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A Rigorous and Integrated Approach to
Hydrophone and Source Positioning during
Multi-Streamer Offshore Seismic
Exploration

V. Gikas*, P.A. Cross* and A. Asiama-Akuamoa**

Abstract

This paper describes a rigorous and integrated approach for positioning sources and hydrophones within a seismic spread that may
contain multi-vessel and multi-streamer configurations. Any pumber of observations relating to any point(s) within the spread can be

3 accommodated. Quantification and analysis of error propagation within the spread are provided. Test resuits based on the
implementation of the algorithm on a UNIX platform are discussed.

Résumeé

Cet article donne la description d’une approche rigoureuse et cohérente des sources de positionnement et des hydrophones dans un
déploiement sismique que les conﬁgurations multi-vaisseaux et muiti-streamer peuvent englober. On peut utiliser un nombre
indifférent d’observations relatives & n’importe quel(s) points(s) compris dans le déploiement. La qualification et l'analyse de la
propagation d’erreurs & P'intérieur du déploiement y est donnée et les résultats des tests basés sur 'exécution de P'algorythme sur une
plataforme UNIX y sont discutés.

Resumen ’

Este articulo describe un enfoque riguroso y armonioso sobre las fuentcs de posicionamiento e hidréfonos dentro de un despliegue
sismico que las configuraciones multi-buque y multi-streamer peuden contener. Se puede usar cualquier ntimero de observaciones
referentes a un punto(s) cualquiera del interior del despliegue. El articulo proporciona la cuantificacién y el andlisis de l2 propagacién
de errores dentro del desphegue y discute los resultados de las pruebas, basados en la implementacién del algoritmo en una plataforma

UNIX.
\

1. Introduction
The basic configuration of an offshore seismic exploration
survey is as follows. One or more vessels sail in
approximately straight lines whilst towing a number of
~ ‘streamers’ (typically up to 6 kilometres long) and ‘seismic
sources’. The streamers carry a number of hydrophones
(typically 50-100 per kilometre) and are towed just below the
surface of the water [Morgan, 1992]. At a specified distance
interval (typically every 20-25 metres) one of the guns is
fired resulting in seismic waves which travel through the
water and penetrate the subsurface. The times of arrival of
the reflected and/or refracted signals are then measured by
the hydrophones. The surveying problem is to determine the
position of the guns and hydrophones at the instants of firing
and reception respectively. In principle the position of the
vessel is of no interest — except, of course, for navigation.

In recent years the problem has become increasingly
complex, mainly due to an expansion of the type and
quantity of survey data collected. In a typical configuration,
Fig. 1.10, measurements will include compass orientations at
points along the streamer (typically 4-7 per kilometre), laser
ranges from the vessel to a variety of floats (for instance
those carrying the guns and those at the front of the
streamer), underwater acoustic measurements (of the
distance) between a number of points at the front and back
of . the system (referred to as the ‘front-end’ and ‘rear-end’
acoustic networks), the position of the tailbuoy and the
position of the vessel (both typically, but not necessarily, by

*University of Newcastie upon Tyne, UK.
**QCTools Ltd, Houston, USA.
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DGPS). More complicated systems may also include
acoustics throughout the length of the streamer and
additional navigation devices on the vessel. Moreover, in the
case of several vessels operating simultaneously, between
vessel measurements would also be made.

The most common approach currently applied to the
positioning problem is to treat each epoch, and each
measuring system, more or less independently. So both the
laser and acoustic measurements are used to transfer the
position of the vessel to the floats, while the front-end
acoustics relate the floats to the guns and front-end of the
streamer, and then the compasses determine the streamers
shape. The réar-end acoustics and the tailbuoy positioning
serve to provide some control of the orientation and stretch
of the streamers. Typically the process will involve some sort
of curve fitting operation for the compasses [Ridyard, 1989},
and several independent ‘network adjustments’ for the
acoustic and laser ‘networks. It is possible that the process
will involve ‘iterating’ several times through the various data

_types in order to ‘best fit’ (ln some rather general sense) all

of the measurements.

Although this approach is probably perfectly satlsfactory
from an accuracy point of view it suffers from two major
disadvantages. Firstly. it is highly ‘case dependent’, ie.
relatively small changes to the configuration or measurement
set. may lead to major changes in the processing software -
something that is especially difficult in real-time (or quasi
real-time) quality control. Secondly, and probably most
importantly, it is extremely difficult to analyse the error
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Fig. 1.10: Typical dual source triple streamer configuration

propagation through such a process - hence it is almost
impossible to describe the precision and reliability of the
final gun and hydrophone positions. This aspect is becoming
increasingly important as clients require proof (often in real-
time) that the survey specifications are being met.

There is hence a need to develop a completely general (for
flexibility purposes) and rigorous (for error propagation
purposes) approach to the positioning of guns and
hydrophones during seismic exploration and this paper is an
attempt to address that need. It describes the mathematical
basis, implementation and testing of a Kalman filter that can
in principle, handle any geometrical configuration (i.e. any
number of vessels, ‘streamers and guns) and any set of
observations.

Kalman filters have, in the past, not proved popular with
the offshore positioning community and most offshore
operators currently prefer simple and independent ‘epoch by
epoch’ least squares computations. For this reason a brief
review of the advantages of using a Kalman filter is included
before describing the models used in detail.

1.1. Kalman filtering versus simple least
squares

Kalman filtering has the following specific advantages over

simple ‘epoch by epoch’ least squares and it is in order to

exploit these fully that Kalman filtering was selected as the
basic. stochastic process behind the umﬁed solution
presented in this paper.

1. Simple least squares treats each epoch mdependently
This means that it does not use knowledge of the
motion of the system. Often, and especially in seismic
work, it is possible to make a very accurate prediction

of where the network will be at any epoch using just - -

the previous position and the estimated configuration
motion. Not using this ‘knowledge of motion’ is
effectively discarding information and leads to- poorer
quality results than those obtainable from a properly
tuned Kalman filter. In the past (and sometimes today)
" poorly tuned filters were used and in this case results
might be worse — simply because the system motion
may have not been well determined and/or not used
properly in the estimation process. So simple least
. squares is a safe option - but it does not have the
potential accuracy of Kalman filtering. The challenge,

12

of course, is to tune the filter properly in real time - $ .
and the fact that some have failed to do this in the past SRR

has Jed to Kalman filtering gaining a poor reputation §
in some circles.
The use of 'a Kalman filter for a highly complex §
seismic configuration enables a rigorous computation §
of precision and reliability measures such as error 4
ellipses and marginally detectable errors respectively 3
[Cross er al, 1994]. If a step-by-step approach is
adopted (such as curve fitting the compass data j
followed by fitting the results to the acoustics and then |
to the navigation data) it is almost impossible to §
compute these measures. j
Due to its ability to predict the network, a Kalman §
filter is a far more powerful tool than simple least
squares for quality control. Much smaller outliers and
biases can be found by Kalman filtering than by
simple least squares. It is, however, recommended
that, where possible, simple least squares also be 3}
carried out at every epoch in order to identify (and §
correct or remove) the larger outliers. This is because
Kalman filtering can be rather time-consuming from a
computational point of view and any initial cleaning 3
that can be done by other methods will increase its
efficiency.

Kalman filtering is able to solve for small biases that
will remain in the data if only epoch by epoch
processing is used — such as drifts in gyros and (C-O)s
in terrestrial (shore-based) ranging systems. These look
like noise in simple least squares and can easily go
undetected. A lot can be learnt by looking at the time
variation of the data. Of course, in principle this could
be done in simple lease squares by analysing time
series of residuals but it would be hard to do this in
real time - and hard to feed back any findings into the
system.

Because it can determine and use the system monon,
Kalman filtering is able to use observations that do not
completely define the system - i.e. GPS data from just
two satellites could be used to update a vessel position.
Of course, long periods of such data would lead to a
significantly degraded result. :

A Kalman filter can accept data as and when it is
measured. With simple least squares, data has to be
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reduced to a specified epoch. Therefore, a Kalman
filter can cope well with data arriving as a more or less
continuous stream.

7.  The Kalman filter regime is highly suited to the
mixing of varied data types [Celik and Cross, 1994],
when poor satellite geometry leads to poor positions in
a DGPS-only solution, the introduction of data from a
gyro carried by the vessel can make a major
improvement. It would not be possible to combine
these data types in simple least squares because, for an
individual epoch the gyro does not give any positional
information.

2. Streamer modelling
Since the compasses and other measuring devices are not
co-located with the hydrophones it is necessary, in any
approach, to have a mathematical model that describes the
shape of each streamer. Moreover, because of the numerous
hydrodynamic forces acting on the cable in the underwater
environment, the cable shape is likely to be significantly
distorted from a nominal straight line - so a simple linear
model is very unlikely to be sufficient. To estimate this
distorted shape two alternatives can be considered.

In the first approach a physical model of the hydro-
dynamic forces acting on the cable could be used to derive
equations which describe the streamer shape. It is known
that tension forces due to the vessel pull, and drag forces due
to the resistance of the cable through the water, determine
its three dimensional shape. Any change in the vessel’s speed
and any fluctuation in the sea waves, or those generated by
the vessel, the wind load or the water currents, would mean
changes in the towing tension and drag forces respectively.

Such a model can only be applied when these external forces

acting on the cable are known with a reasonable accuracy
[Krail and Brysk, 1989]. It should be stressed, however, that,
even if these quantities were known, a system of several
streamers and floats would lead to models that would be too
complicated and inflexible for the construction and
implementation of a practically useful positioning algorithm.
It is therefore unlikely that, although they have been used
for vessel motion, [Cross and Pritcherz, 1986], hydrodynamic
models will be adopted for positioning purposes in the
foreseeable future.

The other way to tackle this problem is to consider an
‘empirical’ numerical approach in which the solution to the
problem is deduced by adopting a ‘model curve’ that best
fits the observed data.

2.1 Curve-fitting procedures

Several numerical methods can be adopted to obtain the
streamer shape. The simplest one is to consider the cable as
a straight line which follows exactly the ship’s track.
Although this approach would be very simple in practice,
significant differences from the final expected position may
result, not only because of the angle between the ship’s track
and the cable’s baseline, but also because of the ‘deformed’
shape of the cable.

A more efficient way to address this problem might be to
use a mathematical function such as a cubic spline.
However, even though a cubic spline gives a curve which is
continuous and continuously differentiable, and one which is
capable of fitting the data very closely, it is not the best
solution of the problem. This is because its coefficients vary
along the length of the cable (i.e. the streamer shape is not
represented by a single function) and its incorporation into a
single operational system, which is the aim of this study, is

extremely difficult. Moreover, because the cubic spline is
technically capable of representing faithfully each compass
reading, it is hyper-sensitive to compass errors leading to the
possibility of a completely unrealistic final curve.

Alternative curve fitting models include least squares poly-
nomial approximation and the use of harmonic functions.
This work concentrates on the former. Using least squares
polynomials leads to a curve which describes the complete
streamer’s shape using only one set of coefficients, and
furthermore the resultant curve is continuous and continu-
ously differentiable at every point of the cable [Douglas, 1980
and OQwsley, 1981]. As a result, this method can be
incorporated much more easily in a unified recurrent process
such as a Kalman filter.

Variations of the foregoing are also possible in practice for
instance Ridyard, (1989), has suggested the use of a ‘rolling
quadratic’ algorithm in which a series of individual
quadratics are used to fit a small group of compasses. This
algorithm is clearly very effective and this, and similar
approaches have been widely adopted within the industry.
Whilst they may be very powerful interpo]ation devices, and
whilst they may be very effective in sorting out outliers and
highlighting problems, they cannot be easﬂy adopted in the
unified approach presented here. This is because (as was the
case of the cubic spline) the approach demands the use of a
single function to describe the streamer shape.

Hence in this study a ‘n-order’ polynomial shape model
has been utilised. Such ‘single’ polynomials are not popular
in some sections of the exploration industry so their use
needs also to be justified from an accuracy point of view (it is .
clearly not a sufficient argument to use them just because
they are convenient), and a series of tests have been carried

" out in order to do this. These tests involved the fitting of a

series of polynomials, of a variety of orders, to real compass
data and comparing the results with those obtained: from the
universally accepted rolling quadratic method. The mathe-
matics and the results are described in the next section.

‘2.2 Testing of the polynomial approximation

13

In these tests the only information used is that derived from
the magnetic compasses fixed along the length of the cable.
This was done in order to compare the polynomial approach
with the accepted method (which treats such data
independently of any other). In such a case the final
accuracy of a streamer position is a function of raw compass
data, the local magnetic declination, individual compass
corrections and the algorithm used for processing the data.
The polynomial observation equations can be written as:
B,=a,+al +a,l2+. + a,17

M
where:

: is the compass reading

I. :is the offset of the i-th compass from its
reference point

a : is the polynomial coefficient

The solution of this equation system, using a least squares
method, gives the values of the polynomial coefficients. If we
consider the geometrical configuration to be as shown in Fig.
2.10, we have:

0, = atan(dv / du) = atan(dv / dI) )
which for any 0 in (-1°,1°) becomes:
Qe = tanb=dv / du= dv/dl 3)
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Fig. 2.10: Streamer modelling
Also for:
B, >B:B=B+6=B+(dv/dl)
B,<B:B,=B-0=B+(-dv/dl) )

Upon substituting equation (1) into equation {(4) and
integrating we find:

v=cyl +¢ 2+ +c 11 &)
where:
c.=a /(ktl),for K=0ton (6)

The final coordinates X,Y can then be estimated by rotating
these coordinates to the East, North coordinate system
using:

X = cos(o) 1 +sin{o)v
Y = sin(a)1-cos(a)v Q)
As already stated, in order to test the feasibility of the
algorithm in terms of correctness and efficiency, the
.foregoing method has been applied to a subset of real
compass data. A full description of the survey configuration
and the data set used is given in 4.2 - here it is just

‘mentioned that the streamers were 3.1km long and contained -

13 compasses each. The process was carried out for poly-
nomial orders up to eight and for every shot point in the
data set. A typical set of results is given in Fig. 2.20.
Detailed analysis of hundreds of such sets of curves has led
to the conclusion that polynomials of order either five or six
fit the data extremely well. The following two general
conclusions were also reached.

* Polynomials of order four or less do not describe
faithfully the observations. In such cases the dif-
ferences between the actual compass readings and
those predicted by the polynomial can (in a few cases)
exceed half a degree. This might be important given
that, in practice, cable compass resolution (but not
accuracy) can be as high as 0.1°.

» Polynomials of order greater than six can sometimes
generate curves characterised by steep changes of
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Fig. 2.20: Streamer modelling -
Polynomial approximation

gradient, which may effect significantly the fidelity of the
final coordinates. This phenomenon is particularly noticeable
for compasses close to the tailbuoy.

After the polynomial coefficients had been determined,
the Eastings and Northings with respect to the streamer
reference point were obtained using equation (7). The
differences between these coordinates and those obtained
using 2 ‘rolling quadratic’ algorithm were then computed.
An examination of these indicate that if a fifth or sixth order
polynomial is used the maximum resultant differences are of
the order of one metre - even for the groups of hydrophones
in the far end of the cable.

From these tests it is evident that the use of a polynomial
approximation is a highly realistic approach to the problem.
Moreover, the method has the advantage of being easily
incorporated into a Kalman filter model for real time
positioning and quality control from mixed data sources.
The n-order polynomial has hence been adopted as the
streamer model in the mathematical system developed in this

paper.

3. An integrated Kalman filter algorithm

It has already been stated that a rigorous filtering approach
has been adopted in this study. What follows is a review of
the basic models needed for such an approach and- details
ofi the implementation of these models for the positioning
of seismic spreads. .
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3.1 Filtering techniques

The Kalman filter [Kalman, 1960] is probably the best
known of the commonly used recursive algorithms for the
estimation of the parameters of time-varying systems. It
has constituted the framework for a unified and concise
treatment of a broad range of filtering problems from
electronic engineering to surveying and geodesy. As well as
having the many practical advantages already referred to,
Kalman filter estimates have the advantage of being least
squares estimators, which can be shown {Cross, 1983], to
be the best (in the minimum variance sense) within the
complete class of linear unbiased estimators.

The implementation of the filter requires the specifica-
tion of two mathematical models. The measurement model
or primary model relates the state vector parameters to the
observations, and the dynamic model or secondary model
relates the parameters at epoch t,; to those at later epoch t,.

If the state vector is denoted by x and the observations
by L then the linearised form of a non-linear measurement
model F(x) = L is given by:

Ax =b+v, ®)
where:
A, : is the design matrix given by oF, /dx;

e en

X is the correction to the provisional value of the
filtered state vector, %

b, : is the ‘observed - computed’ vector, given by
L, -F&m)

v, : is the state vector residuals.

The filtered state %+ is computed iteratively until there is
no significant change in the provisional state ).

The dynamic model represents the behaviour of the
system as it varies with time. The discrete linearised form
is given by:

%= Mx, +y, ®)
where: '
M, : is the transition matrix from time ¢, to time t,

i_l' - .
Y., : is the dynamic model noise from time t,_ to
time t,

The operational equations for, and the recursive nature
of, the Kalman filter are well known [Cross, 1983; Brown
and Hwang, 1992]. Here emphasis is placed on the contents
of the two models - once they have been specified then
their implementation within a Kalman filter is, in
principle, trivial.

It is, however, worth pointing out that the Kalman filter
is not the only optimal (in the least squares sense)
mathematical procedure. Another, slightly less well known,
set of equations known as the Bayes filter can be used to
produce absolutely identical results to those of the Kalman
filter. The only difference between them is in the manner
in which the so-called gain mairix is computed. The
computation of the gain matrix in the Bayes filter involves
an inversion of a matrix whose size is equal to the number
of parameters of the state vector, whilst, in the Kalman
form an inversion of a matrix whose size is equal to the
number of observations is required. In this study the Bayes
equations have actually been implemented since in a
typical 3D marine spread a large number of observations
contribute to a relatively small number of states. Many
modern Kalman filtering software packages include
routines for both sets of equations and make automatic
(and invisible to the user) decisions as to which to use.
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Despite sometimes using the Bayes equations, the words
Kalman filter nevertheless appear to be almost universally
used to describe the process.

Before describing the models in detail it is necessary to
make some remarks about the coordinate systems that are
used.

3.2 Coordinate systems
Within a typical seismic configuration there are several sub-
systems that are able to move independently of each other,
and of the vessel. These include every single float (gun array
or any auxiliary reference station) and each streamer
[Hourenbos, 1989]. Each sub-system must therefore have its
own parameters and coordinate system - which must, in
turn, be linked by the mathematical model in order to
determine the complete configuration. Before defining the
various state vector parameters for each one of the
configuration subsystems it is necessary to describe their
different coordinate systems. :
An earth fixed geodetic system, involving latitude and
longitude or a map projection system, is used to describe the
final positions of all of the points of interest. The vessel and
tailbuoys absolute positions, derived by GPS/DGPS or a
radio positioning system, will, of course, naturaily be in this
system but it is not especially convenient for describing the
rest of the spread.

Fig. 3.10: Coordinate systems

For this it is more convenient to use a local topographic
coordinate system. This system has its origin at the vessel
navigation reference point with the X-axis aligned with the
east direction and Y-axis aligned northwards. When
necessary the Z-axis is defined as being perpendicular to the
XY plane (i.e. upwards) such that the resultant coordinate
system is right handed, as in Fig. 3.10. It is obvious that this
system moves with respect to a geodetic earth system as the
vessel’s position changes. Also it is clear that, given the
relatively short distances (a few kilometres) involved within
the network, there will be minimal error in working with the
computed distances and azimuths in the XY (horizontal)
plane and then using a direct geodetic formulation to
determine the coordinates (latitude and longitude) of the
points of interest - i.e. the earth is effectively considered to
be flat within the region of the seismic spread.

Some of the available observations are made relative to
devices fixed on the vessel. For this reason it is necessary to
define another coordinate system that is attached to the
vessel. The origin of this coordinate system coincides with
the navigation reference point. Its y axis is aligned with the
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vessel’s bow-stern direction. Its x axis (starboard) is in the
horizontal plane and perpendicular to the y axis whilst 2 axis
is defined to be perpendicular to xy place (upwards) - see
Fig. 3.10.

Finally, in order to estimate the position of any point on
each of the streamers, taking into account its distance from
the streamer reference point 1 as a parameter, it is necessary
to introduce another local coordinate frame for each streamer
in the spread. A set of three dimensional coordinate systems
(u, v, z) is therefore defined. Each has its origin at the head
of the first active section of the streamer, or any other point
of known offset, its u axis aligned with the base course of the
cable (as results from the Kalman filter computations) and
its v axis perpendicular to the u-axis and pointing to the
starboard side. The z axis is defined such that the resultant
coordinate system is right-handed - see Fig. 3.10.

3.3 Kalman filter functional models

3.3.1 State vector

In order to implement a Kalman filter, we must first define,
in general terms, the minimum number of individual and
(determinable) parameters (or unknowns) necessary to
describe the complete system - this is known as the state
vector. In the case of an offshore seismic survey the
unknowns consist of those which describe the vessel’s
position and the motion and those which describe the
position and motion of each subsystem. In the following, the
unknown parameters are classified by subsystem.

Vessel unknowns

The unknown parameters that describe the vessel position
and motion are defined to be the instantaneous values of the
following elements:

@, A: the geodetic ‘ellipsoidal’ coordinates of the ship
. reference point ,
@, A.: the instantaneous velocity of this point.
c ~: the crab angle, i.e. angle between course made
good and vessel’s heading (Figure 3.20).

Note that for many navigation applications it would also
be necessary to define the acceleration of the vessel in the

state vector but the almost straight line motion associated

“with seismic surveying makes this unnecessary in this case.

Float unknowns :
The unknown parameters for any tow points attached to the
vessel are also included in the state vector. Tow point
positions are defined as position vectors expressed in X, Y
coordinates along with their velocity components X, Y with
respect to the local topographic coordinate system. It should
be stressed here that to date the filter has only been
impiemented in the XY (horizontal). The (known) Z
coordinates of all components, are taken into account by
making geometrical ‘corrections’ to the observations, i.e.
observations are corrected to the values they would have had
the whole system been in the XY plane. Also, it is important
to note that the unknown coordinates X, Y refer to the
centres of the floating arrays. It will usually be necessary to
correct observations to these centre points. :

Streamer unknowns

The streamer unknown parameters must clearly refer
directly to the streamer model. For the purposes of this
study a polynomial model has been adopted. Hence, the u, v
coordinates of any point on a streamer are given by the
following equations:

u=1
V=012 + ¢ 3 44 Im

(10)
(1)

Testing of the integrated algorithm using real data showed
that (perhaps not surprisingly) coefficient ¢, must be null
since, by definition, v is zero at the head of the cable (i.e.
when 1 = 0). Also the ¢, coefficient (which is directly related
to the overall orientation of the streamer) is redundant in the
state vector since the orientation 'of the w,v system, the
direction angle o, in Figs. 3.10 and 3.20, is considered to be
an unknown in the system. Therefore, the streamer
parameters consist of the polynomial coefficients ¢, the
direction angle a of the v axis and the streamer’s coordinate
reference system origin X, Y along with its velocity
compo nents X, Y.
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Table 3.10: State vector elements _
Ex. PGS 1029

16



The complete state vector is summarised in Table 3.10. It
is evident that the number of states to be estimated for every
shotpoint depends on the number of floats and streamers
that are utilised throughout the spread as well as on the
polynomial order of the streamer model. Hence, for a
configuration consisting of m, floats, m, streamers and for a
n-order polynomial, the state vector dimension will be equal
to 5 + 4(m, + m,) + nm,, which for a typical spread of two
sources and three streamers becomes equal to forty elements.
The Kalman filter algorithms can easily provide a solution
for a state vector of this size since within typical modern
seismic configurations the total number of available
observations is well over a hundred per shotpoint.

It is worth noting at this stage that the tailbuoy positions
do not form part of the state vector. This is because a
tailbuoy is treated as a simple extension of the streamer. It
would be quite possible to include the tailbuoys in the
system as independent points but they would not then be
able to fulfil their primary role of providing overall
orientation and scale control for the cables.

3.3.2 Observations
As has already been stated, in a modern marine seismic
survey several measurement devices are employed to
position the various points of interest throughout the
spread. The most commonly used devices include magnetic
compasses, laser systems, long, short or ultra short baseline
acoustic devices, terrestrial radio ranging systems (e.g.
Syledis, Hyperfix, ARGO) and - differential navigation
systems as GPS [Chevron Training Course, 1992; Kelland,
1994}, Regardless whether the actual observations are
measured time or phase differences between any two
devices in the network or between any device and any
shore or satellite station, basic observation types in this
study reduce to slope ranges, bearings and bearing
differences and the absolute geodetic position of certain
nodes in the network. In particular observations equations
are formed for the following measurements:

* Vessel geodetic position.

*  Vessel gyro.

* Slant acoustic and laser ranges between vessel,

sources, streamers and miscellaneous hardware. -
* Directions between vessel, sources, streamers and
other auxiliary assemblies.
* Float and tailbuoy absolute position.
e Compass bearings along the streamer.

3.3.3 Observation equations )

Once the different observation types have been specified and
the state vector parameters have been explicitly defined, the
measurement functional model can be set up in the form of
the observation equations.

Observation equations are simply mathematical represen-
tations of the underlying physical and geometric relation-
ships between the measured quantities and the parameters.
Note that this stage of the process is crucial in the sense that
any mistakes in the formulation of these equations, even
seemingly small, will lead to an incorrect design matrix (the
matrix A in equation (8)) and small errors in the final
solution that, in general will not be easy to detect. Bearing in
mind that for the purposes of this study local topographic
coordinates have been selected for the computational model,
the observation equations for each measurement discussed in
3.3.2 can now be presented.

Vessel geodetic position
Since the vessel’s geodetic position is itself an unknown, the
observation equations can be written as:
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+
o+v,

9, =
=h+vy,

A, (12)
where:

@, A, are the unknown ellipsoidal coordinates
@, A : are the observed ellipsoidal coordinates of the
vessel

v,> v, : are the measurement residuals

However, it should be noted that, if the sensor that
provides the vessel’s position is located sufficiently far away
of the navigation reference point it will be necessary to
correct the observation to this point using the general
formula that given by equations (18), (19) and (21).

Vessel gyro

The output from the vessel’s gyro is essentially the azimuth
of the vessel and it can be related, through Fig. 3.20, to the
velocity of the vessel via the crab angle, ¢, as follows:

-t | B fvc=Hav, (13)
N
or .
veos(@) A,
tan™ & tc=H+v, (14)
Pe,
where:
H : is the observed gyro measurement.
‘E 1 is the instantaneous easterly velocity of the vessel
N : is the instantaneous northerly velocity of the
vessel
¢ : is the crab angle of the vessel
vy, : is the measurement residual of the gyro
and:
2 2 _h2
ve a . a(l-e ) , e2=2 b
[l-c2sin? )]z  [l~e?sin? (9))% a2
(15)
with;
a : is the semi-major axis ofithe reference ellipsoid
b : is the semi-minor axis of the reference ellipsoid
Slant ranges and bearings

The standard observation equations for a measured distance
and azimuth between any two nodes, i and j, in the network
are given by the following expressions:

J E-XP+ (Y- YR+ (Z, - Z) =Dy + vy,

(16)
wnt [ 575 2y, a7
Y- Y, '
where:
X;, X, : are the easting components of stations i and j
Y;, Y, : are the northing components of stations i and j
*Z,,Z, : are the distances of stations i and j from the
XY plane )
D; :is the measured distance between stations i
and j
A, : is the measured or reduced azimuth between

stations i and j
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Fig. 3.20: Slant ranges and bearings observation equations

The Cartesian coordinates of the stations i and j are
expressed in a different form in accordance 1o the subsystem
they refer. Three different cases are considered here (Fig.
3.20).

If a station i is a point on the vessel (sonardyne, laser
device, étc.) then: ’

X, = xcos(H)+y sin(H)
Y, = -xsin(H)+y cos(H) (18)
where:
%y : are the coordinates of the device fixed on the
vessel '
H : is the vessel’s heading

Given that the vessel’s heading, H, is not considered to be
an unknown in the system it must be substtuted in equation
(18) by:

+cC

vcos(‘(pv))'» (19)

H = tan’! [
po,

so that the observation relates only to unknown parameters.

Similarly, if a station i is a device on a float array (gun,
towfish, buoy etc.) the observation should first be corrected
to the centre of the array using equations (18) and (19). In
such a case it would be usual to assume that the orientation
of any float structure coincides with that of the vessel gyro.
This is justified by the relatively small dimensions of the
arrays and the short distances involved within the network.
In this case, the coordinates x,y in equation (18) would refer
to the nominal offsets of the device measured from the
centre of the float.
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Finally, station i could be any point on a streamer. In this
case, and in order to express X, Y, cordinates as a function
only of unknowns, we must refer directly to the streamer
unknown parameters. Therefore, for the chosen streamer
model of these equations are formed as follows:.

X, =X, + 1 cos(a) + X [c 1] sin(o)
k=2 .

(20)
Y, =Y - lsin{o) + Z [, 15} cos(a)

where:

o Y, : are the Cartesian coordinates of the streamer’s

reference point in the XY coordinate system

: is the instantaneous orientation of the
streamer coordinate system u,v

: are the polynomial coefficients

: is the polynomial order

: is the offset of station i from the streamer’s
reference point

=]

""':’af’

In fact ten different equations can be written, for both
distance and azimuth observations, depending upon the
subsystems to which stations i and j refer. Hence, and for
example, the observation equation for a measured azimuth
from the vessel’s laser to a laser reflector fixed on a streamer
is given by the following equation:
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X, + lcos(a) +i{cklk] sin{a)— { accos[tan"(
k=2

tan™

YRR 2 cos;fg:) A ) + c:] +y sinlitan"(

veos(d.) iVJH
PP, A

Y, - Isin(a) + i[cklk] cos(@)—

k=2

It is important to note, that, in the case of any observed
direction the measurement should be first reduced to an
azimuth (bearing) and then be corrected for grid conver-
gence before the observation equation is formed.

Floatr and tailbuoy geodetic position

For any floating body towed by the vessel, except for the
tailbuoys, geodetic position observation equations can be
formed (Fig. 3.20) as follows:

P, + f =@, + vw
P
2y
K’v * X[ - ;"t‘ + Vi,
f
veos(p,)
where:
Xp Y, : are the unknown Cartesian coordinates of the
" float .
®,, », :-are the unknown ellipsoidal coordinates of the
vessel _
¢p A, : are the observed geodetic coordinates of the
float
Vgp Va, ¢ are the measurement residuals

Note that these equations make the (entirely reasonabie)
assumption that the radius of: curvature in the plane of the
meridian p, and the prime vertical v, throughout the spread
are equal to those for the reference navigation point.

Tailbuoy position observation equations differ slightly
from the equations given above because, as explained in
paragraph 3.3.1, tailbuoy coordinates are not parameters of
the system, i.e. they are not in the state vector. A streamer’s
parameters are therefore required in order to obtain its
tailbuoy position. Substituting equation (20) into equation
(21) leads to: :

Y, - Lsin(@)+ 9, [c1"] cos(a)
- 2

(Pv + = (p(b + V(p(b
P
a (22)
X, + 1 cos(@)+ Y [,1¥] sin(a)
A+ ' ' k2 =h, +y
v b Mo
v cos(¢,)
where:
Pu Ay are the tailbuoy measured.geodetic
coordinates
Vo Vi, ¢ are the measurement residuals.

—————VOOS(?') 2, )+c] +y cos[tan"(
po,

19 .

+V,,

vms(.t#v)j.v)+c} !
P9,

Fig. 3.30: Compass azimuth observations

Compass bearings

To form a compass bearing equation it is necessary to
consider the geometry of the configuration as shown in Fig.
3.30. The observation equation for a compass of offset 1,
measured from the streamer reference point, is then formed
as follows: )

o~ [tanct [F)4 ® =By + Vs (23)
du 2 o
where:
a : is the Instantaneous orientation of the
streamer coordinate system u,v
omp 1S the observed compass bearing
VB is the measurement residual
and:
d ,Zqi“ n
dv _ k=2 _ ot
—_—= = 2 [ke 1] (29)
du di k=2

Compass observations should be reduced to the grid
before we incorporate them into the Kalman filter process.
This is done by correcting them for magnetic declination
and grid convergence according to the following equation:

B,y = B + mag__decl +grid__conv (25)
Therefore, combining equations (23), (24) and (25) we obrain
the complete form:

a- l tan™! (z [ke, 1¥!] ) + n_] ~mag_ decl ~ grid_ conv
k=2 2 :

=B+v, (26
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Note that, in principle, magnetic declination could be
placed in the state vector and recovered from the
measurements along with all of the other parameters. This
has not been done in the work reported here but the fact that
it is possible is another advantage of this unified approach.

The foregoing observation equations are given in their
original, and mostly non-linear, form. To determine the
coefficient matrix (A in equation (8)), it is necessary to
linearise these equations by applying the Taylor series
expansion. Because of the large number of unknown
parameters contributing to the system and the complicated
nature of some of the equations, many of these differentials
are better obtained numerically, and where relevant this has
been done in this implementation.

3.4 Kalman filter transition equations
In Kalman filtering it is a basic assumption that the
secondary model is able to describe perfectly the system
dynamics in the mean sense, i.e. such that model errors are
limited to white noise sequences, v, and y, for the
measurement and dynamic models respectively. Here a
simple Taylor’s expansion of the state vector elements is
used for this purpose:
X2 Xg Kot + Yo+ . @7)

As has already been explained the stable nature of seismic
exploration surveys has led to the state vector only including
zero and first order terms (no acceleration or higher order
terms). Consequently, and using equation (27), the dynamics
of a seismic vessel and any other floating body (source,
streamer reference point, etc.) is described, for a short period
of time, by the following equations.
X, =X, +X_dt+Yade

1

Y, =Y, +Y_dt+Ya,de?

X =X, +adt
Y. =Y+ a,de

(28)

where a, and a,, the average acceleration components for the
time mtcrva] dt, are treated as white noise [Houtenbos, 1982].

The rcmammg elements of the state vector, i.e. the crab
angle c, the orientation of each streamer coordinate system a
and the polynomial coefficients can be modelled in a simpler
way because they are not expected to vary significantly with
time. Therefore these states are modelled as a linear function
of time according to the equation:

d,=d_ +d,_dt (29)

where:

d : is the state vector element
d : is the rate of change of d

3.5 Stochastic models
In order to implement a Kalman filter two stochastic models
have to be specified. These are invariably in the form of
covariance matrices and they describe the precision of the
observations and of the dynamic model respectively, i.e. they
. describe the quality of the measurements and how well the
model describes reality. Correct specifications of these
stochastic models is essential for both the proper ‘tuning’ of
the filter and its capability to produce accurate quality
(precision and reliability) measures [Salzman, 1993). The
tuning of the filter refers, in essence, to the relative sizes of
the elements of the observation and model covariance
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matrices. By decreasing the variances (increasing the
weights) of the observations the final filter estimates can be
made to fit the observations more closely - but with the

danger of small observational errors appearing as obviously .

impossible vessel manoeuvres. Conversely decreasing the
variances of the dynamic model leads to too smooth a final
answer and one that cannot react quickly to rapid changes in
the true track of the vessel and of the hardware being towed.
Such situations are well-known in practice and are
evidenced, for instance, by a ship’s track continuing to be
shown as straight Jong after all on board are well aware that
a turn has been made.

In mixed measurement systems it is also necessary to

consider carefully the relative sizes of the elements within
the covariance matrix of the observations. For instance by
selecting the elements appropriately it would be easy, for
instance, to make the final results fit the compass data very
closely and virtually ignore the acoustics, or vice versa.

Although it is the relative sizes of these covariance
matrices that is critical to the fidelity of the filter, it is their
absolute sizes that drives the computed covariance matrices
of the predicted and final filter estimates. Too small
covariance matrices will lead to over-optimistic quality
measures, and vice versa. Hence the problem is one of
determining both relative and absolute sizes of the elements
of the covariance matrices. )

The correct practical approach to the solution of this
problem is a matter for on-going research in several centres.
For instance, one suggested approach {Celik and Cross, 1994]
is whereby the standard deviations of the variance
observations types are first determined by independent study
(e.g. epoch by epoch network adjustment of acoustic ranges
and simple surve fitting to the compasses). These values are
then considered ‘fixed’ and the elements of the covariance
matrix of the dynamic model are tuned until (on average) the
correct number of rejections is made during the analysis of
the innovation sequence. Certain mode] statistics are then
used to scale the overall sizes of both matrices. This
approach is relatively straight forward in the case of a
seismic spread because the system is so well behaved. Much
more research is, however, still needed in this area.

4. Implementation and testing of the method

The method has been implemented in a software package
written at the University of Newcastle upon Tyne, and this,
along with its testing with a real data set will now be
discussed.

4.1 Software implementation

To verify the correctness of the mathematical model and
the feasibility of the associated algorithms, software has
been written to integrate the complete procedure so far
discussed. It has been written in the ‘C’ programming
language to run under the UNIX operating system. As
well as (of course) computing the state vector at each
epoch, the implemented algorithms also provide the
position of any float in the spread, and the position of any
hydrophone group. Additionally, and since they are a
natural bi-product of the Kalman filter process, the
associated covariance matrices are computed - leading to
the computation of error ellipses and other quality
measures not just for the vessel but for any point in the
configuration (for instance the propagation of error law can
be used to compute error ellipses at individual hydrophone
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positions). Of course the vessel and tailbuoys positions and
their precisions also form part of the software output. The
algorithms are flexible enough to produce a solution
simultaneously involving all observations or, for analysis and
testing purposes, just some of them (e.g. only compasses).
This feature gives an immediate overview of possible trends
in the performance and contribution of a particular
observation type.

All measurements are tested for outliers before they are
accepted by the system. This testing procedure involves an
examination of the predicted residual of each observation for
every shotpoint. At this stage in the development of the
software this check is simply to identify (and probably reject)
outlying observations. Rigorous statistical testing [Salzmann,
1993], will be implemented in the future.

4.2 Data description

The survey configuration consisted of a single vessel, dual
source and triple streamers equipped with active tailbuoys.
Both vessel and tailbuoys were located by means of Syledis
radio positioning while vessel positioning was supported by
a DGPS system. A total of 240 hydrophone groups were
located in every streamer of approximately 3km length. At
the front end a total number of 45 acoustic ranges were
measured while 29 acoustic ranges were observed at the tail
network. In addition to this, 4 laser ranges and 7 directions
from the vessel to energy sotrces and streamers were
observed. Also, 13 magnetic azimuths provided the
orientation of each of the three cabies. Thus, including
vessel and tailbuoys positions as well as vessel gyro, a total
number of 132 observations were collected at every shot.

ETAEAMER 1 RAW COMPASS DATA

hor Im e r‘u [ éav i lvbn i ru‘ru i i o

Fig. 4.10: Raw compass data time series piot

In addition 1o these data files bitmap time series for the
raw compass and sonardyne data types have been provided —
samples are in Figs. 4.10 and 4.20. This information is
mainly used to assist in identifying problems and trends in
the performance of these devices. It frequently occurs that
some of the compass or acoustic data is of such poor quality
that it is impossible to meet the clients specifications and
therefore these measurements should be rejected or used
. with extreme care [van Zeelst, 1991]. Compass performance
becomes very unstable in choppy and cross current seas.
Moreover, it can be affected by local magnetic anomalies,
man made or natural [Gerber, 1987].

As can be seen from Fig. 4.10 compass performance for
the starboard streamer for the dataset used is quite stable for
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Fig. 4.20: Raw sonardyne acoustic data time series plaot

all compasses with insignificant variations in the differences
from shot to shot. This conclusion applies for the centre and
port streamers as well. On the contrary, some of the raw
acoustic ranges seem to be quite noisy (see Fig. 4.20 ranges
5, 6 and 14). The time series are reproduced here just to give
a general indication of the quality of the data used in this
test. The Kalman filter, if properly tuned, should identify
and reject any outlying observations.

4.3 Processing of data

Around 800 continuous shotpoints (spanning a total time
period of 110 minutes) from the foregoing data set have been
processed and a number of analyses of the results have been
performed. Note that all the presented results were obtained
using a fifth order polynomial streamer model.

STANDARD DEVIATIONS OF THE

OBSERVATIONS
vessel position 30m
gyro 0.5°
acoustic and laser ranges 20m
laser bearings 0.5°
compass azimuths 0.5°
tailbuoy positions 30m

Table 4.10: Stochastic model of the observations

STANDARD DEVIATIONS OF THE

DRIVING NOISE
vessel acceleration 0.01 m/sec?
crab angle rate 0.04°/sec
float and streamer reference point acceleration 0.01 m/sec?
streamer base line orientation fate 0.01°/sec

; ¢, | 0.5 E-6 m/m?/sec

0.5 E-9 m/m?/sec
0.5 E-12 m/m*/sec
0.5 E-15 m/m%/sec

streamer polynomial Cy

coefficients rate [

Cs

Table 4.20: Stochastic model of the dynamic model
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As has been mentioned.in 3.5, two stochastic models have
to be specified before a Kalman filter can be implemented.
Here it has been assumed that, since seismic surveys are
carrted out in calm seas, standard deviations of 0.01m/sec?
can be used for the vessel, floats, and streamer reference
point accelerations. Also, the correlation between Northings
and Eastings accelerations has been assumed to be zero
[Houtenbos, 1989]. Tables 4.10 and 4.20 give a full
description of the standard deviations used to develop the
stochastic models adopted for these tests. '

Predicted residuals

A predicted residual is computed from the dlfference
between a measurement at a particular time (usually a shot
point) and the measured quantity computed from the
predicted state of the system. Predicted residuals (sometimes
known as the innovation sequence) are an excellent way to
assess the performance ofia system. Predicted residuals that
are, overall unbiased (i.e. zero mean), and commensurate in
size with the expected observation errors, show that the
observation and dynamic models are correct, that they are
correctly implemented, and that the filter is properly tuned
(i.e. correct stochastic models have been used).

Fig. 4.30 contains the mean values and standard
deviations of the observation residuals computed from all
800 shotpoints for the acoustic ranges in the front and tail
networks as well as for the compass measurement of all three
streamers. Given that, the a priori standard deviations of the
acoustic ranges and compass azimuths of the measurement
model have been set to be 2.0 metre and 0.5 degrees
respectively, the results Fig. 4.30 (a), (d), (g) are extremely
encouraging. As can be seen from these histograms the mean
values for most of the acoustic ranges are less than 2.0 metre,
but in any case much less than 3 standard deviations ~ while
all mean values for the compass residuals are less than 0.5
degrees. Examination of Fig. 4.30 in more detail shows that
ranges for which a large number of shotpoints has been
rejected, present bigger standard deviations. This is to be
expected as the contribution of these observations to the
final solution is smaller (there are less of them) - see

diagrams (b), (c), (e), (f). This phenomenon is most distinct

for ranges 5, 6, 13, 26, 37 and 39 in the front end network
and for ranges 5, 6 and 8 in the tail network. Moreover,
these results can be explained by examining this diagram in
combination with Fig. 4.20. Acoustic ranges 5 and 6 of the
front network and 5 of the tail network in Fig. 4.30
correspond to ranges 5, 6 and 14 in Fig. 4.20 respectively,
which are the most noisy as noted in 4.2. Hence it can be
concluded that the filter is correctly identifying the outlying
observations. Also it can be seen that the mean values for the
compasses in Fig. 4.30 follow an approximately white noise
pattern strongly supporting the use of the polynomial cable
shape model.

Independent checks

Another way to ascertain the effectiveness of the models is to
carry out completely independent checks, i.e. to compare
identical quantities computed using completely different
data. Two such tests have been carried out.

In the first test, two estimates of the tailbuoy positions
were compared. The first estimate came directly from the
tailbuoy Syledis measurements and the second came from
the Kalman filter using all of the data except those
measurements. The results for all three streamers are shown
in Fig. 4.40. Note that, to aid interpretation, the differences
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Fig. 4.30: Statistics of the predicted residuals
(innovation sequence)

in Eastings and Northings have been rotated into their
along-track and cross-track components. Two points are
immediately evident: the differences in each direction are of
thé same magnitude for the three cables, and there is a
significant difference in the two directional components. The
along-track differences vary up to 10.0-12.0 metres, while
the cross-track differences vary up to 20.0-25.0 metres. This
disparity is easily understood as the along-track differences
are cable-length related and the cross-track differences are
cable-orientation related - clearly in this uncontrolled

Ex. PGS 1029



v e

Starboard T/B starboard T/8

5

. m MWMM

-10 e
0 500 1000 . 0 500

shotpoint shotpoint

across-track

differences {m)
fod =
cococo
§
§

along-track
di tferances (m)

1000

centre T/B centre T/B

20

Wﬁwm

30 S —
1000

along-track
differances (m)
Sho
§
across-track
dlﬂersnces {m)

shotpoint

port T/B

along-track
differences (m)

asodboow
%
across-track
differences {m}
R
Scoo
%

shatpoint shotpoint

Fig. 4.40: Differences between Syledis (observed) and

filter derived tailbuoy location

manner (the filter has no tailbuoy positioning) it is not
surprising that the larger errors are orientation related.
The errors are of course the sum of several components

including the unknown-behaviour of the tailbuoy tether and -

errors in the ‘check’, ie. the Syledis positions. They are,
however, still not large (an actually no larger than expected -
see Fig. 4.60 (b) and the later discussion). A maximum
20 metre cross track error over a 3km cable represents a
maximum overall orientation error of less than 0.5 degrees -
and the mean error is clearly very much smaller than this {of
the order of 5 metres - or 0.1 degrees). Overall this test adds
further confirmation that the model and its implementation
are correct — at the very least it does not provide evidence to
the contrary.

In the second ‘independent’ test the state vector elements
were used, at every shotpoint, to compute the coordinates of
two acoustic devices: one on the starboard streamer and the
other on the port streamer, and both located in the tail
network. The computed value of the distance was directly
compared with the acoustically observed vatue given in the
data set. Obviously, as in the first test, and in order for the
check to be independent, this observation was not included
mn the filter solution. The resulting differences are shown in
Fig. 4.50. They have an approximately zero mean and rarely
reach one metre - representing an exceptionally strong
argument that the model is correct.

Tests of precision

It has already been mentioned that the greatest smgle asset
of the suggested method is its ability to provide a rigorous
measure of precision throughout the seismic spread. Typical
95% error ellipses were computéd at a sample of points along
the cables under three different circumstances. Note that the
input standard deviations chosen for the observations are
0.5 degrees for the compass bearings, 2.0 metres for the
acoustic ranges and 3.0 metres for the Syledis positions, and
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Fig. 4.50: Differences between an acoustic observed

range (between two devices on separate streamers in

the tail network) and that derived from the Kalman
filter (not including the observation)

that these values were based on the survey specifications and
on previous experience. The three tested configurations were:

(a) all measurements,

(b) no tailbuoy Syledis, and

(c) no tailbuoy Syledis and no tail end acoustics.

From the three points shown in Fig. 4.60 it is apparent -
that maximum error occurs, as expected, almost exactly in
the cross-track direction while minimum error occurs along
the in-line direction. This is irrespective of which
observation types or data subsets have been incorporated
into the filter. In fact, the differences between the direction
of minimum error and the cables’ baselines, as’ computed
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Fig. 4.60: Hydrophone group error ellipses

from the filter, are no more than a few degrees and in most
of the cases less than 2.0 degrees. Moreover, from the same
plots it can be seen that the standard deviations for the front
end of the cable are quite small and of the same magnitude
in all directions. This is because the network is very strong
in this area due to the large number, and excellent geometry,
of the available observations. Also, it is immediately evident
that the in-line deviations are of the same magmtude in the
three plots.
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In plot Fig. 4.60 (a) the cross-track standard deviations
range from about 2.0 metres at the front end, reach
10.0 metres for the groups in the middle and between 6.0
and 7.0 metres at the far end of the cables. In plot Fig. 4.60
(b), the standard deviations for the second half of the cables
vary between 10.0 and 12.0 metres. Finally, if neither active
tailbuoys nor tail acoustics are used, standard deviations can
reach 18.0 metres at the tail end. It should also be noted
here that the standard deviations of the energy source (gun)
positions are similar to those at the front end of the cable.

Of course the general trends of these quality measures
could have been predicted from commeon sense. It is obvious
that with tailbuoy positioning the weakest part of the system
is'in the centre and without it the weakest part is at the tail.
The advantage of this approach is that the uncertainties can
be quantified so that they can be directly compared with the
survey specification for quality control purposes.

5. Conclusions

It is apparent from the results of the tests that the suggested
method is a highly realistic approach to the problem of
integrated processing of 3D marine seismic data. The
significant innovation of the method is centred upon its
ability to incorporate ail different observation types into one
integrated solution by means of a Kalman filter. Moreover,
by design, the whole network is- conceptually split into
several subsystems so that the resultant algorithm can be
flexible enough to describe the geometry of any likely
practical set-up-in a-rigorous mathematical manner. The
position of any point of interest throughout the spread, and,
most importantly, its precision, can hence be computed.

It has also been shown, by both data pre-analysis, and by
the results of trials with the final algorithm, that polynomials
can be adopted as a realistic mathematlcal reprcsentauon of
seismic streamer shape.

In order for the filter to operate efficiendy, raw data
should first be cleaned by removing any outliers. It is
suggested that, due to the relatvely long cycle time of such
complicated filters as the one developed here, it would be
extremely useful in practice to carry out separate analyses for
the front and tail acoustic ﬁctworks, as well as for every
streamer compass group using simple least squares
algorithms to detect outliers. Of ¢ourse it would be the raw””
(edited) data that would be fed into the integrated filter — the
separate filters only being for data.screening.
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