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Abstract

The paper introduces a data collection system and a

processing pipeline for automatic geo-registered 3D recon-

struction of urban scenes from video. The system collects

multiple video streams, as well as GPS and INS measure-

ments in order to place the reconstructed models in geo-

registered coordinates. Besides high quality in terms of

both geometry and appearance, we aim at real-time per-

formance. Even though our processing pipeline is currently

far from being real-time, we select techniques and we de-

sign processing modules that can achieve fast performance

on multiple CPUs and GPUs aiming at real-time perfor-

mance in the near future. We present the main considera-

tions in designing the system and the steps of the processing

pipeline. We show results on real video sequences captured

by our system.

1 Introduction

Detailed, 3D models of cities are usually made from

aerial data, in the form of range or passive images com-

bined with other modalities, such as measurements from

a Global Positioning System (GPS). While these models

may be useful for navigation, they provide little additional

information compared to maps in terms of visualization.

Buildings and other landmarks cannot be easily recognized

since the façades are poorly reconstructed from aerial im-

ages due to bad viewing angles. To achieve high-quality

ground-level visualization one needs to capture data from

the ground. A system that automatically generates texture-

mapped, ground-level 3D models should be capable of

capturing large amounts of data while driving through the

streets and of processing these data efficiently.

In this paper, we introduce an approach for fully auto-

matic 3D reconstruction of urban scenes from several hours

of video data captured by a multi-camera system. The goal

is an automatic system for processing very large amounts

of video data acquired in an unconstrained manner. This

forces us to take shape from video out of the laboratory and

to achieve a fieldable system.

The video acquisition system consists of eight cameras

mounted on a vehicle, with a quadruple of cameras looking

to each side. The cameras have a resolution of 1024 × 768

pixels and a frame rate of 30 Hz. Each quadruple consists

of cameras directed straight sideways (orthogonal to the

driving direction), and diagonally forward, backward and

upwards with minimal overlap to achieve a large horizon-

tal and vertical field of view. Additionally, the acquisition

system employs an Inertial Navigation System (INS) and a

GPS to enable geo-registration of the cameras. Examples of

ground-level reconstructions from our system can be seen in

Figs. 1 and 2.

Figure 1. Example of dense reconstruction.

The entire acquisition system is packaged in a sealed

pod, which is mounted on the back of a vehicle. As the

vehicle is driven through urban environments, the captured
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Figure 2. Dense reconstruction of a city
block.

video is stored on disk drives in the pod. After a capture

session, the drives are moved from the pod on the vehicle

to a 10-PC (dual-processor) computer cluster for process-

ing. Our performance goal is to process up to 6 hours of

acquired data in an equal amount of time.

Processing entails the following steps: sparse recon-

struction during which the geo-registered poses of the cam-

eras are estimated from the video and the INS/GPS data;

and dense reconstruction during which a texture-mapped,

3D model of the urban scene is computed from the video

data and the results of the sparse step.

In sparse reconstruction the trajectory of the camera is

estimated from the video data using structure from motion

techniques. The goal is to achieve precise camera poses in

order to support temporal multi-view stereo, while keeping

a globally coherent geo-registered trajectory free of drift.

To this end, the INS/GPS data are post-processed to ob-

tain a filtered precise trajectory of the vehicle, which is

called Smoothed Best Estimated Trajectory (SBET). The

SBET and the hand-eye calibration between the origin of

the SBET coordinate system and the coordinate systems of

the cameras provide reliable estimates of the camera trajec-

tories.

In dense reconstruction, the surfaces of the buildings,

ground and other structures are estimated using multi-view

stereo techniques. The goal of this step is to provide accu-

rate surfaces wherever possible even in the presence of am-

biguous or little surface texture, occlusion or specularity.

The reconstruction step is divided into multi-view stereo,

which produces depth-maps from multiple views with a sin-

gle reference view, and depth-map fusion, which resolves

conflicts between multiple depth maps and derives a coher-

ent surface description. The dense reconstruction stage also

provides texture for the surfaces using the video input.

The remainder of the paper is organized as follows. Sec-

tion 1.1 discusses related work. The processing pipeline is

described in detail in Section 2, while the different system

aspects of a multi-camera capture system with INS/GPS

recording are outlined in Section 3. Experimental results

are reviewed in Section 4 with conclusions in Section 5.

1.1 Previous Work

The research community has devoted a lot of effort to the

modeling of man-made environments using a combination

of sensors and modalities. Here, we briefly review work re-

lying on ground-based imaging since it is more closely re-

lated to our project. An equal, if not larger, volume of work

exists for aerial imaging. The typical goal is the accurate re-

construction of urban or archaeological sites, including both

geometry and texture, in order to obtain models useful for

visualization, quantitative analysis in the form of measure-

ments at large or small scales and potentially for studying

their evolution through time.

A natural choice to satisfy the requirement of modeling

the geometry and appearance is the combined use of active

range scanners and digital cameras. Stamos and Allen [1]

used such a combination, while also addressing the prob-

lems of registering the two modalities, segmenting the data

and fitting planes to the point cloud. El-Hakim et al. [2]

propose a methodology for selecting the most appropriate

modality among range scanners, ground and aerial images

and CAD models. Früh and Zakhor [3] developed a sys-

tem that is very similar to ours since it is also mounted on

a vehicle and captures large amounts of data in continuous

mode, in contrast to the previous approaches that captured

a few, isolated images of the scene. Their system consists

of two laser scanners, one for map construction and regis-

tration and one for geometry reconstruction, and a digital

camera, for texture acquisition. A system with similar con-

figuration, but smaller size, that also operates in continuous

mode was presented by Biber et al. [4]. Other work on

large scale urban modeling includes the 4D Atlanta project

carried out by Schindler et al. [5], which also examines the

evolution of the model through time. Cornelis et al. [6] have

also developed a system specialized for the reconstruction

of façades from a stereo rig mounted on a moving vehicle.

Laser scanners have the advantage of providing accurate

3D measurements directly. On the other hand, they can be

cumbersome and expensive. Several researchers in pho-

togrammetry and computer vision address the problem of

reconstruction relying solely on passive sensors (cameras)

in order to increase the flexibility of the system while de-
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creasing its size, weight and cost. The challenges are due

mostly to the well-document inaccuracies in 3D reconstruc-

tion from 2D measurements. To obtain useful models one

may have to interact with the system or make simplifying

assumptions. Among the first such attempts was the MIT

City Scanning project, an overview of which can be found

in [7]. A semi-automatic approach under which simple geo-

metric primitives are fitted to the data was proposed by De-

bevec et al. [8]. Compelling models can be reconstructed

even though fine details are not modeled but treated as tex-

ture instead. Rother and Carlsson [9] show that multiple-

view reconstruction can be formulated as a linear estima-

tion problem given a known fixed plane that is visible in

all images. This approach also requires manual operations.

Dick et al. [10] presented an automatic approach that infers

piecewise planar surfaces from sparse features taking into

account constraints such as orthogonality and verticality.

The authors later proposed a more elaborate, MCMC-based

method [11] that uses generative models for buildings. It

is also fully automatic, but is restricted by the prior mod-

els and can only operate on small sets of images, typically

two to six. Similar high-level reasoning is also employed

by [5]. Werner and Zisserman [12] presented an automatic

method, inspired by [8], that fits planes and polyhedra on

sparse reconstructed primitives by examining the support

they receive via a modified version of the space sweep al-

gorithm [13].

We approach the problem using passive sensors only,

building upon the experience from intensive study of struc-

ture from motion and shape reconstruction within the com-

puter vision community in the last two decades. Since this

literature is too large to survey here, the interested reader

is referred to [14, 15]. The emphasis in our project is on

developing a fully automatic system that is able to operate

in continuous mode without the luxury of capturing data

from selected viewpoints since capturing is performed from

a moving vehicle constrained to the vantage points of ur-

ban streets. Our system design is also driven by the per-

formance goal of being able to post-process the large video

datasets in a time equal to the acquisition time. Our as-

sembled team has significant experience in most if not all

aspects of structure from motion and stereo processing in-

volved in producing textured, 3D models from images and

video [16, 17, 18, 19, 20, 21].

2 Processing Pipeline

In the following we describe the different techniques

used in our system in more detail. The processing pipeline

begins by estimating a geo-registered camera pose for each

frame of the videos. We approach this by determining

2D-2D point correspondences in consecutive video frames.

Then, we use the relative camera geometry of the internally

calibrated cameras to establish a Euclidean space for the

cameras. The INS/GPS information is used to compute the

camera position in the geo-spatial coordinate system.

Once the camera poses have been computed, we use

them together with the video frames to perform stereo

matching on the input images. This leads to a depth map

for each frame. These depth maps are later fused to enforce

consistency between them. A flow chart of the processing

pipeline is shown in Fig. 3.

Figure 3. 3D processing pipeline

2.1 2D Feature Tracking

To establish 2D feature correspondences between con-

secutive video frames we track features with a hierarchi-

cal KLT tracker [22]. To achieve real-time tracking with

video frame rate we use an implementation of the hierarchi-

cal KLT tracker on the GPU [23]. It needs on average 30ms

to track 1000 feature points in a 1024 × 768 image on an

ATI X1900 graphics card.

The weakness of tracking techniques are large dispar-

ity ranges as the flow-assumption of motion of less than a

pixel at the corresponding pyramid level limits the amount

of motion that can be captured. Thus video frames with

large disparities pose problems to the KLT tracker. Hence,

we can also use a detect and match tracker similar to

[24]. Its strength is that it can search large disparity ranges

very quickly – faster than video can be fetched from disk.

Its weakness is that in noisy, low-texture conditions the

repeatability of detection is not always reliable (a phe-

nomenon similarly noted by [25]).
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2.2 3D Camera Tracking

We are investigating and developing several approaches

to determine the camera pose from the 2D feature tracks,

depending on the availability of INS/GPS data. We would

like our system to be functional in the absence of such data.

When INS/GPS data are not available, we use a vision-

only camera tracking algorithm along the lines of [18].

Briefly stated, we can initialize the camera tracker with the

relative pose of three views, given feature correspondences

in them. These correspondences are triangulated using the

computed camera poses. Additional poses are computed

with RANSAC and hypothesis-generation using constraints

from 2D feature to 3D world point correspondences. New

world points are re-triangulated using new views as they be-

come available.

To avoid accumulated drift the system is periodically re-

initialized with a new set of three views. We stitch the new

poses into the old coordinate system exploiting the con-

straints of one overlapping camera. The remaining degree

of freedom is the scale of the old and the new coordinate

system. It is estimated using corresponding triangulated

points in both coordinate frames.

All pose estimation methods use preemptive RANSAC

and local iterative refinement for robustness [26]. In prac-

tice, the system must re-initialize frequently unless we use

bundle adjustment to refine poses. With bundle adjustment

the pose estimation is less sensitive to measurement noise

which leads to fewer re-initializations.

2.3 Geo-Registration with INS/GPS Data

To determine geo-registered coordinates of the features

in the 3D model, we employ the INS/GPS data. The

INS/GPS measurement system is outfitted with a GPS re-

ceiver, gyroscopes, and accelerometers. It delivers highly

accurate measurements of the position and orientation of

the vehicle on which the cameras are mounted.

A Euclidean transformation, which will be referred to

as the hand-eye calibration, maps the center of the geo-

location system to the optical center of each of the cameras.

Initially each camera keeps its own coordinate frame. The

optical center of the first frame of each camera is the origin

and the optical axis and the axes of the first image plane are

used as the axes. The scale is arbitrarily chosen by setting

the distance between the first and second camera positions

in the video sequence to unit length.

Our first implementation of geo-registration computes

a similarity transformation (rotation, translation and scale)

between the poses of a given camera in the vision coordi-

nate system and the poses of each camera in the world. This

approach has difficulties in dealing with drift in the vision-

based camera pose estimation since it is limited to one rigid

transformation for all frames.

We are currently developing a second approach which

overcomes these limitations by fusing geo-location mea-

surements and tracked 2D features either using a Kalman

filter or through bundle adjustment. These methods are

expected to outperform the similarity transformation, geo-

registration technique.

2.4 Multi-View Stereo

The multi-view stereo module takes as input the camera

poses and images from a single video stream and produces

a depth map for each frame. It uses the plane-sweep al-

gorithm of Collins [13], which is an efficient multi-image

matching technique. Conceptually, a plane is swept through

space in steps along a predefined direction, typically paral-

lel to the optical axis. At each position of the plane, all

views are projected on it. If a point on the plane is at the

correct depth, then, according to the brightness constancy

assumption, all pixels that project on it should have consis-

tent intensities. We measure this consistency by summing

the absolute intensity differences in square aggregation win-

dows defined in the reference image, for which the depth

map is computed. The hypothesis with the minimum cost

(sum of absolute differences) is selected as the depth esti-

mate for each pixel.

(a) (b)

Figure 4. Stereo depth maps rendered as 3D

models. (a) Fronto-parallel sweep only. (b)
Multiple sweeping directions.

Traditional plane-sweeping techniques typically sweep

fronto-parallel planes only, which do not account for per-

spective observed in non-fronto-parallel surfaces. We ex-

tend the algorithm by sweeping planes in multiple direc-

tions, where the directions are aligned with the planar sur-

faces we expect to observe in the scene such as the ground

and building façades. We can deduce the orientations of the

ground and façade planes beforehand by assuming the vehi-

cle drives parallel to the ground and to the façades, and that

the façades are vertical and meet at right angles. Figure 4 il-

lustrates the improvements gained by sweeping in multiple

directions. Besides its ability to process multiple images at

the same time, the plane-sweep stereo algorithm can easily
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be ported to the GPU to achieve very fast performance [27].

2.5 Stereo Fusion

Multi-view stereo provides a depth map for every refer-

ence frame. Since we do not enforce consistency between

depth maps during stereo, we need to enforce it in a sepa-

rate stereo fusion step. Fusion serves two purposes: it im-

proves the quality of the depth estimates by ensuring that es-

timates for the same point are consistent with multiple depth

maps and it produces more economical representations by

merging multiple depth estimates into one. Related work

includes volumetric [28, 29], patch-based [30], viewpoint-

based [31] and pixel-based [32] approaches. We opt for a

viewpoint-based approach inspired by the median fusion al-

gorithm [17]. A volumetric method is impractical since it

would require a very large number of voxels for our image

resolution and accuracy requirements. Instead we operate

on the set of depth hypotheses for each pixel of the refer-

ence view. It is useful to have the image plane as a refer-

ence, because then the final mesh can be generated rapidly

by triangulating the depth estimates of adjacent pixels.

Given depth maps from a set of consecutive frames,

the stereo fusion step resolves conflicts between computed

depths and produces a depth map in which most of the noise

has been removed. Fusion is highly effective because points

are visible in large numbers of frames, which provide multi-

ple depth estimates for each point. Even though each depth

estimate is produced by a simple, fast stereo algorithm, the

consensus among these estimates is usually very accurate.

Fusion is designed to resolve conflicts like those illustrated

in Figure 5. In Figure 5.a, the depth estimate X in the view

of the reference camera Cref occludes the depth map di of

camera Ci, while in Figure 5.b, the depth estimate X of the

reference camera passes the depth map of camera Pi. Both

situations are impossible and should be corrected.

One approach is the median fusion algorithm of [17].

The input is a set of depth maps, one of which, typically the

one in the middle, is used as reference. The algorithm aims

at selecting the best depth estimate for each pixel based

on their stability, which depends on the number and type

of conflicts between each depth hypothesis and other depth

maps. For each depth estimate of the reference depth map,

the number of other depths maps that it occludes (Figure

5.a) or passes (Figure 5.b) is computed. This process is re-

peated for each depth estimate of all other depth maps with

respect to reference depth map. The selected (most stable)

solution is defined as the minimum depth for which there

are at least as many depth maps that occlude it as there are

that pass it.

We are also working on a similar approach that takes

into account the confidence of each depth estimate. Stereo

produces more accurate depth estimates in parts of the im-

(a) X occludes di (b) X passes di

Figure 5. Illustration of conflicts between
depth maps that have to be resolved by fu-

sion

age where there is more texture and no occlusion. The

presence of unambiguous matches is indicated by a sin-

gle strong minimum of the cost computed during the plane-

sweep stage. On the other hand, the cost functions of am-

biguous matches have multiple minima. Based upon the

form of the cost function, we can assign a confidence value

to each depth estimate. During fusion this confidence is

increased or decreased depending on whether other depth

estimates support or contradict it. Depth estimates with

very low confidence are replaced with ones that agree more

closely with their more confident neighbors. This approach

introduces a bias towards smooth surfaces, which may be

justified since our emphasis is on reconstructing buildings,

and it is very effective in areas where the majority of depth

estimates are wrong, such as uniform walls and streets. On

the other hand, smoothness comes at the expense of fine de-

tails, and the computation of confidence requires additional

processing cycles. Our future work in stereo fusion will fo-

cus on a faster implementation of our algorithms and better

methods for resolving occlusions using multiple views.

From the fused stereo depth maps, we generate a tri-

angulated, texture-mapped, 3D model of the scene in geo-

registered coordinates.

3 Video Acquisition System

The on-vehicle video acquisition system consists of two

main sub-systems - an 8-camera digital video recorder

(DVR) and an Applanix INS/GPS (model POS LV) navi-

gation system. The DVR streams the raw images to disk,

and the Applanix system tracks position and orientation so

the 3D models produced in post-processing can be created

in a common geo-registered coordinate system.

The DVR is built with eight Point Grey Research (PGR)

Flea color cameras, with one quadruple of cameras for each

side of the vehicle as shown in Figure 6. Each camera has
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Figure 6. (a) Position of camera quadruples
on the Humvee vehicle (b) Closeup of a cam-
era quadruple.

a field-of-view of approximately 40
◦
× 30

◦, and within a

quadruple the cameras are arranged with minimal overlap

in field-of-view. As shown in Figure 6, three cameras are

mounted in the same plane to create a horizontal FOV of

approximately 120 degrees. The fourth camera is tilted up-

ward to create an overall vertical FOV of approximately 60

degrees with the side-looking camera.

The eight IEEE-1394 cameras are interfaced to eight

Windows-Intel VME-based processor modules from Con-

current Technologies, each with a high-capacity SATA data

drive. The eight-camera DVR is capable of streaming to

disk 1024 × 768 Bayer-pattern images at 30Hz. The CCD

exposure on all cameras is synchronized by using IEEE-

1394 sync units from PGR.

With each video frame recorded, one of the DVR proces-

sor modules also records a GPS-timestamp message from

the Applanix navigation system. These message events

are also synchronized to the CCD exposure by means of

an external TTL signal output by one of the cameras.

In post-processing, this GPS timestamp is correlated with

post-processed INS/GPS data to provide a smoothed best-

estimate of the position and orientation of the navigation

system and of each camera. The latter, of course, requires

knowledge of the hand-eye calibration between the cameras

and the INS/GPS system that one establishes during system

calibration.

Camera Calibration Calibration of the cameras with re-

spect to each other is desirable for fusing models created

from independent streams of the eight cameras on the vehi-

cle. Furthermore, calibration relative to the INS coordinate

system is required in order to geo-register all the 3D models

reconstructed from the captured video.

Camera intrinsics including lens distortion estimates are

currently computed using a planar checkerboard and a

toolkit built by Ilie and Welch [33] that is based on the

OpenCV library. This solution provides a more automated

calibration procedure that requires minimal user interaction.

Evaluation of the external relationship of cameras is

complicated by the fact that there is little or no overlap in

the visual FOV of the four cameras. The current method be-

ing pursued places the cameras within a large encompass-

ing field of 3D feature points. The 3D feature points are

actually created by an array of projectors, which illuminate

a 3D display surface in front of the cameras with checker-

board patterns. The 3D position of each feature point is

determined using a separately calibrated stereo camera pair.

Hand-eye (extrinsic) calibration of each camera quadru-

ple relative to the INS must involve both camera quadru-

ples and the navigation system mounted on the vehicle. Ini-

tially we plan to use calibrated feature points in the real-

world whose position relative to each other has been estab-

lished by theodolite. By viewing the feature points from

numerous vehicle positions whose position and orientation

are estimated by the Applanix system, we will then be able

to establish the rotational-translational relationship of each

camera with respect to the INS coordinate system. Bundle

adjustment methods will undoubtedly be required. Future

research will focus on removing the constraint of using pre-

surveyed feature points.

4 Results

Figures 7 through 10 are illustrative of the fidelity of

3D models currently being reconstructed. All models were

computed without any INS or GPS information except the

one of Figure 10, which is geo-registered. The typical set-

tings used for these reconstructions are the following: the

number of features for tracking is 500, the number of im-

ages used for each depth map computation is 11, and the

number of depth maps that are fused is 13.

Figure 7. Dense reconstruction from the for-
ward camera.
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Figure 8. Dense reconstruction from the side
camera.

Figure 9. Dense reconstruction from the side
camera.

Figure 10. Geo-registered dense reconstruc-

tion from the side camera.

5 Summary and Conclusions

We have described a system aimed at real-time, dense,

geo-registered, 3D urban reconstruction from video cap-

tured by a multi-camera system and INS/GPS measure-

ments. The quality of the initial reconstructed results both

with and without INS/GPS sensors is very promising. Fu-

ture challenges include improving the accuracy of geo-

registration, improving the process of bundle adjustment or

Kalman filtering of the camera trajectory, registering and

fusing the reconstructions across multiple video streams,

speeding up the processing by porting operations to the

GPU, and enhancing the processing pipeline to make it

more robust. Potential longer term directions are change

detection and the capability to perform incremental model

updates using video acquired on different days.
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