
11111111111111111111111111111111 11

(12) United States Patent

(54)

(75)

(73)

(.)
(21)

Brendel

STORING LOSSY IlAS IJ ES O F FIJ_E NAMES
ANI) PARENT IIA NDU:S RATlU :R T HAN
F ULL NAMES USL"G A C OMPAC T TABLE
FOR NETWOR K-ArrAC B EJ)-STORAC .. :
(NAS)

Inventor: Juc rgc II IJrcndc\, Allck]<lnd (NZ)

Assignee: SlIllwork Data MGM°': L.L.c.,
Wilmington, DE (US)

Notice: SubjCC1IO any discl~imer, the term oflms
palenl is extended or adjllsloo under 35
U.s.c. IS4(b) by 1221 d1YS.

App!. No.: Il f83 8,628

(22) Filed:

(65)

Aug. 14, 2007

P rio r Publicat ion n a tll

us 2007f0277227 Al Nov. 29, 2007

Rl' la tcd U.S. Application n ata

(62) Division of application No. 101708,457, filed on Mar.
4, 2004, nuw Pal. No. 7,272,654.

(51) Ill t . C! .
G06F 17130 (2006.01)

(52) U.S. CI.
USPC .. 7071736; 7071770

(58) Field of C lass ificat ion Search
USI'C 707/ 1- 10, 200--203, 713- 718, 736-738,

707i754- 770, 78 1- 788; 7091200- 203, 214,
709/229

Sec application file for complete iiCacch history.

(56) Rl'fi'"n'nc('s Ci t('d

U.S. PATENT DOCUMENTS

5,121.495 A
5,287.499 A

6/ 1992 Nemes
21 1994 Nemes

'.,
. ~

FUN.\IIf. I PATH

US008447762 8 2

(10) Patent No.: US 8,447,762 B2
(45) Date of Patent: May 21 , 2013

5.5[1.19O A
5,542.087 A
5,960.434 A
6.289.375 131
6.308.320 13[
6,3 [4.460 B[
6.330.709 B[
6.356.915 BI·
6.393.544 BI
6.484.250 H[
6.606.690 132
6.658.526 B2

4/ [996 Sharma ct al.
7/ [996 Neimal el aI
9/ [999 Schimmel
9/200 I Knight ct al

1012001 Burch
111200 I Knighl ct al
121200 1 Johnson ct aJ
)12002 Chrchetkine et al.
512002 Bryg el al

1112002 Mei el al.
312003 Padovano

1212003 Nguyen ct al

(Continued)

OTHER PUBLICATIONS

707182)

Microsoft Press Computer Dictionary. third edition. pp. 395. 423.
Copyright 1997.·

(Continued)

{'rimary Examiller - Wilso n Lec

(74) Alforney, Agent, or Firm - Schwabe, Willimmon &
Wyan , P.e.

(57) AnSTRACT

Multiple Network Attached SIOr:Jge (NAS) appliances arc
pooled logether by a virtual NAS lr:Jnslalor, forming one
common name space visible 10 clienlS. Clienls scnd messages
10 Ihe virtual NAS trnnslator wilh a filc namc and a virtual
handle of lhe parenl dif(."clory lhal are concaienaied 10 a full
filc-path namcand compressed by a cryptographic hash flUlC'

lion to gcncrntc a hashed·namc key. The hashcd-namc key is
malched to a sloragc key in a lablc. Thc full file. palh name is
nOI slored, reducing Ihe lable size. A unique enlry number is
relurned 10 Ihe clienl as Ihe virtual file handle lhal is also
Slored in anOlher lable wilh one or more native file handk'$,
allowing virtual handles 10 be Irnnslaled 10 native handk'S Ihal
Ihe N AS :rpp liilnCC scrvers use to rei riwe files. Fi le movemeni
among NAS scrvcrs alters nativc filc handles but not virtual
handlcs, hiding NAS dctails from clicnts.

II C la ims, 8 I) rawing Sheets

•
.-,..- •

\ CR?TOII'ASHA.. "

Page 1 of 19

..
~K£I ""

.~. _E)..IIOJ,I(~!y ~. I>l.J - .'
'0 ~,

.~ - .,
NASliIXORA. !oI K ' ~ ..

• I ~ IOJ(>::ITN
OM. !.OO'Jl)OIo;EY ... 10 -,

." -.-K -." - ,

~ ~~I
Sl<fJ(l' t.I.J>

<;jY" , _~Kr't' .. ? 51 "''''
NETWORK-1 EXHIBIT 2002

Google Inc. v. Network-1 Technologies, Inc.
I PR20 15-00348

US 8,447,762 82
Page 2

U.S. PATENT DOCUMENTS 200410078542 AI' 412004 Fuller l'l at. 711fJ72

6,937.612 Bl ~2005 Mauger cl a1
6.985.956 B2 112006 Luke c[al.
7.428540 Bl ' 9/2008 COllIes cl al. 707/ to
7,8 [4.554 Bl' 10/10 10 Ragner 726127
8.04l.761 Bl 10120 11 Banga cl nl

200110037323 Al 11 /2001 M""l1on C! al.
200110037406 Al 11/2001 Philbrick cl al.
200210178341 Al 1112002 Frank
2003/0028587 Al li2003 Driscoll d a1
200310031176 Al + 212003 Sim 3701392
2003/0039362 Al 212003 Califanod al.
200310043805 Al 312003 Grnhrun ct al
200310046260 Al 312003 Satyanarayanan ct al.
2003/0046369 A 1 3/2003 Sim et al
200310050974 Al 312003 Mani-Mcilav cl al.
200310110188 AI· 612003 Howard Cl al. 7071200
2003/0140051 Al 7/2003 Fujiwara Cl al.
2003/0158839 Al ~2003 Faybishcnko L'I al.
2003/0187885 Al 1012003 Miyazaki cl a1
2003/0195942 A l 1012003 MuhlcSlcin cl al.
2003/0210689 Al 1112003 Davis Cl aI
200310220985 Al 1112003 KawanlOlO cI at.

Page 2 of 19

2004/0117600 Al &1004 lJodas ct al.
2004/0133652 AI' 7/2004 Miloushev ~~ al 7(Y:)1214
2004/0221128 A I 1112004 1)..,e~rofl. et at.
200510097260 A I 5/2005 McGovern c! :II
2005/0138081 Al 612005 Aishab ct al
20061003 1407 Al 2/2006 Oispcnsa ct aI .

aTHER PUBLICATIONS

IUM [)idionary ofCompu(inl!- pp. 455. 683. Copyr iyll 1994.·
Die! ionary of Computer Sciencc. Engin~"Crins and Te<:hnology. CRC
Press. p. 184. Copyright 2001."
Wdx.>pedia.com. file handle. one page. Copyright 2012.
Non-Fina l OffiecAetion for U.S. A(lJt. No. 12/833.527. mailed Dc\:
6.2011.
Notice of Allowance for U.S. Appl. No. 121833.527. mailed Mar. 16.
2012.
Office Ad ion mailed Jun . 30. 2006 for U.s. Appl. 101708.457.
NotieeorAl1owance maikdMay 17. 2007 for U.S.AppI . 101708.457

.. cited by examiner

u.s. Patent May 21 , 2013 Sheet 1 of 8 US 8,447,762 B2

"'" APPLN

"'" o/s

10

12

14

16
"'" FILE SYS

"'"

10

12

28

18 "\,..

20 "\,..

"\,..

"\,..

"\,..

FIB CHAN

I

RAID

DISKS

APPLN

o/s

NFS

I

26 "'" NFS

FIG. 1

PRIOR ART

22 ? SAN (BLK ADDR)

18' "\,.. RAID 18" "'" RAID

20'"\,.. DISKS 20" "'" DISKS

FIG.2
PRIOR ART

32 ~ NETWORK (FILE NAME/HANDLE)

521 I 521 '

26' "'" NFS

14 "'" FILE SYS 14' "'" FILE SYS

24 "'" SCSI 24' "'" SCSI

18 "'" RAID 18' "'" RAID

20 "'" DISKS 20' "'" DISKS

Page 3 of 19

u.s. Patent May 21 , 2013

10

12

28

"'"
"'"
"'"

26 "'"

14 "'"

16 "'"

APPLN

O/S

NFS

I 32 ?

NFS

FILE SYS

FIBR CHAN

Sheet 2 of 8 US 8,447,762 B2

NETWORK

(FILE NAME/HANDLE)

I 22 ? SAN (BLK ADDR)

18 "'" RAID 18' "'" RAID 18" "'" RAID

20 "'" DISKS 20' "'" DISKS 20" "'" DISKS

PRIOR ART

FIG.3

Page 4 of 19

u.s. Patent May 21, 2013 Sheet 3 of 8 US 8,447,762 B2

10 "'" APPLN

12 "'" O/S

28 "'" NFS
FIG.4

34
2 NETWORK A

(VIRTUAL NFS NAMES/HANDLES)

30 "'" VNAS

(NATIVE NFS NAMES/HANDLES)
NETWORKS 36 ~

<: 21 <: 21'

26 "'" NFS 26''''-' NFS

14 "'-' FILE SYS 14''''-' FILE SYS

24 "'" SCSI 24''''-' SCSI

18 "'-' RAID 18''''-' RAID

20 "'" DISKS 20''''-' DISKS

VIRTUAL NFS NATIVE NFS
FILE NAME 30 FILE NAME

VNAS
DISK (NAS) CLIENT 34 36
SERVERS

~ VIRTUAL NFS 37
NATIVE NFS

FILE HANDLE FILE HANDLE

FIG.5

Page 5 of 19

u.s. Patent May 21 , 2013 Sheet 4 of 8 US 8,447,762 B2

IDENVERIPROJSINEXTYRIBUDGETIDEPTSIENGIDESIGNIDES_BUDGET _REV5.XLS

46 J'
FIG. 6

10 BYTES 42

M_DATA

- 256 BYTES 46

FILENAME & PATH
.

.
CRPTO I HASH

44

6 BYTES 10 BYTES

FIG. 7

Page 6 of 19

u.s. Patent May 21 , 2013 Sheet 5 of 8 US 8,447,762 B2

UNIQUE ID -
HASHED-NAME KEY ~41 FROM VIRTUAL

HANDLE

,
NAME (1ST) UJD (LATER)

LOOKUP LOOKUPS

40 ~ ~42 48 ~ 49 ~

50 "'" STORAGE KEY M_DATA TBL MAINT UNIQUUD

6 BYTES 10 BYTES 8 BYTES
6-18 BYTES

PARENT_UID
PREV_UID
NEXT _UID."

38 UNIQUEJ D

FIG.8

Page 7 of 19

u.s. Patent May 21 , 2013 Sheet 6 of 8 US 8,447,762 B2

-256 BYTES 46

FILE NAME & PATH
......

'
..•....

38'

CRPTO I HASH
44

BUCKET_N-1

6 BYTES LK_N-1 SK_1 ENTRY_1

SU ENTRY_2

SK_3 ENTRY_3

HASH I XOR SK_4 ENTRY_4
54

52 40
BUCKET_N

10 BITS LOCATOR KEY
LK_N

SK_5 ENTRY_5

SU ENTRY_6

SK_7 ENTRY_7

FIG.9 SK_8 ENTRY_8

SK_5 SK_7
55 SK_6 SK_8

COUNTER BKTJNDX MUX
~~

UNIQUEJ D
(HANDLE)

HASHED-NAME KEY

ENTRY FOUND

Page 8 of 19

u.s. Patent May 21 , 2013

VIRTUAL_FILE_HANDLE

(UNIOUUD)

UNIOUEjD
(2ND+)
LOOKUPS

82? , C; 88

UNIOUEJD FILE_NAME

8 BYTES

80

FIG. 10

Page 9 of 19

Sheet 7 of 8 US 8,447,762 B2

C; 86 C; 84

SVR_A NA T1VEJILCHANDLE_A

SVR_B NATIVEJILCHANDLE_B

8/ 85'>

NATIVEJILE_HANDLE

u.s. Patent May 21 , 2013 Sheet 8 of 8 US 8,447,762 B2

COLLISION-RESOLUTION BLOCK (CRB)

60

62 ~ 64 ~ 66 ~ 68 ~

STOR_KEY_X FILE NAME X UID_X MAINT X - -

FILE_NAME3 UID3 MAINT_Y

74) 76) 78)

FIG. 11

Page 10 of 19

US 8,447,762 82

STORING LOSSY IIASIJES OF FltE NAi\U:S
ANI) PARENT HANDLES RATIJER THAN
FULL NAMES US ING A COMPACT TAIJL£

FOil NETwORK-ArrACIIED-STQIUGE
(NAS)

RELATED APPUCATION

Thi~ application is a divisional of "Virluali;dng Network
AU3chcd-SlOrngc (NAS) wilh 11 Camp"c! Table Ihal Stores
Lossy Hashes ofFilc Names and Parent Handles Rather than
Full Names", U.S. Scr. No. 101708,457 filed Mar. 4, 2004,
now U.S. Pat. No. 7,272,654.

FIELD OF THE INVENTION

'Jhi~ invention re lates to network storage systems, and
more particularly 10 l:ompad-silC Iransillli()1l 11lbks for vir
tualized network-attached storage.

BACKGROUND OF THE INVENTION

Bolh supply and demand for campUler disk storage have
increased sharply in the last decade. Com puler hard·disk
technology and the resulting stomge densities have grown
even faster than in the semiconductor field, "t times exceeding
Moore's Law proj(:ct ions. Despite application-program blo..1.t
and wider usc of large Ulllhim(.:dia files. disk drive stomge
densities h"ve been able to keep up.

Widespread usc o f networking has allowed for grc"ter file
sharing. Rather than store data fi](.:s on individual user' per
son,,1 compmers (PCs), m"ny companies and org"nizmions
prefer to have important files stort..<J in a centmlizcd d;tla
storogc. Imponant data can be regularly maintained and
archivL.<J while being available for sharing among many users
when stored in central stornge.

Storage Area Networks (SANs) are widely used by large
corpor.ations "s such a centrnlized d"ta store. FIG. I shows"
SAN. SAN bus 22 is a high-spc<.-d bus such as a FibrcChannei
that connects to many disk arrays 20, 20" 20". Often Rcdun
d"nt Arr"y of Independent Disks (RAID) is used to mirror
d"ta stored on the disks for gre"ter reli"bility. RAID control
lers 18, 18' , 18" can be inscned between disk arrays 20. 20' ,
20" "nd SAN bus 22 .

Clients such as "pplicm ion I"yer 10 gellernte disk "ccesscs
through client opcrrlli ng system 12, which in tum usC!; file
system 14 to access stored data. FibrcChanncl controller 16
receives requests and pcrfomIs physic"ltrnnsfers of block
data over SAN bus 22.

SAN bus 22 transfers d.1.ta as blocks rdtherthLm as fik'"S. File
system 14 convens requests for d"ta files into the block
addr(:sscs nceded foracc(:ssing the data on disk arrays 20. 20'.
20". An individual file can be stort:d on several blocks of data
that are stored on any of disk arrays 20, 20', 20".

2
bus. NAS appliances arc usually single·box devices such 3S

L1NUX or Windows systems that can easily be COIllK'ctcd to
a TCPIlP network.

FIG. 2 shows usc of NAS and the NAS creep problem.
Network bus 32 is " stand"rd TCrnp network bus. Client
"pplicmionl"yer 10 requests file "ccesses through opcrnting
system 12 , which uses network-file-system (NFS) 28 to gen
ernte file request messages thm "re enc"psul"ted by TCPt lP
and any 10wcr·IC\'cl network protocols and sent over network

10 bus 32 to NAS appliancc 21.
NAS <lppliaucc 21 proccsses the message reccivr..-d over

network bus 32 using server NFS 26, which sends the request
to file system 14 . File system 14 looks up the file name "nd

tS finds the file handle, which is returned to "pplication I"yer 10.
Future requests for the cL1.t.a c"n be made by using this file
handle.

File system 14 can acc('Ss requested data tbrough small
computer system interface (SCSI) controller 24 or another

:10 kind of controller to access disk arrays 20. RA 10 controllers
18 may be used for redundant data storage,ormay beomined.

NAS appliance 21 is easy to install and maintain, since it is
connected to network bus 32 much like any otber ndworkcd
Pc. Network bus 32 carries NFS messages enc"psul",ed by

25 st"nd"rd TCI'III' p"ckets, which can be the "lre"dy-cxisting
network in an organization that the client PCs arc already
"'t"ched to. File mmes and file h"ndles Me transferred over
network bus 32 in the NFS messages mther than block
addresses.

One problem with NAS "ppliance 21 is upgrading to I"rger
storage or faster processing capaci ties. As its workload
increases, the processor on NAS appliance 21 may no longer
be "ble to handle all requests. Addition,,1 d isks m"y ini ti"lly
be added to NAS appliance 21 , but once all disk bays are

H populated, no morc disks ean be added. Instead, a second
NAS appliance 21 ' may need to be inswllcd o n network bus
32. New d.1.t" could be storcdon NAS "ppliance 21 '. However,
it is dinlcult to move data among NAS appliance 21 and NAS
"ppli"llce 21 '. TItis is bcc"use clients lwve to mount to NAS

40 ;tppliance 21 ' as wcll as to NAS appliance 21' . Additional
mount requests to NAS appliance 21 ' have to be added to
stm1up scripts for "II clients. Dat" moved to NAS "ppliance
21 ' is fo und on adiffercnt mount point, so clients have to use
the n(:w location to find the data. NAS appliance 21 and NAS

45 "ppli"llce 21 ' "ppe"r "s two different file systems, with dil~
ferent mount names. Blch NAS appliance 21, 21 ' has its own
name space.

It is very undesirable to have to change client software to
retlectthe new path to NAS appliance 21 ' when.a file is moved

50 from NAS appliance 21 to NAS appliance 2:1 '. Users may
havc to know that the file is now acc(:ssiblc under a different
mOlllll -point. Applications, scripts, "nd shortcuts must be
edited to refer to the new mount-point. It can be an adminis
trative n.ightmare to not ify users and change exi st ing software

55 <lnd scripts when a file is moved from one name ~pace to
another. Thus moving the file is not transparent to the client Since SAN bus 22 pcrfonlls block transfers , there is no

high-level file-system controller on disk aTr<lyS 20, 20', 20".
[nste"d, disk arrays 20, 20', 20" "ct "s network,collllected disk
driv(:s. SAN bus 22 canopernte with special protocols that arc
designed to n}.1.ximizc da ta transfer rotesoflower-Ievcl blocks 00
of d"ta. llms SAN bus 22 is a specialilcd bus. SANs tend to

users.
TIlis is known "s the NAS creep problem. h occurs when

the NAS appliance 21 fills up and files have to be moved to a
different NAS <lppliance 21 ', or when all additional server is
installed for perfomwnce or other re"sons.

be very expensive and are usually not cost-effective for
sm"ller orgmliz"tions.

Another widespre"d stornge technology is Network
Auachcd Stornge (NAS). NAS is less expensive than SAN 65
and uses sl;tndard Transporl·Control-Protocolintemet Proto
col (TePIl!') network buscs rather than a sp("Cializ(:d SAN

Page 11 of 19

FIG. 3 shows SAN combined with NAS. Client "pplic"tion
I"yer 10 still sends NFS messages over network bus 32 to the
NAS server, which has NFS 26 decode the messages "nd use
file system 14 to look up ftle handles. Data rcqlll:sts for file
data arc converted to block addn.'SSL'"S and sent over SAN bus
22 by Fibn:C hanncl controller 16. '111e data is accessed by

US 8,447,762 8 2
3

disk armys 20, 20', 20" aud rctumt"<ias block dlla Ihal must be
fe-arranged 10 gcucrdtc Ihe data file.

While using a SAN with a NAS could <lUOW for expand
ability, SAN bus 22 is o ften 11 FibrcClwllue1 or Olher vcry
expensive bus, negating the cost advan1<lgcof NAS. Protocols
such as FibrcChaJUlcl or iSCSI lllay be u>ed. FibreChaJUlcl
Hardware lends to be expensive, while iSCSI lends 10 be
expensive to mainta in with the required drivers, Cle. A SAN
vinualizalion switch may also be needed.

Somcclicnt file systems m:ly allow for directories to reside
on different servers in one virtual space. The client file system
lransp<lfcnlly redirects cl ient acc(:sscs 10 different physical
servers when moving 10 a directory on a different server.
However, thcjifallularilyof rc-din.'Clion is the dirt:ctory rathcr
than the file. File granularity rather than dirt.'Ctory granularity
i~ preferahle for most filc-sy~tem~.

Whm is desired is a Network A\lached Storage (NAS)
system thm is expandable and upgradeable and docs nm use a
SAN bus. File -level granulari ty and virtuali7.ation is desirable
without ahering file systems on existing NAS servers. A
virtual NAS is desired lhat has a compact table storing meW
data on a per-file basis.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a SAN.
FIG. 2 shows usc ofNAS and the NAS creep problem.
FIG. 3 shows SAN combined with NAS.
FlU. 4 is a block diagram of a system using virtual Network

Auachcd Storage (vNAS).
FIG. 5 highlights a virtual NAS translator.
FIG. 6 shows a 10 llg path and file name.
FIG . 7 highlights hashing of a long file and pmh name to

generate a name key for storing in a translation table.
FIG. 8 shows a translation table indexed by a hashed stor

age key.
FIG.9 is a diagram showing succeHive has hing to access a

translation table that stores a hash of the file-path namc.
FIG. 10 shows an open-file translmion table.
FIG. II shows a collision-resolution table,

DETAILE D DESCRIPTION

'Ihe present invention rclaK'S to an improvement in Net
work Attached Storage (NAS). The following description is
presented toenableone of ordinary skill in the art to make and
usc the invention n~ provided in the context of 11 pllrticular
applicatioll and its requirements. Various modifications to the
preferred embodiment will be apparent to those with skill in
the an, and the general principles defined herein may be
applied to other embodiments. Therefore, the present inven
tion is not intended 10 be limited to the particular embodi
ments shown and descrilx:o. but is to be llccQrded the widlc'St
scope consistent with the principles and novel features herein
disclosed.

FIG. 4 is a block diagram of a system using virtual Network
Auachcd Storage (vNAS). Client applicatioll layer 10 uses
operat ing system 12 and NFS 28 to send NFS requests over
front network 34 to virtual NAS translHtor 30 .

Virtual NAS translator 30 receives the NFS request from
clients, and perfomls name tran~lation from virtual names
and file handles on front network 34 to native names and file
handles on back network 36. Names translated can include
server names and share names.

Someclient requests aretranslat(:o to files that arc storcdon
disk array 20 on NAS appliance 21, while other requests are
translated to filL'S that are stort..J on disk array 20' on NAS

Page 12 of 19

4
appliance 21 '. NAS appliance 21 processes the translated
mCSSil)!:c fL"Ccivl.J uvcrb<lck nctwork 36 u~ing scrvcr NFS 26,
which sends the reques t to file system 14. File system 14
looks up the native file name and finds the file handle. NFS 26
generates the native NFS file handle, which can reference the
file handle from file system 14. TIte native NFS file handle is
returned over back network 36 to virtual NAS translator 30.
The native NFS file handle is translated to a virtual file handle
by virtual NAS translator 30 and the virtual file handle

to returned to the client. Later requests from the cliem include
the virtual file handle, which is translated back to the native
NFS file handle by virtual NAS transla tor 30. Using the
returned native NFS file handle, file sySIi.'m 14 can quickly
access l"t.'quested data through small-computer system inter~

I S face (SCSI) controller 24 or another kind of controller 10
access d isk armys 20 . RAID controllers 18 may be used for
redundam data storage, or may be omitted.

Translated NFS requests from virtual NAS translator 30
arc sent over back network 36 to one or more NAS appliances

:10 or serve.rs. Some client requests Illay be sen1 to NAS appli
ance 21 while other client requests are sent to NAS appliance
21 '. ·Ihe client is unaware which of physical NAS appliance
21 , 21 ' fl'Sponds to each request, since names alld handles are
intercepted and translated by virtual NAS translator 30. Thus

25 the specific details of where physical files are stored among
NAS appliances 21 , 21 ' arc hidden from the clients. The
clients sec one name-space for all files accessed through
vNAS.

If the data is moved from NAS appliance 21 to NAS appli-
30 ance 2 1', virtual NAS translator 30 simply trans lates the same

virtual fi le handle to a different native file handle lhat poinls to
NAS appliance 21 ' rather than to NAS appliance 21 . Virtual
NAS translator 30 can move files and directories from one
NAS appliance 21 to another NAS appliance 21 ' by changing

H native c.mries in its translation table, and by $Cnding NFS
commands 10 the NFS servers to physically move the file data.
The virtual names and handles do not change, only the native
server mtmlc'S and handles.

NAS appliance 21 and NAS appliance 21 ' appear a~ one
40 single (virtual) file systelll , with a single server name. 801h

NAS appliance 21 , 21 ' appear as one common name space,
even though they have different native name spaces.

Rather than translate file names and directory name~, only
the share nanK'S arc translated. The virtual file names and

45 directory structures are replicated on NAS appliance 21 and
NAS appliance 21' as exported paths and files. Thus the file
names and dir(:ctory n;lmcs below the mOlmt -poinl do nol
have to be stored in translation tables in virtual NAS translator
30, since the virtual file and lower-level directory names are

50 already stored inlhe file syslcmsofNAS appliance 21 or NAS
appliance 21 '.

NAS appliances 21 , 21' are easy 10 install and maintain,
since each is connected to back network 36 much like any
other net worked PC. Both front network 34 and back network

55 36 carry NFS messages ellcapsulaled by slalldard TCI'/]]'
packets and can be the already-existing network in an orga
nizat ion that the client PCs a rc already attached to. File names
and file handles are translated by virtual NAS translator 30
and directed to the appropriate destination server or client.

00 Front network 34 and b.1.ck network 36 could be the same
network, such as a local intranet that carries all traffic offront
network 34 and back network 36.

When storage space on NAS appliance 21 fills up, an
additional NAS appliance 21' can be added bYColUlecting it to

65 back network 36 and informing virtual NAS translator 30 of
the addition.al NAS ric 'Source. Otber NAS appliances can be
added to back network 36 once NAS appliances 21 , 21 ' fill up

US 8,447,762 8 2
5

[hcir disk arrays 20, 20 '. "l1ll1s additional NAS SIOr<lgC can be
added, solving the NAS CfCL'P problem. Files Cilll be moved
aillong the available NAS appliances 10 L'Vcn storage and
pcoc<."Ssing loads. New files can be created o n the n<::w NAS
sen"crs by including the new server address orthe new NAS
server in the translation table cll1rics for the ncw files, while
entries for older files still poill1 10 the old NAS server.>.

FIG. 5 highlights 11 virtual NAS trnns1<ltor. Vimml NAS
translator 30 contain;; translation tables 37 Ihal perform vir
tual -Io -native translation of names and handles. When a client
mount!; 10 an exported directory on a NAS server through
virtual NAS translator 30, the client gelS 11 virtual file handle

6
When the native file handle;; arc hiddeu from the cl ient ,

virtual NAS translator 30 clln pcrfonn a variety of file Operd
tions and maintenance on files stored on the NAS appl iance
servers without being visib le to the client. For example, files
can be load·balanced and moved from one NAS appliance to
another NAS appliance. The vinua! file and directory names
are not changed but are replicated on the new NAS servers.
The native file handles and server names are changed by the
file movemelll to another server. Virtual NAS translator 30

to simply replaces the old native NFS file handles or server
names with the ncw native NI~·S file handles or server names

for the root din:ctory of the export share. When using NFS,
the client may ini tia lly open a file wilhin thm expon share by
performing lookups of handles for intervening directories and I S
then sending a vinual file name and the export root virtual file
handle and names o f the p arent directory in an NFS request
message sent over front network 34 to vinual NAS translator
30 . The virtual NFS file name combin(.J with its parent
handle is looked up in translation tables 37 to find a virtlk11 :10
NFS file handle which is relUrned to the client over front
network 34 .

without clmnging the virtual NFS file handles in tran~lation
tables 37 . More complex data mirroring and redundancy can
also be perfomlCd on the native files without changing the
virtual file names and handles.

Long File·Name Problem- flO. 6
FIO. 6 shows a long path and me n.1!ne. A file is identified

by its name and the folder or directory tb.1t the file is stoJ\..J in.
The parent directory can be identified by its pa th name, which
may comainnames of many directories between the root and
the parent directory.

-lhe client can use this virtual NFS me handle in future
requests to aceess d.1ta in the file. For example, the client Ihen
pUIS tile vinual NFS file handle in a read-request NFS mes
sage sent to virtual NAS translator 30. ·I11e virtual NFS me
handle is looked up in translation table~ 37 to find a nmive
NFS file handle. ·I11e native NFS me h,mdle is sent in a NFS
message over back uetwork 36 to the NAS appliance or disk
server, which locme;; and retum~ the dma 10 vir1lk11 NAS
translator 30 using the native NFS filc handlc.

When creating a new entry in Irdnslation ta bk·s 37 or when
performing maintenance, vinual NAS tran~lator 30 may send
a native NFS me Wlme over back network 36 to ,I NAS
appliance, which uses its native file system to find the native
file handle, which is returned as a native NFS file Illlndleover
back network 36 to vinual NAS tran~lator 30. The nmive NFS
file handle and na tive name can then be stored with the virtlk11
NFS file handle in transla tion tab l e~ 37.

-lhu$ virtual NFS me names and virtual NFS file handles
are exchanged betwccn the client :llld virtual NAS transi::ltor
30 over front network 34, while nmive NFS file name;; and
native NFS file handles are exchanged betwccn the NAS
appliance servers and virtual NAS translator 30 ovcr back
network 36 .

Nmive File Handles Hidden from Clie1l1

For example, the spreadsheet file
DES_BUDGET_REV5XLS is in the DESIGN direc tory.

25 The grand-parent directory tlmt the DESIGN parent directory
is in is the ENG directory. The ENG dircctory is in the DEl'TS
directory, which is in the BUDGET directory, e tc. There are 7
directories in the p..1th name, including the parent directory.

File and directory names are variable-leugth strings. The
30 file name itself may be up to 256 bytes, depending on the

server. TIte parent directory Wlme may be tip to 256 bYles
long. Each of the 7 directory namCS in the (lath may be a
character string up 10 256 bytes 10ng."IllC total length ofnrune

H 46 may be up to 8 times 256 bytes, or 2K bytes. Other path~
may be longer or shoner, but there is a potential for very long
names when the di rectory path is concatenated wi th the file
name.

A file system may conta in hundreds of mi11ions o f file;:.
40 Storing.1ll entry with the path and file uaIlle for each file in a

large file system in translatio n tables 37 (FIG . S)could rl'<juire
an enormous amoullI of memory. For example, a 4 Giga-Byte
memory C()!lld store 100 million elllries for 100 million file;;,
but with only 42 bytes per entry. Since each path component-

45 name can be 256 bytes long" and the complete path may have
many path componellls, this 4 GB memory is insufficielllto
~tore ma ny long file names or long path nam(""S . In a typical NFS system, the native NFS fi le handle~ can

differ from the (k1tive file-system handles, but o ften the NFS
layer llSes the nmive file-system handle 10 create Ihe nmive
NFS file handle, such as by embedding the nat ive file-system 50
handle within the native NFS file handle. The native me
system handle often contains physical information used by
the disk system to loca te the data. such as a d isk-block num
ber or address.

Solution to Long File Name Problem- H ash(.J-Name
Entries

TIte invelllor has realized that s toring long file Ilanles and
paths in translation table;; is not practical even for modest
sized tables. Rather than store the file name and path, a Imsh
of the file name and path is stored in the translation tabk·;:.
1·lashingcompress(""S the variable-length file and path name to

Virtual NAS trnns lator 30 does not interpret the Jl1ltive NFS
file handle, but merdy stores it in transla tion tablcs 37 for
later usc. Likewise, the vi rtual NFS me handle generated by
vinual NAS trnns!mor 30 is not i1l1erpreted by Ihe client, but
is Illerdy stored aud later re-sen t w ith fu ture NFS request
messages. Since the client docs not interpret the vinual NFS
file handle, virtlk1! NAS translator 30 can arb itrarily generate
it , such as by using a counter.

The vinual NFS file handle canlmve no re lmionship to the
physical NFS file handle to allow for complele transparency
to the dient. This allows for a file to be mOv(.J among NAS
applianc(""S, which causes its physical NFS me handle to
change, while kccping the same virtual NFS me handle.

Page 13 of 19

55 produce 11 smaller, fixed·sized value tha t is stored iuthe table.
FIG. 7 highlights hashing o f a long file and path name to

generate a name k('Y for slOring in a transi3t iou table. The file
name is concatenated with its path name to generate filii
file-path name 46. File-path name 46 is variable length and

00 can be well in excess o f256 bytcs as each diR.-ctOIY nrullc in
the pmh c.1n be 256 bytes.

Hash engine 44 compresses file-path name 46 to generme
name key 4 1. Regardless of the size of file-path name 46,
name key 41 can be a fixed-size value such as 6 byte;;. Mela-

65 data 42 can be appcnded to name kcy 41 to generate an entry
in the translation tables. Forexample, whcn 10 bytesof mei<l
data are stored for each entry, only 16 bytes is u("('"<icd per

US 8,447,762 8 2
7

entry, d(.'Spilc the presence of very long file names and paths.
Thi5 allows milJion~ ufclllric~ 10 be kepI in iC<lsun<lbly-sizcd
translation tables.

8
Tab[e-maintenance field 48 contains overhead infonnation

useful to the virtual NAS tra nSlator, such as ullique identifiers
for the next and prlc"Vious tab[e clements tbat are useful for
cre1lting linked lists for hash tables , trecs , or other types of
datn structures. Tnb[e-maintenance field 48 may be 6 to 18
bytes in length, and nmy becliminated in some cmbodiments.

' ·[ash cnginc 44 may usc a cryptographic hash function 111.11
produces a seemingly random resul1 compared with its input.
Even a small change to the input value produces" large
change in the hash output value when a cryplogrnphic hash
function is used. For example, 11 small change in the inplII
value can produce changes in about half of the output bils in
some cryptogrnphic hash functions. lbis is ideal when using
file-path name 46, since file systems often have many files in
a very similar directory with the same path name. Files such

For some cmbodiments the total cntry size may be 28 to 40
bytes. Hnshed-key tmnslalion ",ble 38 could have [00 million
entries SO with a 4 GD memory. Thus a large fi[e system can

10 be tmnslated and vinunlizcd by the virtual NAS translator by
using lli.shed-key tr.lIlslation table 38 with hashed file-piltb

as filc4.xls and file5.xls can have largely different storage
keys 40 even though their file-pmh nallles 46 differ by only
one character. 1·laving largely dificring stomge h.')'s mini- IS

mizcs collisions in the translation wbles.
FIG. 8 shows a translation table indexed by n hnshed stor

nge key. Hnshed-key translation table 38 contains entries for
files that arc physica lly stored on NAS appliances but arc
referenced by virtual names. ·Ibere may be hundreds of mil- :10
lions of such entries.

Each entry 50 is also identified by a unique identifier.

names.
Successive-Hashing- FIG.9
FIG. 9 is n diagram showing successive hashing to access a

translation tablethat stOfl-'S a hnshofthe file-pilth name. While
hashed-name klc'Y 4 1 could be compared to each storage kt'Y
40 in hashed-key translation tab[e 38, this may be too slow for
large tables with mi11ionsof entri<.'S. Instead, a second bashing
function is used to index a subset of entries in the translation
tnblc. The second Imshing cnn be a simp le exclusive-OR
(XOR) o f the 6-byte storage key generated by thc more com
putational[y-comp[ex cryptographic hash function.

TIlc unique [0 extrncted from the virtual handle of the
Unique ID 49 is a value generall:d by the virtual NAS trans
Intor 111m is unique for each entry. Unique ID 49 cnn be
generated by nn8.byte up or down cOUlller. Iflhe counter ever
rolls over, an error is sigll<lltd, but this is lUllikcly sillce there
would need to be nOOm 264 entries. Unique ID 49 is retumed
to the dient as part of the virtual NFS file handle. The virtu."!.l
NFS file handle can contain o ther clements in ;lddition to
unique ID 49.

25 parent directory is eoneatellnted with the file name to fonn
file-path name 46. File-path name 46 has a variable length that
can bc just n few bytes long, or 256 or more bytes long. Hash
engine 44 pcrfomlsa cryptographic hash functionon file-pilth
name 46 to generate hashed-name key 41 . Altbough bashed-

30 name key 41 is compressed to 6 bytes, 6 bytes allows for up to
248 or 281 trillion entries in hashed-key translatiOlltab[c 38.
To narlOW the scarch further, hash<.>d-nrunc key 41 is aga in
compressed by XOR hnsh engine 54 to genernte locator key
52.

Entries in table 38 can bc quickly located using unique ID
49, which is useful when the virtual NFS file handle is pre
sented or known, such as for later lookups ancr llil initinl
lookup, since the unique identifier is emb<..Jd .. .J in the virtu."!.l
file hnndle thnt was rcturned. For the initial lookup by a client, H
wh<.'ll no virtunl NFS file h andle is avai lable, entry 50 is found
by nwtehing hashed-nnme key 41 to stornge key 40. Thus
entri<.'S in table 38 can be found using either tile unique ID or
Ihe Iwshed-nmne key.

Each storage key 40 is a 6-byte hash of the potentially long 40
full file-path name, or thc parent's uniquc II) extr::leted from
Ihe pnrent directory virtua l file hllildle and the file name.
When a client sends an initial NFS message to open n file_ the
file name and its path name or parent-directory unique [I) arc
eoncmenated and bashed to genernte hashed-nrune key 41 . 45
Hashed-key translation wble 38 is searched using hashed
nilllle key 41 to find matching entry 50 with ~torage key 40
that matches bashed-name h:y 41 .

Once the mmching entry is found, mew·dnta 42 may be
read from entry 50 that has storage key 40 matching hashed- 50
name key 41 . ·Ine meta-data may contain infonnatiOll useful
10 Ihe fi[e system such as the seIVer-llrune of the NAS seIVer
that storlc'S the file. read-write privileges. time-dak'S of cre
ation, mooification, and last access, etc. Flags may be
included, such as for indicating when the enlry really ref",rs to 55
a dircctory rather tb.1n a filc. Since the seIVer' s name can be
stored rather than the full native NFS flIe handle, the size of
Ihe me'" datn can be rc<Iuced.

Morc than one SCIVcr Illay ston: the flIe data. A seIVer byte
may be included in mcta-data 42. Thc SCI"Verby\e could be an 00

index into a seIVer-list table with a list of seIVers thnt store the
entry's file. 111e server lisltable could store Internet Protocol
(II') or other network addresses of the NAS :>CIVers thm store
Ihe file. Flags and lists of shares exported by each seIVcrcould
also be included. Thus meta-data 42 may indicate which 65
scrvcrs store the data in a compact way. using one or more
indices rather than longer nctwork addresses.

Page 14 of 19

Since [oeator key 52 nmy be 10 bits in [cngth, the numbcr
of subsets or buckets of cntries is redueed to 2 'Q. or 1024
buckets. Dueket DUCKET_N, one of the I024possiblc buck
ets in successively-hashed-klc'Y translation table 38', is
se[ected by locntor key 52 , LN_K. A more realistic imp[e-
mentatio n may have 20 bits, with a million buckcts.

"lllC selected buckct N can thcn be searched tor:l matching
entry that has its storage key 40 matching hashed-namc key
41 generated by hnsh enginc 44. For example, bucket Nhas4
entries with storage keys SK_5, SK_6, SK_7 , and SK_8.
Each of these entries is successively selected by mux 51 nlld
its storage key compnrc<lto hashed-nllille key 41 by compara-
tor sol . When ;tIl entry in huckct N has a stomge key that
matches hashed-name kt'Y 41 , the 1lI.1tching entry is found.
Metn.{\aw 42 nnd ",b[e-maintenance field 48 can be rend frolll
the mmching entry. The unique [0 for the entry in table 38'
can be embedded in the virtual NFS file handle that is returned
to the elient in a NFS reply message.

Counter 55 can be used to generate the uniquc I]) for new
entries tllat arc loaded into successively-hashed-key transla
tion t1lble 38'. A simple up·counter with a large capcity can
bc used, such as an 8-byte (64-bit) binary up-counter. New
entries arc created in successively-bashed-key transla tion
tnble 38' when n file is created or copied to the v irtual NFS Iilc
system.

FIG. 10 shows an OllCll-file translation tab[e. Open-file
translation table 80 stores entries for current[y-open files ,
which is n subset of Ihe files referenced by successively.
hashed-key lranslation wble 38'. Currently open files me
those thm bave recently been accessed or mounted.

Once a file has been opened by a client, an entry in succcs
sive1y-hl.lshed-klc'Y translation table 38' already ex ists.
Another entry is created in open-file translation table 80 for

US 8,447,762 82
9

[hal file when it is opened. '111C entry is removed when the file
is dus,,"t\ by all clients or hilS not been acccsst.:d fur a Iuul!
period Oflilllc.

Rather than be indcxtxl by hashcd-nulllc key 41 , open-file
translation table 80 is indexed by the unique ID cxtructcd
from the virtual fi le handle. The virtual file handle contains
unique [0 49 (FlO. Ii) that was genermcd by COlUHer 55 (FIG.
9). When a client sends 11 NFS request wi th n virtual file
handle, the virtual NAS IranslalQrcxtracls the unique II) from
the virtual file handle, and uses the extracted unique ID to 10
locale the matching entry in open-file lrdllslalion table 80.

Each entry in open-file trans lation table 80 contains a por
[ion of the virtual file handle, unique ID field 82, which is the
look-up key to the emry. A mmching entry in open-file tmns
lation table 80 is fo und by comparing a unique II) from the t S
eliem to unique 10 field 82 to find a match. The lmique 10
from the elient was earlier scm to the elient from succes
sively-hashed-key translat ion table 38'. The unique 10 is con
tained within the vi rtual NFS file handle.

10
index, no t with open-file translatiOlltable 80 which is refer
enced by Unique ID 49 whichcallnot have aliases.Alias ing of
successively-hashed-k(.), tnmslation table 38' docs not occur
when us-ing the unique ID to look up entries.

Collis ion-resolution block 60 contains entries of differing
file-path names 46 that generated the same hashed-name key
41 . The aliased hashed-name key is ston:d as storage k(.), 62,
which is the index to the emry in collision- resolution block
60. Ench entry coma ins file-path names for two different fi les,
in file-path name fields 64, 74. 'Ihrcc-way collisions could
have thew filc -p;tth IlitllleS (lild unique lO's, but (l !1m:e-way
collision is quite unlikely to occur.

One colliding file X has its full file-p.1th name FILE_NA
ME_X stored in fir.;t file-path name field 64. The Unique ID
for this file is stored in first unique 10 field 66. The file's
mCIll--dalH can bc rcad using lhis unique 10 10 find its cntry in
successively-hashed-k(.), trans lation table 38' . Tabk-mainte
nance field 68, if pr(.osent, contains other information nscfulto

Once a match is found, other fields in the matching entry
can be read, such as native file handle flC ld 84, which comains
the native file handle. 'l1lU~ virtual file handles can quickly be
translated to native file handles using open-file transbtion
table 80.

:10 manage the storage data structure of collision-resolution
block 60, such as linked list pointers, etc.

The file name can be stored in file name field 88 in the 25
matching entry in open-file translation wble 80. 'Ibc path or
parem directory's vi rtua l file handle could also be stored, blll
is not needed. While storing the file name is not required,
having the file n.1!lle allows for more rapid creation of full
path names, since the file and directory names can be directly 30
and rapidly read from open-file translation table 80.

'Ihe native NFS file handle for the me is stored in native me
handle field 84. Server field 86 can contain server infomla
tion, such as pointer or index to the IP address of the NAS
appliance storing the file, or a pointer or index to an entry in H
scrvcr-list table wilh a list of servcrs that store the entry's filc,

The file may be stored on several NAS scrver.;, rather than
onjust one NAS appl iance. 'Ibis allows for load-balancing of
requests and redundant storage and back-ups. Pair.; of nmive
NFS fde handles aud scrver byKos are stored. For example, 40
native file handle field 84 stores:l first n:ltive file handle FI-CA
while its paired server fiel d 86 contains the IP address of
sen'er A that stores the first copy of the file . A second copy of
the file is referenced by native file handle fie ld 8S that stores
a second native file handle FH_ B that is paired with server 45
field 87 containing the IP address of server B that stores the
second copy of the file. E ntries in open-file transla tion tahle

'Ibe second colliding file Y has its full file--path name
FILE_ NAM E_ Y stored in S(.'Cond file-path name fie ld 74. The
Unique JD for this file is stored in second unique ID field 76.
The file's meta-d.1ta can be read using this unique ID to find
its entry in successively-hashed-key translntion table 38'.
Table-mailllenance field 78 contains olherinfomlntion useful
to manage the stor.:lge data structure of colli sion-resolution
hlock 60, such as linked list poillten;, etc. Alternately, meta
data fields could also be provided for each file in collisioll
resolution block 60 to avoid a lookup of successively-hash cd-
k(.1' translation tahle 38'.

When a collision has occurred, the matching entry for the
aliased hashed-name k(.,), 4 1 is altered to include a simple
collision flag, or a morc complex pointer CRB_ INDX_ N 10
thc entry N in eollision-r(.'Solulion block 60 rathcr than the
normal entry d.1ta. When searehing successively-hashed-key
translatio n table 38' with aliased hash(.-d-name key 41 , a sct
collision flag indicates that collision-resolution block 60 mllst
he consulted using the pointeror aliascd hasht-d-name key 41 .
The uniqne IDs arc then read from ei ther unique II) field 66
when the file name matches first file -pnth name field 64 or
unique ID field 76 when the file name matches second file-
path name field 74.

Collision Upon File Creation
A coll ision can occur when a new file is created, renmlled,

or moved. 'I lle newly-creatcd file has its hashed-name kt)' 41
generated from its file-path name 46. When a match is fo und
for its hashed-name key 41 , a collision is signaled, since the

80 could be variable- length or could be fixed length with a
paimer to a list of server-native file handle pairs in another
table.

Entries in open-file tr.:lt}slation table 80 can expire after a
period of non-usc. Expiration of entries in open-file transla
tion table 80 docs not cause fail un:s. since the file's entry can
still be found in successively-hashed-key translation table 38'
using the unique ID from th", virtual file handle from the
client. A fn.osh entry in open-file trdnslation table 80 can be
created, such as from the unique II) of the parent ;md by
re-generation of the storage key.

50 nC\Vly-created file should have no matching entry in succes
sively-h.ashed-k(.), translation table 38'.

FIG. II shows a collis ion-resol ution table. Although r.lre,

TIle full file~path name of the old file in the colliding emry
in suecessively-hashed-key translation table 38' is re-gener
ated, perhaps by traversing the path with the parent unique II)

55 in table-maintenance field 48 in a series of entry lookups for
names of higher-level parent dircctorit'S ill the path. Once the
full file-path name is generated, its is wrillen to first filc--path
name field 64. The colliding entry's unique ID is copied to
fin;t unique ID field 66 and its table-maintenance field 48

00 copied 10 table-maintenmlcc field 68. TIlCd."lla iJl lhecol liding
entry is then changed to set a collision flag nncifor to include
a collision pointer to the new entry in collision-resolution
block 60.

it i~ possible that two file -path names 46 (FIG. 9) could yield
the same hashed-name key 41 using the cryptographic hash
functio n of hash engine 44. Collision-resolution block 60 is
used to handle such collisions caused by aliasing of the cryp
tographic hash function of hash engine 44 . Alinsing occurs
when two or more inputs to the hash function produce the 65
same output value. Such aliasing is a problem w ith succ(.'"!;
sively-hashed-key trnnslation table 38' using the stor;lge key

TIle newly-created file is assigned a ncw unique ID that is
copied to second unique ID field 76 and its table-ma intenance
field 78 is generated and stored. The fu ll file-path name o fthe
ncwly-created file is wrinetl to second file-path name field 74.

Page 15 of 19

US 8,447,762 8 2
11

An entry for the ncwly-crcaK-d file is created in open-file
translation lable 80 us ing the !lew unique lD. Meta-dina lor
the newly-created file is wrillcn to open-file translation tablc
80 and/or \0 collision-resolution block 60. A Ill-OW enlry is
created in succcssivcly-Iwshcd-kcy lrnn~lation table 38' for
the ncwly-crcmcd file, wilh 11 diffcrelll unique identifier, its
mela...:ima, and a collision flag or JXlinter. The old entry in
successively -hashed-key translation table 38' for the o ld file is
unlinked so tilal it cannot be accessed by the ~lOrngc key, only

12
as for di ITerent groups that do not wish to share files but use
the same virtll1l1 NAS trdnslatur and NAS llppli<l]]ces.

For protocols that do not suppon the concept of open and
closed files, such as earlier vcrs ions o f NFS, a file can be
closed by the virtual NAS translator when it has not becn
accessed for a period of lime. Entries that have not been
accessed forthis period of time could be removed from Opell
file translation table 80 by table maintenance routines. 'Ibis
period of inactivity could be programmable.

Rather than store two separate entries for each file, one in
successively-hashed-kle,), trnnslation table 38' and the o ther in
open-file translation table 80, the file's entry could be stored
in a third table. Meta-data 42 could be moved to this third
table. A pointer to the entry in the third table then substituted

by the old file' s unique identifier. This new e ntry for the old 10
file is accessed by the unique ID of the old file. -111C new
colliding entry in succcssivcly-hashed-kcy Ir<mslalion table
38' is nOlnscd for ei ther the old file o r the newly-created file
except to signa l the coll ision. The entries for the old and nC\V
files arc not accessible using thc stordge hey but only by using
the unique identifiers. ·Ibe ncw colliding entry is accessible
using rhe colliding storage key.

15 for meta-data 42 in successively-hashed-key trnnslationtable
38' and open-file translation table 80 .

Future Accesses wi th Virtual File Handle do not Collide
TIten successivcly-hashcd-kcy trans lation table 38' is

merely an index table to find the entry in the third table.
Aitemately, open-file translation table 80 could point to the "lhe client USIe'S the vi rtual file handle (the unique 10) in

future accesses, which pass through open-file transbtion
table 8 0 rather than successively -hashed-key t ranslation table
38'. ·lbus collision b..1ndl ing is not needed for future refer
ences of the colliding file by the same client. When the entry

:10 full entries in successively-hashed-key translation table 38'.
The unique identifiercOllld be modified before being inserted
into the vinual file handle, such as by inverting<lll bits, adding
an offsct, or perfomling some other function on it.

Open-file translation table 80 could be merged with suc-in open-file translation table 80 expires, the entry in succes
sively-hashed-key translation table 38' is still available,
which can be accessed by the unique lD without colliding.

H cessively-hashed-kcy translation table 38' or hashed-key
translation table 38. A pointer in the merged table could poinl
to additional ituormation forcurrcntly-open files, such as the
native file handles.

When a future opening of the newly-created file OCClirs
from a nother client. the hashed-name kle"")' 41 generated
matchle'S the altered entry in hashed-key translation t;lble 38'.
The collision flag is set , c(lusing the virtual NAS transla to r to 30

read the entry for the collision pointer rather than for the
normal meta-data and unique 10. ·Ibe collision pointer or
stOr:lgc key locates the pmper emry in eolli~ion - resohl1ion

block 60. The virtual NAS translator then compares the file
path name for the newly-opened file to the file names in H
file-path name fields 64, 74 and finds that the nrune matches
second file-path name field 74. The second unique 10 is read
from second unique 10 field 76 and retunK-d 10 thc clicnt in
the vinual file handle.

Data stnrctures such as tables can be implemented in a wide
variety of ways with many variations, stich as trees, sorted
tables, databases, etc. TIte virtual NAS translator can be
implemented in software, fimtwarc, or hardware using mod-
ules, routines, progrnnuning objects, etc.

·Ine hashed translation table can store one entry per file.
However, some servers allow the usc of hard-links in their
native file system. A hard-link allows for two names referring
to the same INODE, Those names can be in diITerent direc
tories, or within the sallle d irectory. ·nlcse can be viewtxi as
two individual entries in the native file system for the same

Alternate Embodiments
40 file. nte two entries can appear as diITerent file-namt'S , and

mimic different files. User Datagram Protocol (UOP) or
another network protocol rother than TCP may be used for
message comnnmication. Several other embo-diments are contemplated by the inven

tors. Rather than usc NFS, Common-Intemet-File-System
(ClFS) or another network file mes~gillg system could be 45
used. Each storage key 40 is a 6-byte hash o f the potentially
long ful l file-p.1th name for (;IFS, or the parent'~ unique In
extracted from the parent directory virwal file handle and the
file name, for NFS requests. The lllUllbers of bytes for various
fields can vary. Forexample, the storage key could be 8 bytes 50
or 5 bytes or 12 bytes or some o ther amount, ;md diITerent
numbers of bytes of meta-data may be stored. The native file
handle could be 32 bytes o r (,4 bytes or whatever is used by
the servers. Table maintenance fields could be eliminated, or
be 4, 8 , 16, or some other nlUllber of bytes. Other fields C;IJ) 55
likewise have various lengths rather than the lengths in the
examples described herein.

Variou s hash functions could be used, such as full crypto
grophic hash functions or pseudo-cryptographic hash flutc
tions that are not as sccure but still produce a sufficiently
r.mdom-looking output to minimi:.-e collisions. Many such
functions arc known in the prior art. 1·lashing could be nested,
and the handle and file name could be separately hashed or
even refcr to nested entries in a nested table stntcture. Pan of
the storage kle')' could be the parellt's unique identifier while
the other part is the hashed file name. Variousothercomposile
kle')'s could be subst ituted.

Actual file and dircctory names could be trdllslaltxi. Other
forms of translation arc possible using special mapped
entries. Triangulardata now may be used to bypass the virtual
NAS tra.nslator on the return p.ath from the NAS server to the
client. The native NFS file handle could be sent directly back
to the client r.lther than be sent in a NFS message over back
network 36 to the vinual NAS scrver. Somc directorics and
files may not be virtu.alizcd, or may be handled in a diITerent
marmer.

Any advantages and benefits described may not apply to all
embodiments of the invenrion. When the word "means" is

The native file handles do not have to be stored in any of the
tables, but may be stored in open-file translation table 80 to
improve pcrformancc. Whcn not available from thctablcs. the 00
native file handle c.1n be obtained by sending a NFS request
from the vinual NFS translator to one of the NAS seIVers,
which can fmd the native file handle on its file system. Addi
tional so ftwarcor hardware layers could be added, such as for
load-balancing, quality-of-servicc, o r maintenance. 65 recited in a claim clement, Applicant intends for the claim

clement to fall under 35 USC Sect. 112, paragrdph 6. Often a
label of one or more words precedes the word ·'means". The

Rather than h..we a single common name space. mult iple
but separate COmmon name spact'S could be s uppontxl, such

Page 16 of 19

US 8,447,762 8 2
13

word orwords pn:cooing the word "means" is a label intended

14
4. ·11!C method of claim 3 , further comprising:
gcnerating, by the filc system apparatus, !lIe virtual file

handle that includes the unique identifier;
sendillg, by the file system apparatus, the virtual file handle

back to the clielll over the network in feSJXlnse to the
file+opcning request.

\0 case rCfCrl1Jcing of cl;lims clements ,lllU is llol intended tu
conv(.'Y a structural limi tation. Such mC<l lls-plus-fullclion
claims arc intended to cover nOI only the structures d<:."Scribcd
herein for performing the function and their slructural equiva
lents, but also equivalent ~Irucmres. For example, nilhough a
nail and 11 screw have different slmclUre" 1hey arc equivalent
stmclUres since they Ixlth perform 1he function of ["slening.
Claims that do nOlllSC the word "means" arc not intended to
fall under 35 USC Sect. 112, paragraph 6. Signals arc Iypi
cally electronic signals, but may be oplic;!] signals such as can
be carried over a fiber optic line.

5. The method of claim 3, wherein reading the unique
identifier includes rcadinga unique identifier generated by an
8-byte up or down counter.

10 6. "llle method of claim 1, further comprising replacing by

'lhc forlc'going description of the embodiments of the
invent ion has been presented for the purposes of illustrntion
and description. It is not intendt-d to be exh;mstive or to limit I S
the invention to the preci~e fom} disclosed. Many modifica
tions and variatiollS are possible in light of the aboveteaching.
[t is intended that the scope ohhe invention be limited not by
this detailed description, but rather by the claims appended
hereto.

[claim:
I. A method for acct'Ss ing filt'S , the method comprising:
receiving from a network, by a file system apparntus, a

file-access request from a client, wherein the file-access 25

request contains a virtual file handle;
extracting, by the file system apparatus, a cliem unique

identifier from the virtual file handle, wherein prior to
recciving the file-aect'Ss request from the dient ,
receiving a file+opening request that contains a file 30

name and a parent-directol)' virtual fi[e handle and
combining, by the file system appar<ltus, the flIe name
and the parent-dircctory virtual file handle into a com
bination n.1!lle for lISC in generJting and providing the
cliclllunique idcntificrto thc clicnt for inclusion in the H

virtual file handle of the file access rt"qucst;
searching, by the fil e system apparatus, a first table of file

translation eutries fo r a matching entry that matches the
client uuique ident ifier;

reading, by the file system apparJtus, a server identifier 40
from the matching enlry;

obtaining, by the file system apparatus, a IUltive file handle
using the server identifier and the file-access request
from the clieul;

replacing, by th~ file system apparatus, the virtual file 45
handle in the file-access request with the native file
handle to ge nerate a translatt-d file-access request; and

sending, by the file system apparJtus, the translated file
access request over the network to a selccted one of a
plurality of storage apparatuses. so

2. ·llle method o f claim 1 wherein receiving the flIe-acct'Ss
request includes receiving the file-access request over a net
work that carries Transport-Control-i'rotocoVlntemet Proto
col (TCP/ IP) packets;

wherein the file-access request and the tmnslated file-1Ic- 55
Ct'SS requcst are messagt-s for a network-file-system
(NFS) or a Common-!ntemet-File-System (C)FS) pro
tocollayer on the selccted server and on the client.

3. The methoo of claim 1, further comprising:
compre~~ing, by thc file ~ystcm apparatus, the combination 00

name with a CI)·plOg,raphic hash function to genemte a
hashed-name key;

searching, by the file sy stem apparnms, the first table for
the matching entry that has a storage h.,,), that matches
the hashed-n.1nw kcy ; and

reading, by tbe file system apparatus, the unique identifier
from the matching entry.

Page 17 of 19

65

the file system "pp'lratus, the virtUill file handle with" differ
elllnative file handle in response to a moving of data from the
selected server.

7. A method for accessillg files , comprising:
receiving from a file system apparatus, via a network, by a

stofllge apparatus, a trnnslated file-access request of a
client device, wherein the transintcd file-acct'Ss requcst
includes a native file handle determined based on a vir
tua l file h.andle having a client unique identifier and
included in a file -access request o f the client device,
wherein a file-opening request including a file name and
parent-directory virtual file handle have been combined
illlo a combination name prior to the translated file
aceess request being received by the storage apparatus
for use in generating and providing the client unique
identifier to the client device for inclusion in the virtunl
file. handle of the file a ccess request;

acces!;inga sclected file stored Oil the storage apparJtus, by
the storage app'lratus, using the nntive file handle; and

sending the accessed file tmck \0 the client device, via the
network, by the storage apparatus.

8. ·[he method of claim 7, wherein accessing includes
accessing a disk of the storage apparatus via a small-colU
pUler system illlerfacc (SCSI) controller.

9. ·lbe methoo of claim 7, wherein accessing includes
acc(.'Ssing a redundant data storage of the storage apparatus
via a Redundant Array oflndepelldeut Disks (RAID) control
ler.

10. All article of manufacture comprising·
a non-transitory tangible storage medium; and
a plurality of instructions stored thereon, and configured to

cau sc an apparatus, in respousc to exccution of the
inst ructions by the app<1ratus, to perfOnll operations
including:

receiving from a network , a file-acc(.>$s rc<:juest from a
client device that contains a virtual file hlUJdle;

extracting a client unique idelllifier from the virtual file
handle, wherein prior to receiving the file -access request
from the client device, r(:ceiving a file-opening requcst
from the clielll device that contaillS a file name and a
parent-directory virtual file handle and combining the
file name and the p'lrent-directory virtual file handle into
a combination name for use in geuerating illld providing
the client unique identifier to the client dev ice for inclu
sioll in the virtual file handle of the file at"Cess 1"(:qut'S\;

searching a first table for a matching elllry th::!t matches the
client unique identifier;

reading a server ident ifier from thc nl<'lIching enlJy;
obtaining a native file handle using the server idemi tier and

the file-aecess request;
replacing the virtual file handle in the file-access request

with the native file handle to generate a translated file
acc(.'Ss request; and

sendillg the tmnslated file-access request over the network
to o lle of a plurality of storage devices.

US 8,447,762 8 2
15

11 . An article of manufactuTC comprising:
it non-lran~ilury tangible tiluragc llll:dium; !llld
a plurality of ins tructions stor<.-d thereon, and configured to

cause a storngc appar.ltus, in response to cx.x;ulion of the
insh1.lctions by the storage appaJ1lm~, to pcrfoml opern
lions including:

receiving from a file system apparatus, vi" a network, a
tr.anslatcd file· access request of a client device, wherein
the trnnslatcd file-3ect:ss !\:quesl includes a native file
handle determined based on a virtual file handle indud- 10
ingaclicllt unique identifier and included in;1 fllc-acc(."Ss
request of the client device, wherein a file-opening
request including a file name and parcnt-dirt.'Clory vir
tual file handle have been combined into 11 combinmion
nallle prior 10 the translatt"<i file-access request being I S

received by the storage apparatus for usc in genel1lting
and providing thc client unique identifier to the client
device for inclusion in the virtual file Imndle of the file
acc(.'Ss request ;

acccssing a sckctcd file sIOn."<i on the storage apparatus, :10
llsing the native file handle; and

scnding the accesS(."<i file back to the client devicc. via the
nClwork.

•

Page 18 of 19

16

PATENT NO.

APPLICA nON NO.
DATED
INVENTOR(S)

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICA TE OF CORRECTION

: 8,447,762 B2

, 111838628
: May2 1,2013
: Brendel

Page I of I

It is certified that error appears in the above-identified patent and thai said Letters Patent is hereby corrected as shown below:

In the Specifications

In Colunm 1, Line 32, delete "user'" and insert -- users' --, therefor.

Tn Column 10, Line 57, delete "its is written" and insert -- it is written --, therefor.

In the Claims

In Column 13, Line 51, in Claim 2, delete "cla im 1" and insert -- cla im 1, •. , therefor.

Page 19 of 19

Signed and Sealed this
Thirteenth Day of May, 20 14

Michelle K. Lee

D"I",ry Director o/Ihe United Slales Palelll ,wJ Tr"demark Office

