
SOFTWARE—PRACTICE AND EXPERIENCE, VOL 22(10). 879–884 (OCTOBER 1992)

Tuning the Boyer–Moore–Horspool String
Searching Algorithm

TIMO RAITA
Department of Computer Science, University of Turku, Lemminkaisenkatu 14A,

SF-20520 Turku, Finland

SUMMARY

Substring search is a common activity in computing. The fastest known search method is that of Boyer
and Moore with the improvements introduced by Horspool. This paper presents a new implementation
which takes advantage of the dependencies between the characters. The resulting code runs 25 per cent
faster than the best currently-known routine.

KEY WORDS Design of algorithms String searching Pattern matching

INTRODUCTION

In the string-searching problem we have a pattern pat, of length m, all occurrences
of which are to be found in a text string text, of length n (usually n m). This
problem has been studied extensively; see e.g. Reference 1. One of the fastest
known algorithms is that of Boyer and Moore . 2 The theoretical time complexity
(measured in the number of symbol comparisons) of the method is O (n + rm) in
the worst case, where r is the total number of matches. The method is fast also in
practice: experiments have shown that on the average the algorithm has a sublinear
behaviour on the length of a typical text. The workspace needed is m + c + O (1),
where c is the size of the alphabet over which text and pat are written.

In the preprocessing phase of the Boyer–Moore algorithm, pat is scanned to form
two tables which express how much the pattern is to be shifted forward in relation
to the text when a match/mismatch is found. The first table defines a match heuristic
and the second one an occurrence heuristic. The pattern is matched from right to
left, i.e. starting from pat[m]. When a mismatch is found between pat[i] and the text
symbol x, the match heuristic tells how much the pattern can be shifted in order to
align the tested portion of the text with an identical portion in the pattern, i.e. it
defines the rightmost repetition of pat[i + 1].. .pat[ml in pat. The occurrence heuristic
expresses the rightmost occurrence of x in the pattern. The pattern is shifted
according to the larger shift given by the two heuristics.

The original algorithm has been analysed extensively, and several variants of it
have been introduced. 3–9 The fastest variant has been shown 1 to be that of Horspool. 7

This method uses only the occurrence heuristic. Moreover, the text symbol that

0038–0644/92/100879–06$08.00 Received 9 May 1991
© 1992 by John Wiley & Sons, Ltd.

Google Ex. 1017

880 T. RAITA

aligns with pat[m] is always chosen (regardless of the position where the mismatch
occurred) as the basis for the shift according to the occurrence heuristic:

procedure bmhsearch(var txt: txttype; n: integer; pat: pattype; m: integer);

type
occtype = array [chr(0). ..chr(alphabetsize– 1)] of integer;

var
i,j, k: integer;
ch: char;
occheur : occtype;

begin
(* prepare the occurrence heuristic table d *)
for ch : = chr(0) to chr(alphabetsize– 1) do occheur[ch] : = m;
for j := 1 to m–1 do occheur[pat[j]] : = m–j;

(* Add sentinels to the front of the text and the pattern *)
pat[0] : = Symbol_not_in_text;
txt[0] : = Symbol_not_in_pat;

(* The actual search loop *)
i := m.

while i <= n do
begin

k := i;
j := m;
while txt[k] = pat[j] do
begin

k := k–1;
j : = j – 1 ;

end;
if j = 0 then writeln(output, ′ Match at position ′, k+1);
i : = i + occheur[txt[i]];

end;
end;

NEW VARIANTS

Horspool’s implementation performs extremely well when we search for a random
pattern in a random text. In practice, however, neither the pattern nor the text is
random; there exist strong dependencies between successive symbols. 10 The depen-
dencies may extend even over 30 symbols. They are strongest with respect to the
nearest neighboring ones and weaken noticeably at word boundaries. This suggests
that it is not profitable to compare the pattern symbols strictly from right to left: if
the last symbol of the pattern matches with the corresponding text symbol, we should
next try to match the first pattern symbol, because the dependencies are weakest
between these two. If both symbols match, the next candidate is the middle symbol
of pat. Thus we have the following general principle: after each successful symbol
match, choose a symbol to which the dependencies from all the symbols already

Google Ex. 1017

STRING SEARCHING ALGORITHM 881

probed are the weakest. Hence, if pat[m] and pat[1] match, we choose at step i (i = 1,
2 ,... ,p) the symbols that have indices km/2 i (k = 1,3,5,... ,2 i– 1), assuming m = 2 P.
Note that the probing can be done in any order, because the match heuristic is not
used and the symbol x which aligns with pat[m] is used for shifting. If the shift is
done according to the original scheme of Boyer and Moore, i.e. using the text
symbol that caused the mismatch, the symbols should be processed at each step in
decreasing index order to obtain larger shifts on the average.

Implementing only the initial phase of the principle, i.e. examining only the first
and the last symbol of pat, the procedure body is changed as follows:

begin
(* Prepare the occurrence heuristic table d *)
for ch : = chr(0) to chr(alphabetsize– 1) do occheur[ch] : = m;
for j := 1 to m–1 do occheur[pat[j]] := m–j;
i := m:

mminusone : = m–1;
last : = pat[m];
first := pat[1];

(* Replace the first pattern symbol by a sentinel *)
pat[1] : = Symbol_not_in_text;

(* The actual search loop *)
while i <= n do
begin

if txt[i] = last then
if txt[i–mminusone] = first then
begin

k := i–1;
j : = mminusone;
while txt[k] = pat[j] do
begin

k : = k – 1 ;
j := j–1;

end;
if j = 1 then writeln(output, ′ Match at position ′ , k+ 1);

end;
i : = i + occheur[txt[i]];

end;
end;

Note that j is tested for its final value only when at least pat[1] and pat[m] match.
Also, there is no need for the auxiliary array slots pat[0] and text[0]. The precondition
of the procedure is that the length of pat is at least two (and can be omitted if we
use the sentinel values pat[0] and text[0]).

Including the test of the middle symbol, we have the code

midpoint : = m div 2;

Google Ex. 1017

882 T. RAITA

mminusmid : = m–midpoint–1;
midchar : = pattern[midpoint+ 1];

while i <= n do
begin

if txt[i] = last then
if txt[i–mminusone] = first then

if txt[i–mminusmid] = midchar then
begin

The disadvantage of this solution is that it compares the middle element twice, if at
least the latter half of the pattern matches. It could be avoided, but the complicated
logic would result in a slower program. In spite of the double checking, this variant
performs better than the previous one if m >3 (and only slightly worse with m = 2
or 3) due to the better selectivity of the if construction.

We have also implemented a version that tests all pattern symbols according to
the given selection principle. No double checking is performed, but the preprocessing
as well as the indirect references to the symbol positions in pat (actually, to the
distances from the rear of the pattern) results in practice in a substantially longer
processing time than those of the simplified routines.

The advantage of the version is that the knowledge of Symbol_not_in_text is no
longer needed. If this is regarded as a severe restriction in the previous variants, we
can substitute a for statement for the inner while loop:

begin
k : = i – 1 ;

for j : = mminusone downto 2 do
begin

if txt[k] <> pat[j] then goto 1;
k : = k – 1 ;

end;
writeln(output, ′ Match

end;

1:
i : = i + occheur[txt[i]];

at position ′, k+ 1);

The for loop makes at most m – 3 comparisons more (m –2 in controlling the
loop termination; one is saved because the j test can be omitted) than the while
implementation. This does not reduce the speed of processing much, because the
compiler can usually generate efficient code for the loop control,

EXPERIMENTS

The variant that tests the last, first and middle symbol before entering the inner
while loop has turned out to be the fastest of the above routines. Its selectivity is
very good compared to the one that checks only the first and last symbols: of all
probing positions, the former chooses only 0·02–0·5 per cent for a closer examination

Google Ex. 1017

STRING SEARCHING ALGORITHM 883

and 30-100 per cent of these were matches. The corresponding figures for the latter
one were 0·3–1·5 per cent and 6–78 per cent. The tests were performed on a text
of a technical report, written in English. The length of the text was 29,550 characters.
The alphabet used was ASCII, implying a theoretical alphabet-size 128, the actual
size being 85. Patterns of length 2–20 were selected randomly from the text. The
search was repeated 30 times with each pattern length. Figure 1 depicts the results
of the experiment.

The results show that the variant is 21–27 per cent faster than the original scheme
with all pattern lengths. Because of the pattern-selection technique, at least one
occurrence of pat is always found. However, the test results with non-occurring
(English) patterns were very similar to those of Figure 1. It is evident that patterns
that have a frequently-occurring suffix, e.g. ‘-ion’ and ‘-ed’ (possibly appended with
a space character) are the ones where the profits of the new variant are most
significant. Its performance improves also when m increases, because of the weaken-
ing dependencies. On the other hand, it deteriorates when the alphabet-size
decreases, because the probability of pat[1], pat[m/2] and pat[m] being equal to the
corresponding text symbols increases. However, we believe that if there exist short-
range dependencies in text, this phenomenon does not show up until the alphabet-
size - is as- small as 2.

Figure I. The performance of the Boyer–Moore–Horspool algorithm and the new variant. The tests were
done on a Micro Vax-11 microcomputer using Pascal

Google Ex. 1017

884 T. RAITA

ACKNOWLEDGEMENTS

This work was partly supported by the Academy of Finland. The author wishes to
thank Jukka Teuhola for his valuable comments.

1.

2.

3.

4.
5.

6.

7.
8.

9.

10.

REFERENCES

R. A. Baeza-Yates, ‘Algorithms for string searching: a survey’, SIGIR Forum, 23, (3,4), 34–58
(1989).
R. S. Boyer and J. S. Moore, ‘A fast string searching algorithm’, Comm. ACM, 20, (10), 762–772
(1977).
A. Apostolic and R. Giancarlo, ‘The Boyer–Moore–Galil string searching strategies revisited’,
SIAM J. Comput., 15, (l), 98–105, (1986).
R. A. Baeza-Yates, ‘Improved string searching’, Softw. Pratt. Exp., 19, 257–271 (1989).
Z. Galil, ‘On improving the worst case running time of the Boyer–Moore string matching algorithm’,
Comm. ACM, 22, (9), 505–508 (1979).
L. J. Guibas and A. M. Odlyzko, ‘A new proof of the linearity of the Boyer–Moore string searching
algorithm’, SIAM J. Comp., 9, (4), 672–682 (1980).
R. N. Horspool, ‘Practical fast searching in strings’, Softw. Pratt. Exp., 10, 501–506 (1980).
W. Rytter, ‘A correct preprocessing algorithm for Boyer–Moore string-searching’, SIAM J. Com-
put., 9, (3), 509–512 (1980).
R. Schaback, ‘On the expected sublinearity of the Boyer–Moore algorithm’, SIAM J. Comput.,
17, (4), 648–658 (1988).
S. Guiasu, Information Theory with Applications, McGraw-Hill, London, 1977.

Google Ex. 1017

	Tuning the Boyer–Moore–Horspool String Searching Algorithm
	SUMMARY
	INTRODUCTION
	NEW VARIANTS
	EXPERIMENTS
	ACKNOWLEDGEMENTS
	REFERENCES

