US006546425B1

a2 United States Patent

Hanson et al.

US 6,546,425 B1
Apr. 8, 2003

(10) Patent No.:
45) Date of Patent:

(54) METHOD AND APPARATUS FOR
PROVIDING MOBILE AND OTHER
INTERMITTENT CONNECTIVITY IN A
COMPUTING ENVIRONMENT

(75) Inventors: Aaron D. Hanson, Seattle, WA (US);
Emil A. Sturniolo, Medina, OH (US),
Anatoly Menn, Seattle, WA (US); Erik
D. Olson, Seattle, WA (US); Joseph T.
Savarese, Edmonds, WA (US)
(73) Assignee: Netmotion Wireless, Inc., Seattle, WA
US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
(21) Appl. No.: 09/330,310
(22) Filed: Jun. 11, 1999
Related U.S. Application Data
(60) Provisional application No. 60/103,598, filed on Oct. 9,
1998.
(51) Int. CL7 e GO6F 15/16
(52) US.CL ... 709/227; 709/228; 709/330
(58) Field of Searchcccoeniiine 709/245, 250,
709/330, 229, 228, 227, 230, 203, 220,
221, 202
(56) References Cited
U.S. PATENT DOCUMENTS
4,837,800 A 6/1989 Freeburg et al.
4912756 A 3/1990 Hop
5,159,592 A 10/1992 Perkins
5,181,200 A 1/1993 Harrison
5,212,806 A 5/1993 Natarajan
5,224,098 A 6/1993 Bird et al.
5,276,680 A 1/1994 Messenger
5,307,490 A 4/1994 Davidson et al.
5325361 A * 06/1994 Lederer et al. 370/401
5,349,678 A 9/1994 Morris et al.
5410543 A 4/1995 Seilz el al.

(List continued on next page.)

104 102

{
Mobile End System (MES)

OTHER PUBLICATIONS

Montenegro, G., Sun Microsystems, Inc., Internet Draft,
“Reverse Tunneling for Mobile IP,” Jan. 12, 1997.

Bakre, A.; Badrinath, B.R., “I-TCP: Indirect TCP for
Mobile Hosts,” Department of Computer Science, Rutgers
University, Piscataway, NJ 08855, DCS-TR-314, Oct.
1994.

Internet Draft Piscitello, D., Phifer, I.. Core Competence,
Wang, Y., Hovey, R. Bellcore: “Mobile Network Computing
Protocol (MNCP),” Sep. 3, 1997.

Maltz, David A. Bhagwat, Pravin, “MSOCKS: An Archi-
tecture for Transport Layer Mobility,” 1998 IEEE,
0-7803-4386-7/98.

(List continued on next page.)

Primary Examiner—Mehmet B. Geckil
(74) Artorney, Agent, or Firm—Nixon & Vanderhye P.C.

7) ABSTRACT

A scamless solution transparently addresses the character-
istics of nomadic systems, and enables existing network
applications to run reliably in mobile environments. The
solution extends the enterprisec network, letting network
managers provide mobile users with easy access to the same
applications as stationary users without sacrificing reliability
or centralized management. The solution combines advan-
tages of exisling wire-line network standards with emerging
mobile standards to create a solution that works with exist-
ing network applications. A Mobility Management Server
coupled to the mobile network maintains the state of each of
any number of Mobile End Systems and handles the com-
plex session management required to maintain persistent
connections to the network and to other peer processes. If a
Mobile End System becomes unreachable, suspends, or
changes network address (c.g., due to roaming from one
network interconnect to another), the Mobility Management
Server maintains the connection to the associated peer
task—allowing the Mobile End System to maintain a con-
tinuous connection even though it may temporarily lose
contact with its network medium. In one example, Mobility
Management Server communicates with Mobile End Sys-
tems using Remote Procedure Call and Internet Mobility
Protocols.

76 Claims, 32 Drawing Sheets

Contral, User Interface
236

Network /Security
Provider

Thwlk

Mobile Monagement System (MMS)
3 24

Netwerk
Applications} 210*

232

N
Appiications

206

~

Network File ond| {Proxy Server
| | o s
" 3 06

Address Translation
(Intermediate Driver)

Vﬁnd/m-s NT
User/Secur
Dduhasemy

238

0
Fixed—End Systems (FES)

|
cauons:
File/Print

'I
v e s | 1

,,,,,, a

~—110

Microsoft Corporation
Exhibit 1016-00001

US 6,546,425 B1
Page 2

U.S. PATENT DOCUMENTS

5,426,637 A 6/1995 Derby et al.
5,442,791 A 8/1995 Wrabetz et al.
5,446,736 A 8/1995 Gleeson et al.
5475819 A 12/1995 Miller et al.
5,481,535 A 1/1996 Hershey
5,490,139 A 2/1996 Baker et al.
5,491,800 A 2/1996 Goldsmith et al.
5,499,343 A 3/1996 Pettus
5,515,508 A 5/1996 Pettus et al.
5,548,723 A 8/1996 Pettus
5,559,800 A 9/1996 Mousseau et al.
5,564,070 A 10/1996 Want et al.
5,566,225 A * 10/1996 Haascccccoververenennen. 455/423
5,568,645 A 10/1996 Morris et al.
5,572,528 A 11/1996 Shuen
5,574,774 A 11/1996 Alhberg et al.
5,602,916 A 2/1997 Grube et al.
5,610,595 A 3/1997 Garrabrant et al.
5,623,601 A 4/1997 Vu

5,633,868 A 5/1997 Baldwin et al.
5,657,390 A 8/1997 FElgamal et al.
5,664,007 A 9/1997 Samadi et al.
5,673,322 A 9/1997 Pepe et al.
5,682,534 A 10/1997 Kapoor et al.
5,717,737 A 2/1998 Doviak et al.
5,721,818 A 2/1998 Hanif et al.
5,724,346 A 3/1998 Kobayashi et al.
5,732,074 A 3/1998 Spaur et al.
5,748,897 A 5/1998 Kaliyar
5,752,185 A 5/1998 Ahuja
5,754,774 A 5/1998 Bittinger et al.
5,758,186 A 5/1998 Hamilton et al.
5,768,525 A 6/1998 Kralowetz et al.
5,771,459 A 6/1998 Demery et al.
5,784,643 A 7/1998 Shields
5,796,727 A 8/1998 Harrison et al.
5,848,004 A 12/1998 Cowan
5,856,974 A 1/1999 Gervais et al.
5,889,816 A 3/1999 Agrawal et al.
5909431 A * 6/1999 Kuthyar et al. 370/260
5935212 A 8/1999 Kalajan et al.
5,968,176 A 10/1999 Nessett et al.
6,006,090 A 12/1999 Coleman et al.
6,091,951 A 772000 Sturniolo et al.
6,112,085 A * 8/2000 Garner et al. 455/428
6,147,986 A 11/2000 Orsic

6,154,461 A 11/2000 Sturniolo et al.
6,161,123 A 12/2000 Renouard et al.
6,167,513 A 12/2000 Inoue et al.

6,170,057 Bl
6,336,135 Bl *

1/2001 Inoue et al.
1/2001 Niblett et al. 709/215

6,201,962 B1 * 3/2001 Sturniolo et al. 455/432
6,230,004 B1 5/2001 Hall et al.

6,233,617 B1 * 5/2001 Rothwein et al. 709/227
6,233,619 B1 * 5/2001 Narisi et al. 709/227
6,236,652 B1 * 5/2001 Preston et al. 370/349
6,243,753 B1 * 6/2001 Machin et al. 709/227
6,249,818 Bl 6/2001 Sharma

6,256,739 B1 * 7/2001 Skoppetal. ... 709/229

6,308,281 Bl 10/2001 Hall, Jr. et al.

OTHER PUBLICATIONS

Teknique, Data Sheet, TransNet Il Wireless Gateway, Wire-
less—A Wide Area Viewpoint, Shaumburg, IL, 3 pages.
Teknique, Data Sheet, TransRMail, Schaumburg, 1L, 2
pages.

Teknique, Data Sheet, TX5000 High Performance Commu-
nication Processor, Schaumburg, IL, 2 pages (1994).

Teknique, Data Sheet, Optimized TCP/IP over Wircless,
Schaumburg, IL, 5 pages.

Teknique, Data Sheet, TX1000 High Performance Commu-
nication Processor, Schaumburg, IL, 2 pages (1994).

Teknique, Data Sheet, TX2000 High Performance Commu-
nication Processor, Schaumburg, IL, 2 pages.

Teknique, Data Sheet, TransNet II Wireless Gateway Ser-
vices, Schaumburg, IL, 2 pages.

IBM, Leading the Way for wircless data communication,
ARTour, Research Triangle Park, NC 4 pages (Sep. 1995).
M3i RadioLink, Overview, Management through instant
interactive information, 7 pages (Jun. 1995).

Web site information, WRQ AtGuard, www.atguard,com
(copyright 1999).

Press release, “WRQ Licenses AtGuard to Symantec and
ASCII Network Technology” (copyright 1999).

Datability Software Systems Inc., New York, NY “Proposal
Presented to Digital Equipment Corporation Large System
Group, Marlboro, Massachusetts” (Jul. 7, 1983).

Datability Software Systems Inc., New York, NY, Con-
trol-PC, Information Management System, System Builder
Manual, Draft Version (Apr. 1986).

Datability Software Systems Inc., New York, NY, “Remote
Access Facility, User’s Guide™ (copyright 1985, 1986, 1987,
1988).

NetMotion Wircless Product Documentation on CD; with 2
page printout of contents.

Kojo, M., Raatikainen, K., Alanko, T: Connecting Mobile
Workstations to the Internet over a Digital Cellular Tele-
phone Network. University of Helsinki, Department of
Computer Science, Series of Publications C, No.
C—1994-39. Sep. 1994. Published also in Proceedings of the
Mobidata Workshop, Rutgers University, NJ, Nov. 1994.
Alanko, T., Kojo, M., Laamanen, H., Liljeberg, M., Moil-
anen, M., Raatikainen, K: Measured Performance of Data
Transmission Over Cellular Telephone Networks. Computer
Communications Review, 24(1994)5. Published also as
Technical Report: University of Helsinki, Department of
Computer Science, Series of Publications C, No.
C-1994-53.

Kojo, M., Alanko, T., Liljeberg, M., Raatikainen, K:
Enhanced Communication Services for Mobile TCP/IP Net-
working. University of Helsinki, Department of Computer
Science, Series of Publications C, No. C-1995-15. Apr.
1995.

Liljeberg, M., Alanko, T., Kojo, M., Laamanen, H., Raati-
kainen, K: Optimizing World—Wide Web for Weakly Con-
nected Mobile Workstations: An Indirect Approach. In Proc.
2nd International Workshop on Services in Distributed and
Networked Environments (SDNE’95) Jun. 5th—6th, 1995,
Whistler, Canada.

Laamanen, H: An Experiment of Dependability and Perfor-
mance of GSM Access to Fixed Data Network. University of
Helsinki, Department of Computer Science, Series of Pub-
lications C, No. C—1995-41. Sep. 1995.

Kiiskinen J., Kojo, M., Liljeberg, M., Raatikainen, K: Data
Channel Service for Wireless Telephone Links. University
of Helsinki, Department of Computer Science, Series of
Publications C, No. C-1996—1. Jan. 1996. Published also in
Proceedings of the 2nd International Mobile Computing
Conference, Hsinchu, Taiwan, ROC, Mar. 25-27, 1996.

Microsoft Corporation
Exhibit 1016-00002

US 6,546,425 B1
Page 3

Liljeberg, M., Helin, H., Kojo, M., Raatikainen, K:
Enhanced Service for World-Wide Web in Mobile WAN
Environment. University of Helsinki, Department of Com-
puter Science, Series of Publications C, No. C-1996-28.
Apr. 1996. (Revised version published in Proceedings of the
IEEE Global Internet 1996 Conference, London, England,
Nov. 20-21, 1996.)

Alanko T, Kojo M., Liljeberg M., Raatikainen K.: Mowgli:
Improvements for Internet Applications Using Slow Wire-
less Links. Proc. 8th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, Hel-
sinki, Finland, Sep. 1997.

Kojo M., Raatikainen K., Liljeberg M., Kiiskinen J., Alanko
T.: An Efficient Transport Service for Slow Wireless Tele-
phone Links. IEEE Journal on Selected Areas in Commu-
nications, vol. 15, No. 7, Sep. 1997.

“MOWGLI, Mobile Office Workstations using GSM Links,”
University of Helsinki Dept. of Computer Science, Helsinki,
Finland (Feb. 2000).

Information Sciences Institute, “Transmission Control Pro-
tocol-DARPA Internet Program Protocol Specification,”
Sep. 1981; http://www.csl.sony.co.jp/cgi—bin/
hyperrfc?rfc793.txt.

Berners—Lee et al., “Hypertext Transfer Protocol-HTTP/
1.0”; May 1996; http://www.cis.ohio—state.edu/htbin/rfc/
rfc1945.html.

Microsoft Support Online Knowledge Base Search Results,
“DHCP (Dynamic Host Configuration Protocol) Basics,”
Article ID: Q120829, (Revision Date Sep. 24, 1996).
O’Reilly Online Catalog, “Windows NT TCP/IP Network
Administration,” Chapter 6, 25 pages(undated).

WRQ White Paper, “TCP/IP: The Best Protocol for Remote
Computing,” 13 pages (Nov. 14, 1996).

WRQ White Paper, “Reducing the Cost of PC Connectiv-
ity,” 7 pages (Nov. 25, 1996).

WRQ White Paper, “TCP Kernel Architecture—The Silent
TCP/IP Issue,” 4 pages (Nov. 14, 1996).

WRQ White Paper, “How WRQ’s TCP/IP Reduces Costs
and Improves Reliability in Remote and Mobile Comput-
ing,” 5 pages (Nov. 14, 1996).

Zenel, Bruce, Thesis Proposal, “A Proxy Based Filtering
Mechanism for The Mobile Environment,” Dept. of Com-
puter Science, Columbia University, New York, NY, 52
pages (undated).

Badrinath, B.R., et al.,, “Handling Mobile Clients: A Case for
Indirect Inteaction,” Department of Computer Science, Rut-
gers University, 7 pages (Oct. 1993).

Brown, Kevin, ¢t al., “M-UDP: UDP for Mobile Cellular
Networks,” Department of Computer Science, University of
South Carolina, 19 pages (Sep. 4, 1996).

Brown, Kevin, et al., “M-TCP: TCP for Mobile Cellular
Networks,” Department of Computer Science, University of
South Carolina, 25 pages (Jul. 29, 1997).

Zenel, Bruce et al., “A General Purpose Proxy Filtering
Mechanism Applied to the Mobile Environment,” 12 pages
(undated).

Piscitello, D., Internet Draft, “Mobile Network Computing
Protocol (MNCP),” 55 pages (Aug. 28, 1997).

Bakre, Ajay et al.,, “M-RPC: A Remote Procedure Call
Service for Mobile Clients,” ACM Presents MobiCom 95,
Proceedings of The First Annual International Conference
on Mobile Computing and Networking, pp. 97-110 (Nov.
13-15, 1995).

Droms, R., Network Working Group, Request for Com-
ments memo, “Dynamic Host Configuration Protocol,”
Bucknell University, 39 pages (Oct. 1993).

* cited by examiner

Microsoft Corporation
Exhibit 1016-00003

US 6,546,425 Bl

Sheet 1 of 32

Apr. 8, 2003

U.S. Patent

WalSAg
pu3 ajIqon

worAL_Is | DI

LEE HOMIBN

cOt oLt

chl

l81noy

Al FJ
i
8

L go1—"
E@Dﬁ — - 4T ..v..r. LT .I.I.
= MOOL " eee 2l 2901 .
WolsAS =" N \

pu3 8(Igow N ; y .
] wia)sh k] v wa)s \

0 ! gvvv pu3 m__pw§ ,A.‘ ..,\ vvvvv pu3 m__nws_)

Wiyl -_ ._ _ b !

..,.. oL —] [s / ,.,.. [|a .,\

- -

Exhibit 1016-00004

Microsoft Corporation

US 6,546,425 B1

Sheet 2 of 32

Apr. 8, 2003

U.S. Patent

0™

L

1
_|: SIAUQ 3003 YIONjaN |
.._!m%%s_& a0 gL |
__,___a_\m_m
suoio3yddy
YIOMaN

(S34) swajshs puz-paxiy

| podsuoiy Jayjo Jo Ny

.

:
|
|
|
|
|
8
J
1
|
|
t
|
|

Am_czv S13AlI(] 930)J3)uUl YJOM)SN

.SN ——

Hm_ozv SIOA(] 900L3JU| }IOM}IN

~

| suodsuoif 4gn'daL p—-20C

Jojdagsau] apqop F~—z|z

[(i01) 290y seaug odsuos|f— Y0

90Dy Jas) ‘oAjuo)

)

SaJIIG JUL
puo .o_uw.wormz Id¥ “Wuom ~— 907
012 suoioa1ddy
J3pIA0Lg yompN [T~—80C
£
1UNJ3G /HiomMiaN g
_ 952

(SIN) wayshs pu3 auqop

(1em1q ajoIpauLIRu) 0%
\ g7 UORD|SUDJ} SSAIPPY
_ 202
2sDqD}0Q [(swodsuoiy_dan “doL Yoz
Aunaag /1sn |)
mNM N smopu | || {la) sopa seaug to%,a:_\mom
| s
Jabouoy _ _ SA9IA13S JULd _ 0\8
vonoanBiyuog | [/ASS Axoig| [PUD M1 YIOMIIN |V ﬁ_,_ S
| | /.o_m suorjoayddy
aoopau) Jasn ‘josua)i \ | ohuop ILIEY
0z — i X 80z —"
(SWN) walsAs juawabouoy 3|iqop
201

(

¥01

Microsoft Corporation

Exhibit 1016-00005

U.S. Patent Apr. 8, 2003 Sheet 3 of 32 US 6,546,425 Bl

Call to TDI Via Sockets | _ 250
or directly is intercepted

'

Mobite Interceptor packages
DI cell in an RPC 252
datagram and sends to
Mcbile Management Server

'

Mobile Management Server
unpackages RPC datagram

'

Mobile Management Server L _ 255

F|G 2A provides requested service

—— 254

—— 208

Applications
Configuration API Socket API —— 206
™I 204

RPC Protocol Engine 240 L 21?2

Internet Mobility
(Interceptor Virtual Circuit)
Protocol
Engine 244

FIG. 3

Microsoft Corporation
Exhibit 1016-00006

U.S. Patent Apr. 8, 2003 Sheet 4 of 32 US 6,546,425 Bl

(RCv TDI CALL)

I

Post RPC call
to IMP queue 302
Delay for 304
coalesce time
—
306

Y

Flush queue, coalesce the RPC | 144
calls into single fragment
and foward to Server

(eNp)

FIG. 3A

Microsoft Corporation.
Exhibit 1016-00007

US 6,546,425 B1

Sheet 5 of 32

Apr. 8, 2003

U.S. Patent

(2)9ss

}JOp UOIDIOOSSY

ananp

ananf) |0gol9

8G¢
t

}sanbay 9Npayos

}sanbay aAI323y HdY

0¥l

g€ OlId

"PU| 3AI323Y D4y

yog—"

1sanbay yJom

1sanbay
HIOM
S3)0|NWJ0
sjuawbo. 4
S§]oNJ)SU093Y

dil

255~

="

Microsoft Corporation

Exhibit 1016-00008

U.S. Patent Apr. 8, 2003 Sheet 6 of 32 US 6,546,425 Bl
De—-Queue
Global
Work
362
360 f
Yes Determine Association
R‘;’c‘{f,%‘gle and Get Association
Control Block
370 372
y s 364
Connect es Start Assocmtl_on'
Indication Create New Association Process
Control Block Association
No Work
374
. Stop Association
?E&gg{'ﬁt Destroy Association
Control Block
No J
376
378
Lacal™\Jes
Terminate
Associatio
No
380 382\
%2?;:;&25 Resume Association 366
State=
No AéSﬁClgtlf)l’l
chedule
384 386} Again
Ping Inactivity Yes Shut Down Yes 368
Timeout Ping Association f
N Schedule Association
© to Run Again

FIG. 4

Microsoft Corporation.
Exhibit 1016-00009

U.S. Patent

Apr. 8, 2003

Sheet 7 of 32 US 6,546,425 B1

364

Queues Marked
Eligible

Work Queue have
More Work Or Dispatch

De—Queue 390
™| Work Request
392 394
RPC
Receive \'es RPC
Request POTSEF
396 ,—398
Pending Start
Receive Receiving
400 402
Pending Issue TCP
Connect Connect
Process Dispatch
Queues
408
Association 410

Yes Set State To Association

Scheduled again

FlG 5 Process Association Work

Microsoft Corporation
Exhibit 1016-00010

U.S. Patent Apr. 8, 2003 Sheet 8 of 32 US 6,546,425 Bl

/‘ 372

allocate and association control block p~—372A

l

initialize system wide resources with defaults |~— 3728

l

get configuration overrides
with current configuration settings ~ 372

|

initialize flags |~ 372D

l

initialize the association-specific work queue 372E

l

initialize association object hash table p~—372F

|

initialize the coalesce timer p~—372G

l

insert association control block into session table p~—372H

END

FIG. 5A

Microsoft Corporation
Exhibit 1016-00011

U.S. Patent Apr. 8, 2003 Sheet 9 of 32

US 6,546,425 B1

376 —\

mark the association as deleted to prevent aony further
processing of work that may be outstanding

l

k 376A

close all associated association objects including
process, connection and address objects

l

free all elements on work queue

l

stop coalesce timer if running

~— 376D

l

decrement ossociation control block reference count

N 376F
zero?

Y

N— 376E

destroy object hash table

destroy coalesce timer

from association table

free control block

destroy association specific work queue

remove association control block

—~— 376G

END

FIG. 5B

Microsoft Corporation
Exhibit 1016-00012

U.S. Patent Apr. 8, 2003 Sheet 10 of 32 US 6,546,425 Bl

CreditINT
=0

mark association as “low mark pending’ by setting the }~— 379a
RPC_LMPQ_SEND_FLAG.

l

discard all received datagrams |~ 379B

throttle all received stream events by

refusing to accept the data —~—379C

y
refuse all received connect events for passive connections L 379D

END

FIG. 5C

Microsoft Corporation
Exhibit 1016-00013

US 6,546,425 B1

Sheet 11 of 32

Apr. 8, 2003

U.S. Patent

9 Ol

(£)903
(8)906 — | - \ ¢ Odd
eoo|8 I g oay| (20908 —
¢ JdN
(£)90§ —— £ Od¥) o (1)80S— | ody
9 Id¥ ?vmoml ¢on|\\>otm>o _
- 3AI903Y
(9)90¢ < - 19p05 D}ogJasnd
b1 y3xaNd 604 41xaNd mm:cm:
Juawbouy Juawbo.4 } Eo;m coc
U023
pdiyl P S (1)20G — T
(£)z08 (2)20s juswbosy uiop
1sanbay YIOM 2AI923Y DdY
00G

Microsoft Corporation

Exhibit 1016-00014

US 6,546,425 B1

Sheet 12 of 32

Apr. 8, 2003

U.S. Patent

}oalqQ ssaippy 3s0|]
}0alqQ uoljosuu0y 3sol)

SS3IPPY 2)DIDOSSDSI(
193Uu0sIq
JUAAZID3|)

JUSAFISS
OJuf}ss
A2y woibojog
puas wpibojo(
AJY WDAIS
puas woaljs
193uu0)
SS2UppY 3]0I00SSY
10aiqQ uoioauuey uadg
103{gQ ssaJppy uadg

(ors @GS (ois

,) m

log 83n2ax3

Jaydjodsig

anand) N 4| [anenp Z m_ anany | d

Jddd

| Auoud (

Z .A.,.—,CO_L& /gmwg 0d

N Auoud

uonauLoY) uadg
ssauppy uadg

(1s3ybiy)
0 Aoud

v6¢

e

L Ol

N Odd

“ 1T JdY

T ogy — (+908

AD{JBAQ)
3AI303Y

| _—00S

1sanbay yiom
QAI23Y Ddy

Microsoft Corporation

Exhibit 1016-00015

U.S. Patent Apr. 8, 2003 Sheet 13 of 32 US 6,546,425 Bl

queue= 408 / 108

PRIORITY_HIGH

Y

Weight=queue
Weight

_—410

Mark Queue Eligible
To Run Again

Fig. 8
Process Priority
Dispatch Queues

Microsoft Corporation
Exhibit 1016-00016

US 6,546,425 B1

Sheet 14 of 32

Apr. 8, 2003

U.S. Patent

Slo) Jdd
pa)DJaudg Ax0ud

6 94

(N).01S (2).015

\ \

12744
dil

#

1s9nbay puss 4|

(1),016

a

pnany) N Auoud| [enany 7 Ajuoud| lenanp | Ajuond

>
/ o o0 4/
. AN
N ~ N
anany) |oqol9 ™~ ~

N
.

1senbay
9|Npaydsg

N
N

Ayuoud
ybiH

Ayuold

ybiH

JUSAJ 108UU0DSI(]

JUSA] woJbDID(2AI808Y

osuodsay aa200Y
JUSAT 108UU0Y

Microsoft Corporation

Exhibit 1016-00017

U.S. Patent Apr. 8, 2003 Sheet 15 of 32 US 6,546,425 Bl

601 Start
602

No Connect
request?

603 Yes

603A
AN

—Error—
Out of resources

Allocated No
connection
resources?

Yes

603B
6%4 State Configure 4

Y !

Queue connect or send request and signal global event — return to calling application

Dispatch connect or send request
from IMP global request queue

605A
™

Wait for application to
queue work for
connection. Go to step 625

606A
RN

Go to step 615

‘ 607A\

Wait for peer address.
Continue queuing work.

Go to step 625

- B08A

Wait for security context.

Continue queuing work.
Go to step 625

Internet Mobility Protocol
Connection Decision Tree.

FIG. 10A Connect and Send request logic

Microsoft Corporation
Exhibit 1016-00018

U.S. Patent Ap

r. 8, 2003

7

State Pending

'

Sheet 16 of 32

US 6,546,425 B1

6088

Send IMP Sync Frame

!

Stort IMP retransmit timer

611

State Established

615

step 625

connection
been
authenticated

Did
authentication
succeed?

‘/-613
Wait
Go to
step 625
Retransmit No
time expired
?
614A

v)

Abort Connection
Go to step #999

FIG. 10B

Microsoft Corporation
Exhibit 1016-00019

U.S. Patent

Apr. 8, 2003

Sheet 17 of 32

US 6,546,425 B1

618 619
eer tlrsunsmit Wait for
P window acknowledgement.
full? Go to step 625

No
620
N Create IMP data frame
1
Send IMP data frame
622
s 523
retransmit Start IMP
timer retransmit
started? timer
624
Yes
625

Sleep waiting for more work.
Return to global dispatcher

FIG. 10C

Microsoft Corporation.
Exhibit 1016-00020

U.S. Patent Apr. 8, 2003 Sheet 18 of 32 US 6,546,425 Bl

626 Terminate Connectioﬂ

!

Queue request to global work queue| — 626A
and return to calling application

627
Dispatched terminate request from
IMP process global work queue

How? Abort Abort Connection
: Go to step #999

Graceful
628A
I State Closing e

630

] 'Send IMP Mortis Frame]

{ 630A
State Mortis

]

631
\ Start retransmit timer

634 \

Wait
Go to
step 637

632Ar\
Stote Post Mortem 635

636 +
\|Releose connection Resources

637 : Y
Sleep waiting for more work.

Return to global dispatcher

No

retransmit
t|me
expired?

Yes /— 635A

Abort Connection
Go to step #999

FIG. 11

Terminate Connection request logic

Microsoft Corporation
Exhibit 1016-00021

U.S. Patent Apr. 8, 2003 Sheet 19 of 32 US 6,546,425 Bl

650

—-Event—
Retransmit timer
expired!

651

Any
frames

outstanding
?

652
No \

4 Dismiss timer.

653 654
Has No Sleep ;difference
entire retransmit —
period in time
expired?

655

656A
O\

Yes State
Dormant

Reprocess frame to remove Abort Connection
any expired data Go to step #999

S]

Retransmit Frame

659 ™~ 1

Restart retransmit timer

660'\ J

Sleep =

6568

Fig. 12

Retransmit Event Logic

Microsoft Corporation.
Exhibit 1016-00022

US 6,546,425 B1

Sheet 20 of 32

Apr. 8, 2003

U.S. Patent

mN_. o_H_ uazg £ x=juno) Ay T™~—(u)30g
of i Anay | poojAod awoig d uf nad .
| L
x# aouanbag | [0=3unog Ay | 1=junod Aijay| , , |x=luno) Anay | =juno) Anay L .
BP0y \# nad| o nad uf nad || [Z# Nad | [N (2)905
]
\ Jﬂ ﬁ 0=juno) Anay | |
oG ” \# nad /:vmom
anany 3Jom diI
00S E _
<N_. mu_nl._ x Kidx3| e x Aidx3
uf Ndd [09sG'Z +}1=auwnZ]]| u# Ndd I/?voom

.Illlllil .
i

| 238 N»ua_%m_ : . o .
. Z# nad | . :
S L 9as z=Audxy| |ea— : 298 z=Audx3

Z| awi| o paundx] R T N~—
(2L awy | Z# nad T Z# nad (2)908
0 Aidx3| | 0 Andx3
[anan oM di | \# nad U 094 N ())g06

Exhibit 1016-00023

Microsoft Corporation

US 6,546,425 B1

Sheet 21 of 32

Apr. 8, 2003

U.S. Patent

O¢l Ol

awWDl{ JW| JO UOISSILSUDI}RY

008 |/

Zf nad - u mN_mm POOJADY dwDi{ N
Lf Pt Anay = — - -
x# aouanbag | oLc:A_@ DMM_ oo xl«c:mw :MM
$0C —1___43P03H dNI ! \ v/
e »
L# Pl Anay M poojAo4 awniq N
x§# mucm:amm“ 0=juno) Aiay| |=junoy Anay| , | x=puno) Anay
8po3H # nad Z# nad i Nad
m.oml\\l n_E_ | o == T——

00S K

049z 0} bujob
unos Aijai 0y
anp parcway

Z# nad

Microsoft Corporation

Exhibit 1016-00024

Sheet 22 of 32

U.S. Patent Apr. 8, 2003

—Event-
Receive IMP frame
event from network!

670 \

Pre—validate IMP Frame

671 672

US 6,546,425 B1

~

Discard

frame

673

Connection No
associated with

frame?

Yes

6741

y

(677

Place on connection receive queue

Place on global receive queue

675 l 678
A\] !
Mark connection eligible to receive Place receive queue on global work queue
676 l
N\

Place connection on global work queue

l

Signal global work event

679

FIG. 13A

Receive Event Logic

Microsoft Corporation
Exhibit 1016-00025

U.S. Patent Apr. 8, 2003

Dispatch receive eligible
from global work queue

Sheet 23 of 32

US 6,546,425 B1

Dequeue frame from receive queue fa—
682
681 Sleep waiting

Frame
dequeued

Validate IMP received frame

684

frame ok?

for more work.
Go to step #1012

686

Connection
associated

Discard Frame
A
No
No
Yes f 688

689

Process Passive Connection
request. Go to step #720

No

690 \

Parse IMP frame

691

691A
Vs

Abort Connection
Go to step #999

Fig. 13B

Microsoft Corporation.
Exhibit 1016-00026

U.S. Patent Apr. 8, 2003

592\ @

Sheet 24 of 32

US 6,546,425 B1

Process acknowledgement info and release
any outstanding send frames

FIG. 13C

!

693'\ Post frame to security subsystem
for possible decryption
694 — Pracess any control data
696
695 f y N
My es Queue data to
opzl;iggon application layer
697A
697 /
Change state
back to
Established
699
698 /
Indicate disconnect to
—» application layer
639A—] State Mortis
Send IMP Post Mortum Frame
703
Possibly ’l
Posftmlrnoerjt?um 700A ~~ State Post Mortum
701 Release connection resources
No 702 —~| Sleep waiting for more work.
704~ Go to step 680 Return to global work dispatcher

Microsoft Corporation
Exhibit 1016-00027

U.S. Patent

Apr. 8, 2003

Sheet 25 of 32 US 6,546,425 Bl

720

Is
there another
connection for this

device?

726

Allocate
connection
resources?

726A
\

State Configure
B~ |

722\

Yes

Abort Connection
Call step #999

. IS- Rl
it the initial
connection

P

sequence and No
connection ID

match?

7124 ~__

Duplicate frame
Discard

725~ Go to step 680 ‘T

No

—Error—

S ——
Out of resources 721

!

Abort connection request

Call step #999

[Acquire security context

731

Did
security
succeed?

T~ 728
'

Go to step 680 F—T

\ 729

FIG. 14A

Passive Connection request logic

Microsoft Corporation
Exhibit 1016-00028

U.S. Patent Apr. 8, 2003 Sheet 26 of 32 US 6,546,425 Bl

132
~~~ Send IMP establish Frame

State Established

733 Start retransmitter

!

Wait
For authentication process to
conclude. Return to global dispatcher

7134

735 736~

Abort Connection
Go to step #3999

Device
and user
authenticated?

137 738
| i

Indicate connection to
listening application

Get configuration

739

740~

Abort Connection
Go to step #3993

Did
configuration
ond connect
indication
succeed?

741 ~

Sleep waiting for more work
Return to global dispatcher

FIG. 14B

Microsoft Corporation.
Exhibit 1016-00029



U.S. Patent Apr. 8, 2003 Sheet 27 of 32 US 6,546,425 Bl

999 1000

1

Abort Connection requesﬂ

Dispatched
Abort Connection request

1001

Connection

associated
with

request?

No

Yes
1002

Save original state

‘ _— 1002A
State Abort

1003

1004\

Connection
indicated to listen

application
?

Yes Indicate disconnection to
listening application

1003A —

State Post Mortem

1005 Y
Release connection resources]

1006 1007-\

Go to step #1012

Original

state>

State Pending
?

Yes

FIG. 15A

Abort Connection request logic

Microsoft Corporation.
Exhibit 1016-00030



U.S. Patent

1008

1011\

Apr. 8, 2003

IMP

Frame
associated?

Y

Sheet 28 of 32

it

US 6,546,425 B1

Is
an IMP
Abort

Frame

Yes

10

Send IMP Abort Frame

;

N[

Discard Frame

1012~ Return to calling routine

FIG. 15B

Microsoft Corporation
Exhibit 1016-00031



US 6,546,425 B1

Sheet 29 of 32

Apr. 8, 2003

U.S. Patent

S3JNJONIYS DO J3UdISIT dIH(

oI VI

boyy M3U
buid<~ jaxysos 42 buid
19AJ3S SIY) YlIM P3)DIIOSSD Apuazas Juabo Aojay 41008 Jppoib
J9MIBS JOHO D JO SSelppy o  (l4eA4ss
19M3S xau 0) usjurod 1x3au
T VET
¢om|\
Jj0 PIayaDq 3G uDI DY} MDA NO—-3wn)  YN03WI}
49)uno2 buid
8qunu g uonoosubsy 13bajui pIX
J8AI3S JO }SI pajyulj  SJ9AIIS
1194009

¢06 l\

Microsoft Corporation

Exhibit 1016-00032



US 6,546,425 Bl

Sheet 30 of 32

Apr. 8, 2003

U.S. Patent

Ll b4

f

—

) o.n.ml\.* buid<-yayo0s=buid< ~Janias _
ggg—"] UL 1S 4 !
818 iUl {1s1] ur ys11j ssajun)
JOAISS UMOUY |0 Jo} MU <—Janss s
08 xom:UmEm (109 | mmn.: MU jasay ISl 0] Jamnas ppy
|J[ At 28 M
buid<—jax00s ++ J00d PIDH, ss_ﬂmﬂa o u
pix<—}ay0d = PIX<-}8420S }o5 s /Ty sppoib—joyond A RENES
omm\ A 9.8 ¥18 X i
: ¢
X< —
042z Jppoib ; P .x“ﬂw&uom
pIx<—)ax20d
018
A
&
[t d
[IETRES N 0
19103810 dOHQ PU3S 808
‘WOpUDS = DIX<—]8%208 19§ A
2 ¢
0, ek 0 el
D_wcm__uAlwmxu_ua xomcumc_& 199 N Q:cw:oAl%
8C8 :
78 908
noawi|
ER LT ITIET G JIETEREIY 194904 JBAIBS, BAIBOBY
o) _— (8
i cnuoap s pa LM T | ey pos

Microsoft Corporation

Exhibit 1016-00033



US 6,546,425 B1

Sheet 31 of 32

Apr. 8, 2003

U.S. Patent

2
dSI 18U03<
sbuid<-19%20s
R SiOAMSS ON

i9AAS ON
foubig

998 98

¢3nyL

abuby0IN0
8|

abuoy 40 1nQ
loubis

WY 18ugng
joubig

8G8 958

¢3nyl
wooyjaugng
5

V. 9Ol

Janag aN

58

IS4
abuoyj0InQ
13§

S8 ~

3
dy00 18u0<
buid ¢ -isnias
—buid<—ja3008

0s8

ISV
wooyjaugng

195

8v8 ~

¢
dSSS 18U0<

Buid< - 1an1as
-buid<-1ay008

jsr jo doy 0
N¢m..\\._uzom Ylim L0IS

!

3Ny L=3buoy0IN0 135

e N1 =Woay}augng 13

8¢

8

Microsoft Corporation

Exhibit 1016-00034



US 6,546,425 B1

Sheet 32 of 32

Apr. 8, 2003

U.S. Patent

788 ~"

wa)skS pu3 3lIqoN
—43IN3J T0YINOD ININVOY

8L Ol

098

(1oubls N io} JoM-3NOG Iﬂsﬁ_ae 0} wooy |oubig \

+

UOROAHON
abuoyy sdope)y)
SO 31qosig

+

088 —"1

$13ug)sr) |0 3s0[)

8.8

vi8
&
abuos ui
130

048
¢
abuos 0
1o

¥98

A8 “Nsonsbai o o) yg 1oubls /

+

A

L8
b4

sjuosisibal o} Yoo [oubig \

*

898 —1

3S03) JJHQ Mau3l
puo aso3py 9} SO o)

998

I3ua)sy aso|)

( 1oubis sauasn )

298 \

i

8l umouy
0} PPD !S3J0U3JUI UMOUY JOU
INq UaLN3 ||o uo SIBuB)SI uadp

-9

il

1s)| uauna u sabuoy ou sassaippo
UMOUY [ID UO SIU3}S!| 3s0|)

~—968

!

dDHQ 9sn joy} sassaippo
aund jo isi 136 0} S0 109

]

UONJOINON 3buDy)

*

300 SO 3|qou3 [ 058

0Sg~""] $38SIppO UMOWY jO ISI| 0ia7

h_ccm_m abuoyy asopaqy SO w

Microsoft Corporation

Exhibit 1016-00035



US 6,546,425 Bl

1

METHOD AND APPARATUS FOR
PROVIDING MOBILE AND OTHER
INTERMITTENT CONNECTIVITY IN A
COMPUTING ENVIRONMENT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from provisional appli-
cation No. 60/103,598 filed Oct. 9, 1998 entitled “Method
and Apparatus For Providing Wireless Connectivity In A
Computing Environment” (which provisional application is
incorporated by reference herein in its entirety).

FIELD OF THE INVENTION

The present invention relates to connectivily between
networked computing devices. More particularly, the
present invention relates to methods and systems that trans-
parently address the characteristics of nomadic systems, and
enable existing network applications to run reliably in the
associated mobile environments. Still more particularly, the
invention relates to techniques and systems for providing a
continuous data stream connection between intermittently-
connected devices such as handheld data units and personal
computing devices.

BACKGROUND AND SUMMARY OF THE
INVENTION

Increasingly, companies are seeing rapid access to key
information as the way to maintaining a competitive advan-
tage. To provide immediate access to this information,
mobile and other intermittently-connected computing
devices are quietly and swiftly becoming an essential part of
corporate networks—especially with the proliferation of
inexpensive laptops and hand-held computing devices.
However, integrating these nomadic devices into existing
network infrastructures has created a challenge for the
information manager.

Many problems in mobile networking parallel the diffi-
culties in early local area networks (LLANs) before the
adoption of Ethernet. There are a variety of mobile protocols
and interfaces, and because standards are just developing,
there is little interoperability between systems. In addition,
performance over these network technologies has been
typically slow and bandwidth limited. Implementation costs
to date have been high due the specialized nature of
deployed systems.

Along with these issues, mobile technologies present a
category of problems unto their own. Interconnects back
into the main network may travel over and through a public
network infrastructure, thus allowing sensitive information
to possibly be tapped into. Furthermore, if any of the
intermediary interconnects are via a wireless interface, the
information is actually broadcast, and anyone with a similar
interface can eavesdrop without much difficulty.

But, perhaps even more significantly, mobile networking
has generally in the past been limited to mostly message-
oriented or stateless applications—and thus has not been
readily adaptable for existing or new corporate applications
that use client/server, host-terminal, web-based or shared file
systems models. This is because such commonly used
applications need stateful sessions that employ a continuous
stream of data—not just a stateless packet exchange—to
work effectively and reliably.

To this end, many or most popular off-the-shelf network-
ing applications require TCP/IP sessions, or private virtual

[

10

20

30

h
[

60

2

circuits. These sessions cannot continue to function if they
encounter network interruptions, nor can they tolerate roam-
ing between networks (i.e., a change of network addresses)
while established. Yet, mobile networking is, by its nature,
dynamic and unreliable. Consider these common scenarios
encountered in mobile networks:

Disconnected or Out of Range User

When a mobile device disconnects from a given network
or loses contact (¢.g., through an outage or “hole” in the
coverage of a wireless interconnect), the session-oriented
application running on the mobile device loses its stateful
connection with its peer and ceases to operate. When the
device is reattached or moves back into contact, the user
must re-connect, log in again for security purposes, find the
place in the application where work was left off, and
possibly re-enter lost data. This reconnection process is time
consuming, costly, and can be very frustrating.

Moving to a Different Network or Across a Router Boundary
(Network Address Change)

Mobile networks are generally segmented for manage-
ability purposes. But the intent of mobile devices is to allow
them to roam. Roaming from one network interconnect to
another can mean a change of network address. If this
happens while the system is operational, the routing infor-
mation must be changed for communications to continue
between the associated peers. Furthermore, acquiring a new
network address may require all of the previously estab-
lished stateful application sessions to be terminated—again
presenting the reconnection problems noted above.
Security

As mentioned before, companies need to protect critical
corporate data. Off-the-shelf enterprise applications are
often written with the assumption that access to the physical
network is controlled (i.e., carried within cables installed
inside a secure facility), and security is maintained through
an additional layer of authentication and possible encryp-
tion. These assumptions have not been true in the nomadic
computing world—where data is at risk for interception as
it travels over public airways or public wire-line infrastruc-
tures.

SUMMARY

It would be highly desirable to provide an integrated
solution that transparently addresses the characteristics of
nomadic systems, and enables existing network applications
to run reliably in these mobile environments.

A presently preferred exemplary embodiment of the
present invention solves this problem by providing a seam-
less solution that extends the enterprise network, letting
network managers provide mobile users with easy access to
the same applications as stationary users without sacrificing
reliability or centralized management. The solution com-
bines advantages of present-day wire-line network standards
with emerging mobile standards to create a solution that
works with existing network applications.

In accordance with one aspect of a presently preferred
exemplary embodiment of the present invention, a Mobility
Management Server (MMS) coupled to the mobile intercon-
nect maintains the state of each of any number of Mobile
End Systems (MES) and handles the complex session man-
agement required to maintain persistent connections to the
network and to peer application processes. If a Mobile End
System becomes unreachable, suspends, or changes network
address (e.g., due to roaming from one network interconnect
to another), the Mobility Management Server maintains the
connection to the associated peer—allowing the Mobile End
System to maintain a continuous virtual connection even
though it may temporarily lose its actual physical connec-
tion.

Microsoft Corporation
Exhibit 1016-00036



US 6,546,425 Bl

3

A presently preferred exemplary embodiment of the
present invention also provides the following (among
others) new and advantageous techniques and arrangements:

a Mobility Management Server providing user config-

urable session prioritics for mobile clients;

per-user mobile policy management for managing con-

sumption of network resources;

a roaming methodology making use of the industry stan-
dard Dynamic Host Configuration Protocol (DHCP) in
coordination with a Mobility Management Server;

automatic system removal of unreliable datagrams based
on user configurable timeouts; and

automatic system removal of unreliable datagrams based

on user configurable retries.

In more detail, a presently preferred exemplary embodi-
ment of the present invention in one of its aspects provides
a Mobility Management Server that is coupled to the mobile
interconnect (network). The Mobility Management Server
maintains the state of cach of any number of Mobile End
Systems and handles the complex session management
required to maintain persistent connections to the network
and to other processes (¢.g., running on other network-based
peer systems). If a Mobile End System becomes
unreachable, suspends, or changes network address (c.g.,
due to roaming from one network interconnect to another),
the Mobility Management Server maintains the connection
to the associated peer, by acknowledging receipt of data and
queuing requests. This proxying by the Mobility Manage-
ment Server allows the application on the Mobile End
System to maintain a continuous connection even though it
may temporarily lose its physical connection to a specific
network medium.

In accordance with another aspect of a presently preferred
exemplary embodiment of the present invention, a Mobility
Management Server manages addresses for Mobile End
Systems. Each Mobile End System is provided with a proxy
address on the primary network. This highly available
address is known as the “virtual address” of the Mobile End
System. The Mobility Management Server maps the virtual
addresses to current “point of presence™ addresses of the
nomadic systems. While the point of presence address of a
Mobile End System may change when the mobile system
changes from one network interconnect to another, the
virtual address stays constant while any connections are
active or longer if the address is statically assigned.

In accordance with yet another aspect of a presently
preferred exemplary embodiment of the present invention, a
Mobility Management Server provides centralized system
management of Mobile End Systems through a console
application and exhaustive metrics. A presently preferred
exemplary embodiment of the present invention also pro-
vides user configurable session priorities for mobile clients
running through a proxy server, and per-user mobile policy
management for managing consumption of network
resources.

In accordance with yet another aspect of a presently
preferred exemplary embodiment of the present invention, a
Remote Procedure Call protocol and an Internet Mobility
Protocol are used to establish communications between the
proxy server and each Mobile End System.

Remote procedure calls provide a method for allowing a
process on a local system to invoke a procedure on a remote
system. The use of the RPC protocol allows Mobile End
Systems to disconnect, go out of range or suspend operation
without losing active network sessions. Since session main-
tenance does not depend on a customized application, off-

10

20

30

40

50

h
[

60

4

the-shelf applications will run without modification in the
nomadic environment.

The Remote Procedure Call protocol generates transac-
tions into messages that can be sent via the standard network
transport protocol and infrastructure. These RPC messages
contain the entire network transaction initiated by an appli-
cation running on the Mobile End System—enabling the
Mobility Management Server and Mobile End System to
keep connection state information synchronized at all
times—even during interruptions of the physical link con-
necting the two. In the preferred embodiment of a presently
preferred exemplary embodiment of the present invention
providing RPC’s, the proxy server and the Mobile End
Systems share sufficient knowledge of each transaction’s
state to maintain coherent logical database about all shared
connections at all times.

The Internet Mobility Protocol provided in accordance
with a presently preferred exemplary embodiment of the
present invention compensates for differences between
wired local area network interconnects and other less reli-
able networks such as a wireless LAN or WAN. Adjusted
frame sizes and protocol timing provide significant perfor-
mance improvements over non-mobile-aware transports—
dramatically reducing network traffic. This is important
when bandwidth is limited or when battery life is a concemn.
The Internet Mobility Protocol provided in accordance with
a presently preferred exemplary embodiment of the present
invention also ensures the security of organizational data as
it passes between the Mobile End System and the Mobility
Management Server over public network interconnects or
airways. The Internet Mobility Protocol provides a basic
firewall function by allowing only authenticated devices
access to the organizational network. The Internet Mobility
Protocol can also certify and encrypt all communications
between the Mobility Management Server and the Mobile
End System.

In accordance with yet another aspect of a presently
preferred exemplary embodiment of the present invention,
mobile inter-connectivity is built on standard transport pro-
tocols (e.g., TCP/IP, UDP/IP and DHCP, etc) to extend the
reach of standard network application interfaces. A presently
preferred exemplary embodiment of the present invention
cfficiently integrates transport, security, address
management, device management and user management
needs to make nomadic computing environments effectively
transparent. The Internet Mobility Protocol provides an
cfficient mechanism for multiplexing multiple strecams of
data (reliable and unreliable) through a single virtual chan-
nel provided by such standard transport protocols over
standard network infrastructure.

With the help of the RPC layer, the Internet Mobility
Protocol coalesces data from different sources targeted for
the same or different destinations, together into a single
stream and forwards it over a mobile link. At the other end
of the mobile link, the data is demultiplexed back into
multiple distinct streams, which are sent on to their ultimate
destination(s). The multiplexing/demultiplexing technique
allows for maximum use of available bandwidth (by gener-
ating the maximum sized network frames possible), and
allows multiple channels to be established (thus allowing
prioritization and possibly providing a guaranteed quality of
service if the underlying network provides the service).

The Internet Mobility Protocol provided in accordance
with a presently preferred exemplary embodiment of the

Microsoft Corporation
Exhibit 1016-00037



US 6,546,425 Bl

5

present invention provides the additional features and
advantages, for example:

Transport protocol independence.

Allows the network point of presence (POP) or network
infrastructure to change without affecting the flow of
data (except where physical boundary, policy or limi-
tations of bandwidth may apply).

Minimal additional overhead.

Automatic fragment resizing to accommodate the trans-
mission medium. (When the protocol data unit for a
given frame is greater then the available maximum
transmission unit of the network medium, the Internet
Mobility Protocol will fragment and reassemble the
frame to insure that it can traverse the network. In the
event of a retransmit, the frame will again be assessed.
If the network infrastructure or environment changes,
the frame will be refragmented or in the case that the
maximum transmission unit actually grew, sent as a
single frame.)

Semantics of unreliable data are preserved, by allowing
frames to discard unreliable data during retransmit.
Provides a new semantic of Reliable Datagram service.
(Delivery of datagrams can now be guaranteed to the
peer terminus of the Internet Mobility Protocol con-
nection. Notification of delivery can be provided to a

requesting entity.)

Considers the send and receive transmission path
separately, and automatically tailors its operating
parameters to provided optimum throughput. (Based on
hysteresis, it adjusts such parameters as frame size/
fragmentation threshold, number of frames outstanding
(window), retransmit time, and delayed acknowledge-
ment time to reduce the amount of duplicate data sent
through the network.)

Network fault tolerant (since the expected usage is in a
mobile environment, temporary loss of network
medium connectivity does not result in a termination of
the virtual channel or application based connection).

Provides an in-band signaling method to its peer to adjust
operating parameters (each end of the connection can
alert its peer to any changes in network topology or
environment).

Employs congestion avoidance algorithms and gracefully
decays throughput when necessary.

Employs selective acknowledgement and fast retransmit
policies to limit the number of gratuitous
retransmissions, and provide faster handoff recovery in
nomadic environments. (This also allows the protocol
to maintain optimum throughput in a lossy network
environment.)

Employs sliding window technology to allow multiple
frames to be outstanding. (This parameter is adjustable
in each direction and provides for streaming frames up
to a specified limit without requiring an acknowledge-
ment from its peer.)

Sequence numbers are not byte oriented, thus allowing for
a single sequence number to represent up to a maxi-
mum payload size.

Security aware. (Allows for authentication layer and
encryption layer to be added in at the Internet Mobility
Protocol layer.)

Compression to allow for better efficiency through band-
width limited links.

Balanced design, allowing either peer to migrate to a new
point of presence.

10

20

30

40

h
[

60

6

Either side may establish a connection to the peer.

Allows for inactivity timeouts to be invoked to readily
discard dormant connections and recover expended
resources.

Allows for a maximum lifetime of a given connection
(c.g., to allow termination and/or refusal to accept
connections after a given period or time of day).

A presently preferred exemplary embodiment of the
present invention also allows a system administrator to
manage consumption of network resources. For example,
the system administrator can place controls on Mobile End
Systems, the Mobility Management Server, or both. Such
controls can be for the purpose, for example, of managing
allocation of network bandwidth or other resources, or they
may be related to security issues. It may be most efficient to
perform management tasks at the client side for clients with
lots of resources. However, thin clients don’t have many
resources to spare, so it may not be practical to burden them
with additional code and processes for performing policy
management. Accordingly, it may be most practical to
perform or share such policy management functions for thin
clients at a centralized point such as the Mobility Manage-
ment Server. Since the Mobility Management Server proxies
the distinct data streams of the Mobile End Systems, it
provides a central point from which to conduct policy
management. Moreover, the Mobility Management Server
provides the opportunity to perform policy management of
Mobile End Systems on a per user and/or per device basis.
Since the Mobility Management Server is proxying on a per
user basis, it has the ability to control and limit each user’s
access to network resources on a per-user basis as well as on
a per-device basis.

As one simple example, the Mobility Management Server
can “lock out” certain users from accessing certain network
resources. This is especially important considering that
interface network is via a mobile interconnect, and may thus
“extend” outside of the boundaries of a locked organiza-
tional facility (consider, for example, an ex-employee who
tries to access the network from outside his former employ-
er’s building). However, the policy management provided
by the Mobility Management Server can be much more
sophisticated. For example, it is possible for the Mobility
Management Server to control particular Web URL’s par-
ticular users can visit, filter data returned by network ser-
vices requests, and/or compress data for network bandwidth
conservation. This provides a way to enhance existing and
new application-level services in a scamless and transparent
manner.

A presently preferred exemplary embodiment of the
present invention thus extends the enterprise network, let-
ting network managers provide mobile users with easy
access to the same applications as stationary users without
sacrificing reliability or centralized management. The solu-
tion combines advantages of existing wire-line network
standards with emerging mobility standards to create a
solution that works with existing network applications.

BRIEF DESCRIPTION OF THE DRAWINGS

These, as well as other features and advantages of this
invention, will be more completely understood and appre-
ciated by careful study of the following more detailed
description of presently preferred example embodiments of
the invention taken in conjunction with the accompanying
drawings, of which:

FIG. 1 is a diagram of an overall mobile computing
network provided in accordance with a presently preferred
exemplary embodiment of the present invention;

Microsoft Corporation
Exhibit 1016-00038



US 6,546,425 Bl

7

FIG. 2 shows an example software architecture for a
Mobile End System and a Mobility Management Server;

FIG. 2A shows example steps performed to transfer
information between a Mobile End System and a Mobility
Management Server;

FIG. 3 shows an example mobile interceptor architecture;

FIG. 3A is a flowchart of example steps performed by the
mobile interceptor;

FIG. 3B is a flowchart of example steps performed by an
RPC engine to handle RPC work requests;

FIGS. 4, 5 and SA-SC are flowcharts of example steps to
process RPC work requests;

FIG. 6 is a diagram of an example received work request;

FIG. 7 is a diagram showing how a received work request
can be dispatched onto different priority queues;

FIGS. 8 and 9 show processing of the contents of the
different priority queues;

FIGS. 10B-10C, 11-12, 12A-12C, 13A-13C, 14A-14B,
and 15A-15B show example steps performed to provide an
Internet Mobility Protocol;

FIG. 16 shows example listener data structures; and

FIGS. 17, 17A and 18 are flowcharts of example steps
performed to provide for mobile interconnect roaming.

DETAILED DESCRIPTION OF PRESENTLY
PREFERRED EXAMPLE EMBODIMENTS

FIG. 1 is an example of mobile enhanced networked
computer system 100 provided in accordance with a pres-
ently preferred exemplary embodiment of the present inven-
tion. Networked computer system 100 includes a Mobility
Management Server 102 and one or more Mobile End
Systems 104. Mobile End Systems 104 can communicate
with Mobility Management Server 102 via a local area
network (LAN) 108. Mobility Management Server 102
serves as network level proxy for Mobile End Systems 104
by maintaining the state of each Mobile End System, and by
handling the complex session management required to main-
tain persistent connections to any peer systems 110 that host
network applications—despite the interconnect between
Mobile End Systems 104 and Mobility Management Server
102 being intermittent and unreliable. In the preferred
embodiment, Mobility Management Server 102 communi-
cates with Mobile End Systems 104 using Remote Proce-
dure Call and Internet Mobility Protocols in accordance with
a presently preferred exemplary embodiment of the present
invention.

In this particular example, Mobile End Systems 104 are
sometimes but not always actively connected to Mobility
Management Server 102. For example:

Some Mobile End Systems 104a—104k may communicate
with Mobility Management Server 102 via a mobile
interconnect (wirelessly in this case), e.g., conventional
electromagnetic (e.g., radio frequency) transceivers
106 coupled to wireless (or wire-line) local area or
wide arca network 108. Such mobile interconnect may
allow Mobile End Systems 104a—1044 to “roam” from
one cover area 107a to another coverage area 107k.
Typically, there is a temporary loss of communications
when a Mobile End System 104 roams from one
coverage area 107 to another, moves out of range of the
closest transceiver 106, or has its signal temporarily
obstructed (e.g., when temporarily moved behind a
building column or the like).

Other Mobile End Systems 104/, 104, . . . may com-
municate with Mobility Management Server 102 via

[

10

20

30

40

60

8

non-permanent wire-based interconnects 109 such as
docking ports, network cable connectors, or the like.
There may be a temporary loss of communications
when Mobile End Systems 104 are temporarily discon-
nected from LAN 108 by breaking connection 109,
powering off the Mobile End Systems, etc.

Still other Mobile End Systems (e.g., 104r) may be

nomadically coupled to Mobility Management Server
102 via a further network topography 111 such as a
wide area network, a dial-up network, a satellite
network, or the Internet, to name a few examples. In
one example, network 111 may provide intermittent
service. In another example, Mobile End Systems 104
may move from one type of connection to another (e.g.,
from being connected to Mobility Management Server
102 via wire-based interconnect 109 to being connected
via network 111, or vice versa)—its connection being
temporarily broken during the time it is being moved
from one connection to another.

Mobile End Systems 104 may be standard mobile devices
and off the shelf computers. For example, Mobile End
System 104 may comprise a laptop computer equipped with
a conventional radio transceiver and/or network cards avail-
able from a number of manufacturers. Mobile End Systems
104 may run standard network applications and a standard
operating system, and communicate on the transport layer
using a conventionally available suite of transport level
protocols (e.g., TCP/IP suite.) In accordance with a presently
preferred exemplary embodiment of the present invention,
Mobile End Systems 104 also execute client software that
enables them to communicate with Mobility Management
Server 102 using Remote Procedure Call and Internet
Mobility Protocols that are transported using the same such
standard transport level protocols.

Mobility Management Server 102 may comprise software
hosted by a conventional Windows NT or other server. In the
preferred embodiment, Mobility Management Server 102 is
a standards-compliant, client-server based intelligent server
that transparently extends the enterprise network 108 to a
nomadic environment. Mobility Management Server 102
serves as network level proxy for each of any number of
Mobile End Systems 104 by maintaining the state of each
Mobile End System, and by handling the complex session
management required to maintain persistent connections to
any peer systems 110 that host network applications—
despite the mobile interconnect between Mobile End Sys-
tems 104 and transceivers 106 being intermittent and unre-
liable.

For example, server 102 allows any conventional (e.g.,
TCP/IP based) network application to operate without modi-
fication over mobile connection. Server 102 maintains the
sessions of Mobile End Systems 104 that disconnect, go out
of range or suspend operation, and resumes the sessions
when the Mobile End System returns to service. When a
Mobile End System 104 becomes unreachable, shuts down
or changes its point of presence address, the Mobility
Management Server 102 maintains the connection to the
peer system 110 by acknowledging receipt of data and
queuing requests until the Mobile End System once again
becomes available and reachable.

Server 102 also extends the management capabilities of
wired networks to mobile connections. Each network soft-
ware layer operates independently of others, so the solution
can be customized to the environment where it is deployed.

As one example, Mobility Management Server 102 may
be attached to a conventional organizational network 108
such as a local area network or wide area network. Network

Microsoft Corporation
Exhibit 1016-00039



US 6,546,425 Bl

9

108 may be connected to a variety of fixed-end systems 110
(e.g., one or most host computers 110). Mobility Manage-
ment Server 102 enables Mobile End Systems 104 to
communicate with Fixed End System(s) 110 using continu-
ous session type data streams even though Mobile End
Systems 104 sometimes lose contact with their associated
network interconnect or move from one network intercon-
nect 106, 109, 111 to another (e.g., in the case of wircless
interconnect, by roaming from one wircless transceiver 106
coverage area 107 to another).

AMobile End System 104 establishes an association with
the Mobility Management Server 102, either at startup or
when the Mobile End System requires network services.
Once this association is established, the Mobile End System
104 can start one or more network application sessions,
either serially or concurrently. The Mobile End System
104-to-Mobility Management Server 102 association allows
the Mobile End System to maintain application sessions
when the Mobile End System, disconnects, goes out of range
or suspends operation, and resume sessions when the Mobile
End System returns to service. In the preferred embodiment,
this process is entirely automatic and does not require any
intervention on the user’s part.

In accordance with an aspect of a presently preferred
excmplary embodiment of the present invention, Mobile
End Systems 104 communicate with Mobility Management
Server 102 using conventional transport protocols such as,
for example, UDP/IP. Use of conventional transport proto-
cols allows Mobile End Systems 104 to communicate with
Mobility Management Server 102 using the conventional
routers 112 and other infrastructure already existing on
organization’s network 108. In accordance with a presently
preferred exemplary embodiment of the present invention, a
higher-level Remote Procedure Call protocol generates
transactions into messages that are sent over the mobile
enhanced network 108 via the standard transport protocol(s).
In this preferred embodiment, these mobile RPC messages
contain the entire network transaction initiated by an appli-
cation running on the Mobile End System 104, so it can be
completed in its entirety by the Mobility Management
Server. This enables the Mobility Management Server 102
and Mobile End System 104 to keep connection state
information synchronized at all times—even during inter-
ruptions of network medium connectivity.

Each of Mobile End Systems 104 executes a mobility
management software client that supplies the Mobile End
System with the intelligence to intercept all network activity
and relay it via the mobile RPC protocol to Mobility
Management Server 102. In the preferred embodiment, the
mobility management client works transparently with oper-
ating system features present on Mobile End Systems 104
(e.g., Windows NT, Windows 98, Windows 95, Windows
CE, etc.) to keep client-site application sessions active when
contact is lost with the network.

Mobility Management Server 102 maintains the state of
each Mobile End System 104 and handles the complex
session management required to maintain persistent connec-
tions to associated peer 108 such as host computer 110
attached to the other end of the connection end point. If a
Mobile End System 104 becomes unreachable, suspends, or
changes network address (e.g., due to roaming from one
network interconnect to another), the Mobility Management
Server 102 maintains the connection to the host system 110
or other connection end-point, by acknowledging receipt of
data and queuing requests. This proxy function means that
the peer application never detects that the physical connec-
tion to the Mobile End System 104 has been lost—allowing

10

20

30

40

50

60

10

the Mobile End System’s application(s) to effectively main-
tain a continuous connection with its associated session end
point (by simply and easily resuming operations once a
physical connection again is established) despite the mobile
system temporarily losing connection or roaming from one
network interconnect 106 A to another network interconnect
106K within coverage area 107K.

Mobility Management Server 102 also provides address
management to solve the problem of Mobile End Systems
104 receiving different network addresses when they roam
to different parts of the segmented network. Each Mobile
End System 104 is provided with a virtual address on the
primary network. Standard protocols or static assignment
determine these virtual addresses. For each active Mobile
End System 104, Mobility Management Server 102 maps
the virtual address to the Mobile End System’s current
actual (“point of presence”) address. While the point of
presence address of a Mobile End System 104 may change
when the device changes from one network segment to
another, the virtual address stays constant while any con-
nections are active or longer if the address is assigned
statically.

Thus, the change of a point of presence address of a
Mobile End System 104 remains entirely transparent to an
associated session end point on host system 110 (or other
peer) communicating with the Mobile End System via the
Mobility Management Server 102. The peer 110 sees only
the (unchanging) virtual address proxied by the ran server
102

In the preferred embodiment, Mobility Management
Server 102 can also provide centralized system management
through console applications and exhaustive metrics. A
system administrator can use these tools to configure and
manage remote connections, and troubleshoot remote con-
nection and system problems.

The proxy server function provided by Mobility Manage-
ment Server 102 allows for different priority levels for
network applications, users and machines. This is useful
because each Mobility Management Server 102 is composed
of finite processing resources. Allowing the system manager
to configure the Mobility Management Server 102 in this
way provides enhanced overall system and network perfor-
mance. As one example, the system manager can configure
Mobility Management Server 102 to allow real time appli-
cations such as streaming audio or video to have greater
access to the Mobility Management Server 102°s resources
than other less demanding applications such as email.

In more detail, Mobility Management Server 102 can be
configured via an application or application interface; stan-
dard network management protocols such as SNMP; a
Web-based configuration interface; or a local user interface.
It is possible to configure association priority and/or to
configure application priority within an association. For
example, the priority of cach association relative to other
associations running through the Mobility Management
Server 102 is configurable by either the user name, or
machine name (in the preferred embodiment, when the
priority is configured for both the user and the machine that
a user is logged in on, the configuration for the user may
have higher precedence). In addition or alternatively, each
association may have several levels of application priority,
which is configured based on network application name. The
system allows for any number of priority levels to exist. In
one particular implementation, three priority levels are pro-
vided: low, medium and high.

Server and Client Example Software Architecture

FIG. 2 shows an example software architecture for Mobile

End System 104 and Mobility Management Server 102. In

Microsoft Corporation
Exhibit 1016-00040



US 6,546,425 Bl

11

accordance with one aspect of a presently preferred exem-
plary embodiment of the present invention, Mobile End
System 104 and Mobility Management Server 102 run
standard operating system and application software—with
only a few new components being added to enable reliable
and efficient persistent session connections over an inter-
mittently connected mobile network 108. As shown in FIG.
2, Mobile End System 104 runs conventional operating
system software including network interface drivers 200,
TCP/UDP transport support 202, a transport driver interface
(TDI) 204, and a socket API 206 used to interface with one
or more conventional network applications 208. Conven-
tional network file and print services 210 may also be
provided to communicate with conventional TDI 204.
Server 102 may include similar conventional network inter-
face drivers 200", TCP/UDP transport support 202, a trans-
port driver interface (TDI) 204", and a socket API 206' used
to interface with one or more conventional network appli-
cations 208'. Mobile End System 104 and Mobility Man-
agement Server 102 may cach further include conventional
security software such as a network/security provider 236
(Mobile End System) and a user/security database 238
(server).

In accordance with one exemplary aspect of the present
invention, a new, mobile interceptor component 212 is
inserted between the TCP/UDP transport module 202 and
the transport driver interface (TDI) 204 of the Mobile End
System 104 software architecture. Mobile interceptor 212
intercepts certain calls at the TDI 204 interface and routes
them via RPC and Internet Mobility Protocols and the
standard TCP/UDP transport protocols 202 to Mobility
Management Server 102 over network 108. Mobile inter-
ceptor 212 thus can intercept all network activity and relay
it to server 102. Interceptor 212 works transparently with
operating system features to allow client-side application
sessions to remain active when the Mobile End System 104
loses contact with network 108.

While mobile interceptor 212 could operate at a different
level than the transport driver interface 204 (e.g., at the
socket API level 206), there are advantages in having mobile
interceptor 212 operate at the TDI level. Many conventional
operating systems (e.g., Microsoft Windows 95, Windows
98, Windows NT and Windows CE) provide TDI interface
204—thus providing compatibility without any need to
change operating system components. Furthermore, because
the transport driver interface 204 is a kernel level interface,
there is no need to switch to user mode—thus realizing
performance improvements. Furthermore, mobile intercep-
tor 212 working at the level of TDI interface 204 is able to
intercept from a variety of different network applications
208 (e.g., multiple simultaneously running applications) as
well as encompassing network file and print services 210
(which would have to be handled differently if the intercep-
tor operated at the socket API level 206 for example).

FIG. 2A shows an example high level flowchart of how
mobile interceptor 212 works. A call to the TDI interface 204
of Mobile End System 104 (block 250) is intercepted by
mobile interceptor 212 (block 252). Mobile interceptor 212
packages the intercepted RPC call in a fragment in accor-
dance with an Internet Mobility Protocol, and sends the
fragment as a datagram via a conventional transport protocol
such as UDP or TCP over the LAN, WAN or other transport
108 to Mobility Management Server 102 (block 252). The
Mobility Management Server 102 receives and unpackages
the RPC datagram (block 254), and provides the requested
service (for example, acting as a proxy to the Mobile End
System application 208 by passing data or a response to an
application server process running on I'ixed End System

110).

[

10

Jury
tn

20

30

40

60

12

Referring once again to FIG. 2, Mobility Management
Server 102 includes an address translator 220 that intercepts
messages to/from Mobile End Systems 104 via a conven-
tional network interface driver 222. For example, address
translator 230 recognizes messages from an associated ses-
sion peer (Fixed End System 110) destined for the Mobile
End System 104 virtual address. These incoming Mobile
End System messages are provided to proxy server 224,
which then maps the virtual address and message to previ-
ously queued transactions and then forwards the responses
back to the current point of presence addresses being used by
the associated Mobile End System 104.

As also shown in FIG. 2, Mobility Management Server
102 includes, in addition to address translation (intermediate
driver) 220, and proxy server 224, a configuration manager
228, a control/user interface 230 and a monitor 232. Con-
figuration management 228 is used to provide configuration
information and parameters to allow proxy server 224 to
manage connections. Control, user interface 230 and moni-
tor 232 allow a user to interact with proxy server 214.
Mobile Interceptor

FIG. 3 shows an example software architecture for mobile
interceptor 212 that supports the RPC Protocol and the
Internet Mobility Protocol in accordance with a presently
preferred exemplary embodiment of the present invention.
In this example, mobile interceptor 212 has (two functional
components:

a Remote Procedure Call protocol engine 240; and

an Internet Mobility Protocol engine 244.

Proxy server 224 running on Mobility Management Server
102 provides corresponding engines 240, 244'.

Mobile interceptor 212 in the preferred embodiment thus
supports Remote Procedure Call protocol and Internet
Mobility Protocol to connect Mobility Management Server
102 to each Mobile End System 104. Remote procedure
calls provide a method for allowing a process on a local
system to invoke a procedure on a remote system. Typically,
the local system is not aware that the procedure call is being
executed on a remote system. The use of RPC protocols
allows Mobile End System 104 to go out of range or suspend
operation without losing active network sessions. Since
session maintenance does not depend on a customized
application, off-the-shelf applications will run without modi-
fication in the mobile environment of network 108.

Network applications typically use application-level
interfaces such as Windows sockets. A single call to an
application-level API may generate several outgoing or
incoming data packets at the transport, or media access
layer. In prior mobile networks, if one of these packets is
lost, the state of the entire connection may become ambigu-
ous and the session must be dropped. In the preferred
exemplary embodiment of the present invention providing
RPCs, the Mobility Management Server 102 and the Mobile
End Systems 104 share sufficient knowledge of the connec-
tion state to maintain a coherent logical link at all times—
even during physical interruption.

The Internet Mobility Protocol provided in accordance
with a presently preferred exemplary embodiment of the
present invention compensates for differences between wire-
line and other less reliable networks such as wireless.
Adjusted frame sizes and protocol timing provide significant
performance improvements over non-mobile-aware
transports—dramatically reducing network traffic. This is
important when bandwidth is limited or when battery life is
a concern.

The Internet Mobility Protocol provided in accordance
with a presently preferred embodiment of the present inven-

Microsoft Corporation
Exhibit 1016-00041



US 6,546,425 Bl

13

tion also ensures the security of organization’s data as it
passes between the Mobile End System 104 and the Mobil-
ity Management Server 102 on the public wire-line networks
or airway. The Internet Mobility Protocol provides a basic
firewall function by allowing only authenticated devices
access to the organizational network. The Internet Mobility
Protocol can also certify and encrypt all communications
between the mobility management system 102 and the
Mobile End System 104.

The Remote Procedure Call protocol engine 240 on
Mobile End System 104 of FIG. 3 marshals TDI call
parameters, formats the data, and sends the request to the
Internet Mobility Protocol engine 244 for forwarding to
Mobility Management Server 102 where the TDI Remote
Procedure Call engine 240" executes the calls. Mobile End
Systems 104 martial TDI call parameters according to the
Remote Procedure Call protocol. When the Mobility Man-
agement Server 102 TDI Remote Procedure Call protocol
engine 240" receives these RPCs, it executes the calls on
behalf of the Mobile End System 104. The Mobility Man-
agement Server 102 TDI Remote Procedure Call protocol
engine 240" shares the complete network state for each
connected Mobile End System with the peer Mobile End
System 104’s RPC engine 240. In addition to performing
remote procedure calls on behalf of the Mobile End Systems
104, the server RPC engine 240" is also responsible for
system flow control, remote procedure call parsing, virtual
address multiplexing (in coordination with services pro-
vided by address translator 220), remote procedure call
transaction prioritization, scheduling, and coalescing.

The Internet Mobility Protocol engine 244 performs reli-
able datagram services, sequencing, fragmentation, and
re-assembly of messages. It can, when configured, also
provide authentication, certification, data encryption and
compression for enhanced privacy, security and throughput.
Because the Internet Mobility Protocol engine 244 functions
in power-sensitive environments using several different
transports, it is power management aware and is transport
independent.

FIG. 3A shows an example process mobile interceptor
212 performs to communicate a TDI call to Mobility Man-
agement Server 102. Generally, the mobile interceptor RPC
protocol engine 240 forwards marshaled TDI calls to the
Internet Mobility Protocol engine 244 to be transmitted to
the Mobility Management Server 102. RPC protocol engine
2440 does this by posting the RPC call to a queue maintained
by the Internet Mobility Protocol engine 244 (block 302). To
facilitate bandwidth management, the Internet Mobility Pro-
tocol engine 244 delays sending received RPC calls for
some period of time (“the RPC coalesce time out period™)
(block 304). Typically, the RPC coalesce timeout is set
between five and fifteen milliseconds as one example but is
user configurable. This delay allows the RPC engine 240 to
continue posting TDI calls to the Internet Mobility Protocol
engine 244 queue so that more than one RPC call can be
transmitted to the Mobility Management Server 102 in the
same datagram (fragment).

When the coalesce timer expires, or the RPC protocol
engine 240 determines that it will not be receiving more
RPC calls (decision block 306), the RPC engine provides the
Internet Mobility Protocol engine 244 with a request to flush
the queue, coalesce the RPC calls into a single frame, and
forward the frame to its peer (block 308). This coalescing
reduces the number of transmissions—enhancing protocol
performance.

As mentioned above, Mobility Management Server 102
proxy server also has an RPC protocol engine 212' and an

[

10

Jury
tn

20

30

40

60

14

Internet Mobility Protocol engine 244'. FIG. 3B shows an
example process performed by Mobility Management
Server 102 upon receipt of an Internet Mobility Protocol
message trame from Mobile End System 104. Once the
frame is received by the Mobility Management Server 102,
the Internet Mobility Protocol engine 244' reconstructs the
frame if fragmented (due to the maximum transmission size
of the underlying transport) and then demultiplexes the
contents of the message to determine which Mobile End
System 104 it was received from. This demultiplexing
allows the Internet Mobility Protocol 244' to provide the
Remote Procedure Call engine 240" with the correct
association-specific context information.

The Internet Mobility Protocol engine 244' then formu-
lates the received message into a RPC receive indication
system work request 354, and provides the Mobility Man-
agement Server 102 RPC engine 240" with the formulated
work request and association-specific context information.
When RPC protocol engine 240" receives work request 352,
it places it into an association-specific work queue 356, and
schedules the association to run by providing a scheduled
request to a global queue 358. The main work thread of RPC
engine 240 is then signaled that work is available. Once the
main thread is awake, it polls the global queue 358 to find
the previously queued association scheduled event. It then
de-queues the event and begins to process the association-
specific work queue 356.

On the association specific work queue 356 it finds the
previously queued RPC receive indication work request.
The main thread then de-queues the RPC receive indication
work request 356 and parses the request. Because of the
coalescing described in connection with FIG. 3A, the Mobil-
ity Management Server 102 often receives several RPC
transactions bundled in each datagram. It then demultiplexes
each RPC transaction back into distinct remote procedure
calls and executes the requested function on behalf of
Mobile End System 104. For performance purposes RPC
engine 240" may provide a look ahead mechanism during the
parsing process of the RPC messages to see if it can execute
some of the requested transactions concurrently (pipelining).
How RPC Protocol Engine 240' Runs RPC Associations

FIG. 4 is a flowchart of an example process for running
RPC associations placed on an association work queue 356.
When an RPC association is scheduled to run, the main
thread for the RPC protocol engine 240’ (which may be
implemented as a state machine) de-queues the work request
from global work queue 358 and determines the type of
work request.

There are six basic types of RPC work requests in the
preferred embodiment:

schedule request;

connect indication;

disconnect indication;

local terminate association;

“resources available” request; and

ping inactivity timeout.

RPC protocol engine 240" handles these various types of
requests differently depending upon their type. RPC proto-
col engine 240" tests the request type (indicated by infor-
mation associated with the request as stored on global queue
358) in order to determine how to process the request.

If the type of work request is a “schedule request”
(decision block 360), the RPC engine 240" determines which
association is being scheduled (block 362). RPC engine 240'
can determine this information from what is stored on global
queue 358. Once the association is known, RPC engine 24('

Microsoft Corporation
Exhibit 1016-00042



US 6,546,425 Bl

15

can identify the particular one of association work queues
356(1) . . . 356(n) the corresponding request is stored on.
RPC engine 362 retrieves the corresponding association
control block (block 362), and calls a Process Association
Work task 364 to begin processing the work in a specific
association’s work queue 356 as previously noted.

FIG. 5 shows example steps performed by the “process
association work” task 364 of FIG. 4. Once the specific
association has been determined, this “process association
work” task 364 is called to process the work that resides in
the corresponding association work queue 356. If the
de-queued work request (block 390) is an RPC receive
request (decision block 392), it is sent to the RPC parser to
be processed (block 394). Otherwise, if the de-queued work
request is a pending receive request (decision block 396), the
RPC engine 240" requests TDI 204 to start receiving data on
behalf of the application’s connection (block 398). If the
de-queued work request is a pending connect request
(decision block 400), RPC engine 240’ requests TDI 204' to
issue an application specified TCP (or other transport
protocol) connect request (block 402). It then waits for a
response from the TDI layer 204'. Once the request is
completed by TDI 204, its status is determined and then
reported back to the original requesting entity. As a perfor-
mance measure, RPC engine 240' may decide to retry the
connect request process some number of times by placing
the request back on the associations-specific work queue
(356) before actually reporting an error back to the request-
ing peer. This again is done in an effort to reduce network
bandwidth and processing consumption.

The above process continues to loop until a “scheduling
weight complete” test (block 404) is satisfied. In this
example, a scheduling weight is used to decide how many
work requests will be de-queued and processed for this
particular association. This scheduling weight is a configu-
ration parameter set by configuration manager 228, and is
acquired when the association connect indication occurs
(FIG. 4, block 372). This value is configurable based on user
or the physical identification of the machine.

Once the RPC engine is finished with the association
work queue 356 (for the time at least), it may proceed to
process dispatch queues (block 406) (to be discussed in
more detail below). If, after processing work on the asso-
ciation’s work queue 356, more work remains in the asso-
ciation work queue, the RPC engine 240" will reschedule the
association to run again at a later time by posting a new
schedule request to the global work queue 358 (FIG. 4,
decision block 366, block 368; FIG. 5, decision block 408,
block 410).

Referring once again to FIG. 4, if the RPC work request
is a “connect indication” (decision block 370), RPC engine
240 is being requested to instantiate a new association with
a mobile peer (usually, but not always, the Mobile End
System 104). As one example, the connect indication may
provide the RPC engine 240" with the following information
about the peer machine which is initiating the connection:

physical identifier of the machine,

name of the user logged into the machine,

address of the peer machine, and

optional connection data from the peer RPC engine 240.

In response to the connect indication (decision block
370), the RPC engine 240 calls the configuration manager
228 with these parameters. Configuration manager 228 uses
these parameters to determine the exact configuration for the
new connection. The configuration (e.g., association sched-
uling weight and the list of all applications that require
non-default scheduling priorities along with those priorities)

[

10

20

30

[7%)
n

40

60

16

is then returned to the RPC engine 240 for storage and
execution. RPC engine 240 then starts the new association,
and creates a new association control block (block 372). As
shown in FIG. 5A the following actions may be taken:
allocate and association control block (block 372A);
initialize system wide resources with defaults (block
372B);

get configuration overrides with current configuration

settings (block 372C);

initialize flags (block 372D);

initialize the association-specific work queue (block

372E),

initialize association object hash table (block 372F);

initialize the coalesce timer (block 372G); and

insert association control block into session table (block

372H).

A “disconnect indication” is issued by the Internet Mobil-
ity Protocol engine 244' to the RPC engine 240" when the
Internet Mobility Protocol engine has determined that the
association must be terminated. The RPC engine 240" tests
for this disconnect indication (block 374), and in response,
stops the association and destroys the association control
block (block 376). As shown in IIG. 5B, the following steps
may be performed:

mark the association as deleted to prevent any further

processing of work that may be outstanding (block
376A);

close all associated association objects including process,

connection and address objects (block 376B);

free all elements on work queue (block 376C),

stop coalesce timer if running (block 376D);

decrement association control block reference count

(block 376E); and
if the reference count is zero (tested for by block 376F):
destroy association specific work queue,
destroy object hash table,
destroy coalesce timer,
remove association control block from association
table, and
free control block (376G).

A “terminate session” request is issued when system 100
has determined that the association must be terminated. This
request is issued by the system administrator, the operating
system or an application. RPC engine 240" handles a termi-
nale session request in the same way it handles a disconnect
request (decision block 378, block 376).

In the preferred embodiment, the interface between the
RPC engine 240 and the Internet Mobility Protocol engine
244" specifies a flow control mechanism based on credits.
Each time one thread posts a work request to another thread,
the call thread returns the number of credits left in the work
queue. When a queue becomes full, the credit count goes to
zero. By convention, the calling thread is to stop posting
further work once the credit count goes to zero. Therefore,
it is necessary to have a mechanism to tell the calling thread
that “resources are available” once the queued work is
processed and more room is available by some user
configurable/predetermined low-water mark in the queue.
This is the purpose of the “resources available” work
indication (tested for by decision block 380). As shown in
FIG. 5C, the following steps may be performed when the
credit count goes to zero:

mark association as “low mark pending” by setting the

RPC_IMPQ_SEND_FLAG (block 379A). Once in
this state:

Microsoft Corporation
Exhibit 1016-00043



US 6,546,425 Bl

17
all received datagrams are discarded (block 379B);

all reccived stream events arc throttled by refusing to
accept the data (block 379C) (this causes the TCP or
other transport receive window to eventually close, and
provides flow control between the Fixed End System
110 and the Mobility Management Server 102; before
returning, the preferred embodiment jams a “pending
receive request” o the front of the association specific
work queue 356 so that outstanding strcam receive
event processing will continue immediately once
resources are made available).

all received connect events are refused for passive con-

nections (block 379D).

When the “resources available” indication is received by
the RPC engine 240" (FIG. 4, decision block 380), the RPC
engine determine whether the association has work pending
in its associated association work queue 356; if it does, the
RPC engine marks the queue as eligible to run by posting the
association to the global work queue 358 (block 382). If a
pending receive request has been posted during the time the
association was in the low mark pending state, it is pro-
cessed at this time (in the preferred embodiment, the RPC
engine 240 ' continues to accept any received connect
requests during this processing).

Referring once again to FIG. 4, if RPC engine 240
determines that the Mobility Management Server 102 chan-
nel used for “ping” has been inactive for a specified period
of time (decision block 384), the channel is closed and the
resources are freed back to the system to be used by other
processes (block 386).

RPC Parsing and Priority Queuing

Referring back to FIG. 5, it was noted above that RPC
engine parsed an RPC receive request upon receipt (see
blocks 392, block 394). Parsing is necessary in the preferred
embodiment because a single received datagram can contain
multiple RPC calls, and because RPC calls can span multiple
Internet Mobility Protocol datagram fragments. An example
format for an RPC receive work request 500 is shown in
FIG. 6. Each RPC reccive work request has at least a main
fragment 502(1), and may have any number of additional
fragments 502(2) . . . 502(N). Main fragment 502(1) con-
tains the work request structure header 503 and a receive
overlay 504. The receive overlay 504 is a structure overlay
placed on top of the fragment 502(1) by the Internet Mobil-
ity Protocol engine 244. Within this overlay 504 is a
structure member called pUserData that points to the first
RPC call 506(1) within the work request 500.

The FIG. 6 cxample illustrates a work request 500 that
contains several RPC calls 506(1), 506(2) . . . 506(8). As
shown in the FIG. 6 example, an RPC work request 500 need
not be contained in a contiguous block of memory or in a
single fragment 502. In the example shown, a second
fragment 502(2) and a third fragment 502(3) that are chained
together to the main fragment 502(1) in a linked list.

Thus, RPC parser 394 in this example handles the fol-
lowing boundary conditions:

each RPC receive request 500 may contain one or more

RPC calls;
one or more RPC calls 506 may exist in a single fragment
502;

each RPC call 506 may exist completely contained in a

fragment 502; and

each RPC call 506 may span more than one fragment 502.

FIG. 7 shows an example RPC parser process 394 to parse
an RPC receive work request S00. In this example, the RPC
parser 394 gets the first fragment 502(1) in the work request,

[

10

30

40

50

h
[

60

18

gets the first RPC call 506(1) in the fragment, and parses that
RPC call. Parser 394 proceeds through the RPC receive
work request 500 and processes each RPC call 506 in turn.
If the number of fragment bytes remaining in the RPC
receive work request 300 fragment 502(1) is greater than the
size of the RPC header 503, parser 394 determines whether
the RPC call is fully contained within the RPC fragment 502
and thus may be processed (this may be determined by
testing whether the RPC call length is greater than the
number of fragment bytes remaining). If the RPC call type
is a chain exception, then the RPC call will handle the
updating of the RPC parser 394 state. In the proxy server
224, the only RPC calls using the chain exception are the
“datagram send” and “stream send” calls. This chain excep-
tion procedure is done to allow the RPC engine to avoid
fragment copies by chaining memory descriptor lists
together for the purpose of RPC send calls.

Once the parser 394 identifies an RPC call type, a pointer
to the beginning of the RPC information is passed to the
RPC engine 240 for execution. The RPC engine divides all
TDI procedure calls into different priorities for execution.
The highest priority calls are immediately executed by
passing them to an RPC dispatcher 395 for immediate
execution. All lower priority calls are dispatched to dispatch
queues 510 for future processing. Each dispatch queue 510
represents a discrete priority.

In the preferred embodiment, mobile applications call the
“open address” object and “open connection” object func-
tions before executing other TDI networking functions.
Therefore, the system assigns application level priorities
during the “open address” object and “open connection™
object calls. In the example embodiment, once an address or
connection object is assigned a priority, all calls that are
associated with that object are executed within that assigned
priority.

If, for example, the RPC call is a TDI Open Address
Object request or a TDI Open Connection Object Request,
it is sent to the RPC dispatcher 395 for immediate execution.
The Open Address and Open Connection object RPC calls
provide access to a process ID or process name that are used
to match against the information provided by the configu-
ration manager 228 during the configuration requests that
occurs within the association connect indication described
carlier. This is used to acquire configuration for the address
or connection object.

In the preferred embodiment, all RPC calls have at least
an address object or connection object as a parameter. When
the call is made, the priority assigned to that specific object
is used as the priority for the RPC call. The configuration
assigned to the address or connection object determines
which priority all associated RPC calls will be executed in.
For example, if the assigned priority is “high,” all RPC calls
will be executed immediately without being dispatched to a
dispatch queue 510. If the assigned priority is “1,” all RPC
calls will be placed into dispatch queue 510(1).

Referring once again to FIG. 5, once the “process asso-
ciation work” task 364 process has completed executing its
scheduled amount of association work (decision block 404),
it checks to see if the dispatch queues require servicing
(block 406). FIG. 8 is a flowchart of example steps per-
formed by the “process dispatch queues” block 406 of FIG.
5 to process the dispatch queues 510 shown in FIG. 7.

In this example, dispatch queues 510 are processed begin-
ning with the highest priority queue (510(1) in this example)
(block 408). Each queue 510 is assigned a weight factor. The
weight factor is a configuration parameter that is returned by
the configuration manager 228 when a Mobile End System

Microsoft Corporation
Exhibit 1016-00044



US 6,546,425 Bl

19

104 to Mobility Management Server 102 association is
created. As one example, low priority dispatch queues 510
can have a weight factor of 4, and medium priority queues
can have a weight factor of 8. High priority RPC calls do not,
in this example, use weight factors because they are
execuled immediately as they are parsed.

RPC engine 240" loops through the de-queuing of RPC
calls from the current queue until either the queue is empty
or the queue weight number of RPC calls has been processed
(blocks 412—416). For each de-queued RPC call, the RPC
dispatcher 395 is called to execute the call. The RPC
dispatcher 395 executes the procedural call on behalf of the
Mobile End System 104, and formulates the Mobile End
System response for those RPC calls that require responses.

If, after exiting the loop, the queue still has work remain-
ing (decision block 418), the queue will be marked as
cligible to run again (block 420). By exiting the loop, the
system yields the processor to the next lower priority queue
(blocks 424, 410). This ensures that all priority levels are
given an opportunity to run no matter how much work exists
in any particular queue. The system gets the next queuve to
service, and iterates the process until all queues have been
processed. At the end of processing all queues, the system
tests to see if any queues have been marked as eligible to
run—and if so, the association is scheduled to run again by
posting a schedule request to the global work queue. The
association is scheduled to run again in the “process global
work” routine shown in FIG. 4 above. This approach yields
the processor to allow other associations that have work to
process an opportunity run. By assigning each queue a
weight factor, the system may be tuned to allow different
priority levels unequal access to the Mobility Management
Server 102’s CPU. Thus, higher priority queues are not only
executed first, but may also be tuned to allow greater access
to the CPU.

Mobility Management Server RPC Responses

The discussion above relates explains how remote proce-
dure calls are sent from the Mobile End System 104 to the
Mobility Management Server 102 for execution. In addition
to this type of RPC call, the Mobility Management Server
102 RPC engine 240" also supports RPC events and RPC
receive responses. These are RPC messages that are gener-
ated asynchronously as a result of association specific con-
nection peer activity (usually the Fixed End System 110).
Mobility Management Server 102 RPC engine 240' com-
pletes RPC transactions that are executed by the RPC
dispatcher 395. Not all RPC calls require a response on
successful completion. Those RPC calls that do require
responses on successful completion cause the RPC dis-
patcher 395 to build the appropriate response and post the
response to the Internet Mobile Protocol engine 244" to be
returned to the peer Mobile End System 104. All RPC calls
generate a response when the RPC call fails (the RPC
receive response is the exception to above).

RPC events originate as a result of network 108 activity
by the association specific connection (usually the Fixed
End System 110). These RPC event messages are, in the
preferred embodiment, proxied by the Mobility Manage-
ment Server 102 and forwarded to the Mobile End System
104. The preferred embodiment Mobility Management
Server 102 supports the following RPC event calls:

Disconnect Event (this occurs when association-specific

connected peer (usually the Fixed End System 110)
issues a transport level disconnect request; the discon-
nect is received by the proxy server 224 on behalf of the
Mobile End System 104, and the proxy server then
transmits a disconnect event to the Mobile End
System);

[

10

20

30

40

60

20

Stream Receive Event (this event occurs when the
association-specific connected peer (usually the Fixed
End System 110) has sent stream data to the Mobile
End System 104; the proxy server 224 receives this
data on behalf of the Mobile End System 104, and
sends the data to the Mobile End System in the form of
a Receive Response);

Receive Datagram Event (this event occurs when any
association-specific portal receives datagrams from a
network peer (usually the Fixed End System 110)
destined for the Mobile End System 104 through the
Mobility Management Server 102; the proxy server 224
accepts these datagrams on behalf of the Mobile End
System, and forwards them to the Mobile End System
in the form of receive datagram events; and

Connect Event (this event occurs when the association-
specific listening portal receives a transport layer con-
nect request (usually from the Fixed End System 110)
when it wishes to establish a transport layer end-to-end
connection with a Mobile End System 104; the proxy
server 224 accepts the connect request on behalf of the
Mobile End System, and then builds a connect event
RPC call and forwards it to the Mobile End System).

FIG. 9 shows how the RPC engine 240" handles proxy
server-generated RPC calls. For high priority address and
connection objects, the RPC engine 240" dispatches a send
request to the Internet Mobility Protocol engine 244' imme-
diately. The send request results in forwarding the RPC
message to the peer Mobile End System 104. For lower
priority objects, the Internet Mobility Protocol engine 244
send request is posted to an appropriate priority queue 510"
If the association is not scheduled to run, a schedule request
is also posted to the global queue 358'. The Internet Mobility
Protocol send request is finally executed when the dispatich
queues are processed as described earlier in connection with
FIGS. 5 & 8.

Internet Mobility Protocol

Internet Mobility Protocol provided in accordance with an
example embodiment of the present invention is a message
oriented connection based protocol. It provides guaranteed
delivery, (re)order detection, and loss recovery. Further,
unlike other conventional connection oriented protocols (i.e.
TCP), it allows for multiple distinct streams of data to be
combined over a single channel; and allows for guaranteed,
unreliable, as well as a new message oriented reliable data
to traverse the network through the single virtual channel
simultaneously. This new message oriented level of service
can alert the requester when the Internet Mobility Protocol
peer has acknowledged a given program data unit.

The Internet Mobility Protocol provided in accordance
with a presently preferred exemplary embodiment of the
present invention is designed to be an overlay on existing
network topologies and technologies. Due to its indifference
to the underlying network architecture, it is transport agnos-
tic. As long as there is a way for packetized dala to traverse
between two peers, Internet Mobility Protocol can be
deployed. Each node’s network point of presence (POP) or
network infrastructure can also be changed without affecting
the flow of data except where physical boundary, policy or
limitations of bandwidth apply.

With the help of the layer above, Internet Mobility Pro-
tocol coalesces data from many sources and shuttles the data
between the peers using underlying datagram facilities. As
each discrete unit of data is presented from the upper layer,
Internet Mobility Protocol combines into a single stream and
subsequently submits it for transmission. The data units are
then forwarded to the peer over the existing network where

Microsoft Corporation
Exhibit 1016-00045



US 6,546,425 Bl

21

upon reception, with the help from the layer above, the
stream is demultiplexed back into multiple distinct data
units. This allows for optimum use of available bandwidth,
by generating the maximum sized network frames possible
for each new transmission. This also has the added benefit of
training the channel once for maximum bandwidth utiliza-
tion and have its parameters applied to all session level
connections.

In rare instances where one channel is insufficient, the
Internet Mobility Protocol further allows multiple channels
to be established between the peers—thus allowing for data
prioritization and possibly providing a guaranteed quality of
service (if the underlying network provides the service).

The Internet Mobility Protocol also provides a dynami-
cally selectable guaranteed or unreliable levels of service.
For example, each protocol data unit that is submitted for
transmission can be queued with either a validity time period
or a number of retransmit attempts or both. Internet Mobility
Protocol will expire a data unit when either threshold is
reached, and remove it from subsequent transmission
attempts.

Internet Mobility Protocol’s additional protocol overhead
is kept minimal by use of a variable length header. The frame
type and any optional fields determine the size of the header.
These optional fields are added in a specific order to enable
easy parsing by the receiving side and bits in the header flag
field denote their presence. All other control and configu-
ration information necessary for the peers to communicate
can be passed through the in-band control channel. Any
control information that needs to be sent is added to the
frame prior to any application level protocol data unit. The
receiving side processes the control information and then
passes the rest of the payload to the upper layer.

Designed to run over relatively unreliable network links
where the error probability is relatively high, Internet Mobil-
ity Protocol utilizes a number of techniques to insure data
integrity and obtain optimum network performance. To
insure data integrity, a Fletcher checksum algorithm is used
to detect errant frames. This algorithm was selected due to
the fact of its efficiency as well as its detection capability. It
can determine not only bit errors, but also bit reordering.

Sequence numbers are used to insure ordered delivery of
data. Internet Mobility Protocol sequence numbers do not,
however, represent each byte of data as in TCP. They
represent a frame of data that can be, in one example
implementation, as large as 65535 bytes (including the
Internet Mobility Protocol header). They are 32 bits or other
convenient length in one example to insure that wrap-around
does not occur over high bandwidth links in a limited
amount of time.

Combining this capability along with the expiration of
data, retransmitted (retried) frames may contain less infor-
mation than the previous version that was generated by the
transmitting side. A frame id is provided to enable detection
of the latest versioned frame. However, since data is never
added in the preferred embodiment and each element
removed is an entire protocol data unit, this is not a
necessity. In one example, the Internet Mobility Protocol
will only process the first instance of a specific frame it
receives—no matter how many other versions of that frame
are transmitted. Each frame created that carries new user
payload is assigned its own unique sequence number.

Performance is gained by using of a sliding window
technique—thus allowing for more then one frame to be
outstanding (transmitted) at a time before requiring the peer
to acknowledge reception of the data. To insure timely
delivery of the data, a positive acknowledgement and timer

10

20

30

40

h
[

60

22

based retransmit scheme is used. To further optimize the use
of the channel, a selective acknowledgement mechanism is
employed that allows for fast retransmission of missing
frames and quick recovery during lossy or congested periods
of network connectivity. In one example, this selective
acknowledgement mechanism is represented by an optional
bit field that is included in the header.

A congestion avoidance algorithm is also included to
allow the protocol to back off from rapid retransmission of
frames. For example, a round trip time can be calculated for
each frame that has successfully transfer between the peers
without a retransmit. This time value is averaged and then
used as the basis for the retransmission timeout value. As
each frame is sent, a timeout is established for that frame. If
an acknowledgement for that frame is not received, and the
frame has actually been transmitted, the frame is resent. The
timeout value is then increased and then used as the basis for
the next retransmission time. This retransmit time-out is
bounded on both the upper and lower side to insure that the
value is within a reasonable range.

Internet Mobility Protocol also considers the send and
receive paths separately. This is especially useful on chan-
nels that are asymmetric in nature. Base on hysteresis, the
Internet Mobility Protocol automatically adjusts parameters
such as frame size (fragmentation threshold), number of
frames outstanding, retransmit time, and delayed acknowl-
edgement time to reduce the amount of duplicate data sent
through the network.

Due to the fact that Internet Mobility Protocol allows a
node to migrate to different points of attachment on diverse
networks, characteristics (e.g., frame size) of the underlying
network may change midstream. An artifact of this migra-
tion is that frames that have been queued for transmission on
onc network may no longer fit over the new medium the
mobile device is currently attached to. Combining this issuc
with the fact that fragmentation may not be supported by all
network infrastructures, fragmentation is dealt with at the
Internet Mobility Protocol level. Before each frame is sub-
mitted for transmission, Internet Mobility Protocol assesses
whether or not it exceeds the current fragmentation thresh-
old. Note that this value may be less than the current
maximum transmission unit for performance reason (smaller
frames have a greater likelihood of reaching its ultimate
destination then larger frames). The tradeoff between greater
protocol overhead versus more retransmissions is weighed
by Internet Mobility Protocol, and the frame size may be
reduced in an attempt to reduce overall retransmissions). If
a given frame will fit, it is sent in its entirety. If not, the frame
is split into maximum allowable size for the given connec-
tion. If the frame is retransmitted, it is reassessed, and will
be refragmented if the maximum transmission unit has been
reduced (or alternatively, if the maximum transmission unit
actually grew, the frame may be resent as a single frame
without fragmentation).

The protocol itself is orthogonal in its design as either side
may establish or terminate a connection to its peer. In a
particular implementation, however, there may be a few
minor operational differences in the protocol engine depend-
ing on where it is running. For example, based on where the
protocol engine is running, certain inactivity detection and
connection lifetime timeouts may be only invoked on one
side. To allow administrative control, Internet Mobility
Protocol engine running on the Mobility Management
Server 102 keeps track of inactivity periods. If the specified
period of time expires without any activity from the Mobile
End System 104, the Mobility Management Server 102 may
terminate a session. Also, an administrator may want to limit

Microsoft Corporation
Exhibit 1016-00046



US 6,546,425 Bl

23

the overall time a particular connection may be established
for, or when to deny access base on time of day. Again these
policy timers may, in one example implementation, be
invoked only on the Mobility Management Server 102 side.

In one example implementation, the software providing
the Internet Mobility Protocol is compiled and executable
under Windows NT, 9x, and CE environments with no
platform specific, modification. To accomplish this, Internet
Mobility Protocol employs the services of a network
abstraction layer (NAL) to send and receive Internet Mobil-
ity Protocol frames. Other standard utility functions such as
memory management, queue and list management, event
logging, alert system, power management, security, etc are
also used. A few runtime parameters are modified depending
on whether the engine is part of an Mobile End System 104
or Mobility Management Server 102 system. Some
examples of this are:

Certain timeouts are only invoked on the Mobility Man-
agement Server 102

Direction of frames are indicated within ecach frame
header for echo detection

Inbound connections may be denied if Mobile End Sys-
tem 104 is so configured

Alerts only signaled on Mobility Management Server 102

Power management enabled on Mobile End System 104
but is not necessary on the Mobility Management
Server 102

The Internet Mobility Protocol interface may have only a
small number of “C” callable platform independent pub-
lished API functions, and requires one O/S specific function
to schedule its work (other then the aforementioned standard
utility functions). Communications with local clients is
achieved through the use of defined work objects (work
requests). Efficient notification of the completion of each
work element is accomplished by signaling the requesting
entity through the optional completion callback routine
specified as part of the work object.

The Internet Mobility Protocol engine itself is queue
based. Work elements passed from local clients are placed
on a global work queue in FIFO order. This is accomplished
by local clients calling a published Internet Mobility proto-
col function such as “ProtocolRequestwork( )”. A schedul-
ing function inside of Internet Mobility Protocol then
removes the work and dispatches it to the appropriate
function. Combining the queuing and scheduling mecha-
nisms conceal the differences between operating system
architectures—allowing the protocol engine to be run under
a threaded based scheme (e.g., Windows NT) or in a
synchronous fashion (e.g., Microsoft Windows 9x & Win-
dows CE). A priority scheme can be overlaid on top of its
queuing, thus enabling a guaranteed quality of service to be
provided (if the underlying network supports it).

From the network perspective, the Internet Mobility Pro-
tocol uses scatter-gather techniques to reduce copying or
movement of data. Each transmission is sent to the NAL as
a list of fragments, and is coalesced by the network layer
transport. If the transport protocol itself supports scatter-
gather, the fragment list is passed through the transport and
assembled by the media access layer driver or hardware.
Furthermore, this technique is extensible in that it allows the
insertion or deletion of any protocol wrapper at any level of
the protocol stack. Reception of a frame is signaled by the
NAL layer by calling back Internet Mobility Protocol at a
specified entry point that is designated during the NAL
registration process.

[

10

20

30

40

50

h
[

60

24

Internet Mobility Protocol Engine Entry Points

Internet Mobility Protocol in the example embodiment
exposes four common entry points that control its startup
and shutdown behavior. These procedures are:

1. Internet Mobility ProtocolCreate( )

2. Internet Mobility ProtocolRun( )

3. Internet Mobility ProtocolHalt( )

4. Internet Mobility ProtocolUnload( )

Internet Mobility ProtocolCreate( )

The Internct Mobility ProtocolCreate( ) function is called
by the boot subsystem (o initialize the Internet Mobility
Protocol. During this first phase, all resource necessary to
start processing work must be acquired and initialized. At
the completion of this phase, the engine must be in a state
ready to accept work from other layers of the system. At this
point, Internet Mobility Protocol initializes a global con-
figuration table. To do this, it employs the services of the
Configuration Manager 228 to populate the table.

Next it registers its suspend and resume notification
functions with the APM handler. In one example, these
functions are only invoked on the Mobile End System 104
side—but in another implementation it might be desirable to
allow Mobility Management Server 102 to suspend during
operations. Other working storage is then allocated from the
memory pool, such as the global work queue, and the global
NAL portal list.

To limit the maximum amount of runtime memory
required as well as insuring Internet Mobility Protocol
handles are unique, Internet Mobility Protocol utilizes a
2-tier array scheme for generating handles. The globalCon-
nectionArray table is sized based on the maximum number
of simultancous connection the system is configured for, and
allocated at this time. Once all global storage is allocated
and initialized, the global Internet Mobility Protocol state is
change to_ STATE__INITIALIZE_ .

Internet Mobility ProtocolRun( )

The Internet Mobility ProtocolRun( ) function is called
after all subsystems have been initialized, and to alert the
Internet Mobility Protocol subsystem that it is okay to start
processing any queued work. This is the normal state that the
Internet Mobility Protocol engine is during general opera-
tions. A few sccond pass initialization steps are taken at this
point before placing the engine into an operational state.

Internet Mobility Protocol allows for network communi-
cations to occur over any arbitrary interface(s). During the
initialization step, the storage for the interface between
Internet Mobility Protocol and NAL was allocated. Internet
Mobility Protocol now walks through the global portal list to
start all listeners at the NAL. In one example, this is
comprised of a two step process:

Internet Mobility Protocol requests the NAL layer to bind
and open the portal based on configuration supplied
during initialization time; and

Internet Mobility Protocol then notifies the NAL layer that
it is ready to start processing received frames by
registering the Internet Mobility ProtocolRCV-
FROMCB call back.

A local persistent identifier (PID) is then initialized.

The global Internet Mobility Protocol state is change to
_ STATE_RUN_ .

Internet Mobility ProtocolHalt

The Internet Mobility ProtocolHalt( ) function is called to
alert the engine that the system is shutting down. All
resources acquired during its operation are to be release
prior to returning from this function. All Internet Mobility
Protocol sessions arc abnormally terminated with the reason
code set to administrative. No further work is accepted from

Microsoft Corporation
Exhibit 1016-00047



US 6,546,425 Bl

25
or posted to other layers once the engine has entered into
_STATE_HALTED_ state.
Internet Mobility ProtocolUnload( )

The Internet Mobility ProtocolUnload( ) function is the
second phase of the shutdown process. This is a last chance
for engine to release any allocated system resources still
being held before returning. Once the engine has returned
from this function, no further work will be executed as the
system itself is terminating.

Internet Mobility Protocol Handles

In at least some examples, using just the address of the
memory (which contains the Internet Mobility Protocol state
information) as the token to describe an Internet Mobility
Protocol connection may be insufficient. This is mainly due
to possibility of one connection terminating and a new one
starting in a short period of time. The probability that the
memory allocator will reassign the same address for differ-
ent connections is high—and this value would then denote
both the old connection and a new connection. If the original
peer did not hear the termination of the session (i.e. it was
off, suspended, out of range, etc.), it could possibly send a
frame on the old session to the new connection. This
happens in TCP and will cause a reset to be generated to the
new session if the peer’s IP addresses are the same. To avoid
this scenario, Internet Mobility Protocol uses manufactured
handle. The handles are made up of indexes into two arrays
and a nonce for uniqueness. The tables are laid out as
follows.

Table 1: an array of pointers to an array of connection
object

Table 2: an array of connection objects that contains the
real pointers to the Internet Mobility Protocol control
blocks.

This technique minimizes the amount of memory being
allocated at initialization time. Table 1 is sized and allocated
at startup. On the Mobile End System 104 side this allows
allocation of a small amount of memory (the memory
allocation required for this Table 1 on the Mobility Man-
agement Server 102 side is somewhat larger since the server
can have many connections).

Table 1 is then populated on demand. When a connection
request is issued, Internet Mobility Protocol searches
through Table 1 to find a valid pointer to Table 2. If no
entries are found, then Internet Mobility Protocol will allo-
cate a new Table 2 with a maximum of 256 connection
objects—and then stores the pointer to Table 2 into the
appropriate slot in Table 1. The protocol engine then initial-
izes Table 2, allocates a connection object from the newly
created table, and returns the manufactured handle. If
another session is requested, Internet Mobility Protocol will
search Table 1 once again, find the valid pointer to Table 2,
and allocate the next connection object for the session. This
goes on until one of (wo situations exist:

If all the connection objects are exhausted in Table 2, a

new Table 2 will be allocated, initialized, and a pointer
to it will be placed in the next available slot in Table 1;
and

If all connection objects have been released for a specific

Table 2 instance and all elements are unused for a
specified period of time, the storage for that instance of
Table 2 is released back to the memory pool and the
associated pointer in Table 1 is zeroed to indicate that
that entry is now available for use when the next
connection request is started (if and only if no other
connection object are available in other instances of
Table 2).

Two global counters are maintained to allow limiting the
total number of connections allocated. One global counter

10

20

30

40

50

h
[

60

26

counts the number of current active connections; and the
other keeps track of the number of unallocated connection
objects. The second counter is used to govern the total
number of connection object that can be created to some
arbitrary limit. When a new Table 2 is allocated, this counter
is adjusted downward to account for the number of objects
the newly allocated table represents. On the flip side, when
Internet Mobility Protocol releases a Table 2 instance back
to the memory pool, the counter is adjusted upward with the
number of connection objects that are being released.
Work Flow

Work is requested by local clients through the Internet
Mobility ProtocolRequestWork( ) function. Once the work
is validated and placed on the global work queue, the
Internet Mobility ProtocolWorkQueueEligible( ) function is
invoked. If in a threaded environment, the Internet Mobility
Protocol worker thread is signaled (marked cligible) and
control is immediately returned to the calling entity. If in a
synchronous environment, the global work queue is imme-
diately run to process any work that was requested. Both
methods end up executing the Internet Mobility
ProtocolProcessWork( ) function. This is the main dispatch-
ing function for processing work.

Since only one thread at a time may be dispatching work
from the global queue in the example embodiment, a global
semaphore may be used to prolect against reentrancy. Pri-
vate Internet Mobility Protocol work can post work dircctly
to the global work queue instead of using the Internet
Mobility ProtocolRequestWork( ) function.

A special case exists for SEND type work objects. To
insure that the semantics of Unreliable Datagrams is kept,
each SEND type work object can be queued with an expiry
time or with a retry count. Work will be aged based on the
expiry time. If the specified timeout occurs, the work object
is removed from the connection specific queue, and is
completed with an error status. If the SEND object has
already been coalesced into the data path, the protocol
allows for the removal of any SEND object that has specified
a retry count. Once the retry count has been exceeded, the
object is removed from the list of elements that make up the
specific frame, and then returned to the requester with the
appropriate error status.

Connection Startup

Internet Mobility Protocol includes a very efficient
mechanism to establish connections between peers. Confir-
mation of a connection can be determined in as little as a
three-frame exchange between peers. The initiator sends an
IMP SYNC frame to alert its peer that it is requesting the
establishment of a connection. The acceptor will either send
an IMP ESTABLISH frame to confirm acceptance of the
connection, or send an IMP ABORT frame to alert the peer
that its connection request has been rejected. Reason and
status codes are passed in the IMP ABORT frame to aid the
user in decipher the reason for the rejection. If the connec-
tion was accepted, an acknowledgement frame is sent
(possibly including protocol data unit or control data) and is
forwarded to the acceptor to acknowledge receipt of its
establish frame.

To further minimize network traffic, the protocol allows
user and control data to be included in the initial handshake
mechanism used at connection startup. This ability can be
used in an insecure environment or in environments where
security is dealt with by a layer below, such that the Internet
Mobility Protocol can be tailored to avert the performance
penalties due to double security authentication and encryp-
tion processing being done over the same data path.

Microsoft Corporation
Exhibit 1016-00048



US 6,546,425 Bl

27

Data Transfer

Internet Mobility Protocol relies on signaling from the
NAL to detect when a frame has been delivered to the
network. 1t uses this metric to determine if the network link
in question has been momentarily flow controlled, and will
not submit the same frame for retransmission until the
original request has been completed. Some network drivers
however lic about the transmission of frames and indicate
delivery prior to submitting them to the network. Through
the use of semaphores, the Internet Mobility Protocol layer
detects this behavior and only will send another datagram
until the NAL returns from the original send request
Once a frame is received by Internet Mobility Protocol,
the frame is quickly validated, then placed on an appropriate
connection queue. If the frame does not contain enough
information for Internet Mobility Protocol to discern its
ultimate destination, the frame is placed on the Internet
Mobility Protocol socket queue it frame was received on,
and then that socket queue is place on the global work queue
for subsequence processing. This initial demultiplexing
allows received work to be dispersed rapidly with limited
processing overhead.
Acquiescing

To insure minimal use of network bandwidth during
periods of retransmission and processing power on the
Mobility Management Server 102, the protocol allows the
Mobility Management Server 102 to “acquiesce™ a connec-
tion. After a user configurable period of time, the Mobility
Management Server 102 will stop retransmitting frames for
a particular connection if it receives no notification from the
corresponding Mobile End System 104. At this point, the
Mobility Management Server 102 assumes that the Mobile
End System 104 is in some unrecachable state (i.c. out of
range, suspended, etc), and places the connection into a
dormant state. Any further work destined for this particular
connection is stored for future delivery. The connection will
remain in this state until one of the following conditions are
met:
Mobility Management Server 102 receives a frame from
the Mobile End System 104, thus returning the con-
nection to its original state;
a lifetime timeout has expired;
an inactivity timeout has expired; or
the connection is aborted by the system administrator.
In the case that the Mobility Management Server 102
receives a frame from the Mobile End System 104, the
connection continues from the point it was interrupted. Any
work that was queued for the specific connection will be
forwarded, and the state will be resynchronized. In any of
the other cases, the Mobile End System 104 will be apprised
of the termination of the connection once it reconnects; and
work that was queued for the Mobile End System 104 will
be discarded.
Connect and Send Requests

FIGS. 10A-10C together are a flowchart of example
connect and send request logic formed by Internet mobility
engine 244. In response to receipt from a command from
RPC engine 240, the Internet Mobility Protocol engine 244
determines whether the command is a “connect” request
(decision block 602). If it is, engine 244 determines whether
connection resources can be allocated (decision block 603).
If it is not possible to allocate sufficient connection resources
(“no™ exit to decision block 603), engine 244 declares an
error (block 6034) and returns. Otherwise, engine 244
performs a state configuration process in preparation for
handling the connect request (block 603b).

For connect and other requests, engine 244 queues the

connect or send request and signals a global event before
return to the calling application (block 604).

[

20

40

50

h
[

60

28

To dispatch a connect or send request from the Internet
Mobility Protocol global request queue, engine 244 first
determines whether any work is pending (decision block
605). If no work is pending (“no” exit to decision block
605), engine 244 waits for the application to queue work for
the connection by going to FIG. 10C, block 625 (block
605a). If there is work pending (“yes” exit to decision block
605), engine 244 determines whether the current state has
been established (block 606). If the state establish has been
achieved (“yes” exit to decision block 606), engine 244 can
skip steps used to transition into establish state and jump to
decision block 615 of FIG. 10B (block 606a). Otherwise,
engine 244 must perform a sequence of steps to enter
establish state (“no” exit to decision block 606).

In order to enter establish state, engine 244 first deter-
mines whether the address of its peer is known (decision
block 607). If not, engine 244 waits for the peer address
while continuing to queue work and transitions to FIG. 10C
block 625 (block 60/7a). If the peer address is known (“yes”
exit to decision block 607), engine 244 next tests whether
the requisite security context has been acquired (decision
block 608). If not, engine 244 must wait for security context
while continuing to queue work and transitioning to block
625 (block 608a). If security context has already been
acquired (“yes” exit to decision block 608), engine 244
declares a “state pending” state (block 608b), and then sends
an Internet Mobility Protocol sync frame (block 609) and
starts a retransmit timer (block 610). Engine 244 determines
whether the corresponding established frame was received
(block 611). If it was not (“no” exit to decision block 611),
engine 244 tests whether the retransmit time has expired
(decision block 612). If the decision block has not expired
(“no” exit to decision block 612), engine 244 waits and may
go to step 625 (block 613). Eventually, if the established
frame is never received (as tested for by block 611) and a
total retransmit time expires (decision block 614), the con-
nection may be aborted (block 614a). If the established is
eventually received (“ves” exit to decision block 611),
engine 244 declares a “state established” state (block 611a).

Once state establish has been achieved, engine 244 tests
whether the new connection has been authenticated
(decision block 615). If it has not been, engine 244 may wait
and transition to step 625 (block 616). If the connection has
been authenticated (“yes” exit to decision block 615), engine
244 tests whether authentication succeeded (decision block
617). If it did not (“no” exit to decision block 617), the
connection is aborted (block 614a). Otherwise, engine 244
tests whether the peer transmit window is full (decision
block 618). If it is (“yes” exit to decision block 618), engine
244 waits for acknowledgment and goes to step 625
(decision block 619). If the window is not full (“no” exit to
decision block 618), engine 244 creates an Internet Mobility
Protocol data frame (block 620) and sends it (block 621).
Engine 244 then determines if the retransmit timer has
started (decision block 622). If no, engine 244 starts the
retransmit timer (block 623). Engine 244 loops through
blocks 618—623 until there is no more data to send (as tested
for by decision block 624). Engine 244 then returns to a
sleep mode waiting for more work and returns to the global
dispatcher (block 625).

Termination

FIG. 11 is a flowchart of example steps performed by As
Internet Mobility Protocol engine 244 to terminate a con-
nection. In response to a “terminate connection” request
(block 626), the engine queucs the request to its global work
queue and returns to the calling application (block 626a).
The terminate request is eventually dispatched from the

Microsoft Corporation
Exhibit 1016-00049



US 6,546,425 Bl

29

Internet Mobility Protocol process global work queue for
execution (block 627). Engine 244 examines the terminate
request and determines whether the terminate request should
be immediate or graceful (decision block 628). If immediate
(“abort” exit to decision block 628), engine 244 immediately
aborts the connection (block 629). If graceful (“graceful”
exit to decision block 628), engine 244 declares a “state
close” state (block 628a), and sends an Internet Mobility
Protocol “Mortis” frame (block 630) to indicate to the peer
that the connection is to close. Engine 244 then declares a
“Mortis” state (block 630a) and starts the retransmit timer
(block 631). Engine 244 tests whether the response of “post
mortem” frame has been reccived from the peer (decision
block 632). If not (“no” exit to decision block 632), engine
244 determines whether a retransmit timer has yet expired
(decision block 633). If the retransmit timer is not expired
(“no” exit to decision block 633), engine 244 waits and
proceeds to step 637 (block 634). If the retransmit timer has
expired (“yes” exit to decision block 633), engine 244
determines whether the total retransmit time has expired
(decision block 635). If the total time is not yet expired (“no”
exit to decision block 635), control returns to block 630 to
resent the Mortis frame. If the total retransmit time has
expired (“yes” exit to decision block 635), engine 244
immediately aborts the connection (block 6354).

Once a “post mortem” responsive frame has been
received from the peer (“yes” exit to decision block 632),
engine 244 declares a “post mortem” state (block 6324),
releases connection resources (block 636), and returns to
sleep waiting for more work (block 637).

Retransmission

FIG. 12 is a flowchart of example “retransmit” events
logic performed by Internet Mobility Protocol engine 244.
In the event that the retransmit timer has expired (block
650), engine 244 determines whether any frames are out-
standing (decision block 651). If no frames are outstanding
(“no” exit to decision block 651), engine 244 dismisses the
timer (block 652) and returns to sleep (block 660). If, on the
other hand, frames are outstanding (“yes” exit to decision
block 651), engine 244 determines whether the entire
retransmit period has expired (decision block 653). If it has
not (“no” exit to decision block 653), the process returns to
sleep for the difference in time (block 654). If the entire
retransmit time period has expired (“yes” exit to decision
block 653), engine 244 determines whether a total retransmit
period has expired (decision block 655). If it has (“yes” exit
to decision block 655) and this event has occurred in the
Mobility Management Server engine 244' (as opposed to the
Mobile End System engine 244), a dormant state is declared
(decision block 656, block 656a). Under these same
conditions, the Internet Mobility Protocol engine 244
executing on the Mobile End System 104 will abort the
connection (block 6565).

If the total retransmit period is not yet expired (“no” exit
to decision block 655), engine 244 reprocesses the frame to
remove any expired data (block 657) and then retransmits it
(block 658)—restarting the retransmit timer as it does so
(block 659). The process then returns to sleep (block 660) to
wait for the next event.

Internet Mobility Protocol Expiration of a PDU

FIG. 12 block 657 allows for the requesting upper layer
interface to specity a timeout or retry count for expiration of
any protocol data unit (i.e. a SEND work request) submitted
for transmission to the associated peer. By use of this
functionality, Internet Mobility Protocol engine 244 main-
tains the semantics of unrcliable data and provides other
capabilities such as unreliable data removal from retrans-

[

10

Jury
tn

20

30

40

50

h
[

60

30

mitted frames. Each PDU (protocol data unit) 506 submitted
by the layer above can specify a validity timeout and/or retry
count for cach individual clement that will eventually be
coalesced by the Internet Mobility Protocol engine 244. The
validity timeout and/or retry count (which can be user-
specified for some applications) are used to determine which
PDUs 506 should not be retransmitted but should instead be
removed from a frame prior to retransmission by engine 244.

The validity period associated with a PDU 506 specifies
the relative time period that the respective PDU should be
considered for transmission. During submission, the Internet
Mobility Protocol RequestWork function checks the expiry
timeout value. If it is non-zero, an age timer is initialized.
The requested data is then queued on the same queue as all
other data being forwarded to the associated peer. If the
given PDU 506 remains on the queue for longer than the
time period specified by the validity period parameter,
during the next event that the queue is processed, the given
(all) PDU(s) that has an expired timeout is removed and
completed locally with a status code of “timeout failure”
rather than being retransmitted when the frame is next
retransmitted. This algorithm ensures that unreliable data
being queued for transmission to the peer will not grow stale
and/or boundlessly consume system resources.

In the example shown in FIG. 12A, three separate PDUs
506 are queued to Internet Mobility Protocol engine 244 for
subsequent processing. PDU 506(1) is queued without an
expiry time denoting no timeout for the given request. PDU
506(2) is specified with a validity period of 2 seconds and is
chronologically queuved after PDU 506(1). PDU 506(n) is
queued 2.5 seconds after PDU 506(2) was queued. Since the
act of queuing PDU 506(n) is the first event causing pro-
cessing of the queue and PDU 506(2) expiry time has lapsed,
PDU 506(2) is removed from the work queue, completed
locally and then PDU 506(n), is placed on the list. If a
validity period was specified for PDU 506(n) the previous
sequence of events would be repeated. Any event (queuing,
dequeuing, etc) that manipulates the work queue will cause
stale PDUs to be removed and completed.

As described above, PDUs 506 are coalesced by the
Internet Mobility Protocol Engine 244 transmit logic and
formatted into a single data stream. Each discrete work
element, if not previously expired by the validity timeout, is
gathered to formulate Internct Mobility Protocol data
frames. Internet Mobility Protocol Engine 244 ultimately
sends these PDUs 506 to the peer, and then places the
associated frame on a Frames-Outstanding list. If the peer
does not acknowledge the respective frame in a predeter-
mined amount of time (see FIG. 12 showing the retransmis-
sion algorithm), the frame is retransmitted to recover from
possibly a lost or corrupted packet exchange. Just prior to
retransmission, the PDU list that the frame is comprised of
is iterated through to determine if any requests were queued
with a retry count. If the retry count is non zero, and the
value is decremented to zero, the PDU 506 is removed from
the list, and the frames header is adjusted to denote the
deletion of data. In this fashion, stale data, unreliable data,
or applications employing their own retransmission policy
are not burdened by engine 244’s retransmission algorithm.

In the FIG. 12B example, again three separate PDUs 506
are queued to Internet Mobility Protocol engine 244 for
subsequent processing. PDU 506(1) is queued without a
retry count. This denotes continuous retransmission attempts
or guaranteed delivery level of service. PDU 506(2) is
queued with a retry count of 1 and is chronologically queued
after PDU 506(1). PDU 506(n) is queued sometime after
PDU 506(2). At this point, some external event (e.g., upper

Microsoft Corporation
Exhibit 1016-00050



US 6,546,425 Bl

3

layer coalesce timer, etc.) causes engine 244°s send logic to
generate a new frame by gathering enough PDUs 506 from
the work queue to generate an Internet Mobility Protocol
data frame 500. The frame header 503 is calculated and
stamped with a retry ID of 0 to denote that this is the first
transmission of the frame. The frame is then handed to the
NAL layer for subsequent transmission to the network. At
this point a retransmit timer is started since the frame in
question contains a payload. For illustration purposes it is
assumed that an acknowledgement is not received from the
peer for a variety of possible reasons before the retransmit
timer expires. The retransmit logic of engine 244 determines
that the frame 500 in question is now eligible for retrans-
mission to the network. Prior to resubmitting the frame to
the NAL layer, engine 244°s retransmit logic iterates through
the associated list of PDUs 506. Each PDU’s retry count is
examined and if non-zero, the count is decremented. In the
process of decrementing PDU 506(2)’s retry count, the retry
count becomes zero. Because PDU 506(2)’s retry count has
gone to zero, it is removed from the list and completed
locally with a status of “retry failure.” The frame header 503
size is then adjusted to denote the absence of the PDU
506(2)’s data. This process is repeated for all remaining
PDUs. Once the entire frame 500 is reprocessed to produce
an “edited” frame 500', the retry ID in the header is
incremented and the resultant datagram is then handed to the
NAL layer for subsequent (re¢)transmission.
Reception

FIGS. 13A-13D are a flowchart of example steps per-
formed by Internet Mobility Protocol engine 244 in response
to receipt of a “receive ” event. Such receive events are
generated when an Internet Mobility Protocol frame has
been received from network 108. In response to this receive
event, engine 244 pre-validates the event (block 670) and
tests whether it is a possible Internet Mobility Protocol
frame (decision block 671). If engine 244 determines that
the received frame is not a possible frame (“no” exit to
decision block 671), it discards the frame (block 672).
Otherwise (“yes” exit to decision block 671), engine 244
determines whether there is a connection associated with the
received frame (decision block 673). If there is a connection
associated with the received frame (“yes” exit to decision
block 673), engine 244 places the work on the connection
receive queue (block 674), marks the connection as eligible
to receive (block 675), and places the connection on the
global work queue (block 676). If no connection has yet
been associated with the received frame (“no” exit to deci-
sion block 673), engine 244 places the received frame on the
socket receive queue (block 677) and places the socket
receive queue on the global work queue (block 678). In
either case, engine 244 signals a global work event (block
679). Upon dispatching of a “receive eligible” event from
the global work queue (see FIG. 13B), engine 244 de-queues
the frame from the respective receive queue (block 680). It
is possible that more then one IMP frame is received and
queued before the Internet Mobility Protocol engine 244 can
start de-queuing the messages. Engine 244 loops until all
frames have been de-queue (blocks 681, 682). Once a frame
has been de-queued (“yes” exit to decision block 681),
engine 244 validates the received frame (block 683) and
determines whether it is okay (decision block 684). If the
received frame is invalid, engine 244 discards it (block 685)
and de-queues the next frame from the receive queue (block
680). If the received frame is valid (“yes” exit to decision
block 684), engine 244 determines whether it is associated
with an existing connection (block 686). If it is not (“no” exit
to decision block 686), engine 244 tests whether it is a sync

[

10

20

30

40

50

h
[

60

32

frame (decision block 687). If it is not a sync frame (“no”
exit to decision block 687), the frame is discarded (block
685). If, on the other hand, a sync frame has been received
(“yes” exit to decision block 687), engine 244 processes it
using a passive connection request discussed in association
with FIGS. 14A and 14B (block 688).

If the frame is associated with a connection (“yes” exit to
decision block 686), engine 244 determines whether the
connection state is still active and not “post mortem”
(decision block 689). If the connection is already “post
mortem,” the frame is discarded (block 685). Otherwise,
engine 244 parses the frame (block 690) and determines
whether it is an abort frame (decision block 691). If the
frame is an abort frame, engine 244 immediately aborts the
connection (block 691a). If the frame is not an abort frame
(“yes” exit to decision block 691), engine 244 processes
acknowledgment information and releases any outstanding
send frames (block 692). Engine 244 then posts the frame to
any security subsystem for possible decryption (block 693).
Once the frame is returned from the security subsystem
engine 244 processes any control data (block 694). Engine
244 then determines whether the frame contains application
data (decision block 695). If it does, this data is queued to
the application layer (block 696). Engine 244 also deter-
mines whether the connection’s state is dormant (block 697
and 697a—this can happen on Mobility Management Server
engine 244" in the preferred embodiment), and returns state
back to established.

If the frame is possibly a “Mortis” frame (“yes” exit to
decision block 698), engine 244 indicates a “disconnect” to
the application layer (block 699) and enters the “Mortis”
state (block 699a). It sends a “post mortem” frame to the
peer (block 700), and enters the “post mortem” state (block
7004). Engine 244 then releases connection resources (block
701) and returns to sleep waiting for more work (block 702).
If the parsed frame is a “post mortem” frame (“yes” exit to
decision block 703), blocks 700a, 701, 702 are executed.

Otherwise, control returns to block 680 to dequeue the
next frame from the receive queue (block 704).

Passive Connections

Blocks 14A-14B are together a flowchart of example
steps performed by Internet Mobility Protocol engine 244 in
response to a “passive connection” request. Engine 244 first
determines whether there is another connection for this
particular device (block 720). If there is (“yes” exit to
decision block 720), the engine determines whether it is the
initial connection (decision block 721). If peer believes the
new connection is the initial connection (“yes” exit to
decision block 721), engine 244 aborts the previous con-
nections (block 722). If not the initial connection (“no” exit
to decision block 721), engine 244 tests whether the
sequence and connection ID match (decision block 723). If
they do not match (“no” exit to decision block 723), control
returns to decision block 720. If the sequence and connec-
tion ID do match (“yes” exit to decision block 723), engine
244 discards duplicate frames (block 724) and returns to step
680 of FIG. 13B (block 725).

If there is no other connection (“no” exit to decision block
720), engine 244 determines whether it can allocate con-
nection resources for the connection (decision block 726). If
it cannot, an error is declared (“no” exit to decision block
726, block 727), and the connection is aborted (block 728).
If it is possible to allocate connection resources (“yes” exit
to decision block 726), engine 244 declares a “configure”
state (block 726a) and acquires the security context for the
connection (block 730). If it was not possible to acquire
sufficient security context (“no” exit to decision block 731),

Microsoft Corporation
Exhibit 1016-00051



US 6,546,425 Bl

33

the connection is aborted (block 728). Otherwise, engine
244 sends an established frame (block 732) and declares the
connection to be in state “establish” (block 732a). Engine
244 then starts a retransmitter (block 733) and waits for the
authentication process to conclude (block 734). Eventually,
engine 244 tests whether the device and user have both been
authenticated (block 735). If either the device or the user is
not authenticated, the connection is aborted (block 736).
Otherwise, engine 244 indicates the connection to the lis-
tening application (block 737) and gets the configuration
(block 738). If either of these steps do not succeed, the
connection is aborted (decision block 739, block 740).
Otherwise, the process returns to sleep waiting for more
work (block 741).

Abnormal Termination

FIGS. 15A and 15B are a flowchart of example steps
performed by the Internet Mobility Protocol engine 244 in
response to an “abort” connection request. Upon receipt of
such a request from another process (block 999) and are
dispatched via the queue (block 1000), engine 244 deter-
mines whether the connection is associated with the request
(decision block 1001). If it is (“yes” exit to decision block
1001), engine 244 saves the original state (block 1002) and
declares an “abort” state (block 10024). Engine 244 then
determines whether the connection was indicated to any
listening application (decision block 1003)—and if so, indi-
cates a disconnect to that listening application (block 1004).
Engine 244 then declares a “post mortem” state (block
1003a), releases the resources previously allocated to the
particular connection (block 1005), and tests whether the
original state is greater than the state pending (decision
block 1006). If not (“no” exit to decision block 1006), the
process transitions to block 1002 to return to the calling
routine (block 1007). Otherwise, engine 244 determines
whether the request is associated with a received frame
(decision block 1008). If the abort request is associated with
a received frame, and the received frame is an abort frame
(decision block 1009), the received frame is discarded
(block 1010). Otherwise engine 244 will send an abort frame
(block 1011) before returning to the calling routine (block
1012).

Roaming Control

Referring once again to FIG. 1, mobile network 108 may
comprise a number of different segments providing different
network interconnects (1072—107k corresponding to differ-
ent wireless transceivers 106a—106k). In accordance with
another aspect of a presently preferred exemplary embodi-
ment of the present invention, network 108 including Mobil-
ity Management Server 102 is able to gracefully handle a
“roaming” condition in which a Mobile End System 104 has
moved from one network interconnect to another.
Commonly, network 108 topographies are divided into seg-
ments (subnets) for management and other purposes. These
different segments typically assign different network
(transport) addresses to the various Mobile End Systems 104
within the given segment.

It is common to use a Dynamic Host Configuration
Protocol (DHCP) to automatically configure network
devices that are newly activated on such a subnet. For
example, a DHCP server on the sub-net typically provides its
clients with (among other things) a valid network address to
“lease”. DHCP clients may not have permanently assigned,
“hard coded” network addresses. Instead, at boot time, the
DHCP client requests a network address trom the DHCP
server. The DHCP server has a pool of network addresses
that arc available for assignment. When a DIHCP client
requests an network address, the DHCP server assigns, or

[

10

20

30

40

50

60

34

leases, an available address from that pool to the client. The
assigned network address is then “owned” by the client for
a specified period (“lease duration” ). When the lease
expires, the network address is returned to the pool and
becomes available for reassignment to another client. In
addition to automatically assigning network addresses,
DHCP also provides netmasks and other configuration infor-
mation to clients running DHCP client software. More
information concerning the standard DHCP protocol can be
found in RFC2131.

Thus, when a Mobile End System 104 using DHCP roams
from one subnet to another, it will appear with a new
network address. In accordance with a presently preferred
exemplary embodiment of the present invention, Mobile
End Systems 104 and Mobility Management Server 102 take
advantage of the automatic configuration functionality of
DHCEP, and coordinate together to ensure that the Mobility
Management Server recognizes the Mobile End System’s
“new” network address and associates it with the previously-
established connection the Mobility Management Server is
proxying on its behalf.

The preferred embodiment uses standard DHCP
Discover/Offer client-server broadcast messaging sequences
as an echo request-response, along with other standard
methodologies in order to determine if a Mobile End System
104 has roamed to a new subnet or is out of range. In
accordance with the standard DHCP protocol, a Mobile End
System 104 requiring a network address will periodically
broadcast client identifier and hardware address as part of a
DHCP Discover message. The DHCP server will broadcast
its Offer response (this message is broadcast rather than
transmitted specifically to the requesting Mobile End Sys-
tem because the Mobile End System doesn’t yet have a
network address to send to). Thus, any Mobile End System
104 on the particular subnet will pick up any DHCP Offer
server response lo any other Mobile End System broadcast
on the same subnet.

A presently preferred exemplary embodiment of the
present invention provides DHCP listeners to monitor the
DHCP broadcast messages and thereby ascertain whether a
particular Mobile End System 104 has roamed from one
subnet to another and is being offered the ability to acquire
a new network address by DHCP. FIG. 16 shows example
DHCP listener data structures. For example, a Mobile End
System listener data structure 902 may comprise:

a linked list of server data structures,

an integer transaction ID number (xid),

a counter (“ping”), and

a timeout value.

A server data structure 904 may comprise a linked list of
data blocks each defining a different DHCP server, each data
block comprising:

a pointer to next server,

a server 1D (network address of a DHCP server),

an address (giaddr) of a BOOTP relay agent recently

associated with this DHCP server,

a “ping” value (socket ->ping), and

a flag.

These data structures are continually updated based on
DHCP broadcast traffic appearing on network 108. The
following example functions can be used to maintain these
data structures:

roamCreate( ) [initialize variables]

roamDeinitialize( ) [delete all listeners]

roamStartIndications( ) [call a supplied callback routine

when a Mobile End System has roamed or changed
interfaces, to give a registrant roaming indications ]

Microsoft Corporation
Exhibit 1016-00052



US 6,546,425 Bl

35

roamStoplndications( ) [remove the appropriate callback
from the list, to stop giving a registrant roaming
indications]

Interface Change [callback notification from operating
system indicating an interface has changed its network
address]

Listener Signal [per-interface callback from a Listener
indicating a roaming or out-of-range or back-in-range
condition].

Additionally, a refresh process may be used to update

Listeners after interface changes.

In the preferred embodiment, all Mobile End Systems 104
transmit the same Client Identifier and Hardware Address in
DHCP Discover requests. This allows the listener data
structures and associated processes to distinguish Mobile
End System-originated Discover requests from Discover
requests initiated by other network devices. Likewise, the
DHCP server will broadcast its response, so any Mobile End
System 104 and/or the Mobility Management Server 102
will be able to pick up the DHCP server Offer response to
any other Mobile End System. Since multiple DHCP servers
can respond to a single DHCP Discover message, the listener
data structures shown in FIG. 16 store each server response
in a separate data block, tied to the main handle via linked
list.

Upon receiving a Discover request having the predeter-
mined Client Hardware Address and Client Identifier, the
preferred embodiment recognizes this request as coming
from a Mobile End System 104. If the message also has a
BOOTP relay address set to zero, this indicates that the
message originated on the same subnet as the listener.
Listeners may ignore all DHCP Offers unless they have a
transaction ID (xid) matching that of a Discover message
recently sent by a Mobile End System 104. The listener can
determine that a Mobile End System 104 has roamed if any
response comes from a known server with a new BOOTP
rclay agent ID and/or offered network address masked with
an offered subnet mask. Listeners add new servers to the
FIG. 16 data structures only after receiving a positive
response from an old server. If a listener receives responses
from new server(s) but none from an old server, this may
indicate roaming (this can be a configurable option). If the
listener fails to receive responses from new or old servers,
the listener is out of range (this determination can be used to
signal an upper layer such as an application to halt or reduce
sending of data to avoid buffer overflow).

If the listener never receives a response from any server,
there is no point of reference and thus impossible to deter-
mine whether roaming has occurred. This condition can be
handled by signaling an error after a timeout and allowing
the caller to retry the process. The preferred embodiment
determines that a Mobile End System 104 has roamed if any
response has come from a known server with a new BOOTP
relay agent ID (or a new offered network address when
masked with offered subnet mask). If the listener data
structures sce responses from new servers but none from an
old server, it is possible that roaming has occurred, but there
must be a delay before signaling, in order to wait for any
potential responses from the old servers. If there are no
responses from new or old servers, then the Mobile End
System 104 is probably out of range and Mobility Manage-
ment Server 102 waits for it to come back into range.

FIG. 17 is a flowchart of example steps of a Listener
process of the preferred embodiment. Referring to FIG. 17,
a DHCP listener process is created by allocating appropriate
memory for the handle, opening NAL sockets for the DHCP
client and server UDP ports, and setting receive callbacks for

[

10

20

30

40

50

60

36

both. A timer is then set (block 802) and then the process
enters the “Wait” state to wait for a

roaming related event (block 804). Three external inputs
can trigger an event:

a DHCP server packet is received;

a DHCP client packet sent by another Mobile End System
is received

a timer timeout occurs.

If a DHCP server packet has been received, the packet is
examined to determine whether its client identifier matches
the predetermined client ID (decision block 806). If it does
not, it is discarded. However, if the packet does contain the
predetermined ID, a test is performed to determine whether
the packet is a DHCP Offer packet (decision block 808).
Offer packets are rejected unless they contain a transaction
ID matching a recently sent DHCP Discover sequence.

If the packet transaction ID matches (block 810), then a
test is made as to whether the server sending the DHCP offer
packet is known (i.e., the server ID is in the listener data
structure shown in FIG. 16) (block 812). If the server ID is
not on the list (“no” exit to decision block 812), it is added
to the list and marked as “new” (or “first” if it is the first
server on the list) (block 822). If the server is already on the
list (“Y” exit to decision block 812), a further test is
performed to determine whether the packet BOOTP relay
address (“GIADDR”) matches the server address
(“GIADDR”) (decision block 814). If there is no match, then
the Offer packet must be originating from a different subnet,
and it is determined that a “hard roam” has occurred (block
816). The caller application is signaled that there has been a
roam. If, on the other hand, decision block 814 determines
there is a match in BOOTP relay addresses, then no roam has
occurred, the listener process stamps the server receive time,
resets “new” flags for all other servers on the list, and stores
the current ping number with the server (block 818, 820).
The process then returns to “wait” period.

If the event is a received client packet, the listener process
determines whether the packet has the predetermined client
ID, is a DHCP Discover packet and has a BOOTP rclay
address (GIADDR) of 0 (blocks 824, 826, 828). These steps
determine whether the received packet is DHCP Discover
message sent by another Mobile End System 104 on the
same sub-net as the listener. If so, the listener process then
sets the transaction ID to the peer’s transaction ID (block
830) for use in comparing with later-received DHCP Offer
packets, calls a ping check (block 834) and resets the timer
(block 836).

In response to a timer timeout, the process calls a “ping
check” (block 838). “Pings” in the preferred embodiment are
DHCP Discover packets with a random new xid. Example
steps for this ping check 838 arc shown in FIG. 17A. The
purpose of the ping check routine is to determine if a “soft
roam” condition has occurred (i.c., a Mobile End System has
temporarily lost and then regained contact with a sub-net,
but has not roamed to a different sub-net). The process
determines whether there is a sub-net roam condition, an
out-of-range condition, or a “no server” condition. In other
words:

Has a Mobile End System roamed from one sub-net to

another?

Is a Mobile End System out of range?

Is a DHCP server absent?These conditions are determined
by comparing Mobile End System prior “ping”
response with the current “ping” response (decision
blocks 846, 850). For example, if the current ping
number minus the old server’s last ping response is

Microsoft Corporation
Exhibit 1016-00053



US 6,546,425 Bl

37

greater than the sub-net server pings and there is at least
one server marked “new,” there has been a sub-net
roam to a different server. The result of this logic is to
either signal a subset roam, and out of range condition
or a no server condition (or none of these) to the calling
process.
FIG. 18 shows a flowchart of example steps performed by
a Mobile End System 104 roaming control center. To enable
roaming at the Mobile End System 104, the list of known
addresses is initialized to zero (block 850) and an operating
system interface change notification is enabled (block 852).
The process then calls the operating system to get a list of
current addresses that use DHCP (block 854). All known
addresses no longer in the current list have their correspond-
ing listeners closed (block 856). Similarly, the process opens
listeners on all current but not known interfaces (block 858).
The process then signals “roam” to registrants (block §60).
When the listener process of FIG. 17 signals (block 862),
the process determines whether the signal indicates a
“roam”, “out of range” or “back in range” condition
(decision block 864, 870, 874). A roam signal (“yes” exit to
decision block 864) causes the process to close correspond-
ing listener 866 and call the operating system to release and
renew DHCP lease to a network address (block 868). If the
listener signals “out of range” (decision block 870), the
process signals this condition to registrants (block 872). If
the signal is a “back in range” (decision block 874), then this
condition is signaled to all registrants (block 876). Upon
receiving a disabled roam command (block 878), the process
closes all listeners (block 880) and disables the operating
system interface change notification (block 882).

EXAMPLES

The exemplary embodiment of the present invention finds
application in a variety of real-world situations. For
example:

Intermittently Connected Portable Computer

Many businesses have employees who occasionally tele-
commute or work from home. Such employees often use
laptop computers to get their work done. While at work, the
employees typically connect their laptop computers to a
local area network such as an Ethernet through use of a
docking port or other connector. The LAN connection
provides access to network services (e.g., printers, network
drives) and network applications (e.g., database access,
email services).

Now supposc an employee working on a project needs to
go home for the evening and wants to resume working from
home. The employee can “suspend” the operating system
and applications running on the laptop computer, pack up the
laptop computer, and bring the laptop computer home.

Once home, the employee can “resume” the operating
system and applications running on the laptop computer, and
reconnect to the office LAN via a dialup connection and/or
over the Internet. The Mobility Management Server (which
continued to proxy the laptop computer vis-a-vis the net-
work and its applications during the time the laptop com-
puter was temporarily suspended) can re-authenticate the
laptop computer and resume communicating with the laptop
computer.

From the perspective of the employee now working from
home, all of the network drive mappings, print services,
email sessions, database queries, and other network services
and applications, are exactly where the employee left them
at the office. Furthermore, because the Mobility Manage-
ment Service continued to proxy the laptop computer’s
sessions, none of those network applications terminated the

[

10

20

30

40

50

h
[

60

38

laptop computer’s sessions during the time the employee
was traveling from the office to home. The exemplary
embodiment of the invention thus provides efficient persis-
tence of session across the same or multiple network medi-
ums that is very powerful and useful in this and other
contexts.
Mobile Inventory and Warehouse Application

Imagine a large warehouse or retail chain. Within this
campus, inventory workers use vehicle mounted (i.c., trucks
and forklifts) personal laptop computers and handheld data
collection units and terminals to perform inventory manage-
ment of goods. Warehouse and retail workers are often
inexperienced computer users that do not understand net-
work sub-nets and require management supervision. A pres-
ently preferred exemplary embodiment of the present inven-
tion allows the creation of a turnkey system that hides the
complexity of the mobile network from the warehouse users.
The users can move in and out of range of access points,
suspend and resume their Mobile End Systems 104, and
change locations without concern for host sessions, network
addresses, or transport connections. In addition, the man-
agement software on the Mobility Management Server 102
provides management personnel with metrics such as num-
ber of transactions, which may be used to gauge worker
productivity. Management can also use the network sub-net
and access points to determine worker’s last known physical
location.
Mobile Medical Application

Imagine a large hospital using radio LAN technology for
network communications between several buildings. Each
building is on a unique sub-net. A presently preferred
exemplary embodiment of the present invention cnables
nurses and doctors to move from room to room with
handheld personal computers or terminals—reading and
writing patient information in hospital databases. Access to
the most recent articles on medication and medical proce-
dures is readily available through the local database and the
World Wide Web. While in the hospital, pagers (one and two
way) are no longer required since a presently preferred
exemplary embodiment of the present invention allows
continuous connection to the Mobile End System 104.
Messages can be sent directly to medical personnel via the
Mobile End System 104. As in the case with warehouse
workers, medical personnel are not required to understand
the mobile network they are using. In addition, the Mobile
End System 104 allows medical personnel to disable radio
transmission in area where radio emissions are deemed
undesirable (e.g., where they might interfere with other
medical equipment)—and easily resume and reconnect
where they left off.
Trucking and Freight

Freight companies can use a presently preferred exem-
plary embodiment of the present invention to track inven-
tory. While docked at a warchouse, the Mobile End System
104 may use LLAN technology to update warehouse inven-
torics. While away from local services, the Mobile End
System 104 can use Wide Area WAN services such as CDPD
and ARDIS to maintain real time status and location of
inventory. The Mobile End System 104 automatically
switches between network infrastructures—hiding the com-
plexity of network topology from vehicle personnel.
Mobile Enterprise

Corporate employees may use the system in accordance
with a presently preferred exemplary embodiment of the
present invention for access to E-mail, web content and
messaging services while within an enterprise campus that
has invested in an infrastructure such as 802.11. The cost of

Microsoft Corporation
Exhibit 1016-00054



US 6,546,425 Bl

39

ownership is reduced since pager service and other mobile
device services are no longer required. The purchase of
mobile infrastructure is a one time capital expense as
opposed to the costly “pay-per-use” model offered by many
existing mobile device services.

IP Multiplication

If an organization has a LAN that needs to be connected
to the Internet, the¢ administrator of the LAN has two
choices: get enough globally assigned addresses for all
computers on the LAN, or get just a few globally assigned
addresses and use the Mobility Management Server 102 in
accordance with a presently preferred exemplary embodi-
ment of the present invention as an address multiplier.
Getting a large number of IP addresses tends to be either
expensive or impossible. A small company using an Internet
Service Provider (ISP) for access to the Internet can only use
the IP addresses the ISP assigns—and the number of IP
addresses limits the number of computers that can be on the
Internet at the same time. An ISP also charges per
connection, so the more computers that need to be on the
Internet, the more expensive this solution becomes.

Using the Mobility Management Server 102 in accor-
dance with the present invention as an address multiplier
could solve many of these problems. The enterprise could
put the Mobility Management Server 102 on hardware that
is connected to the Internet via an ISP. Mobile End Systems
104 could then easily connect. Because all connection to the
Internet would go through the Mobility Management Server
102, only one address from the ISP is required. Thus, using
the preferred embodiment of the present invention as an
address multiplier allows the enterprise to get just a few (in
many cases one) addresses and accounts from the ISP, and
allows the entire LAN to have simultaneous connections to
the Internet (assuming enough bandwidth is provided).

While the invention has been described in connection
with what is presently considered to be the most practical
and preferred embodiment, it is to be understood that the
invention is not to be limited to the disclosed embodiment,
but on the contrary, is intended to cover various modifica-
tions and equivalent arrangements included within the scope
of the appended claims.

What is claimed is:

1. In a mobile computing network including at least one
peer computing system and at least one mobile computing
device coupled to the network via a link, an improvement
comprising a server coupled to the network, said server
having a transport protocol engine that provides at least one
transport protocol for communicating via the network, said
server proxying communications between the mobile com-
puting device and the peer computing system so as to
maintain a continuous data communication session between
the mobile computing device and the peer computing system
during times when the link is temporarily interrupted, said
server proxying said communications transparently to said
server transport protocol engine and said peer computing
system.

2. Anetwork as in claim 1 wherein said mobile computing
device has a point-of-presence address on said network, said
peer computing system communicates with said server using
a virtual address, and said server maps said virtual address
to said point-of-presence address.

3. A network as in claim 2 wherein said server detects
when said mobile computing device has changed its point-
of-presence address, and re-maps said virtual address to said
changed point-of-presence address.

4. A network as in claim 1 wherein said server queues and
responds to requests from said peer computing system on

10

20

30

40

50

h
[

60

40

behalf of said mobile computing device even during times
when said mobile computing device is temporarily unreach-
able or roaming.

5. A network as in claim 1 wherein said server commu-
nicates with said mobile computing device using a conven-
tional transport protocol.

6. A network as in claim 5 wherein said server commu-
nicates with said mobile computing device using remote
procedure calls.

7. A network as in claim 5 wherein said server commu-
nicates with said mobile computing device using an Internet
Mobility Protocol.

8. A network as in claim 7 wherein said Internet Mobility
Protocol provides for automatic removal of datagrams based
on configurable timeouts.

9. A network as in claim 7 wherein said Internet Mobility
Protocol provides for automatic removal of datagrams based
on configurable retries.

10. A network as in claim 1 wherein said server performs
global, device-group, device-specific, user-group, and/or
per-user policy management of consumption of network
resources by said mobile computing device.

11. A network as in claim 1 wherein said server provides
a configurable session priority for said session.

12. A network as in claim 1 wherein said mobile network
includes plural sub-networks, and said mobile computing
device uses the Dynamic Host Configuration Protocol along
with other methodologies to detect that said mobile com-
puting device has roamed from one of said plural sub-
networks to another of said plural sub-networks.

13. A network as in claim 1 wherein said server comprises
a Mobility Management Server.

14. A network as in claim 1 further including at least one
mobile interconnect coupling said mobile computing
devices to said server.

15. The network of claim 1 wherein said server includes
a transport interface interfacing with said transport protocol
engine, and wherein said proxying is transparently per-
formed at said transport interface.

16. The network of claim 1 wherein the network includes
sub-networks, and the server maintains said session even
when said mobile computing device roams between sub-
networks.

17. The network of claim 1 wherein the network includes
plural sub-networks, and the server detects when said
mobile computing device has roamed between said plural
sub-networks.

18. The network of claim 1 wherein said transport pro-
tocol uses addressing to route data to destinations, and said
proxying translates selected network addresses to maintain
said session between said mobile computing device and said
peer computing system even when said mobile computing
device temporarily becomes unavailable.

19. The network of claim 1 wherein the session includes
plural communication sources and destinations.

20. The network of claim 19 wherein the server provides
different priorities for said plural communication sources
and destinations.

21. A method of maintaining a persistent session with at
least one mobile computing device in a mobile computing
environment despite intermittent connections, said mobile
computing device permitting execution of at least one net-
worked application that is not designed especially for said
mobile computing environment, said mobile computing
device including an application network interface that inter-
faces with said application, said mobile computing device
further including a transport interface existing between a

Microsoft Corporation
Exhibit 1016-00055



US 6,546,425 Bl

41

transport protocol engine and at least said application, said
transport interface interfacing with said transport protocol
engine, said method including:

managing, at said transport interface, at least one session

between said mobile computing device and at least one
further computing device in a manner that is transpar-
ent to both said transport protocol engine and said
application, and

maintaining the session even when the mobile computing

device becomes unreachable, suspends or changes net-
work address.

22. A method as in claim 21 further including providing
at least one configurable session priority for said session.

23. A method as in claim 21 wherein said managing step
includes managing consumption of network resources by
said mobile computing device.

24. A method as in claim 21 wherein the mobile comput-
ing environment includes plural sub-networks, and said
maintaining step uses Dynamic Host Configuration Protocol
along with other methodologies to detect when said mobile
computing device roams between said sub-networks.

25. A method as in claim 21 wherein said managing step
communicates datagrams with said mobile computing
device and allows automatic removal of unreliable ones of
said datagrams based on at least one configurable parameter.

26. A method as in claim 25 wherein said configurable
parameter comprises a timeout.

27. A method as in claim 25 wherein said configurable
parameter comprises a retry number.

28. A method as in claim 21 further including allowing
said mobile computing device to obtain a variable point of
presence address, and wherein said managing step includes
mapping said variable point of presence address to a virtual
address.

29. A method as in claim 21 wherein said managing step
includes using a Remote Procedure Call protocol to com-
municate with the mobile computing device.

30. Amethod as in claim 21 wherein said maintaining step
maintains the connection state of said session during inter-
ruptions in at least one link connecting said mobile com-
puting device with said mobile computing environment.

31. A method as in claim 21 wherein said managing step
includes communicating with at least one communications
peer in said mobile computing environment using at least
one transport protocol generated by said transport protocol
engine.

32. A method as in claim 21 wherein said mobile com-
puting device includes plural communication sources, and
said managing step includes coalescing data from said plural
communication sources destined for multiple destinations
into a stream, and forwarding said stream.

33. A method as in claim 32 further including demulti-
plexing said coalesced data from said stream and forwarding
said demultiplexed data to plural communications destina-
tions.

34. A method as in claim 32 wherein said stream includes
frames, and said coalescing includes dynamically resizing
said frames to accommodate a maximum and/or optimum
transmission unit of the mobile computing environment.

35. A method as in claim 32 wherein said coalescing
includes maintaining semantics of unreliable data, and selec-
tively discarding said unreliable data based on said seman-
tics.

36. A method as in claim 21 wherein said managing step
includes providing guaranteed delivery of messages to and/
or from said mobile computing device.

37. A method as in claim 21 wherein said managing step
includes controlling which network resources are accessible
by said mobile computing device.

10

20

30

40

50

h
[

60

42

38. The method of claim 21 wherein said mobile com-
puting environment includes plural sub-networks, and said
maintaining step maintains said session even when said
mobile computing device roams between said plural sub-
networks.

39. A server for maintaining a persistent connection with
at least one mobile computing device in a mobile computing
environment including at least one further computing peer,
said mobile computing device executing at least one com-
munication source or destination, said server having a trans-
port protocol engine providing a server transport protocol,
said server including:

a session manager that manages at least one session
between said mobile computing device and said at least
one further communications peer, said session manager
maintaining the session even when the mobile comput-
ing device becomes unreachable, or changes network
address in a manner that is transparent to the mobile
computing device communication source or
destination, the communications peer, and said server
transport protocol.

40. A server as in claim 39 wherein said session manager
includes a session priority queue that provides at least one
configurable session priority for said session.

41. A server as in claim 39 wherein said session manager
includes means for managing consumption of network
resources by said mobile computing device.

42. A server as in claim 39 wherein the mobile computing
environment includes plural sub-networks, and said session
manager transparently maintains the session even when said
mobile computing device roams between said sub-networks.

43. A server as in claim 39 wherein said session manager
communicates datagrams with said mobile computing
device and automatically removes unreliable ones of said
datagrams based on at least one configurable parameter.

44. A server as in claim 43 wherein said configurable
parameter comprises a timeout.

45. A server as in claim 43 wherein said configurable
parameter comprises a retry number.

46. A server as in claim 39 wherein said mobile comput-
ing environment provides said mobile computing device
with a variable point of presence address, and said session
manager maps said variable point of presence address to a
virtual address.

47. A server as in claim 39 wherein said session manager
uses a Remote Procedure Call protocol to communicate with
the mobile computing device.

48. A server as in claim 39 wherein said mobile comput-
ing environment includes at least one link connecting said
mobile computing device with said mobile computing
environment, and said session manager maintains the con-
nection state of said session even during interruptions in said
link.

49. A server as in claim 39 wherein session manager
communicates with said mobile computing device using at
least one transport protocol.

50. A server as in claim 39 wherein said mobile comput-
ing device includes plural application sources, and said
session manager coalesces data associated with said plural
application sources into a stream, and forwards said stream.

51. A server as in claim 39 wherein said mobile comput-
ing device includes plural application sources, and said
session manager demultiplexes coalesced data from said
plural application sources and forwards said demultiplexed
data to plural associated destinations.

52. A server as in claim 39 wherein session manager
communicates with said mobile computing device using

Microsoft Corporation
Exhibit 1016-00056



US 6,546,425 Bl

43

frames, and dynamically resizes said frames to accommo-
date a maximum or optimum transmission unit of the mobile
computing environment.

53. A server as in claim 39 wherein said session manager
maintains semantics of unreliable data, and selectively dis-
cards said unreliable data based on said semantics.

54. A server as in claim 39 wherein said session manager
provides for guaranteed delivery of messages to and/or from
said mobile computing device.

55. A server as in claim 39 wherein said session manager
places controls on mobile computing environment resources
said mobile computing device can access.

56. The server of claim 39 wherein said server includes a
transport interface interfacing with said transport protocol
engine, said session manager operaling al said transport
interface.

57. The server of claim 39 wherein said mobile computing
environment includes networks or sub-networks, and said
session manager detects when the mobile computing device
has roamed between networks or sub-networks.

58. The server of claim 39 wherein the server communi-
cates with said mobile computing device and said further
computing peer using network addresses, and said session
manager provides for a consistent network address destina-
tion for said further peer to communicate with even in the
event said mobile computing device changes address or
temporarily becomes unreachable, said server transport pro-
tocol responding to messages from said further computing
peer directed to said consistent network address destination
to keep said data communications active even in the event
said mobile computing device is unable to respond.

59. In a mobile computing environment including a proxy
server, a mobile computing device that maintains a persis-
tent virtual connection with at least one further computing
device during times when the mobile computing device
becomes unreachable, suspends or changes network address,
said mobile computing device permitting execcution of at
least one networked application that is not designed espe-
cially for said mobile computing environment, said mobile
computing device including an application network inter-
face that interfaces with said application, said mobile com-
puting device further including a transport protocol engine,
said mobile computing device including:

a transport interface existing between said transport pro-
tocol engine and at least said application, said transport
interface interfacing with said transport protocol
engine, and

a mobile interceptor coupled to said transport interface,
said mobile interceptor intercepting, transparently to
said application, requests for network services at said
transport interface, generating Remote Procedure Calls
responsive to said requests for network services, and
forwarding said Remote Procedure Calls to said proxy
Server.

60. A mobile computing device as in claim 59 wherein
said mobile interceptor includes a session priority queue that
provides at least one configurable session priority.

61. A mobile computing device as in claim 59 wherein
said mobile interceptor includes means for managing con-
sumption of network resources by said mobile computing
device.

62. A mobile computing device as in claim §9 wherein the
mobile computing environment includes plural sub-

10

20

30

40

50

h
[

60

44

networks, and the mobile computing device further includes
means for using Dynamic Host Configuration Protocol
along with other methodologies to detect when said mobile
computing device roams between said sub-networks and
obtain a point of presence address.

63. A mobile computing device as in claim 59 wherein
said mobile interceptor communicates datagrams with proxy
server and automatically removes unrcliable ones of said
datagrams based on at least one configurable parameter.

64. A mobile computing device as in claim 63 wherein
said configurable parameter comprises a timeout.

65. A mobile computing device as in claim 63 whercin
said configurable parameter comprises a retry number.

66. A mobile computing device as in claim 59 wherein
said mobile computing device has an associated a variable
point of presence address that said proxy server maps to a
virtual address.

67. A mobile computing device as in claim 59 wherein
said mobile interceptor uses a Remote Procedure Call pro-
tocol to communicate with the said proxy server.

68. A mobile computing device as in claim 59 wherein
said mobile computing environment includes at least one
link connecting said mobile computing device with said
mobile computing environment, and said mobile interceptor
exchanges updated connection state information of at least
one session with said proxy server even after an interruption
in said link.

69. A mobile computing device as in claim 59 wherein
said mobile computing device includes a transport protocol
handler, and said mobile interceptor communicates with said
proxy server via said transport protocol handler.

70. A mobile computing device as in claim 59 wherein
said mobile computing device includes plural application
sources, and said mobile interceptor coalesces data associ-
ated with said plural application sources into a stream, and
forwards said stream to said proxy server.

71. A mobile computing device as in claim 59 wherein
said mobile computing device includes plural application
destinations, mobile interceptor demultiplexes coalesced
data from plural application sources and forwards said
demultiplexed data to said plural application destinations.

72. A mobile computing device as in claim 59 wherein
mobile interceptor communicates with said proxy server
using frames, and dynamically resizes said frames to accom-
modate a maximum or optimum transmission unit of the
mobile computing environment.

73. A mobile computing device as in claim 59 wherein
said mobile interceptor maintains semantics of unreliable
data, and selectively discards said unreliable data based on
said semantics.

74. A mobile computing device as in claim 59 wherein
said mobile interceptor provides for guaranteed delivery of
messages to and/or from said proxy server.

75. A mobile computing device as in claim 59 wherein
said mobile interceptor places controls on mobile computing
environment resources said mobile computing device can
access.

76. The mobile computing environment of claim 59
wherein said mobile computing environment includes plural
networks or sub-networks, and said interceptor maintains
the session even when said mobile computing device roams
between said plural networks or sub-networks.

Microsoft Corporation
Exhibit 1016-00057





