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Abstract

The nearest� or near�neighbor query problems

arise in a large variety of database applications�
usually in the context of similarity searching� Of
late� there has been increasing interest in build�

ing search�index structures for performing simi�
larity search over high�dimensional data� e�g�� im�
age databases� document collections� time�series

databases� and genome databases� Unfortunately�
all known techniques for solving this problem fall
prey to the �curse of dimensionality�� That is�

the data structures scale poorly with data dimen�
sionality� in fact� if the number of dimensions
exceeds 	
 to �
� searching in k�d trees and re�

lated structures involves the inspection of a large
fraction of the database� thereby doing no better
than brute�force linear search� It has been sug�

gested that since the selection of features and the
choice of a distance metric in typical applications
is rather heuristic� determining an approximate
nearest neighbor should su�ce for most practi�

cal purposes� In this paper� we examine a novel
scheme for approximate similarity search based
on hashing� The basic idea is to hash the points
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from the database so as to ensure that the prob�
ability of collision is much higher for objects that
are close to each other than for those that are far

apart� We provide experimental evidence that our
method gives signi
cant improvement in running
time over other methods for searching in high�
dimensional spaces based on hierarchical tree de�

composition� Experimental results also indicate
that our scheme scales well even for a relatively
large number of dimensions �more than �
��

� Introduction

A similarity search problem involves a collection of ob�
jects �e�g�� documents� images� that are characterized
by a collection of relevant features and represented
as points in a high�dimensional attribute space� given
queries in the form of points in this space� we are re�
quired to �nd the nearest �most similar� object to the
query� The particularly interesting and well�studied
case is the d�dimensional Euclidean space� The prob�
lem is of major importance to a variety of applications�
some examples are	 data compression 
��
� databases
and data mining 
��
� information retrieval 
��� ��� ��
�
image and video databases 
��� ��� ��� ��
� machine
learning 
�
� pattern recognition 
�� ��
� and� statistics
and data analysis 
��� ��
� Typically� the features of
the objects of interest are represented as points in �d
and a distance metric is used to measure similarity of
objects� The basic problem then is to perform indexing
or similarity searching for query objects� The number
of features �i�e�� the dimensionality� ranges anywhere
from tens to thousands� For example� in multimedia
applications such as IBM�s QBIC �Query by Image
Content�� the number of features could be several hun�
dreds 
��� ��
� In information retrieval for text doc�
uments� vector�space representations involve several
thousands of dimensions� and it is considered to be a
dramatic improvement that dimension�reduction tech�
niques� such as the Karhunen�Lo�eve transform 
��� ��

�also known as principal components analysis 
��
 or
latent semantic indexing 
��
�� can reduce the dimen�
sionality to a mere few hundreds�
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The low�dimensional case �say� for d equal to � or
�� is well�solved 
��
� so the main issue is that of deal�
ing with a large number of dimensions� the so�called
�curse of dimensionality�� Despite decades of inten�
sive e�ort� the current solutions are not entirely sat�
isfactory� in fact� for large enough d� in theory or in
practice� they provide little improvement over a linear
algorithm which compares a query to each point from
the database� In particular� it was shown in 
��
 that�
both empirically and theoretically� all current index�
ing techniques �based on space partitioning� degrade
to linear search for su�ciently high dimensions� This
situation poses a serious obstacle to the future develop�
ment of large scale similarity search systems� Imagine
for example a search engine which enables content�
based image retrieval on the World�Wide Web� If the
system was to index a signi�cant fraction of the web�
the number of images to index would be at least of
the order tens �if not hundreds� of million� Clearly� no
indexing method exhibiting linear �or close to linear�
dependence on the data size could manage such a huge
data set�

The premise of this paper is that in many cases
it is not necessary to insist on the exact answer� in�
stead� determining an approximate answer should suf�
�ce �refer to Section � for a formal de�nition�� This
observation underlies a large body of recent research
in databases� including using random sampling for his�
togram estimation 
�
 and median approximation 
��
�
using wavelets for selectivity estimation 
��
 and ap�
proximate SVD 
��
� We observe that there are many
applications of nearest neighbor search where an ap�
proximate answer is good enough� For example� it
often happens �e�g�� see 
��
� that the relevant answers
are much closer to the query point than the irrele�
vant ones� in fact� this is a desirable property of a
good similarity measure� In such cases� the approxi�
mate algorithm �with a suitable approximation factor�
will return the same result as an exact algorithm� In
other situations� an approximate algorithm provides
the user with a time�quality tradeo� � the user can
decide whether to spend more time waiting for the
exact answer� or to be satis�ed with a much quicker
approximation �e�g�� see 
�
��

The above arguments rely on the assumption that
approximate similarity search can be performed much
faster than the exact one� In this paper we show that
this is indeed the case� Speci�cally� we introduce a
new indexing method for approximate nearest neigh�
bor with a truly sublinear dependence on the data size
even for high�dimensional data� Instead of using space
partitioning� it relies on a new method called locality�
sensitive hashing �LSH�� The key idea is to hash the
points using several hash functions so as to ensure that�
for each function� the probability of collision is much
higher for objects which are close to each other than
for those which are far apart� Then� one can deter�

mine near neighbors by hashing the query point and
retrieving elements stored in buckets containing that
point� We provide such locality�sensitive hash func�
tions that are simple and easy to implement� they can
also be naturally extended to the dynamic setting� i�e��
when insertion and deletion operations also need to be
supported� Although in this paper we are focused on
Euclidean spaces� di�erent LSH functions can be also
used for other similarity measures� such as dot prod�
uct 
�
�
Locality�Sensitive Hashing was introduced by Indyk

and Motwani 
��
 for the purposes of devising main
memory algorithms for nearest neighbor search� in par�
ticular� it enabled us to achieve worst�case O�dn�����
time for approximate nearest neighbor query over an
n�point database� In this paper we improve that tech�
nique and achieve a signi�cantly improved query time
of O�dn��������� This yields an approximate nearest
neighbor algorithm running in sublinear time for any
� � �� Furthermore� we generalize the algorithm and
its analysis to the case of external memory�
We support our theoretical arguments by empiri�

cal evidence� We performed experiments on two data
sets� The �rst contains ������ histograms of color
images� where each histogram was represented as a
point in d�dimensional space� for d up to ��� The sec�
ond contains around ������� points representing tex�
ture information of blocks of large aerial photographs�
All our tables were stored on disk� We compared
the performance of our algorithm with the perfor�
mance of the Sphere�Rectangle�tree �SR�tree� 
��
� a
recent data structure which was shown to be com�
parable to or signi�cantly more e�cient than other
tree�decomposition�based indexing methods for spa�
tial data� The experiments show that our algorithm is
signi�cantly faster than the earlier methods� in some
cases even by several orders of magnitude� It also
scales well as the data size and dimensionality increase�
Thus� it enables a new approach to high�performance
similarity search � fast retrieval of approximate an�
swer� possibly followed by a slower but more accurate
computation in the few cases where the user is not
satis�ed with the approximate answer�
The rest of this paper is organized as follows� In

Section � we introduce the notation and give formal
de�nitions of the similarity search problems� Then in
Section � we describe locality�sensitive hashing and
show how to apply it to nearest neighbor search� In
Section � we report the results of experiments with
LSH� The related work is described in Section �� Fi�
nally� in Section � we present conclusions and ideas for
future research�

� Preliminaries

We use ldp to denote the Euclidean space �d under the
lp norm� i�e�� when the length of a vector �x�� � � �xd� is

de�ned as �jx�jp � � � �� jxdjp���p� Further� dp�p� q�  
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jjp�qjjp denotes the distance between the points p and
q in ldp � We use Hd to denote the Hamming metric
space of dimension d� i�e�� the space of binary vectors
of length d under the standard Hamming metric� We
use dH �p� q� denote the Hamming distance� i�e�� the
number of bits on which p and q di�er�
The nearest neighbor search problem is de�ned as

follows	

De�nition � �Nearest Neighbor Search �NNS��
Given a set P of n objects represented as points in a
normed space ldp � preprocess P so as to e�ciently an�
swer queries by �nding the point in P closest to a query
point q�

The de�nition generalizes naturally to the case
where we want to return K � � points� Speci�cally� in
the K�Nearest Neighbors Search �K�NNS�� we wish to
return the K points in the database that are closest to
the query point� The approximate version of the NNS
problem is de�ned as follows	

De�nition � ���Nearest Neighbor Search ���NNS��
Given a set P of points in a normed space ldp � prepro�
cess P so as to e�ciently return a point p � P for any
given query point q� such that d�q� p� � �� � ��d�q� P ��
where d�q� P � is the distance of q to the its closest point
in P �

Again� this de�nition generalizes naturally to �nd�
ing K � � approximate nearest neighbors� In the Ap�
proximate K�NNS problem� we wish to �nd K points
p�� � � � � pK such that the distance of pi to the query q is
at most ��� �� times the distance from the ith nearest
point to q�

� The Algorithm

In this section we present e�cient solutions to the ap�
proximate versions of the NNS problem� Without sig�
ni�cant loss of generality� we will make the following
two assumptions about the data	

�� the distance is de�ned by the l� norm �see com�
ments below��

�� all coordinates of points in P are positive integers�

The �rst assumption is not very restrictive� as usu�
ally there is no clear advantage in� or even di�erence
between� using l� or l� norm for similarity search� For
example� the experiments done for the Webseek 
��

project �see 
��
� chapter �� show that comparing color
histograms using l� and l� norms yields very similar
results �l� is marginally better�� Both our data sets
�see Section �� have a similar property� Speci�cally�
we observed that a nearest neighbor of an average
query point computed under the l� norm was also an
��approximate neighbor under the l� norm with an av�
erage value of � less than �! �this observation holds

for both data sets�� Moreover� in most cases �i�e�� for
��! of the queries in the �rst set and ��! in the sec�
ond set� the nearest neighbors under l� and l� norms
were exactly the same� This observation is interest�
ing in its own right� and can be partially explained
via the theorem by Figiel et al �see 
��
 and references
therein�� They showed analytically that by simply ap�
plying scaling and random rotation to the space l��
we can make the distances induced by the l� and l�
norms almost equal up to an arbitrarily small factor�
It seems plausible that real data is already randomly
rotated� thus the di�erence between l� and l� norm
is very small� Moreover� for the data sets for which
this property does not hold� we are guaranteed that
after performing scaling and random rotation our al�
gorithms can be used for the l� norm with arbitrarily
small loss of precision�
As far as the second assumption is concerned�

clearly all coordinates can be made positive by prop�
erly translating the origin of �d� We can then con�
vert all coordinates to integers by multiplying them
by a suitably large number and rounding to the near�
est integer� It can be easily veri�ed that by choosing
proper parameters� the error induced by rounding can
be made arbitrarily small� Notice that after this oper�
ation the minimum interpoint distance is ��

�	� Locality�Sensitive Hashing

In this section we present locality�sensitive hashing
�LSH�� This technique was originally introduced by
Indyk and Motwani 
��
 for the purposes of devising
mainmemory algorithms for the ��NNS problem� Here
we give an improved version of their algorithm� The
new algorithm is in many respects more natural than
the earlier one	 it does not require the hash buckets to
store only one point� it has better running time guar�
antees� and� the analysis is generalized to the case of
secondary memory�
Let C be the largest coordinate in all points in P �

Then� as per 
��
� we can embed P into the Hamming

cube Hd�

with d�  Cd� by transforming each point
p  �x�� � � �xd� into a binary vector

v�p�  UnaryC�x�� � � �UnaryC�xd��

where UnaryC�x� denotes the unary representation of
x� i�e�� is a sequence of x ones followed by C�x zeroes�
Fact � For any pair of points p� q with coordinates in
the set f� � � �Cg�

d��p� q�  dH�v�p�� v�q���

That is� the embedding preserves the distances be�
tween the points� Therefore� in the sequel we can
concentrate on solving ��NNS in the Hamming space
Hd�

� However� we emphasize that we do not need to
actually convert the data to the unary representation�
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which could be expensive when C is large� in fact� all
our algorithms can be made to run in time indepen�
dent on C� Rather� the unary representation provides
us with a convenient framework for description of the
algorithms which would be more complicated other�
wise�
We de�ne the hash functions as follows� For an inte�

ger l to be speci�ed later� choose l subsets I�� � � � � Il of
f�� � � � � d�g� Let pjI denote the projection of vector p on
the coordinate set I� i�e�� we compute pjI by selecting
the coordinate positions as per I and concatenating
the bits in those positions� Denote gj�p�  pjIj � For
the preprocessing� we store each p � P in the bucket
gj�p�� for j  �� � � � � l� As the total number of buckets
may be large� we compress the buckets by resorting
to standard hashing� Thus� we use two levels of hash�
ing	 the LSH function maps a point p to bucket gj�p��
and a standard hash function maps the contents of
these buckets into a hash table of size M � The maxi�
mal bucket size of the latter hash table is denoted by
B� For the algorithm�s analysis� we will assume hash�
ing with chaining� i�e�� when the number of points in
a bucket exceeds B� a new bucket �also of size B� is
allocated and linked to and from the old bucket� How�
ever� our implementation does not employ chaining�
but relies on a simpler approach	 if a bucket in a given
index is full� a new point cannot be added to it� since
it will be added to some other index with high prob�
ability� This saves us the overhead of maintaining the
link structure�
The number n of points� the size M of the hash

table� and the maximum bucket size B are related by
the following equation	

M  �
n

B
�

where � is the memory utilization parameter� i�e�� the
ratio of the memory allocated for the index to the size
of the data set�
To process a query q� we search all indices

g��q�� � � � � gl�q� until we either encounter at least c � l
points �for c speci�ed later� or use all l indices� Clearly�
the number of disk accesses is always upper bounded
by the number of indices� which is equal to l� Let
p�� � � � � pt be the points encountered in the process�
For Approximate K�NNS� we output the K points pi
closest to q� in general� we may return fewer points if
the number of points encountered is less than K�
It remains to specify the choice of the subsets Ij�

For each j � f�� � � � � lg� the set Ij consists of k ele�
ments from f�� � � � � d�g sampled uniformly at random
with replacement� The optimal value of k is chosen to
maximize the probability that a point p �close� to q
will fall into the same bucket as q� and also to mini�
mize the probability that a point p� �far away� from q
will fall into the same bucket� The choice of the values
of l and k is deferred to the next section�

Algorithm Preprocessing
Input A set of points P �
l �number of hash tables��

Output Hash tables Ti� i  �� � � � � l
Foreach i  �� � � � � l
Initialize hash table Ti by generating
a random hash function gi���

Foreach i  �� � � � � l
Foreach j  �� � � � � n
Store point pj on bucket gi�pj� of hash table Ti

Figure �	 Preprocessing algorithm for points already
embedded in the Hamming cube�

Algorithm Approximate Nearest Neighbor Query
Input A query point q�
K �number of appr� nearest neighbors�

Access To hash tables Ti� i  �� � � � � l
generated by the preprocessing algorithm

Output K �or less� appr� nearest neighbors
S � "
Foreach i  �� � � � � l
S � S � fpoints found in gi�q� bucket of table Tig

Return the K nearest neighbors of q found in set S
�# Can be found by main memory linear search #�

Figure �	 Approximate Nearest Neighbor query an�
swering algorithm�

Although we are mainly interested in the I�O com�
plexity of our scheme� it is worth pointing out that
the hash functions can be e�ciently computed if the
data set is obtained by mapping ld� into d

��dimensional
Hamming space� Let p be any point from the data set
and let p� denote its image after the mapping� Let I
be the set of coordinates and recall that we need to
compute p�jI� For i  �� � � � � d� let Iji denote� in sorted

order� the coordinates in I which correspond to the
ith coordinate of p� Observe� that projecting p� on Iji
results in a sequence of bits which is monotone� i�e��
consists of a number� say oi� of ones followed by ze�
ros� Therefore� in order to represent p�I it is su�cient
to compute oi for i  �� � � � � d� However� the latter
task is equivalent to �nding the number of elements
in the sorted array Iji which are smaller than a given
value� i�e�� the ith coordinate of p� This can be done
via binary search in logC time� or even in constant
time using a precomputed array of C bits� Thus� the
total time needed to compute the function is either
O�d logC� or O�d�� depending on resources used� In
our experimental section� the value of C can be made
very small� and therefore we will resort to the second
method�

For quick reference we summarize the preprocessing
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and query answering algorithms in Figures � and ��

�	� Analysis of Locality�Sensitive Hashing

The principle behind our method is that the probabil�
ity of collision of two points p and q is closely related
to the distance between them� Speci�cally� the larger
the distance� the smaller the collision probability� This
intuition is formalized as follows 
��
� Let D��� �� be a
distance function of elements from a set S� and for
any p � S let B�p� r� denote the set of elements from
S within the distance r from p�

De�nition � A family H of functions from S to U
is called �r�� r�� p�� p���sensitive for D��� �� if for any
q� p � S
� if p � B�q� r�� then PrH
h�q�  h�p�
 	 p��

� if p �� B�q� r�� then PrH
h�q�  h�p�
 � p��

In the above de�nition� probabilities are considered
with respect to the random choice of a function h from
the family H� In order for a locality�sensitive family
to be useful� it has to satisfy the inequalities p� � p�
and r� � r��
Observe that if D��� �� is the Hamming distance

dH��� ��� then the family of projections on one coor�
dinate is locality�sensitive� More speci�cally	

Fact � Let S be Hd�

�the d��dimensional Ham�
ming cube� and D�p� q�  dH�p� q� for p� q �
Hd�

� Then for any r� � � �� the family Hd�  
fhi 	 hi��b�� � � � � bd���  bi� for i  �� � � � � d�g is�
r� r�� � ��� �� r

d�
� �� r�����

d�

�
�sensitive�

We now generalize the algorithm from the previ�
ous section to an arbitrary locality�sensitive family
H� Thus� the algorithm is equally applicable to other
locality�sensitive hash functions �e�g�� see 
�
�� The
generalization is simple	 the functions g are now de�
�ned to be of the form

gi�p�  �hi��p�� hi��p�� � � � � hik�p���

where the functions hi� � � � � � hik are randomly chosen
from H with replacement� As before� we choose l such
functions g�� � � � � gl� In the case when the familyHd� is
used� i�e�� each function selects one bit of an argument�
the resulting values of gj�p� are essentially equivalent
to pjIj �
We now show that the LSH algorithm can be used to

solve what we call the �r� ���Neighbor problem	 deter�
mine whether there exists a point p within a �xed dis�
tance r�  r of q� or whether all points in the database
are at least a distance r�  r����� away from q� in the
�rst case� the algorithm is required to return a point
p� within distance at most �� � ��r from q� In par�
ticular� we argue that the LSH algorithm solves this
problem for a proper choice of k and l� depending on

r and �� Then we show how to apply the solution to
this problem to solve ��NNS�
Denote by P � the set of all points p� � P such that

d�q� p�� � r�� We observe that the algorithm correctly
solves the �r� ���Neighbor problem if the following two
properties hold	

P� If there exists p� such that p� � B�q� r��� then
gj�p��  gj�q� for some j  �� � � � � l�

P� The total number of blocks pointed to by q and
containing only points from P � is less than cl�

Assume that H is a �r�� r�� p�� p���sensitive family�

de�ne 	  ln ��p�
ln ��p�

� The correctness of the LSH algo�

rithm follows from the following theorem�

Theorem � Setting k  log��p��n�B� and l  
�
n
B

��
guarantees that properties P� and P� hold with prob�
ability at least �

� � �
e 	 ������

Remark � Note that by repeating the LSH algorithm
O���
� times� we can amplify the probability of success
in at least one trial to �� 
� for any 
 � ��

Proof
 Let property P� hold with probability P��
and property P� hold with probability P�� We will
show that both P� and P� are large� Assume that there
exists a point p� within distance r� of q� the proof is
quite similar otherwise� Set k  log��p��n�B�� The
probability that g�p��  g�q� for p � P � B�q� r�� is at
most pk�  

B
n � Denote the set of all points p

� �� B�q� r��
by P �� The expected number of blocks allocated for gj
which contain exclusively points from P � does not ex�
ceed �� The expected number of such blocks allocated
for all gj is at most �l� Thus� by the Markov inequal�
ity 
��
� the probability that this number exceeds �l is
less than ���� If we choose c  �� the probability that
the property P� holds is P� � ����
Consider now the probability of gj�p

��  gj�q��
Clearly� it is bounded from below by

pk�  p
log��p� n�B

�  �n�B��
log ��p�
log ��p�  �n�B����

By setting l  
�
n
B

��
� we bound from above the prob�

ability that gj�p�� 
 gj�q� for all j  �� � � � � l by ��e�
Thus the probability that one such gj exists is at least
P� 	 �� ��e�
Therefore� the probability that both properties P�

and P� hold is at least � � 
�� � P�� � �� � P��
  
P� � P� � � 	 �

�
� �

e
� The theorem follows� �

In the following we consider the LSH family for the
Hammingmetric of dimension d� as speci�ed in Fact ��
For this case� we show that 	 � �

���
assuming that

r � d�

ln n � the latter assumption can be easily satis�ed
by increasing the dimensionality by padding a su��
ciently long string of �s at the end of each point�s rep�
resentation�
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Fact � Let r � d�

lnn � If p�  �� r
d�

and p�  �� r�����
d�

�

then 	  ln ��p�
ln ��p�

� �
��� �

Proof
 Observe that

	  
ln ��p�
ln ��p�

 
ln �

��r�d�

ln �
�������r�d�

 
ln��� r�d��

ln��� �� � ��r�d��
�

Multiplying both the numerator and the denominator
by d�

r
� we obtain	

	  
d�

r ln��� r�d��
d�

r
ln�� � �� � ��r�d��

 
ln��� r�d��d

��r

ln��� �� � ��r�d��d��r
 

U

L

In order to upper bound 	� we need to bound U from
below and L from above� note that both U and L are
negative� To this end we use the following inequali�
ties 
��
	

��� �� � ��r�d��d
��r � e������

and �
�� r

d�

�d��r

� e��

�
�� �

d��r

�
�

Therefore�

U

L
�

ln�e����� �
d��r ��

ln e������

 
�� � ln��� �

d��r �

��� � ��

 ���� � ���
ln��� �

d��r
�

� � �
� ���� � ��� ln��� �� lnn�

where the last step uses the assumptions that � � �
and r � d�

lnn � We conclude that

n� � n�������n� ln����� lnn�

 n���������� �� lnn�� ln n  O�n��������

�

We now return to the ��NNS problem� First� we
observe that we could reduce it to the �r� ���Neighbor
problem by building several data structures for the
latter problem with di�erent values of r� More specif�
ically� we could explore r equal to r�� r��� � ���
r��� � ���� � � � � rmax� where r� and rmax are the small�
est and the largest possible distance between the query
and the data point� respectively� We remark that the
number of di�erent radii could be further reduced 
��

at the cost of increasing running time and space re�
quirement� On the other hand� we observed that in
practice choosing only one value of r is su�cient to

produce answers of good quality� This can be ex�
plained as in 
��
 where it was observed that the distri�
bution of distances between a query point and the data
set in most cases does not depend on the speci�c query
point� but on the intrinsic properties of the data set�
Under the assumption of distribution invariance� the
same parameter r is likely to work for a vast majority
of queries� Therefore in the experimental section we
adopt a �xed choice of r and therefore also of k and l�

� Experiments

In this section we report the results of our experiments
with locality�sensitive hashing method� We performed
experiments on two data sets� The �rst one contains
up to ������ histograms of color images from COREL
Draw library� where each histogram was represented
as a point in d�dimensional space� for d up to ��� The
second one contains around ������� points of dimen�
sion �� representing texture information of blocks of
large large aerial photographs� We describe the data
sets in more detail later in the section�
We decided not to use randomly�chosen synthetic

data in our experiments� Though such data is often
used to measure the performance of exact similarity
search algorithms� we found it unsuitable for evalua�
tion of approximate algorithms for the high data di�
mensionality� The main reason is as follows� Assume
a data set consisting of points chosen independently
at random from the same distribution� Most distri�
butions �notably uniform� used in the literature as�
sume that all coordinates of each point are chosen in�
dependently� In such a case� for any pair of points p� q
the distance d�p� q� is sharply concentrated around the
mean� for example� for the uniform distribution over
the unit cube� the expected distance is O�d�� while

the standard deviation is only O�
p
d�� Thus almost

all pairs are approximately within the same distance�
so the notion of approximate nearest neighbor is not
meaningful � almost every point is an approximate
nearest neighbor�
Implementation	 We implement the LSH algo�

rithm as speci�ed in Section �� The LSH functions
can be computed as described in Section ���� Denote
the resulting vector of coordinates by �v�� � � � � vk�� For
the second level mapping we use functions of the form

h�v�� � � � � vk�  a� � v� � � � �� ad � vk mod M�

where M is the size of the hash table and a�� � � � � ak
are random numbers from interval 
� � � �M��
� These
functions can be computed using only �k � � oper�
ations� and are su�ciently random for our purposes�
i�e�� give low probability of collision� Each second level
bucket is then directly mapped to a disk block� We as�
sumed that each block is �KB of data� As each coordi�
nate in our data sets can be represented using � byte�
we can store up to �����d d�dimensional points per
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block� Therefore� we assume the bucket size B  ���
for d  �� or d  ��� B  ��� for d  �� and B  ����
for d  ��
For the SR�tree� we used the implementation by

Katayama� available from his web page 
��
� As above�
we allow it to store about ���� coordinates per disk
block�
Performance measures	 The goal of our exper�

iments was to estimate two performance measures	
speed �for both SR�tree and LSH� and accuracy �for
LSH�� The speed is measured by the number of disk
blocks accessed in order to answer a query� We count
all disk accesses� thus ignoring the issue of caching�
Observe that in case of LSH this number is easy to
predict as it is clearly equal to the number of indices
used� As the number of indices also determines the
storage overhead� it is a natural parameter to opti�
mize�
The error of LSH is measured as follows� Follow�

ing 
�
 we de�ne �for the Approximate ��NNS problem�
the e	ective error as

E  
�

jQj
X

query q�Q

dLSH
d�

�

where dLSH denotes the distance from a query point q
to a point found by LSH� d� is the distance from q to
the closest point� and the sum is taken of all queries
for which a nonempty index was found� We also mea�
sure the �small� fraction of queries for which no non�
empty bucket was found� we call this quantity miss
ratio� For the Approximate K�NNS we measure sep�
arately the distance ratios between the closest points
found to the nearest neighbor� the �nd closest one to
the �nd nearest neighbor and so on� then we average
the ratios� The miss ratio is de�ned to be the fraction
of cases when less than K points were found�
Data Sets	 Our �rst data set consists of ������

histograms of color thumbnail�sized images of vari�
ous contents taken from the COREL library� The
histograms were extracted after transforming the pix�
els of the images to the ��dimensional CIE�Lab color
space 
��
� the property of this space is that the dis�
tance between each pair of points corresponds to the
perceptual dissimilarity between the colors that the
two points represent� Then we partitioned the color
space into a grid of smaller cubes� and given an image�
we create the color histogram of the image by counting
how many pixels fall into each of these cubes� By di�
viding each axis into u intervals we obtain a total of u�

cubes� For most experiments� we assumed u  � ob�
taining a ���dimensional space� Each histogram cube
�i�e�� color� then corresponds to a dimension of space
representing the images� Finally� quantization is per�
formed in order to �t each coordinate in � byte� For
each point representing an image each coordinate ef�
fectively counts the number of the image�s pixels of a
speci�c color� All coordinates are clearly non�negative
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Figure �	 The pro�les of the data sets�

integers� as assumed in Section �� The distribution of
interpoint distances in our point sets is shown in Fig�
ure �� Both graphs were obtained by computing all
interpoint distances of random subsets of ��� points�
normalizing the maximal value to ��

The second data set contains ������� feature vec�
tors of dimension �� representing texture information
of blocks of large aerial photographs� This data set
was provided by B�S� Manjunath 
��� ��
� its size and
dimensionality �provides challenging problems in high
dimensional indexing� 
��
� These features are ob�
tained from Gabor �ltering of the image tiles� The
Gabor �lter bank consists of � scales and � orien�
tations of �lters� thus the total number of �lters is
�� �  ��� The mean and standard deviation of each
�ltered output are used to constructed the feature vec�
tor �d  �� � �  ���� These texture features are ex�
tracted from �� large air photos� Before the feature
extraction� each airphoto is �rst partitioned into non�
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overlapping tiles of size �� times ��� from which the
feature vectors are computed�
Query Sets	 The di�culty in evaluating similarity

searching algorithms is the lack of a publicly available
database containing typical query points� Therefore�
we had to construct the query set from the data set
itself� Our construction is as follows	 we split the data
set randomly into two disjoint parts �call them S� and
S��� For the �rst data set the size of S� is ������ while
the size of S� is ����� The set S� forms a database of
images� while the �rst ��� points from S� �denoted
by Q� are used as query points �we use the other ���
points for various veri�cation purposes�� For the sec�
ond data set we chose S� to be of size �������� and
we use ���� of the remaining ����� points as a query
set� The numbers are slightly di�erent for the scala�
bility experiments as they require varying the size of
the data set� In this case we chose a random subset of
S� of required size�

�	� Experimental Results

In this section we describe the results of our experi�
ments� For both data sets they consist essentially of
the following three steps� In the �rst phase we have to
make the following choice	 the value of k �the number
of sampled bits� to choose for a given data set and the
given number of indices l in order to minimize the ef�
fective error� It turned out that the optimal value of k
is essentially independent of n and d and thus we can
use the same value for di�erent values of these param�
eters� In the second phase� we estimate the in$uence
of the number of indices l on the error� Finally� we
measure the performance of LSH by computing �for
a variety of data sets� the minimal number of indices
needed to achieve a speci�ed value of error� When ap�
plicable� we also compare this performance with that
of SR�trees�

�	� Color histograms

For this data set� we performed several experiments
aimed at understanding the behavior of LSH algorithm
and its performance relative to SR�tree� As mentioned
above� we started with an observation that the optimal
value of sampled bits k is essentially independent of n
and d and approximately equal to ��� for d  ��� The
lack of dependence on n can be explained by the fact
that the smaller data sets were obtained by sampling
the large one and therefore all of the sets have similar
structure� we believe the lack of dependence on d is also
in$uenced by the structure of the data� Therefore the
following experiments were done assuming k  ����
Our next observation was that the value of stor�

age overhead � does not exert much in$uence over the
performance of the algorithm �we tried ��s from the
interval 
�� �
�� thus� in the following we set �  ��
In the next step we estimated the in$uence of l on

E� The results �for n  ��� ���� d  ��� K  �� are
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Figure �	 Error vs� the number of indices�

shown on Figure �� As expected� one index is not su��
cient to achieve reasonably small error � the e�ective
error can easily exceed ��!� The error however de�
creases very fast as l increases� This is due to the fact
that the probabilities of �nding empty bucket are in�
dependent for di�erent indices and therefore the prob�
ability that all buckets are empty decays exponentially
in l�
In order to compare the performance of LSH with

SR�tree� we computed �for a variety of data sets� the
minimal number of indices needed to achieve a speci�
�ed value of error E equal to �!� �! � ��! or ��!�
Then we investigated the performance of the two al�
gorithms while varying the dimension and data size�
Dependence on Data Size	 We performed the

simulations for d  �� and the data sets of sizes �����
����� ����� ����� and ������ To achieve better under�
standing of scalability of our algorithms� we did run
the experiments twice	 for Approximate ��NNS and
for Approximate ���NNS� The results are presented
on Figure ��
Notice the strongly sublinear dependence exhibited

by LSH	 although for smallE  �! it matches SR�tree
for n  ���� with � blocks accessed �for K  ��� it
requires � accesses more for a data set �� times larger�
At the same time the I�O activity of SR�tree increases
by more than ���!� For larger errors the LSH curves
are nearly $at� i�e�� exhibit little dependence on the size
of the data� Similar or even better behavior occurs for
Approximate ���NNS�
We also computed the miss ratios� i�e�� the fraction

of queries for which no answer was found� The results
are presented on Figure �� We used the parameters
from the previous experiment� On can observe that
for say E  �! and Approximate ��NNS� the miss
ratios are quite high ���!� for small n� but decrease
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Figure �	 Number of indices vs� data size�

to around �! for n  ��� ��� �

Dependence on Dimension	 We performed the
simulations for d  ��� �� and ��� the choice of d�s was
limited to cubes of natural numbers because of the way
the data has been created� Again� we performed the
comparison for Approximate ��NNS and Approximate
���NNS� the results are shown on Figure �� Note that
LSH scales very well with the increase of dimension�
ality	 for E  �! the change from d  � to d  ��
increases the number of indices only by �� The miss
ratio was always below �! for all dimensions�

This completes the comparison of LSH with SR�
tree� For a better understanding of the behavior of
LSH� we performed an additional experiment on LSH
only� Figure � presents the performance of LSH when
the number of nearest neighbors to retrieve vary from
� to ����
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Figure �	 Miss ratio vs� data size�

�	� Texture features

The experiments with texture feature data were de�
signed to measure the performance of the LSH algo�
rithm on large data sets� note that the size of the
texture �le �������� points� is an order of magnitude
larger than the size of the histogram data set �������
points�� The �rst step �i�e�� the choice of the number
of sampled bits k� was very similar to the previous
experiment� therefore we skip the detailed description
here� We just state that we assumed that the number
of sampled bits k  ��� with other parameters being	
the storage overhead �  �� block size B  ���� and
the number of nearest neighbors equal to ��� As stated
above� the value of n was equal to ��������
We varied the number of indices from � to ����

which resulted in error from ��! to ��! �see Fig�
ure � �a��� The shape of the curve is similar as in
the previous experiment� The miss ratio was roughly
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Figure �	 Number of indices vs� dimension�

�! for � indices� �! for � indices� and �! otherwise�

To compare with SR�tree� we implemented that lat�
ter on random subsets of the whole data set of sizes
from ��� ��� to ���� ���� For n  ���� ��� the average
number of blocks accessed per query by SR�tree was
����� which is one to two orders of magnitude larger
than the number of blocks accessed by our algorithm
�see Figure � �b� where we show the running times of
LSH for e�ective error ��!�� Observe though that an
SR�tree computes exact answers while LSH provides
only an approximation� Thus in order to perform an
accurate evaluation of LSH� we decided to compare
it with a modi�ed SR�tree algorithm which produces
approximate answers� The modi�cation is simple	 in�
stead of running SR�tree on the whole data set� we run
it on a randomly chosen subset of it� In this way we
achieve a speed�up of the algorithm �as the random
sample of the data set is smaller than the original set�
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Figure �	 Number of indices vs� number of nearest
neighbors�

while incurring some error�
The query cost versus error tradeo� obtained in this

way �for the entire data set� is depicted on Figure ��
we also include a similar graph for LSH�
Observe that using random sampling results in con�

siderable speed�up for the SR�tree algorithm� while
keeping the error relatively low� However� even in
this case the LSH algorithm o�ers considerably out�
performs SR�trees� being up to an order of magnitude
faster�

� Previous Work

There is considerable literature on various versions of
the nearest neighbor problem� Due to lack of space we
omit detailed description of related work� the reader
is advised to read 
��
 for a survey of a variety of data
structures for nearest neighbors in geometric spaces�
including variants of k�d trees� R�trees� and structures
based on space��lling curves� The more recent results
are surveyed in 
��
� see also an excellent survey by 
�
�
Recent theoretical work in nearest neighbor search is
brie$y surveyed in 
��
�

� Conclusions

We presented a novel scheme for approximate simi�
larity search based on locality�sensitive hashing� We
compared the performance of this technique and SR�
tree� a good representative of tree�based spatial data
structures� We showed that by allowing small error
and additional storage overhead� we can considerably
improve the query time� Experimental results also in�
dicate that our scheme scales well to even a large num�
ber of dimensions and data size� An additional advan�
tage of our data structure is that its running time is
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Figure �	 �a� number of indices vs� error and �b� num�
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essentially determined in advance� All these properties
make LSH a suitable candidate for high�performance
and real�time systems�
In recent work 
�� ��
� we explore applications of

LSH�type techniques to data mining and search for
copyrighted video data� Our experience suggests that
there is a lot of potential for further improvement of
the performance of the LSH algorithm� For example�
our data structures are created using a randomized
procedure� It would be interesting if there was a more
systematic method for performing this task� such a
method could take additional advantage of the struc�
ture of the data set� We also believe that investiga�
tion of hybrid data structures obtained by merging the
tree�based and hashing�based approaches is a fruitful
direction for further research�
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