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ABSTRACT. Our work gives a positive result for nearest neighbor search in 
high dimensions. It establishes that radius-limited search is, under particular 
circumstances, free of the curse of dimensionality. It further illuminates the 
nature of the curse, and may therefore someday contribute to improved general 
purpose algorithms for high dimensions and for general metric spaces. 

We consider the problem of nearest neighbor search in the Euclidean 
hypercube [-l,+ l]d with uniform distributions, and the additional natural 
assumption that the nearest neighbor is located within a constant fraction R 
of the maximum interpoint distance in th is space, i.e. within distance 2RVd 
of the query. 

We introduce the idea of aggressive pruning and give a family of practical 
algorithms, an idealized analysis, and describe experiments. Our main result 
is that search complexity measured in terms of d-dimensional inner product 
operations, is i) strongly sublinear with respect to the data set size n for 
moderate R, ii) asymptotically, and as a practical matter, independent of 
dimension. 

Given a random data set, a random query within distance 2RVd of some 
database element, and a randomly constructed data structure, the search suc­
ceeds witb a specified probabili ty, which is a parameter of the search algorithm. 
On average a search performs R:$ n"f distance computations where n is the num­
ber of point.s in the database, and "f < 1 is calculated in our analysis. Linear 
and near-linear space structures are described, and our algorithms and analy­
sis are fr·ee of large hidden constants, i.e . the algorithms perform far less work 
than exhaustive search - both in theory and practice. 

1. Introduction 

Finding nearest neighbors in Euclidean spaces of very low dimension is theoret­
ically fast, and practical, using the notion of a Voronoi diagram [Aur91]. In mod­
erate dimension, or in general metric spaces with intrinsically moderate dimension, 
recursive projection-decomposition techniques such as kd-trees (FBS75, FBF77, 
BF79, Ben80] and vantage-point techniques [Uhl91b, Uhl91a, RP92, Yia93] 
for general metric spaces of intrinsically low dimension, are effective. 
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As dimension d grows large, these tree techniques perform significantly better 
than brute-force search only if the number of dataset points n grows exponentially 
in d. Or, in the case of Voronoi diagrams, if space increases exponentially. 

The motivation for this work is the observation that, in practice, one is usually 
interested in nearest neighbors only if they are somewhat close to the query. The 
main contribution of this paper is the algorithmic idea of aggressiue pruning and 
its analysis for the uniformly distributed hypercube. In this setting, with a natural 
definition of somewhat close, we show that the expected time complexity of finding 
nearest neighbors is invariant with respect to dimension1 - and the space cose is 
independent of d, and linear in n . 

In a Euclidean hypercube the maximum distance between two points grows 
with Jd. By somewhat close we mean within a neighborhood whose radius is a 
constant fraction R of this distance. A parameter 0 < p < 1 controls the probability 
that a search will locate the nearest neighbor within this search domain. For each 
choice of R and p we calculate an exponent 'Y < 1 such that the search will perform 
on average~ n..., distance computations, and this dominates the work performed. 
Notice that 'Y is independent of d. 

The practical significance of our work is that search time is strongly sublinear 
given moderately large values for R and acceptable success probabilities. For ex­
ample, searching 1, 000,000 points uniformly distributed in [-1, +1]1°00 with our 
experimental software, given R = 0.1, requires on average~ 30,000 distance com­
putations, and succeeds with probability 0.9988. In this example 'Y ~ 0.78 from 
our analysis. Arbitrarily high success probabilities can be obtained at the expense 
of distance computations. 

We remark that this work was motivated by the author's recent work of [Yia99], 
where the objective is to build a data structure that provides worst-case sublinear­
tirne radius-limited nearest neighbor search (independent of query) for a given 
dataset. With uniform distributions in Euclidean space, the resulting structures 
support search neighborhood of only 0(1) size, in contrast with those of this paper 
that scale linearly with the maximum interpoint distance. 

Early work in nearest neighbor search is surveyed in [D as91]. There is a large 
literature on the search problem, much of it elaborating on a single fact : that certain 
projections from a metric space to lR have the property that projected distances 
are dominated by those in the original space. 

The two most important such projections are i) inner product with a unit vector 
in Euclidean space, and il) distance from a chosen vantage point.3 These ideas were 
recognized early on in work including [BK73, Fuk75, Fuk90, FS82 , Sha77]. 

Taking the inner product with a canonical basis element in Euclidean space 
leads to the well-known kd-tree of Friedman and Bentley [FBS75, FBF77, BF 79, 
Ben80J. They recursively divide a pointset in JRd by projecting each element onto a 
distinguished coordinate. Improvements, distribution adaptation, and incremental 
searches, are described in [EW82], [KP86], and [Bro90] respectively. 

1:Vfeasured as d-dimensional inoer product opera~ions 
2In addition to the space required to store the dataset itself 
3The first of these may be viewed as the second in the limit as a vantage point moves toward 

infinity along t he direction of the unit vector. 
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The search tree we build has essentially the same structure as a kd-tree built 
given randomly pretransformed data~. and constrained to use the same cut coordi­
nate for all nodes at a gi\·en tree leveL Our criterion for pruning branches during 
search, and its analysis, are the primary contributions of this paper and distinguish 
our methods from kd-tree search. 

;\fore recently, the field of computational geometry has yielded many interesting 
results such as those of [Vai89, Cla88, Cla87, FMT92J and earlier [DL76J. 

Very recently a number of papers have appeared striving for more efficient algo­
rithms with worst-case time bounds for the approximate nearest neighbor problem 
[AMN t-94, Kle97, KOR98, IM98J. These exploit properties of random projec­
tions beyond the simple projection distance dominance fact mentioned above, and 
additional ideas to establish worst case bounds. Our work may be viewed as ex­
ploiting the fact that random projections of uniformly random data in a hypercube, 
and of neighborhood balls of radius proportional to Jd. both have constant vari­
ance with respect to d. See also [Cla97J for very reC'cnt work on search in general 
metric spaces. 

Several of the papers mentioned above include interesting theoretical construc­
tions that trade polynomial space, and in some cases expensive preprocessing, for 
fast performance in the ,...-orst case. We remark that to be useful in practice, a 
nearest neighbor algorithm must require very nearly linear space - a stringent 
requirement. As datasets grow. even low-degree polynomial space becomes rapidly 
unacceptable. 

For completeness. early work dealing with two special cases should be men­
tioned. Retrieval of similar binary keys is considered by Rivest in (Riv74J and the 
Loc setting is the focus of [Yun76J. Also see [BM80J for worst case data struc­
tures for the range search problem. Finally, recent works [BOR99J and (CCGL99J 
establish nontrivial lower bounds for nearest neighbor search. 

[n the following section we give construction and search algorithms specialized 
for our uniform setting. Section 3 gives a concrete analysis of these algorithms that 
include calculations of the applicable search time complexity exponent, and failure 
probability. E>..-periments are presented in section 4, which confirm in practice the 
dimensional invariance established by analysis. Finally, some directions for further 
work are mentioned in section 5. 

2. Algorithms 

2.1. Construction: A search tree is built with the set of data points as its 
leaves. It has essentially the same structure as a kd-tree built on data that has first 
been transformed to a random coordinate system. Construction time is easily seen 
to be O(n logn) and space is linear. 

Construction proceeds recursively. Each interior node has as input a list of 
points. The root's list is the entire set. Associated with each interior node is a 
randomly selected unit vector Ui, where i denotes level (distance from the root). 
The number of such vectors is then equal to the depth of tree minus one (because 
there is no vector associated with a leaf). This set is constructed so as to be 

4Th at is, where the dataset is first transformed tO the coordinate system induced by a random 
basis. When t he kd-tree cuts space using a single coordinate in this transformed setting, is then 
the same as cutting based the inner product of a data element with a particular basis vector. 
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orthonormal. First. random vectors are drawn. then they are orthonormalized in 
the usual way (Gram-Schmidt). 

Construction of a node consists of reading its input list, computing the inner 
product of each element with the node's associated u;, and adding the element 
to a left or right output list depending on its sign. ln general the dividing point 
is chosen more intelligently, e.g. by computing the median of the inner product 
values. But in our uniform [-l,+l]d setting we just use zero for simplicity. Left 
and right children are then generated recursively. If a node's input list consists of 
a single element, then that node becomes a leaf and stores the clement within it. 

2.2. Search: The search is parameterized by a query q, a value R E (0, 1) 
giving the proportional size of the search domain, and a probability 0 < p < 1 that 
is related to the success rate we expect. 

The inner product of q and each tt; is first computed. l\'cxt the positive thresh­
old distance e = ~;;-~2(p) is computed, where~ denotes the cumulative distdbution 
function for a normal density with the variance indicated by subscdpt. 

Search proceeds recursively from the root. For a node at level i the value 
< q, u; > is examined. If it is less than e then the left child is recursively explored. If 
it exceeds -f then the right child is explored. Xoticc that when < q. ui >E (-e. +l) 
both children are explored. \Yhen a leaf is encountered, the distance is computed 
between the element it contains and q. 

This decision rule is centered at zero because of our particular uniform [-1. +1Jd 
setting, but is easily translated to an arbitrary cut point, e.g. the median of the 
projected values. 

After each distance computation d(q, x) is performed the proportion d(q, x)/2~ 
is computed. If smaller than R, then R is reduced and e recomputed. 

This concludes the description of our search algorithm and we now briefly 
discuss related issues and ex-tensions. 

An important idea in kd-tree search involves the computation of the minimum 
distance from the query to the subspace corresponding to a node to be explored. 
II this distance grows beyond the radius of interest, the node is pruned. We do 
not, however, include it in our analysis or experimental implementation because in 
our high dimensional setting, in the absence of exponentially many data elements, 
this idea has vanishingly little effect. Intuitively, this is because the search tree is 
not nearly deep enough for the minimum distance to grow larger than the search 
radius. 

The analogue of tbis kd-tree idea in our setting is an alternative version of our 
algorithm abOYe that Slightly redUCes f wbile descending through interiOr nodeS tO 
reflect the fact that the distribution of data elements within a ball about the query 
is no longer uniform. But, again, tbis is a second order effect. 

Finally we remark that the f-cutoff approach taken above might be replaced 
with an entirely probabilistic pruning scheme that passes probabilities from our 
analysis down to each child during search. The probabilities upward to the root 
are then multiplied and search continues downward until the result falls below a 
specified threshold. 

3. A nalysis 

We assume both data points and queries are uniformly distributed within the 
hypercube [-1, + l]d. The Euclidean distance metric applies and the ma.x:imum 
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distance between two points in this space is 2Vd. We consider the problem of 
finding the nearest neighbor of a query q within some distance 8 that is a constant 
proportion of the maximum interpoint distance, i.e. 8 = 2RVd with 0 < R < 1. 

Any unit vector ·u gives rise to a projection 1T' u mapping x E JR.d into JR. defined 
by < x, u >. It is immediate that distances in the range of this projection are 
dominated by distances in the domain. It is this fact that kd-trees exploit to prune 
branches during branch-and-bound search. 

If r represents the distance to the nearest neighbor encountered so far during 
a search, then this fact implies that every member of the ball of radius r centered 
at the query q maps under any 'iT'u into the interval [7ru(q)- T, 1T'u(q) + r]. So kd­
tree search may confidently disregard any data points that project outside of this 
interval. Unlike the kd-tree, which finds nearest neighbors with certainty, we will 
consider randomized constructions that succeed with some specified probability. 

Since 8 scales up linearly with Jd, the interval grows ['iT' .,(q)- 8, '~~u(q) + 8] too, 
and soon the kd-tree can confidently prune almost nothing, and performs a nearly 
exhaustive search. 

But in our uniformly random setting we will show that the 8 ball about q 
projects to a distribution about 11(q) having constant variance. This is why it is 
possible to continue to probabilistically prune just as effectively even as d -+ oo. 
Since dimension does not affect our ability to prune, we have lifted the curse of 
dimensionality in our setting. 

We now proceed with the description and idealized analysis of our algorithm 
with the following proposition, which establishes two elementary but key dimen­
sional invariants 

PROPOS!T!O:" 3.1. i) Let u be a random unit vector, and let X denote a random 
dataset in our setting, then the one dimensional set of values 1iu (X) has mean zero 
and variance 1/3 - independent of dimension - where both u and X are random 
variables. ii) Consider any q E JR.d and let r denote a random vector located on 
the surface of a ball centered at q of radius 2RVd. Then jo1· any unit vector u, 
the distribution of values 1T' ... (r) has mean 1T'11 (q) and variance 4R2 - independent of 
dimension. 

PROOF . The variance of each component of u is 1/d since < u,u >= 1 by 
definition and the components are i.i.d. Consider a random element x E [-1, +1Jrl. 
Here a simple integration establishes that the variance of each component is 1/3. So 
the variance of each term of< u, x > is 1/3d, and that of the entire inner product 
is then 1/3 as required. Now each component of u and x has mean zero so that 
< u, x > has mean zero - and part i) is established. 

'iT'" (r) is centered at 1iu(q) by linearity of inner product. So we may assume 
without loss of generality that q = 0. Now the inner product of two random unit 
vectors is easily seen to have variance 1/ d. Scaling one of them by a factor of 2R Jd 
increases the variance by a factor of 4R2d, so that it becomes 4R2 as required by 
part ii). 0 

Now tix some unit vector u and consider the query's projection 'iT'" ( q). Then by 
Proposition 3.1, and ignoring hypercube corner effects, the projection of the data 
points within the domain of search are distributed about 1T'.u(q) with variance no 
greater than 4R2

• 

Because distances between projected points are dominated by their original 
distance it is clear that I 'iT' u ( x) - "" ( q) I < 2R Jd for any x in the search domain. 
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So any data points with projections farther than 2RVd from 1r u.(q) can be 
confidently ruled out during search. It is this hard pruning that kd-trees (and 
many related structures) exploit to avoid considering every point during nearest 
neighbor search. 

But notice that this pruning cutoff distance 2RVd -+ oo with d while the 
projection variance remains constant. As a result hard pruning is asymptotically 
ineffective, and this gives rise to the curse of dimensionality for nearest neighbor 
search using kd-trees in our setting. 

?\ext observe that as a consequence of the central limit theorem the distribu­
tions of Proposition 3.1 are asymptotically normal - and we remark that as a 
practical matter this is a good approximation; even for moderate dimension. So 
from this point on in our analysis we will simply assume normality, i.e. that d is 
sufficiently large so that its deviation from normality is negligible. 

We then arrive at one of the main observations of this paper: that the nearest 
neighbor's projection is within constant distance of ?Tu.(q) with arbitrarily high ar•d 
easily calculated probability p depending only on this constant, and not on d. 

Recall that the tree we build recursively bisects the set of data points using a 
randomly selected u by separating its projection into left and right branches at a 
cut point c near the median. Given a query q we prune one of these branches if 
?Tu(q) is at least some cutoff distance e from c. We refer to this idea as aggressive 
pr·uning. 

PROPOSITl0:-.1 3.2. Using cutoff distance e = 1?;;-A2(p) to prune branches will 
exclude the nearest neighbor (ass·uming one exists within distance 2RVd of the 
query} with probability 1- p at each node; wher·e 1?u•(x) denotes the c-nmulative 
distribution function for the zero mean normal density with variance a2 • 

PROOF. Equating the target failure rate 1-p with the mass of the distribution's 
positive tail gives 1-1?4R2(e) = 1- p, so e = 1?;;-A2(p). o 

Again, note that this cutoff distance e is constant despite the fact that the 
absolute size of our search domain is expanding with .Jd as d -+ oo. \'Ve can now 
establish a single tree's expected search complexity and success probability. 

PROPOSITIO~ 3.3. Given n data points, R,p, and e from proposition 9.2, and 
assuming d = fl(logn), then i) our search will visit~ n'Y leaf nodes where "' = 
log2 2<I> 113(e) , and compute ad-dimensional Euclidean distance at at each; and ii) 
the search will .succeed with probability no smaller than ~ p10g2,.. 

PROOF. Recall that we e>..-pect that at each node of the tree the projection of 
the remaining database elements will have mean/median close to zero and variance 
of approximately 1/3. We fix: our attention on one such node with corresponding 
unit vector u and assume the cut point is exactly zero and variance is exactly 
1/3. Since we have assumed that the queries are also uniformly distributed, their 
projection is identical. So we can easily calculate the probability b that a query q 
lies within distance e of the zero. In this event both left and right branches must 
be explored. Otherwise, with probability 1 - b we can prune one so that only one 
is explored. 

The mass of one tail (beyond e) is 1-1?1; 3 (e) from which it follows that 1 - b 
is twice this value. So b = 21? 1; 3(e)- 1. Then the expected number F of branches 
visited is 2 · b + 1 · (1- b) = 21?1; 3(£) 
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Since d = n(log n) it is possible to choose unit vectors from root to leaf that 
are independent (e.g. the canonical basis), random vectors will be nearly so, and 
our random orthonormalization process will certainly succeed. So except for corner 
effects, which we disregard, it is reasonable to assume that query projections and 
failure probabilities are independent along each root-leaf path. 

Since the tree's depth is log2 n (we'll assume perfect balance) the search will 
visit plog, rt nodes. That is 21082 F Jog2" or n 10S2 F , establishing i). 

:\ow the nearest neighbor is located somewhere as a leaf of the tree. To succeed, 
the search must not prune it at any of the log2 n nodes along a path up to the root. 
This happens with probability p10S'" establishing ii) - where independence follows 
from the orthogonality of the set of projectors and the assumption of a uniform 
distribution. 5 0 

Notice that the exponent of n in proposition 3.3 is within (0, 1). Also, the 
requirement that d = n(logn) is not very restrictive since otherwise the number 
of data points is exponential in d and earlier techniques can be used to efficiently 
locate nearest neighbors. 

The probability estimate of Proposition 3.3 is extremely conservative. The 
actual failure probabilities are much smaller because: i) our analysis has implicitly 
assumed that the query always projects to a point exactly e from the cut point. 
This is the worst case. If the distance is smaller, then nothing is pruned and no 
error can be made; and if the distance is larger, the effective cutoff distance is 
effectively increased; and ii) we have assumed that the nearest neighbor is always 
just within the domain of search. In reality queries will be distributed with this 
domain. 

Even without considering these factors ouT calculations suggest that efficient 
search is possible for moderately large values of R. 

Table 3 gives exponent values for selected values of R and p. For example, 
if R = 0.05 and p = 1 - 10- 4 = 0.9999 then the exponent is ~ 0.566. Given 
n = 10, 000, 000 data points our results state that no more than n°·566 ~ 9, 162 
inner product operations will be performed, and that the nearest neighbor will be 
located with probability 0.999910g2 n ~ 0.9977. Choosing p = 1 - 10- 6 corresponds 
to 48, 194 inner products with the probability of success increasing to 0.999977. All 
of these calculations are asymptotically independent of dimension. 

We continue this example to illustrate the use of forests to improve performance 
in some settings. Later we will give a theoretical consequence of this idea. Consider 
two independent trees with p = 1-I0-4

. That is, the choice of random unit vectors 
is independent. Both trees are searched for each query. We then expect a failure 
rate of ~ (1 - 0.9977)2 = .00000529, and 2 · 9, 162 = 18,324 inner products are 
performed. 6 Now this failure rate is considerably better than the 1 - 0.999977 = 
0.000023 resulting from a single tree using p = 1-10-6 , and far fewer inner products 
are computed, but space consumption is doubled. This example illustrates the 
space-time design tradeoff that arises when applying our ideas in practice. 

The natural generalization of this idea leads to a forest of independent trees. 
Recall that a failure rate of a single tree grows, albeit slowly, with n . By using 

5 ::-legligible dependence resu lts from the hypercube's corners, but for simplicity we ignore this 
effect . 

6\.Ye must have d large enough to allow independent unit vectors to be drawn, and will say 
more about this later. 
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R 1 - p 
w-2 10- <1 w-a w-s 10- 10 10- 12 

0.01 0.090 0.141 0.177 0.207 0.232 0.254 
0.02 0.174 0.267 0.331 0.381 0.423 0.458 
0.03 0.252 0.379 0.463 0.526 0.577 0.618 
0.04 0.325 0.479 0.575 0.645 0.698 0.740 
0.05 0.393 0.566 0.669 0.739 0.790 0.829 
0.06 0.456 0.642 0.746 0.813 0.859 0.892 
0.07 0.513 0.707 0.808 0.869 0.908 0.935 
0.08 0.566 0.763 0.858 0.911 0.943 0.963 
0.09 0.615 0.810 0.897 0.941 0.965 0.979 
0.10 0.660 0.850 0.926 0.962 0.980 0.989 
0.11 0.700 0.882 0.949 0.976 0.989 0.995 
0.12 0.737 0.909 0.965 0.986 0.994 0.998 
0.13 0.770 0.931 0.977 0.992 0.997 0.999 
0.14 0.800 0.948 0.985 0.995 0.999 1.000 
0.15 0.826 0.961 0.990 0.997 0.999 1.000 
0.16 0.850 0.971 0.994 0.999 1.000 1.000 
0.17 0.871 0.979 0.996 0.999 1.000 1.000 
0.18 0.890 0.985 0.998 1.000 1.000 1.000 
0.19 0.906 0.990 0.999 1.000 1.000 1.000 
0.20 0.921 0.993 0.999 1.000 1.000 1.000 

TABLE 1. Searches in our setting with a single tree require ::::J n7 

inner product operations and linear space. This table gives 'Y values 
for various choices of R and p from our analysis. 

enough trees one can force the forest's failure rate to zero as n increases while 
preserving sublinear search times; at the expense of polynomia.l space to pay for 
the additiona.l trees. To analyze this let x denote the tree's depth and observe that 
(1 - p"')Y gives the probability of failure for a forest of y distinct random trees. It 
can be shown that if y = p - t l+•)x for any c: > 0, then this probability tends to 
zero as x (and therefore n) increases 7• Since x = log2 n t he number of trees y = 
n -(1+• ) 10&2 P in terms of n. Search time (the number of inner product operations) 
also increases by a factor of y. Space increases from linear to O(yn). Fina.lly, to 
maintain independence we must increase the lower bound on d to O(y logn). 

It is apparent from table 3 that this idea works for many values of Rand p. For 
example, if R = 0.05 and p = 1 - 10- 6 then the original e>..-ponent 0.566 increases 
by only ~ 1.44 X w-6 - far less than the table's precision. But it does not work 
for arbitrary Rand p. For large va.lues of R the exponent is so close to 1 that the 
added complexity makes the total superlinear. 

Note that O(nd) space is required to store the data elements themselves, but 
only O(n) space is needed for the interior tree nodes, which point to data elements. 
So, in practice, we can afford O(d) trees while remaining linear space. In practice 
this means that in high dimension one can easily afford many trees without mate­
rially affecting space consumption. In theory it means that if d is assumed to grow 

;However it may increase somewhat before eventually decreasing. 
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as an appropriate small power of n as n -4 oo, then the entire forest occupies linear 
space. 

Returning to our choice of the [- 1, + 1]d hypercube, we observe that i) All of 
our arguments apply immediately to [0, 1Jd after compensating for the shifted mean, 
and ii) that our arguments apply as well to the d-dimensional hypersphere. To see 
this note that the dot product of a random unit vector and a random database 
element has variance 1/d, and the maximum interpoint distance is constant, so the 
projection of a proportional neighborhood balls also falls with 1/d. 

Finally we remark that as an alternative to forests , one can build a single tree 
in which each level is overlapped, i.e. items near the center are stored in both the 
left and right branches. This effectively reduces e and with it search time - at the 
expense of polynomial space (given a constant fraction of overlap at each level). 

4. E xp eriments 

To confirm our analysis we wrote an ANSI-C program to build and search trees. 
It accepts d, n, R, pas arguments, in addition to the number of random queries to 
test, and a random seed. 

The data points are distributed uniformly in [-1, +l]d. Queries are generated 
by choosing a data point x at random, then a random unit vector u, and forming 
the sum x + (1 - e)2Rv05u - so that the query lies just inside of the search domain. 
We use e = .0001. This ensures that a nearest neighbor exists within the domain. 

An indexed set of projection vectors is generated by starting with random 
vectors and orthonormalizing them in the standard way. Each level in the tree uses 
the corresponding vector in this set as its projector. So the size of the set is O(logn), 
and in practice is ~ 2 log2 n because the resulting trees are not perfectly balanced. 
For simplicity zero is always used as the cut point during tree construction. 

In order to allow us to simultaneously explore large n and d without exceeding 
available RAM, we represent the data points to be searched using a pseudorandom 
generator seed that suffices to construct them. As a result we can easily study 
n = 1, 000,000 and higher in almost arbitrarily high dimension. 

Figure 1 illustrates that search complexity measured in the number of inner 
product operations performed is very nearly dimension-invariant - confirming our 
analysis. So total work scales up only linearly with dimension with the complexity 
of an inner product operation. 

Note that for simplicity we regard an inner product operation and a Euclidean 
distance computation as having identical complexity. Also, the table's results ex­
clude the roughly 2 log2 n inner products required to compute the query's projection 
at each level of the tree. 

Recall that our analysis of failure rate was quite conservative and experiments 
confirm this. Actual failure rates for every case in Figure 1 were somewhat lower 
than those from analysis. For example, in the R = 0.20 case, analysis predicts that 
the search will succeed with probability ~ 0.85, and the actual value is ~ 0.97. 
Note that one reason for using the moderate value p = 0.99 in our study is that we 
have confirmed that values far closer to zero result in no observable e..'<perimental 
error given the limited number of queries we have time to perform. 

vVe compare performance in our setting with kd-tree search [FBS75, FBF77, 
BF79, Ben80]. We are interested in neighbors within a specified distance of the 
query. To reproduce this setting, kd-tree search is initialized as though an element 
at the specified distance has already been encountered. 
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FtGL:RE 1. Proportional radius search complexity is constant with 
respect to dimension - confirming our analysis. We measure the 
number of leaves visited. Each visit corresponds to a Euclidean 
distance computation. In this experiment the number of uniformly 
distributed data points n = 100,000. and the p from our analysis 
is 0.99. Each query is generated so as to be slightly less than 
distance 2R.Jd from some database element. so that our radius­
limited search always succeeds. The results of 11 000 such random 
queries are averaged to produce each data point. Our analysis 
predicts constant values of approximately 3, 92, 1987, 13,553, and 
40, 114 corresponding toR values of 0.01, 0.05, 0.10, 0.15, and 0.20 
respectively. T he e-xperimental values compare well with these 
estimates, and in general are dominated by them by a factor of 
approximately two. 

A recent kd-tree implementation [MA99] is modified for our experiments. Its 
core routines are a ltered to support radius-limited search as described above, and 
the distribution's sample program is adapted to report the average number of dis­
tance computations performed in response to each query. As in our earlier exper­
iments, queries are generated by starting at a database clement, and moving the 
specified distance away in a random direction. So every query in our experiment 
locates a nearest neighbor within the radius of interest. As a self-check the sample 
program is further modified to ,·erify this condition. After these modifications. a 
direct comparison is possible between our method and kd-tree search. 

From our analysis it is clear that kd-tree search will not exhibit the same di­
mensional invariance, and figure 2 confirms this. :\[oreo,·er, search time grows so 
rapidly for the R ~ 0.10 cases that the tree is essentially ineffective by dimension 
100. By contrast (figure 1) our method remains effective for arbitrarily high dimen­
sion. Recall. however, that kd-tree search is guaranteed to find the nearest neighbor 
within in the domain, while our method will fai l with some small probability. 
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F!Gl:RE 2. Proportional radius kd-tree search complexity is not 
constant with respect to dimension, and increases rapidly for R 2:: 
0.10 so that by dimension 100 the search is nearly exhaustive. Each 
node visit corresponds to a Euclidean distance computation. The 
number of uniformly distributed data points n = 100, 000, and the 
results of 100 random queries generated as in figure 1 are averaged 
to produce each data point. 

A primary motivation for this paper was our discovery in [Yia99J that kd-trees, 
and a related general structure called a vantage point forest, do exhibit search com­
plexity that is invariant with respect to dimension for a domain of constant r·adius ­
and substantial savings over exhaustive see:u-ch arc realized only for disappointingly 
small radii. The experiment reported in figure 3 confirms this, and illustrates the 
fundamentally different asymptotic behavior (with respect to d) of kd-tree search 
and our aggressive pruning approach. The flat graphs of figure 1 are in the presence 
of a search radius that grows with /d, where those of 3 assume a search radius that 
is constant with respect to d. For example, by dimension 32 a domain of unity 
radius generates a nearly exhaustive search. By contrast figure 1 shows that for 
R = 0.1 and d = 1000 (corresponding to a radius of 2R/d:::::: 6.33) , our search visits 
only roughly 1% of the leaf nodes. 

We conclude our discussion of experiments by describing a single example of 
our method in greater detail that pushes n upward to 1, 000,000. p up to 0.999, 
and the number of queries up to 20,000. The dimension is 1, 000. Here, analysis 
predicts success probability 0.9803 and we observe 0.9988. The tree's depth is 39 
and 27,899 leM·es are visited on aYerage during a search. The predicted \·alue is 
47,020. The experiment required 2, 801 seconds on a 400~fhz Pentium II processor. 

5. Concluding R emarks 

We hopes this work takes us closer to practical and useful nearest neighbor 
search in high dimension. In addition to sharpening our analysis for the uniform 
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F IGURE 3. The average complexity of fixed-radius kd-tree search 
is invariant with respect to dimension. Here n = 10,000 and the 
graphs from bottom to top correspond to radii from 0.025 to 1.0 
in increments of 0.025. 

case, future theoretical work might target distribution-independent bounds for ap­
proximate nearest neighbor search within an R-domain. While generalizing we 
expect that the definition of an R-domain will have to change, and that it may 
be necessary to move to the approximate nearest neighbor framework where the 
objective is to find neighbors within a (1 + €) factor of the closest. 

Also, the work of this paper motivates us to consider techniques for general 
metric spaces and arbitrary distributions that learn the projection distributions 
and e from examples - adapting to the problem domain. 

Ultimately we envision a high-level procedure that like the qsor t () function 
from the standard unix library, views its underlying database through a layer of 
abstraction. In the case of sorting, a comparison function is provided. For nearest 
neighbor search projection and distance computation must be supported. 

Sorting is, however, a much simpler problem in as much as practical algorithms 
exist with acceptable worst case time and space complexity - independent of the 
dataset. For nearest neighbor search we suggest that a general tool must be flexible 
and ideally support: 

• user supplied distance functions and projectors. 
If the projectors are known to be independent (as in orthogonal Eu­

clidear. projections) then search should exploit this. Most generally a 
system might try to learn patterns of independence from examples. 

Special support for discrete-valued distar.ce functions is also desirable. 
• A user specified target success probability, perhaps requiring the user to 

provide a function to generate random queries for the problem domain. 
• A user specified approximation factor c: , where success is then defined as 

locating an element within a factor of 1 + E of the nearest. 
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• A simple bound on the work performed during search, after which it is 
simply truncated. 

• Control over the time invested in construction to optimize the resulting 
data structure. 

• Control over the time-space tradeoff That is, the ability to invest addi­
tional space to improve search performance. 

• Dynamic operation, i.e. the addition and deletion of points from the data 
structure during use (not discussed in this paper - but clearly possible). 

We hope that the ideas and results of this paper brings us closer to the devel­
opment of such a tool. 
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