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Multicast security and its extension to a mobile environment 
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Abstract. Multicast is rapidly becoming an important mode of communication and a good platform for building group- 
oriented services. To be used for trusted communication, however, current multicast schemes must be supplemented by mechan- 
isms for protecting traffic, controlling participation, and restricting access of unauthorized users to data exchanged by the partici- 
pants. In this paper, we consider fundamental security issues in building a trusted multicast facility. We discuss techniques for 
group-based data encryption, authentication of participants, and preventing unauthorized transmissions and receptions. We also 
describe the application of these principles and techniques in designing an architecture for secure multicast in a mobile 
environment. 

1. Introduct ion  

A multitude of presently emerging technologies will 
enable real-time information exchange among multiple 
participants. Low-cost, high-performance desktop 
video and audio processing equipment, such as cameras, 
coders, frame grabbers, and mixers, will make it eco- 
nomical to add real-time generation and display to gen- 
eral-purpose personal workstations. High-speed 
transmission and switching, now being deployed across 
the country, will enable instant dissemination of  broad- 
band streams over a wide area. Powerful and flexible 
multicast protocols, for dissemination of information to 
many recipients, will provide the glue that ties the broad- 
band information generation and processing elements 
with the underlying broadband networks. 

A new generation of  distributed applications will 
take advantage of these technologies and provide a 
quantum leap in network-based services. Multimedia 
teleconferencing, computer-supported collaborative 
work, remote consultation and diagnosis systems for 
medical applications, contract  negotiation, and distribu- 
ted interactive simulation are just some of  these applica- 
tions that require multiparty exchange of  data, voice, 
and video among a large number of  simulated and real 
participants. 

Many of these applications will disseminate and 
exchange sensitive and /o r  classified information and 
will require security provisions for session management 
and information transmission. However, whereas secure 
communications between two parties (unicast) is well 
understood, little concrete consideration has been given 
to the security and privacy issues brought about  by mul- 
tiparty information exchange (rnulticast). 

Traditionally, teleconferencing has been conducted 
over private networks or dial-up lines, which provided 
some physical security measures. However, in integrated 
networks like the Internet or Asynchronous Transfer 

Mode networks (ATM) [10], all traffic, including multi- 
cast, shares common network resources. Such integra- 
tion allows a quick setup and flexible maintenance of  
multicast sessions, but it also brings about serious secur- 
ity and trust issues. 

Present multicast protocols, such as IP-multicast, 
provide the users with little control over who partici- 
pates in a session, the extent of participation of  each 
user, or even to which users the messages will be 
delivered [11,2]. There is no security control as to who 
can register a (dynamic) session address, who can or can- 
not join a session, who can receive traffic from or inject 
traffic into the session, or how to deal with the security 
implications when a host leaves a session. Furthermore,  
no security management is specified for the multicast 
hosts or routers. Several ad hoc fixes have been recently 
proposed, but no systematic security architecture design 
is available. 

Some of this openness was done by choice to facilitate 
large-scale distribution of unrestricted data, as the suc- 
cessful deployment of  IP-multicast demonstrates. How- 
ever, many multicast sessions in business, commerce, 
military and medicine are not feasible in such an open 
environment, and will require controlled participation 
and data privacy, often with different policies. 

A trusted multicast architecture (with associated pro- 
cedures) is needed to handle these security issues in a 
coherent manner and to protect network services and 
applications. Careful investigation of  such an architec- 
ture can save duplicated, and quite possibly unsophisti- 
cated, efforts of inserting security technology into 
individual applications. 

In our paper, we first give a brief review of  multicast. 
We then consider fundamental security issues in building 
a trusted multicast facility. We discuss new security chal- 
lenges in multicast and currently available solutions for 
them. We also describe an initial architectural design for 
secure multicast in a mobile environment. We conclude 
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with an overview of related prior work and directions 
for future work. 

2. Overview o fmul t i ca s t  

Traditionally, audio or video group communication 
was conducted over a broadcast medium (e.g., entertain- 
ment broadcast, citizens band (CB) or tactical radio), in 
an open fashion. For  example, listening to television 
broadcast or CB transmissions requires only reception 
equipment and does not necessitate a prior exchange 
with the transmitting station. More recently, telephone- 
based teleconferencing was offered as an extension of  
pairwise voice conversation, and it requires the estab- 
lishment of a line between each participating site and a 
central switch. All traffic flows to the central switch, 
which replicates the traffic on all lines. Manual proce- 
dures are used for authenticating participants, establish- 
ing circuits between the remote and central sites, and 
controlling the flow of  traffic. 

In networked packet or cell switching (e.g., Internet 
or ATM), the ability of  network switches to replicate 
user traffic is utilized to construct multicast trees, which 
are more efficient than the star-shaped distribution in 
phone teleconferencing. Traffic is injected at the root, 
and each switch on the tree receives the traffic from its 
parent switch and replicates it on all the links leading to 
its children switches. 

Multicast group addresses are used to identify specific 
multicast sessions, and network switches maintain tables 
that relate each group address to a specific set of  out- 
going links on which packets carrying that address are to 
be forwarded. To send data to a multicast group, a 
node sends a single copy of the data addressed to that 
group. To add a participant to the distribution, the cor- 
responding tree is extended by adding a path from a 
node on the tree to the new member. 

Several multicast schemes have been proposed and 
are at different stages of implementation and usage. 
These schemes differ in the ways they construct and 
maintain distribution trees. The most commonly used 
scheme is IP-multicast, which is being rapidly deployed 
throughout  the Internet. IP-multicast relies on a subset 
of the Internet routers and hosts that can participate in 
IP-multicast sessions. Over this subset, called M-bone,  

all multicast trees are established. When an IP-multicast 
session begins, a tree is constructed and maintained for 
each active source. Portions of  the tree that do not con- 
nect group members are subsequently "pruned".  

Under IP-multicast, membership is controlled by the 
individual users. That  is, when a user decides to join a 
group, the underlying control protocol establishes a 
path that connects the new member to the tree. This pro- 
cedure does not involve the sources, who are generally 
not even aware of who the group members are. Thus, IP- 
multicast does not provide control over who receives a 

given multicast transmission. Furthermore,  any host 
can inject packets to any particular IP-multicast group 
simply by sending packets addressed to the group, even 
if the host is not a member of the group. 

Another Internet-based multicast protocol is Stream 
Traffic version 2 (ST-II) [41], in which the distribution 
tree is made of virtual circuits, as opposed to IP-multi- 
cast, which relies on datagram forwarding along paths 
defined by the routing table entries of the time. ST-II ori- 
ginally allowed only the source to initiate the inclusion 
of  a participant in the multicast. Recent improvements, 
however, provide the means for destination-initiated 
join, in which the control messages that result in the 
inclusion of a receiver do not necessarily go to the 
source [13]. Three schemes for source control of  a session 
population are currently defined: 

1. No control. The signaling message arrives only at 
the tree, and a path is extended to the requester with- 
out the source's knowledge. 

2. Source notification. While the path is extended, a 
message regarding the new join is delivered to the 
source. 

3. Source approval. When the join request arrives at 
the tree, the node that has to begin the path extension 
process first sends a message to the source, and only 
after the source approves the join is the path 
extended. 

Both ST-II and IP-multicast employ a distribution 
tree for every active source in the session. ST-II is used 
extensively over the Defense Simulation Internet (DSI), 
however, IP-multicast is in the process of  being adopted 
for the DSI. 

A third Internet-based method, named Core Based 
Tree (CBT) [2], selects a single node in the network to 
serve as a core. One bidirectional distribution tree is built 
from the core, and all traffic is forwarded on that tree. 
We are not aware of any practical experience with CBT. 
CBT does not specify who controls the tree or how new 
joins are being made. 

Multicast features have also been added recently to 
ATM technology. The ATM-Forum's  User-Network 
Interface [17] specifies a signaling procedure by which a 
source can establish a multipoint virtual circuit. Recent 
proposals extend this mechanism to provide receiver- 
initiated join. A more advanced ATM signaling techni- 
que was designed and implemented, where signaling sup- 
ports distribution of  a hierarchically encoded stream 
and enables the establishment of  multi-VC (virtual cir- 
cuit), multipoint connections [38]. 

3. Securi ty challenges in mult icast  

The various multicast protocols all suffer a degree of  
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vulnerability to actions that threaten data confidential- 
ity and integrity. Whereas such issues exist also in uni- 
cast communications, multicast poses new and unique 
challenges. 

In multicast, just as in unicast, an adversary (who 
can be a legitimate network user) may eavesdrop on con- 
fidential communication, disrupt or distort a session's 
data exchange, inject unauthorized or bogus traffic, 
block a session's progress, masquerade as someone else 
to join in a session, or initiate and operate a bogus ses- 
sion. Therefore, the privacy, integrity, availability, and 
authenticity of a multicast service must be protected. 

However, the nature of multicast presents new pro- 
blems that cannot be effectively dealt with using trivial 
extensions of techniques for secure unicast. For exam- 
ple, in setting up a secure point-to-point communication 
channel, one knows the identity of the party at the other 
end. In a multicast session, knowledge of the session 
membership is typically not guaranteed, and session 
membership cannot be controlled. Another problem is 
group-oriented secure data exchange. Although using 
O(n 2) end-to-end secure channels can provide secure 
group communication, such an architecture loses all the 
advantages a multicast facility has over unicast. Also, 
in group-oriented communication, an additional 
mechanism is needed to reliably establish the identity of 
the originator of a message. Moreover, group-oriented 
authentication (and key distribution) is not necessarily 
O(n 2) pairwise authentication, because of the many pos- 
sible interpretations of the meaning of belonging to a 
multicast session. 

Mechanisms for multicast security must therefore be 
developed to regulate participants' access to the data 
flowing on the tree and their ability to modify traffic 
already on the tree, protect the transmitted data, and 
verify to any user the nature of the session in which he or 
she participated. New protocols must be designed that 
perform security functions for controlling session orga- 
nization and management, secure broadcast, and user 
access to the network. 

Multicast security mechanisms can function at the 
session, presentation, and network layers of the network 
architecture, where they consist of authentication, 
encryption, and physical access to the tree, respectively. 
Techniques for these mechanisms are discussed in the 
rest of this paper. 

4. Trusted multicast 

The architecture design of multicast security should 
consider the placement of the many control functions at 
appropriate network protocol layers and appropriate 
network sites, and the trust relationship between net- 
work sites and hosts (some of which may function as 
multicast management centers). Apart from satisfying 

the security requirements mentioned earlier, a desirable 
design should also be 

�9 compatible with existing network protocols, 

�9 scalable to the scope of the global Internet, and 

�9 transparent to higher-level applications and services. 

Transparency keeps high level applications free from 
concerns for details of, for example, authentication and 
the checking of credentials and policies. In addition, the 
security mechanisms residing at the session and presen- 
tation levels should place no restriction on the underly- 
ing networking mechanisms. As such they must coexist 
with networking standards and must not depend on 
modification of transport and switching elements in 
the (inter)network. Moreover, the architectural design 
should be localizable in that an area of a network can 
install the trusted multicast facility and achieve firewall- 
style self-protection even if other portions of the (inter)- 
network do not yet support trusted multicast. This fea- 
ture is important to facilitate a gradual introduction of 
the new technology to the existing millions of host 
machines. Finally, the architecture has to be flexible 
enough to support a variety of policies of session control 
as required by higher-level applications. These features 
together will make trusted multicast easier to integrate 
into an existing environment such as the Internet. 

4.1. Authentication 

Authentication - a process by which one satisfes 
another about one's claim of identity - is an essential 
mechanism in trusted multicast to control the registra- 
tion of a multicast address and screen hosts that ask to 
join an existing session. Often, the requesting party and 
the existing session members need to authenticate each 
other. Sometimes one party may delegate some of its 
authority to another party. This can be achieved by let- 
ting the former issue a credential, such as a signed and 
verifiable certificate, to the latter for later presentation 
together with a proof of identity. 

A very rich body of literature exists on the topic of 
authentication and delegation in distributed systems 
(see [1] for references). Thus, we concentrate only on the 
extension of the basic pairwise authentication model to 
the internal and external authentication of all existing 
members ofa multicast session as a group. 

There are two distinct issues here. One is who controls 
the membership of a group and how to enforce such a 
membership policy. The other is what constitutes being 
admitted to an existing group. We discuss the second 
issue first. 

Except in the case of anonymous sessions, a minimum 
requirement for belonging to a group is that the new 
party should be introduced to (some or all) existing 
members. This introduction merely announces the iden- 
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tity (i.e., the name) of the new party, and can be done 
by any member, by at least some preset number of mem- 
bers, or by a group leader. Whoever handles the intro- 
duction process in essence implements the admission 
policy. A more stringent requirement can be that each 
existing member and the new member must successfully 
authenticate each other after an initial introduction. An 
even more strict requirement can be that every member 
must also know that every other member knows about 
the new party. 

To require pairwise authentication, O(n 2) runs of  an 
authentication protocol are needed for a group of  size n, 
although such runs are done incrementally as new mem- 
bers join the group. A more efficient method is to elect 
a group leader who is trusted (by other group members) 
to properly authenticate the new member. In this case, 
the group leader in effect controls the group membership 
policy. A natural choice of the leader is the session initia- 
tor. When registering the session, the initiator becomes 
the leader and specifies an admission policy. I f  the leader 
crashes or retires, a new leader must be elected through 
a secure protocol, possibly according to the session pol- 
icy. It is conceivable that some members may monitor 
the leader's actions to check conformance with the 
policy. 

The overall security of  the session clearly is related 
directly to who the participants are. A change of mem- 
bership may affect the kind of security the session can 
provide. It may also be the case that a change in the 
required session security forces a change in the session 
membership. A member leaving a session, especially a 
long-running session, voluntarily or otherwise, should 
properly sign off  and erase any sensitive information 
related to the session, such as the group key. Otherwise, 
this member can later eavesdrop without explicitly join- 
ing the group, or may leave behind the residue informa- 
tion that can be exploited by potential attackers. Since 
even a benign member may forget these procedures, the 
group key should be updated whenever a member leaves 
a session. For  the same reasons, garbage collection 
must occur so that the group removes any member not 
doing a proper sign-off. The status of members can be 
monitored by a number of  methods, such as by exchan- 
ging "hear t -beat"  messages. 

4.2. Secure sessions 

Based on previous experience, both ours and that of  
others, in the area of secure group-oriented distributed 
systems (e.g., [3 5]), we can identify several crucial issues 
in the forming of secure sessions. 

Session membership policies. Sessions can be set up for 
various purposes with different membership policies. At 
one end of  the spectrum is a totally open policy. Anyone 
is free to take part in such an open session, which resem- 
bles a mass gathering or an unmoderated USENET 

newsgroup. A more restricted session, much as a presi- 
dential town hall meeting, has open participation but 
members have to pass a security check and the session 
has a moderator.  An even more restricted session is like a 
board meeting, where only the board members can parti- 
cipate. From time to time non-members are invited, but 
only i fa  majority of the members consent. We can easily 
imagine an infinite number of such policies (including 
the multilevel security variety [27]). As more restrictions 
are added, we reach an ultra-secure and closed session. 
As we argued earlier, the multicast architecture should 
be flexible enough to accommodate many policies so 
that each individual application or each session can 
choose to implement one policy or a set of basic 
policies. 

In some applications, membership information itself 
is sensitive; thus, rules must be defined for disclosing the 
current group membership. However, traffic analysis 
may still reveal membership. One solution is to have 
trusted gateways that mask all sources and destinations. 
Another solution is to saturate the network so that an 
observer cannot distinguish between a meaningful 
packet and a junk one. 

Registration and deregistration. When a host or user 
requests a network address to establish a multicast ses- 
sion, a multicast management center (MMC) must ver- 
ify the requester's identity and check the session policy 
dictating who can register a session. Similarly, the 
requester may also want to verify the identity of the 
MMC to be sure that the session is correctly registered. 

Information such as membership policy, user creden- 
tials, and records of registered sessions can be stored at 
the MMC in the form of  an access control list. 

The MMC can be a centralized service or a distributed 
one. When a network has more than one MMC, all 
MMCs must coordinate among themselves to ensure 
consistency and uniqueness of multicast addresses. They 
may or may not adopt an identical admission policy. 

When a request to de-register a session arrives at an 
MMC, it must authenticate the requester and determine 
if it is authorized for such a request. Normally, only the 
session leader, or its representative, can de-register the 
session. When the session leader crashes or when it for- 
gets to de-register, a "dead session" must be garbage col- 
lected. This can be done by having the MMCs 
periodically check the activities of all registered sessions. 
Similarly, if a multicast session is deemed undesirable 
(e.g., when it floods the network with junk), the session 
must be terminated. 

Joining and leaving a session. The communications 
among session members can be public or private. This 
can be specified at registration time, and can be changed 
later. It is also possible to leave this attribute to the dis- 
cretion of the individual members, so that some commu- 
nications may be private while the rest remain public. 
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For private sessions, adequate privacy provisions are 
required in multicast. Because most networks are open 
in the sense that anyone may eavesdrop on network traf- 
fic, we need to encrypt message contents when requested 
to ensure that only those authorized can correctly 
decrypt them. 

Secure session communication. The traditional approach 
is to arrange the distribution of a common encryption 
key, shared by all session members, and encrypt broad- 
cast messages with this group key. 

With this approach, an initial key distribution must 
take place when a session is registered. This key can be 
chosen by either the session leader or the authentication 
server. The key is then maintained by the session leader 
or stored at the MMC where the session is registered. 
When someone applies to join a session, the group leader 
or the MMC checks the session policy to make a deci- 
sion. When a new member is accepted into the session, it 
receives the group key from the MMC or the group lea- 
der. When the group leader crashes, a new leader is 
elected, using any of the many known election protocols. 

A significant shortcoming of this method is that, if 
session members can be dishonest, the group key does 
not identify the source of a message. This issue can be 
solved by requiring that each member sign its message 
using a digital signature technique [37]. Another prob- 
lem is that frequent key changes (and their synchroniza- 
tion among group members) during a busy session 
affects performance. Secure broadcast algorithms allevi- 
ate these two issues, as we explain below. 

Secure and efficient broadcast. When a member can 
choose a new encryption key for a new membership on a 
per-message basis, the risk of key leakage by a departing 
member is considerably reduced and a new group key is 
unnecessary. 

Suppose each member has a pair of public and private 
keys, for example, for use in the RSA cryptosystem 
[37]. Each member must have knowledge of the group 
membership - at least he must know the public keys of 
all the other members. To broadcast a message, a mem- 
ber chooses an encryption key (for use in DES [42]) at 
random and encrypts the message. The member then 
signs a timestamp (to defend against replay attacks), the 
DES key, and a one-way hash function [32] of the origi- 
nal message (to serve as an integrity checksum), using its 
private key. The member then encrypts this signature 
with each other member's public key. Finally, the mem- 
ber broadcasts (or multicasts) the (n - 1) encrypted sig- 
natures and the encrypted message. (Here, n is the size of 
the group.) At the receiving end, a group member 
decrypts a suitably encrypted signature (with its private 
key), obtains the DES key (using the broadcaster's pub- 
lic key), and then retrieves the message. Clearly, anyone 
who is not a group member would not be able to retrieve 
the message. This simple algorithm has the following 

attractive features: (1) the encryption key can be chan- 
ged for every message; thus a membership change does 
not require additional security measures such as chan- 
ging the group key and (2) only the message header (con- 
taining the encrypted signatures), and not the message 
body, increases linearly in length with the number of des- 
tinations. Moreover, the computation of a one-way 
hash function can be very efficient, and the checksum 
adds only a few extra bytes [32]. 

To use this broadcast primitive, session members 
receive and cache others' public keys and other relevant 
data. When notified of session membership changes, 
members simply update their local membership lists and 
choose new DES keys for future multicast, which are 
thus made unreadable to those outside the session 
(including the members who just left). 

If group members do not have public key capability, 
the above algorithm cannot be easily extended since it 
appears at first sight that in addition to every pair of 
members needing to share a distinct key (thus brings 
about the O(n 2) key problem, which however can be alle- 
viated to some extent [21]), the message body needs to 
be encrypted (n - 1) times (e.g., using DES) and thus the 
broadcast message body also increases with the size of 
the group, making the algorithm less scalable. Fortu- 
nately, there exist secure broadcast algorithms with the 
same attractive features of the one using public-key 
cryptosystems. We will discuss them in section 4.3. 

Encryption mode. It is generally undesirable to use the 
basic Electronic Code Book (ECB) mode [42] because 
each block is independently encrypted and, thus, the 
mode is more vulnerable to slicing attacks (e.g., by reor- 
dering blocks) and cryptanalysis. 

In the plaintext-feedback mode, the encryption of a 
block depends on the plaintext of the preceding block(s). 
This results in infinite error propagation in that a block 
cannot be correctly decrypted unless all preceding blocks 
are correctly decrypted. In other words, a single lost 
packet (or cell) or any data corruption during transit ren- 
ders the rest of a message unreadable. This undesirable 
property may necessitate excessive retransmission when 
the network or a stream is unreliable. 

The ciphertext-feedback mode, on the other hand, 
has a limited and controllable error propagation, typi- 
cally of two encryption blocks. As long as two consecu- 
tive ciphertext blocks are received correctly, decryption 
can proceed and resynchronization is automatic. More- 
over, in some applications involving audio and video, 
occasional packet loss does not matter much because it 
causes only minor degradation in voice or video quality. 
These advantages make ciphertext-feedback the favored 
encryption mode. 

The multicast facility may need to adapt between 
multiple encryption modes, and between using block 
ciphers and using stream ciphers, according to the appli- 
cation environment. For example, the ECB mode allows 
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random access to individual blocks of a message. In 
addition, a stream cipher, especially if precomputation 
of the stream is possible (e.g., using DES as a pseudo- 
random number generator), is faster than a typical block 
cipher, but because of the cost of resynchronization 
when data loss occurs, it is more suitable in a highly reli- 
able environment. 

Finally, we consider the case of partial encryption of 
streams. One motivation to avoid encrypting the whole 
stream is efficiency - for example, when it is possible to 
identify crucial data (such as control information) that 
are the only portion (of the stream) to be encrypted for 
security. The sending and the receiving ends must be in 
synchrony as to which portion is encrypted and which is 
not. 

Another motivation for partial encryption is that not 
all receiving ends require the same amount or type of 
information from the source. One member may want to 
hear the voice more clearly, while another wants to 
improve the image quality. 

Similarly, different portions of the same stream may 
need to be encrypted differently. For example, the back- 
ground of a picture may be public knowledge, but the 
human image in the center may be highly classified and 
need special treatment. 

In such cases, it is conceptually simpler to view partial 
streams as many layers of the same stream, and tech- 
niques developed for Heterogeneous Multicast (HMC) 
[38] can be used to explore the concept of multicast ses- 
sions in which users participate at different bandwidth 
levels. 

Session advertising. Many services need to be advertised. 
The existence of a registered session can be announced 
- for example, by a bulletin board service. Proper cre- 
dentials and identification information must be pro- 
vided so that one can verify the authenticity of the 
advertisement. Sometimes it is necessary to restrict the 
dissemination of service information. For example, the 
bulletin board can be made multilevel secure. 

4.3. Secure broadcast and common attacks 

When S must send a message m to a number of desti- 
nations Pi, i = 1 , . . . ,  n (for example, a subset of nodes 
on a network) and the message content must be kept pri- 
vate for the intended recipients, the message is usually 
encrypted before being broadcast. Depending on the 
pattern of key sharing among communicating parties, 
different protocols can be used. For example, S can 
encrypt m with ki and send the ciphertext to Pi. This 
amounts to a total o fn  encryptions, and n point-to-point 
messages or a broadcast of n pieces of ciphertext. If  S 
and the Pi's share a group key, one encryption and one 
broadcast of a single ciphertext is sufficient. However, S 
may need to send messages to different sets of recipients 
and thus must maintain many such group keys, up to 

the order of O(2n). The problem we examine here is how 
to securely broadcast a message when public-key sys- 
tems are not available, and how to avoid encrypting the 
message n times or maintaining 0(2 n) group keys. 

Some authors of secure broadcast protocols (e.g., 
[9,3]) focus their attention mostly on attacks on secrecy, 
and do not discuss other attacks, including the insider 
attack we describe later in this section. We highlight the 
risks with a case study of the Chiou-Chen protocol [9] 
where we discuss these attacks and suggest counter- 
m e a s u r e s .  

We use the following notation. Plaintext x encrypted 
under key k is denoted as {x}~, and the concatenation of 
x and y is (x, y). The Chiou-Chen protocol works as fol- 
lows. S selects a random encryption key k, encrypts m 
with it, and computes {k}~. Then S solves the equation 

x = {k}k i mod ni (1) 

for x using the Chinese Remainder Theorem. Here, ki is 
Pi's public key. ni is a publicly known number associated 
w i t h  Pi, and these numbers must satisfy a few conditions, 
including that they be pair-wise prime. (See [9] for 
details.) Then S broadcasts a message of the form 
(S, x, {k}/~, {m}k ). 

After receiving the broadcast, Pi computes {k}k ~ 
(from x and ni) and decrypts it with ki to obtain k, with 
which Pi decrypts {k}k. If  the last decryption does not 
reveal k, it means either that the message has been modi- 
fied during transmission or that the broadcast is not 
intended for Pi. Otherwise, Pi uses k to decrypt {m}k, 
thus obtaining m. Note that m is encrypted only once, 
and only one piece of ciphertext is broadcast. The integ- 
rity of {m}~ must be checked separately. 

The protocol implicitly requires strong (and possibly 
impractical) assumptions of the protocol execution envi- 
ronment. When these assumptions do not hold, the pro- 
tocol is vulnerable to replay and masquerading attacks, 
especially by a legitimate but malicious recipient of a 
broadcast message. For example, in the original proto- 
col, anyone can record S's message and play it back 
again. A recipient cannot detect a replay except by keep- 
ing a record of past messages and keys, thus noting mes- 
sage repetitions. If  recipients cannot be expected to 
keep such records, establishing the freshness of a mes- 
sage by other means is essential. For the sake of discus- 
sion, we assume that clocks are securely synchronized. 
(Other methods to ensure freshness, such as challenge 
and response, can also be used.) In this case, a usual solu- 
tion is to attach to m a timestamp t to indicate the time 
of message creation - that is, replacing m with (t, m) in 
the protocol. 

However, an insider (say P1) can still attack. Being a 
legitimate recipient, P1 knows k after receiving the 
broadcast. Thus P1 can replace (t, m) with (t', mJ), where 
t' is a current timestamp and m ~ is an arbitrary message, 
and then resend the message. I f  other recipients cannot 
detect that k is reused and there is no other hardware or 
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software mechanism to identify the message origin, the 
new broadcast message will be taken as from S rather 
than from P1, with potentially serious consequences. 
Timestamping {k}~ by broadcasting (S, x, {t, k}k , {m}k ) 
still has the same weakness because P1 who knows k 
can easily forge a seemingly legitimate {t', k}k with a 
new timestamp t t. The victims are confined to recipients 
of the original broadcast. 

One solution to these problems is to timestamp key k 
by modifying the equations to be x - { t , k }k  ~ mod hi. 
This is clearly better because t can specify k's creation 
time as well as its lifetime. Since P1 does not know ki, 
i ~ 1, P1 cannot forge {t, k}k ~. Thus P1 cannot convince 
others that an expired key k is still valid, and a future 
message broadcast by P1 using k will be rejected. 

There is yet another problem with this new version. 
In many systems, such as the Internet, a broadcast chan- 
nel is a simulation that will behave correctly only if all 
parties concerned follow the protocol (e.g., [4]). In such 
an environment, it is likely that P1 can interfere with the 
broadcast before another recipient receives the message. 
In particular, P1 can intercept the broadcast message m 
from S, change its content to m r, and then send it on to 
other recipients before k expires. This type of attack is 
often possible when the message delivery system is unre- 
liable or slow, and especially when broadcast is simu- 
lated in software instead of implemented in hardware. 

One protection against this attack is to omit the inter- 
mediate key k altogether, solve x -  {(t,m)}k~ mod hi, 
and broadcast (S, x). This change makes the protocol 
secure against described replay or masquerading attacks 
by outsiders as well as by insiders, since no one besides 
S and Pi can forge {(t, m)}ki. (Note that {(t, m)}k~ can be 
broken into smaller blocks if necessary.) The efficiency 
of this version is not as good as the original Chiou-Chen 
protocol, however, because rn, which may be signifi- 
cantly longer than k, is now encrypted n times. Neverthe- 
less, only one piece of ciphertext is broadcast, and its 
length stays roughly the same as in the original 
protocol. 

The new version can also be slightly modified to 
broadcast different private messages to multiple desti- 
nations. For example, suppose S wants to send mi pri- 
vately to Pi. Instead of sending n separate messages, S 
can solve equations x = {t, mi}ki mod ni for x, and then 
simply broadcast x. 

Suppose that some recipients cannot store past 
messages, and also suppose that there is no hardware or 
software support to ensure that a broadcast cannot be 
interfered with before the message reaches all destina- 
tions. To consider insider attacks under these conditions, 
we propose a new protocol that achieves the level of 
efficiency of the original protocol. Suppose h()  is a 
one-way hash function. The sender S selects k and 
encrypts m to obtain {m}k. S then solves the set of equa- 
tions x = _ { t , k ,h (m)}k i  modni  for x, and broadcast 
(S, x, {m}k ). 

Here h(m) acts as a checksum of m. Recipient Pi 
obtains m as before, computes h(m),  and compares it 
with the checksum value received from S. A discrepancy 
suggests accidental modification or deliberate tamper- 
ing of the broadcast message. This protocol's efficiency 
is close to that of the original protocol because rn is 
encrypted once, only one piece of ciphertext is broad- 
cast, the computation of a one-way hash function can be 
very efficient, and the checksum adds only a few extra 
bytes. 

Since the original Chiou-Chen protocol is secure 
against known-plaintext attacks [9], and the new proto- 
col is different only in that an extra timestamp t and a 
checksum h(m) are encrypted, the new protocol is also 
likely to be resistant to known-plaintext attacks [9]. 
Moreover, since the attacker does not know ki and thus 
cannot modify {t ,k ,  h(rn)}kl to change the checksum, 
any illegal modification o f  the broadcast message will be 
detected by Pi. 

If  h( ) is a secure keyed one-way hash function, then 
the amount ofencryption and the length of the broadcast 
message can be further reduced by replacing 
{ t , k ,h (m)}k i  with ( t , h (k i ,m , t ) )  in the equations and 
broadcasting (S, x, m, t). After obtaining m by decrypt- 
ing {m}ki, Pi can recompute h(ki, m, t) and compare it 
with the received value to check message integrity. In 
fact, if the privacy of the broadcast message is unimpor- 
tant, no encryption is needed and the protocol can be 
further simplified. 

4.4. Secure broadcast using polynomial  interpolation 

We recently proposed the NED techniques with 
which a sender can distribute a session key to n recipients 
[19]. Thus, intuitively, the sender can also broadcast a 
(secret) message to the n recipients using the same NED 
method and replacing the session key k with a message 
rn. In such a broadcast, unlike in authentication, a recipi- 
ent may not need to know exactly all the identities of 
other recipients. When m is long, it can be broken into 
smaller blocks. We call such protocols NED-B, where B 
is for broadcast [19]. 

The notation we use in this section is as follows. S is 
the sender, who wants to broadcast a message m to n reci- 
pients, whose identities are I1, I2 , . . . ,  In. Each recipient 
Ii shares a secret key Ki with the sender, x I Y denotes the 
concatenation of strings x and y. Function h 0 is a keyed 
one-way hash function, where the first argument is the 
secret key, and the rest of the arguments are concate- 
nated to form an input string. The output from the hash 
function is of a fixed size, independent of  the size of  the 
input string. Ts is the timestamp of sender S's clock, r is a 
random number that S chooses each time a message is 
to be broadcast. 

After deciding on rn and choosing r, the sender solves 
the following equations to obtain values of al, a2, . . . ,  
an. 
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m I m + al x h(kl , /1 ,  r) + . . .  + a~ x (h(kl, I1, r)) n 

= h(kl ,I1,  Ts, r, 1), 

m ]in + a l  x h(k2,I2, r) + . . .  +an x (h(k2,I2, r)) n 

= h(k2, I2, Ts, r, 2) , 
�9 . .  ~ ~ . �9 

m l r n + a l  x h(k~,In, r) + . . .  +a~ x (h(k~,In,r)) ~ 

= h(kn,I~, T~,r,n).  

(2) 

Let f ( x ) = k + a l x x + . . . + a n x ( x )  n. The sender 
then broadcasts (S, r, T~ , f (1 ) , f (2 ) , . . .  , f(n)) .  

Recipient Pi can use interpolation to retrieve m from 
the following equations: 

m ] m + al • h(ki, Ii, r) + . . .  + a~ x (h(ki, Ii, r)) n 

= h (ki, Ii, rs, r, i), 

m ] m + a l  • 1 + . .  + a~ x 1 n = f ( 1 )  
, ' (3 )  

m [ m + a l  x 2 + . .  +an  x 2 n = f ( 2 ) ,  

m l m + a l  x n +  + a ~ x n n = f ( n ) .  

Note that for the above equations to have a solution, 
we require that h(ki, Ii, r) be out of  the range of 1 to n. If  
this is not satisfied, the sender can select a different value 
ofr.  

Pi also determines whether in the result value the first 
half is identical to the second half�9 Any modification to 
the sender's message will cause (with a high probability) 
the retrieved value to be not of the form m ] m. This is 
because the attacker does not know h(ki, Ii, r), the value 
for which Pi computes f 0 ,  and thus cannot modify k in 
any predictable fashion by modifying the f ( i ) ' s .  
Obviously, the number r should not be reused. Suppose r 
is first used to broadcast more than one message where 
Pi is a recipient; then, Pi is able to compute h(kj, Ij, r) and 
h(ki, Ii, Ts, r, i), and thus can forge future messages. 

Moreover, to detect replay attacks, the sender must 
include a freshness identifier in his message, so that each 
recipient can be convinced that the message is indeed 
fresh. A freshness identifier can be the sender's time- 
stamp, if the sender and the recipients have securely and 
closely synchronized clocks. It can also be a nonce, such 
as a random number, generated by the intended recipi- 
ent. The freshness identifier must be securely bound to 
the message in such a way that an attacker cannot mod- 
ify the identifier without being detected. The computa- 
tion of h(ki, I i,I2, Ts, r,i) assures Pi that the message 
comes from S and is fresh. 

An outside attacker who monitors network traffic 
cannot compute m because he does not know any of the 
ki's and thus cannot compute h(ki, Ii, Ts, r, i). Although 
an insider Pj can compute h(ki, Ii, T~, r, i), this value is 
used as a one-time pad and cannot lead to the compro- 
mise of ki. Note that, even though the argument here is 
similar to that used in Shamir's secret-sharing scheme 

[39], the secrecy argument against insider attacks is no 
longer information-theoretic. This is because Pj can 
guess a value ofk i  (call it Ui) and verify the guess by com- 
puting h(kl, Ii , Ts, r,i) and then comparing it with 
h(ki,Ii,  Ts, r, i). A match indicates that ki = U// with a 
high probability. 

However, if we assume that the selection of  ki is ran- 
dom and from a sufficiently large space, then such an 
exhaustive attack is computationally infeasible. In an 
exhaustive cryptanalysis, the attacker may attempt to 
build up a dictionary of possible session keys and hash 
values [14]. One way to increase the difficulty of  this 
attack is to use longer texts in the input to the hash func- 
tion. This method is likely to greatly increase the search 
space with little loss of efficiency, because the computa- 
tion of  a hash function is extremely fast and the length of 
the hash value remains constant. 

Since the size of q (in rood(q)) is O(log n), given a mes- 
sage m of O(logn) bits, the overall length of the broad- 
cast message has O(nlogn)  bits. In an environment 
where the recipients are scattered throughout a large net- 
work, the savings in terms of  efficiency by avoiding con- 
ventional encryption may be outweighed by the 
increased total network traffic and load. In this case, the 
sender can use the N ED  method to distribute just an 
encryption key, and then broadcast the whole message 
encrypted with this key. Such a key can be changed on a 
per message basis; or it can be changed only when session 
membership changes. This arrangement is quite similar 
to the algorithm in section 4.2 that uses public key cryp- 
tosystems. 

Finally, we point out that the use of  a one-way 
(hash) function (or another similar mechanism) cannot 
be avoided in our setting where each recipient holds (i.e., 
shares with the sender) only one secret that is long-term 
(i.e., does not or cannot be changed frequently between 
authentication sessions) and small in size (e.g., 8 charac- 
ters), and the session key is of a similarly small size. 
This is because that, without the one-way hash function, 
A's finding out B's key k2 is just a matter  of solving a 
higher-order equation. This intuition is supported by the 
work of Blundo et al. [5], who proved a theorem (for the 
non-interactive case of  conference key distribution) 
that to prevent a group of  colluders from compromising 
others' secrets, a user needs to hold secret information 
that is many times the size of  the session key. The authors 
also give a protocol using symmetric polynomials (but 
not one-way hash functions). This intuition that one- 
way function is necessary for third-party-based key dis- 
tribution has been recently proved in [18]. 

Now we briefly discuss related work in secure broad- 
cast. A number of protocols exist for secure broadcast, 
and some protocols for conference key distribution can 
also be extended for this purpose (e.g., [9,26,3]). The 
three protocols cited here are typical in that they do not 
consider attacks except those directly on message 
secrecy, as we can see from section 4.3. Among these pro- 
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tocols, the closest to the our NED-B protocol is perhaps 
the work by Berkovits [3], whose proposal uses polyno- 
mial interpolation but in a slightly different form. 

The Chiou-Chen [9] protocol is more expensive 
because it needs to associate one positive number with 
each of the n recipients where the numbers must be rela- 
tively prime to each other. Managing the allocation of 
such numbers to a large group of recipients - for exam- 
ple, hosts and users on the Internet - can be a serious 
problem in practice. Moreover, the arithmetic must be 
computed in a field containing the product of all the n 
relatively prime numbers. Since the range containing n 
prime numbers is roughly [1, n logn] [22, pp.9-10], the 
size of the field is at least O(n log(n log n)) = O(n log n) 
bits long and the broadcast message has O(n 2 log n) bits, 
whereas in the NED-B protocol, the field size is only 
O(log n) and the broadcast message has O(n log n) bits. 

4.5. Control of  tree access 

Authentication guarantees that only certified users 
become legitimate participants, and group-oriented 
encryption enables only those participants to decode the 
data being sent. Yet, the current network-level multicast 
routing and forwarding mechanisms allow any user to 
establish a path to the tree and to inject traffic at will. It 
is thus of interest to employ network-level mechanisms 
that limit physical access to the distribution tree. 

A simple approach, used by ST-II [41], is to require 
all tree attachments to be initiated by the source of the 
tree. This makes the source aware of who is listening and 
allows it to reject unwanted requests. I f  the source 
approves a connection request, it sends a message down 
the tree toward the destination. At one point, the mes- 
sage leaves the tree and establishes an extension path 
while progressing toward the destination. While this 
technique provides some level of control, it adds signifi- 
cant processing load to the source, thereby limiting the 
session size. 

In a teleconference, receivers usually initiate attach- 
ment to a specific distribution tree. If  the distribution is 
by multiple source-based trees, a typical receiver is likely 
to shift attention from source to source, and thereby fre- 
quently changes its attachment to the respective source- 
trees. Even if the distribution is over a single core-based 
tree [2], a receiver changes its resource allocation on that 
tree to reflect the shifting emphases on different sources. 
Both resource allocation and the establishing and dis- 
connecting path involve actions by multicast agents 
residing at network nodes. 

As was argued above, requiring the sources to med- 
iate these actions reduces efficiency and performance. It 
is thus desirable to allow receivers to interact directly 
with the multicast agents, with minimal if any involve- 
ment by the sources. This receiver-agent interaction 
must be supported by proper authentication measures 

that prevent unauthorized users from directing traffic in 
their direction. 

The process of authentication of end hosts to network 
switches is somewhat different from authentication 
among peer hosts. First, because of storage and proces- 
sing limitations, switches cannot be expected to maintain 
keys, public or private, for all hosts connected to the net- 
work. Moreover, at a time a connection is initiated, a 
host does not know which switches will actually modify 
their routing tables to support its request. That is, 
advance key exchange with the "right" switches is not 
feasible. 

Each network switch could maintain a small number 
of public keys, with the corresponding private keys held 
at one or more authentication servers. Before initiating a 
request for a new connection or modification of an exist- 
ing connection, a host first sends the request message to 
the authentication server. After authenticating the host, 
the server sends back the message with a signature 
attached. That message is sent along the network path, 
and every switch on the way checks it against the signa- 
ture, using its locally held public key of the server. 

Similarly, a node that wants to inject traffic must first 
obtain a signature from the server. A network node will 
not accept traffic from a source without such a 
signature. 

Notice that authentication of receivers is done rela- 
tively infrequently and is not likely to impose a great pro- 
cessing burden on the switches. In contrast, to block 
unauthorized sources, packets must carry a signature, 
which results in a much heavier load on the switches, 
especially in the case of stream traffic - for example, 
video. For stream traffic switches, only a fraction of the 
packet should carry signatures, and the switches should 
cache the signatures for forwarding of those packets that 
do not carry signatures. The cache should be refreshed 
every so often. 

It is also conceivable that malicious or ignorant par- 
ties may misuse network resources - for example, by 
flooding a multicast address, or by setting up a bogus 
multicast session with the sole purpose of using up net- 
work bandwidth. Simply ignoring such " junk" packets 
(like people throwing away junk mail) is inadequate 
because by the time such packets reach their destina- 
tions, precious network resources have already been 
consumed. Thus we need to block such usage (as soon as 
it is identified) as near to the multicast source as possible. 
We can imagine that the MMCs act as warning posts 
that send out advisory messages to individual hosts, who 
in turn regulate local network access. Many Internet 
sites have already started filtering incoming and out- 
going packets, but usually for different reasons. Alterna- 
tively, ideas similar to those developed for the Visa 
protocol [15] can also be used. However, blocking misuse 
seems to require modifications to the commonly used 
multicast (and unicast) protocols and software. For 
example, user processes need to obtain authorization for 
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sending multicast packets, possibly in the form of certifi- 
cates, and network gateways have to verify the certifi- 
cates before granting the necessary network resources. 

4.6. Scalability and trade-of f  

The task of assigning initial encryption keys for user 
or host authentication grows only linearly with the num- 
ber of users and hosts interested in participating in 
secure multicast. The number of messages for establish- 
ing a session and for changing the session membership is 
also linear to the size of the session. A secure broadcast 
algorithm (such as the NED-B protocol in section 4.4 
and in [19]) allows dynamic encryption key change on a 
per-message basis, thus eliminating the need for a new 
group key upon group membership change. Software 
implementations of encryption algorithms are suffi- 
ciently fast, while hardware implementations will 
further enhance performance. In protocol NED-B(n), 
the most costly activity - the encrypting of (potentially 
long) broadcast messages - remains constant when the 
session size increases. Only the message header (which 
contains instructions for decryption) increases in length, 
and only linearly, when the session size increases. 

Nevertheless, at present, a quality public-key crypto- 
system such as RSA typically has a key length of 512 
bits. This means that a multicast message header 
increases 64 bytes for each additional member. Such an 
increase may not be practical in some situations. One 
trade-off is to use short RSA keys or use different public 
key algorithms. Another is to selectively (and dynami- 
cally) choose between using a group key and using secure 
broadcast, depending on the importance of each session 
and perhaps each message. For example, when group 
membership becomes reasonably stable, it is more effi- 
cient to use a group key. 

Sometimes, members of a session also form a large 
number of (sub)groups. For example, in a teleconferen- 
cing application, although everyone's voice is broadcast 
to all destinations, a member may want to broadcast his 
physical location information (his coordinates) only to 
members in his proximity. To structure such (sub)- 
groups, a secure broadcast algorithm has the advantage 
that, since data encryption keys can be chosen dynami- 
cally on a per-message basis, a member need not store a 
potentially large number of (sub)group keys. Of course, 
a member can optimize by storing data encryption keys 
and the corresponding signed message headers and reus- 
ing them until a membership change occurs. 

4. 7. Multi level  secure multicast 

End-to-end encryption can be used to control mes- 
sage dissemination on a discretionary basis. Mandatory 
control, possibly of a multilevel structure [27], can also 
be implemented. Here, groups and members are classi- 
fied at different levels, and a party cannot become a 

member of a group whose security level is higher than its 
own. Levels are also assigned to encryption keys. A 
member cannot have access to a key whose level is 
higher. For encryption, the level of the key must be equal 
to or higher than that of the plaintext. The level of a 
ciphertext is then the level of the key. Such an arrange- 
ment effectively segregates the multicast network into 
virtual networks, each at a distinct security level. 

Multilevel security may require that lower-level infor- 
mation be accessible to higher-level group members. 
One way to achieve this is for the lower-level group mem- 
bers to be able to "write up" - to send multicast messages 
to groups at a higher level. However, since the sender 
typically cannot have the suitable higher-level encryp- 
tion key, there must be a trusted multilevel network com- 
ponent that either makes the lower level keys available 
to the higher level members or acts as a gateway that 
decrypts an incoming message with a lower-level key, 
and re-encrypts the message with a higher-level key, 
before relaying the message. Alternatively, low-level 
users may write up using a high-level public key. 

There can be issues of covert channels, where lower- 
level members can observe the existence of high-level 
network activities. One solution is to use relays to con- 
fuse observers. For example, if messages coming out of 
SRI go through a relay that re-encrypts them with a key 
shared with the IBM relay, then a third party can deduce 
only that someone at SRI sends a message to someone 
at IBM. Given a sufficiently random communication 
pattern between SRI and IBM, the bandwidth of this 
covert channel can be greatly reduced. The two relays 
can exchange useless messages at random intervals to 
further confuse the third party. Although many applica- 
tions are not threatened by information leakage through 
covert channels, the same techniques can be used to 
impede traffic analysis, which is often deemed a threat to 
privacy. 

5. Mobility in trusted multicast 

Mobile computing is expected to increase signifi- 
cantly in the near future [24] due to dramatic decrease in 
weight and power consumption of processing devices, 
and the availability of new frequency bands and wireless 
services. Including mobile users in multicast sessions 
will result in powerful applications that include a "flying 
doctor" initiating a multiparty consultation session, a 
business traveler taking part in a meeting being con- 
ducted at his company headquarters, and members a res- 
cue team coordinating their operation in real time, all 
through multicast in (inter)networks such as today's 
Internet. Data privacy (e.g., data confidentiality) and 
integrity (e.g., data authenticity) are essential parts of 
the communication architecture that supports such 
applications. In this section we outline an architecture 
for incorporating mobility in trusted multicast. First, 
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however, we discuss the unique issues of secure multi- 
cast in a mobile environment that affect such an 
architecture. 

5.1.  M o b i l i t y  c o n s t r a i n t s  

The constraints of mobile users are due to: 

�9 Host  limitations on power consumption, storage, 
and processing speed. 

�9 Changes in location and network connectivity, which 
require a user to occasionally communicate through 
a "foreign" network that cannot be trusted as the 
"home"  network. 

�9 Limitations of wireless channels, including lower 
capacity and wider broadcast range than their wired 
counterparts. 

Power, storage, and bandwidth limitations restrict 
the ability of mobile users to participate as peers in the 
procedures for managing secure multicast groups. The 
broadcast nature of  wireless channels increases the risk 
to data privacy, and location changes require a mobile 
host to adapt to the security level offered by the connect- 
ing network. 

Practicality dictates that we allow a gradual deploy- 
ment of the security architecture such that the user com- 
munity can start small and grow gradually while 
depending on or interfering with other network services 
or machines as little as possible. It is equally important  
that the added security mechanisms should coexist with 
popular security services such as fire-walls. Moreover,  
the security mechanisms in mobile hosts, such as for key 
distribution and data encryption, should be kept mini- 
mal. To summarize, the security architectural design 
emphasizes the following features: 

1. t r a n s p a r e n c y  - security features are independent of, 
and do not affect, the underlying multicast protocols 
and routing algorithms, 

2. s e l f - s u f f i c i e n c y  - users or hosts wanting to engage in 
secure multicast can do so without depending on 
other disinterested users or hosts or demanding that 
they take additional actions, 

3. m o b i l i t y  - anyone with access (directly, or indirectly 
via an agent) to multicast, and with additional facil- 
ity for security, can initiate and participate in secure 
multicast sessions, and 

4. s i m p l i c i t y  - little additional software or hardware 
for security is required in mobile hosts; 

5. e f f i c i e n c y  - to make optimal use of scarce processing 
and communication resources that are dominant in 
mobile computing. 

5.2.  A r c h i t e c t u r e  o u t l i n e  

The architecture discussion consider two cases: 

Accommodating a single mobile host. 

Incorporating a group of  hosts that participate in a 
multicast session through a shared network. 

For  the first case in which a mobile host connects to 
a session from a foreign network, our proposed solution 
is centered on the concept of  an agent [28]. In our con- 
text, an agent is a host with access to multicast services 
- for example, it is on the M-bone or a multicast tree - 
but is also equipped with an additional facility for secur- 
ity. An agent has the following tasks: 

�9 Session management, including membership regis- 
tration and deregistration and control of  resource 
reservation. 

�9 Authentication and key exchange. 

An agent may serve a mobile host at a level of  full trust 
in which the agent carries on behalf of  the mobile host 
all session management and security related functions. 
In this case, communication and signaling between a 
mobile host and its agent is by unicast. When a user 
wants to know about or participate in (secure) multicast 
sessions, he locates an agent with which he establishes a 
secure (i.e., private, and authenticated) communication 
channel. A properly set-up agent should possess the 
necessary encryption keys for sessions in which the user 
is authorized to participate. The user sends his input to a 
session via the agent, who encrypts the traffic with a sui- 
table key and then relays the encrypted text by the under- 
lying (insecure) multicast mechanism. The agent also 
watches for any traffic, often encrypted, that might be of 
interest to his client, and decrypts and forwards this traf- 
fic to his client (via the secure channel), In other words, 
an agent's function can include both data encryption 
and information filtering. 

It is also feasible for an agent to operate at lower trust 
levels, such as partial trust and no trust. An agent operat- 
ing under partial trust carries out on behalf of  the mobile 
host only session management tasks. However, group 
encryption keys are held and used by the mobile host and 
are not known to the agent. An agent that operates at 
the no-trust level is basically a regular multicast switch 
that replicates traffic and forwards signaling messages 
but does not interact with the end host. The trust level 
between a mobile host and the multicast agents can 
change during the session. At the beginning of the ses- 
sion the host may use a full-trust agent, possible located 
at his home network, to obtain and distribute certificates 
and keys. Once the mobile host is well established in the 
session it can take responsibility for data privacy and 
assign another agent to forward the multicast messages 
on a shorter path that his home agent. 
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Figure 1 depicts a mobile host (M) that  connects to a 
multicast distribution tree via a wireless broadcast  chan- 
nel. Initially M uses a host (H) in its home network as 
an agent, at the full trust level. H participates in the 
secure multicast session and forwards data to and f rom 
M via the tunnel they established. To shorten the data 
path  to M, a new agent, F, is assigned on a foreign net- 
work. F still participates in the session, but forwards 
encrypted data only. Finally, a router (R2) on the net- 
work on which M resides is assigned as a no trust agent. 

The advantages of  the agent-based approach are sim- 
plicity and backward compatibility. For  example, secur- 
ity issues are separated f rom transport  and routing 
issues. Thus, the super-imposed security mechanism can 
coexist with, and utilize advances in, networking tech- 
nology without needing major  change. Also, the burden 
of providing security is on the mobile hosts and the 
security agents, and not on disinterested machines and 
routers. Moreover,  a mobile host with very limited pro- 
cessing power can request that  its agent (which can be 
better equipped) perform most  of  the CPU/d i sk  inten- 
sive task. To reduce bandwidth consumption, the agent 
can also per form most  of  the data filtering and organiza- 
tion work for the mobile host. These features are quite 
distinct f rom those typically suggested for securing 
mobile IP (see [16] for some references), although those 
proposals also use concepts such as agents and subscrip- 
tion. 

5.3. Locating an agent 

An agent can be a host dedicated to this function; or 
a host can become an agent upon request. In a relatively 
static se t t ing-  for example, the users being staff  of  a cor- 
porat ion and using machines in their offices - an agent 
can be a server in a local-area network. Depending on 
the security condition within a local environment,  the 
channel between an agent and a client can be either 
encrypted or open. For  example, within the headquar- 
ters of  the corporation,  a channel can be a wired cable or 

�9 '"TUNNEL 

Fig. 1. Mobile host and muhicast agent. 

can be through a plain Ethernet. However,  if certain ses- 
sions are sensitive even within the corporation,  then cer- 
tain traffic must  be encrypted. Various performance 
optimizations are possible, such as using a stream cipher 
and pre-computing the encryption key stream. 

In a more mobile se t t ing-  for example, when a travel- 
ing executive takes part  in a session f rom a hotel room 
or some other public network connection p o i n t -  one can 
only place a minimum trust on alien hardware and soft- 
ware. Thus an agent is typically located within the execu- 
tive's laptop or hand-held device, which in this case acts 
as a fully functional node on the M-bone. Note  that  the 
mobile computing device need not retain its home IP 
address, and may  not need an "in-care-of  address" 
either, as long as it can participate in multicast and 
obtain access to session information. 

Alternatively, the user must  locate an agent some- 
where in the network, and can use point-to-point  mes- 
sages to inquire about  the existence of a suitable agent 
nearby. For  example, he can contact his agent at home 
for references. The user can also multicast a message 
similar to that used in a local-area network to locate the 
network file server, in which case the user must  be 
equipped with direct access to multicast. Such a message 
can actually be an "anycas t"  message [30] to a well- 
known address (e.g., the telephone number  for directory 
service) that  should be the same no mat ter  where the 
user is in a country even though in different areas the 
actual service providers may  differ. Such a white-page 
service can utilize geographical information (or situa- 
tion awareness [24]) and return locally tailored informa- 
tion. For  example, the distance between a suitable 
agent and the user may be limited to a certain number  of  
hops. 

To summarize, a multicast agent can be a home agent, 
a "compan ion"  agent (that travels together with a 
mobile host, e.g., an agent residing inside a laptop), or a 
foreign agent. A foreign agent can be located in one of 
the three ways: 

�9 by home agent 's  mediation, 

�9 through anycast, or 

�9 via a White Pages service. 

Note  that a malicious server may  send a bogus 
response to an anycast message, but will be discovered 
when the provided information is authenticated. Also, 
agents themselves can be mobile, and they can use point- 
to-point messages to keep in contact with their home 
representatives [40]. The collection of agents can in fact 
form a virtual M-bone - that  is, a logical mobile network 
[31]. In this case, a mobile IP-multicast  facility could 
simplify our design. 

Finally, we note that  detailed protocols for efficient 
and secure handing off to a new (e.g., neighboring) agent 
need to be developed. Moreover,  combining a firewall 
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machine [8] with a secure multicast agent appears to be 
a natural solution that would allow multicast traffic to 
securely travel across firewalls. 

5.4. Encryption and key management 

A sender in a multicast session transmits a message 
to his secure multicast agent, which may choose to 
encrypt the traffic with a suitable session key before 
handing over the message to the (untrusted) multicast 
mechanism. At the receiving end, a client obtains infor- 
mation through subscription to his agent, just as one gets 
newspapers via a news agent. A session participant's 
agent examines all incoming multicast traffic to see if 
anything is of  interest to the participant, and forwards 
information as is appropriate. 

Often a correct decryption must be performed before 
the agent can decide whether to forward a multicast mes- 
sage or not. If  encrypted traffic carries a session indica- 
tor, then the agent decrypts the traffic if it has the 
appropriate session key; otherwise, the agent must 
attempt to decrypt all incoming traffic to determine if 
any of  it is legitimate - whether it can be decrypted prop- 
erly and if it satisfies integrity check - and passes it on 
to a client. I f  the client is taking part  in multiple sessions 
with different session keys, multiple decryptions may 
have to be attempted (in parallel or sequentially) before 
the agent can decide whether to pass along some traffic. 
Consequently, encryption algorithms must be suffi- 
ciently fast to handle the amount  of traffic. Session indi- 
cators will be useful to traffic analysis, thus it should 
probably be up to individual sessions to decide whether 
to include them in the message headers. 

A user or his machine, either directly or through an 
agent, joins a session and obtains the session key from 
the controller of  that session, which is typically a multi- 
cast management center or a key distribution server. 
There are a number of ways to get in touch with the ses- 
sion controller. For  example, the user can use the infor- 
mation provided in session advertisement. Or the user 
can query his favorite and trusted information server, 
which can very well be represented by or located via his 
home agent. The user can also look for the controller via 
anycast or the white pages service, just like locating an 
agent. Here, the authenticity of  the reply must be verifi- 
able - for example, via checking a signed and unexpired 
certificate. 

Therefore, a mobile user can make all necessary pre- 
parations for taking part  in secure multicast sessions 
through his home agent, as if he did not leave his home 
office. As a result, he need not carry a very complicated 
key-distribution package such as Kerberos [29]. A very 
simple protocol should be sufficient in most cases. In 
fact, if  he plans to participate in a scheduled session, he 
can obtain a suitable key before leaving home and manu- 
ally type it in on the road, much like using a sheet of  
one-time passwords for remote login. 

5.5. Multieast with a group of mobile hosts 

The agent-based architecture outlined above must be 
extended to accommodate a group of  mobile hosts which 
share a common broadcast channel (e.g., wireless 
LAN) while participating in a multicast session. Exam- 
ples for such a scenario include a meeting of executives 
who use their portable computers to complement their 
face to face negotiations. Clearly the architecture will 
not scale well if the group communication is conducted 
via individual unicast connections between each mobile 
host and its private agent. Efficient use of  the wireless 
channel requires the broadcast of  messages on the physi- 
cal channel to all mobile users. This can be accomplished 
by the mobile users agreeing on a common agent and a 
group key and the broadcast of the information to the 
group using that key. 

Agreement on a common agent by the mobile hosts 
is a part of  the session setup procedure. Initially, each 
host begins with his own agent with whom he communi- 
cate by a unicast connection. However,  whereas in the 
single-user case the migration of  the agent functions is 
done to supports the goals of that user alone, in a group 
communication the agent functionality migrate to 
another agent who can function best for the group as a 
whole. 

The objective of  agent consolidation is to optimize 
the use of the wireless channel while maintaining an ade- 
quate security level for each of  the participants. When 
the agent operates at the lowest trust level, i.e., no trust, 
the consolidation entails only the migration of the for- 
warding function from all the individual agents to a com- 
mon point. This can be accomplished by one of  the 
participants making the decision and the other following 
suit or by a distributed algorithms for reaching a consen- 
sus, e.g., leader election. 

I f  the mobile hosts can decide on a common agent 
that they can all trust, a similar process of migrating to 
the common agent takes place. In this case, however, the 
process must involve transfer of  the key management 
an encryption and decryption functions. 

The most complicated scenario is when the mobile 
host require agent assistance in their security function 
yet they cannot agree on a single trusted agent for all 
their traffic. In this case a hybrid solution has to be devel- 
oped, in which mobile hosts partit ion their traffic among 
the common trusted agent and their respective private 
agents. 

6. W o r k  related to mult icast  securi ty 

One of the earliest examples of work on process 
groups is [7]. In much of  the later theoretical and practi- 
cal work on broadcast protocols (e,g., [4]), the purpose 
is largely to achieve broadcast atomicity and /o r  to main- 
tain causal or total ordering of messages, with no or little 
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consideration for security. Notably, the Isis/Horus 
group has recently incorporated some security mechan- 
isms into their systems [35,36], and later extensions have 
been made to develop secure agreement protocols 
[33,34]. However, because the goal there is to maintain 
"virtual synchrony" when some group members can be 
corrupt, which is a much stronger goal than what we 
required here, these protocols are very complicated and 
suited only for small sized groups in terms of efficiency. 

An alternative approach, in fact our approach here, 
is to implement these complex broadcast protocols 
based on a trusted multicast facility. In this way, multi- 
ple applications can share the same software platform, 
have consistent security assumptions and protocols, and 
can thus coexist. This approach also greatly simplifies 
the (repetitive) task of getting the security mechanisms 
right in all applications. 

Another related work is IP-multicast [11,12]. Our 
trusted multicast facility can be based on IP-multicast 
and should not require modifications to IP-multicast or 
lower layers of the network architecture (except for pre- 
venting misuse of network resources). There are prior 
efforts addressing security issues in the Internet (e.g., 
[43,15,23,25,29]). However, there were no coherent 
architecture and protocols for secure multicast. The 
Visa protocol controls the movement of datagrams (and 
thus the use of network resources) on a per-user basis, 
whereas in trusted multicast the granularity may need to 
be finer. 

Heterogeneous Multicast (HMC) [38] explores the 
concept of multicast sessions in which users participate 
at different bandwidth levels. This concept can be 
extended into multicast at different security levels. 

7. Summary and future work 

Advances in networking technologies have made mul- 
tiparty communication an active area of research and 
development, where multicast is an important mode of 
communication as well as a good platform for building 
group-oriented services. We have considered fundamen- 
tal security issues in building a trusted multicast facility, 
and we have discussed threats, new requirements for 
security, solutions, and trade-offs between scalability 
and security. In particular, we have outlined protocols 
for secure session registration, for session membership 
change, and for secure and efficient broadcast, as well as 
an architecture for secure multicast in mobile 
environment. 

We are currently prototyping some of the techniques 
and protocols we have discussed in this paper. Such an 
experiment not only can bring valuable performance 
results, it can also establish a sound platform on which 
to build a wide range of more sophisticated protocols 
and trusted applications. 
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