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A Rigorous and Integrated Approach to 
Hydrophone and Source Positioning during 
Multi-Streamer Offshore Seismic 
Exploration 
V- Gikas*. P.A. Cross* and A. Asiama-Akuamoa** 

Abstract 
This paper describes a rigorous and integrated approach for positioning sour ces and hydrophones within a seismic spr ead that may 
contain multi-vessel and multi-streamer configurations. Any number of observations relating to any point(s) within the spread can be 
accommodated. Quantification and analysis of error propagation within the spread are provided. Test results based on the 
implementation of the algorithm on a UNIX platform are discussed. 
Resume 
Cet article donne la description d'une approche rigoureuse et coherente des sources de positionnem ent et des hydrophones dans un 
deploiement sismique que les configurations multi-vaisseaux e t multi-streamer peuvent englober. On peut utiliser un nombre 
indifferent d'observations relatives a n'importe quel(s) points(s) compris dans le deploiement. La qualification et l'analyse de la 
propagation d'erreurs a l'interieur du deploiement y est donnee et les resultats des tests bases sur l'execution de l'algorythme sur une 
plataforme UNIX y sont discutes. 

Resumen 
Este articulo describe un enfoque riguroso y armonioso sobre las fuentes de posicionamiento e hidrofonos dentro de un despliegue 
sismico que las configuraciones multi-buque y multi-streamer peuden contener. Se puede usar cualquier numero de observaciones 
referentes a un punto(s) cualquiera del interior del despliegue. El articulo proporciona la cuantificacion y el analisis de la propagation 
de errores dentro del despliegue y discute los resultados de las pruebas, basados en la implementation del algoritmo en una plataforma 
UNIX. " , 

1. Introduction 

The basic configuration of an offshore seismic exploration 
survey is as follows. One or more vessels sail in 
approximately straight lines whilst towing a number of 
'streamers' (typically up to 6 kilometres long) and 'seismic 
sources'. The streamers carry a number of hydrophones 
(typically 50-100 per kilometre) and are towed just below the 
surface of the water [Morgan, 1992]. At a specified distance 
interval (typically every 20-25 metres) one of the guns is 
fired resulting in seismic waves which travel through the 
water and penetrate the subsurface. The times of arrival of 
the reflected and/or refracted signals are then measured by 
the hydrophones. The surveying problem is to determine the 
position of the guns and hydrophones at the instants of firing 
and reception respectively. In principle the position of the 
vessel is of no interest - except, of course, for navigation. 

In recent years the problem has become increasingly 
complex, mainly due to an expansion of the type and 
quantity of survey data collected. In a typical configuration, 
Fig. 1.10, measurements will include compass orientations at 
points along the streamer (typically 4-7 per kilometre), laser 
ranges from the vessel to a variety of floats (for instance 
those carrying the guns and those at the front of the 
streamer), underwater acoustic measurements (of the 
distance) between a number of points at the front and back 
of, the system (referred to as the 'front-end' and 'rear-end' 
acoustic networks), the position of the tailbuoy and the 
position of the vessel (both typically, but not necessarily, by 
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DGPS). More complicated systems may also include 
acoustics throughout the length of the streamer and 
additional navigation devices on the vessel. Moreover, in the 
case of several vessels operating simultaneously, between 
vessel measurements would also be made. 

The most common approach currently applied to the 
positioning problem is to treat each epoch, and each 
measuring system, more or less independently. So both the 
laser and acoustic measurements are used to transfer the 
position of the vessel to the floats, while the front-end 
acoustics relate the floats to the guns and front-end of the 
streamer, and then the compasses determine the streamers 
shape. The rear-end acoustics and the tailbuoy positioning 
serve to provide some control of the orientation and stretch 
of the streamers. Typically the process will involve some sort 
of curve fitting operation for the compasses [Ridyard, 1989], 
and several independent 'network adjustments' for the 
acoustic and laser ^networks. It is possible that the process 
will involve 'iterating' several times through the various data 
types in order to 'best fit' (in some rather general sense) all 
of the measurements. < 

Although this approach is probably perfectly satisfactory 
from an accuracy point of view it suffers from two major 
disadvantages. Firstly it is highly 'case dependent', i.e. 
relatively small changes to the configuration or measurement 
set may lead to major changes in the processing software -
something that is especially difficult in real-time (or quasi 
real-time) quality control. Secondly, and probably most 
importantly, it is extremely difficult to analyse the error 
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Fig. 1.10: Typical dual source triple streamer configuration 

propagation through such a process - hence it is almost 
impossible to describe the precision and reliability of the 
final gun and hydrophone positions. This aspect is becoming 
increasingly important as clients require proof (often in real­
time) that the survey specifications are being met. 

There is hence a need to develop a completely general (for 
flexibility purposes) and rigorous (for error propagation 
purposes) approach to the positioning of guns and 
hydrophones during seismic exploration and this paper is an 
attempt to address that need. It describes the mathematical 
basis, implementation and testing of a Kalman filter that can 
in principle, handle any geometrical configuration (i.e. any 
number of vessels, streamers and guns) and any set of 
observations. 

Kalman filters have, in the past, not proved popular with 
the offshore positioning community and most offshore 
operators currently prefer simple and independent 'epoch by 
epoch' least squares computations. For this reason a brief 
review of the advantages of using a Kalman filter is included 
before describing the models used in detail. 

1.1. Kalman filtering versus simple least 
squares 

Kalman filtering has the following specific advantages over 
simple 'epoch by epoch' least squares and it is in order to 
exploit these fully that Kalman filtering was selected as the 
basic stochastic process behind the unified solution 
presented in this paper. 
1. Simple least squares treats each epoch independently. 

This means that it does not use knowledge of the 
motion of the system. Often, and especially in seismic 
work, it is possible to make a very accurate prediction 
of where the network will be at any epoch using just 
the previous position and the estimated configuration 
motion. Not using this 'knowledge of motion' is 
effectively discarding information and leads to poorer 
quality results than those obtainable from a properly 
tuned Kalman filter. In the past (and sometimes today) 
poorly tuned filters were used and in this case results 
might be worse - simply because the system motion 
may have not been well determined and/or not used 
properly in the estimation process. So simple least 
squares is a safe option - but it does not have the 
potential accuracy of Kalman filtering^ The challenge, 

of course, is to tune the filter properly in real time -
and the fact that some have failed to do this in the past 
has led to Kalman filtering gaining a poor reputation 
in some circles. 
The use of a Kalman filter for a highly complex 
seismic configuration enables a rigorous computation 
of precision and reliability measures such as error 
ellipses and marginally detectable errors respectively 
[Cms et al, 1994]. If a step-by-step approach is 
adopted (such as curve fitting the compass data 
followed by fitting the results to the acoustics and then 
to the navigation data) it is almost impossible to 
compute these measures. 
Due to its ability to predict the network, a Kalman 
filter is a far more powerful tool than simple least 
squares for quality control. Much smaller outliers and 
biases can be found by Kalman filtering than by 
simple least squares. It is, however, recommended 
that, where possible, simple least squares also be 
carried out at every epoch in order to identify (and 
correct or remove) the larger outliers. This is because 
Kalman filtering can be rather time-consuming from a 
computational point of view and any initial cleaning 
that can be done by other methods will increase its 
efficiency. 
Kalman filtering is able to solve for small biases that 
will remain in the data if only epoch by epoch 
processing is used - such as drifts in gyros and (C-O)s 
in terrestrial (shore-based) ranging systems. These look 
like noise in simple least squares and can easily go 
undetected. A lot can be learnt by looking at the time 
variation of the data. Of course, in principle this could 
be done in simple lease squares by analysing time 
series of residuals but it would be hard to do this in 
real time - and hard to feed back any findings into the 
system. 
Because it can determine and use the system motion, 
Kalman filtering is able to use observations that do not 
completely define the system - i.e. GPS data from just 
two satellites could be used to update a vessel position. 
Of course, long periods of such data would lead to a 
significantly degraded result. 
A Kalman filter can accept data as and when it is 
measured. With simple least squares, data has to be 
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reduced to a specified epoch. Therefore, a Kalman 
filter can cope well with data arriving as a more or less 
continuous stream. 

7. The Kalman filter regime is highly suited to the 
mixing of varied data types [Celik and Cross, 1994], 
when poor satellite geometry leads to poor positions in 
a DGPS-only solution, the introduction of data from a 
gyro carried by the vessel can make a major 
improvement. It would not be possible to combine 
these data types in simple least squares because, for an 
individual epoch the gyro does not give any positional 
information. 

2. Streamer modelling 

Since the compasses and other measuring devices are not 
co-located with the hydrophones it is necessary, in any 
approach, to have a mathematical model that describes the 
shape of each streamer. Moreover, because of the numerous 
hydrodynamic forces acting on the cable in the underwater 
environment, the cable shape is likely to be significantly 
distorted from a nominal straight line - so a simple linear 
model is very unlikely to be sufficient. To estimate this 
distorted shape two alternatives can be considered. 

In the first approach a physical model of the hydro-
dynamic forces acting on the cable could be used to derive 
equations which describe the streamer shape. It is known 
that tension forces due to the vessel pull, and drag forces due 
to the resistance of the cable through the water, determine 
its three dimensional shape. Any change in the vessel's speed 
and any fluctuation in the sea waves, or those generated by 
the vessel, the wind load or the water currents, would mean 
changes in the towing tension and drag forces respectively. 
Such a model can only be applied when these external forces 
acting on the cable are known with a reasonable accuracy 
[Krail andBrysk, 1989]. It should be stressed, however, that, 
even if these quantities were known, a system of several 
streamers and floats would lead to models that would be too 
complicated and inflexible for the construction and 
implementation of a practically useful positioning algorithm. 
It is therefore unlikely that, although they have been used 
for vessel motion, [Crow and Pritcheu, 1986], hydrodynamic 
models will be adopted for positioning purposes in the 
foreseeable future. 

The other way to tackle this problem is to consider an 
'empirical' numerical approach in which the solution to the 
problem is deduced by adopting a 'model curve' that best 
fits the observed data. 

2.1 Curve-fitting procedures 
Several numerical methods can be adopted to obtain the 
streamer shape. The simplest one is to consider the cable as 
a straight line which follows exactly the ship's track. 
Although this approach would be very simple in practice, 
significant differences from the final expected position may 
result, not only because of the angle between the ship's track 
and the cable's baseline, but also because of the 'deformed' 
shape of the cable. . 

A more efficient way to address this problem might be to 
use a mathematical function such as a cubic spline. 
However, even though a cubic spline gives a curve which is 
continuous and continuously differentiable, and one which is 
capable of fitting the data very closely, it is not the best 
solution of the problem. This is because its coefficients vary 
along the length of the cable (i.e. the streamer shape is not 
represented by a single function) and its incorporation into a 
single operational system, which is the aim of this study, is 

extremely difficult. Moreover, because the cubic spline is 
technically capable of representing faithfully each compass 
reading, it is hyper-sensitive to compass errors leading to the 
possibility of a completely unrealistic final curve. 

Alternative curve fitting models include least squares poly­
nomial approximation and the use of harmonic functions. 
This work concentrates on the former. Using least squares 
polynomials leads to a curve which describes the complete 
streamer's shape using only one set of coefficients, and 
furthermore the resultant curve is continuous and continu­
ously differentiable at every point of the cable [Douglas, 1980 
and Owsley, 1981]. As a result, this method can be 
incorporated much more easily in a unified recurrent process 
such as a Kalman filter. 

Variations of the foregoing are also possible in practice for 
instance Ridyard, (1989), has suggested the use of a 'rolling 
quadratic' algorithm in which a series of individual 
quadratics are used to fit a small group of compasses. This 
algorithm is clearly very effective and this, and similar 
approaches have been widely adopted within the industry. 
Whilst they may be very powerful interpolation devices, and 
whilst they may be very effective in sorting out outliers and 
highlighting problems, they cannot be easily adopted in the 
unified approach presented here. This is because (as was the 
case of the cubic spline) the approach demands the use of a 
single function to describe the streamer shape. 

Hence in this study a 'n-order' polynomial shape model 
has been utilised. Such 'single' polynomials are not popular 
in some sections of the exploration industry so their use 
needs also to be justified from an accuracy point of view (it is 
clearly not a sufficient argument to use them just because 
they are convenient), and a series of tests have been carried 
out in order to do this. These tests involved the fitting of a 
series of polynomials, of a variety of orders, to real compass 
data and comparing the results with those obtained from the 
universally accepted rolling quadratic method. The mathe­
matics and the results are described in the next section. 

2.2 Testing of the polynomial approximation 
In these tests the only information used is that derived from 
the magnetic compasses fixed along the length of the cable. 
This was done in order to compare the polynomial approach 
with the accepted method (which treats such data 
independently of any other). In such a case the final 
accuracy of a streamer position is a function of raw compass 
data, the local magnetic declination, individual compass 
corrections and the algorithm used for processing the data. 
The polynomial observation equations can be written as: 

B; = a0 + a,^ + a 2 l]  +... + anln (1) 

where: 

Bj : is the compass reading 
lt : is the offset of the i-th compass from its 

reference point 
a : is the polynomial coefficient 

The solution of this equation system, using a least squares 
method, gives the values of the polynomial coefficients. If we 
consider the geometrical configuration to be as shown in Fig. 
2.10, we have: 

0(radj= a tan(dv / du) = atan(dv / dl) (2) 

which for any 0 in (-1°,1°) becomes: 

0(rad) = tan0 = dv / du = dv / dl (3) 
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mean bearing 

Fig. 2.10: Streamer modelling 

Also for: 

Bi>B:Bi = B + 0 = B + (dv/dl) 
B( < B: Bj = B - 0 = B + (-dv / dl) (4) 

Upon substituting equation (1) into equation (4) and 
integrating we find: 

v = c0l +c,l2 +... +cnlntl 

where: 

c = a. / (k+1), for K = 0 to n 

(5) 

(6) 

The final coordinates X,Y can then be estimated by rotating 
these coordinates to the East, North coordinate system 
using: 

X = cos(a)l+sin(a)v 
Y = sin(a)l-cos(a)v (7) 

As already stated, in order to test the feasibility of the 
algorithm in terms of correctness and efficiency, the 
foregoing method has been applied to a subset of real 
compass data. A full description of the survey configuration 
and the data set used is given in 4.2 - here it is just 
mentioned that the streamers were 3.1km long and contained 
13 compasses each. The process was carried out for poly­
nomial orders up to eight and for every shot point in the 
data set. A typical set of results is given in Fig. 2.20. 
Detailed analysis of hundreds of such sets of curves has led 
to the conclusion that polynomials of order either five or six 
fit the data extremely well. The following two general 
conclusions were also reached. 

• Polynomials of order four or less do not describe 
faithfully the observations. In such cases the dif­
ferences between the actual compass readings and 
those predicted by the polynomial can (in a few cases) 
exceed half a degree. This might be important given 
that, in practice, cable compass resolution (but not 
accuracy) can be as high as 0.1°. 

• Polynomials of order greater than six can sometimes 
generate curves characterised by steep changes of 

0 2 
cable length (Km) 

polynomial order: 3 

0 2 
cable lengih (Km) 

polynomial order: 4 

-2 0 2 

cable lengih (Km) 

0 2 
cable lengih (Km) 

polynomial order: 6 

0 2 
cable lengih (Km) 

polynomial order: 7 

0 2 

cable length (Km) 

polynomial order: 8 

-2 0 2 

cable lengih (Km) 

0 2 
cable lengih (Km) 

Fig. 2.20: Streamer modelling -
Polynomial approximation 

gradient, which may effect significantly the fidelity of the 
final coordinates. This phenomenon is particularly noticeable 
for compasses close to the tailbuoy. 

After the polynomial coefficients had been determined, 
the Eastings and Northings with respect to the streamer 
reference point were obtained using equation (7). The 
differences between these coordinates and those obtained 
using a 'rolling quadratic' algorithm were then computed. 
An examination of these indicate that if a fifth or sixth order 
polynomial is used the maximum resultant differences are of 
the order of one metre - even for the groups of hydrophones 
in the far end of the cable. 

From these tests it is evident that the use of a polynomial 
approximation is a highly realistic approach to the problem. 
Moreover, the method has the advantage of being easily 
incorporated into a Kalman filter model for real time 
positioning and quality control from mixed data sources. 
The n-order polynomial has hence been adopted as the 
streamer model in the mathematical system developed in this 
paper. 

3. An integrated Kalman filter algorithm 

It has already been stated that a rigorous filtering approach 
has been adopted in this study. What follows is a review of 
the basic models needed for such an approach and details 
of the implementation of these models for the positioning 
of seismic spreads. 

14 
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3.1 Filtering techniques 
The Kalman filter {Kalman, I960] is probably the best 
known of the commonly used recursive algorithms for the 
estimation of the parameters of time-varying systems. It 
has constituted the framework for a unified and concise 
treatment of a broad range of filtering problems from 
electronic engineering to surveying and geodesy. As well as 
having the many practical advantages already referred to, 
Kalman filter estimates have the advantage of being least 
squares estimators, which can be shown [Cross, 1983], to 
be the best (in the minimum variance sense) within the 
complete class of linear unbiased estimators. 

The implementation of the filter requires the specifica­
tion of two mathematical models. The measurement model 
or primary model relates the state vector parameters to the 
observations, and the dynamic model or secondary model 
relates the parameters at epoch tM to those at later epoch ts. 

If the state vector is denoted by x and the observations 
by L then the linearised form of a non-linear measurement 
model F(x) = L is given by: 

Ax = b ; + v i (8) 

where: 

Aj : is the design matrix given by dF {  /dx i  
Xj : is the correction to the provisional value of the 

filtered state vector, xs(+) 
b : is the 'observed - computed' vector, given by 

L, -F,(V>) 
Vj : is the state vector residuals. 

The filtered state x^) is computed iteratively until there is 
no significant change in the provisional state x;(+). 

The dynamic model represents the behaviour of the 
system as it varies with time. The discrete linearised form 
is given by: 

xj = MwXj_i + y M (9) 

where: 

M;_,: is the transition matrix from time tM to time t 
yul : is the dynamic model noise from time tM to 

time t 

The operational equations for, and the recursive nature 
of, the Kalman filter are well known [Cross, 1983; Brown 
and Hwang, 1992]. Here emphasis is placed on the contents 
of the two models - once they have been specified then 
their implementation within a Kalman filter is, in 
principle, trivial. 

It is, however, worth pointing out that the Kalman filter 
is not the only optimal (in the least squares sense) 
mathematical procedure. Another, slightly less well known, 
set of equations known as the Bayes filter can be used to 
produce absolutely identical results to those of the Kalman 
filter. The only difference between them is in the manner 
in which the so-called gain matrix is computed. The 
computation of the gain matrix in the Bayes filter involves 
an inversion of a matrix whose size is equal to the number 
of parameters of the state vector, whilst, in the Kalman 
form an inversion of a matrix whose size is equal to the 
number of observations is required. In this study the Bayes 
equations have actually been implemented since in a 
typical 3D marine spread a large number of observations 
contribute to a relatively small number of states. Many 
modern Kalman filtering software packages include 
routines for both sets of equations and make automatic 
(and invisible to the user) decisions as to which to use. 

Despite sometimes using the Bayes equations, the words 
Kalman filter nevertheless appear to be almost universally 
used to describe the process. 

Before describing the models in detail it is necessary to 
make some remarks about the coordinate systems that are 
used. 

3.2 Coordinate systems 
Within a typi cal seismic configuration there are several sub­
systems that are able to move independently of each other, 
and of the vessel. These include every single float (gun array 
or any auxiliary reference station) and each streamer 
[Houienbos, 1989]. Each sub-system must therefore have its 
own parameters and coordinate system - which must, in 
turn, be linked by the mathematical model in order to 
determine the complete configuration. Before defining the 
various state vector parameters for each one of the 
configuration subsystems it is necessary to describe their 
different coordinate systems. 

An earth fixed geodetic system, involving latitude and 
longitude or a map projection system, is used to describe the 
final positions of all of the points of interest. The vessel and 
tailbuoys absolute positions, derived by GPS/DGPS or a 
radio positioning system, will, of course, naturally be in this 
system but it is not especially convenient for describing the 
rest of the spread. 

Fig. 3.10: Coordinate systems 

For this it is more convenient to use a local topographic 
coordinate system. This system has its origin at the vessel 
navigation reference point with the X-axis aligned with the 
east direction and Y-axis aligned northwards. When 
necessary the 2-axis is defined as being perpendicular to the 
XY plane (i.e. upwards) such that the resultant coordinate 
system is right handed, as in Fig. 3.10. It is obvious that this 
system moves with respect to a geodetic earth system as the 
vessel's position changes. Also it is clear that, given the 
relatively short distances (a few kilometres) involved within 
the network, there will be minimal error in working with the 
computed distances and azimuths in the XY (horizontal) 
plane and then using a direct geodetic formulation to 
determine the coordinates (latitude and longitude) of the 
points of interest - i.e. the earth is effectively considered to 
be flat within the region of the seismic spread. 

Some of the available observations are made relative to 
devices fixed on the vessel. For this reason it is necessary to 
define another coordinate system that is attached to the 
vessel. The origin of this coordinate system coincides with 
the navigation reference point. Its y axis is aligned with the 
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vessel's bow-stem direction. Its x axis ( starboard) is in the 
horizontal plane and perpendicular to the y axis whilst z axis 
is defined to be perpendicular to xy place (upwards) - see 
Fig. 3.10. 

Finally, in order to estimate the position of any point on 
each of the streamers, taking into account its distance from 
the streamer reference point 1 as a parameter, it is necessary 
to introduce another local coordinate frame for each streamer 
in the spread. A set of three dimensional coordinate systems 
(u, v, z) is therefore defined. Each has its origin at the head 
of the first active section of the streamer, or any other point 
of known offset, its u axis aligned with the base course of the 
cable (as results from the Kalman filter computations) and 
its v axis perpendicular to the u-axis and pointing to the 
starboard side. The z axis is defined such that the resultant 
coordinate system is right-handed - see Fig. 3.10. 

3.3 Kalman filter functional models 

3.3.1 State vector 
In order to implement a Kalman filter, we must first define, 
in general terms, the minimum number of individual and 
(determinable) parameters (or unknowns) necessary to 
describe the complete system - this is known as the state 
vector. In the case of an offshore seismic survey the 
unknowns consist of those which describe the vessel's 
position and the motion and those which describe the 
position and motion of each subsystem. In the following, the 
unknown parameters are classified by subsystem. 

Vessel unknowns 
The unknown parameters that describe the vessel position 
and motion are defined to be the instantaneous values of the 
following elements: 

<p, X: the geodetic 'ellipsoidal' coordinates of the ship 
reference point 

cp, 1: the instantaneous velocity of this po int, 
c : the crab angle, i.e. angle between course made 

good and vessel's heading (Figure 3.20). 

Note that for many navigation applications it would also 
be necessary to define the acceleration of the vessel in the 

state vector but the almost straight line motion associated 
with seismic surveying makes this unnecessary in this case. 

Float unknozvns 
The unknown parameters for any tow points attached to the 
vessel are also included in the state vector. Tow point 
positions are defined as position vectors expressed in X, Y 
coordinates along with their velocity components X, Y with 
respect to the local topographic coordinate system. It should 
be stressed here that to date the filter has only been 
implemented in the XY (horizontal). The (known) Z 
coordinates of all components, are taken into account by 
making geometrical 'corrections' to the observations, i.e. 
observations are corrected to the values they would have had 
the whole system been in the XY plane. Also, it is important 
to note that the unknown coordinates X, Y refer to the 
centres of the floating arrays. It will usually be necessary to 
correct observations to these centre points. 

Streamer unknowns 
The streamer unknown parameters must clearly refer 
directly to the streamer model. For the purposes of this 
study a polynomial model has been adopted. Hence, the u, v 
coordinates of any point on a streamer are given by the 
following equations: 

u = 1 (10) 
V = c2l2 + c3P +...+cnl" (11) 

Testing of the integrated algorithm using real data showed 
that (perhaps not surprisingly) coefficient c0 must be null 
since, by definition, v is zero at the head of the cable (i.e. 
when 1=0). Also the q coefficient (which is directly related 
to the overall orientation of the streamer) is redundant in the 
state vector since the orientation of the u,v system, the 
direction angle a, in Figs. 3.10 and 3.20, is considered to be 
an unknown in the system. Therefore, the streamer 
parameters consist of the polynomial coefficients c;, the 
direction angle a of the v axis and the streamer's coordinate 
reference system origin X, Y along with its velocity 
compo -nents X, Y. 

V * 
E X 
$ 
S 1 <i> 
E 
L X 

c ml 

Yfi 
*f] 
Y„ 

Xfml 
Yfml 
Xfml  
Yfml m2 

POIYNOMW. 
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POLYNOMIAL 
COEFfCtNTS 

*S1 
Ysl 

*SL 
Ys! 
a.i 
9S12 

csln 

xsm2 
Ysm2 
>w 
Ysm2 
®in>3 

9sm22 

csm2n 

Table 3. JO: State vector elements 
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The complete state vector is summarised in Table 3.10. It 
is evident that the number of states to be estimated for every 
shotpoint depends on the number of floats and streamers 
that are utilised throughout the spread as well as on the 
polynomial order of the streamer model. Hence, for a 
configuration consisting of m, floats, m2 streamers and for a 
n-order polynomial, the state vector dimension will be equal 
to 5 + 4(m , + m2) + nm2, which for a typical spread of two 
sources and three streamers becomes equal to forty elements. 
The Kalman filter algorithms can easily provide a solution 
for a state vector of this size since within typical modern 
seismic configurations the total number of available 
observations is well over a hundred per shotpoint. 

It is worth noting at this stage that the tailbuoy positions 
do not form part of the state vector. This is because a 
tailbuoy is tr eated as a simple extension of the streamer. It 
would be quite possible to include the tailbuoys in the 
system as independent points but they would not then be 
able to fulfil their primary role of providing overall 
orientation and scale control for the cables. 

3.3.2 Observations 
As has already been stated, in a modern marine seismic 
survey several measurement devices are employed to 
position the various points of interest throughout the 
spread. The most commonly used devices include magnetic 
compasses, laser systems, long, short or ultra short baseline 
acoustic devices, terrestrial radio ranging systems (e.g. 
Syledis, Hyperfix, ARGO) and differential navigation 
systems as GPS [Chevron Training Course, 1992; Kelland, 
1994]. Regardless whether the actual observations are 
measured time or phase differences between any two 
devices in the network or between any device and any 
shore or satellite station, basic observation types in this 
study reduce to slope ranges, bearings and bearing 
differences and the absolute geodetic position of certain 
nodes in the network. In particular observations equations 
are formed for the following measurements: 

• Vessel geodetic position. 
• Vessel gyro. 
• Slant acoustic and laser ranges between vessel, 

sources, streamers and miscellaneous hardware. 
• Directions between vessel, sources, streamers and 

other auxiliary assemblies. 
• Float and tailbuoy absolute position. 
• Compass bearings along the streamer. 

3.3.3 Observation equations 
Once the different observation types have been specified and 
the state vector parameters have been explicitly defined, the 
measurement functional model can be set up in the form of 
the observation equations. 

Observation equations are simply mathematical represen­
tations of the underlying physical and geometric relation­
ships between the measured quantities and the parameters. 
Note that this stage of the process is crucial in the sense that 
any mistakes in the formulation of these equations, even 
seemingly small, will lead t o an incorrect design matrix (the 
matrix A in equation (8)) and small errors in the final 
solution that, in general will not be easy to detect. Bearing in 
mind that for the purposes -of this study local topographic 
coordinates have been selected for the computational model, 
the observation equations for each measurement discussed in 
3.3.2 can now be presented. 

Vessel geodetic position 
Since the vessel's geodetic position is itself an unknown, the 
observation equations can be written as: 

<Pv = <P + V, 
\X + v, (12) 

where: 

(pv, \: are the unknown ellipsoidal coordinates 
(p, X : are the observed ellipsoidal coordinates of the 

vessel 
v^ vx: are the measurement residuals 

However, it should be noted that, if the sensor that 
provides the vessel's position is located sufficiently far away 
of the navigation reference point it will be necessary to 
correct the observation to this point using the general 
formula that given by equations (18), (19) and (21). 

Vessel gyro 
The output from the vessel's gyro is essentially the azimuth 
of the vessel and it can be related, through Fig. 3.20, to the 
velocity of the vessel via the crab angle, c, as follows: 

or 

tan" 

tan-

+ c = H + vt 

vcos((p) X 

P<Pv 

+ c = H + V, 

(13) 

(14) 

where: 

H : is the observed gyro measurement-, 
E : is the instantaneous easterly velocity of the vessel 
N : is the instantaneous northerly velocity of the 

vessel 
c : is the crab angle of the vessel 
vH : is the measurement residual of the gyro 

and: 

P = a(l-e2) 

[1-e2 sin2 ((p)]!4 [l-e2 sin2 (q>)]% 

a2 - b2 

(15) 

with: 

a : is the semi-major axis of the reference ellipsoid 
b : is the semi-minor axis of the reference ellipsoid 

Slant ranges and bearings 
The standard observation equations for a measured distance 
and azimuth between any two nodes, i and j, in the network 
are given by the following expressions: 

^(Xj - X,)2 + (Y, - Yj)2 + (Z, - -LJ = Ds + vDj (16) 

X.-X. tan* 
VYi 

= A.. + v. 
it Ajj 

(17) 

where: 

Xj, Xj : are the easting components of stations i and j 
Yj, Yj : are the northing components of stations i and j 
Zj, Z : are the distances of stations i and j from the 

XY plane 
D;. : is the measured distance between stations i 

and j 
A;j : is the measured or reduced azimuth between 

stations i and j 
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Fig. 3.20: Slant ranges and bearings observation equations 

The Cartesian coordinates of the stations i and j are 
expressed in a different form in accordance to the subsystem 
they refer. Three different cases are considered here (Fig. 
3.20). 

If a station i is a point on the vessel (sonardyne, laser 
device, etc.) then: 

Xs = x cos(H) +y sin(H) 
Yj = -x sin(H) + y cos(H) (18) 

where: 
x,y : are the coordinates of die device fixed on the 

vessel 
H : is the vessel's heading 

Given that the vessel's heading, H, is not considered to be 
an unknown in the system it must be substituted in equation 
(18) by: 

H = tan*1 vcos(<pv)X 

P<J> 
+ c. (19) 

so that the observation relates only to unknown parameters. 
Similarly, if a station i is a device on a float array (gun, 

towfish, buoy etc.) the observation should first be corrected 
to the centre of the array using equations (18) and (19). In 
such a case it would be usual to assume that the orientation 
of any float structure coincides with that of the vessel gyro. 
This is justified by the relatively small dimensions of the 
arrays and the short distances involved within the network. 
In this case, the coordinates x,y in equation (18) would refer 
to the nominal offsets of the device measured from the 
centre of the float. 

Finally, station i could be any point on a streamer. In this 
case, and in order to express Xj} Yt cordinates as a function 
only of unknowns, we must refer directly to the streamer 
unknown parameters. Therefore, for the chosen streamer 
model of these equations are formed as follows: 

H 

X = Xs + 1 cos(a) + ^ [c^] sin(a) 

Y. = Ys - 1 sin(a) + ^ {cj*] cos(a) 

(20) 

where: 

XS,YS 

c* 
n 
1 

are the Cartesian coordinates of the streamer's 
reference point in the XY coordinate system 
is the instantaneous orientation of the 
streamer coordinate system u,v 
are the polynomial coefficients 
is the polynomial order 
is the offset of station i from the streamer's 
reference point 

In fact ten different equations can be written, for both 
distance and azimuth observations, depending upon the 
subsystems to which stations i and j r efer. Hence, and for 
example, the observation equation for a measured azimuth 
from the vessel's laser to a laser reflector fixed on a streamer 
is given by the following equation: 
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tan 
X, + lcos(a) +^[cklk]sin(a)- ^ jccos 

Y,- 1 sin(a) + ^[cklk] cos(a)- l-*sin 

tan ,[ vcos(^v) Xv 

P<pv 

tan _l[ v cos( f y ) X v 

Plv 

+ y sin 

+ y cos 

tan ' f  K  l+c  

tan ,{ vcos(^ „)Av 

p4>v 

= AB+vA, 

It is importanr to note, that, in the case of any observed 
direction the measurement should be first reduced to an 
azimuth (bearing) and then be corrected for grid conver­
gence before the observation equation is formed. 

Float and lailbuoy geodetic position 
For any floating body towed by the vessel, e xcept for the 
tailbuoys, geodetic position observation equations can be 
formed (Fig. 3.20) as follows: 

Y <p + f = (Pr+v, 

+ X, 
vcos(<p) 

(21) 

where: 

Xp Yf : are the unknown Cartesian coordinates of the 
float 

cpv, X v : are the unknown ellipsoidal coordinates of the 
vessel 

<pp : are the observed geodetic coordinates of the 
float 

v^ v} : are the measurement residuals 

Note that these equations make the (entirely reasonable) 
assumption that the radius of curvature in the plane of the 
meridian p, and the prime vertical v, throughout the spread 
are equal to those for the reference navigation point. 

Tailbuoy position observation equations differ slightly 
from the equations given above because, as explained in 
paragraph 3.3.1, tailbuoy coordinates are not parameters of 
the system, i.e. they are not in the state vector. A streamer's 
parameters are therefore required in order to obtain its 
tailbuoy position. Substituting equation (20) into equation 
(21) leads to: 

Ys - 1 sin(a) + ^ folk] cos(a) 
%+ « =tptb + v, 

v.b 

^v + 

where: 

n 

Xs + 1 cos(a) + ̂  [c^] sin(a) 
' k=2 

v cos(cp) 

(22) 

(ptb, \b : are the tailbuoy measured Ngeodetic 
coordinates 

v , v. : are the measurement residuals. 

Fig. 3.30: Compass azimuth observations 

Compass bearings 
To form a compass bearing equation it is necessary to 
consider the geometry of the configuration as shown in Fig. 
3.30. The observation equation for a compass of offset 1, 
measured from the streamer reference point, is then formed 
as follows: 

a -

where: 

a 

Bcon  
VB„n 

and: 

dv 

du 

I dv '  71 1 tan"1 I dv '  + 

1 d u i  2 
= BcomP + VBa (23) 

is the instantaneous orientation of the 
streamer coordinate system u,v 
is the observed compass bearing 
is the measurement residual 

d(2slk 
\ k=2 

dl 
(24) 

Compass observations should be reduced to the grid 
before we incorporate them into the KaJman filter process. 
This is done by correcting them for magnetic declination 
and grid convergence according to the following equation: 

B = B + mag decl + grid conv 
come w — 

(25) 

Therefore, combining equations (23), (24) and (25) we obtain 
the complete form: 

a- tan-' (J )+ y - mag decl - grid conv 

= B + vr (26) 
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Note that, in principle, magnetic declination could be 
placed in the state vector and recovered from the 
measurements along with all of the other parameters. This 
has not been done in the work reported here but the fact that 
it is possible is ano ther advantage of this unified approach. 

The foregoing observation equations are given in their 
original, and mostly non-linear, form. To determine the 
coefficient matrix (A in equation (8)), it is necessary to 
linearise these equations by applying the Taylor series 
expansion. Because of the large number of unknown 
parameters contributing to the system and the complicated 
nature of som e of the equations, many of these differentials 
are better obtained numerically, and where relevant this has 
been done in this implementation. 

3.4 Kalman filter transition equations 
In Kalman filtering it is a basic assumption that the 
secondary model is able to describe perfectly the system 
dynamics in the mean sense, i.e. such that model errors are 
limited to white noise sequences, v( and y; for the 
measurement and dynamic models respectively. Here a 
simple Taylor's expansion of the state vector elements is 
used for this purpose: 

X = x0+ x0t + '/^t2 + ... (27) 

As has already been explained the stable nature of seismic 
exploration surveys has led to the state vector only including 
zero and first order terms (no acceleration or higher order 
terms). Consequently, and using equation (27), the dynamics 
of a seismic vessel and any other floating body (source, 
streamer reference point, etc.) is described, for a short period 
of time, by the following equations. 

Xj = X;_, + XMdt + l/2axdt2 

Yi = Yi-[ + YMdt + '/ 2aYdt2 

X = Xi_, + axdt 
= Yj.j + aYdt 

(28) 

where ax and aY, the average acceleration components for the 
time interval dt, are treated as white noise [Houtenbos, 1982]. 

The remaining elements of the state vector, i.e. the crab 
angle c, the orientation of each streamer coordinate system a 
and the polynomial coefficients can be modelled in a simpler 
way because they are not expected to vary significantly with 
time. Therefore these states are modelled as a linear function 
of time according to the equation: 

d^ + d^dt (29) 

where: 

d 
d 

is the state vector element 
is the rate of change of d 

3.5 Stochastic models 
In order to implement a Kalman filter two stochastic models 
have to be specified. These are invariably in the form of 
covariance matrices and they describe the precision of the 
observations and of the dynamic model respectively, i.e. they 
describe the quality of the measurements and how well the 
model describes reality. Correct specifications of these 
stochastic models is essential for both the proper 'tuning' of 
the filter and its capability to produce accurate quality 
(precision and reliability) measures [Salzman, 1993]. The 
tuning of the filter refers, in essence, to the relative sizes of 
the elements of the observation and model covariance 

matrices. By decreasing the variances (increasing the 
weights) of the observations the final filter estimates can be 
made to fit the observations more closely - but with the 
danger of small observational errors appearing as obviously 
impossible vessel manoeuvres. Conversely decreasing the 
variances of the dynamic model leads to too smooth a final 
answer and one that cannot react quickly to rapid changes in 
the true track of the vessel and of the hardware being towed. 
Such situations are well-known in practice and are 
evidenced, for instance, by a ship's track continuing to be 
shown as straight long after all on board are well aware that 
a turn has been made. 

In mixed measurement systems it is also necessary to 
consider carefully the relative sizes of the elements within 
the covariance matrix of the observations. For instance by 
selecting the elements appropriately it would be easy, for 
instance, to make the final results fit the compass data very 
closely and virtually ignore the acoustics, or vice versa. 

Although it is the relative sizes of these covariance 
matrices that is critical to the fidelity of the filter, it is their 
absolute sizes that drives the computed covariance matrices 
of the predicted and final filter estimates. Too small 
covariance matrices will lead to over-optimistic quality 
measures, and vice versa. Hence the problem is one of 
determining both relative and absolute sizes of the elements 
of the covariance matrices. 

The correct practical approach to the solution of this 
problem is a matter for on-going research in several centres. 
For instance, one suggested approach [Celik and Cr oss, 1994] 
is whereby the standard deviations of the variance 
observations types are first determined by independent study 
(e.g. epoch by epoch network adjustment of acoustic ranges 
and simple surve fitting to the compasses). These values are 
then considered 'fixed' and the elements of the covariance 
matrix of the dynamic model are timed until (on average) the 
correct number of rejections is made during the analysis of 
the innovation sequence. Certain model statistics are then 
used to scale the overall sizes of both matrices. This 
approach is relatively straight forward in the case of a 
seismic spread because the system is so well behaved. Much 
more research is, however, still needed in this area. 

4. Implementation and testing of the method 

The method has been implemented in a software package 
written at the University of Newcastle upon Tyne, and this, 
along with its testing with a real data set will now be 
discussed. 

4.1 Software implementation 
To verify the correctness of the mathematical model and 
the feasibility of the associated algorithms, software has 
been written to integrate the complete procedure so far 
discussed. It has been written in the 'C' programming 
language to run under the UNIX operating system. As 
well as (of course) computing the state vector at each 
epoch, the implemented algorithms also provide the 
position of any float in the spread, and the position of any 
hydrophone group. Additionally, and since they are a 
natural bi-product of the Kalman filter process, the 
associated covariance matrices are computed - leading to 
the computation of error ellipses and other quality 
measures not just for the vessel but for any point in the 
configuration (for instance the propagation of error law can 
be used to compute error ellipses at individual hydrophone 
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positions). Of course the vessel a nd tailbuoys positions and 
their precisions also form part of the software output. The 
algorithms are flexible enough to produce a solution 
simultaneously involving all observations or, for analysis and 
testing purposes, just some of them (e.g. only compasses). 
This feature gives an immediate overview of possible trends 
in the performance and contribution of a particular 
observation type. 

All measurements are tested for outliers before they are 
accepted by the system. This testing procedure involves an 
examination of the predicted residual of each observation for 
every shotpoint. At this stage in the development of the 
software this check is simply to identify (and probably reject) 
outlying observations. Rigorous statistical testing [Salzmann, 
1993], will be implemented in the future. 

4.2 Data description 
The survey configuration consisted of a single vessel, dual 
source and triple streamers equipped with active tailbuoys. 
Both vessel and tailbuoys were located by means of Syledis 
radio positioning while vessel positioning was supported by 
a DGPS system. A total of 240 hydrophone groups were 
located in every streamer of approximately 3km length. At 
the front end a total number of 45 acoustic ranges were 
measured while 29 acoustic ranges were observed at the tail 
network. In addition to this, 4 laser ranges and 7 directions 
from the vessel to energy sources and streamers were 
observed. Also, 13 magnetic azimuths provided the 
orientation of each of the three cables. Thus, including 
vessel and tailbuoys positions as well as vessel gyro, a total 
number of 132 observations were collected at every shot. 

Fig. 4. 10: Raw compass data time series plot 

In addition to these data files bitmap time series for the 
raw compass and sonardyne data types have been provided -
samples are in Figs. 4.10 and 4.20. This information is 
mainly used to assist in identifying problems and trends in 
the performance of these devices. It frequently occurs that 
some of the compass or acoustic data is of such poor quality 
that it is impossible to meet the clients specifications and 
therefore these measurements should be rejected or used 
with extreme care [van Zeelst, 1991]. Compass performance 
becomes very unstable in choppy and cross current seas. 
Moreover, it can be affected by local magnetic anomalies, 
man made or natural [Gerber, 1987]. 

As can be seen from Fig. 4.10 compass performance for 
the starboard streamer for the dataset used is quite stable for 
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Fig. 4.20: Raw sonardyne acoustic data time series plot 

ail compasses with insignificant variations in the differences 
from shot to shot. This conclusion applies for the centre and 
port streamers as well. On the contrary, some of the raw 
acoustic ranges seem to be quite noisy (see Fig. 4.20 ranges 
5, 6 and 14). The time series are reproduced here just to give 
a general indication of the quality of the data used in this 
test. The Kalman filter, if properly tuned, should identify 
and reject any outlying observations. 

4.3 Processing of data 
Around 800 continuous shotpoints (spanning a total time 
period of 110 minutes) from the foregoing data set have been 
processed and a number of analyses of the results have been 
performed. Note that all the presented results were obtained 
using a fifth order polynomial streamer model. 

STANDARD DEVIATIONS OF THE 
OBSERVATIONS 

vessel position 3.0 m 

gyro 0.5° 

acoustic and laser ranges 2.0 m 

laser bearings 0.5° 

compass azimuths 0.5° 

tailbuoy positions 3.0ro 

Table 4.10: Stochastic model of the observations 

STANDARD DEVIATIONS OF THE 
DRIVING NOISE 

vessel acceleration 0.01 m/sec2 

crab angle rate 0.04°/sec 

float and streamer reference point acceleration 0.01 m/sec2 

streamer base line orientation rate 0.01°/sec 

streamer polynomial 

coefficients rate 

0.5 E-6 m/m2/sec 

streamer polynomial 

coefficients rate 

0.5 E-9 m/mVsec streamer polynomial 

coefficients rate 0.5 E-12 m/m4/sec 

streamer polynomial 

coefficients rate 

C5 0.5 E-15 m/mVsec 

Table 4.20: Stochastic model of the dynamic model 
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As has been mentioned in 3.5, two stochastic models have 
to be specified before a Kalman filter can be implemented. 
Here it has been assumed that, since seismic surveys are 
carried out in calm seas, standard deviations of 0.01m/sec2 

can be used for the vessel, floats, and streamer reference 
point accelerations. Also, the correlation between Northings 
and Eastings accelerations has been assumed to be zero 
[Houtenbos, 1989]. Tables 4.10 and 4.20 give a full 
description of the standard deviations used to develop the 
stochastic models adopted for these tests. 

Predicted residuals 
A predicted residual is computed from the difference 
between a measurement at a particular time (usually a shot 
point) and the measured quantity computed from the 
predicted state of the system. Predicted residuals (sometimes 
known as the innovation sequence) are an excellent way to 
assess the performance of a system. Predicted residuals that 
are, overall unbiased (i.e. zero mean), and commensurate in 
size with the expected observation errors, show that the 
observation and dynamic models are correct, that they are 
correctly implemented, and that the filter is properly tuned 
(i.e. correct stochastic models have been used). 

Fig. 4.30 contains the mean values and standard 
deviations of the observation residuals computed from all 
800 shotpoints for the acoustic ranges in the front and tail 
networks as well as for the compass measurement of all three 
streamers. Given that, the a priori standard deviations of the 
acoustic ranges and compass azimuths of the measurement 
model have been set to be 2.0 metre and 0.5 degrees 
respectively, the results Fig. 4.30 (a), (d), (g) are extremely 
encouraging. As can be seen from these histograms the mean 
values for most of the acoustic ranges are less than 2.0 metre, 
but in any case much less than 3 standard deviations - while 
all mean values for the compass residuals are less than 0.5 
degrees. Examination of Fig. 4.30 in more detail shows that 
ranges for which a large number of shotpoints has been 
rejected, present bigger standard deviations. This is to be 
expected as the contribution of these observations to the 
final solution is smaller (there are less of them) - see 
diagrams (b), (c), (e), (f). This phenomenon is most distinct 
for ranges 5, 6, 13, 26, 37 and 39 in the front end network 
and for ranges 5, 6 and 8 in the tail network. Moreover, 
these results can be explained by examining this diagram in 
combination with Fig. 4.20. Acoustic ranges 5 and 6 of the 
front network and 5 of the tail network in Fig. 4.30 
correspond to ranges 5, 6 and 14 in Fig. 4.20 respectively, 
which are the most noisy as noted in 4.2. Hence it can be 
concluded that the filter is correctly identifying the outlying 
observations. Also it can be seen that the mean values for the 
compasses in Fig. 4.30 follow an approximately white noise 
pattern strongly supporting the use of the polynomial cable 
shape model. 
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Fig. 4.30: Statistics of the predicted residuals 
(innovation sequence) 

Independent checks 
Another way to ascertain the effectiveness of the models is to 
carry out completely independent checks, i.e. to compare 
identical quantities computed using completely different 
data. Two such tests have been carried out. 

In the first test, two estimates of the tailbuoy positions 
were compared. The first estimate came directly from the 
tailbuoy Syledis measurements and the second came from 
the Kalman filter using all of the data except those 
measurements. The results for all three streamers are shown 
in Fig. 4.40. Note that, to aid interpretation, the differences 

in Eastings and Northings have been rotated into their 
along-track and cross-track components. Two points are 
immediately evident: the differences in each direction are of 
the same magnitude for the three cables, and there is a 
significant difference in the two directional components. The 
along-track differences vary up to 10.0-12.0 metres, while 
the cross-track differences vary up to 20.0-25.0 metres. This 
disparity is easily understood as the along-track differences 
are cable-length related and the cross-track differences are 
cable-orientation related - clearly in this uncontrolled 
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Fig. 4.40: Differences between Syledis (observed) and 
filter derived tailbuoy location 

Fig. 4.50: Differences between an acoustic observed 
range (between two devices on separate streamers in 
the tail network) and that derived from the Kalman 

filter (not including the observation) 

that these values were based on the survey specifications and 
on previous experience. The three tested configurations were: 

(a) all measurements, 
(b) no tailbuoy Syledis, and 
(c) no tailbuoy Syledis and no tail end acoustics. 
From the three points shown in Fig. 4.60 it is apparent 

that maximum error occurs, as expected, almost exactly in 
the cross-track direction while minimum error occurs along 
the in-line direction. This is irrespective of which 
observation types or data subsets have been incorporated 
into the filter. In fact, the differences between the direction 
of minimum error and the cables' baselines, as computed 

manner (the filter has no tailbuoy positioning) it is not 
surprising that the larger errors are orientation related. 

The errors are of course the sum of several components 
including the unknown behaviour of the tailbuoy tether and 
errors in the 'check', i.e. the Syledis positions. They are, 
however, still not large (an actually no larger than expected -
see Fig. 4.60 (b) and the later discussion). A maximum 
20 metre cross track error over a 3km cable represents a 
maximum overall orientation error of less than 0.5 degrees -
and the mean error is clearly very much smaller than this (of 
the order of 5 metres - or 0.1 degrees). Overall this test adds 
further confirmation that the model and its implementation 
are correct - at the very least it does not provide evidence to 
the contrary. 

In the second 'independent' test the state vector elements 
were used, at every shotpoint, to compute the coordinates of 
two acoustic devices: one on the starboard streamer and the 
other on the port streamer, and both located in the tail 
network. The computed- value of the distance was directly 
compared with the acoustically observed value given in the 
data set. Obviously, as in the first test, and in order for the 
check to be independent, this observation was not included 
in the filter solution. The resulting differences are shown in 
Fig. 4.50. They have an approximately zero mean and rarely 
reach one metre - representing an exceptionally strong 
argument that the model is correct. 

Tests of pre cision 
It has already been mentioned that the greatest single asset 
of the suggested method is its ability to provide a rigorous 
measure of precision throughout the seismic spread. Typical 
95% error ellipses were computed at a sample of points along 
the cables under three different circumstances. Note that the 
input standard deviations chosen for the observations are 
0.5 degrees for the compass bearings, 2.0 metres for the 
acoustic ranges and 3.0 metres for the Syledis positions, and 
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Fig. 4.60: Hydrophone group error ellipses 

from the filter, are no more than a few degrees and in most 
of the cases less than 2.0 degrees. Moreover, from the same 
plots it can be seen that the standard deviations for the front 
end of the cable are quite small and of the same magnitude 
in all directions. This is because the network is very strong 
in this area due to the large number, and excellent geometry, 
of the available observations. Also, it is immediately evident 
that the in-line deviations are of the same magnitude in the 
three plots. 
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In plot Fig. 4.60 (a) the cross-track standard deviations 
range from about 2.0 metres at the front end, reach 
10.0 metres for the groups in the middle and between 6.0 
and 7.0 metres at the far end of the cables. In plot Fig. 4.60 
(b), the standard deviations for the second half of the cables 
vary between 10.0 and 12.0 metres. Finally, if neither active 
tailbuoys nor tail acoustics are used, standard deviations can 
reach 18.0 metres at the tail end. It should also be noted 
here that the standard deviations of the energy source (gun) 
positions are similar to those at the front end of the cable. 

Of course the general trends of these quality measures 
could have been predicted from common sense. It is obvious 
that with tailbuoy positioning the weakest part of the system 
is in the centre and without it the weakest part is at the tail. 
The advantage of this approach is that the uncertainties can 
be quantified so that they can be direcdy compared with the 
survey specification for quality control purposes. 

5. Conclusions 

It is apparent from the results of the tests that the suggested 
method is a highly realistic approach to the problem of 
integrated processing of 3D marine seismic data. The 
significant innovation of the method is centred upon its 
ability to incorporate all different observation types into one 
integrated solution by means of a Kalman filter. Moreover, 
by design, the whole network is conceptually split into 
several subsystems so that the resultant algorithm can be 
flexible enough to describe the geometry of any likely 
practical set-up in a rigorous mathematical manner. The 
position of any point of interest throughout the spread, and, 
most importantly, its precision, can hence be computed. 

It has also been shown, by both data pre-analysis, and by 
the results of trials with the final algorithm, that polynomials 
can be adopted as a realistic mathematical representation of 
seismic streamer shape. 

In order for the filter to operate efficiently, raw data 
should first be cleaned by removing any outliers. It is 
suggested that, due to the relatively long cycle time of such 
complicated filters as the one developed here, it would be 
extremely useful in practice to carry out separate analyses for 
the front and tail acoustic networks, as well as for every 
streamer compass group using simple least squares 
algorithms to detect outliers. Of course it would be the raw^ 
(edited) data that would be fed into the integrated filter - the 
separate filters only being for data-screening. 
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