
Brute-force search - Wikipedia, the free encyclopedia Page I of 5

Brute-force search
From Wikipedia, the free encyclopedia

In computer science, brute-force search or exhaustive search, also known as generate and test, is a
very general problem-solving technique that consists of systematica ll y enumerating all possible
candidates for the solution and checking whether each candidate satisfies the problem's statement.

A brute-force algorithm to find the divisors ofa natural number 11 would enumerate all integers from I to
the square root ofn , and check whether each of them divides 11 without remainder. A brute-force
approach for the eight queens puzzle would examine all poss ible arrangements of 8 pieces on the 64-
square chessboard, and, for each arrangement, check whether each (queen) piece can attack any other.

While a brute-force search is simple to implement, and will always find a solution ifit exists, its cost is
proportional to the number of candidate solutions - which in many practical problems tends to grow
very quickly as the size of the problem increases. Therefore, brute-force search is typically used when
the problem size is limited, or when there are problem-specific heuristics that can be used to reduce the
set of candidate solutions to a manageable size. The method is also used when the simpl icity of
implementation is more important than speed.

This is the case, for example, in critical applications where any errors in the algorithm would have very
serious consequences; or when using a computer to prove a mathematical theorem. Brute-force search is
also useful as a baseline method when benchmarking other a lgorithms or metaheuristics. Indeed, brute­
force search can be viewed as the simplest metaheuristic. Brute force search should not be confused with
backtracking, where large sets of solutions can be discarded without being explicitly enumerated (as in
the textbook computer solution to the eight queens problem above). The brute-force method for finding
an item in a table - namely, check all entries of the latter, sequentially - is called linear search.

Contents

• I Implementing the brute-force search

• 1.1 Basic algorithm

• 2 Combinatorial explosion

• 3 Speeding up brute-force searches

• 4 Reordering the search space

• 5 Alternatives to brute-force search

• 6 In cryptography

• 7 References

• 8 See also

Page 1 of 5

htt :llen.wiki edia.or wiki/Brute-force search

NETWORK-1 EXHIBIT 2001
Google Inc. v. Network-1 Technologies, Inc.

I PR2015-00348

311912015

Brute-force search - Wikipedia, the free encyclopedia Page 2 of 5

Implementing the brute-force search

Basic algorithm

In order to apply brute-force search to a specific class of problems, one must implement four procedures,
{irSf,11eXf, valid, and ou/pul. These procedures should take as a parameter the data P for the particular
instance of the problem that is to be solved, and should do the following:

1. first (P) : generate a first candidate solution for P.

2. flex! (P, c): generate the next candidate for P after the current one c_

3. valid (P, c): check whether candidate c is a solution for P.

4. Olltput (P, c): use the solution c of P as appropriate to the application.

The lIexl procedure must al so tell when there are no more candidates for the instance P, after the current
one c. A convenient way to do that is to return a "null candidate" , some conventional data value A that is
distinct from any real candidate. Likewise the firs! procedure should return A if there are no candidates
at all for the instance P. The brute-force method is then expressed by the algorithm

r:--~-;~~~·~~·~;·--·--·--·--··----·------·--·----··-·-----.-------.---------.----.-.---.-.-.---.-.--.-...... ·- ·····-··-···-·········-··············-··-·-·--·-·--1

~hile ' c -=f ./I. d o !
i if ' VIJlid(P, c) then output(P, c) i
i c f-- nex t(P, c) !
lend while :

L ... _._._._. __ ._._ .. __ ._._ .. .1

For example, when looking for the divisors of an integer II , the instance data P is the number II. The call
firsl(n) should return the integer I if II > I, or A otherwise; the ca ll1lex/(II,C) should return c + I if c <
II, and A otherwise; and valid(n,c) should return true ifand only if c is a divisor of 11. (In fact , if we
choose A to be 1/ + I, the tests 1/ > I and c < 1/ are unnecessary.)The brute-force search algorithm above
will call output for every candidate that is a solution to the given instance P. The algorithm is easily
modified to stop after finding the first solution, or a specified number of solutions; or after testing a
specified number of candidates, or after spending a given amount of CPU time.

Combinatorial explosion

The main disadvantage of the brute-force method is that, for many rea l-world problems, the number of
natural candidates is prohibitively large. For instance, if we look for the divisors ofa number as
described above, the number of candidates tested will be the given number II. SO if II has sixteen decimal

digits, say, the search will require executing at least 1015 computer instructions, which will take several
days on a typica l Pc. If JI is a random 64-bit natural number, which has about 19 decimal digits on the
average, the search will take about 10 years. This steep growth in the number of candidates, as the size
of the data increases, occurs in all sorts of problems. For instance, if we are seeking a particular
rearrangement of 10 letters, then we have 10! = 3,628,800 candidates to consider, which a typical PC
can generate and test in less than one second. However, adding one more letter - which is only a 10%
increase in the data size - wi ll multiply the number of candidates by II - a 1000% increase. For 20

Page 2 of 5

htt :!/en.wiki edia.or wikiIBrute-force search 3/ 19/2015

Brute-force search - Wikipedia, the free encyclopedia Page 3 of 5

letters, the number of candidates is 20! , which is about 2.4x 1018 or 2.4 qu.intillion; and the search will
take about 10 years. This unwelcome phenomenon is commonly called the combinatorial explosion, or
the curse o f dimensionali ty.

Speeding up brute-force searches

One way to speed up a brute-force algorithm is to reduce the search space, that is, the set of candidate
solutions, by using heuristics specific to the problem class. For example, in the eight queens problem the
challenge is to place eight queens on a standard chessboard so that no queen attacks any other. Since

each queen can be placed in any of the 64 squares, in principle there are 648 = 281 ,474,976,710,656
poss ibilities to consider. However, because the queens are all alike, and that no two queens can be
placed on the same square, the candidates are all possible ways of choosing of a set of 8 squares from
the set all 64 squares; which means 64 choose 8 = 64!156 !18! = 4,426, 165,368 candidate solutions ­
about 1160,000 of the previous estimate. Further, no arrangement with two queens on the same row or
the same column can be a solution. Therefore, we can further restri ct the set of candidates to those
arrangements.

As this example shows, a little bit of analys is wi ll often lead to dramatic reductions in the number of
candidate solutions , and may tum an intractable problem into a tri vial one.

In some cases, the analysis may reduce the candidates to the set of all va lid solutions; that is, it may
yie ld an algori thm that directl y enumerates all the desired solutions (or finds one solution, as
appropriate), without wasting time with tests and the generation of invalid candidates. For example, for
the problem "find all integers between I and 1,000,000 that are evenly divisible by 4 17" a naive brute­
force solution would generate all integers in the range, testing each of them for divisibili ty. However,
that problem can be solved much more efficiently by starting with 41 7 and repeatedly adding 417 until
the number exceeds 1,000,000 - which takes only 2398 (= 1,000,000 -;- 41 7) steps, and no tests.

Reordering the search space

In applications that require only one solution, rather than all so lutions, the expected running time ofa
brute force search will often depend on the order in which the candidates are tested. As a general rule,
one should test the most promising candidates first. For example, when searching for a proper divisor of
a random number 11, it is better to enumerate the candidate divisors in increasing order, from 2 to 11 - I ,
than the other way around - because the probability that 11 is divisible by e is lie. Moreover, the
probability of a candidate being valid is often affected by the previous fai led trial s. For example,
consider the problem of finding a I bit in a given I OOO-bit string P. In this case, the candidate solutions
are the indices 1 to 1000, and a candidate e is va lid if P[e] = 1. Now, suppose that the first bit of Pis
equally likely to be 0 or I , but each bit thereafter is equal to the previous one with 90% probability. If
the candidates are enumerated in increasing order, 1 to 1000, the number, of candidates examined
before success will be about 6, on the average. On the other hand, if the candidates are enumerated in the
order 1,11 ,2 1,31 ... 99 1,2, 12,22,32 etc., the expected value of I will be only a li ttle more than 2.More
generally, the search space should be enumerated in such a way that the next candidate is most likely to
be valid, given rhar Ihe previous Irials were 110r. So if the valid solutions are likely to be "clustered" in

Page 3 of 5

htt :llen.wiki edia.or wikiIBrute-force search 3/ 19/2015

Brute-force search - Wikipedia, the free encyclopedia Page 4 of 5

some sense, then each new candidate should be as far as possible from the previous ones, in that same
sense. The converse holds, of course, if the solutions are likely to be spread out more uniformly than
expected by chance.

Alternatives to brute-force search

There are many other search methods, or metaheuristics, which are designed to take advantage of
various kinds of partial knowledge one may have about the solution. Heuristics can also be used to make
an early cutoff of parts o f the search. One example of this is the minimax principle for searching game
trees, that eliminates many subtrees at an earl y stage in the search. In certain fields, such as language
parsing, techniques such as chart parsing can exploit constraints in the problem to reduce an exponential
complexity problem into a polynomial complexity problem. In many cases, such as in Constraint
Satisfaction Problems, one can dramatically reduce the search space by means of Constraint
propagation, that is efficiently implemented in Constraint programming languages. The search space for
problems can also be reduced by replacing the full problem with a simplified version. For example, in
computer chess, rather than computing the full minimax tree of all possible moves for the remainder of
the game, a more limited tree of minimax possibilities is computed, with the tree being pruned at a
certain number of moves, and the remainder of the tree being approximated by a static evaluation
function.

In cryptography

In cryptography, a bnlle-force alfack involves systematically checking all possible keys until the correct

key is found. This strategy can in theo ry be used against any encrypted dataLL] (except a one-time pad)
by an attacker who is unable to take advantage of any weakness in an encryption system that would
otherwise make his or her task easier.

The key length used in the encryption detennines the practical feasibility of perfonning a brute force
attack, with longer keys exponentially more difficult to crack than shorter ones. Brute force attacks can
be made less effective by obfuscating the data to be encoded, something that makes it more difficult for
an attacker to recognise when he has cracked the code. One of the measures of the strength of an
encryption system is how long it would theoretically take an attacker to mount a successful brute force
attack against it.

References

I. Christor Paar, Jan Pclzl, Bart Prcnccl (2010). Understanding c,Jlptography : A Textbook/or Students and

Pracritioners (http://www.erypto-textbook.eom).Springer. p. 7. ISBN 3-642-04\00-0.

See also

• How basic bruteforce tool can be used to crack command line application - Tool

(http://www.worldofhacker.comI20 J3/09/basic- idea-of-creating-password.html)

Page 4 of 5

htt :!/en.wiki edia.or wikiIBrute-force search 3/ 19/2015

Brute-force search - Wikipedia, the free encyclopedia Page 5 of 5

• Brute force attack

• Big 0 notation

Retrieved from ''http://en.wikipedia.orglw/index.php?title=Brute-force _ search&0Idid=636308630"

Categories: Search algorithms

• This page was last modified on 2 December 20 14, at 12:55.
• Text is avai lable under the Creative Commons Attribution-ShareAlike License; additional tenns

may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a
registered trademark of the Wikimedia Foundation, Inc. , a non-profit organization.

Page 5 of 5

htt ://en.wiki edia.or wikiIBrute-force search 3/ 19/2015

