
Wireless Networks 1 (1995) 281-295 281

Multicast security and its extension to a mobile environment

Li Gong and Nachum Shacham

SRI International, Computer Science Laboratory, 333 Ravenswood Avenue, Menlo Park, California 94025, USA

Abstract. Multicast is rapidly becoming an important mode of communication and a good platform for building group-
oriented services. To be used for trusted communication, however, current multicast schemes must be supplemented by mechan-
isms for protecting traffic, controlling participation, and restricting access of unauthorized users to data exchanged by the partici-
pants. In this paper, we consider fundamental security issues in building a trusted multicast facility. We discuss techniques for
group-based data encryption, authentication of participants, and preventing unauthorized transmissions and receptions. We also
describe the application of these principles and techniques in designing an architecture for secure multicast in a mobile
environment.

1. Introduct ion

A multitude of presently emerging technologies will
enable real-time information exchange among multiple
participants. Low-cost, high-performance desktop
video and audio processing equipment, such as cameras,
coders, frame grabbers, and mixers, will make it eco-
nomical to add real-time generation and display to gen-
eral-purpose personal workstations. High-speed
transmission and switching, now being deployed across
the country, will enable instant dissemination of broad-
band streams over a wide area. Powerful and flexible
multicast protocols, for dissemination of information to
many recipients, will provide the glue that ties the broad-
band information generation and processing elements
with the underlying broadband networks.

A new generation of distributed applications will
take advantage of these technologies and provide a
quantum leap in network-based services. Multimedia
teleconferencing, computer-supported collaborative
work, remote consultation and diagnosis systems for
medical applications, contract negotiation, and distribu-
ted interactive simulation are just some of these applica-
tions that require multiparty exchange of data, voice,
and video among a large number of simulated and real
participants.

Many of these applications will disseminate and
exchange sensitive and /o r classified information and
will require security provisions for session management
and information transmission. However, whereas secure
communications between two parties (unicast) is well
understood, little concrete consideration has been given
to the security and privacy issues brought about by mul-
tiparty information exchange (rnulticast).

Traditionally, teleconferencing has been conducted
over private networks or dial-up lines, which provided
some physical security measures. However, in integrated
networks like the Internet or Asynchronous Transfer

Mode networks (ATM) [10], all traffic, including multi-
cast, shares common network resources. Such integra-
tion allows a quick setup and flexible maintenance of
multicast sessions, but it also brings about serious secur-
ity and trust issues.

Present multicast protocols, such as IP-multicast,
provide the users with little control over who partici-
pates in a session, the extent of participation of each
user, or even to which users the messages will be
delivered [11,2]. There is no security control as to who
can register a (dynamic) session address, who can or can-
not join a session, who can receive traffic from or inject
traffic into the session, or how to deal with the security
implications when a host leaves a session. Furthermore,
no security management is specified for the multicast
hosts or routers. Several ad hoc fixes have been recently
proposed, but no systematic security architecture design
is available.

Some of this openness was done by choice to facilitate
large-scale distribution of unrestricted data, as the suc-
cessful deployment of IP-multicast demonstrates. How-
ever, many multicast sessions in business, commerce,
military and medicine are not feasible in such an open
environment, and will require controlled participation
and data privacy, often with different policies.

A trusted multicast architecture (with associated pro-
cedures) is needed to handle these security issues in a
coherent manner and to protect network services and
applications. Careful investigation of such an architec-
ture can save duplicated, and quite possibly unsophisti-
cated, efforts of inserting security technology into
individual applications.

In our paper, we first give a brief review of multicast.
We then consider fundamental security issues in building
a trusted multicast facility. We discuss new security chal-
lenges in multicast and currently available solutions for
them. We also describe an initial architectural design for
secure multicast in a mobile environment. We conclude

�9 J.C. Baltzer AG, Science Publishers
SAMSUNG EX. 1015

282 L. Gong, N. Shacham / Multicast security

with an overview of related prior work and directions
for future work.

2. Overview o fmul t i ca s t

Traditionally, audio or video group communication
was conducted over a broadcast medium (e.g., entertain-
ment broadcast, citizens band (CB) or tactical radio), in
an open fashion. For example, listening to television
broadcast or CB transmissions requires only reception
equipment and does not necessitate a prior exchange
with the transmitting station. More recently, telephone-
based teleconferencing was offered as an extension of
pairwise voice conversation, and it requires the estab-
lishment of a line between each participating site and a
central switch. All traffic flows to the central switch,
which replicates the traffic on all lines. Manual proce-
dures are used for authenticating participants, establish-
ing circuits between the remote and central sites, and
controlling the flow of traffic.

In networked packet or cell switching (e.g., Internet
or ATM), the ability of network switches to replicate
user traffic is utilized to construct multicast trees, which
are more efficient than the star-shaped distribution in
phone teleconferencing. Traffic is injected at the root,
and each switch on the tree receives the traffic from its
parent switch and replicates it on all the links leading to
its children switches.

Multicast group addresses are used to identify specific
multicast sessions, and network switches maintain tables
that relate each group address to a specific set of out-
going links on which packets carrying that address are to
be forwarded. To send data to a multicast group, a
node sends a single copy of the data addressed to that
group. To add a participant to the distribution, the cor-
responding tree is extended by adding a path from a
node on the tree to the new member.

Several multicast schemes have been proposed and
are at different stages of implementation and usage.
These schemes differ in the ways they construct and
maintain distribution trees. The most commonly used
scheme is IP-multicast, which is being rapidly deployed
throughout the Internet. IP-multicast relies on a subset
of the Internet routers and hosts that can participate in
IP-multicast sessions. Over this subset, called M-bone,

all multicast trees are established. When an IP-multicast
session begins, a tree is constructed and maintained for
each active source. Portions of the tree that do not con-
nect group members are subsequently "pruned".

Under IP-multicast, membership is controlled by the
individual users. That is, when a user decides to join a
group, the underlying control protocol establishes a
path that connects the new member to the tree. This pro-
cedure does not involve the sources, who are generally
not even aware of who the group members are. Thus, IP-
multicast does not provide control over who receives a

given multicast transmission. Furthermore, any host
can inject packets to any particular IP-multicast group
simply by sending packets addressed to the group, even
if the host is not a member of the group.

Another Internet-based multicast protocol is Stream
Traffic version 2 (ST-II) [41], in which the distribution
tree is made of virtual circuits, as opposed to IP-multi-
cast, which relies on datagram forwarding along paths
defined by the routing table entries of the time. ST-II ori-
ginally allowed only the source to initiate the inclusion
of a participant in the multicast. Recent improvements,
however, provide the means for destination-initiated
join, in which the control messages that result in the
inclusion of a receiver do not necessarily go to the
source [13]. Three schemes for source control of a session
population are currently defined:

1. No control. The signaling message arrives only at
the tree, and a path is extended to the requester with-
out the source's knowledge.

2. Source notification. While the path is extended, a
message regarding the new join is delivered to the
source.

3. Source approval. When the join request arrives at
the tree, the node that has to begin the path extension
process first sends a message to the source, and only
after the source approves the join is the path
extended.

Both ST-II and IP-multicast employ a distribution
tree for every active source in the session. ST-II is used
extensively over the Defense Simulation Internet (DSI),
however, IP-multicast is in the process of being adopted
for the DSI.

A third Internet-based method, named Core Based
Tree (CBT) [2], selects a single node in the network to
serve as a core. One bidirectional distribution tree is built
from the core, and all traffic is forwarded on that tree.
We are not aware of any practical experience with CBT.
CBT does not specify who controls the tree or how new
joins are being made.

Multicast features have also been added recently to
ATM technology. The ATM-Forum's User-Network
Interface [17] specifies a signaling procedure by which a
source can establish a multipoint virtual circuit. Recent
proposals extend this mechanism to provide receiver-
initiated join. A more advanced ATM signaling techni-
que was designed and implemented, where signaling sup-
ports distribution of a hierarchically encoded stream
and enables the establishment of multi-VC (virtual cir-
cuit), multipoint connections [38].

3. Securi ty challenges in mult icast

The various multicast protocols all suffer a degree of

SAMSUNG EX. 1015

L. Gong, N. Shacham / Multicast security 283

vulnerability to actions that threaten data confidential-
ity and integrity. Whereas such issues exist also in uni-
cast communications, multicast poses new and unique
challenges.

In multicast, just as in unicast, an adversary (who
can be a legitimate network user) may eavesdrop on con-
fidential communication, disrupt or distort a session's
data exchange, inject unauthorized or bogus traffic,
block a session's progress, masquerade as someone else
to join in a session, or initiate and operate a bogus ses-
sion. Therefore, the privacy, integrity, availability, and
authenticity of a multicast service must be protected.

However, the nature of multicast presents new pro-
blems that cannot be effectively dealt with using trivial
extensions of techniques for secure unicast. For exam-
ple, in setting up a secure point-to-point communication
channel, one knows the identity of the party at the other
end. In a multicast session, knowledge of the session
membership is typically not guaranteed, and session
membership cannot be controlled. Another problem is
group-oriented secure data exchange. Although using
O(n 2) end-to-end secure channels can provide secure
group communication, such an architecture loses all the
advantages a multicast facility has over unicast. Also,
in group-oriented communication, an additional
mechanism is needed to reliably establish the identity of
the originator of a message. Moreover, group-oriented
authentication (and key distribution) is not necessarily
O(n 2) pairwise authentication, because of the many pos-
sible interpretations of the meaning of belonging to a
multicast session.

Mechanisms for multicast security must therefore be
developed to regulate participants' access to the data
flowing on the tree and their ability to modify traffic
already on the tree, protect the transmitted data, and
verify to any user the nature of the session in which he or
she participated. New protocols must be designed that
perform security functions for controlling session orga-
nization and management, secure broadcast, and user
access to the network.

Multicast security mechanisms can function at the
session, presentation, and network layers of the network
architecture, where they consist of authentication,
encryption, and physical access to the tree, respectively.
Techniques for these mechanisms are discussed in the
rest of this paper.

4. Trusted multicast

The architecture design of multicast security should
consider the placement of the many control functions at
appropriate network protocol layers and appropriate
network sites, and the trust relationship between net-
work sites and hosts (some of which may function as
multicast management centers). Apart from satisfying

the security requirements mentioned earlier, a desirable
design should also be

�9 compatible with existing network protocols,

�9 scalable to the scope of the global Internet, and

�9 transparent to higher-level applications and services.

Transparency keeps high level applications free from
concerns for details of, for example, authentication and
the checking of credentials and policies. In addition, the
security mechanisms residing at the session and presen-
tation levels should place no restriction on the underly-
ing networking mechanisms. As such they must coexist
with networking standards and must not depend on
modification of transport and switching elements in
the (inter)network. Moreover, the architectural design
should be localizable in that an area of a network can
install the trusted multicast facility and achieve firewall-
style self-protection even if other portions of the (inter)-
network do not yet support trusted multicast. This fea-
ture is important to facilitate a gradual introduction of
the new technology to the existing millions of host
machines. Finally, the architecture has to be flexible
enough to support a variety of policies of session control
as required by higher-level applications. These features
together will make trusted multicast easier to integrate
into an existing environment such as the Internet.

4.1. Authentication

Authentication - a process by which one satisfes
another about one's claim of identity - is an essential
mechanism in trusted multicast to control the registra-
tion of a multicast address and screen hosts that ask to
join an existing session. Often, the requesting party and
the existing session members need to authenticate each
other. Sometimes one party may delegate some of its
authority to another party. This can be achieved by let-
ting the former issue a credential, such as a signed and
verifiable certificate, to the latter for later presentation
together with a proof of identity.

A very rich body of literature exists on the topic of
authentication and delegation in distributed systems
(see [1] for references). Thus, we concentrate only on the
extension of the basic pairwise authentication model to
the internal and external authentication of all existing
members ofa multicast session as a group.

There are two distinct issues here. One is who controls
the membership of a group and how to enforce such a
membership policy. The other is what constitutes being
admitted to an existing group. We discuss the second
issue first.

Except in the case of anonymous sessions, a minimum
requirement for belonging to a group is that the new
party should be introduced to (some or all) existing
members. This introduction merely announces the iden-

SAMSUNG EX. 1015

284 L. Gong, N, Shacham / Multicast security

tity (i.e., the name) of the new party, and can be done
by any member, by at least some preset number of mem-
bers, or by a group leader. Whoever handles the intro-
duction process in essence implements the admission
policy. A more stringent requirement can be that each
existing member and the new member must successfully
authenticate each other after an initial introduction. An
even more strict requirement can be that every member
must also know that every other member knows about
the new party.

To require pairwise authentication, O(n 2) runs of an
authentication protocol are needed for a group of size n,
although such runs are done incrementally as new mem-
bers join the group. A more efficient method is to elect
a group leader who is trusted (by other group members)
to properly authenticate the new member. In this case,
the group leader in effect controls the group membership
policy. A natural choice of the leader is the session initia-
tor. When registering the session, the initiator becomes
the leader and specifies an admission policy. I f the leader
crashes or retires, a new leader must be elected through
a secure protocol, possibly according to the session pol-
icy. It is conceivable that some members may monitor
the leader's actions to check conformance with the
policy.

The overall security of the session clearly is related
directly to who the participants are. A change of mem-
bership may affect the kind of security the session can
provide. It may also be the case that a change in the
required session security forces a change in the session
membership. A member leaving a session, especially a
long-running session, voluntarily or otherwise, should
properly sign off and erase any sensitive information
related to the session, such as the group key. Otherwise,
this member can later eavesdrop without explicitly join-
ing the group, or may leave behind the residue informa-
tion that can be exploited by potential attackers. Since
even a benign member may forget these procedures, the
group key should be updated whenever a member leaves
a session. For the same reasons, garbage collection
must occur so that the group removes any member not
doing a proper sign-off. The status of members can be
monitored by a number of methods, such as by exchan-
ging "hear t -beat" messages.

4.2. Secure sessions

Based on previous experience, both ours and that of
others, in the area of secure group-oriented distributed
systems (e.g., [3 5]), we can identify several crucial issues
in the forming of secure sessions.

Session membership policies. Sessions can be set up for
various purposes with different membership policies. At
one end of the spectrum is a totally open policy. Anyone
is free to take part in such an open session, which resem-
bles a mass gathering or an unmoderated USENET

newsgroup. A more restricted session, much as a presi-
dential town hall meeting, has open participation but
members have to pass a security check and the session
has a moderator. An even more restricted session is like a
board meeting, where only the board members can parti-
cipate. From time to time non-members are invited, but
only i fa majority of the members consent. We can easily
imagine an infinite number of such policies (including
the multilevel security variety [27]). As more restrictions
are added, we reach an ultra-secure and closed session.
As we argued earlier, the multicast architecture should
be flexible enough to accommodate many policies so
that each individual application or each session can
choose to implement one policy or a set of basic
policies.

In some applications, membership information itself
is sensitive; thus, rules must be defined for disclosing the
current group membership. However, traffic analysis
may still reveal membership. One solution is to have
trusted gateways that mask all sources and destinations.
Another solution is to saturate the network so that an
observer cannot distinguish between a meaningful
packet and a junk one.

Registration and deregistration. When a host or user
requests a network address to establish a multicast ses-
sion, a multicast management center (MMC) must ver-
ify the requester's identity and check the session policy
dictating who can register a session. Similarly, the
requester may also want to verify the identity of the
MMC to be sure that the session is correctly registered.

Information such as membership policy, user creden-
tials, and records of registered sessions can be stored at
the MMC in the form of an access control list.

The MMC can be a centralized service or a distributed
one. When a network has more than one MMC, all
MMCs must coordinate among themselves to ensure
consistency and uniqueness of multicast addresses. They
may or may not adopt an identical admission policy.

When a request to de-register a session arrives at an
MMC, it must authenticate the requester and determine
if it is authorized for such a request. Normally, only the
session leader, or its representative, can de-register the
session. When the session leader crashes or when it for-
gets to de-register, a "dead session" must be garbage col-
lected. This can be done by having the MMCs
periodically check the activities of all registered sessions.
Similarly, if a multicast session is deemed undesirable
(e.g., when it floods the network with junk), the session
must be terminated.

Joining and leaving a session. The communications
among session members can be public or private. This
can be specified at registration time, and can be changed
later. It is also possible to leave this attribute to the dis-
cretion of the individual members, so that some commu-
nications may be private while the rest remain public.

SAMSUNG EX. 1015

L. Gong, N. Shacham / Multicast security 285

For private sessions, adequate privacy provisions are
required in multicast. Because most networks are open
in the sense that anyone may eavesdrop on network traf-
fic, we need to encrypt message contents when requested
to ensure that only those authorized can correctly
decrypt them.

Secure session communication. The traditional approach
is to arrange the distribution of a common encryption
key, shared by all session members, and encrypt broad-
cast messages with this group key.

With this approach, an initial key distribution must
take place when a session is registered. This key can be
chosen by either the session leader or the authentication
server. The key is then maintained by the session leader
or stored at the MMC where the session is registered.
When someone applies to join a session, the group leader
or the MMC checks the session policy to make a deci-
sion. When a new member is accepted into the session, it
receives the group key from the MMC or the group lea-
der. When the group leader crashes, a new leader is
elected, using any of the many known election protocols.

A significant shortcoming of this method is that, if
session members can be dishonest, the group key does
not identify the source of a message. This issue can be
solved by requiring that each member sign its message
using a digital signature technique [37]. Another prob-
lem is that frequent key changes (and their synchroniza-
tion among group members) during a busy session
affects performance. Secure broadcast algorithms allevi-
ate these two issues, as we explain below.

Secure and efficient broadcast. When a member can
choose a new encryption key for a new membership on a
per-message basis, the risk of key leakage by a departing
member is considerably reduced and a new group key is
unnecessary.

Suppose each member has a pair of public and private
keys, for example, for use in the RSA cryptosystem
[37]. Each member must have knowledge of the group
membership - at least he must know the public keys of
all the other members. To broadcast a message, a mem-
ber chooses an encryption key (for use in DES [42]) at
random and encrypts the message. The member then
signs a timestamp (to defend against replay attacks), the
DES key, and a one-way hash function [32] of the origi-
nal message (to serve as an integrity checksum), using its
private key. The member then encrypts this signature
with each other member's public key. Finally, the mem-
ber broadcasts (or multicasts) the (n - 1) encrypted sig-
natures and the encrypted message. (Here, n is the size of
the group.) At the receiving end, a group member
decrypts a suitably encrypted signature (with its private
key), obtains the DES key (using the broadcaster's pub-
lic key), and then retrieves the message. Clearly, anyone
who is not a group member would not be able to retrieve
the message. This simple algorithm has the following

attractive features: (1) the encryption key can be chan-
ged for every message; thus a membership change does
not require additional security measures such as chan-
ging the group key and (2) only the message header (con-
taining the encrypted signatures), and not the message
body, increases linearly in length with the number of des-
tinations. Moreover, the computation of a one-way
hash function can be very efficient, and the checksum
adds only a few extra bytes [32].

To use this broadcast primitive, session members
receive and cache others' public keys and other relevant
data. When notified of session membership changes,
members simply update their local membership lists and
choose new DES keys for future multicast, which are
thus made unreadable to those outside the session
(including the members who just left).

If group members do not have public key capability,
the above algorithm cannot be easily extended since it
appears at first sight that in addition to every pair of
members needing to share a distinct key (thus brings
about the O(n 2) key problem, which however can be alle-
viated to some extent [21]), the message body needs to
be encrypted (n - 1) times (e.g., using DES) and thus the
broadcast message body also increases with the size of
the group, making the algorithm less scalable. Fortu-
nately, there exist secure broadcast algorithms with the
same attractive features of the one using public-key
cryptosystems. We will discuss them in section 4.3.

Encryption mode. It is generally undesirable to use the
basic Electronic Code Book (ECB) mode [42] because
each block is independently encrypted and, thus, the
mode is more vulnerable to slicing attacks (e.g., by reor-
dering blocks) and cryptanalysis.

In the plaintext-feedback mode, the encryption of a
block depends on the plaintext of the preceding block(s).
This results in infinite error propagation in that a block
cannot be correctly decrypted unless all preceding blocks
are correctly decrypted. In other words, a single lost
packet (or cell) or any data corruption during transit ren-
ders the rest of a message unreadable. This undesirable
property may necessitate excessive retransmission when
the network or a stream is unreliable.

The ciphertext-feedback mode, on the other hand,
has a limited and controllable error propagation, typi-
cally of two encryption blocks. As long as two consecu-
tive ciphertext blocks are received correctly, decryption
can proceed and resynchronization is automatic. More-
over, in some applications involving audio and video,
occasional packet loss does not matter much because it
causes only minor degradation in voice or video quality.
These advantages make ciphertext-feedback the favored
encryption mode.

The multicast facility may need to adapt between
multiple encryption modes, and between using block
ciphers and using stream ciphers, according to the appli-
cation environment. For example, the ECB mode allows

SAMSUNG EX. 1015

286 L. Gong, N. Shacham / Multicast security

random access to individual blocks of a message. In
addition, a stream cipher, especially if precomputation
of the stream is possible (e.g., using DES as a pseudo-
random number generator), is faster than a typical block
cipher, but because of the cost of resynchronization
when data loss occurs, it is more suitable in a highly reli-
able environment.

Finally, we consider the case of partial encryption of
streams. One motivation to avoid encrypting the whole
stream is efficiency - for example, when it is possible to
identify crucial data (such as control information) that
are the only portion (of the stream) to be encrypted for
security. The sending and the receiving ends must be in
synchrony as to which portion is encrypted and which is
not.

Another motivation for partial encryption is that not
all receiving ends require the same amount or type of
information from the source. One member may want to
hear the voice more clearly, while another wants to
improve the image quality.

Similarly, different portions of the same stream may
need to be encrypted differently. For example, the back-
ground of a picture may be public knowledge, but the
human image in the center may be highly classified and
need special treatment.

In such cases, it is conceptually simpler to view partial
streams as many layers of the same stream, and tech-
niques developed for Heterogeneous Multicast (HMC)
[38] can be used to explore the concept of multicast ses-
sions in which users participate at different bandwidth
levels.

Session advertising. Many services need to be advertised.
The existence of a registered session can be announced
- for example, by a bulletin board service. Proper cre-
dentials and identification information must be pro-
vided so that one can verify the authenticity of the
advertisement. Sometimes it is necessary to restrict the
dissemination of service information. For example, the
bulletin board can be made multilevel secure.

4.3. Secure broadcast and common attacks

When S must send a message m to a number of desti-
nations Pi, i = 1 , . . . , n (for example, a subset of nodes
on a network) and the message content must be kept pri-
vate for the intended recipients, the message is usually
encrypted before being broadcast. Depending on the
pattern of key sharing among communicating parties,
different protocols can be used. For example, S can
encrypt m with ki and send the ciphertext to Pi. This
amounts to a total o fn encryptions, and n point-to-point
messages or a broadcast of n pieces of ciphertext. If S
and the Pi's share a group key, one encryption and one
broadcast of a single ciphertext is sufficient. However, S
may need to send messages to different sets of recipients
and thus must maintain many such group keys, up to

the order of O(2n). The problem we examine here is how
to securely broadcast a message when public-key sys-
tems are not available, and how to avoid encrypting the
message n times or maintaining 0(2 n) group keys.

Some authors of secure broadcast protocols (e.g.,
[9,3]) focus their attention mostly on attacks on secrecy,
and do not discuss other attacks, including the insider
attack we describe later in this section. We highlight the
risks with a case study of the Chiou-Chen protocol [9]
where we discuss these attacks and suggest counter-
m e a s u r e s .

We use the following notation. Plaintext x encrypted
under key k is denoted as {x}~, and the concatenation of
x and y is (x, y). The Chiou-Chen protocol works as fol-
lows. S selects a random encryption key k, encrypts m
with it, and computes {k}~. Then S solves the equation

x = {k}k i mod ni (1)

for x using the Chinese Remainder Theorem. Here, ki is
Pi's public key. ni is a publicly known number associated
w i t h Pi, and these numbers must satisfy a few conditions,
including that they be pair-wise prime. (See [9] for
details.) Then S broadcasts a message of the form
(S, x, {k}/~, {m}k).

After receiving the broadcast, Pi computes {k}k ~
(from x and ni) and decrypts it with ki to obtain k, with
which Pi decrypts {k}k. If the last decryption does not
reveal k, it means either that the message has been modi-
fied during transmission or that the broadcast is not
intended for Pi. Otherwise, Pi uses k to decrypt {m}k,
thus obtaining m. Note that m is encrypted only once,
and only one piece of ciphertext is broadcast. The integ-
rity of {m}~ must be checked separately.

The protocol implicitly requires strong (and possibly
impractical) assumptions of the protocol execution envi-
ronment. When these assumptions do not hold, the pro-
tocol is vulnerable to replay and masquerading attacks,
especially by a legitimate but malicious recipient of a
broadcast message. For example, in the original proto-
col, anyone can record S's message and play it back
again. A recipient cannot detect a replay except by keep-
ing a record of past messages and keys, thus noting mes-
sage repetitions. If recipients cannot be expected to
keep such records, establishing the freshness of a mes-
sage by other means is essential. For the sake of discus-
sion, we assume that clocks are securely synchronized.
(Other methods to ensure freshness, such as challenge
and response, can also be used.) In this case, a usual solu-
tion is to attach to m a timestamp t to indicate the time
of message creation - that is, replacing m with (t, m) in
the protocol.

However, an insider (say P1) can still attack. Being a
legitimate recipient, P1 knows k after receiving the
broadcast. Thus P1 can replace (t, m) with (t', mJ), where
t' is a current timestamp and m ~ is an arbitrary message,
and then resend the message. I f other recipients cannot
detect that k is reused and there is no other hardware or

SAMSUNG EX. 1015

L. Gong. N. Shacham / Multicast security 287

software mechanism to identify the message origin, the
new broadcast message will be taken as from S rather
than from P1, with potentially serious consequences.
Timestamping {k}~ by broadcasting (S, x, {t, k}k , {m}k)
still has the same weakness because P1 who knows k
can easily forge a seemingly legitimate {t', k}k with a
new timestamp t t. The victims are confined to recipients
of the original broadcast.

One solution to these problems is to timestamp key k
by modifying the equations to be x - { t , k }k ~ mod hi.
This is clearly better because t can specify k's creation
time as well as its lifetime. Since P1 does not know ki,
i ~ 1, P1 cannot forge {t, k}k ~. Thus P1 cannot convince
others that an expired key k is still valid, and a future
message broadcast by P1 using k will be rejected.

There is yet another problem with this new version.
In many systems, such as the Internet, a broadcast chan-
nel is a simulation that will behave correctly only if all
parties concerned follow the protocol (e.g., [4]). In such
an environment, it is likely that P1 can interfere with the
broadcast before another recipient receives the message.
In particular, P1 can intercept the broadcast message m
from S, change its content to m r, and then send it on to
other recipients before k expires. This type of attack is
often possible when the message delivery system is unre-
liable or slow, and especially when broadcast is simu-
lated in software instead of implemented in hardware.

One protection against this attack is to omit the inter-
mediate key k altogether, solve x - {(t,m)}k~ mod hi,
and broadcast (S, x). This change makes the protocol
secure against described replay or masquerading attacks
by outsiders as well as by insiders, since no one besides
S and Pi can forge {(t, m)}ki. (Note that {(t, m)}k~ can be
broken into smaller blocks if necessary.) The efficiency
of this version is not as good as the original Chiou-Chen
protocol, however, because rn, which may be signifi-
cantly longer than k, is now encrypted n times. Neverthe-
less, only one piece of ciphertext is broadcast, and its
length stays roughly the same as in the original
protocol.

The new version can also be slightly modified to
broadcast different private messages to multiple desti-
nations. For example, suppose S wants to send mi pri-
vately to Pi. Instead of sending n separate messages, S
can solve equations x = {t, mi}ki mod ni for x, and then
simply broadcast x.

Suppose that some recipients cannot store past
messages, and also suppose that there is no hardware or
software support to ensure that a broadcast cannot be
interfered with before the message reaches all destina-
tions. To consider insider attacks under these conditions,
we propose a new protocol that achieves the level of
efficiency of the original protocol. Suppose h() is a
one-way hash function. The sender S selects k and
encrypts m to obtain {m}k. S then solves the set of equa-
tions x = _ { t , k ,h (m)}k i modni for x, and broadcast
(S, x, {m}k).

Here h(m) acts as a checksum of m. Recipient Pi
obtains m as before, computes h(m), and compares it
with the checksum value received from S. A discrepancy
suggests accidental modification or deliberate tamper-
ing of the broadcast message. This protocol's efficiency
is close to that of the original protocol because rn is
encrypted once, only one piece of ciphertext is broad-
cast, the computation of a one-way hash function can be
very efficient, and the checksum adds only a few extra
bytes.

Since the original Chiou-Chen protocol is secure
against known-plaintext attacks [9], and the new proto-
col is different only in that an extra timestamp t and a
checksum h(m) are encrypted, the new protocol is also
likely to be resistant to known-plaintext attacks [9].
Moreover, since the attacker does not know ki and thus
cannot modify {t ,k , h(rn)}kl to change the checksum,
any illegal modification o f the broadcast message will be
detected by Pi.

If h() is a secure keyed one-way hash function, then
the amount ofencryption and the length of the broadcast
message can be further reduced by replacing
{ t , k ,h (m)}k i with (t , h (k i ,m , t)) in the equations and
broadcasting (S, x, m, t). After obtaining m by decrypt-
ing {m}ki, Pi can recompute h(ki, m, t) and compare it
with the received value to check message integrity. In
fact, if the privacy of the broadcast message is unimpor-
tant, no encryption is needed and the protocol can be
further simplified.

4.4. Secure broadcast using polynomial interpolation

We recently proposed the NED techniques with
which a sender can distribute a session key to n recipients
[19]. Thus, intuitively, the sender can also broadcast a
(secret) message to the n recipients using the same NED
method and replacing the session key k with a message
rn. In such a broadcast, unlike in authentication, a recipi-
ent may not need to know exactly all the identities of
other recipients. When m is long, it can be broken into
smaller blocks. We call such protocols NED-B, where B
is for broadcast [19].

The notation we use in this section is as follows. S is
the sender, who wants to broadcast a message m to n reci-
pients, whose identities are I1, I2 , . . . , In. Each recipient
Ii shares a secret key Ki with the sender, x I Y denotes the
concatenation of strings x and y. Function h 0 is a keyed
one-way hash function, where the first argument is the
secret key, and the rest of the arguments are concate-
nated to form an input string. The output from the hash
function is of a fixed size, independent of the size of the
input string. Ts is the timestamp of sender S's clock, r is a
random number that S chooses each time a message is
to be broadcast.

After deciding on rn and choosing r, the sender solves
the following equations to obtain values of al, a2, . . . ,
an.

SAMSUNG EX. 1015

288 L. Gong, N. Shacham / Multicast security

m I m + al x h(kl , /1 , r) + . . . + a~ x (h(kl, I1, r)) n

= h(kl ,I1, Ts, r, 1),

m]in + a l x h(k2,I2, r) + . . . +an x (h(k2,I2, r)) n

= h(k2, I2, Ts, r, 2) ,
�9 . . ~ ~ . �9

m l r n + a l x h(k~,In, r) + . . . +a~ x (h(k~,In,r)) ~

= h(kn,I~, T~,r,n).

(2)

Let f (x) = k + a l x x + . . . + a n x (x) n. The sender
then broadcasts (S, r, T~ , f (1) , f (2) , . . . , f(n)) .

Recipient Pi can use interpolation to retrieve m from
the following equations:

m] m + al • h(ki, Ii, r) + . . . + a~ x (h(ki, Ii, r)) n

= h (ki, Ii, rs, r, i),

m] m + a l • 1 + . . + a~ x 1 n = f (1)
, ' (3)

m [m + a l x 2 + . . +an x 2 n = f (2) ,

m l m + a l x n + + a ~ x n n = f (n) .

Note that for the above equations to have a solution,
we require that h(ki, Ii, r) be out of the range of 1 to n. If
this is not satisfied, the sender can select a different value
ofr.

Pi also determines whether in the result value the first
half is identical to the second half�9 Any modification to
the sender's message will cause (with a high probability)
the retrieved value to be not of the form m] m. This is
because the attacker does not know h(ki, Ii, r), the value
for which Pi computes f 0 , and thus cannot modify k in
any predictable fashion by modifying the f (i) ' s .
Obviously, the number r should not be reused. Suppose r
is first used to broadcast more than one message where
Pi is a recipient; then, Pi is able to compute h(kj, Ij, r) and
h(ki, Ii, Ts, r, i), and thus can forge future messages.

Moreover, to detect replay attacks, the sender must
include a freshness identifier in his message, so that each
recipient can be convinced that the message is indeed
fresh. A freshness identifier can be the sender's time-
stamp, if the sender and the recipients have securely and
closely synchronized clocks. It can also be a nonce, such
as a random number, generated by the intended recipi-
ent. The freshness identifier must be securely bound to
the message in such a way that an attacker cannot mod-
ify the identifier without being detected. The computa-
tion of h(ki, I i,I2, Ts, r,i) assures Pi that the message
comes from S and is fresh.

An outside attacker who monitors network traffic
cannot compute m because he does not know any of the
ki's and thus cannot compute h(ki, Ii, Ts, r, i). Although
an insider Pj can compute h(ki, Ii, T~, r, i), this value is
used as a one-time pad and cannot lead to the compro-
mise of ki. Note that, even though the argument here is
similar to that used in Shamir's secret-sharing scheme

[39], the secrecy argument against insider attacks is no
longer information-theoretic. This is because Pj can
guess a value ofk i (call it Ui) and verify the guess by com-
puting h(kl, Ii , Ts, r,i) and then comparing it with
h(ki,Ii, Ts, r, i). A match indicates that ki = U// with a
high probability.

However, if we assume that the selection of ki is ran-
dom and from a sufficiently large space, then such an
exhaustive attack is computationally infeasible. In an
exhaustive cryptanalysis, the attacker may attempt to
build up a dictionary of possible session keys and hash
values [14]. One way to increase the difficulty of this
attack is to use longer texts in the input to the hash func-
tion. This method is likely to greatly increase the search
space with little loss of efficiency, because the computa-
tion of a hash function is extremely fast and the length of
the hash value remains constant.

Since the size of q (in rood(q)) is O(log n), given a mes-
sage m of O(logn) bits, the overall length of the broad-
cast message has O(nlogn) bits. In an environment
where the recipients are scattered throughout a large net-
work, the savings in terms of efficiency by avoiding con-
ventional encryption may be outweighed by the
increased total network traffic and load. In this case, the
sender can use the N ED method to distribute just an
encryption key, and then broadcast the whole message
encrypted with this key. Such a key can be changed on a
per message basis; or it can be changed only when session
membership changes. This arrangement is quite similar
to the algorithm in section 4.2 that uses public key cryp-
tosystems.

Finally, we point out that the use of a one-way
(hash) function (or another similar mechanism) cannot
be avoided in our setting where each recipient holds (i.e.,
shares with the sender) only one secret that is long-term
(i.e., does not or cannot be changed frequently between
authentication sessions) and small in size (e.g., 8 charac-
ters), and the session key is of a similarly small size.
This is because that, without the one-way hash function,
A's finding out B's key k2 is just a matter of solving a
higher-order equation. This intuition is supported by the
work of Blundo et al. [5], who proved a theorem (for the
non-interactive case of conference key distribution)
that to prevent a group of colluders from compromising
others' secrets, a user needs to hold secret information
that is many times the size of the session key. The authors
also give a protocol using symmetric polynomials (but
not one-way hash functions). This intuition that one-
way function is necessary for third-party-based key dis-
tribution has been recently proved in [18].

Now we briefly discuss related work in secure broad-
cast. A number of protocols exist for secure broadcast,
and some protocols for conference key distribution can
also be extended for this purpose (e.g., [9,26,3]). The
three protocols cited here are typical in that they do not
consider attacks except those directly on message
secrecy, as we can see from section 4.3. Among these pro-

SAMSUNG EX. 1015

L. Gong, N. Shacham / Multicast security 289

tocols, the closest to the our NED-B protocol is perhaps
the work by Berkovits [3], whose proposal uses polyno-
mial interpolation but in a slightly different form.

The Chiou-Chen [9] protocol is more expensive
because it needs to associate one positive number with
each of the n recipients where the numbers must be rela-
tively prime to each other. Managing the allocation of
such numbers to a large group of recipients - for exam-
ple, hosts and users on the Internet - can be a serious
problem in practice. Moreover, the arithmetic must be
computed in a field containing the product of all the n
relatively prime numbers. Since the range containing n
prime numbers is roughly [1, n logn] [22, pp.9-10], the
size of the field is at least O(n log(n log n)) = O(n log n)
bits long and the broadcast message has O(n 2 log n) bits,
whereas in the NED-B protocol, the field size is only
O(log n) and the broadcast message has O(n log n) bits.

4.5. Control of tree access

Authentication guarantees that only certified users
become legitimate participants, and group-oriented
encryption enables only those participants to decode the
data being sent. Yet, the current network-level multicast
routing and forwarding mechanisms allow any user to
establish a path to the tree and to inject traffic at will. It
is thus of interest to employ network-level mechanisms
that limit physical access to the distribution tree.

A simple approach, used by ST-II [41], is to require
all tree attachments to be initiated by the source of the
tree. This makes the source aware of who is listening and
allows it to reject unwanted requests. I f the source
approves a connection request, it sends a message down
the tree toward the destination. At one point, the mes-
sage leaves the tree and establishes an extension path
while progressing toward the destination. While this
technique provides some level of control, it adds signifi-
cant processing load to the source, thereby limiting the
session size.

In a teleconference, receivers usually initiate attach-
ment to a specific distribution tree. If the distribution is
by multiple source-based trees, a typical receiver is likely
to shift attention from source to source, and thereby fre-
quently changes its attachment to the respective source-
trees. Even if the distribution is over a single core-based
tree [2], a receiver changes its resource allocation on that
tree to reflect the shifting emphases on different sources.
Both resource allocation and the establishing and dis-
connecting path involve actions by multicast agents
residing at network nodes.

As was argued above, requiring the sources to med-
iate these actions reduces efficiency and performance. It
is thus desirable to allow receivers to interact directly
with the multicast agents, with minimal if any involve-
ment by the sources. This receiver-agent interaction
must be supported by proper authentication measures

that prevent unauthorized users from directing traffic in
their direction.

The process of authentication of end hosts to network
switches is somewhat different from authentication
among peer hosts. First, because of storage and proces-
sing limitations, switches cannot be expected to maintain
keys, public or private, for all hosts connected to the net-
work. Moreover, at a time a connection is initiated, a
host does not know which switches will actually modify
their routing tables to support its request. That is,
advance key exchange with the "right" switches is not
feasible.

Each network switch could maintain a small number
of public keys, with the corresponding private keys held
at one or more authentication servers. Before initiating a
request for a new connection or modification of an exist-
ing connection, a host first sends the request message to
the authentication server. After authenticating the host,
the server sends back the message with a signature
attached. That message is sent along the network path,
and every switch on the way checks it against the signa-
ture, using its locally held public key of the server.

Similarly, a node that wants to inject traffic must first
obtain a signature from the server. A network node will
not accept traffic from a source without such a
signature.

Notice that authentication of receivers is done rela-
tively infrequently and is not likely to impose a great pro-
cessing burden on the switches. In contrast, to block
unauthorized sources, packets must carry a signature,
which results in a much heavier load on the switches,
especially in the case of stream traffic - for example,
video. For stream traffic switches, only a fraction of the
packet should carry signatures, and the switches should
cache the signatures for forwarding of those packets that
do not carry signatures. The cache should be refreshed
every so often.

It is also conceivable that malicious or ignorant par-
ties may misuse network resources - for example, by
flooding a multicast address, or by setting up a bogus
multicast session with the sole purpose of using up net-
work bandwidth. Simply ignoring such " junk" packets
(like people throwing away junk mail) is inadequate
because by the time such packets reach their destina-
tions, precious network resources have already been
consumed. Thus we need to block such usage (as soon as
it is identified) as near to the multicast source as possible.
We can imagine that the MMCs act as warning posts
that send out advisory messages to individual hosts, who
in turn regulate local network access. Many Internet
sites have already started filtering incoming and out-
going packets, but usually for different reasons. Alterna-
tively, ideas similar to those developed for the Visa
protocol [15] can also be used. However, blocking misuse
seems to require modifications to the commonly used
multicast (and unicast) protocols and software. For
example, user processes need to obtain authorization for

SAMSUNG EX. 1015

290 L. Gong, N. Shacham / Multicast security

sending multicast packets, possibly in the form of certifi-
cates, and network gateways have to verify the certifi-
cates before granting the necessary network resources.

4.6. Scalability and trade-of f

The task of assigning initial encryption keys for user
or host authentication grows only linearly with the num-
ber of users and hosts interested in participating in
secure multicast. The number of messages for establish-
ing a session and for changing the session membership is
also linear to the size of the session. A secure broadcast
algorithm (such as the NED-B protocol in section 4.4
and in [19]) allows dynamic encryption key change on a
per-message basis, thus eliminating the need for a new
group key upon group membership change. Software
implementations of encryption algorithms are suffi-
ciently fast, while hardware implementations will
further enhance performance. In protocol NED-B(n),
the most costly activity - the encrypting of (potentially
long) broadcast messages - remains constant when the
session size increases. Only the message header (which
contains instructions for decryption) increases in length,
and only linearly, when the session size increases.

Nevertheless, at present, a quality public-key crypto-
system such as RSA typically has a key length of 512
bits. This means that a multicast message header
increases 64 bytes for each additional member. Such an
increase may not be practical in some situations. One
trade-off is to use short RSA keys or use different public
key algorithms. Another is to selectively (and dynami-
cally) choose between using a group key and using secure
broadcast, depending on the importance of each session
and perhaps each message. For example, when group
membership becomes reasonably stable, it is more effi-
cient to use a group key.

Sometimes, members of a session also form a large
number of (sub)groups. For example, in a teleconferen-
cing application, although everyone's voice is broadcast
to all destinations, a member may want to broadcast his
physical location information (his coordinates) only to
members in his proximity. To structure such (sub)-
groups, a secure broadcast algorithm has the advantage
that, since data encryption keys can be chosen dynami-
cally on a per-message basis, a member need not store a
potentially large number of (sub)group keys. Of course,
a member can optimize by storing data encryption keys
and the corresponding signed message headers and reus-
ing them until a membership change occurs.

4. 7. Multi level secure multicast

End-to-end encryption can be used to control mes-
sage dissemination on a discretionary basis. Mandatory
control, possibly of a multilevel structure [27], can also
be implemented. Here, groups and members are classi-
fied at different levels, and a party cannot become a

member of a group whose security level is higher than its
own. Levels are also assigned to encryption keys. A
member cannot have access to a key whose level is
higher. For encryption, the level of the key must be equal
to or higher than that of the plaintext. The level of a
ciphertext is then the level of the key. Such an arrange-
ment effectively segregates the multicast network into
virtual networks, each at a distinct security level.

Multilevel security may require that lower-level infor-
mation be accessible to higher-level group members.
One way to achieve this is for the lower-level group mem-
bers to be able to "write up" - to send multicast messages
to groups at a higher level. However, since the sender
typically cannot have the suitable higher-level encryp-
tion key, there must be a trusted multilevel network com-
ponent that either makes the lower level keys available
to the higher level members or acts as a gateway that
decrypts an incoming message with a lower-level key,
and re-encrypts the message with a higher-level key,
before relaying the message. Alternatively, low-level
users may write up using a high-level public key.

There can be issues of covert channels, where lower-
level members can observe the existence of high-level
network activities. One solution is to use relays to con-
fuse observers. For example, if messages coming out of
SRI go through a relay that re-encrypts them with a key
shared with the IBM relay, then a third party can deduce
only that someone at SRI sends a message to someone
at IBM. Given a sufficiently random communication
pattern between SRI and IBM, the bandwidth of this
covert channel can be greatly reduced. The two relays
can exchange useless messages at random intervals to
further confuse the third party. Although many applica-
tions are not threatened by information leakage through
covert channels, the same techniques can be used to
impede traffic analysis, which is often deemed a threat to
privacy.

5. Mobility in trusted multicast

Mobile computing is expected to increase signifi-
cantly in the near future [24] due to dramatic decrease in
weight and power consumption of processing devices,
and the availability of new frequency bands and wireless
services. Including mobile users in multicast sessions
will result in powerful applications that include a "flying
doctor" initiating a multiparty consultation session, a
business traveler taking part in a meeting being con-
ducted at his company headquarters, and members a res-
cue team coordinating their operation in real time, all
through multicast in (inter)networks such as today's
Internet. Data privacy (e.g., data confidentiality) and
integrity (e.g., data authenticity) are essential parts of
the communication architecture that supports such
applications. In this section we outline an architecture
for incorporating mobility in trusted multicast. First,

SAMSUNG EX. 1015

L. Gong, N. Shacham / Multicast security 291

however, we discuss the unique issues of secure multi-
cast in a mobile environment that affect such an
architecture.

5.1. M o b i l i t y c o n s t r a i n t s

The constraints of mobile users are due to:

�9 Host limitations on power consumption, storage,
and processing speed.

�9 Changes in location and network connectivity, which
require a user to occasionally communicate through
a "foreign" network that cannot be trusted as the
"home" network.

�9 Limitations of wireless channels, including lower
capacity and wider broadcast range than their wired
counterparts.

Power, storage, and bandwidth limitations restrict
the ability of mobile users to participate as peers in the
procedures for managing secure multicast groups. The
broadcast nature of wireless channels increases the risk
to data privacy, and location changes require a mobile
host to adapt to the security level offered by the connect-
ing network.

Practicality dictates that we allow a gradual deploy-
ment of the security architecture such that the user com-
munity can start small and grow gradually while
depending on or interfering with other network services
or machines as little as possible. It is equally important
that the added security mechanisms should coexist with
popular security services such as fire-walls. Moreover,
the security mechanisms in mobile hosts, such as for key
distribution and data encryption, should be kept mini-
mal. To summarize, the security architectural design
emphasizes the following features:

1. t r a n s p a r e n c y - security features are independent of,
and do not affect, the underlying multicast protocols
and routing algorithms,

2. s e l f - s u f f i c i e n c y - users or hosts wanting to engage in
secure multicast can do so without depending on
other disinterested users or hosts or demanding that
they take additional actions,

3. m o b i l i t y - anyone with access (directly, or indirectly
via an agent) to multicast, and with additional facil-
ity for security, can initiate and participate in secure
multicast sessions, and

4. s i m p l i c i t y - little additional software or hardware
for security is required in mobile hosts;

5. e f f i c i e n c y - to make optimal use of scarce processing
and communication resources that are dominant in
mobile computing.

5.2. A r c h i t e c t u r e o u t l i n e

The architecture discussion consider two cases:

Accommodating a single mobile host.

Incorporating a group of hosts that participate in a
multicast session through a shared network.

For the first case in which a mobile host connects to
a session from a foreign network, our proposed solution
is centered on the concept of an agent [28]. In our con-
text, an agent is a host with access to multicast services
- for example, it is on the M-bone or a multicast tree -
but is also equipped with an additional facility for secur-
ity. An agent has the following tasks:

�9 Session management, including membership regis-
tration and deregistration and control of resource
reservation.

�9 Authentication and key exchange.

An agent may serve a mobile host at a level of full trust
in which the agent carries on behalf of the mobile host
all session management and security related functions.
In this case, communication and signaling between a
mobile host and its agent is by unicast. When a user
wants to know about or participate in (secure) multicast
sessions, he locates an agent with which he establishes a
secure (i.e., private, and authenticated) communication
channel. A properly set-up agent should possess the
necessary encryption keys for sessions in which the user
is authorized to participate. The user sends his input to a
session via the agent, who encrypts the traffic with a sui-
table key and then relays the encrypted text by the under-
lying (insecure) multicast mechanism. The agent also
watches for any traffic, often encrypted, that might be of
interest to his client, and decrypts and forwards this traf-
fic to his client (via the secure channel), In other words,
an agent's function can include both data encryption
and information filtering.

It is also feasible for an agent to operate at lower trust
levels, such as partial trust and no trust. An agent operat-
ing under partial trust carries out on behalf of the mobile
host only session management tasks. However, group
encryption keys are held and used by the mobile host and
are not known to the agent. An agent that operates at
the no-trust level is basically a regular multicast switch
that replicates traffic and forwards signaling messages
but does not interact with the end host. The trust level
between a mobile host and the multicast agents can
change during the session. At the beginning of the ses-
sion the host may use a full-trust agent, possible located
at his home network, to obtain and distribute certificates
and keys. Once the mobile host is well established in the
session it can take responsibility for data privacy and
assign another agent to forward the multicast messages
on a shorter path that his home agent.

SAMSUNG EX. 1015

292 L. Gong, N. Shacharn / Multicast security

Figure 1 depicts a mobile host (M) that connects to a
multicast distribution tree via a wireless broadcast chan-
nel. Initially M uses a host (H) in its home network as
an agent, at the full trust level. H participates in the
secure multicast session and forwards data to and f rom
M via the tunnel they established. To shorten the data
path to M, a new agent, F, is assigned on a foreign net-
work. F still participates in the session, but forwards
encrypted data only. Finally, a router (R2) on the net-
work on which M resides is assigned as a no trust agent.

The advantages of the agent-based approach are sim-
plicity and backward compatibility. For example, secur-
ity issues are separated f rom transport and routing
issues. Thus, the super-imposed security mechanism can
coexist with, and utilize advances in, networking tech-
nology without needing major change. Also, the burden
of providing security is on the mobile hosts and the
security agents, and not on disinterested machines and
routers. Moreover, a mobile host with very limited pro-
cessing power can request that its agent (which can be
better equipped) perform most of the CPU/d i sk inten-
sive task. To reduce bandwidth consumption, the agent
can also per form most of the data filtering and organiza-
tion work for the mobile host. These features are quite
distinct f rom those typically suggested for securing
mobile IP (see [16] for some references), although those
proposals also use concepts such as agents and subscrip-
tion.

5.3. Locating an agent

An agent can be a host dedicated to this function; or
a host can become an agent upon request. In a relatively
static se t t ing- for example, the users being staff of a cor-
porat ion and using machines in their offices - an agent
can be a server in a local-area network. Depending on
the security condition within a local environment, the
channel between an agent and a client can be either
encrypted or open. For example, within the headquar-
ters of the corporation, a channel can be a wired cable or

�9 '"TUNNEL

Fig. 1. Mobile host and muhicast agent.

can be through a plain Ethernet. However, if certain ses-
sions are sensitive even within the corporation, then cer-
tain traffic must be encrypted. Various performance
optimizations are possible, such as using a stream cipher
and pre-computing the encryption key stream.

In a more mobile se t t ing- for example, when a travel-
ing executive takes part in a session f rom a hotel room
or some other public network connection p o i n t - one can
only place a minimum trust on alien hardware and soft-
ware. Thus an agent is typically located within the execu-
tive's laptop or hand-held device, which in this case acts
as a fully functional node on the M-bone. Note that the
mobile computing device need not retain its home IP
address, and may not need an "in-care-of address"
either, as long as it can participate in multicast and
obtain access to session information.

Alternatively, the user must locate an agent some-
where in the network, and can use point-to-point mes-
sages to inquire about the existence of a suitable agent
nearby. For example, he can contact his agent at home
for references. The user can also multicast a message
similar to that used in a local-area network to locate the
network file server, in which case the user must be
equipped with direct access to multicast. Such a message
can actually be an "anycas t" message [30] to a well-
known address (e.g., the telephone number for directory
service) that should be the same no mat ter where the
user is in a country even though in different areas the
actual service providers may differ. Such a white-page
service can utilize geographical information (or situa-
tion awareness [24]) and return locally tailored informa-
tion. For example, the distance between a suitable
agent and the user may be limited to a certain number of
hops.

To summarize, a multicast agent can be a home agent,
a "compan ion" agent (that travels together with a
mobile host, e.g., an agent residing inside a laptop), or a
foreign agent. A foreign agent can be located in one of
the three ways:

�9 by home agent 's mediation,

�9 through anycast, or

�9 via a White Pages service.

Note that a malicious server may send a bogus
response to an anycast message, but will be discovered
when the provided information is authenticated. Also,
agents themselves can be mobile, and they can use point-
to-point messages to keep in contact with their home
representatives [40]. The collection of agents can in fact
form a virtual M-bone - that is, a logical mobile network
[31]. In this case, a mobile IP-multicast facility could
simplify our design.

Finally, we note that detailed protocols for efficient
and secure handing off to a new (e.g., neighboring) agent
need to be developed. Moreover, combining a firewall

SAMSUNG EX. 1015

L. Gong, N. Shacham / Multicast security 293

machine [8] with a secure multicast agent appears to be
a natural solution that would allow multicast traffic to
securely travel across firewalls.

5.4. Encryption and key management

A sender in a multicast session transmits a message
to his secure multicast agent, which may choose to
encrypt the traffic with a suitable session key before
handing over the message to the (untrusted) multicast
mechanism. At the receiving end, a client obtains infor-
mation through subscription to his agent, just as one gets
newspapers via a news agent. A session participant's
agent examines all incoming multicast traffic to see if
anything is of interest to the participant, and forwards
information as is appropriate.

Often a correct decryption must be performed before
the agent can decide whether to forward a multicast mes-
sage or not. If encrypted traffic carries a session indica-
tor, then the agent decrypts the traffic if it has the
appropriate session key; otherwise, the agent must
attempt to decrypt all incoming traffic to determine if
any of it is legitimate - whether it can be decrypted prop-
erly and if it satisfies integrity check - and passes it on
to a client. I f the client is taking part in multiple sessions
with different session keys, multiple decryptions may
have to be attempted (in parallel or sequentially) before
the agent can decide whether to pass along some traffic.
Consequently, encryption algorithms must be suffi-
ciently fast to handle the amount of traffic. Session indi-
cators will be useful to traffic analysis, thus it should
probably be up to individual sessions to decide whether
to include them in the message headers.

A user or his machine, either directly or through an
agent, joins a session and obtains the session key from
the controller of that session, which is typically a multi-
cast management center or a key distribution server.
There are a number of ways to get in touch with the ses-
sion controller. For example, the user can use the infor-
mation provided in session advertisement. Or the user
can query his favorite and trusted information server,
which can very well be represented by or located via his
home agent. The user can also look for the controller via
anycast or the white pages service, just like locating an
agent. Here, the authenticity of the reply must be verifi-
able - for example, via checking a signed and unexpired
certificate.

Therefore, a mobile user can make all necessary pre-
parations for taking part in secure multicast sessions
through his home agent, as if he did not leave his home
office. As a result, he need not carry a very complicated
key-distribution package such as Kerberos [29]. A very
simple protocol should be sufficient in most cases. In
fact, if he plans to participate in a scheduled session, he
can obtain a suitable key before leaving home and manu-
ally type it in on the road, much like using a sheet of
one-time passwords for remote login.

5.5. Multieast with a group of mobile hosts

The agent-based architecture outlined above must be
extended to accommodate a group of mobile hosts which
share a common broadcast channel (e.g., wireless
LAN) while participating in a multicast session. Exam-
ples for such a scenario include a meeting of executives
who use their portable computers to complement their
face to face negotiations. Clearly the architecture will
not scale well if the group communication is conducted
via individual unicast connections between each mobile
host and its private agent. Efficient use of the wireless
channel requires the broadcast of messages on the physi-
cal channel to all mobile users. This can be accomplished
by the mobile users agreeing on a common agent and a
group key and the broadcast of the information to the
group using that key.

Agreement on a common agent by the mobile hosts
is a part of the session setup procedure. Initially, each
host begins with his own agent with whom he communi-
cate by a unicast connection. However, whereas in the
single-user case the migration of the agent functions is
done to supports the goals of that user alone, in a group
communication the agent functionality migrate to
another agent who can function best for the group as a
whole.

The objective of agent consolidation is to optimize
the use of the wireless channel while maintaining an ade-
quate security level for each of the participants. When
the agent operates at the lowest trust level, i.e., no trust,
the consolidation entails only the migration of the for-
warding function from all the individual agents to a com-
mon point. This can be accomplished by one of the
participants making the decision and the other following
suit or by a distributed algorithms for reaching a consen-
sus, e.g., leader election.

I f the mobile hosts can decide on a common agent
that they can all trust, a similar process of migrating to
the common agent takes place. In this case, however, the
process must involve transfer of the key management
an encryption and decryption functions.

The most complicated scenario is when the mobile
host require agent assistance in their security function
yet they cannot agree on a single trusted agent for all
their traffic. In this case a hybrid solution has to be devel-
oped, in which mobile hosts partit ion their traffic among
the common trusted agent and their respective private
agents.

6. W o r k related to mult icast securi ty

One of the earliest examples of work on process
groups is [7]. In much of the later theoretical and practi-
cal work on broadcast protocols (e,g., [4]), the purpose
is largely to achieve broadcast atomicity and /o r to main-
tain causal or total ordering of messages, with no or little

SAMSUNG EX. 1015

294 L. Gong, N. Shacham / Multicast security

consideration for security. Notably, the Isis/Horus
group has recently incorporated some security mechan-
isms into their systems [35,36], and later extensions have
been made to develop secure agreement protocols
[33,34]. However, because the goal there is to maintain
"virtual synchrony" when some group members can be
corrupt, which is a much stronger goal than what we
required here, these protocols are very complicated and
suited only for small sized groups in terms of efficiency.

An alternative approach, in fact our approach here,
is to implement these complex broadcast protocols
based on a trusted multicast facility. In this way, multi-
ple applications can share the same software platform,
have consistent security assumptions and protocols, and
can thus coexist. This approach also greatly simplifies
the (repetitive) task of getting the security mechanisms
right in all applications.

Another related work is IP-multicast [11,12]. Our
trusted multicast facility can be based on IP-multicast
and should not require modifications to IP-multicast or
lower layers of the network architecture (except for pre-
venting misuse of network resources). There are prior
efforts addressing security issues in the Internet (e.g.,
[43,15,23,25,29]). However, there were no coherent
architecture and protocols for secure multicast. The
Visa protocol controls the movement of datagrams (and
thus the use of network resources) on a per-user basis,
whereas in trusted multicast the granularity may need to
be finer.

Heterogeneous Multicast (HMC) [38] explores the
concept of multicast sessions in which users participate
at different bandwidth levels. This concept can be
extended into multicast at different security levels.

7. Summary and future work

Advances in networking technologies have made mul-
tiparty communication an active area of research and
development, where multicast is an important mode of
communication as well as a good platform for building
group-oriented services. We have considered fundamen-
tal security issues in building a trusted multicast facility,
and we have discussed threats, new requirements for
security, solutions, and trade-offs between scalability
and security. In particular, we have outlined protocols
for secure session registration, for session membership
change, and for secure and efficient broadcast, as well as
an architecture for secure multicast in mobile
environment.

We are currently prototyping some of the techniques
and protocols we have discussed in this paper. Such an
experiment not only can bring valuable performance
results, it can also establish a sound platform on which
to build a wide range of more sophisticated protocols
and trusted applications.

Acknowledgements

This paper is an extensive revision and extension of a
previous paper presented at IEEE ICNP '94 [20] and also
incorporates materials on secure broadcast from a paper
presented at ACM CCS-2 [19].

References

[1] M. Abadi and R.M. Needham, Prudent engineering practice for
cryptographic protocols, Proc. IEEE Syrup. on Research in
Security and Privacy, Oakland, California (1994) pp. 122-136.

[2] A.J. Ballardie, P. Francis and J. Crowcroft, Core based trees -
An architecture for scalable inter-domain multicast routing,
Proc. A C M SIGCOMM, San Francisco, California (1993)
pp. 85-95. Published as ACM Comp. Commun. Rev. 23(4)
(1993) 85 95.

[3] S. Berkovits, How to broadcast a secret, Advances in
Cryptology: Proc. Eurocrypt '91, Vol. 547 of Lecture Notes in
Computer Science (Springer, New York, April 1991) pp. 535-
541.

[4] K.P. Birman and T.A. Joseph, Reliable communication in the
presence of failures, ACM Trans. Comp. Syst. 5(1)(1987)47-76.

[5] C. Blundo, A. De Santis, A. Herzberg, S. Kutten, U. Vaccaro
and M. Yung, Perfectly-secure key distribution for dynamic
conferences, Advances in Cryptology: Proc. of Crypto '92, VoI.
740 of Lecture Notes in Computer Science (Springer, New York,
1992) pp. 471-486.

[6] J.A. Bull, L. Gong and K.R. Sollins, Towards security in an
open systems federation, Proc. European Symp. on Research in
Computer Security, Vol. 648 of Lecture Notes in Computer
Science (Springer, 1992) pp. 3-20.

[7] D.R. Cheriton and W. Zwaenepoel, Distributed process groups
in the V kernel, ACM Trans. Comp. Syst. 3(2) (1985) 77-107.

[8] W.R. Cheswick and S.M. Bellovin, Firewalls and Internet
Security (Addison-Wesley, 1994).

[9] G.H. Chiou and W.T. Chen, Secure broadcasting using secure
lock, IEEE Trans. Software Eng. i5 (1989) 929-934.

[10] M. de Prycker, Asynchronous Transfer Mode: Solution for
BroadbandlSDN(Ellis Horwood, New York, 2nd ed., 1993).

[11] S. Deering, Host extensions for IP multicasting, Request for
Comments 1112, Internet Network Working Group (1989).

[12] S.E. Deering and D.R. Cheriton, Multicast routing in datagram
internetworks and extended LANs, ACM Trans. Comp. Syst.
8(2) (1990) 85-I 10.

[13] L. Delgrossi, R.G. Herrtwich, F.O. Hoffman and S. Schaller,
Receiver-initiated communication with ST-II, Preliminary
version(1994).

[14] W. Diffie and M.E. Hellman, Exhaustive cryptanalysis of the
NBS data encryption standard, IEEE Comp. 10(6) (1977) 74-84.

[15] D. Estrin, J.C. Mogul and G. Tsudik, Visa protocols for
controlling interorganizational datagram flow, IEEE J. Select.
Areas Commun. 7 (1989) 486-498.

[16] H.T. Kung et al., Secure short-cut routing for mobile IP, Proe.
USENIJ(Summer Technical Conference, Boston, Massachusetts
(1994).

[17] The ATM Forum, User-Network Interface Specification
(Version 3.0) (Prentice-Hall, New Jersey, 1993).

[18] L. Gong, Efficient network authentication protocols: Lower
bounds and optimal implementations, Technical Report SRI-
CSL-94-15, Computer Science Laboratory, SRI International,
Menlo Park, California (1994).

[19] L. Gong, New protocols for third-party-based authentication
and secure broadcast, Proe. 2nd ACM Conf. on Computer and
Communications Security, Fairfax, Virginia (1994) pp. 176-I 83.

SAMSUNG EX. 1015

L. Gong, N. Shacham / Muhicast security 295

[20] L. Gong and N. Shacham, Elements of trusted multicasting,
Proc. IEEE Int. Conf. on Network Protocols, Boston,
Massachusetts (1994) pp. 23-30. A preliminary version appeared
as Technical Report SRI-CSL-94-03, Computer Science
Laboratory, SRI International, Menlo Park, California (1994).

[21] L. Gong and D.J. Wheeler, A matrix key distribution scheme, J.
Cryptology 2(2) (1990) 51-59.

[22] G.H. Hardy and E.M. Wright, An Introduction to the Theory of
Numbers (Oxford University Press, Oxford, England, 1979; first
ed. 1938, fifth ed. 1979, reprinted (with corrections) 1983).

[23] C. Huitema and B. Braden, Report of IAB workshop on security
in the internet architecture, Internet draft, IAB (1994).

[24] R.H. Katz, Adaptation and mobility in wireless information
systems, IEEE Personal Commun. (First Quarter 1994) 6-17.

[25] S.T. Kent, Internet privacy enhanced mail, Commun. ACM
36(8) (1993) 48-59.

[26] C.S. Laih, J.Y. Lee and L. Ham, A new threshold scheme and its
application in designing the conference key distribution
cryptosystem, Inf. Proc. Lett. 32 (1989) 95-99.

[27] J. McLean, The specification and modeling of computer
security, IEEE Comp. 23(1) (1990) 9-16.

[28] M. Minsky, A conversation with Marvin Minsky about agents,
Commun. ACM 37(7) (1994) 2359. Interviewed by Doug
Riecken.

[29] B.C. Neurnan and T. Ts'o, Kerberos: An authentication service
for computer networks, IEEE Commun. 32(9) (1994) 33-38.

[30] C. Partridge, T. Mendez and W. Milliken, Host anycasting
service, Request for Comments 1546, Internet Network Working
Group (1993).

[31] C.E. Perkins and P. Bhagwat, A mobile networking system
based on internet protocol, IEEE Personal Commun. (First
Quarter 1994) 32-41.

[32] B. Preneel, Cryptographic hash functions, European Trans.
Telecom. 5 (1994) 431-448.

[33] M. Reiter, A secure group membership protocol, Proc. IEEE
Symp. on Research in Security and Privacy, Oakland, California
(1994) pp. 176-189.

[34] M. Reiter, Secure agreement protocols: Reliable and atomic
group multicast in rampart, Proc. 2nd ACM Conf. on Computer
and Communications Security, Fairfax, Virginia (1994) pp. 68-
80.

[35] M. Reiter, K. Birman and L. Gong, Integrating security in a
group-oriented distributed system, Proc. IEEE Symp. on
Research in Security and Privacy, Oakland, California (1992)
pp. 18 32. Also available as TR92-1269, Department of
Computer Science, Cornell University.

[36] M. Reiter and L. Gong, Preventing denial and forgery of causal
relationships in distributed systems, Proc. IEEE Symp. on
Research in Security and Privacy, Oakland, California (1993)
pp. 30-40.

[37] R.L. Rivest, A. Shamir and L. Adleman, A method for
obtaining digital signatures and public-key cryptosystems,
Commun. ACM 21(2) (1978) 120-126.

[38] N. Shacham, Multicast routing of hierarchical data, Proc. Int.
Conf. on Communications, Chicago, Illinois (1992).

[39] A. Shamir, How to share a secret, Commun. ACM 22 (1979)
612-613.

[40] W.A. Simpson, IP mobility support, Draft 4, IETF Network
Working Group (1994).

[41] C. Topolocic, Experimental internet stream protocol, Version 2
(ST-II), Request for Comments 1190, Internet Activities Board
(1990).

[42] Data Encryption Standard, (U.S.) National Bureau of
Standards, (U.S.) Federal Information Processing Standards
Publication, FIPS PUB 46 (1977).

[43] V.L. Voydock and S.T. Kent, Security mechanisms in high-level
network protocols, ACM Comp. Surveys 15 (1983) 135-171.

Li Gong received the B.S. degree with honors
(1985) and the M.S. degree (1987) from Tsin-
ghua University, Beijing, China, and the
Ph.D. degree from the University of Cam-
bridge (Jesus College, 1990), England, all in
computer science. His research is in distributed
systems and communication networks, parti-
cularly in issues of fault tolerance and security.
He was Program Chair of the 7th and 8th
IEEE Computer Security Foundations Work-

shops (1994 and 1995), is Program Co-Chair of the Third ACM Con-
ference on Computer and Communications Security (1996), and is on
the editorial board of the Journal of Computer Security. He received
the IEEE Communications Society Leonard G. Abraham Prize Paper
Award in 1994 and the IEEE Computer Society Symposium on Secur-
ity and Privacy Outstanding Paper Award in 1989.

Nachurn Shacham received his B.Sc. and
M.Sc. degrees in electrical engineering from
Technion, Israel Institute of Technology in
1970 and 1976 respectively, and his
Ph.D. degree in electrical engineering from the
University of California at Berkeley in 1980.
He is presently Program Director for network-
ing research at the Computer Science Labora-
tory, SRI International, where he has worked
on such areas as packet radio networks, adap-

tive error-control codings, heterogeneous multicast (HMC), and
adaptive network algorithms. He is a Fellow of the IEEE, is on the edi-
torial board of a number of technical journals, and was Program Chair
of IEEE INFOCOM '91.

SAMSUNG EX. 1015

