, rather than to the S-HTTP message.

3.3.3. Transfer-Encoding

 Transfer-Encoding (and in particular the 'chunk' mode) is, as stated
 in [23] intended to uniquely delimit the boundaries of the message.
 Since the message formats used by S-HTTP unambiquously define the end

10

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 of the message, chunk transfer encodings are unnecessary, and it is
 an error to use one in the outer content of an S-HTTP message. (And
 redundant to use one in the inner content.)

3.3.4. Connection

 The Connection header line is permitted in the header lines of S-HTTP
 requests and should be treated exactly as if the requests were HTTP
 requests. If the recipient of a message sees different values for the
 Connection header in an S-HTTP message and the inner HTTP content,
 the S-HTTP value should be ignored. However, if the Connection header
 appears only in the S-HTTP message but not in the inner HTTP content,
 it should be treated as if it appeared in the inner content.

 If a server sees a Connection header in the S-HTTP header it should
 acknowledge it in the S-HTTP header of it's response. If it sees it
 in the HTTP header, it should acknowledge it in the HTTP header of
 it's response.

3.3.5. Keep-Alive

 The Keep-Alive header line is permitted in the header lines of S-HTTP
 requests and should be treated exactly as if the requests were HTTP
 requests. If the recipient of a message sees different values for the
 Keep-Alive header in an S-HTTP message and the inner HTTP content,
 the S-HTTP value should be ignored. However, if the Keep-Alive header
 appears only in the S-HTTP message but not in the inner HTTP content,
 it should be treated as if it appeared in the inner content.

Rescorla, Schiffman [Page 15]

Internet-Draft Secure HTTP

 If a server sees a Keep-Alive header in the S-HTTP header it should
 acknowledge it in the S-HTTP header of it's response. If it sees it
 in the HTTP header, it should acknowledge it in the HTTP header of
 it's response.

3.3.6. If-Modified-Since

 This may be used by the proxy to indicate that the document may be in
 it's cache and that it is prepared to serve the document to the
 current requestor. Servers receiving this header and deciding not to
 resend the document should respond using the 320 response code as
 described in Section 6.2.5.

 This header should only be placed in S-HTTP headers by proxies.
 Clients wanting to use If-Modified-Since should place it in the HTTP
 headers of the inner content.

3.3.7. Content-MD5

 Servers may generate a Content-MD5 header to enable proxies to detect
 when valid cache hits have occurred. Note that the Content-MD5 header
 provides the possibility of traffic analysis and servers using this
 should bear that risk in mind.

3.3.8. Other headers

 No other HTTP/1.1 header lines should be placed in S-HTTP headers.
 If they are found, it is an error. Servers should respond with the
 421 BogusHeader error.

4. Negotiation

4.1. Negotiation Overview

 Both parties should be able to express their requirements and prefer-
 ences regarding what cryptographic enhancements they will
 permit/require the other party to provide. The appropriate option
 choices will depend on implementation capabilities and the require-
 ments of particular applications.

 A negotiation block is a sequence of specifications each conforming
 to a four-part schema detailing:

 Property -- the option being negotiated, such as bulk
 encryption algorithm.

11

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 Value -- the value being discussed for the property, such
 as DES-CBC

Rescorla, Schiffman [Page 16]

Internet-Draft Secure HTTP

 Direction -- the direction which is to be affected, namely:
 during reception or origination (with respect to the nego-
 tiator).

 Strength -- strength of preference, namely: required,
 optional, refused

 As an example, the negotiation header:

 SHTTP-Symmetric-Content-Algorithms: recv-optional=DES-CBC,RC2

 could be thought to say: ``You are free to use DES-CBC or RC2 for
 bulk encryption.''

 We define new header lines lines (to be used in the encapsulated HTTP
 header, not in the S-HTTP header) to permit negotiation of these
 matters.

4.2. Negotiation Header Format

 The general format for negotiation header lines is:

 <Line> := <Field> ':' <Key-val>(';'<Key-val>)*
 <Key-val> := <Key> '=' <Value>(','<Value>)*
 <Key> := <Mode>'-'<Action>
 <Mode> := 'orig'|'recv'
 <Action> := 'optional'|'required'|'refused'

 The <Mode> value indicates whether this <Key-val> refers to what the
 agent's actions are upon sending privacy enhanced messages as opposed
 to upon receiving them. For any given mode-action pair, the interpre-
 tation to be placed on the enhancements (<Value>s) listed is:

 'recv-optional:' The agent will process the enhancement if
 the other party uses it, but will also gladly process mes-
 sages without the enhancement.

 'recv-required:' The agent will not process messages
 without this enhancement.

 'recv-refused:' The agent will not process messages with
 this enhancement.

 'orig-optional:' When encountering an agent which refuses
 this enhancement, the agent will not provide it, and when
 encountering an agent which requires it, this agent will
 provide it.

Rescorla, Schiffman [Page 17]

Internet-Draft Secure HTTP

 'orig-required:' The agent will always generate the
 enhancement.

 'orig-refused:' The agent will never generate the enhance-
 ment.

 The behavior of agents which discover that they are communicating
 with an incompatible agent is at the discretion of the agents. It is
 inappropriate to blindly persist in a behavior that is known to be
 unacceptable to the other party. Plausible responses include simply
 terminating the connection, or, in the case of a server response,
 returning 'Not implemented 501'.

 Optional values are considered to be listed in decreasing order of

12

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 preference. Agents are free to choose any member of the intersection
 of the optional lists (or none) however.

 If any <Key-Val> is left undefined, it should be assumed to be set to
 the default. Any key which is specified by an agent shall override
 any appearance of that key in any <Key-Val> in the default for that
 field.

4.3. Parametrization for Variable-length Key Ciphers

 For ciphers with variable key lengths, values may be parametrized
 using the syntax <cipher>'['<length>']'

 For example, 'RSA[1024]' represents a 1024 bit key for RSA. Ranges
 may be represented as

 <cipher>'['<bound1>'-'<bound2>']'

 For purposes of preferences, this notation should be treated as if it
 read

 <cipher>[x], <cipher>[x+1],...<cipher>[y] (if x<y)

 and

 <cipher>[x], <cipher>[x-1],...<cipher>[y] (if x>y)

 The special value 'inf' may be used to denote infinite length.

 Using simply <cipher> for such a cipher shall be read as the maximum
 range possible with the given cipher.

Rescorla, Schiffman [Page 18]

Internet-Draft Secure HTTP

4.4. Negotiation Blocks

 As described in Section 1.X.Y and in the previous section, every S-
 HTTP request is (at least conceptually) preconditioned by the nego-
 tiation options provided by the potential receiver. The two primary
 locations for these options are

 1. In the headers of an HTTP Request/Response.
 2. In the HTML which contains the anchor being dereferenced.

 In the case of a server, the scope and meaning of options is clear;
 they precondition the server's response to the request in which the
 options appear. However, since an HTTP response which contains an
 HTML document (as opposed to error returns as discussed in Section
 6.2.X) may contain multiple references, some mechanism is needed to
 bind options to the various references.

 Binding negotiation options to anchors using HTML extensions HTML is
 the topic of the companion document draft-ietf-wts-shtml-00.txt and
 will not be treated here.

 Here, we provide a syntax to bind a group of negotiation options to a
 specific reference using standard HTML.

4.4.1. SHTTP-Cryptopts-Scope

 This header line provides a list of named anchors in an HTML document
 (assigned using the NAME tag) to which the following set of negotia-
 tion headers (until the end of the headers or the next SHTTP-
 Cryptopts-Scope header, whichever comes first). The names are pro-
 vided as a comma separated list. For instance

 SHTTP-Cryptopts-Scope: foo,bar,baz

 As a special case, any headers which appear before the first SHTTP-
 Cryptopts-Scope header are considered to to apply to all references
 in the HTML document unless those references are otherwise bound.

13

http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt
http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 Note that this is an all-or-nothing proposition. That is, if a
 SHTTP-Cryptopts-Scope header binds headers to a reference, then none
 of these default headers apply, even if some of the default headers
 do not appear in the bound headers. Rather, the S-HTTP defaults found
 in Section 4.5.11 apply.

4.5. Negotiation Syntax

Rescorla, Schiffman [Page 19]

Internet-Draft Secure HTTP

4.5.1. SHTTP-Privacy-Domains

 This header line refers to the Content-Privacy-Domain type of section
 2.3.1. Acceptable values are as listed there. For instance,

 SHTTP-Privacy-Domains: orig-required=pkcs-7;
 recv-optional=pkcs-7,pem

 would indicate that the agent always generates PKCS-7 compliant mes-
 sages, but can read PKCS-7 or PEM (or, unenhanced messages).

 All the negotiation headers described below can be considered to
 apply to all privacy domains (message formats) or to a particular
 one. To specify negotiation parameters which apply to all privacy
 domains, those header line(s) should be provided before any privacy-
 domain specifier. Negotiation headers which follow a privacy-domain
 header are considered to apply only to that domain. Multiple
 privacy-domain headers specifying the same privacy domain are permit-
 ted, in order to support multiple parameter combinations.

4.5.2. SHTTP-Certificate-Types

 This indicates what sort of Public Key certificates the agent will
 accept. Currently defined values are 'X.509' and 'X.509v3'.

4.5.3. SHTTP-Key-Exchange-Algorithms

 This line indicates which algorithms may be used for key exchange.
 Defined values are 'RSA', 'Outband', 'Inband', and 'Krb-'<kv>. RSA
 refers to RSA enveloping. Outband refers to some sort of external key
 agreement. Inband and Kerberos refer to the protocols of sections
 5.4.1 and 5.4.2 respectively.

 So, the expected common configuration of clients having no certifi-
 cates and servers having certificates would look like this (in a mes-
 sage sent by the server):

 SHTTP-Key-Exchange-Algorithms: orig-optional=Inband, RSA;
 recv-required=RSA

4.5.4. SHTTP-Signature-Algorithms

 This indicates what Digital Signature algorithms may be used.
 Defined values are 'RSA' and 'NIST-DSS' [17]. Since NIST-DSS and RSA
 use variable length moduli the parametrization syntax of section 4.3
 should be used. Note that a key length specification may interact
 with the acceptability of a given certificate, since keys (and their

Rescorla, Schiffman [Page 20]

Internet-Draft Secure HTTP

 lengths) are specified in public-key certificates.

4.5.5. SHTTP-Message-Digest-Algorithms

 This indicates what message digest algorithms may be used. Previ-
 ously defined values are 'RSA-MD2' [7], 'RSA-MD5' [8], 'NIST-SHS'
 [9]. New digest algorithms 'RSA-MD2-HMAC', 'RSA-MD5-HMAC', and
 'NIST-SHS-HMAC' are defined as the construction of 2.3.5 using the

14

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 algorithms MD2, MD5, and SHA-1 respectively.

4.5.6. SHTTP-Symmetric-Content-Algorithms

 This header specifies the symmetric-key bulk cipher used to encrypt
 message content. Defined values are:

 DES-CBC -- DES in Cipher Block Chaining (CBC) mode (FIPS 81 [11])
 DES-EDE-CBC -- 2 Key 3DES using Encrypt-Decrypt-Encrypt in outer CBC mode
 DES-EDE3-CBC -- 3 Key 3DES using Encrypt-Decrypt-Encrypt in outer CBC mode
 DESX-CBC -- RSA's DESX in CBC mode
 IDEA-CBC -- IDEA in CBC mode [12]
 RC2-CBC -- RSA's RC2 in CBC mode
 CDMF-CBC -- IBM's CDMF (weakened key DES) [20] in CBC mode

 Since RC2 keys are variable length, the syntax of section 4.3 should
 be used.

4.5.7. SHTTP-Symmetric-Header-Algorithms

 This header specifies the symmetric-key cipher used to encrypt mes-
 sage headers.

 DES-ECB -- DES in Electronic Codebook (ECB) mode (FIPS 81 [11])
 DES-EDE-ECB -- 2 Key 3DES using Encrypt-Decrypt-Encrypt in ECB mode
 DES-EDE3-ECB -- 3 Key 3DES using Encrypt-Decrypt-Encrypt in ECB mode
 DESX-ECB -- RSA's DESX in ECB mode
 IDEA-ECB -- IDEA
 RC2-ECB -- RSA's RC2 in ECB mode
 CDMF-ECB -- IBM's CDMF in ECB mode

 Since RC2 is variable length, the syntax of section 4.3 should be
 used.

4.5.8. SHTTP-Privacy-Enhancements

 This header indicates security enhancements to apply. Possible
 values are 'sign', 'encrypt' and 'auth' indicating whether messages
 are signed, encrypted, or authenticated (i.e., provided with a MAC),

Rescorla, Schiffman [Page 21]

Internet-Draft Secure HTTP

 respectively.

4.5.9. Your-Key-Pattern

 This is a generalized pattern match syntax for a large number of
 types of keying material. The general syntax is:

 Your-Key-Pattern : <key-use>,<pattern-info>
 <key-use> := 'cover-key' | 'auth-key' | 'signing-key' | 'krbID-'<kv>

4.5.9.1. Cover Key Patterns

 This parameter specifies desired values for key names used for
 encryption of transaction keys using the Prearranged-Key-Info syntax
 of section 2.3.4. The pattern-info syntax consists of a series of
 comma separated regular expressions. Commas should be escaped with
 backslashes if they appear in the regexps. The first pattern should
 be assumed to be the most preferred.

4.5.9.2. Auth key patterns

 Auth-key patterns specify name forms desired for use for MAC authen-
 ticators. The pattern-info syntax consists of a series of comma
 separated regular expressions. Commas should be escaped with
 backslashes if they appear in the regexps. The first pattern should
 be assumed to be the most preferred.

4.5.9.3. Signing Key Pattern

 This parameter describes a pattern or patterns for what keys are
 acceptable for signing for the digital signature enhancement. The
 pattern-info syntax for signing-key is:

15

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 <pattern-info> := <name-domain>,<pattern-data>

 The only currently defined name-domain is 'DN-1485'. This parameter
 specifies desired values for fields of Distinguished Names. DNs are
 considered to be represented as specified in RFC1485, the order of
 fields and whitespace between fields is not significant.

 Pattern-data is a modified RFC1485 string, with regular expressions
 permitted as field values. Pattern match is performed field-wise,
 unspecified fields match any value (and therefore leaving the DN-
 Pattern entirely unspecified allows for any DN). Certificate chains
 may be matched as well (to allow for certificates without name subor-
 dination). DN chains are considered to be ordered left-to-right with

Rescorla, Schiffman [Page 22]

Internet-Draft Secure HTTP

 the issuer of a given certificate on its immediate right, although
 issuers need not be specified.

 The syntax for the pattern values is,

 <Value> := <Dn-spec> (','<Dn-spec>)*
 <Dn-spec> := '/'<Field-spec>*'/'
 <Field-spec> := <Attr>'='<Pattern>
 <Attr> := 'CN' | 'L' | 'ST' | 'O' |
 'OU' | 'C' | "or as appropriate"
 <Pattern> := "POSIX 1003.2 regular expressions"

 For example, to request that the other agent sign with a key certi-
 fied by the RSA Persona CA (which uses name subordination) one could
 use the expression below. Note the use of RFC1485 quoting to protect
 the comma (an RFC1485 field separator) and the POSIX 1003.2 quoting
 to protect the dot (a regular expression metacharacter).
 Your-Key-Pattern: DN-1485,
 /OU=Persona Certificate, O="RSA Data Security, Inc\."/

4.5.9.4. Kerberos ID Pattern

 This specifies acceptable Kerberos realms for the sender of the mes-
 sage being referred to by the negotiation headers. in the form of
 the name of a Kerberos principal; i.e.:

 <user>@<realm>

 (This specification only supports the common 'domain style' of Ker-
 beros realm names.) The pattern-info syntax consists of a series of
 comma separated regular expressions. Commas should be escaped with
 backslashes if they appear in the regexps. The first pattern should
 be assumed to be the most preferred.

4.5.10. Example

 A representative header block for a server follows.

 SHTTP-Privacy-Domains: recv-optional=PEM, PKCS-7;
 orig-required=PKCS-7
 SHTTP-Certificate-Types: recv-optional=X.509;
 orig-required=X.509
 SHTTP-Key-Exchange-Algorithms: recv-required=RSA;
 orig-optional=Inband,RSA
 SHTTP-Signature-Algorithms: orig-required=RSA; recv-required=RSA
 SHTTP-Privacy-Enhancements: orig-required=sign;
 orig-optional=encrypt

Rescorla, Schiffman [Page 23]

Internet-Draft Secure HTTP

4.5.11. Defaults

16

http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 Explicit negotiation parameters take precedence over default values.
 For a given negotiation header line type, defaults for a given mode-
 action pair (such as 'orig-required') are implicitly merged unless
 explicitly overridden.

 The default values (these may be negotiated downward or upward) are:

 SHTTP-Privacy-Domains: orig-optional=PKCS-7, PEM;
 recv-optional=PKCS-7, PEM
 SHTTP-Certificate-Types: orig-optional=X.509;
 recv-optional=X.509
 SHTTP-Key-Exchange-Algorithms: orig-optional=RSA,Inband;
 recv-optional=RSA,Inband
 SHTTP-Signature-Algorithms: orig-optional=RSA; recv-optional=RSA;
 SHTTP-Message-Digest-Algorithms: orig-optional=RSA-MD5;
 recv-optional=RSA-MD5
 SHTTP-Symmetric-Content-Algorithms: orig-optional=DES-CBC;
 recv-optional=DES-CBC
 SHTTP-Symmetric-Header-Algorithms: orig-optional=DES-ECB;
 recv-optional=DES-ECB
 SHTTP-Privacy-Enhancements: orig-optional=sign,encrypt, auth;
 recv-required=encrypt;
 recv-optional=sign, auth

5. New HTTP Header Lines

 We define a series of new header lines which go in the HTTP header
 block (i.e., in the encapsulated content) so that they may be crypto-
 graphically protected.

5.1. Security-Scheme

 This mandatory header line specifies the version of the protocol
 (although it may be used by other security protocols). This header,
 with a value of 'S-HTTP/1.2' must be generated by every agent to be
 compatible with this specification.

 Note that this is a mandatory HTTP header, meaning that an agent com-
 pliant with this specification must generate this line for every HTTP
 message, NOT just S-HTTP messages.

5.2. Encryption-Identity

 This header line identifies a potential principal for whom the mes-
 sage described by these options could be encrypted; this permits

Rescorla, Schiffman [Page 24]

Internet-Draft Secure HTTP

 return encryption under (say) public key without the other agent
 signing first (or under a different key than that of the signature).
 Or, in the Kerberos case, provides information as the agent's Ker-
 beros identity. The syntax of the Encryption-Identity line is:

 Encryption-Identity: <name-class>,<key-sel>,<name-arg>
 <name-class> := 'DN-1485' | 'krbID-'<kv>

 The name-class is an ASCII string representing the domain within
 which the name is to be interpreted, in the spirit of the new MOSS
 drafts. There are two currently defined name classes, "DN-1485" and
 "KRB-{4,5}". Key-sel is a selector for (possibly numerous) keys bound
 to the same name-form. For name-forms where there is only one possi-
 ble key, this field should be ignored. It is the intent here to
 absorb the newly flexible MOSS name forms once they are firm. Name-
 arg is an appropriate argument for the name-class, described in sec-
 tions 5.2.1 and 5.2.2 below.

5.2.1. DN-1485 Name Class

 The argument is an RFC-1485 encoded DN.

5.2.2. KRB-* Name Class

 The argument is the name of a Kerberos principal, i.e.:

 <user>@<realm>

17

http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 This specification only supports the common 'domain style' of Ker-
 beros realm names.

5.3. Certificate-Info

 In order to permit public key operations on DNs specified by
 Encryption-Identity headers without explicit certificate fetches by
 the receiver, the sender may include certification information in the
 Certificate-Info header line. The format of this header line is:

 Certificate-Info: <Cert-Fmt>','<Cert-Group>

 <Cert-Fmt> should be the type of <Cert-Group> being presented.
 Defined values are 'PEM' and 'PKCS-7'. PKCS-7 certificate groups are
 provided as a base-64 encoded PKCS-7 SignedData message containing
 sequences of certificates with or without the SignerInfo field. A PEM
 format certificate group is a list of comma-separated base64-encoded
 PEM certificates.

 Multiple Certificate-Info lines may be defined.

Rescorla, Schiffman [Page 25]

Internet-Draft Secure HTTP

5.4. Key-Assign

 This header line serves to indicate that the agent wishes to bind a
 key to a symbolic name for (presumably) later reference.

 The general syntax of the key-assign header is:

 Key-Assign: <Method>,<Key-Name>,<Lifetime>,<Ciphers>;<Method-args>

 <Key-name> := <string>
 <Lifetime> := 'this' | 'reply'
 <Method> :='inband' | 'krb-'<kv>
 <Ciphers> := 'null' | <Cipher>+
 <Cipher> := "Header cipher from section 4.4.7"
 <kv> := '4' | '5'

 Key-Name is the symbolic name to which this key is to be bound.
 Ciphers is a list of ciphers for which this key is potentially appli-
 cable (see the list of header ciphers in section 4.4.7). The keyword
 'null' should be used to indicate that it is inappropriate for use
 with ANY cipher. This is potentially useful for exchanging keys for
 MAC computation.

 Lifetime is a representation of the longest period of time during
 which the recipient of this message can expect the sender to accept
 that key. 'this' indicates that it is likely to be valid only for
 reading this transmission. 'reply' indicates that it is useful for a
 reply to this message (or the duration of the connection, for future
 versions of HTTP that support retained connections). If this appears
 in a CRYPTOPTS block, it indicates that it is good for at least one
 (but perhaps only one) dereference of this anchor; the validity
 period for such a key is a local matter.

 Method should be one of a number of key exchange methods. The
 currently defined values are 'inband', 'krb-4' and 'krb-5', referring
 respectively to Inband keys (i.e., direct assignment) and Kerberos
 versions 4 and 5 respectively. Method-args will depend on methods.

 This header line may appear either in an unencapsulated header or in
 an encapsulated message, though when an uncovered key is being
 directly assigned, it may only appear in an encrypted encapsulated
 content. Assigning to a key that already exists causes that key to be
 overwritten.

 Keys defined by this header are referred to elsewhere in this specif-
 ication as Key-IDs, which have the syntax:

Rescorla, Schiffman [Page 26]

18

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Internet-Draft Secure HTTP

 <Key-ID> := <method>':'<key-name>

5.4.1. Inband Key Assignment

 This refers to the direct assignment of an uncovered key to a sym-
 bolic name. Method-args should be just the desired session key
 encoded in hexidecimal. E.g.:

 Key-Assign: inband,akey,reply,DES-ECB;0123456789abcdef

 Short keys should be derived from long keys by reading bits from left
 to right.

 Note that inband key assignment is especially important in order to
 permit confidential spontaneous communication between agents where
 one (but not both) of the agents have key pairs. However, this
 mechanism is also useful to permit key changes without public key
 computations. The key information is carried in this header line must
 be in the inner secured HTTP request, therefore use in unencrypted
 messages is not permitted.

5.4.2. Kerberos Key Assignment

 This permits the binding of the shared secret derived from a Kerberos
 ticket/authenticator pair to a symbolic keyname. In this case,
 method-args should be the ticket/authenticator pair (each base64-
 encoded), comma separated. E.g.:

 Key-Assign: krb-4,akerbkey,reply,DES-ECB;<krb-ticket>,<krb-auth>

5.5. Nonces

 Nonces are opaque, transient, session-oriented identifiers which may
 be used to provide demonstrations of freshness. Nonce values are a
 local matter, although they are might well be simply random numbers
 generated by the originator. The value is supplied simply to be
 returned by the recipient.

5.5.1. Nonce

 This header is used by an originator to specify what value is to be
 returned in the reply. The field may be any value. Multiple nonce
 header lines may be used, each to be echoed independently.

Rescorla, Schiffman [Page 27]

Internet-Draft Secure HTTP

5.5.2. Nonce-Echo

 The header is used to return the value provided in a previously
 received Nonce: field.

6. (Retriable) Server Status Error Reports

 We describe here the special processing appropriate for client
 retries in the face of servers returning an error status.

6.1. Retry for Option (Re)Negotiation

 A server may respond to a client request with an error code that
 indicates that the request has not completely failed but rather that
 the client may possibly achieve satisfaction through another request.
 HTTP already has this concept with the 3XX redirection codes.

 In the case of SHTTP, it is conceivable (and indeed likely) that the
 server expects the client to retry his request using another set of
 cryptographic options. E.g., the document which contains the anchor
 that the client is dereferencing is old and did not require digital

19

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 signature for the request in question, but the server now has a pol-
 icy requiring signature for dereferencing this URL. These options
 should be carried in the header of the encapsulated HTTP message,
 precisely as client options are carried.

 The general idea here is that the client will perform the retry in
 the manner indicated by the combination of the original request and
 the precise nature of the error and the cryptographic enhancements
 depending on the options carried in the server response.

 The guiding principle in client response to these errors should be to
 provide the user with the same sort of informed choice with regard to
 dereference of these anchors as with normal anchor dereference. For
 instance, in the case above, it would be inappropriate for the client
 to sign the request without requesting permission for the action.

6.2. Specific Retry Behavior

6.2.1. Unauthorized 401, PaymentRequired 402

 The HTTP errors 'Unauthorized 401', 'PaymentRequired 402' represent
 failures of HTTP style authentication and payment schemes. While S-
 HTTP has no explicit support for these mechanisms, they can be per-
 formed under S-HTTP while taking advantage of the privacy services
 offered by S-HTTP. [There are other errors for S-HTTP specific
 authentication errors.]

Rescorla, Schiffman [Page 28]

Internet-Draft Secure HTTP

6.2.2. 420 SecurityRetry

 This server status reply is provided so that the server may inform
 the client that although the current request is rejected, a retried
 request with different cryptographic enhancements is worth attempt-
 ing. This header shall also be used in the case where an HTTP request
 has been made but an S-HTTP request should have been made. Obviously,
 this serves no useful purpose other than signalling an error if the
 original request should have been encrypted, but in other situations
 (e.g. access control) may be useful.

6.2.2.1. SecurityRetries for S-HTTP Requests

 In the case of a request that was made as an SHTTP request, it indi-
 cates that for some reason the cryptographic enhancements applied to
 the request were unsatisfactory and that the request should be
 repeated with the options found in the response header. Note that
 this can be used as a way to force a new public key negotiation if
 the session key in use has expired or to supply a unique nonce for
 the purposes of ensuring request freshness.

6.2.2.2. SecurityRetries for HTTP Requests

 If this header is made in response to an HTTP request, it indicates
 that the request should be retried using S-HTTP and the cryptographic
 options indicated in the response header.

6.2.3. 421 BogusHeader

 This error code indicates that something about the S-HTTP request was
 bad. The error code is to be followed by an appropriate explanation,
 e.g.:

 421 BogusHeader Content-Privacy-Domain must be specified

6.2.4. 422 SHTTP Proxy Authentication Required

 This response is analagous to the 420 response except that the
 options in the message refer to enhancements that the client must
 perform in order to satisfy the proxy.

6.2.5. 320 SHTTP Not Modifed

 This response code is specifically for use with proxy-server interac-
 tion where the proxy has placed the If-Modified-Since header in the

20

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 S-HTTP headers of its request. This response indicates that the fol-
 lowing S-HTTP message contains sufficient keying material for the

Rescorla, Schiffman [Page 29]

Internet-Draft Secure HTTP

 proxy to forward the cached document for the new requestor.

 In general, this takes the form of an S-HTTP message where the actual
 enhanced content is missing, but all the headers and keying material
 are retained. (I.e. the optional content section of the PKCS7 message
 has been removed.) So, if the original response was encrypted, the
 response contains the original DEK re-covered for the new recipient.
 (Notice that the server performs the same processing as it would have
 in the server side caching case of 8.1.X except that the message body
 is elided.)

6.2.6. Redirection 3XX

 These headers are again internal to HTTP, but may contain S-HTTP
 negotiation options of significance to S-HTTP. The request should be
 redirected in the sense of HTTP, with appropriate cryptographic pre-
 cautions being observed.

6.3. Limitations On Automatic Retries

 Permitting automatic client retry in response to this sort of server
 response permits several forms of attack. Consider for the moment
 the simple credit card case:

 The user views a document which requires his credit card.
 The user verifies that the DN of the intended recipient is
 acceptable and that the request will be encrypted and
 dereferences the anchor. The attacker intercepts the
 server's reply and responds with a message encrypted under
 the client's public key containing the Moved 301 header. If
 the client were to automatically perform this redirect it
 would allow compromise of the user's credit card.

6.3.1. Automatic Encryption Retry

 This shows one possible danger of automatic retries -- potential
 compromise of encrypted information. While it is impossible to con-
 sider all possible cases, clients should never automatically reen-
 crypt data unless the server requesting the retry proves that he
 already has the data. So, situations in which it would be acceptable
 to reencrypt would be if:

 1. The retry response was returned encrypted under an inband key
 freshly generated for the original request.
 2. The retry response was signed by the intended recipient of the
 original request.
 3. The original request used an outband key and the response is
 encrypted under that key.

Rescorla, Schiffman [Page 30]

Internet-Draft Secure HTTP

 This is not an exhaustive list, however the browser author would be
 well advised to consider carefully before implementing automatic
 reencryption in other cases. Note that an appropriate behavior in
 cases where automatic reencryption is not appropriate is to query the
 user for permission.

6.3.2. Automatic Signature Retry

 Since we discourage automatic (without user confirmation) signing in
 even the usual case, and given the dangers described above, it is
 prohibited to automatically retry signature enchancement.

6.3.3. Automatic MAC Authentication Retry

 Assuming that all the other conditions are followed, it is permissi-

21

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 ble to automatically retry MAC authentication.

7. Other Issues

7.1. Compatibility of Servers with Old Clients

 Servers which receive requests in the clear which should be secured
 should return 'SecurityRetry 420' with header lines set to indicate
 the required privacy enhancements.

7.2. URL Protocol Type

 We define a new URL protocol designator, 'shttp'. Use of this desig-
 nator as part of an anchor URL implies that the target server is S-
 HTTP capable, and that a dereference of this URL should be enveloped
 (e.g., the request is to be encrypted). Use of these secure URLs
 permit the additional anchor attributes described in the following
 section.

 Note that S-HTTP oblivious agents should not be willing to derefer-
 ence a URL with an unknown protocol specifier, and hence sensitive
 data will not be accidentally sent in the clear by users of non-
 secure clients.

7.3. Server Conventions

7.3.1. Certificate Requests

 We define the convention that issuing a normal HTTP request:

 GET /SERVER-CERTIFICATE[-<DN>] <http-version>

 shall cause the server to return the corresponding certificate. <DN>

Rescorla, Schiffman [Page 31]

Internet-Draft Secure HTTP

 is the base-64 encoding (to protect whitespace) of the fully-
 specified canonical ASCII form for the DN of the requested certifi-
 cate (as in RFC 1485). If no DN is specified, then the server shall
 choose whatever certificate it deems most appropriate. The server
 should sign the response with the key corresponding to the DN sup-
 plied, if the DN is unspecified by the request.

7.3.2. Policy Requests

 Servers should (but not must) store the policies of the Policy Cer-
 tification Authorities, if available, corresponding to their various
 certificates. The convention for retrieving such policies via HTTP is
 the request:

 GET /POLICY-<DN> <http-version>

 Again, <DN> is the DN (encoded as per section 7.3.1) of the certifi-
 cate corresponding to the requested policy. It is recommended that
 this document be (pre-) signed by the PCA.

7.3.3. CRL Requests

 Servers should (but not must) store the CRLs of the PCAs correspond-
 ing to their various certificates. The convention for retrieving such
 CRLs is:

 GET /CRL-<DN> <http-version>

 Again, <DN> is the DN (encoded as per section 7.3.1) of the certifi-
 cate corresponding to the requested CRL.

7.4. Browser Presentation

7.4.1. Transaction Security Status

 While preparing a secure message, the browser should provide a visual
 indication of the security of the transaction, as well as an indica-
 tion of the party who will be able to read the message. While reading
 a signed and/or enveloped message, the browser should indicate this
 and (if applicable) the identity of the signer. Self-signed certifi-

22

http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 cates should be clearly differentiated from those validated by a cer-
 tification hierarchy.

7.4.2. Failure Reporting

 Failure to authenticate or decrypt an S-HTTP message should be
 presented differently from a failure to retrieve the document. Com-
 pliant clients may at their option display unverifiable documents but

Rescorla, Schiffman [Page 32]

Internet-Draft Secure HTTP

 must clearly indicate that they were unverifiable in a way clearly
 distinct from the manner in which they display documents which pos-
 sessed no digital signatures or documents with verifiable signatures.

7.4.3. Certificate Management

 Clients shall provide a method for determining that HTTP requests are
 to be signed and for determining which (assuming there are many) cer-
 tificate is to be used for signature. It is suggested that users be
 presented with some sort of selection list from which they may choose
 a default. No signing should be performed without some sort of expli-
 cit user interface action, though such action may take the form of a
 persistent setting via a user preferences mechanism (although this is
 not recommended).

7.4.4. Anchor Dereference

 Clients shall provide a method to display the DN and certificate
 chain associated with a given anchor to be dereferenced so that users
 may determine for whom their data is being encrypted. This should be
 distinct from the method for displaying who has signed the document
 containing the anchor since these are orthogonal pieces of encryption
 information.

8. Implementation Notes

8.1. Preenhanced Data

 While S-HTTP has always supported preenhanced documents, in previous
 versions it was never made clear how to actually implement them.
 This section describes two methods for doing so: preenhancing the
 HTTP request/response and preenhancing the underlying data.

8.1.1. Motivation

 The two primary motivations for preenhanced documents are security
 and performance. These advantages primarily accrue to signing but may
 also under special circumstances apply to confidentiality or repudi-
 able authentication.

 Consider the case of a server which repeatedly serves the same con-
 tent to multiple clients. One such example would be a server which
 serves catalogs or price lists. Clearly, customers would like to be
 able to verify that these are actual prices. However, since the
 prices are typically the same to all comers, confidentiality is not
 an issue. (Note: see Section 8.2 below for how to deal with this case
 as well).

Rescorla, Schiffman [Page 33]

Internet-Draft Secure HTTP

 Consequently, the server might wish to sign the document once and
 simply send the cached signed document out when a client makes a new
 request, avoiding the overhead of a private key operation each time.
 Note that conceivably, the signed document might have been generated
 by a third party and placed in the server's cache. The server might
 not even have the signing key! This illustrates the security benefit
 of presigning: Untrusted servers can serve authenticated data without
 risk even if the server is compromised.

23

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

8.1.2. Presigned Requests/Responses

 The obvious implementation is simply to take a single
 request/response, cache it, and send it out in situations where a new
 message would otherwise be generated.

8.1.3. Presigned Documents

 It is also possible using S-HTTP to sign the underlying data and send
 it as an S-HTTP messsage. In order to do this, one would simply take
 the signed document (a PKCS-7 or PEM message) and attach both S-HTTP
 headers (e.g. the S-HTTP request/response line, the Content-Privacy-
 Domain) and the necessary HTTP headers (including a Content-Type
 that reflects the inner content) and send the message out. For exam-
 ple:

 SECURE * Secure-HTTP/1.2
 Content-Type: text/html
 Content-Privacy-Domain: PKCS-7
 Content-Transfer-Encoding: base64

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 Random signed message here...
 -----END PRIVACY-ENHANCED MESSAGE-----

 8.1.4. Recursive Encapsulation

 Consider a slight variation of the previous situation, where confi-
 dentiality is also required. This can be dealt with via a recursive
 encapsulation. That is, the S-HTTP message shown above can be used as
 the inner content of a new S-HTTP message, like so:

Rescorla, Schiffman [Page 34]

Internet-Draft Secure HTTP

 SECURE * Secure-HTTP/1.2
 Content-Type: application/http
 Content-Privacy-Domain: PKCS-7
 Content-Transfer-Encoding: base64

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 Encrypted version of the message above...
 -----END PRIVACY-ENHANCED MESSAGE-----

 To unfold this, the receiver would decode the outer S-HTTP message,
 reenter the (S-)HTTP parsing loop to process the new message, see
 that that too was S-HTTP, decode that, and recover the inner content.

 Note that this sort of approach can also be used to provide freshness
 of server activity (though not of the document itself) while still
 providing nonrepudiation of the document data if a NONCE is included
 in the request.

8.1.5. Preencrypted Messages

 Although preenhancement works best with signature, it can also be
 used with encryption under certain conditions. Consider the situation
 where the same confidential document is to be sent out repeatedly.
 The time spent to encrypt can be saved by caching the ciphertext and
 simply generating a new key exchange block for each recipient. [Note
 that this is logically equivalent to a multi- recipient message as
 defined in both PEM and PKCS-7 and so care must be taken to use
 proper PKCS-1 padding if RSA is being used since otherwise, one may
 be open to a low encryption exponent attack.[26]

8.2. Proxy Interaction

24

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 The use of S-HTTP presents considerable challenges to the use of HTTP
 proxies. While simply having the proxy blindly forward responses is
 straightforward, it would be preferable if S-HTTP aware proxies were
 still able to cache responses in at least some circumstances. In
 addition, S-HTTP services should be usable to protect client-proxy
 authentication. This section describes how to achieve those goals
 using the mechanisms described above.

8.2.1. Client-Proxy Authentication

 When an S-HTTP aware proxy receives a request (HTTP or S-HTTP) that
 (by whatever access control rules it uses) it requires to be S-HTTP
 enhanced, it should return the 422 response code (X.Y.Z).

Rescorla, Schiffman [Page 35]

Internet-Draft Secure HTTP

 When the client receives the 422 response code, it should read the
 cryptographic options that the proxy sent and determine whether or
 not it is willing to apply that enhancement to the message. If the
 client is willing to meet these requirements, it should recursively
 encapsulate the request it previously sent using the appropriate
 options. (Note that since the enhancement is recursively applied,
 even clients which are unwilling to send requests to servers in the
 clear may be willing to send the already encrypted message to the
 proxy without further encryption.) (See Section X.Y.Z for another
 example of a recursively encapsulated message)

 When the proxy receives such a message, it should strip the outer
 encapsulation to recover the message which should be sent to the
 server.

8.2.2. Proxy Caching of S-HTTP Messages

 Although it is often considered that security in general and confi-
 dentiality in specific obviate caching, this is only true under cer-
 tain circumstances. For example, when confidentiality is being used
 to restrict access to some class of documents to a broad class of
 users, and those users are behind a single proxy, it is obviously
 advantageous if that proxy can cache such documents. S-HTTP's message
 orientation makes this a fairly straightforward proposition, provided
 that the parties cooperate.

8.2.2.1. Client Behavior

 All the client needs to do is to provide enough URL information to
 the proxy to enable the proxy to detect when potentially cached data
 is being requested. In order to do this, the client simply provides
 the whole URL HTTP style instead of the URI-less URL described in
 Section 2.1. Note that this provides the proxy with the URI. Conse-
 quently, clients which don't trust their proxy to receive that infor-
 mation or are worried about traffic analysis by the proxy should not
 enable caching in this way. (An insecure channel to the proxy can be
 defended against using a recursive encapsulation.)

8.2.2.2. Proxy Behavior

 When forwarding requests, the proxy merely needs to recognize URLs
 that are in it's cache and add the If-Modified-Since header as it
 does for HTTP.

 When forwarding responses, the proxy needs to detect the 320 response
 and reassemble a valid S-HTTP response from the cached data and the
 new keying material provided by the server. The proxy should check
 the Content-MD5 header if supplied to ensure that a valid cache hit

Rescorla, Schiffman [Page 36]

Internet-Draft Secure HTTP

 has occurred and retry the request minus the If-Modified-Since header
 if the Content-MD5s do not match.

25

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

8.2.2.3. Server Behavior

 The server needs to detect the If-Modified-Since header provided by
 the proxy and generate the content-less message described in X.Y.Z.
 The logic for this decision should be the same logic that is applied
 in HTTP.

9. Implementation Recommendations and Requirements

 All S-HTTP agents must support the MD5 message digest and MAC authen-
 tication. As of S-HTTP/1.2 All agents must also support the RSA-MD5-
 HMAC construction.

 All S-HTTP agents must support Outband key exchange.

 Support for encryption is recommended; agents which implement encryp-
 tion must support the in-band key exchange method and one of the fol-
 lowing three cryptosystems (in ECB and CBC modes): DES, RC2[40] and
 CDMF.

 Agents are recommended to support signature verification; server sup-
 port of signature generation is additionally recommended.

 Note that conformant implementations of the protocol (although not
 recommended ones) can avoid the use of public key cryptography
 entirely.

10. Protocol Syntax Summary

 We present below a summary of the main syntactic features of S-
 HTTP/1.2, excluding message encapsulation proper.

10.1. S-HTTP (Unencapsulated) Headers

 Content-Privacy-Domain: ('PKCS-7' | 'PEM')
 Content-Transfer-Encoding: ('8BIT' | '7BIT' | 'BASE64')
 Prearranged-Key-Info: <Hdr-Cipher>,<Key>,<Key-ID>
 Content-Type: 'application/http'
 MAC-Info: [hex(timeofday)',']<hash-alg>','hex(<hash-data>)','
 <key-spec>

10.2. HTTP (Encapsulated) Non-negotiation Headers

 Key-Assign: <Method>','<Key-Name>','<Lifetime>','
 <Ciphers>';'<Method-args>

Rescorla, Schiffman [Page 37]

Internet-Draft Secure HTTP

 Encryption-Identity: <name-class>','<key-sel>','<name-args>
 Certificate-Info: <Cert-Fmt>','<Cert-Group>
 Nonce: <string>
 Nonce-Echo: <string>

10.3. Encapsulated Negotiation Headers

 SHTTP-Cryptopts-Scope: <string>(,<string>)*
 SHTTP-Privacy-Domains: ('PKCS-7' | 'PEM')
 SHTTP-Certificate-Types: ('X.509')
 SHTTP-Key-Exchange-Algorithms: ('RSA' | 'KRB-'<kv>)
 SHTTP-Signature-Algorithms: ('RSA' | 'NIST-DSS')
 SHTTP-Message-Digest-Algorithms: ('RSA-MD2' | 'RSA-MD5' | 'NIST-SHS'
 'RSA-MD2-HMAC', 'RSA-MD5-HMAC', 'NIST-SHS-HMAC')
 SHTTP-Symmetric-Content-Algorithms: ('DES-CBC' | 'DES-EDE-CBC' |
 'DES-EDE3-CBC' | 'DESX-CBC' | 'CDMF-CBC' | 'IDEA-CBC' |
 'RC2-CBC')
 SHTTP-Symmetric-Header-Algorithms: ('DES-ECB' | 'DES-EDE-ECB' |
 'DES-EDE3-EBC' | 'DESX-ECB' | 'CDMF-ECB' |
 'IDEA-ECB' | 'RC2-ECB')
 SHTTP-Privacy-Enhancements: ('sign' | 'encrypt' | 'auth')
 Your-Key-Pattern: <key-use>','<pattern-info>

10.4. HTTP Methods

 Secure * Secure-HTTP/1.2

26

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

10.5. Server Status Reports

 Secure-HTTP/1.2 200 OK
 SecurityRetry 420
 BogusHeader 421 <reason>

10.6. Server Conventions

 GET SERVER-CERTIFICATE-<B64-DN> <http-version>
 GET POLICY-<B64-DN> <http-version>
 GET CRL-<B64-DN> <http-version>

11. An Extended Example

 We provide here a contrived example of a series of S-HTTP requests
 and replies. Rows of equal signs are used to set off the narrative
 from sample message traces. Note that, since we use base-64 encoding
 here for expository purposes, the example messages have the otherwise
 unnecessary PEM-style "BEGIN/END PRIVACY-ENHANCED MESSAGE" delim-
 iters.

Rescorla, Schiffman [Page 38]

Internet-Draft Secure HTTP

11.1. A request using RSA key exchange with Inband key reply

 Alice, using an S-HTTP-capable client, begins with making an HTTP
 request which yields the following response page:
 ==
 200 OK HTTP/1.0
 Server-Name: Navaho-0.1.2.3alpha
 SHTTP-Cryptopts-Scope: foobar
 Certificate-Info: MIAGCSqGSIb3DQEHAqCAMIACAQExADCABgkqhkiG9w0BBwEAAKCAM
 IIBrTCCAUkCAgC2MA0GCSqGSIb3DQEBAgUAME0xCzAJBgNVBAYTAlVTMSAwH
 gYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc
 29uYSBDZXJ0aWZpY2F0ZTAeFw05NDA0MDkwMDUwMzdaFw05NDA4MDIxODM4N
 TdaMGcxCzAJBgNVBAYTAlVTMSAwHgYDVQQKExdSU0EgRGF0YSBTZWN1cml0e
 SwgSW5jLjEcMBoGA1UECxMTUGVyc29uYSBDZXJ0aWZpY2F0ZTEYMBYGA1UEA
 xMPU2V0ZWMgQXN0cm9ub215MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAMy8Q
 cW7RMrB4sTdQ8Nmb2DFmJmkWn+el+NdeamIDElX/qw9mIQu4xNj1FfepfJNx
 zPvA0OtMKhy6+bkrlyMEU8CAwEAATANBgkqhkiG9w0BAQIFAANPAAYn7jDgi
 rhiIL4wnP8nGzUisGSpsFsF4/7z2P2wqne6Qk8Cg/Dstu3RyaN78vAMGP8d8
 2H5+Ndfhi2mRp4YHiGHz0HlK6VbPfnyvS2wdjCCAccwggFRAgUCQAAAFDANB
 gkqhkiG9w0BAQIFADBfMQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhd
 GEgU2VjdXJpdHksIEluYy4xLjAsBgNVBAsTJUxvdyBBc3N1cmFuY2UgQ2Vyd
 GlmaWNhdGlvbiBBdXRob3JpdHkwHhcNOTQwMTA3MDAwMDAwWhcNOTYwMTA3M
 jM1OTU5WjBNMQswCQYDVQQGEwJVUzEgMB4GA1UEChMXUlNBIERhdGEgU2Vjd
 XJpdHksIEluYy4xHDAaBgNVBAsTE1BlcnNvbmEgQ2VydGlmaWNhdGUwaTANB
 gkqhkiG9w0BAQEFAANYADBVAk4GqghQDa9Xi/2zAdYEqJVIcYhlLN1FpI9tX
 Q1m6zZ39PYXK8Uhoj0Es7kWRv8hC04vqkOKwndWbzVtvoHQOmP8nOkkuBi+A
 QvgFoRcgOUCAwEAATANBgkqhkiG9w0BAQIFAANhAD/5Uo7xDdp49oZm9GoNc
 PhZcW1e+nojLvHXWAU/CBkwfcR+FSf4hQ5eFu1AjYv6Wqf430Xe9Et5+jgnM
 Tiq4LnwgTdA8xQX4elJz9QzQobkE3XVOjVAtCFcmiin80RB8AAAMYAAAAAAA
 AAAAA==
 Encryption-Identity: DN-1485, null, CN=Setec Astronomy, OU=Persona
 Certificate,O="RSA Data Security, Inc.", C=US
 SHTTP-Privacy-Enhancements: recv-required=encrypt

 Don't read this.
 ==

 (Note that this uses HTTP header syntax of section 4.4.1. An
 appropriate HTTP request to dereference this URL would be:
 ==
 GET /secret HTTP/1.0
 Security-Scheme: S-HTTP/1.2
 User-Agent: Web-O-Vision 1.2beta
 Accept: *.*
 Key-Assign: Inband,1,reply,des-ecb;7878787878787878

 ==

Rescorla, Schiffman [Page 39]

27

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Internet-Draft Secure HTTP

 The added Key-Assign line that would not have been in an ordinary
 HTTP request permits Bob (the server) to encrypt his reply to Alice,
 even though Alice does not have a public key, since they would share
 a key after the request is received by Bob. This request has the
 following S-HTTP encapsulation:
 ==
 Secure * Secure-HTTP/1.2
 Content-Transfer-Encoding: base64
 Content-Type: application/http
 Content-Privacy-Domain: PKCS-7

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 MIAGCSqGSIb3DQEHA6CAMIACAQAxgDCBqQIBADBTME0xCzAJBgNVBAYTAlVTMSAw
 HgYDVQQKExdSU0EgRGF0YSBTZWN1cml0eSwgSW5jLjEcMBoGA1UECxMTUGVyc29u
 YSBDZXJ0aWZpY2F0ZQICALYwDQYJKoZIhvcNAQEBBQAEQCU/R+YCJSUsV6XLilHG
 cNVzwqKcWzmT/rZ+duOv8Ggb7oO/d8H3xUVGQ2LsX4kYGq2szwj8Q6eWhsmhf4oz
 lvMAADCABgkqhkiG9w0BBwEwEQYFKw4DAgcECFif7BadXlw3oIAEgZBNcMexKe16
 +mNxx8YQPukBCL0bWqS86lvws/AgRkKPELmysBi5lco8MBCsWK/fCyrnxIRHs1oK
 BXBVlsAhKkkusk1kCf/GbXSAphdSgG+d6LxrNZwHbBFOX6A2hYS63Iczd5bOVDDW
 Op2gcgUtMJq6k2LFrs4L7HHqRPPlqNJ6j5mFP4xkzOCNIQynpD1rV6EECMIk/T7k
 1JLSAAAAAAAAAAAAAA==
 -----END PRIVACY-ENHANCED MESSAGE-----
 ==

 The data between the delimiters is a PKCS-7 message, RSA enveloped
 for Setec Astronomy.

 Bob decrypts the request, finds the document in question, and is
 ready to serve it back to Alice.

 An appropriate HTTP server response would be:
 ==
 HTTP/1.0 200 OK
 Security-Scheme: S-HTTP/1.2
 Content-Type: text/html

 Congratulations, you've won.
 <A href="/prize.html"
 CRYPTOPTS="Key-Assign: Inband,alice1,reply,des-ecb;020406080a0c0e0f
 SHTTP-Privacy-Enhancements: recv-required=auth">Click here to
 claim your prize
 ==

 This HTTP response, encapsulated as an S-HTTP message becomes:

Rescorla, Schiffman [Page 40]

Internet-Draft Secure HTTP

 ==
 Secure-HTTP/1.2 200 OK
 Content-Transfer-Encoding: base64
 Content-Type: application/http
 Prearranged-Key-Info: des-ecb,03e5d6f7997eaa5b,inband:1
 Content-Privacy-Domain: PKCS-7

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 MIAGCSqGSIb3DQEHBqCAMIACAQAwgAYJKoZIhvcNAQcBMBEGBSsOAwIHBAiDM8nY
 HcK+IoCCARir/4frekvV8FJufQFzHJVn3rWXMYovumgzNXJQfPAr+oysnjmg5dtG
 i96aMkhM4BF21rebPHwii+PZocEqiea1ibkRvzCnAiNie2EUzMgx1fh8Uro49I33
 zTjqrkKngZeDCvU1y2x1l2FPrMpHm9/zafLKs9oznnkm0GGbz75mBomIrywuST7b
 DYj52btqR24qdO573CPdBXQNkjEVI2lAuWqIINDZ49gKi5DZRTYW7zzM13SExN5U
 ECajW+zEcnuW0WxYOu1Dh8gywWzBvmi59sKwLe69FvJiuhQFtdL2wngiQRlGtdjF
 tSwlGKmHJsrSonewRPJ0SVBlmBRp+Pi6iwJns3K6Z00hqwRp8jNkmoAO2DP8WNi0
 AAAAAAAAAAA=
 -----END PRIVACY-ENHANCED MESSAGE-----
 ==

 The data between the delimiters is a PKCS7 message encrypted under a
 randomly-chosen DEK which can be recovered by computing:

28

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 DES-DECRYPT(inband:1,03e5d6f7997eaa5b)

 where 'inband:1' is the key exchanged in the Key-Assign line in the
 original request.

11.2. A request using the auth enhancement

 There is a link on the HTML page that was just returned, which Alice
 dereferences, creating the HTTP message:
 ==
 GET /prize.html HTTP/1.0
 Security-Scheme: S-HTTP/1.2
 User-Agent: Web-O-Vision 1.1beta
 Accept: *.*

 ==

 Which, when encapsulated as an S-HTTP message, becomes:

Rescorla, Schiffman [Page 41]

Internet-Draft Secure HTTP

 ==
 Secure * Secure-HTTP/1.2
 Content-Transfer-Encoding: base64
 Content-Type: application/http
 MAC-Info:2ffc120b,rsa-md5,1425a951f1bbf3bd8d6dc7d07ab731bb,inband:alice1
 Content-Privacy-Domain: PKCS-7

 -----BEGIN PRIVACY-ENHANCED MESSAGE-----
 MIAGCSqGSIb3DQEHAYBjR0VUIC9wcml6ZS5odG1sIEhUVFAvMS4wClNlY3VyaXR5
 LVNjaGVtZTogUy1IVFRQLzEuMQpVc2VyLUFnZW50OiBXZWItTy1WaXNpb24gMS4x
 YmV0YQpBY2NlcHQ6ICouKgoKAAA=
 -----END PRIVACY-ENHANCED MESSAGE-----
 ==

 The data between the delimiters is a PKCS-7 'Data' representation of
 the request.

29

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Rescorla, Schiffman [Page 42]

Internet-Draft Secure HTTP

Appendix: A Review of PKCS-7

 PKCS-7 ("Cryptographic Message Syntax Standard") is a cryptographic
 message encapsulation format, similar to PEM, which was defined by
 RSA Laboratories as part of a family of related standards. They
 state: "The PKCS standards are offered by RSA Laboratories to
 developers of computer systems employing public key cryptography. It
 is RSA Laboratories' intention to improve and refine the standards in
 conjunction with computer system developers, with the goal of produc-
 ing standards that most if not all developers adopt."

 PKCS-7 is only one of two encapsulation formats supported by S-HTTP,
 but it is to be preferred since it permits the least restricted set
 of negotiable options, and permits binary encoding. In the interest
 of making this specification more self-contained, we summarize PKCS-7
 here.

 PKCS-7 is a superset of PEM, in that PEM messages can be converted to
 PKCS-7 messages without any cryptographic operations, and vice-versa
 (given PKCS-7 messages which are restricted to PEM facilities).
 Additionally, PEM key management materials such as certificates and
 certificate revocation lists are compatible with PKCS-7's.

 PKCS-7 is defined in terms of OSI's Abstract Syntax Notation (ASN.1,
 defined in X.208), and is concretely represented using ASN.1's Basic
 Encoding Rules (BER, defined in X.209). A PKCS-7 message is a
 sequence of typed content parts. There are six content types, recur-
 sively composable:

 Data -- Some bytes, with no enhancement.

 SignedData -- A content part, with zero or more signature
 blocks, and associated keying materials. Keying materials
 can be transported via the degenerate case of no signature
 blocks and no data.

 EnvelopedData -- One or more (per recipient) key exchange
 blocks and an encrypted content part.

 SignedAndEnvelopedData -- The obvious combination of
 SignedData and EnvelopedData for a single content part.

 DigestedData -- A content part with a single digest block.

 EncryptedData -- An encrypted content part, with key
 materials externally provided.

 Here we will dispense with convention for the sake of ASN.1-impaired

Rescorla, Schiffman [Page 43]

Internet-Draft Secure HTTP

 readers, and present a syntax for PKCS-7 in informal BNF (with much
 gloss). In the actual encoding, most productions have explicit tag
 and length fields.

 <Message> := (<Content>)+
 <Content> := <Data> | <SignedData> | <EnvelopedData> |
 <SignedAndEnvelopedData> |
 <DigestedData> | <EncryptedData>
 <Data> := <Bytes>
 <SignedData> := <DigestAlg>* <Content> <Certificates>*
 <CRLs>* <SignerInfo>*
 <EnvelopedData> := <RecipientInfo>+ <BulkCryptAlg>
 Encrypted(<Content>)
 <SignedAndEnvelopedData> := <RecipientInfo>* <DigestAlg>*
 <EncryptedData> <Certificates>*

30

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 <CRLs>* <SignerInfos>*
 <DigestedData> := <DigestAlg> <Content> <DigestBytes>
 <EncryptedData> := <BulkCryptAlg> Encrypted(<Bytes>)
 <SignerInfo> := <CertID> ... Encrypted(<DigestBytes>) ...
 <RecipientInfo> := <CertID> <KeyCryptAlg> Encrypted(<DEK>)

Rescorla, Schiffman [Page 44]

Internet-Draft Secure HTTP

References

 [1] Linn J. "Privacy Enhancement for Internet Electronic Mail:
 Part I: Message Encryption and Authentication Procedures",
 RFC1421, Feb 1993.

 [2] RSA Data Security, Inc. "Cryptographic Message Syntax Standard",
 PKCS-7, Nov 1, 1993.

 [3] CCITT Recommendation X.509 (1988), "The Directory -
 Authentication Framework".

 [4] Kent, S. "Privacy Enhancement for Internet Electronic Mail:
 Part II: Certificate-Based Key Management", RFC1422, Feb 1993.

 [5] RSA Data Security, Inc. "Extended Certificate Syntax Standard",
 PKCS-6, Nov 1, 1993.

 [6] Crocker, D. "Standard For The Format Of ARPA Internet Text Messages",
 RFC822, August 1982.

 [7] Kaliski, B. "The MD2 Message-Digest Algorithm", RFC1319, April 1992

 [8] Rivest, R. "The MD5 Message-Digest Algorithm", RFC1321, April 1992

 [9] Federal Information Processing Standards Publication (FIPS PUB)
 180, "Secure Hash Standard", 1993 May 11.

 [10] Federal Information Processing Standards Publication (FIPS PUB)
 46-1, Data Encryption Standard, Reaffirmed 1988 January 22
 (supersedes FIPS PUB 46, 1977 January 15).

 [11] Federal Information Processing Standards Publication (FIPS PUB)
 81, DES Modes of Operation, 1980 December 2.

 [12] Lai, X. "On the Design and Security of Block Ciphers," ETH Series in
 Information Processing, v. 1, Konstanz: Hartung-Gorre Verlag, 1992.

 [13] Hardcastle-Kille, S. "A String Representation of Distinguished Names",
 RFC1485, July 1993.

31

http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1421
http://tools.ietf.org/html/rfc1422
http://tools.ietf.org/html/rfc1422
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc822
http://tools.ietf.org/html/rfc1319
http://tools.ietf.org/html/rfc1319
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1321
http://tools.ietf.org/html/rfc1485
http://tools.ietf.org/html/rfc1485

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

 [14] pgformat.doc (v 2.6). Obtainable from net-dist.mit.edu/pub/PGP.

 [15] Berners-Lee, T., Connolly, D., "Hypertext Markup Language - 2.0",
 draft-ietf-html-spec-04, June 1995 (working draft)

 [16] Berners-Lee, T. "Uniform Resource Locators (URLs)", RFC1738, Dec 1994

Rescorla, Schiffman [Page 45]

Internet-Draft Secure HTTP

 [17] Federal Information Processing Standards Publication (FIPS PUB)
 186, Digital Signature Standard, 1994 May 19.

 [18] Berners-Lee, T., Fielding, R. T., Nielsen, H., "Hypertext
 Transfer Protocol -- HTTP/1.0", draft-ietf-http-v10-spec-00,
 March 1995. (working draft)

 [19] Kohl, J., and Neuman, C., "The Kerberos Authentication Service (V5)",
 RFC1510, September 1993.

 [20] Johnson, D.B., Matyas, S.M., Le, A.V., Wilkins, J.D., "Design of the
 Commercial Data Masking Facility Data Privacy Algorithm," Proceedings
 1st ACM Conference on Computer & Communications Security,
 November 1993, Fairfax, VA., pp. 93-96.

 [21] Bellare, M., Canetti, R., Krawczyk, H., "Keying Hash Functions for
 Message Authentication", Preprint.

 [22] Krawczyk, H. personal communication.

 [23] Need reference for HTTP/1.1

 [24] Rescorla, E., Schiffman, A., "Security Extensions For HTML",
 draft-ietf-wts-shtml-00.txt.

 [25] MOSS

 [26] Hastad, J., "On Using RSA With Low Exponents in a Public Key
 Network," Advances in Cryptology-CRYPTO 95 Proceedings,
 Springer-Verlag, 1986.

Security Considerations

 This entire document is about security.

Acknowledgements

 The authors wish to thank our colleagues at Enterprise Integration
 Technologies, RSA Data Security, TIS, BBN, HP Labs Bristol, NCSA,
 Spyglass, MIT, CERN, Open Market, Spry, Digital, W3C and elsewhere
 for their review of earlier drafts. We also wish to thank the many
 users who shared their experience with the S-HTTP reference implemen-
 tation distributed by the CommerceNet Consortium.

 This work was initiated at Enterprise Integration Technologies Cor-
 poration and funded in part by the ARPA MADE (Manufacturing Automa-
 tion and Design Engineering) program, under contract management by

Rescorla, Schiffman [Page 46]

Internet-Draft Secure HTTP

 the USAF Wright Laboratory. In addition to the funding support, we
 appreciate the administrative and intellectual resources of the spon-
 sors and the research community they maintain.

Authors' Address

Eric Rescorla <ekr@terisa.com>
Terisa Systems, Inc.
4984 El Camino Real

32

http://tools.ietf.org/html/draft-ietf-html-spec-04
http://tools.ietf.org/html/draft-ietf-html-spec-04
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/draft-ietf-http-v10-spec-00
http://tools.ietf.org/html/draft-ietf-http-v10-spec-00
http://tools.ietf.org/html/rfc1510
http://tools.ietf.org/html/rfc1510
http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt
http://tools.ietf.org/html/draft-ietf-wts-shtml-00.txt

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

Los Altos, CA 94022
Phone: (415) 919-1753

Allan M. Schiffman <ams@terisa.com>
Terisa Systems, Inc.
4984 El Camino Real
Los Altos, CA 94022
Phone: (415) 919-1755

Rescorla, Schiffman [Page 47]

Internet-Draft Secure HTTP

 Table of Contents

1. Introduction ... 3

1.1. Summary of Features .. 3

1.2. Changes .. 4

1.3. Processing Model ... 4

1.4. Modes of Operation ... 5

1.5. Implementation Options 7

2. HTTP Encapsulation ... 7

2.1. The Request Line ... 8

2.2. The Status Line .. 8

2.3. Secure HTTP Header Lines 8

2.3.2. Content-Transfer-Encoding 9

2.4. Content .. 12

3. Message Format Options ... 13

33

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

3.1. Content-Privacy-Domain: PKCS-7 13

3.2. Content-Privacy-Domain: PEM 14

3.3. HTTP/1.1 Header Interaction 15

3.3.2. Content-Encoding ... 15

3.3.3. Transfer-Encoding .. 15

3.3.4. Connection ... 15

3.3.5. Keep-Alive ... 15

Rescorla, Schiffman [Page 48]

Internet-Draft Secure HTTP

3.3.6. If-Modified-Since .. 16

3.3.7. Content-MD5 .. 16

3.3.8. Other headers .. 16

4. Negotiation .. 16

4.1. Negotiation Overview ... 16

4.2. Negotiation Header Format 17

4.3. Parametrization for Variable-length Key Ciphers 18

4.4. Negotiation Blocks ... 19

4.5. Negotiation Syntax ... 19

5. New HTTP Header Lines .. 24

5.1. Security-Scheme .. 24

5.2. Encryption-Identity .. 24

5.3. Certificate-Info ... 25

5.5. Nonces ... 27

6. (Retriable) Server Status Error Reports 28

6.1. Retry for Option (Re)Negotiation 28

6.2. Specific Retry Behavior 28

6.3. Limitations On Automatic Retries 30

7. Other Issues ... 31

7.1. Compatibility of Servers with Old Clients 31

7.2. URL Protocol Type .. 31

7.3. Server Conventions ... 31

7.4. Browser Presentation ... 32

8. Implementation Notes ... 33

Rescorla, Schiffman [Page 49]
Internet-Draft Secure HTTP

8.1. Preenhanced Data ... 33

8.2. Note:Proxy Interaction 35

34

draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

http://tools.ietf.org/html/draft-ietf-wts-shttp-01[4/9/2014 7:56:54 PM]

8.2.1. Client-Proxy Authentication 35

8.2.2. Proxy Caching of S-HTTP Message 36

9. Implementation Recommendations and Requirements 37

10. Protocol Syntax Summary 37

11. An Extended Example ... 38

Appendix: A Review of PKCS-7 43

References .. 45

Security Considerations ... 46

Acknowledgements .. 46

Authors' Address .. 47

35

	ietf.org
	draft-ietf-wts-shttp-01 - The Secure HyperText Transfer Protocol

