" “Peer-ta-peer is the next great thmg for the Internet

é ; —Lawrence L6551g Stanford Law Schuul
A : 3 - author Code and Other Laws of Cyberspﬂce_.

SAMSUNG EX. 1018

Peer-to-Peer: Harnessing the Power of Disruptive Technologies
Edited by Andy Oram

Copyright © 2001 O'Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Andy Oram
Production Editor: Darren Kelly
Cover Designer: Edie Freedman

Printing History:
March 2001: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Many of the designations used by
manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly & Associates, Inc. was
aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher
assumes no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

Library of Congress Cataloging-in-Publication Data is available at:
www.ore:'!!y.com/camiog/peerz’peer/cbczpreﬂcopyrigbt‘bsz

ISBN: 0-596-00110-X
[C] [4/01]

SAMSUNG EX. 1018

i)

chanier eight

Gnutella

Gene Kan, Gnutella and GoneSilent.com

When forced to assume [self-government], we were novices in its science.
Its principles and forms had entered little into our former education. We
established, however, some, although not all its important principles.

—Thomas Jefferson, 1824

Liberty means responsibility. That is why most men dread it.

—George Bernard Shaw

Gnutella is among the first of many decentralized technologies that will reshape
the Internet and reshape the way we think about network applications. The tra-
ditional knee-jerk reaction to create a hierarchical client/server system for any
kind of networked application is being rethought. Decentralized technologies
harbor many desirable qualities, and Gnutella is a point of proof that such tech-
nologies, while young, are viable.

It is possible that Gnutella has walked the Earth before. Certainly many of the
concepts it uses—even the unconventional ones—were pioneered long ago. It’s
tricky to determine what's brand-new and what's not, but this is for certain:
Gnutella is the successful combination of many technologies and concepts at the
right time.

Gnutella in a gnutshell

Gnutella is a citizen of two different worlds. In the popular consciousness, Gnu-
tella is a peer-to-peer, techno-chic alternative to Napster, the popular Internet
music swapping service. To those who look past the Napster association, Gnu-
tella is a landscape-altering technology in and of itself. Gnutella turned every

SAMSUNG EX. 1018

academically correct notion of computer science on its head and became the first
large-scale, fully decentralized system running on the wild and untamed public
Internet.

Roughly, Gnutella is an Internet potluck party. The virtual world’s equivalents of
biscuits and cheese are CPU pawer, network capacity, and disk space. Add a few
MP3s and MPEGs, and the potluck becomes a kegger.

On the technical side, Gnutella brings together a strange mix of CDMA, TCF/IP,
and lossy message routing over a reliable connection. It’s a really strange concept.

Contrary to popular belief, Gnutella is not branded software. It’s not like
Microsoft Word. In fact, Gnutella is a language of communication, a protocol.
Any software that speaks the language is Gnutella-compatible software. There
are dozens of flavors of Gnutella compatibles these days, each catering to differ-
ent users. Some run on Windows, others on Unix, and others are multi-
platform Java or Perl. And as Gnutella’s name implies, many of the authors of
these Gnutella compatibles have contributed to the open source effort by mak-
ing the source code of their projects freely available.

A brief history

Besides its impact on the future of intellectual property and network software
technology, Gnutella has an interesting story, and it's worth spending a little
time understanding how something this big happens with nobody writing any
checks.

Gnutella’s first breath

Gnutella was born sometime in early March 2000. Justin Frankel and Tom
Pepper, working under the dot-com pen name of Gnullsoft, are Gnutella’s
inventors. Their last life-changing product, Winamp, was the beginning of a
company called Nullsoft, which was purchased by America Online (AOL) in
1999, Winamp was developed primarily to play digital music files. According to
Tom Pepper, Gnutella was developed primarily to share recipes.

Gnutella was developed in just fourteen days by two guys without college
degrees. It was released as an experiment. Unfortunately, executives at AOL
were not amenable to improving the state of recipe sharing and squashed the
nascent Gnutella just hours after its birth. What was supposed to be a GNU
General Public License product when it matured to Version 1.0 was never
allowed to grow beyond Version 0.56. Certainly if Gnutella were allowed to
develop further under the hands of Frankel and Pepper, this chapter would look
a lot different.

Chapter 8: Gnutella 95

SAMSUNG EX. 1018

At least Gnutella was born with a name. The neologism comes from ramming
GNU and Nutella together at high speed. GNU is short for GNU’s Not Unix, the
geekish rallying cry of a new generation of software developers who enjoy giv-
ing free access to the source code of their products. Nutella is the hazelnut and
chocolate spread produced by Italian confectioner Ferrero. It is typically used on
dessert crepes and the like. I think it’s great, and chocolate is my nemesis.

Anyway, Gnutella was declared an “unauthorized freelance project” and put out
to pasture like a car that goes a hundred miles on a gallon of gas. Or maybe like
a technology that could eliminate the need for a physical music distribution net-
work. Cast out like a technology that could close the books on a lot of old-world
business models? Well, something like that, anyway.

Open source to the rescue

It was then, in Gnutella’s darkest hour, that open source developers intervened.

Open source developers did for Gnutella what the strange masked nomads did

for George Clooney and friends in. Three Kings. Bryan Mayland, with some divine
intervention, reverse engineered Gnutella’s communication language (also _
known as “Gnutella protocol”) and posted his findings on Gnutella’s hideout on |
the Web: gnutella.nerdherd.net. lan Hall-Beyer and Nathan Moinvaziri created a
sort of virtual water cooler for interested developers to gather around. Besides
the protocol documentation, probably the most important bit of information on
the Nerdherd web site was the link to Gnutella’s Internet Relay Chat (IRC) chan-
nel, #gnutella. #gnutella had a major impact on Gnutella development, particu-
larly when rapid response among developers was required.

What makes Gnutella different?

Gnutella has that simple elegance and minimalism that marks all great things.

Like Maxwell's equations, Gnutella has no extraneous flulf. The large amount of
Gnutella-compatible software available is testimony to that: Gnutella is small,
easy, and accessible to even first-time programmers.

Unlike the Internet that we are all familiar with, with all its at signs, dots, and
slashes, Gnutella does not give meaningful and persistent identification to its |
nodes. In fact, the underlying structure of the Internet on which Gnutella lives is |
almost entirely hidden from the end user. In newer Gnutella software (Gnotella,
Furi, and Toadnode, for example), the underlying Internet is completely hidden
from view. It simply isn’t necessary to type in a complex address to access infor-

96 Gene Kan

SAMSUNG EX. 1018

mation on the Gnutella system. Just type in a keyword and wait for the list of
matching files to trickle in.

Also unlike standard Internet applications such as email, Web, and FIP, which
ride on the bare metal of the Internet, Gnutella creates an application-level net-
work in which the infrastructure itself is constantly changing. Sure, the wires
stay in the ground and the routers don't move from place to place, but which
wires and which routers participate in the Gnutella network changes by the sec-
ond. The Gnutella network comprises a dynamic virtual infrastructure built on a
fixed physical infrastructure.

What makes Gnutella different from a scientific perspective is that Gnutella does
not rely on any central authority to organize the network or to broker transac-
tions. With Gnutella, you need only connect to one arbitrary host. Any host. In
the early days, discovery of an initial host was done by word of mouth. Now it is
done automatically by a handful of “host caches.” In any case, once you connect
with one host, you're in. Your Gnutella node mingles with other Gnutella nodes,
and pretty soon you're in the thick of things.

Contrast that to Napster. Napster software is programmed to connect to www.
Napster.com. At www.Napster.com is a farm of large servers that broker your
every search and mouse click. This is the traditional client/server model of com-
puting. Don’t get me wrong: client/server is great for many things. Among its
positive qualities are easy-to-understand scalability and management. The
downside is that by being the well-understood mainstay of network application
science, client/server is boring, inflexible, and monolithic. Those are bad words
in the Internet lexicon.

Gnutella works like the real world

So far, we know that Gnutella is an Internet potluck. We know it's impossible to
stop. But how does it actually work all this magic?

In its communication, it’s like finding the sushi tray at a cockail party. The fol-
lowing is a loose description of the interaction on the Gnutella network.
A Gnutella cocktail party

The concepts introduced in this example, primarily the idea that a request is
repeated by a host to every other host known by that host, is critical to under-
standing how Gnutella operates. In any case, you can see that Gnutella’s com-
munication concepts closely reflect those of the real world:

Chapter 8: Gnutella 97

SAMSUNG EX. 1018

Cocktail party

Gnutella

You enter at the foyer and say hello to the
closest person.

Shortly, your friends see you and come to
say hello.

You would like to find the tray of sushi,
so you ask your nearby friends.

None of your drunken friends seem to
know where the sushi is, but they ask the
people standing nearby. Those pecple in
turn ask the people near them, and so on,
until the request makes its way around
the room.

A handful of partygoers a few meters
away have the tray. They pass back the
knowledge of its location by word ol
mouth.

You walk over to the keepers of the tray
and partake of their sushi.

You connect to a Gnutella host and issue
a PING message.

Your PING message is broadcast to the
Gnutella hosts in your immediate vicin-
ity. When they receive your PING, they
respond with a PONG, essentially saying,
“Hello, pleased to meet you.”

You would like to find the recipe for
strawberry rhubarb pie, so you ask the
Gnutella nodes you've encountered.

One of the Gnutella nodes you're con-
nected to has a recipe for strawberry rhu-
barb pie and lets you know. Just in case
others have a better recipe, your request
is passed on to other hosts, which repeat
the question to all hosts known to them.
Eventually the entire network is
canvassed,

You get several replies, or “hits,” routed
back to you.

There are dozens of recipes to choose
from. You double-click on one and a
request is issued to download the recipe
from the Gnutella node that has it.

A client/server cocktail party

In contrast, centralized systems don’t make much sense in the real world. Nap-

ster is a good example of a client/server system, so let’s look at how things g

would be if there were a real-life cocktail party that mimicked Napster’s system:

Cocktail party

Napster

You enter at the foyer and the host of the
party greets you. Around him are clus-
tered thirty-five million of his closest
friends.

Your only friend at this party is the host.

You would like to find the tray of sushi,
so you find your way back to the foyer

and ask the host where exactly the tray
has gone,

98 Gene Kan

You connect to Napster and upload a list
of files that you are sharing. The file list is |
indexed and stored in the memory of the 1
party host: the central server.

The Napster server says, “File list success-
fully received.”

You would like to find the recipe for
strawberry rhubarb pie. So you type
“rhubarb” into the search box, and the
request is delivered to the central server.

SAMSUNG EX. 1018

Cocktail party Napster

The host says, “Oh, yes. It's over there.” You get several replies, or “hits,” from the
MNapster server that match your request.

You hold the tray and choose your favor- | You decide which MP3 file you want to
ite sushi. download and double-click. A request is
issued to the Napster server for the file.
The Napster server determines which file
you desire and whose computer it is on,
and brokers a download for you. Soon
the download begins.

As you can see, the idea of a central authority brokering all interaction is very
foreign to us. When I look at what computer science has espoused for decades
in terms of real-world interactions, 1 wonder how we got so far off track. Com-
puter science has defined a feudal system of servers and slaves, but technologies
like Gnutella are turning that around at long last.

Client/server means control, and control
means responsibility

As it relates to Napster, the server is at once a place to plant a business model
and the mail slot for 2 summons. If Napster threw the switch for Napster sub-
(Recording Industry Association of America) wins its lawsuit, Napster just might
have to throw the switch the other way, stranding thirty-five million music
swappers. We'll see how that suit goes, but whether or not Napster wins in
United States Federal Court, it will still face suits in countless municipalities and
overseas. It's the Internet equivalent of tobacco: the lawsuits will follow Napster
like so many cartoon rain clouds.

Gnutella, on the other hand, is largely free of these burdens. In a decentralized
world, it's tough to point fingers. No one entity is responsible for the operation
of the Gnutella network. Any number of warrants, writs, and summons can be
executed, and Gnutella will still be around to help you find recipes for straw-
berry rhubarb pie and “Oops, [Did It Again” MP3s.

Thomas Hale, CEO of WiredPlanet, said, “The only way to stop Gnutella is to
turn off the Internet.” Well, maybe it's not the only way, but it's really hard to
think of a way to eliminate every single cell of Gnutella users, which is truly the
only way to wipe Gnutella off the planet.

Chapter 8: Gnutella 99

SAMSUNG EX. 1018

The client is the server is the network

Standard network applications comprise three discrete modules. There is the
server, which is where you deposit all the intelligence#the equivalent of the
television studio. There is the client, which typically renders the result of some
action on the server for viewing by the user—the equivalent of the television.
And there is the network, which is the conduit that connects the client and the
~ server—the equivalent of the airwaves.

Gnutella blends all that into one. The client is the server is the network. The cli-
ent and server are one, of course. That’s mainly a function of simplification.
There could be two processes, one Lo serve files and another to download files.
But it's just easier to make those two applications one; easier for users and no
more difficult for developers.

The interesting thing is that the network itself is embedded in each Gnutella
hode. Gnutella is an internet built on top of the Internet, entirely in software.
The Gnutella network expands as more nodes connect to the network, and,
likewise, it does not exist if no users run Grutella nodes. This is effectively a
software-based mnetwork infrastructure that comes and goes with its users.
Instead of having specialized routers and switches and hubs that enable com-
munication, Gnutella marries all those things into the node itself, ensuring that
the communication facilities increase with demand. Gnutella makes the net-
work’s users the network’s operators.

Distributed intelligence

The underlying notion that sets Gnutella apart from all other systems is that it is
a system of distributed intelligence. The queries that are issued on the network
are requests for a response, any kind of response.

Suppose you query the Gnutella network for “strawberry rhubarb pie.” You
expect a few results that let you download a recipe. That's what we expect from
today’s Gnutella system, but it actually doesn’t capture the unique properties
Gnutella offers. Remember, Gnutella is a distributed, real-time information
retrieval system wherein your query is disseminated across the network in its
raw form. That means that every node that receives your query can interpret
your query however it wants and respond however it wants, in free form. In fact,
Gnutella file-sharing software does just that.

Fach flavor of Gnutella software interprets the search queries differently. Some
Gnutella software looks inside the files you are sharing. Others look only at the
filename. Others look at the names of the parent directories in which the file is

100 Gene Kan

SAMSUNG EX. 1018

AR P L

i
5
|

|
£

contained. Some Gnutella software interprets multiword queries as conjunc-
tions, while others look at multiword queries as disjunctions. Even the results
returned by Gnutella file-sharing software are wildly different. Some return the
full path of the shared file. Others return only the name of the file. Yet others
return a short description extracted from the file. Advertisers and spammers
took advantage of this by returning URLs to web sites completely unrelated to
the search. Creative and annoying, yet demonstrative of Gnutella’s power to
aggregate a collective intelligence from distributed sources.

To prove the point once and for all that Gnutella could be used to all kinds of
unimagined benefit, Yaroslav Faybishenko, Spencer Kimball, Tracy Scott, and I
developed a prototype search engine powered by Gnutella that we called
InfraSearch. The idea was that we could demonstrate Gnutella’s broad power by
building a search engine that accessed data in a nontraditional way while using
nothing but pure Gnutella protocol. At the time, InfraSearch was conceived
solely to give meat to what many Gnutella insiders were unable to successfully
convey (o journalists interested in Gnutella: that Gnutella reached beyond sim-
ple file swapping. To illustrate, I'll use the examples we used in our prototype.

InfraSearch was accessed through the World Wide Web using a standard web
browser. Its interface was familiar to anyone who had used a traditional web
search engine. What happened with the query was all Gnutella. When you
typed a search query into InfraSearch, however, the query was not answered by
looking in a database of keywords and HIML files. Instead, the query was
broadcast on a private Gnutella network comprising a few nodes. The nodes
themselves were a hodgepodge of variegated data sources. A short list of the
notables: Cnline Photo Lab’s image database, a calculator, a proxy for Yahoo!
Finance, and an archive of MoreQver.com’s news headlines.

When you typed in “MSFT” the query would be broadcast to all the nodes. Fach
node would evaluate the query in relation to its knowledge base and respond
only if the node had relevant information to share. Typically, that would mean
that the Yahoo! Finance node would return a result stating Microsoft's current
stock price and the MoreOver.com node would return a list of news stories
mentioning Microsolt. The results were just arbitrary snippets of HTML. The
HTML fragments would be stitched together by a Gnutella node, which also
doubled as a web server, and forwarded on to the web browser. Figure 8-1
shows the results of a search for “rose.”

The real power of this paradigm showed itself when one entered an algebraic
expression into the search box, say, “1+1*3” for instance. The query would be
disseminated and most nodes would realize that they had nothing intelligent to

Chapter 8: Gnutella 101

SAMSUNG EX. 1018

£ Tiiageart i = Mogila (BuidD; SOOOTE0608] s T ! R =1

()]
infraSearch
BETA

Sseconds)

[rose

| The Name of the Rose (Harvest in Translation)

) IR
o e)
4
=

hntu!a h!.i‘E

Group: California Windstar Widlife Institute

.. left the property unoccupied and urheated from October through March.
For five weeks the outside temperature dropped into the teens at night and
rose into the 20s during the day. The lowest it got inside was 56 degrees,
the average was 60, and the most it varied In 24 hours was two degrees.
The structure ...

T Gomwment Dens (0772 0m9)

L
Figure 8-1. Results displayed from Gnutella search

say about such a strange question. All except the calculator node. The calculator

was a GNU be calculator hacked to make it speak Gnutella protocol. Every time

the calculator received a query, it parsed the text to see if it was a valid algebraic
expression. If it was not, then the calculator remained silent. If the query was an -
algebraic expression, however, the calculator evaluated the expression and
returned the result. In this case, “1+1%3 = 4" would be the result.”

% Some creative users would search on ridiculously complex algebraic expressions, causing
the calculator node to become overburdened. Gnutella would then simply discard further
traffic to the calculator node until it recovered [rom figuring out what
«987912837419847197987971234%1234183743748845765" was. The other nodes con-
tinued on unaffected.

102 Gene Kan

SAMSUNG EX. 1018

One potential application of this is to solve the dynamic page problem on the
World Wide Web. Instead of trying to spider those pages as web search crawl-
ers currently do, it would be possible to access the information databases
directly and construct a response based upon data available at the time the
query was issued. Possibilities that reach even further are within sight. The
query could become structured or parameterized, making a huge body of data
available through what effectively becomes a unified query interface. The possi-
bilities for something like that in the enterprise are enormous. When peer-to-
peer systems take ofl, accessing data across heterogeneous information stores
will become a problem that Gnutella has already demonstrated it can solve.

What we realized is that this aggregation of intelligence maps very closely to the
real world. When you ask a question of two different people, you expect two
different answers. Asking a question about cars of a mechanic and a toy shop
clerk would expectedly yield two very different answers. Yet both are valid, and
each reflects a different sort of intelligence in relation to the topic. Traditional
search technologies, however, apply only one intelligence to the body of data
they search. Distributed search technologies such as Gnutella allow the person-
ality of each information provider and software developer to show through
undiluted.

Different from Freenet

Oftentimes Gnutella and Freenet are lumped together as decentralized alterna-
tives to Napster. True, Gnutella and Freenet are decentralized. And it's true that
one can share MP3 files using either Gnutella or Freenet. The technical similari-
ties extend further in various ways, but the philosophical division between Gnu-
tella and Freenet picks up right about here.

Freenet can really be described as a bandwidth- and disk space—sharing concept
with the goal of promoting free speech. Gnutella is a searching and discovery
network that promotes free interpretation and response to queries. With
Freenet, one allocates a certain amount of one’s hard drive to the task of carry-
ing files which are in the Freenet. One shares bandwidth with others to facili-
tate the transport of files to their optimal localities in the Freenet. In a sense,
Freenet creates a very large and geographically distributed hard drive with anon-
ymous access. The network is optimized for computerized access to those files
rather than human interaction. Each file is assigned a complex unique identifica-
tion that is obscure in its interpretation. The only way to search for files is by
searching via that unique identification code.

Chapter 8: Gnutella 103

SAMSUNG EX. 1018

In contrast, Gnutella is a distributed searching system with obvious applications
for humans and less obvious applications for automatons. Each Gnutella node is
free Lo interpret the query as it wants, allowing Gnutella nodes to give hits in the |
form of filenames, advertising messages, URLs, graphics, and other arbitrary
content. There is no such flexibility in the Freenet system. The Japanese Gnu-
tella project, http://jnutella.org, is deploying Gnutella on i-Mode mobile phones,
where the results of a search are tailored to mobile phone interfaces. Freenet's
highly regimented system of file location based upon unique identification is
about cooperative distribution of files. There is nothing wrong with this. I’s just
a different approach with different effects which T'll leave to Freenet’s authors to
explain.

Gnutella’s communication system

With the basic understanding that Gnutella works the way real-world interper-
sonal communication works, let’s take a look at the concepts that make it all
possible in the virtual world. Many of these concepts are borrowed from other
technologies, but their combination into one system malkes for interesting results
and traffic jams.

Message-based, application-level routing

Traditional application-level networks are circuit-based, while Gnutella is
message-based. There is no idea of 2 persistent “connection,” or circuit, between
any two arbitrary hosts on the Gnutella network. They are both on the network |
but not directly connected to each other, and not even indirectly connected to
each other in any predictable or stable fashion. Instead of forcing the determin- |
ism provided by circuit-based routing networks, messages are relayed by a com- '
puterized bucket-brigade which forms the Gnutella network. Each bucket is a
message, and each brigadier is a host. The messages are handed from host to
host willy-nilly, giving the network a unique interconnected and redundant '

topology. |

TCP broadcast

Another unconventional approach that Gnutella uses is a broadcast communica-
ton model over unicast TCP. Contrast this to a traditional system such as
Napster, where communication 1s carefully regulated to minimize traffic to its
absolute lowest levels, and even then to only one or two concerned parties. Tra-
ditional networking models are highly regimented and about as natural as for- "
mal gardens.

it

104 Gene Kan

L R B

g

SAMSUNG EX. 1018

The broadcast mechanism is extremely interesting, because it maps very closely
to our everyday lives. Suppose you are standing at a bus stop and you ask a fel-
low when the next bus is to arrive: “Oi, mate! When’s the next bus?” He may not
know, but someone nearby who has heard you will hopefully chime in with the
desired information. That is the strength behind Gnutella: it works like the real
world.

One of the first questions 1 asked upon learning of Gnutella’s TCP-based broad-
cast was, “Why not UDP?” The simple answer is that UDP is a pain. It doesn't
play nicely with most firewall configurations and is tricky to code. Broadcasting
on TCP is simple, and developers don't ask questions about how to assess “con-
nection” status. Let’s not even start on [P multicast.

Message broadcasting

Combining the two concepts of message-based routing and broadcast gives us
what Tl term message broadcasting. Message broadcasting is perfect for situa-
tions where more than one network participant can provide a valid response to a
request. This same sort of thing happens all the time. Auctions, for example, are
an example of message broadcasting. The auctioneer asks for bids, and one per-
son’s bid is just as geod as another’s.

Gnutella’s broadcasting mechanism elegantly avoids continuous echoing. Mes-
sages are assigned unique identifiers (128-bit unique identifiers, or UUIDs, as
specified by Leach and Salz's 1997 UUIDs and GUIDs Informational Draft to the
IETF). With millions of Gnutella nodes running around, it is probably worth
answering the question, “How unique is a UUID?” Leach and Salz assert unique-
ness until 3400 A.D. using their algorithm. Anyway, it’s close enough that even
if there were one or two duplicated UUIDs along the way nobody would notice.

Every time a message is delivered or originated, the UUID of the message is
memorized by the host it passes through. If there are loops in the network then
it is possible that a host could receive the same message twice. Normally, the
host would be obligated to rebroadcast the message just like any other that it
received. However, if the same message is received again at a later time (it will
have the same UUID), it is not retransmitted. This explicitly prevents wasting
network resources by sending a query to hosts that have already seen it.

Another interesting idea Gnutella implements is the idea of decay. Each mes-
sage has with it a TTL" number, or time-to-live. Typically, a query starts life

¥ TTL is not unique to Gnutella. It is present in IP, where it is used in a similar manner.

Chapter 8: Gnutella 105

SAMSUNG EX. 1018

with a TTL of 7. When it passes from host to host, the TTL is decremented.
When the TTL reaches 0, the request has lived long enough and is not retrans-
mitted again. The effect of this is to make a Gnutella request fan out from its
originating source like ripples on a pond. Eventually the ripples die out.

Dynamic routing

Message broadcasting is useful for the query, but for the response, it makes
more sense to route rather than to broadcast. Gnutella’s broadcast mechanism
allows a query to reach a large number of potential respondents. Along the way,
the UUIDs that identify a message are memorized by the hosts it passes through.
When Host A responds to a query, it looks in its memory and determines which
host sent the query (Host B). It then responds with a reply message containing
the same UUID as the request message. Host B receives the reply and looks in its
memory to see which host sent the original request (Host C). And on down the
line until we reach Host X, which remembers that it actually originated the
query. The buck stops there, and Host X does something intelligent with the
reply, like display it on the screen for the user to click on (see Figure 8-2).

anutellaN et {pirk flopd i Search, ¥
guwnlﬁads - 842 item(s] found... Miniraum connection speed (kbps) IU
earcl i e
CM?mlor 1 File | 522 | Speed =]
S |TPink Floyd] - Wish 1 ou wWere Here.mp3 ; 4411245 512 =
s s [Pink Floyd) 04 Wish You Were Here.mp3 4440265 512
Connections: EEinII: E:o:.'d] Dark Side ;E the Moan.mp3 2589835 2152
e, | (Bink Floyd) Money. mp! 272731 0
E,%g{;‘;‘ﬁﬂa“'e‘ | [Pink-floyd)-(ISH-YOUWERE HERE) 03 Have .. 4327448 512
0 downloads - | (Fink_Floyd)-07_Jughand_Blues.mp3 2853902 1000
. | Pink_Floyd)-1970_Boatlzg_Track03.mp3 . 3686528 10000
(Pink_Floyd)-{The_Division_Bell]-4_Great_Day F.. 4122459 640
[Pink_Floyd)-[The_Division_Bell-Cluster_One.ap3 5734110 640
{Pirk_Floyd)-{The_Division_Bell|-Coming_Back_... 60703985 640
{Pink_Floyd}{The_Division_Bell|[High_Hopes.mp3 8197561 640
{Pink_Flopd)-{The_Division_BelllKeep_Talking.m.. 5938074 E40
{Fink_Flovd)-{The_Division_Bell}Lost_For_\Words... 5033461 640
{Pirk_Flovd{The_Division_Bell}Marooned.mp3 6273936 640
grutellablet stats: 1F"!nk_F\nyd]v[The_Early_Singles]-Apples_and_U r.. 3010270 E40
(Pink_Floyd)-[The_Eary_Singles}-4mold_Layne.... 2833831 640
13337&3?3}‘-;8 | (Pirk_Flopd}{The_E arly_Singles}-Candy_and_a_... 2678828 B840 i
4 Hes ik,) i i | with_T... 1 4 [l
 |19632.822 MB '[F]"jl' _Floyd}{The_Early_Singles]-Careful w/ith T... 5515033 B]U .L‘__I
i F Update’ I _ Download selected files | Stream selected files
J |

Figure 8-2. Results displayed from a Gnutella query

106 Gene Kan

SAMSUNG EX. 1018

The idea to create an ephemeral route as the result of a broadcast for discovery is
not necessarily novel, but it is interesting. Remember, a message is identified
only by its UUID. It is not associated with its originator’s IP address or anything
of the sort, so without the UUID-based routes, there is no way for a reply to be
delivered to the node that made the request.

This sort of dynamic routing is among the things that make Gnutella the intrigu-
ing technology that it is. Without it, there would need to be some kind of fixed
Gnutella infrastructure. With dynamic routing, the infrastructure comes along
with the nodes that join the network, in real time. A node brings with it some
network capacity, which is instantly integrated into the routing fabric of the net-
work at large.

When a node leaves the network, it does not leave the network at large in sham-
bles, as is typical for the Internet. The nodes connected to the departing node
simply clean up their memories to forget the departed node, and things con-
tinue without so much as a hiccup. Over time, the network adapts its shape to
long-lived nodes, but even if the longest-lived, highest-capacity node were to
disappear, there would be no lasting adverse effects.

Lossy transmission over reliable TCP

A further unconventional notion that is core to Gnutella’s communication mech-
anisms is that the TCP connections that underlie the Gnutella network are not to
be viewed as the totally reliable transports they are typically seen as. With Gnu-
tella, when traffic rises beyond the capacity that a particular connection can
cope with, the excess traffic is simply forgotten. It is not carefully buffered and
preserved for future transmission as is typically done. Traffic isn't coddled on
Gnutella. It's treated as the network baggage that it is.

The notion of using a reliable transport to unreliably deliver data is notable. In
this case, it helps to preserve the near-real-time nature of the Gnutella network
by preventing an overlong traffic backlog. It also creates an interesting problem
wherein low-speed Gnutella nodes are at a significant disadvantage when they
connect to high-speed Gnutella nodes. When that happens, it's like drinking
from a fire hose, and much of the data is lost before it is delivered.

On the positive side, loss rates provide a simple metric for relative capacity. If
the loss rate is consistently high, then it's a clear signal to find a different hose to
drink from.

Chapter 8: Gnutella 107

SAMSUNG EX. 1018

o
S
.8
.-;
g
1
5

Organizing Gnutella

One of the ways Gnutella software copes with constantly changing infrastruc-
ture is by creating an ad hoc backbane. There is a large disparity in the speeds of
Internet connections. Some users have 56-Kbps modems, and others have, say,
T3 lines. The goal is that, over time, the T3-connected nodes migrate toward the {
center of the network and carry the bulk of the traffic, while the 56-Kbps nodes
simultaneously move out toward the fringes of the network, where they will not
carry as much of the traffic.

In network terms, the placement of a node on the network (in the middle or on |
the fringes) isn't determined geographically. It's determined in relation to the |
topology of the connections the node makes. So a high-speed node would end
up being connected to potentially hundreds of other high-speed Gnutella nodes,
acting as a huge hub, while a low-speed node would hopefully be connected to
only a few other low-capacity nodes.

Over time this would lead the Gnutella network to have a high concentration of
high-speed nodes in the middle of the network, surrounded by rings of nodes
with progressively decreasing capacities.

Placing nodes on the network

When a Gnutella node connects to the network, it just sort of parachutes in
blindly. It lands where it lands. How quickly it is able to become a productive
member of Gnutella society is determined by the efficacy of its network analysis
algorithms. In the same way that at a cocktail party you want to participate in
conversations that interest you, that aren’t too dull and aren’t too deep, a Gnu-
tella node wants to quickly determine which nodes to disconnect from and
which nodes to maintain connections to, so that it isn't overwhelmed and isn't
too bored.

It is unclear how much of this logic has been implemented in today’s popular
Gnutella client software (Gnotella, Furi, Toadnode, and Gnutella 0.56), but this
is something that Gnutella developers have slowly educated themselves about
over time. Early Gnutella software would obstinately maintain connections to
nodes in spite of huge disparities in carrying capacity. The effect was that
modem nodes acted as black holes into which packets were sent but from which

nothing ever emerged.

SRR IR AL SR b

108 Gene Kan

SAMSUNG EX. 1018

One of the key things that we” did to serve the surges of users and new client
software was to run high-speed nodes that were very aggressive in disconnect-
ing nodes which were obviously bandwidth disadvantaged. After a short time,
the only active connections were to nodes running on acceptably high-speed
links. This kind of feedback system created an effective backbone that was cap-
tured in numerous early network maps. A portion of one is shown in Figure 8-3.

o uu\..

@S%/{f\\/\\

Figure 8-3. Snapshot of effective Gnutella network structure

Gnutella’s analogues

The first thing that technologists say when they think about how Gnutella works
is, “It can’t possibly scale.” But that is simply not the case. Gnutella is an uncon-
ventional system and as such requires unconventional metrics. Millions of users
may be using Gnutella simultaneously, but they will not all be visible to one
another. That is the basic nature of a public, purely peer-to-peer network.
Because there is no way to guarantee the quality of service throughout the net-
work, it is impossible to guarantee that every node on the network can be
reached by every other node on the network. In spite of that, Gnutella has many
existing analogues.

Of all the analogues that exist, the most interesting two are cellular telephony
and Ethernet.

* Bob Schmidt, Tan Hall-Beyer, Nathan Moinvaziri, Tom Camarda, and countless others came
Lo the rescue by running software which made the network work in its times of need. This
soltware ranged [rom standard Gnutella software to host caches to so-called Mr. Clean
nodes, which aggressively removed binary detritus from the network.

Chapter 8 Gnutella 109

SAMSUNG EX. 1018

The Gnutella horizon

In Gnutella, there is a concept of a horizon. This is simply a restatement of the '2
effect the TTL has on how far a packet can go before it dies, the attenuation of
ripples on a pond. Gnutella’s standard horizon is seven hops. That means that
from where you stand, you can see out seven hops. How far is that? Typically, a
seven-hop radius combined with network conditions means about ten thousand
nodes are within sight.

When Gnutella was younger, and the pond analogy hadn’t yet crossed my mind, |
I explained this effect as a horizon, because it was just like what happens when
you are at the beach and the world seems to disappear after some distance
(approximately five kilometers if you're two meters tall). Of course, that is due
to the curvature of the earth, but it seemed like a pretty good analogy.

A slightly better one is what happens in a mob. Think first day of school at UC
Berkeley, or the annual Love Parade in Germany. You stand there in the middle
of the mob, and you can only see for a short distance around you. It's obvious
that there are countless more people outside your immediate vision, but you
can't tell how many. You don’t even really know where you are in relation to the
crowd, but you're certainly in the thick of it. That's Gnutella.

Fach node can “see” a certain distance in all directions, and beyond that is a
great unknown. Each node is situated slightly differently in the network and as a
result sees a slightly different network. Over time, as nodes come and go and the
network shifts and morphs, your node gets to see many different nodes as the
network undulates around it. If you've used Gnutella, you've seen this happen.
Initially, the host count increases very rapidly, but after a minute or two, it stabi-
lizes and increases much more slowly than it did at the outset. That is because in
the beginning your node discovers the network immediately surrounding it: the
network it can see. Once that is done, your node discovers only the nodes that
migrate through its field of view.

Cellular telephony and the Gnutella network

In the technological world, this concept is mirrored exactly by cellular tele-
phony cell sites (cellular telephony towers). Each site has a predetermined effec-
tive radius. When a caller is outside that radius, his telephone cannot reach the
site and must use another if a nearer one is available. And once the caller is out-
side the operating radius, the site cannot see the caller’s telephone either. The
effect is the irksome but familiar “no coverage” message on your phone.

110 Gene Kan

SAMSUNG EX. 1018

Cellular network operators situate cell sites carefully to ensure that cell sites
overlap one another to prevent no-coverage zones and dropped calls. A real cov-
erage map looks like a Venn diagram gone mad. This is, in fact, a very close ana-
logue of the Gnutella network. Each node is like a cell site in the sense that it
has a limited coverage radius, and each node’s coverage area overlaps with that
of the nodes adjacent to it. The key to making cellular telephony systems scale is
having enough cells and enough infrastructure to connect the cells. It’s a similar
story with Gnutella. -

Cell sites are not all that one needs to build a successful cellular network.
Behind all those cell towers is a complex high-bandwidth packet switching sys-
tem, also much like Gnutella. In the cellular world, this network is very care-
fully thought out and is a piece of physical infrastructure. As with everything
else, the infrastructure comes and goes in the Gnutella network, and things are
constantly changing shape.

So then the goal is to find a way to create cells that are joined by a high-speed
backbone. This is entirely what would happen in the early Gnutella network.
Gnutella nodes would gather around a local hub, forming a cluster. There were
numerous clusters interconnected by high-speed lines. All this happened in an
unplanned and dynamic way.

Ethernet

Gnutella is also similar in function to Ethernet. In fact, Ethernet is a broadcast
network where each message has a unique identifier. Like Gnutella, its scalabil-
ity metrics are unconventional. The question most people ask about Gnutella is,
“How many users are on Gnutella?” The answer is complicated.

Millions of users have Gnutella on their computers. One node can only see
about ten thousand others from where it stands in the network. So what is the
answer? Ten thousand, or several million?

We could ask the same question about Ethernet, and we'd get the same duality
in answer. Hundreds of millions of computers have Ethernet, yet only a few
dozen can share an Ethernet “segment” before causing network gridlock. The
solution for Ethernet was to develop specialized hardware in the form of Ether-
net bridges, switches, and routers. With that hardware, it became possible to
squeeze all those millions of computers onto the same network: the Internet.

Chapter 8: Gnutella 111

SAMSUNG EX. 1018

Cultivating the Gnutella network

Similar development is underway for Gnutella. Fundamentally, each Gnutella
node can contain enough logic to make the Gnutella network grow immensely.
Broadening the size of a Gnutella cell, or segment, is only a matter of reducing
the network traffic. A minor reduction by each node can translate into a huge
reduction in traffic over all nodes. That is what happens with distributed sys-
tems: a minor change can have a huge effect, once multiplied over the number
of nodes.

There is at least one effort underway to create a specialized Gnutella node which
outwardly mimics a standard Gnutella node but inwardly operates in a dramati-
cally different manner. It is known as Reflector and is being developed by a
company called Clip2. The Reflector is effectively a miniature Napster server. It
maintains an index of the files stored on nodes to which it is connected. When a
query is issued, the Reflector does not retransmit it. Rather, it answers the query
from its own memory. That causes a huge reduction in network use.”

Anyone can run a Reflector, making it an ideal way to increase the size of a Gnu-
tella cluster. Connecting Reflectors together to create a super high-capacity
backbone is the obvious next step. Gnutella is essentially an application-level
Internet, and with the development of the Gnutella equivalent of Cisco 12000s,
Gnutella will really become what it has been likened to so many times: an inter-
net on the Internet.

Gnutella’ traffic problems

One place where the analogy drawn between Gnutella and cellular telephony
and Ethernet holds true down to its last bits is how Gnutella suffers in cases of
high traffic. We know this because the public Gnutella network at the time of
this writing has a traffic problem that is systemic, rather than the standard tran-
sient attack. Cellular telephones show a weakness when the cell is too busy with
active calls. Sometimes there is crosstalk; at other times calls are scratchy and
low quality. Ethernet similarly reaches a point of saturation when there is too
much traffic on the network, and, instead of coping gracefully, performance just
degrades in a downward spiral. Gnutella is similar in almost every way.

* Depending on your view, the benefit, or unfortunate downside, of Reflector is that it makes
Gnutella usable only in ways that Reflector explicitly enables. To date, Reflector is chiefly
optimizing the network for file sharing, and because it removes the ability for hosts to
respond free-form and in real time, it sacrifices one of the key ideas behind Gnutella.

112 Gene Kan

SAMSUNG EX. 1018

In terms of solutions, the bottom line is that when too many conversations take
place in one cell or segment the only way to stop the madness is to break up the
cell.

On the Gnutella network, things started out pretty peacefully. First a few hun-
dred users, then a few thousand, then a few hundred thousand. No big deal.
The network just soldiered along. The real problem came along when host
caches came into wide use.

Host caches

In the early days of Gnutella, the way you found your way onto the network was
by word of mouth. You got onto IRC and asked for a host address to connect to.
Or you checked one of the handful of web pages which maintained lists of hosts
to connect to. You entered the hosts into your Gnutella software one by one
until one worked. The the software took care of the rest. It was tedious, but it
worked for a long while.

Before host caches, it was fairly random what part of the network you con-
nected to. Ask two different people, and they would direct you to connect to
hosts on opposite sides of the Gnutella network. Look at two different host lists,
and it was difficult to find any hosts in common. Host lists encouraged sparse-
ness and small clusters. It was difficult for too many new hosts to be concen-
trated into one cell. The cells were sparsely connected with one another, and
there wasn’t too much crosstalk. That created a nearly optimal network struc-
ture, where the Gnutella network looked like a land dotted by small cities and
townships interconnected by only a few roads.

Users eventually became frustrated by the difficulties of getting onto Gnutella.
Enter Bob Schmidt and Josh Pieper. Bob Schmidt is the author of GnuCache, a
host caching program. Josh Pieper also included host caching logic in his popu-
lar Gnut software for Unix. Host caches provide a jumping off spot for Gnutella
users, a host that’s always up and running, that gives a place for your Gnutella
software to connect to and find the rest of the Gnutella network.” The host
cache greets your node by handing off a list of other hosts your node should
connect to. This removes the uncertainty from connecting to Gnutella and pro-
vides a more friendly user experience. We were all very thankful for Schmidt
and Pieper’s efforts until host caches became a smashing success.

* Actually, Gnutella was born with a ready host cache located at findshit.gnutella.org. Unfortu-
nately, the same people who took away Gnutella also took away findshit.gnutella.org, leaving
us with a host-cacheless world until GnuCache and Pieper’s Gnut software came along.

Chapter 8: Gnutella 113

SAMSUNG EX. 1018

An unexpected consequence evidenced itself when waves of new Gnutella users
logged on in the wake of the Napster injunction on July 26, 2000. Everyone
started relying on host caches as their only means of getting onto the Gnutella
network. Host caches were only telling new hosts about hosts they saw recently.
By doing that, host caches caused Gnutella nodes to be closely clustered into the
same little patch of turf on the Gnutella network. There was effectively only one
tightly clustered and highly interconnected cell, because the host caches were
doling out the same list of hosts to every new host that connected. What
resulted was overcrowding of the Gnutella airwaves and a downward spiral of
traffic.

Oh well. Thats life in the rough-and-tumble world of technology innovation.

To draw an analogy, the Gnutella network became like a crowded room with
lots of conversations. Sure, you can still have a conversation, but maybe only
with one or two of your closest [riends. And that is what has become frustrating
for Gnutella users. Whereas the network used to have a huge breadth and count-
less well-performing cells of approximately ten thousand nodes each, the cur-
rent network has one big cell in which there is so much noise that queries only
make it one or two hops before drowning in overcrowded network connections,

Effectively, a crowded network means that cells are only a few dozen hosts in
size. That makes the network a bear to use and gives a disappointing user
experience.,

Returning the network to its natural state

Host caches were essentially an unnatural addition to the Gnutella network, and
the law of unintended consequences showed that it could apply to high technol-
ogy, too. Improving the situation requires a restoration of the network to its
original state, where it grew organically and, at first glance, inefficiently. Some-
times, minor inefficiency is good, and this is one of those cases.

Host lists, by enforcing a sparse network, made it so that the communities of
Gnutella nodes that did exist were not overcrowded. Host caches created a
tightly clustered network, which, while appearing more efficient, in fact led to a
major degradation in overall performance. For host caches to improve the situa-
tion, they need only to encourage the sparseness that we know works well.

Sort of. An added complication is that each Gnutella host maintains a local host
catcher, in which a long list of known hosts (all hosts encountered in the node’s
travels) is deposited for future reference. The first time one logs into the Gnu-
tella network, a host list or a host cache must be used. For all future logins,

114 Gene Kan

SAMSUNG EX. 1018

e e S

i
= |
|
|
|

RISt ot i

Gnutella softwares refer to their host catcher to connect into the Gnutella net-
work. This creates a permanent instability in the network as nodes log on and
connect to hosts they remember, irrespective of the fact that those hosts are
often poor choices in terms of capacity and topology. The problem is com-
pounded by the reluctance of most Gnutella software to “forget” hosts that are
unsuitable.

Tuming the network around is technically easy. Host caches can listen to the lev-
els of traffic on each cell they want to serve and distribute new hosts among
those cells until the traffic levels become high enough to warrant establishment
of new cells. By purposely separating nodes into distinct cells, traffic in each cell
can be reduced to a manageable level. With those well-planted seeds and peri-
odic resets of the collective memories of host catchers to allow smart host caches
to work their magic, the network can be optimized for performance. The trouble
with host catchers, though, is that they are seldom reset, because that requires
manual intervention as well as some understanding of the reset mechanism.

Private Gnutella networks

One feature that some Gnutella client software implements is the notion of pri-
vate Gnutella networks. To join a private network, one needs to know the secret
handshake or password. That enforces manageably-sized networks with a prede-
termined community membership, and it is a pretty good way to ensure a high
quality of service no matter what is happening out in the wilds of the public
Gnutella network.

Reducing broadcasts makes a significant impact

Broadcasts are simultaneously the most powerful and the most dangerous fea-
ture of the Gnutella protocol. Optimally, there are two broadcast packet types:
PING and QUERY. PING packets are issued when a node greets the network
and wants to learn what other nodes are available to connect to. QUERY pack-
ets are issued when a search is conducted. Some Gnutella developers also imple-
mented the PUSH REQUEST packet as a broadcast packet type. PUSH
REQUEST packets are used to request files from hosts which are protected by
firewalls. The concept is one of the unsung heroes of Gnutella, making it work
in all but the most adverse of Internet environments (the double firewall, arch
enemy of productivity).

Unfortunately, the PUSH REQUEST packet should be implemented as a routed
packet rather than a broadcast packet. At times, PUSH REQUEST packets com-

Chapter 8: Gnutella 115

SAMSUNG EX. 1018

prised 50% of all Gnutella network traffic. Simply routing those packets rather
than broadcasting them would reduce the overall network traffic dramatically.

Reductions can also be made in the number of queries that are broadcast to large
expanses of the network by intelligently caching results {rom similar searches.
Clip2’s Reflector software is an example of such a product. Portions of Reflector
can be integrated into each Gnutella client, leading to a small increase in the
software’s internal complexity (the user need not concern herselfl with this
behind-the-scenes activity) in exchange for a massive improvement in network

R S e

performance.

The final broadcast packet that was the carrier of some early abuses is the PING
packet. In early Gnutella software, PING packets could have a payload, even
though it was not clear what that payload might contain. It was subsequently
abused by script kiddies to debilitate the Gnutella network. Gnutella developers
responded immediately by altering their software to discard PING packets with
payloads, causing a several thousand—fold traffic reduction on the Gnutella net-
work and simultaneously foiling what amounted to a denial of service attack.

What developers have been debating ever since is how to reduce the level of
traffic usurped by PING packets. Suggestions have ranged from eliminating
PING packets to reducing the allowed number of retransmissions of a PING
packet. Personally, 1 favor something in the middle, where every host on the
network behaves as a miniature host cache for its locality, returning proxied
greetings for a few nearby hosts in response to a PING and only occasionally -
retransmitting the PING. That would allow the PING to continue to serve its ;
valuable duty in shaping the network’s structure and connectivity, while reduc-
ing the network’s traffic levels dramatically. Figure a thousand-fold reduction in
traffic.

One thing to consider in distributed applications is that, no matter how difficult
the code is to write and how much it bloats the code (within reason), it's worth
the trouble, because the savings in network utilization pay dividends on every
packet. As an example, just consider that if 2 PUSH REQUEST packet is broad-
cast, it may reach 1,000 hosts. 1 it is routed, it may reach four or five. That is a
200-fold reduction in traffic in exchange for a dozen lines of code.

The analogy that Gnutella is like an Internet potluck rings true. Everyone brings
a dish when they join the Gnutella network. At a minimum, the one dish that
everyone brings is network capacity. So then there is definitely enough band-
width to go around. The only matter is to organize the combined capacity and
manage the traffic to make sure the network operates within its limits.

116 Gene Kan

SAMSUNG EX. 1018

We just covered what is probably Gnutella’s biggest problem, so if this was a
corporate memorandum, this would be the perfect point at which to introduce
the engineering organization. This isn't a memo, but let’s do it anyway. Keep in
mind the Thomas Jefferson quotation at the beginning of the chapter: none of us
knew what we were doing, but we got our hands dirty and took responsibility
for what we did.

The policy debates

Napster and Gnutella have really been at the center of the policy debate sur-
rounding the new breed of peer-to-peer technologies. For the moment, let's for-
get about the debate that’s burning in the technology community about what is
truly peer-to-peer. We'll get back to that later and tie all these policy questions
back to the technology.

Napster wars

There is only one thing that gets people more riled up than religion, and that is
money. In this case, the squabble is over money that may or may not be lost to
online music swaps [acilitated by services such as Napster and systems like the
Gnutella network. This war is being fought by Napster and the RIAA, and what
results could change the lives of everyone, at least in the United States.

Well, sort of. The idea that lawsuit or legislature can stop a service that everyone
enjoys is certainly a false one. Prohibition was the last real effort (in the U.S.) by
the few against the many, and it was a dismal failure that gave rise to real crimi-
nal activity and the law’s eventual embarrassing repeal. We have an opportunity
to see all that happen again, or the recording industry could look at what’s com-
ing down the road and figure out a way to cooperate with Napster before the
industry gets run down by next-generation peer-to-peer technologies.

Napster, at least, provides a single place where file swappers can be taxed. With
Gnutella and Freenet, there is no place to tax, no person to talk to about insti-
tuting a tax, and no kinds of controls. The recording industry may hope that
Gnutella and Freenet will “just go away,” but that hope will probably not materi-
alize into reality.

Anonymity and peer-to-peer

One of the big ideas behind peer-to-peer systems is their potential to provide a
cloak under which users can conduct information exchanges without revealing
their identities or even the information they are exchanging. The possibility of

Chapter 8: Gnutella 117

SAMSUNG EX. 1018

anonymity in nearly every case stems from the distribution of information across
the entire network, as well as the difficulty in tracking activities on the network

A AN

as a whole.

Gnutella provides some degree of anonymity by enabling an essentially anomny-
mous searching mechanism. It Stops there, though. Gnutella reveals the 1P
address of a downloading host to the uploading host, and vice versa.

Gnutella pseudoanonymity

Gnutella is a prime example of peer-to-peer technology. It was, after all, the first
cuccessful, fully decentralized, peer-to-peer system. But in the policy debate,
that's not a huge matter. What does matter is that Gnutella’s message-based
routing system affords its users a degree of anonymity by making request and
response packets part of a crowd of similar packets issued by other participants
in the network.

In most messages that are passed from node to node, there is no mention of any-
thing that might tie a particular message to 4 particular user. On the Internet,
identity is established using two points of data: An 1P address and the time at
which the packet containing the IP address was seen. Most Gnutella messages
do not contain an IP address, so most messages are not useful in identifying
Gnutella users. Also, Gnuiella’s routing system is not outwardly accessible. The
routing tables are dynamic and stored in the memory of the countless Gnutella
nodes for only a short time. It is therefore nearly impossible to learn which host
originated a packet and which host is destined to receive it.

Furthermore, Gnutella’s distributed nature mearns that there is no one place
where an enforcement agency can plant a network monitor to spy on the sys-
tem’s communications. Gnutella is spread throughout the Internet, and the only
way to monitor what is happening on the Gnutella network is to monitor what
is happening on the entire Internet. Many are suspicious that such monitoring is
possible, or even being done already. But given the vastness of today’s Internet g
and its growing traffic, it's pretty unlikely.

What Gnutella does subject itself to, however, are things such as Zeropaid.com’s
Wall of Shame. The Wall of Shame, a Gnutella Trojan Horse, was an early :
attempt to nab alleged child pornography craffickers on the Gnutella network. i
This is how it worked: a few files with very suggestive filenames were shared by
a special host. When someone attempted to download any of the files, the host
would log the IP address of the downloader to a web page on the Wall of
Shame. The host obtained the 1P address of the downloader from its conrection
information.

118 Gene Kan

SAMSUNG EX. 1018

That's where Gnutella’s pseudoanonymity system breaks down. When you
attempt to download, or when a host returns a result, identifying information is
given out. Any host can be a decoy, logging that information. There are systems
that are more interested in the anonymity aspects of peer-to-peer networking,
and take steps such as proxied downloads to better protect the identities of the
two endpoints. Those systems should be used if anonymity is a real concern.

The Wall of Shame met a rapid demise in a rather curious and very Internet
way. Once news of its existence circulated on IRC, Gnutella users with disrup-
tive senses of humor flooded the network with suggestive searches in their
attempts to get their IP addresses on the Wall of Shame.

Downloads, now in the privacy of your own direct connection

So Gnutella’s message-based routing system and its decentralization both give
some anonymity to its users and make it difficult to track what exactly is hap-
pening. But what really confounds any attempt to learn who is actually sharing
files is that downloads are a private transaction between only two hosts: the
uploader and the downloader.

Instead of brokering a download through a central authority, Gnutella has suffi-
cient information to reach out to the host that is sharing the desired file and grab
it directly. With Napster, it’s possible not only to learn what files are available on
the host machines but what transactions are actually completed. All that can be
done easily, within the warm confines of Napster's machine room.

With Gnutella, every router and cable on the Internet would need to be tapped
to learn about transactions between Gnutella hosts or peers. When you double-
click on a file, your Gnutella software establishes an HTTP connection directly
to the host that holds the desired file. There is no brokering, even through the
Gnutella network. In fact, the download itself has nothing to do with Gnutella:
it's HTTP.

By being truly peer-to-peer, Gnutella gives no place to put the microscope. Gnu-
tella doesn’t have a mailing address, and, in fact, there isn't even anyone to
whom to address the summons. But because of the breakdown in anonymity
when a download is transacted, Gnutella could not be used as a system for pub-
lishing information anonymously. Not in its current form, anyway. So the argu-
ment that Gnutella provides anonymity from search through response through
download is impossible to make.

Chapter 8 Gnutella 119

SAMSUNG EX. 1018

Anonymous Gnutella chat

RBut then, Gnutella is not exclusively a file-sharing system. When there were
fewer users on Gnutella, it was possible to use Gnutella’s search monitor to chat
with other Gnutella users. Since everyone could see the text of every search that '
was being issued on the network, users would type in searches that weren't

searches at all: they were messages to other Gnutella users (see Figure 8-4).

gnutellatiet
Uploads
Downloads
Search
tonitor
Conhg

. Comnections:
9 gnutellabet

0 uploads
0 downloads

- gnutellahet stats:

13,148 files
1.713817 1B

 Update |

christmas

m.avi

sex

{b.asf

{iaret jackson
christina aguilera
snoop doga

- {celine dion

cypress hill

sister hazel

MNon mi fai pili male
alan jackson
ibuilder

refugess

£minem

quick time installer .mp3
garth brooks
estopa®

destiny's child
bloodhound gang
sumrmer jam .mp3
telemarket

| Yenrique iglesias

‘nsync
family guy
bon jovi

| ¥ Bk, o

Show last iﬂ? searches
-

Figure 8-4. Gnutella search monitor

It was impossible to tell who was saying what, but conversations were taking
place. If you weren’t a part of the particular thread of discussion, the messages
going by were meaningless to you. This is an excellent real-world example of the
ideas behind Rivest's “Chaffing and Winnowing.”" Just another message in a sea
of messages. Keeping in mind that Gnutella gives total anonymity in searching,
this search-based chat was in effect a totally anonymous chat! And we all
thought we were just using Gnutella for small talk.

% Ronald L Rivest (1998), “Chalfing and Winnowing: Confidentiality without Encryption,”
hitp:fwww.toc.lcs.mit.edu/~rivest/chaffing.txt.

120 Gene Kan

R A

|
4

SAMSUNG EX. 1018

Next-generation peer-to-peer file-sharing technologies

No discussion about Gnutella, Napster, and Freenet is complete without at least
a brief mention of the arms race and war of words between technologists and
holders of intellectual property. What the recording indusiry is doing is sensitiz-
ing software developers and technologists to the legal ramifications of their
inventions. Napster looked like a pretty good idea a year ago, but today Gnu-
tella and Freenet look like much better ideas, technologically and politically. For
anyone who isn’t motivated by a business model, true peer-to-peer [ile-sharing
technologies are the way to go.

It's easy to see where to put the toll booths in the Napster service, but taxing
Gnutella is trickier. Not impossible, just trickier. Whatever tax system is suc-
cessfully imposed on Gnutella, il any, will be voluntary and organic—in
harmony with Gnutella, basically. The same will be true for next-generation
peer-to-peer file-sharing systems, because they will surely be decentralized.

Predicting the future is impossible, but there are a few things that are set in con-
crete. If there is a successor to Gnutella, it will certainly learn from the lessons
taught to Napster. It will learn from the problems that Gnutella has overcome
and those that frustrate it today. For example, instead of the pseudoanonymity
that Gnutella provides, next generation technologies may provide true anonym-
ity through proxying and encryption. In the end, we can say with certainty that
technology will outrun policy. 1t always has. The question is what impact that
will have.

Gnutella’ effects

Gnutella started the decentralized peer-to-peer revolution.” Before it, systems
were centralized and boring. Innovation in software came mainly in the form of
a-novel business plan. But now, people are seriously thinking about how to turn
the Internet upside down and see what benefits fall out.

Already, the effects of the peer-to-peer revolution are being [elt. Peer-to-peer has
captured the imagination of technologists, corporate strategists, and venture

* The earliest example of a peer-to-peer application that [can come up with is Zephyr chat,
: which resulted from MIT’s Athena project in the early 1990s. Zephyr was succeeded by sys-
tems such as 1CQ, which provided a commercialized, graphical, Windows-based instant
messaging system along the lines of Zephyr. Next was Napster. And that is the last notable
client/server-based, peer-to-peer system. Gnutella and Freenet were next, and they led the
way in decentralized peer-lo-peer systems.

Chapter 8: Gnutella 121

SAMSUNG EX. 1018

capitalists alike. Peer-to-peer is even getting its own book. This isn’t just a pass-
ing fad.

Certain aspects of peer-to-peer are mundane. Certain other aspects of it are so
interesting as to get notables including George Colony, Andy Grove, and Marc __
Andreessen excited. That doesn't happen often. The pawer of peer-to-peer and
its real innovation lies not just in its file-sharing applications and how well those '
applications can fly in the face of copyright holders while flying under the radar

of legal responsibility. Its power also comes from its ability to do what makes

plain sense and what has been overlooked for so long.

The basic premise underlying all peer-to-peer technologies is that individuals
have something valuable to share. The gems may be computing power, network
capacity, or information tucked away in files, databases, or other information
repositories, but they are gems all the same. Successful peer-to-peer applica- i
tions unlock those gems and share them with others in a way that makes sense
in relation to the particular applications.

etz

Tomorrow's Internet will look quite different than it does today. The World
Wide Web is but a little blip on the timeline of technology development. It's
only been a reality for the last six years! Think of the Web as the Internet equiv-
alent of the telegraph: it's very useful and has taught us a lot, but it's pretty
crude. Peer-to-peer technologies and the experience gained from Gnutella,
Freenet, Napster, and instant messaging will reshape the Internet dramatically.

5
g

Unlike what many are saying today, I will posit the following: today’s peer-to-
peer applications are quite crude, but tomorrow's applications will not be
strictly peer-to-peer or strictly client/server, or strictly anything for that matter.
Today's peer-to-peer applications are necessarily overtly peer-to-peer (often to
the users’ chagrin) because they must provide application and infrastructure
simultaneously due to the lack of preexisting peer-to-peer infrastructure. Such
infrastructure will be put into place sooner than we think. Tomorrow’s applica-
tions will take this infrastructure for granted and leverage it to provide more
powerful software and a better user experience in much the same way modern
Internet infrastructure has.

In the short term, decentralized peer-to-peer may spell the end of censorship
and copyright. Looking out, peer-to-peer will enable crucial applications that are
so useful and pervasive that we will take them for granted.

R

OGN M

122 Gene Kan

A kIS RIS

SAMSUNG EX. 1018

