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Nearest neighbor search (NNS), also known as proximity search, similarity search or closest point 
search, is an optimization problem for finding closest (or most similar) points. Closeness is typically 
expressed in terms of a dissimilarity function: the less similar the objects, the larger the function values. 
Formally, the nearest-neighbor (NN) search problem is defined as follows: given a set S of points in a 
space M and a query point q M, find the closest point in S to q. Donald Knuth in vol. 3 of The Art of 
Computer Programming (1973) called it the post-office problem, referring to an application of 
assigning to a residence the nearest post office. A direct generalization of this problem is a k-NN search, 
where we need to find the k closest points.

Most commonly M is a metric space and dissimilarity is expressed as a distance metric, which is 
symmetric and satisfies the triangle inequality. Even more common, M is taken to be the d-dimensional 
vector space where dissimilarity is measured using the Euclidean distance, Manhattan distance or other 
distance metric. However, the dissimilarity function can be arbitrary. One example are asymmetric 
Bregman divergences, for which the triangle inequality does not hold.[1]
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Applications

The nearest neighbor search problem arises in numerous fields of application, including:

Pattern recognition - in particular for optical character recognition
Statistical classification- see k-nearest neighbor algorithm
Computer vision
Computational Geometry - see Closest pair of points problem
Databases - e.g. content-based image retrieval
Coding theory - see maximum likelihood decoding
Data compression - see MPEG-2 standard
Robotic sensing[2]

Recommendation systems, e.g. see Collaborative filtering
Internet marketing - see contextual advertising and behavioral targeting
DNA sequencing
Spell checking - suggesting correct spelling
Plagiarism detection
Contact searching algorithms in FEA
Similarity scores for predicting career paths of professional athletes.
Cluster analysis - assignment of a set of observations into subsets (called clusters) so that 
observations in the same cluster are similar in some sense, usually based on Euclidean distance
Chemical similarity
Sampling-Based Motion Planning

Methods

Various solutions to the NNS problem have been proposed. The quality and usefulness of the algorithms 
are determined by the time complexity of queries as well as the space complexity of any search data 
structures that must be maintained. The informal observation usually referred to as the curse of 
dimensionality states that there is no general-purpose exact solution for NNS in high-dimensional 
Euclidean space using polynomial preprocessing and polylogarithmic search time.

Linear search

The simplest solution to the NNS problem is to compute the distance from the query point to every other 
point in the database, keeping track of the "best so far". This algorithm, sometimes referred to as the 
naive approach, has a running time of O(dN) where N is the cardinality of S and d is the dimensionality 
of M. There are no search data structures to maintain, so linear search has no space complexity beyond 
the storage of the database. Naive search can, on average, outperform space partitioning approaches on 
higher dimensional spaces.[3]

Space partitioning
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Since the 1970s, branch and bound methodology has been applied to the problem. In the case of 
Euclidean space this approach is known as spatial index or spatial access methods. Several space-
partitioning methods have been developed for solving the NNS problem. Perhaps the simplest is the k-d 
tree, which iteratively bisects the search space into two regions containing half of the points of the 
parent region. Queries are performed via traversal of the tree from the root to a leaf by evaluating the 
query point at each split. Depending on the distance specified in the query, neighboring branches that 
might contain hits may also need to be evaluated. For constant dimension query time, average 
complexity is O(log N) [4] in the case of randomly distributed points, worst case complexity analyses 
have been performed.[5] Alternatively the R-tree data structure was designed to support nearest neighbor 
search in dynamic context, as it has efficient algorithms for insertions and deletions such as the R* tree.
[6] R-trees can yield nearest neighbors not only for Euclidean distance, but can also be used with other 
distances.

In case of general metric space branch and bound approach is known under the name of metric trees. 
Particular examples include vp-tree and BK-tree.

Using a set of points taken from a 3-dimensional space and put into a BSP tree, and given a query point 
taken from the same space, a possible solution to the problem of finding the nearest point-cloud point to 
the query point is given in the following description of an algorithm. (Strictly speaking, no such point 
may exist, because it may not be unique. But in practice, usually we only care about finding any one of 
the subset of all point-cloud points that exist at the shortest distance to a given query point.) The idea is, 
for each branching of the tree, guess that the closest point in the cloud resides in the half-space 
containing the query point. This may not be the case, but it is a good heuristic. After having recursively 
gone through all the trouble of solving the problem for the guessed half-space, now compare the 
distance returned by this result with the shortest distance from the query point to the partitioning plane. 
This latter distance is that between the query point and the closest possible point that could exist in the 
half-space not searched. If this distance is greater than that returned in the earlier result, then clearly 
there is no need to search the other half-space. If there is such a need, then you must go through the 
trouble of solving the problem for the other half space, and then compare its result to the former result, 
and then return the proper result. The performance of this algorithm is nearer to logarithmic time than 
linear time when the query point is near the cloud, because as the distance between the query point and 
the closest point-cloud point nears zero, the algorithm needs only perform a look-up using the query 
point as a key to get the correct result.

Locality sensitive hashing

Locality sensitive hashing (LSH) is a technique for grouping points in space into 'buckets' based on 
some distance metric operating on the points. Points that are close to each other under the chosen metric 
are mapped to the same bucket with high probability.[7]

Nearest neighbor search in spaces with small intrinsic dimension

The cover tree has a theoretical bound that is based on the dataset's doubling constant. The bound on 
search time is O(c12 log n) where c is the expansion constant of the dataset.
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Projected radial search

In the special case where the data is a dense 3D map of geometric points, the projection geometry of the 
sensing technique can be used to dramatically simplify the search problem. This approach requires that 
the 3D data is organized by a projection to a two dimensional grid and assumes that the data is spatially 
smooth across neighboring grid cells with the exception of object boundaries. These assumptions are 
valid when dealing with 3D sensor data in applications such as surveying, robotics and stereo vision but 
may not hold for unorganized data in general. In practice this technique has an average search time of O
(1) or O(K) for the k-nearest neighbor problem when applied to real world stereo vision data. [2]

Vector approximation files

In high dimensional spaces, tree indexing structures become useless because an increasing percentage of 
the nodes need to be examined anyway. To speed up linear search, a compressed version of the feature 
vectors stored in RAM is used to prefilter the datasets in a first run. The final candidates are determined 
in a second stage using the uncompressed data from the disk for distance calculation.[8]

Compression/clustering based search

The VA-file approach is a special case of a compression based search, where each feature component is 
compressed uniformly and independently. The optimal compression technique in multidimensional 
spaces is Vector Quantization (VQ), implemented through clustering. The database is clustered and the 
most "promising" clusters are retrieved. Huge gains over VA-File, tree-based indexes and sequential 
scan have been observed.[9][10] Also note the parallels between clustering and LSH.

Greedy walk search in small-world graphs

One possible way to solve NNS is to construct a graph , where every point  is 
uniquely associated with vertex . The search of the point in the set S closest to the query q takes 
the form of the search of vertex in the graph . One of the basic vertex search algorithms in 
graphs with metric objects is the greedy search algorithm. It starts from the random vertex . The 
algorithm computes a distance value from the query q to each vertex from the neighborhood 

 of the current vertex , and then selects a vertex with the minimal distance 
value. If the distance value between the query and the selected vertex is smaller than the one between 
the query and the current element, then the algorithm moves to the selected vertex, and it becomes new 
current vertex. The algorithm stops when it reaches a local minimum: a vertex whose neighborhood does 
not contain a vertex that is closer to the query than the vertex itself. This idea was exploited in VoroNet 
system [11] for the plane, in RayNet system [12] for the  and for the general metric space in Metrized 
Small World algorithm.[13] Java and C++ implementations of the algorithm together with sources are 
hosted on the GitHub (Non-Metric Space Library 
(https://github.com/searchivarius/NonMetricSpaceLib), Metrized Small World library 
(http://aponom84.github.io/MetrizedSmallWorld/)).
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Variants

There are numerous variants of the NNS problem and the two most well-known are the k-nearest 
neighbor search and the -approximate nearest neighbor search.

k-nearest neighbor 

k-nearest neighbor search identifies the top k nearest neighbors to the query. This technique is 
commonly used in predictive analytics to estimate or classify a point based on the consensus of its 
neighbors. k-nearest neighbor graphs are graphs in which every point is connected to its k nearest 
neighbors.

Approximate nearest neighbor

In some applications it may be acceptable to retrieve a "good guess" of the nearest neighbor. In those 
cases, we can use an algorithm which doesn't guarantee to return the actual nearest neighbor in every 
case, in return for improved speed or memory savings. Often such an algorithm will find the nearest 
neighbor in a majority of cases, but this depends strongly on the dataset being queried.

Algorithms that support the approximate nearest neighbor search include locality-sensitive hashing, best 
bin first and balanced box-decomposition tree based search.[14]

Nearest neighbor distance ratio

Nearest neighbor distance ratio do not apply the threshold on the direct distance from the original point 
to the challenger neighbor but on a ratio of it depending on the distance to the previous neighbor. It is 
used in CBIR to retrieve pictures through a "query by example" using the similarity between local 
features. More generally it is involved in several matching problems.

Fixed-radius near neighbors

Fixed-radius near neighbors is the problem where one wants to efficiently find all points given in 
Euclidean space within a given fixed distance from a specified point. The data structure should work on 
a distance which is fixed however the query point is arbitrary.

All nearest neighbors

For some applications (e.g. entropy estimation), we may have N data-points and wish to know which is 
the nearest neighbor for every one of those N points. This could of course be achieved by running a 
nearest-neighbor search once for every point, but an improved strategy would be an algorithm that 
exploits the information redundancy between these N queries to produce a more efficient search. As a 
simple example: when we find the distance from point X to point Y, that also tells us the distance from 
point Y to point X, so the same calculation can be reused in two different queries.

Page 5 of 8Nearest neighbor search - Wikipedia, the free encyclopedia

9/10/2015file:///C:/Users/kla/AppData/Local/Temp/YSXBL31N.htm

Page 5 of 8



Given a fixed dimension, a semi-definite positive norm (thereby including every Lp norm), and n points 
in this space, the nearest neighbour of every point can be found in O(n log n) time and the m nearest 
neighbours of every point can be found in O(mn log n) time.[15][16]

See also

Ball tree
Closest pair of points problem
Cluster analysis
Content-based image retrieval
Curse of dimensionality
Digital signal processing
Dimension reduction
Fixed-radius near neighbors
Fourier analysis
Instance-based learning
k-nearest neighbor algorithm
Linear least squares
Locality sensitive hashing

MinHash
Multidimensional analysis
Nearest-neighbor interpolation
Neighbor joining
Principal component analysis
Range search
Set cover problem
Singular value decomposition
Sparse distributed memory
Statistical distance
Time series
Voronoi diagram
Wavelet
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External links

Nearest Neighbors and Similarity Search 
(http://simsearch.yury.name/tutorial.html) – a website 
dedicated to educational materials, software, literature, 
researchers, open problems and events related to NN 
searching. Maintained by Yury Lifshits
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Similarity Search Wiki (http://sswiki.tierra-aoi.net) – a collection of links, people, ideas, 
keywords, papers, slides, code and data sets on nearest neighbours
dD Spatial Searching (http://www.cgal.org/Pkg/SpatialSearchingD) in CGAL – the Computational 
Geometry Algorithms Library
Non-Metric Space Library (https://github.com/searchivarius/NonMetricSpaceLib) – An open 
source similarity search library containing realisations of various Nearest neighbor search 
methods.
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