ABYSS: A Trusted Architecture for Software Protection

Steve R. White
Liam Comerford

IBM Thomas J. Watson Research Center
P.O. Box 704
Yorktown Heights, NY 10598

Abstract

ABYSS (A Basic Yorktown Security System) is an architecture
for the trusted execution of application software. It supports a
uniform security service across the. range of computing systems.
The use of ABYSS discussed in this paper is oriented towards
solving the software protection problem, especially in the lower
end of the market. Both cwrent and planned software
distribution channels are supportable by the architecture, and
the system is nearly transparent to legitimate users. A novel
use-once authorization mechanism, called a token, is introduced
as a solution to the problem of providing authorizations without
direct communication. Software vendors may use the system to
obtain technical enforcement of virtually any terms and
conditions of the sale of their software, including such things as
rental software. Software may be transferred between systems,
and backed up to guard against loss in case of failure. We
discuss the problem of protecting software on these systems, and
offer guidelines to its solution. ABYSS is shown to be a general
security base, in which many security applications may execute.

Introduction

As computers become a more important source of information
and services in our lives, problems of software and data security
become increasingly significant. The illicit duplication and use
of commercial software is only one example of these problems,
but it is increasingly worrisome in the low end of the software
market. It constitutes theft of the intellectual property of the
authors, in the same way as copyright and patent infringement,
and plagiarism. It can be an economic burden as well, since
many small software firms rely on sales of a single software
package as their only source of income. By disrupting the
software marketplace, theft inhibits the growth of this powerful
technology.

Since the inception of small computers, attempts have been
made to solve the problem of illicit duplication. Technical
methods have included writing the application software so that it
looks for an unusual, and supposedly uncopyable, feature on the
distribution diskette [Voel86], and the attachment of special
hardware devices for each application to be used in the system.

These technical methods have not succeeded because of two
complementary shortcomings. First, they are not an effective

CH2416-6/87/0000/0038501.00 © 1987 IEEE

38

barrier to duplication. Today’s low-end computers are both
logically and physically open systems. In fact, most commercial
computers of any kind are open, at least to those with operator
privileges. The user (or operator) is capable of examining every
memory location, and every processor cycle, of the system.
Once the behavior of the application is understood, it can be
changed to subvert the software protection measures. Similarly,
distribution media are completely open to examination and
modification. Second, existing technical methods have imposed
unacceptable burdens on the legitimate user. Users are often
prevented from making backup copies of their software, and
from installing their software on hard disks or file servers.

The trend in the software market today is to abandon
technical protection methods, and rely solely upon legal
protection. This is difficult at best in the widely distributed and
anonymous marketplace often addressed by low end software.
It is impossible in countries and cultures which have no history
of intellectual property law [Chur86]. So, the need for practical
technical protection measures continues, and grows.

A practical software protection system must overcome both of
the shortcomings outlined above. It must be extremely secure,
and ensure that the effort involved in illicitly duplicating an
application is at least as large as that involved in rewriting it
from scratch. It must also be extremely convenient for the
legitimate user, and flexible enough to support a broad spectrum
of computing environments and software distribution systems.
A variety of authors have explored ideas which go beyond the
more common diskette-based protection schemes, in an attempt
to meet the requirements of increased security and convenience.

Kent [Kent80] discusses a variety of secure system
architectures. He mentions the valuable idea of tamper-resistant
modules, which provide physical security, and uses cryptographic
techniques to protect applications from exposure. He does not
deal with the full spectrum of software distribution methods in
use today, nor with the problem of backing up the applications
onto another system should the first one fail.

Best [Best79]-[Best84b] presents a crypto-microprocessor
approach, in which application software exists in plaintext only
within the instruction decoder of the processor. Best's
architecture requires the use of a cryptosystem which is not as
secure as the modern cryptosystems often used for
communications and transactional security. It limits applications

Petitioner Apple Inc. - Exhibit 1016, p. 1



to execution on a single system, and does not deal with the issue
of backup. It also requires a substantial restructuring of current
computing systems. In some versions of this scheme, a
processor per application is required, which is costly.

Arnold and Winkel [Arno85] deal with cryptographic security
effectively, but require substantial limitations on distribution
methods, the processor, and the execution environment.

Purdy, et al. [Purd82], and Simmons [Simm85], present a
protocol for distributing decryption keys for encrypted
applications.  Their distribution method requires software
distributors to maintain a cryptographic facility, which may be a
burden in current retail store or mail-order distribution. They
also do not deal with the issue of backup.

Everett [Ever85] describes a system similar to the one
presented here. Since it requires a public key scheme for key
distribution, constantly-updated lists of authorized public keys
must be maintained by software vendors. Also, software
vendors must maintain cryptographic facilities. No provision is
made for backup. No scheme is described which would aliow
software, installed on one system, to be transferred to another
system.

Herzberg and Karmi [Herz84], and Herzberg and Pinter
[Herz86], present a protection system similar to the one
presented here, but they also require software distributors to
have a cryptographic facility. They do provide a means of
backing up applications in the event of a failure. Their backup
method relies on communication with the manufacturer when
backed up applications are installed, and on possession of an
unused processor on which to install them. This may be
problematic in many cases.

Goldreich [Gold86] extends Best’s scheme by presenting a
method for obscuring the pattern of memory accesses. This
increases the protection of Best’s scheme, but at the price of
additional performance degradation.

Overview of ABYSS

ABYSS (A Basic Yorktown Security System) is an
architecture for the trusted execution of application software,
and can be used as a uniform security service across the range of
computing systems. This paper is oriented towards a solution to
the problem of software protection, especially in the lower end
of the market. It addresses both security and ease-of-use
concerns. Both current and planned software distribution
methods are supportable. Users may back up applications at any
time, and install them onto any other system in the event of
failure, without the intervention of any other party at that time.
A general discussion of ABYSS and software protection can be
found in [Cina86].

The ABYSS architecture provides the software vendor with
tools to enforce the conditions under which the application may
be used. Software run under ABYSS executes exactly as it was
written, and cannot be modified arbitrarily by the user.

The only information which must be kept secret are certain
encryption and decryption keys. Aside from these, all of the

39

details of both architecture and implementation may be made
public without compromising the integrity of the system.

Unprotected Processes Protected Processes
Unprotested High Protected
Part of Priviiege  [™"]  Partot
Application 1 Supervisor Appltoation 1
[— [*] Process -
ey ‘
Proteoted
Storege
Unprotected Part of
Part of Application
Application N
Authorization
Process
Figure 1. The Architecture of a Protected Pri Sy
Architecture of ABYSS

The architecture of the system presented here is shown in
Figure 1. Applications are partitioned into processes which are
protected, and processes which are not. Protected application
processes are executed within a secure computing environment
called a protected processor. The conditions under which an
application may execute are embodied in a logical object called a
Right-To-Execute.  These conditions are enforced by the
protected processor. The movement of Rights-To-Execute into
and out of protected processors may require authorization from
externally-supplied authorization processes.

Protected Processors

A protected processor constitutes a minimal, but complete,
computing system. It contains a processor, a real-time clock, a
random or pseudo-random number generator, and sufficient
memory to store protected parts of applications while they
execute. It also contains secure memory for storage of
Rights-To-Execute. This storage retains its contents even when
the the system power is off.

The protected processor is a logically, physically, and
procedurally secure unit. It is logically secure, in that an
application cannot directly access the supervisor process, or the
protected part of any other application, to violate their
protection. It is physically secure (which is indicated by the
heavy box in Figure 1), in that it is contained in a
tamper-resistant package [Wein86] [Chau84] [Pric86]. It is
procedurally secure in that the services which move information,
and Rights-To-Execute in particular, into and out of the
protected processor cannot be used to subvert the protection.

It is possible for the protected processor to contain the only
processors and memory of the entire computing system. Such
systems consist of a protected processor, and various peripheral
devices such as secondary storage. Alternatively, the protected
processor may be part of a larger computing system, and interact
with it through the unprotected processes.

Petitioner Apple Inc. - Exhibit 1016, p. 2



In addition to executing protected application processes, the
protected processor executes a supervisor process. The supervisor
process is responsible for ensuring the logical and procedural
security of the protected processor. It manages the system’s
communications resources, to ensure that messages are routed
correctly between the protected and unprotected parts of
applications. It executes at a higher privilege level than the
application processes, and restricts them to isolated protection
domains [Denn83] This isolation of application processes from
each other, and from their unprotected parts, protects an
application process from attacks originating in other application
processes, or in the unprotected parts of the computing system.

The supervisor process contains a cryptographic facility for
managing encryption/decryption keys. This facility decrypts the
protected parts of applications as they are loaded into the
protected processor. We place the cryptographic transformation
between primary memory (such as RAM) and secondary
memory (such as a disk). Best [Best79]-[Best84b] places this
transformation between primary memory and the instruction
decoder of the processor. Placing it closer to the instruction
decoder in the memory hierarchy forces a choice between
significant performance degradation of the application, and the
use of a cryptosystem with significantly less security than, say,
DES.

Placing the transformation between primary and secondary
memory, on the other hand, matches the bandwidth of the
cryptographic facility to the data transfer bandwidth, allows
efficient pipelining of the data to be decrypted, and allows
decrypted instructions to be used numerous times without being
decrypted each time. It also allows the efficient use of message
authentication or manipulation detection codes on parts of the
application.

Software Partitioning

For systems in which applications include unprotected
processes, it is necessary to partition the application into
protected and unprotected parts. The protected part is
encrypted when it is outside the protected processor, and only
decrypted when it is loaded into the protected processor. The
unprotected part is exposed to view.

The protected part executes securely on the protected
processor, in that it cannot be examined or modified by any
party external to the protected processor. It cannot be examined
externally while it is available for execution because of the
logical and physical security of the processor, which inhibit all
external access to the plaintext of the protected part. The
encrypted form of the protected part cannot be modified directly
because of the cryptographic techniques used to detect if it has
been tampered with. It cannot be modified by rewriting it in a
different way, because the partition is chosen so that the
protected part is difficult to reconstruct from knowing only the
unprotected part.

The partition is designed so that both parts of the application
must be present in order to execute the application. Eliminating
accesses to the protected part from the unprotected part results

40

in a nonfunctional application. This intertwining of the
protected and unprotected parts extends the logical protection of
the protected part to the entire application.

Rights-To-Execute

The software is separated from the right to execute it. Only
authorized users of an application have a Right-To-Execute for
that application. Rights-To-Execute are created by software
vendors, and are used by the supervisor to control the entire
range of actions that can be taken with respect to the
application.

A Right-To-Execute consists of:

« An encryption and/or decryption key for software packages.
This is required to decrypt the application before execution.

« Identifying information about the Right-To-Execute. This
can be used to aid the supervisor in searching for the
applicable Right-To-Execute.

« Information about how the Right-To-Execute may be used
by supervisor software. This allows the software vendor to
control what the supervisor may do with the
Right-To-Execute. For instance, the software vendor may
choose not to allow the Right-To-Execute to be transferred
to another protected processor once it is installed.

+ Information about how the supervisor may permit the
Right-To-Execute to be used by software decrypted under
its key. The software vendor may wish to allow the
application to change the information in the
Right-To-Execute, for instance.

+ Information about how the supervisor may permit the
Right-To-Execute to be used by non-supervisor software
which is not decrypted under its key. It may be useful to
allow other applications to report certain information about
the Right-To-Execute. For instance, a utility could
summarize information about all Rights-To-Execute owned
by a user.

» Additional information, at the discretion of software
decrypted under the above key. As will be seen later, the
application may store such things as an expiration date for its
Right-To-Execute, and be assured that the application will
not execute after that date.

Authorization Processes

Various supervisor services must be authorized to proceed.
For instance, the software vendor must authorize the installation
of the Right-To-Execute on a protected processor. Otherwise, it
could be installed on any number of protected processors.
Clearly, authorization processes must be difficult to forge, to
prevent illicit authorizations. Authorization processes may be
carried out in a number of ways. Brief descriptions of two of
these are given here for clarity in subsequent sections.

Petitioner Apple Inc. - Exhibit 1016, p. 3



Smart Cards: Smart cards are cards the size of a credit card,
which contain a microprocessor and memory. They can be
constructed to perform a subset of the actions of a protected
processor which deal with movement and storage of
Rights-To-Execute, but not with application execution. By
eliminating the memory in which applications reside during
execution, and the real-time clock, current smart cards can
contain sufficient cryptographic and storage facilities to
authorize supervisor services cryptographically, and to store a
limited number of Rights-To-Execute. They can then be used as
temporary repositories of Rights-To-Execute being transferred
between protected processors, and for a number of other useful
services.

Token Cards: Token cards have the same physical appearance
as smart cards, but contain a less expensive chip called a token.
The token is useful as a one-time-only authorization of
supervisor services.

Both smart cards and tokens must be physically secure, to
prevent information contained in them from being revealed.
Techniques for chip-level security applicable to smart cards and
tokens are discussed in [Pric86].

Tokens: Use-Once, Forgery-Resistant
Authorizations

We introduce a new authorization mechanism, called a token
process. The token process is capable of participating in a
query-response sequence with a cryptosystem exactly once.
Even if the query and response are carried out over insecure
channels, the response can still be obtained in such a way that it
is extremely improbable that an eavesdropper can forge the
behavior of a token process in a subsequent query-response
sequence. The token process can be carried out by any simple
computing system. It can also be carried out by a small piece of
hardware, called a foken, which is significantly less expensive
than hardware capable of cryptographic services such as DES.

How Tokens Operate

Tokens fulfill the following criteria.

« The queries, which are generated randomly by protected
processors, are sufficiently numerous that it is extremely
improbable that two queries will be the same. Since
different queries generate different responses, the response
from one query cannot be used as the response to a different

query.

» The responses are sufficiently numerous that it is extremely
improbable that a random guess at a response will be correct.

« The responses are sufficiently independent of each other,
that knowing the response to one query is not significantly
helpful in predicting the response to another query.

+ The query-response behavior of the token is completely
determined by data contained in the token. An encrypted
form of these data is delivered to the querying protected
processor. This can be done in conjunction with the

41

Initial State
Query VDD
Response « @
1170 - - - 119
After Reading One Bit
Query ubbD
2 34 .- n
11l - M]gk-g
110131 --- [1]8@
Figure 2. How Tokens Work

query-response sequence, or independent of it. Once the
protected processor receives the token data and decrypts it,
it can predict the correct response to any query.

« The token data is erased from the token as it is read. This
means that a token can only respond to a single query.

Figure 2 shows a simple conceptual realization of tokens.
(This is intended to be representational. Real implementations
require a small amount of additional support circuitry.) It
consists of two shift registers connected to a multiplexor. The
registers are shifted left simultaneously in response to a signal on
the multiplexor’s query line. Each time they are shifted, one bit
from either the up or the down register appears on the output
line, depending upon the value of the query bit. At the same
time, nulls are shifted into both registers from the right. This
cycle is repeated until the token is completely discharged.

The token is loaded by the software vendor by loading
random binary strings into both the up and the down registers.
These constitute the token data 7,, and should be effectively
unique for each token j. (If an attacker possesses two tokens
known to have identical token data, the entire token data can be
revealed by querying only the up register of one token, and only
the down register of the other.) The software vendor encrypts
this data under a key 4, called the application key, chosen by the
software vendor for a particular application, to form E(T)."
The plaintext token data is protected by making the token
physically secure against tampering.

The token can then act as a one-time-only authorization from
the software vendor, to a protected processor which possesses
the application key 4. (The means by which the protected
processor obtains the application key are discussed later.) To do
this, the protected processor reads in and decrypts E(T) to
obtain the token data 7, . It then generates a random query Q,
which consists of a string of bits as long as either of the token’s
registers. The query is presented to the token to obtain the

Petitioner Apple Inc. - Exhibit 1016, p. 4



token’s response R. By construction, all of the token data are
jost when it is read, even though only half of the data are
revealed by the response.

The protected processor can use its knowledge of the
complete token data T, to simulate the token, and predict the
correct response R’ to the query Q. By comparing R to R’, it
can determine whether or not the token is a valid authorization,
prepared by a party which knows 4. Since all of the token data
is discharged when it is read, this can only be done once.

Tokens thus serve as counting devices for the software
vendor. A vendor who distributes N tokens is guaranteed that
there are only N authorizations in the hands of users.

In their ability to prove that they contain certain secret
information without revealing a significant fraction of it, tokens
resemble the interactive zero-knowledge proofs of [Gold85].
Tokens are much simpler, though, since they only need to
respond to a single query about their information.

Forging a Token

Suppose that an attacker has observed the query and response
sequence for a token. What is the probability that, armed with
this information, the attacker can respond as that token would
have to another query by a protected processor? If successful,
this would constitute a successful forgery of a token process, and
could produce an illicit authorization.

The query to which the attacker must respond is generated
randomly, so it will not have a statistically significant correlation
to the observed query. The probability of responding correctly
to each bit in the query is the probability that that bit in the
query is the same as the one previously observed (in which case
the attacker knows the correct response), plus the probability
that it is different, times the probability of guessing correctly.
For a token with » uncorrelated bits in each shift register,

Prorgery = [psame query + (1 = Psame query) Peorrect guess] g (1)

1f there are no statistically significant correlations present,
=h
)/

Peorrect guess =

pforgery = (%)n

Psame query

2

s0,

A token with shift registers of length n = 128 can be
implemented on a very small chip, and gives
Dorgary < 1.02 x 10716,

Since it is a protected processor which generates the query to
a token, the protected processor can limit the frequency of
queries by controlling the amount of time it takes to generate a
query. This inhibits a high-speed “guessing” attack on tokens.
The average number of guesses required to come up with a
single correct response to a query for a given token is

42

1
log,(1 ~ Pforgepy)

3)

If the time to generate a query is required to be one second, the
average time required to forge a response for an n = 128 bit
token successfully is #,,,.,. > 108 years. Token forgery is covered
in more detail in [Stro86].

Secure Sessions Between Protected Processors

Tokens are useful authorization mechanisms when it is
impossible or inconvenient to establish a direct communication
channel between two protected processors. Where it is possible
to establish a such a channel, protected processors possessing an
encryption/decryption key in common can set up a
cryptographically secure channel between them, mediated by a
session key. There are a number of standard ways to do this.

A User’s View of the System

The services by which Rights-To-Execute are created, moved,
used in executing software, and backed up, are described in
detail in the next section. In this section, we illustrate the
simplicity of the system to those who use it, by showing a user’s
view of the system.

For concreteness, we take the case in which applications are
purchased through a retail store, as quite a bit of low-end
software is today. The applications are intended to be used on a
workstation which has an ABYSS architecture, and a
hypothetical user interface.

Software Purchase

Retail purchase can be virtually identical to today’s practices.
The user takes a WonderCalc package off of the shelf, pays for
it, and takes it home. No part of the application package need
be personalized to the user’s system, and the user may remain
anonymous. Any application package in the store may be
installed on any system, with no prior knowledge of the identity
of the system necessary.

Software Installation

The application paci(age contains documentation (hopefully?),
a floppy diskette, and a token card. The user inserts the diskette
into a drive and the token card into a slot used for just that
purpose, and types:

install wondercalc

The token card authorizes the installation of the right to
execute WonderCalc in the user’s protected processor. The
token is discharged, but the diskette is unchanged. The
WonderCalc software may be copied, put onto a hard disk, etc.

Petitioner Apple Inc. - Exhibit 1016, p. 5



Executing Protected Software

From the user’s point of view, there is no change in the way in
which the application is executed. The user simply types:

wondercalc

and the application executes as usual.

Backup

The user may create a backup copy of all installed
Rights-To-Execute at any time. A smart card is inserted into the
slot on the user’s system (this is necessary for backup validation,
which will be discussed later), and the user types:

backup

An  encrypted file containing the backed-up
Rights-To-Execute is written out, to the user’s hard disk, for
instance, or to a floppy diskette.

If the user’s protected processor fails, the backed-up
Rights-To-Execute may be installed on another protected
processor. This replacement processor may reside in another
workstation, or it may simply be a module which is replaced in
the user’s original workstation. In either case, the installation is
accomplished by inserting the smart card into the replacement
system’s slot, inserting a diskette containing the encrypted file of
Rights-To-Execute, and typing:

backup -install

The Rights-To-Execute are installed on the replacement
processor, and the diskette is modified with a message to the
hardware manufacturer. The user sends the failed processor,
and the diskette, to the hardware manufacturer. The user can
use all of the installed Rights-To-Execute as usual.

After a while, the manufacturer sends a diskette to the user,
which authorizes the permanent retention of the installed
Rights-To-Execute. The user inserts the diskette into the
replacement system, and types:

backup -retain

Transfer

Once installed, Rights-To-Execute are not limited to residing
in one system forever. They may be transferred at will by the
user, if this is permitted by the software vendor. Suppose that
the two protected processors can establish a two-way
communication, over a local area network for instance, and that
Alice is transferring a Right-To-Execute to Bob. Alice inserts
her smart card into her system’s slot (this is necessary for
backup validation, which will be discussed later), and types:

transfer -bob wondercalc

The Right-To-Execute is installed in Bob’s system, and
removed from Alice’s.

43

Supervisor Services

This section describes the supervisor services which were
introduced in the previous section. Each of these services can
employ either a symmetric cryptosystem or a public key
cryptosystem. In this discussion, they are oriented towards a
symmetric cryptosystem such as DES, since it is the best match
to both the cost and performance requirements of today’s
lower-end computers.

Each service could use tokens, or communication between
protected processors, as authorization mechanisms. Only one of
these authorization mschanisms is illustrated in each case for
simplicity. We choose the authorization mechanism that is most
convenient for illusirating each service. The services are
simplified for clarity. An actual implementation would include
communication handshaking, verification of the completion of
each step of the service, and error recovery.

In order to guarantee the procedural security of the system,
each service must ensure four things. It must ensure that no
cryptographic keys are exposed in plaintext, that protected
software is not exposed in plaintext, that protected software only
executes under the terms and conditions chosen by the software
vendor, and that the protected software has not been modified.

Creating Protected Software

The ABYSS architecture supports the execution of
applications which are not protected, so it can allow existing
applications to be migrated to systems with protected processors
with no change. To protect an application, the software vendor
must create a part of the application to be executed securely,
encrypt it, create a corresponding Right-To-Execute, and create
an authorization process for installing that Right-To-Execute.
The same ABYSS processors which execute protected
applications can be used to perform the critical steps in this
process, so no special development systems are needed.

Writing Partitioned Applications

The application must be written so thai at least part of it
resides in the protected processor during execution. Depending
upon implementation details, this may be the entire application,
or it may be a small fraction of it. The section Secure Software
Partitioning  discusses the problem of partitioning an
application into protected and unprotected parts.

Encrypting the Protected Part of the Application

Once the part P of the application to be protected is complete,
it is encrypted under an application key A4, chosen by the
software vendor, to form E,(P). The application key may be
unique to each application, or even to each copy of each
application. This key need not be revealed to anyone else, and
the encryption can be done outside of the protected processor, if
desired, by the software vendor.

Two goals must be met by this encryption. First, it must
avoid the exposure of the plaintext application. Second, it must

Petitioner Apple Inc. - Exhibit 1016, p. 6



prevent the protected part of the application from being
modified, even randomly, and executed. This is in support of the
requirement that the protected processor execute applications
exactly as they were written. If the application could be
modified in 2 known way, it could be instructed to reveal its
entire plaintext content. Even if the application could be
modified randomly, it is still possible that the random
modifications, executing in the protected processor, will cause
the revelation of important information about the protected part.
The second goal can be met by using message authentication or
manipulation detection codes [Juen83] when encrypting the
protected part of the application, and having the protected
processor use them to authenticate the application before it is
executed.

Creating a Right-To-Execute

A vplaintext file RTE,, containing all of the necessary
information for the Right-To-Execute for the application, can be
created by the software vendor. It contains the application key
A4, and associated information about how it can be used.

This file is encrypted under a supervisor key S, which is
possessed by the protected processor on which the application
will be installed, to create E(RTE,). This.encryption can be
done by a protected processor, as a service to the software
vendor. It can be done without revealing the supervisor key S,
since the encryption can be done securely inside the protected
processor. For simplicity at this point, consider the supervisor
key S to be common to all protected processors made by a given
manufacturer. Alternatives will be discussed later.

Creating an Authorization Process

The software vendor must now create an authorization
process, which will allow the wuser to install the
Right-To-Execute once, but only once. There are many possible
authorization processes, including ones in which the user’s
protected processor must communicate with a processor capable
of cryptographic transactions, in order to receive proper
authorization. In this section, we will assume that tokens are
used as the authorization mechanism.

To prepare tokens as authorizations, the software vendor
must generate random token data 7, , which is essentially unique
for each token j. The token data are encrypted under the
application key to form the encrypted token data E(T)).

Shipping the Protected Software

The above components can now be distributed. The
unprotected part of the software U, the protected part E,(P), the
Right-To-Execute EJ(RTE,), and the encrypted token data
E,(T) can be distributed by any means. The token data T,,
which is plaintext, must be kept physically secure, for example in
a token.

A typical means of distributing these components would be to
package U, E,(P), and E((RTE,) on a floppy diskette. This
diskette could be bulk-reproduced, since every such diskette can
be identical. Tokens can be designed so that 7, and E,(T)) can

be placed inside of a token. The diskette and token can be
packaged together or separately, and shipped to retailers.

Installing a Right-To-Execute

There are several methods by which a user may install
Rights-To-Execute on a protected processor. The point of each
of these methods is to install the Right-To-Execute for a
particular application into the secure, persistent memory of the
protected processor, if and only if a valid authorization exists to
do so. The use of protected processors in preparing and
installing Rights-To-Execute creates a trusted path for
distributing Rights-To-Execute. Distribution methods based on
communication between two protected processors will be
described later. A token-based method proceeds as follows.

1. The user makes the token and distribution diskette
available to the protected processor.

2. The encrypted Right-To-Execute Ey(RTE,) is read into
the protected processor, and decrypted under the
supervisor key S. This gives the protected processor
access to the application key 4.

3. The protected processor must now obtain authorization to
install RTE, as follows.

a. Read the encrypted token data E,(T,) from the token
and decrypt it under 4 to obtain T,. The fact that T,
and the protected part of the application P are both
encrypted under the application key A4 assures the
protected processor that they were created by the
same party.

b. Generate a random query @, send it to the token, and
obtain a response R from the token.

¢. The protected processor can now use its knowledge of
what the complete token data T, is supposed to be, and
of its query Q, to simulate the token and calculate the
response R’ expected from a valid token.

d. R'is what the token’s response to Q should be. If it is
different, either the token was invalid, or an attempt
was made by an attacker to forge the token’s
respon,se. There is a valid authorization if and only if
R=R.

4. If the authorization was valid, the protected processor
installs the Right-To-Execute RTE, into its secure,
persistent memory. If not, RTE, is purged from the
protected processor’s working memory and is not
installed.

Loading and Executing Protected Software

Once a Right-To-Execute is installed on a protected
processor, it may be used at any time to enable the execution
of applications associated with it. This is done as follows.

1. The protected processor obtains reference information,
which allows it to locate the Right-To-Execute to be used.

Petitioner Apple Inc. - Exhibit 1016, p. 7



2. Once found, the protected processor checks that this
Right-To-Execute may be used to execute application
programs. Assuming that it is, selected parts of the
Right-To-Execute may be made available for reading, and
modification, by the application to be loaded.

3. U is loaded into the unprotected memory area, and E,(P)
is loaded into the protected memory area and decrypted.
If the decryption of E,(P) yields a valid message
authentication or manipulation detection code, execution
of U and P is begun. If not, P is purged from protected
memory.

4. At any time during execution, including at the very start,
the protected part of the application may be allowed to
access (and perhaps modify) selected parts of its own
Right-To-Execute. It may use this in conjunction with the
real-time clock in the protected processor, for instance, to
verify that it is not being executed after its expiration
date. Should the protected part of the application find
that it is being executed contrary to the terms and
conditions specified in its Right-To-Execute, it may
effectively terminate its own execution.

Backing Up Rights-To-Execute

If a protected processor fails, the Rights-To-Execute which
it contains can become inaccessible. Since they are necessary
in order to execute the protected applications to which they
belong, the protected applications could become inoperable
unless there is some way to back up Rights-To-Execute.

In this section, we describe a method for doing backup
which allows the user to install Rights-To-Execute on another
processor at any time, without the intervention of the
software vendors or the manufacturer of protected processors.
A user whose protected processor fails can be up and running
on another system immediately. Furthermore, this second
protected processor need not be a previously unused one.
Another user’s protected processor can accept the backed-up
Rights-To-Execute, without  interfering  with  any
Rights-To-Execute currently installed on it. This backup
method nonetheless preserves the integrity of the system, and
cannot be used to create extra copies of Rights-To-Execute.

It proceeds in three steps. In the first, a backup set of the
Rights-To-Execute in a processor is created. This is similar to
creating a backup of a hard disk. If the processor fails, the
second step is to install the backup set on a second protected
processor. The second protected processor can then execute
all of the applications that the first one could, in addition to
whatever applications it could already execute. The
newly-installed Rights-To-Execute have an inactivation date
associated with them. They will become temporarily inactive
after that date unless a message is received from the hardware
manufacturer, authorizing the removal of the inactivation
date. The inactivation date may be removed either before or
after they have become inactive. After the inactivation date is
removed, the Rights-To-Execute behave just as they had in
the original processor.

45

Creating a Backup

There are many ways to perform the backup service. A
convenient way is for the user to have a smart card, which is
associated with the protected processor to be backed up, and
this is the way we will use to illustrate the process. This is not
critical, as any other protected processor could be used
instead. A single smart card is used here for concreteness. By
employing secret-sharing methods [Sham79], multiple smart
cards could also be used, to further decrease the effect of a
single failure.

The smart card, and its associated processor, each have a
supervisor key S, within them, which is unique to the two of
them. That is, the smart card and associated protected
processor both posses S, but no other smart card or protected
processor possesses it. This key can be used to identify them
to each other, and to establish a secure session between them
with the protocol described in a previous section. Given this
supervisor key, a backup set is created as follows.

1. The protected processor and smart card use the unique
supervisor key S, to establish a secure session between
each other, which is mediated by a session key B.

2. The collection C = {RTE,,, RTE,,,...,RTE,,} of
Rights-To-Execute to be backed up is encrypted under B
to form E,(C).

3. E,(C) is written to an external storage medium. If there is
sufficient storage on the smart card, it may be kept there.
It could also be kept on a diskette. This file may be
copied as many times as is desired.

4. The smart card stores the key B, and identifies it as the
current backup key.

Installing a Backup

Each smart card also contains a supervisor key S, which is
common to all protected processors made by a given
manufacturer. If the protected processor fails, this key may
be used to establish a secure session between the smart card
and any other protected processor.

Protected processors also contain common supervisor keys
S, and S,’, which are used only for communicating with the
hardware manufacturer. S, is used only for sending
information to the manufacturer, and S,  is used only for
receiving information from the manufacturer.

Installation of the backup is done as follows.

1. The smart card and the second protected processor use
the common supervisor key S, to establish a secure session

between each other, mediated by a session key B.

2. The backup key B, and the unique supervisor key S,, are

encrypted under B, transmitted to the second protected
processor, and decrypted. Remember that .S, is the unique
supervisor key of the first (failed) processor.

Petitioner Apple Inc. - Exhibit 1016, p. 8



3. The backup key B, and the unique supervisor key S,, are
erased from the smart card. This prevents the smart card
from installing the backup set in another protected
processor. This also prevents any subsequent backup set
from the first processor from being installed.

4. The collection of backed up Rights-To-Execute Ey(C) is
read into the second protected processor, decrypted, and
installed.

5. The Rights-To-Execute in this collection are made
conditional on the existence of a Right-To-Execute
associated with S,, and RTE; is given an inactivation
date.

6. The second protected processor prepares a message for
the hardware manufacturer, Eg (S,), and writes it to an
external medium. The user sends this medium, along with
the first (failed) processor, back to the hardware
manufacturer.

Retaining Backed-Up Rights-To-Execute

The Rights-To-Execute in the second processor will
continue to operate as usual. If no authorizing message were
received prior to the inactivation date, the Rights-To-Execute
which were part of the backup process would become
inactive, but would not be erased. They could not be used,
but would remain in the protected processor, awaiting receipt
of the message from the hardware manufacturer.

The hardware manufacturer, upon receiving the first
(failed) processor and Eg (S,), decrypts the message, and
verifies that the serial number of the failed processor
corresponds to the one associated with the unique supervisor
key S,. This correspondence is checked to ensure that the
correct processor has been returned. If a different processor
were returned, and the authorization were given to remove the
inactivation date from the second processor anyway, the
installed Rights-To-Execute would have been permanently
duplicated.

Assuming that the correspondence is verified, the
inactivation date is removed as follows.

1. The hardware manufacturer encrypts a message Esmr(S,,),
authorizing the removal of RTE;, and the elimination of
any dependency of other Rights-To-Execute on RTE;, .
E,/(8,) is sent to the user.

2. The second protected processor reads Eg (S,) and
decrypts it. Since it was encrypted under S,’, it is
guaranteed to have originated from the hardware
manufacturer. The protected processor then erases
RTE;, and eliminates all dependencies on it. The
installed Rights-To-Execute may now be used just as they
were on the original processor.

46

Transferring Rights-To-Execute

A Right-To-Execute need not be permanently associated
with the protected processor on which it was first installed.
Conceptually, it is straightforward to transfer a
Right-To-Execute From Alice’s protected processor to Bob’s
by establishing a secure session, transmitting the
Right-To-Execute from the Alice’s processor to Bob’s,
installing the Right-To-Execute on Alice’s processor, and
erasing it from Bob’s.

A Necessary Connection Between Transfer and Backup

There is a hole in the transfer method outlined above,
which permits Rights-To-Execute to be duplicated. This same
hole exists in any system which supports both transfer and
backup.

Rights-To-Execute could be duplicated as follows.

1. A backup of C = {RTE,,, RTE,,, ..
from Alice’s protected processor.

., RTE,,} is made

2. The Rights-To-Execute in C are transferred to Bob’s
processor.  Naturally, they are erased from Alice’s
processor in the process.

3. The backed-up Rights-To-Execute are installed in Carol’s
processor. This is unaffected by the fact that Alice’s
processor (the one backed up) no longer contains these
Rights-To-Execute, as a result of transferring them to
Bob.

4. Alice’s processor is broken, and returned to the

manufacturer as failed.

5. The manufacturer verifies the failure, and permits C to be
permanently installed in Carol’s processor.

At this point, both Bob’s and Carol’s processors have C
installed permanently, and the Rights-To-Execute have been
successfully duplicated. While Alice’s processor must be
sacrificed in the process, this may be a small price to pay if
the collection of Rights-To-Execute was very valuable.

Transfer With Backu

This hole is plugged by coupling the services of transfer and
backup. Each time a transfer is made, all previous backup
sets must be invalidated, and a new one created. A revised
transfer service, which transfers RTE,, from Alice’s processor
to Bob’s, is as follows.

1. Alice’s protected processor and its associated smart card
use their unique supervisor key S, to establish a secure
session with each other, mediated by the session key B'.

2. C'={RTE,,, ..., RTE,, ,,RTE,,,,, ..., RTE, } the
revised backup set, is encrypted under B, and stored as
described previously, and the associated backup key B’
replaces the previous backup key B on Alice’s smart card.
Alice’s smart card is now capable of installing only C’,

Petitioner Apple Inc. - Exhibit 1016, p. 9



the most recent backup set. It is not capable of installing
C, or any other previous backup set.

3. Alice’s and Bob’s protected processors use a common
supervisor key S, to establish a secure session with each
other, mediated by the session key 7.

4. RTE,, is encrypted under T by Alice’s processor,
transmitted to Bob’s, and erased from Alice’s.

5. Bob’s processor decrypts RTE,, and installs it.

The method of changing the encryption key for data sets, to
ensure that they are up to date, is described in a somewhat
different context in [Kent80]. In general, this method permits
information, such as Rights-To-Execute to be encrypted,
stored on secondary media, and still be guaranteed to be up to
date.

Secure Software Partitioning

Software partitioning is necessary if part of the application
must execute from unprotected memory. Only that fraction
of an application which executes from protected memory is
hidden from view. Cost constraints may require that the
protected processor be limited in available processing power
and memory. Software partitioning is a means of creating a
dependence of the untrusted part of the system on the trusted
part. This can extend the protection of the trusted part to the
entire application.

It is difficult to construct a partitioning method that is both
demonstrably secure, and convenient enough to use in
practical application development efforts. In this section, we
outline some ideas that may lead to a better understanding of
this problem.

If it were possible to reconstruct the full application
without seeing the protected part, the protection of the
application would be compromised. The goal of secure
software partitioning is to make this reconstruction
prohibitively complex. For software protection, it is sufficient
if reconstructing the software is more difficult that rewriting it
from scratch. We define two kinds of complexity in
partitioned software: semantic complexity and combinatorial
complexity.

Semantic Complexity

Semantic complexity reflects the difficulty of reconstructing
the protected part by examining the environment of its
interaction with the unprotected part. At one end of a
spectrum of partitioning methods, selected obscure parts of
the application are protected. For instance, an application
may contain a proprietary algorithm, all of which could be
protected. If that part of the program was difficult to write
initially, it is likely to be difficult for an attacker to
reconstruct it. At the other end of this spectrum, random

47

parts of the application could execute in the protected
processor. For instance, every tenth line of a program could
be executed by the protected processor. This is semantically
complex to the extent that it is difficult to understand a
program that has a large number of lines missing.

Combinatorial Complexity

Combinatorial complexity reflects the difficulty of
exhaustively characterizing the behavior of the protected part
by watching what it does. Consider an application in which
there are n access points in the unprotected part, at which
accesses are made to the protected part. At each access point,
a k bit argument is passed to the protected part, and the
protected part performs some calculation.

If this results in £(2%) independent states of the system,”
essentially all possible values of the argument must be tried by
an attacker to completely characterize the effects of that
calculation. This is the case, for instance, in a 1-1 function of
the argument, whose value is returned by the calculation.
This is already daunting if the resulting values are returned to
the unprotected part immediately, since it requires the
attacker to write a program which executes the protected part
Q2(2%) times to characterize each access point. The
characterization can be made even more difficult if some or all
of the resuits are stored in the protected part instead.

If no state is stored in the protected part, each access made
to it by the unprotected part is independent of every other
access. In this case, the combinatorial complexity, as
measured by the number of times the attacker must execute
the protected part, is @(n) in n.

If state can be stored, each access point can write its
argument into some location in protected storage, and return a
value read from another location. If the identity of these
locations are obscured in the unprotected part, by hashing for
instance, it is straightforward to show that Q(n?) executions of
the protected part are required for characterization. Ideally, a
partitioning method should have a combinatorial complexity
which is £(27), as well as 2{2%).

Partitions can be created which are complex in both senses.
Portions of the application which are semantically complex
can be executed by the protected processor as independent
routines. If each of these routines performs at least one of a
set of functions which can be shown to be combinatorially
complex, and if these functions are semantically unrelated to
the semantically complex part of the routines, then the
routines embody both kinds of complexity.

Attacks on the System

Attempts at forging a token process were discussed earlier.
In this section, we discuss a number of other possible attacks
on the system, and their consequences.

Petitioner Apple Inc. - Exhibit 1016, p. 10



Plaintext Software: The Asset Being Protected

Software protection is an unusual application of
cryptography. Often, messages being encrypted have value
for only a small amount of time. The contents of a telephone
call made a year ago may have little value, for instance.
Furthermore, many cryptographic systems can be constructed
so that compromise of a single key, or the compromise of a
single cryptographic facility, are of limited value.

These things are not true of practical software protection
systems. The asset being protected is the plaintext application
itself. If an attacker can obtain the plaintext application, the
attacker is in the same position as the original software
vendor. The application can be copied, altered, and
redistributed at will. It may even be reprotected with the
protection system before distribution.

Once an attacker obtains the plaintext application, the
application’s protection is reduced to what exists on
unprotected systems today. The application can be made
obscure, made to check for odd features on a diskette, and so
on, but these offer poor technical protection. Copyright laws,
where they exist, provide some degree of legal protection. It
may be possible to enhance the legal protection against
redistribution of a modified version of the application through
the use of fingerprinting techniques [Blak85].

The essential point, which is so often overlooked in
software protection discussions, is that, once an attacker
obtains the plaintext of the application, the technical
protection of that application has been rendered useless.

Cryptanalytic Attacks

The cryptographic techniques used in ABYSS are entirely
conventional. Cryptanalytic attacks on keys, or on the
plaintext application itself, may be inhibited in standard ways.
The cryptographic protection of keys and applications is at
least as strong as the protection of the cryptosystem against a
non-chosen plaintext attack. Modern cryptosystems, such as
DES, are sufficiently resistant to these attacks.

A cryptanalytic attack on an application key could be
attempted, using the response from a token query and the
encrypted token data. This attack is more difficult than a
non-chosen plaintext attack, since not all of the corresponding
plaintext is available in the token response.

Physical Attacks

A physical attack on the protected processor itself, if
successful, could reveal both supervisor and application keys.
But, just as important, it could reveal the plaintext for any
application that can be executed on the compromised
processor. If the processor is compromised, the attacker can
simply purchase every application which is to be
compromised. They can each be installed, loaded onto the
compromised processor, and their plaintext can be read out in
turn.

48

Physically compromising any processor compromises all
software that can be executed on that processor. Since it is
necessary for virtually every application to be installable on
every processor, the physical security of the protected
processor is extremely important. [Wein86] describes a
low-cost tamper-resistant package which is useful for
protecting information in multi-chip systems. The physical
security of smart cards and tokens is also critical, though
losses due to a compromised token can be limited to the
ability to install a single application. Chip-level security,
which is applicable to smart cards and tokens, is discussed in
[Pric86].

On Trusting the Hardware Manufacturer

All software protection methods place a great deal of trust
in the party that manufactures the protection method.
Cryptographic keys must be kept secret, for instance, and
must not be used illicitly to reveal information which is
encrypted with them.

In [Herz86], the authors maintain that public key
cryptosystems are superior to symmetric cryptosystems for
software protection, since public key cryptosystems can
prevent the hardware manufacturer from knowing the private
keys of each protected system. While this is true, it is of
limited utility if the hardware manufacturer is dishonest.

The hardware manufacturer could build a “protected”
system which is identical to those distributed commercially,
but which is not physically secure. Applications could be
purchased for that processor as usual, and their plaintext
exposed.  Although the hardware manufacturer cannot
compromise another user’s processor per se, the applications
themselves can be compromised. If the hardware
manufacturer cannot be trusted, significant assets are at risk,
regardless of what cryptosystem is used.

ABYSS allows each software vendor to distribute only to
protected processors made by manufacturers that they trust.
This is done by creating Rights-To-Execute which can be
loaded only onto processors which have the trusted
manufacturer’s supervisor key.

Distribution Alternatives

Supervisor keys may be unique to a given protected
processor, common to all processors made by a given
manufacturer, or anything in between. The two extremes,
unique keys and common keys, are discussed below.

Most low-end software distributed today can be run on any
system. It is not necessary to know on which system it will be
run at the time of purchase, nor to register the system with
some central authority before it can beé run. We call this
untargeted distribution, since it is to any member of the entire
set of protected processors produced by that manufacturer.

These characteristics can be preserved if common
supervisor keys are built into protected processors. The
software vendor’s protected processor encrypts the

Petitioner Apple Inc. - Exhibit 1016, p. 11



application’s Right-To-Execute under a common supervisor
key. The Right-To-Execute is then distributed to retail stores.
Any user can buy the package, and install it on any system,
since any system can decrypt the Right-To-Execute. The
software vendor need not be involved in the installation.

Common supervisor keys also allow secure two-way
communication between any two protected processors. This
is advantageous for transferring and backing up
Rights-To-Execute.

Some software packages, particularly expensive software
systems, are distributed to only a select group of users. Often,
the software vendor wants to have a close contractual
relationship with the users, or wishes to maintain a detailed
list of users for maintenance purposes. We call this targeted
distribution, since it is to a select group of systems, known in
advance by the software vendor.

Targeted distribution can be achieved with unique
supervisor keys. The software vendor uses the unique
supervisor key of the target system to encrypt the
Right-To-Execute destined for that system. This ensures that
no other system will be able to install the Right-To-Execute.
The software vendor can obtain the user’s unique supervisor
key, without it being revealed. This can be done by having
the user’s protected processor encrypt the unique key S, under
a common supervisor key S, to form Eg(S,). E(S,) is then
sent to the software vendor’s protected processor and
decrypted.

Unique supervisor keys allow unique identification of any
protected processor. This is useful for such things as coupling
a smart card to a particular protected processor in the backup
service.

New Capabilities

ABYSS opens up a wide variety of new capabilities in
computing systems, which were either too expensive, or too
inconvenient previously. Two important capabilities are the
technical enforcement of the terms and conditions of software
sales, and the protection of software distribution channels.

Technical Enforcement of Terms and Conditions

A software vendor can specify the conditions under which
the Right-To-Execute can be used for an application, or even
for a particular copy of an application. This enables each
software vendor to enforce a very wide range of conditions on
the use of software, and to do so technically. In many cases,
only legal enforcement was available previously.

The ability of supervisor services to use the
Right-To-Execute can be limited. For instance, the software
vendor may choose not to allow a Right-To-Execute to be
transferred to another system, once it is installed. This
provides technical enforcement of the condition that
execution only occur on a given system.

49

The software vendor can specify terms and conditions
under which the application will execute, and allow the
application itself to enforce them. In general, any terms and
conditions that can be embodied in data in the protected
processor, as a part of the Right-To-Execute, can be
enforced. The application has access to these data, and may
test the specified conditions against such system facilities as
the real-time clock in order to determine if it is being properly
used. If it is not, the application simply refuses to execute.

By storing an expiration time and date, or a maximum
number of allowed uses of the application, it is possible to
enforce the concept of limited lifetime software.

Rental software currently poses a significant problem to
software  vendors. If the rented application’s
Right-To-Execute contains a terminal date, and if the
application checks this against the real-time clock whenever it
is run, the rental agreement is enforced. After the end of the
rental period, both the renting company and the software
vendor are assured that the renter can no longer use the
application.

In an environment where a large number of workstations
are connected to a network, such as a local area network with
a file server, significant economies can be achieved for widely
used applications. A single copy of an application can be kept
on a file server. The protected processor associated with this
server can store a Right-To-Execute which enables up to
some fixed number of copies to execute, for instance. When a
user requests the application, a single Right-To-Execute is
also transferred to the workstation, and the server’s count is
decremented. The transferred Right-To-Execute may require
renewal every minute or so to continue to be valid. The
workstation can request renewal of the Right-To-Execute
from the server at any time, and thus continue to possess a
valid Right-To-Execute as long as is necessary. If the
workstation does not check back with the server, the server
knows that the workstation’s Right-To-Execute has expired,
so the server can increment its count of Rights-To-Execute
for that application. This software lending library is much like
a lending library for books, in which the books automatically
reappear in the library when they are due.

Currently, retajl stores seldom allow a user to return
purchased software, even if the software turns out to be unfit
for the user’s purpose. In part, this is because the store has no
way of verifying that the user has not made an illicit copy of
the software, thus depriving the store of revenue. Since a
Right-To-Execute can be securely transferred back to the
store, ABYSS systems permit such verification, and enable
returnable software.

As an extension of this, application packages may be
prepared for demonstration purposes, and be sold for a price
lower than the normal application. A user can try the full
application, not some subset of it, in the particular computing
environment, and with the particular data, on which the
application is to be used. If the demonstration package is
guaranteed to expire after a fixed time, or after some number
of uses, the software vendor can use demonstration software
as a marketing aid, without losing sales of the application.

Petitioner Apple Inc. - Exhibit 1016, p. 12



Protection of Distribution Channels

Separating the software from its Right-To-Execute permits
a large variety of distribution channels to be used for either.
Many electronic distribution methods are not employed today
because of the difficulty of preventing illicit interception of
the applications. ABYSS can protect all of these distribution
channels.

In environments in which there can be secure two-way
communication between the software vendor and the user,
Rights-To-Execute may be distributed on demand to
individual workstations. Both software, and
Rights-To-Execute can then be distributed on local or wide
area networks, or by download from host systems to
workstations.

Optical disks and compact disks have been suggested as
possible distribution media for software. Ironically, one of
their disadvantages is that they are capable of storing so many
applications on a single disk, that it is difficult to market the
entire set of applications together. With ABYSS, it is possible
to sell a disk containing hundreds of protected applications at
a very low price, and sell individual Rights-To-Execute
separately.  Similarly, it is possible to transmit a large
collection of applications on FM radio bands, or on a cable
television network, and sell their Rights-To-Execute
separately.  This enables very inexpensive distribution
channels for software applications, while retaining their
protection.

Additional Security Applications

An application which executes in a protected processor
does so in exactly the manner specified by the software
vendor. Attackers cannot alter the terms and conditions
under which it executes, or its actions when it is executing. In
security applications, the protected processor serves as a
trustworthy agent of the supplier of computing services, much
as it does for the software vendor. This makes protected
processors an ideal base for many security applications.

Given an appropriate implementation of the protected
processor, security applications such as dial-in host access,
local area network security, and secure access to a file system,
may all be implemented as applications. This can be less
costly than having a special, secure subsystem for each task.
Dial-in access can use standard modems, local area network
security systems can use standard network adapters, and
secure file systems can use standard disk controllers.

By reusing the resources of the protected processor for
each of these tasks, the incremental cost of providing security
for each of them can be reduced dramatically.

*%

50

Conclusion

ABYSS is an architecture that enables the trusted execution
of applications on protected processors, through its use of
logical, physical, and procedural security. Software is
separated from its Right-To-Execute, and strong
cryptographic methods are used to manage both. Secure
cryptographic channels can be used to move both software
and Rights-To-Execute between protected processors.

Tokens are introduced as a new use-once authorization
mechanism, which can be implemented with significantly less
expense than the cryptographic facilities necessary to create
secure channels. They are useful when authorizations are
distributed physically, rather than electronically.

ABYSS does not require changes to current or planned
software distribution methods. It is nearly transparent to the
legitimate user. Software instailation is automated, and there
is no change in how software is executed. Rights-To-Execute
software are not permanently fixed to the systems on which
they are installed; they can be transferred between systems
easily. Files containing the software may be stored on the
user’s hard disk, on network file servers, or on a mainframe,
and may be backed up at will Furthermore,
Rights-To-Execute can themselves be backed up, to preclude
loss in the event of a failure of the protected processor.

At the same time, all current and planned software
distribution system are supported, and protected. Software
authors and vendors may use the system to enforce the terms
and conditions of their software sales technically. This opens
up many new opportunities for marketing software.

Acknowledgements

The authors greatly appreciate the contributions of the
ABYSS group, William C. Arnold, Thomas J. Nolan, Bill
Strohm, and Steve H. Weingart, without whom these ideas
would not have matured into working prototypes, of
Akhileshwari Chandra, who suggested the privilege structure
and helped with early incarnations of this architecture, and of
Francis N. Parr, who helped simplify and refine several key
features of the architecture.

References

The expression E, (M) represents a message M that
has been encrypted under a key K. The cryptographic
system used, and the mode in which it is used, may
depend upon the situation in which they are used.

The expression (x) arises is complexity theory, and
represents a quantity which (asymptotically) is at least
as large as x. [Purd85]

Petitioner Apple Inc. - Exhibit 1016, p. 13



[Arno85] Mark G. Arnold, Mark D. Winkel, "Computer
Systems to  Inhibit Unauthorized Copying,
Unauthorized Usage, and Automated Cracking of
Protected Software," U.S. Patent No. 4,558,176,
issued Dec. 10, 1985

[Best79] Robert M. Best, “Microprocessor for Executing

Enciphered Programs,” U.S Patent No. 4,168,396,

issued Sept. 18, 1979

[Best80] Robert M. Best, “Preventing Software Piracy With

Crypto-Microprocessors,”  Proc. IEEE  Spring

COMPCON 80, Feb. 25-28, 1980, San Francisco,

CA, pp. 466

[Best81] Robert M. Best, “Crypto Microprocessor for

Executing Enciphered Programs,” U.S Patent No.

4,278,837, issued July 14, 1981

[Best84a] Robert M. Best, “Cryptographic Decoder for
Computer Programs,” U.S Patent No. 4,433,207,
issued Feb. 21, 1984

[Best84b] Robert M. Best, “Crypto Microprocessor That
Executes Enciphered Programs,” U.S Patent No.
4,465,901, issued Aug. 14, 1984

[Blak85] G.R. Blakley, C. Meadows, G. B. Purdy,
“Fingerprinting Long Forgiving Messages,” in
Advances in Cryptology: Proc. Crypto 85, Hugh C.
Williams (ed.), pp. 180

[Chau84] David Chaum, “Design Concepts for Tamper
Responding Systems,” in Advances in Cryptology:
Proc. Crypto 83, David Chaum (ed.), Plenum Press
1984, pp. 387

David Churbuck, “U.S. Software Firms Struggling to
Stem Illegal Foreign Sales,” in PC Week, Ziff-Davis
Publishing Co., New York, pp. 213 (Nov. 11, 1986)

[Chur86]

Vincent J. Cina Jr., Steve R. White, Liam Comerford,
"ABYSS: A Basic Yorktown Security System: PC
Software Asset Protection Concepts,”" IBM Research
Report Number RC 12401 (Dec. 18,1986)

[Cina86]

[Denn83] Dorothy Elizabeth Robling Denning, Cryptography
and Data Security, Addison-Wesley Publishing Co.
(1983), pp. 192

[Ever85] David Everett, “Padlock,” Computer Bulletin, Ser. 3,
No. 1, Pt. 1, pp.16 (March 1985)

51

[Gold85]

[Gold86]

[Herz84]

[Herz86]

[Juen83]

[Kent80]

[Pric86]

[Purd82]

[Purd85]

S. Goldwasser, S. Micalii C. Rackoff, “The
Knowledge Complexity of Interactive Proof
Systems,” Proc. 17th ACM Symp. on Theory of
Computing, pp. 291 (1985)

Oded Goldreich, “Towards a Theory of Software
Protection,” Proc. Crypto ‘86, Santa Barbara,
California, pp. 35-1 (1986)

A. Herzberg, G. Karmi, “On Software Protection,”
Proc. Fourth JCIT, pp. 388 (April 1984)

Amir Herzberg, Shlomit S. Pinter, ‘“Public Protection
of Software,” in Advances in Cryptology: Proc. Crypto
85, Hugh C. Williams (ed.), pp. 158 (1986)

R.R. Jeuneman, S.M. Matyas, C.H. Meyers,
“Message  Authentication  with  Manipulation
Detection Codes,” Proc. 1983 Symp. on Security and
Privacy, pp. 33

Stephen Thomas Kent, “Protecting Externally
Supplied Software in Small Computers,” Ph.D. Thesis,
MIT Laboratory for Computer Science (Sept. 1980)

W.L. Price, “Physical Security of Transaction
Devices,” NPL Technical Memo DITC 4/86,
National Physical Laboratory (Jan. 1986)

George B. Purdy, Gustavus J. Simmons, James A.
Studier, “A Software Protection Scheme,” Proc. 1982
Symp. on Security and Privacy, Oakland, California,
pp. 99 (April 26-28, 1982)

P.W. Purdom Jr., C.A. Brown, The Analysis of
Algorithms, Holt, Rinehart and Winston (1985)

[Sham79] A. Shamir, “How to Share a Secret,” Comm. ACM

[Simm85] Gustavus J.

[Stro86]

[Voel86]

22, 11, pp. 612 (Nov. 1979)

Simmons, “How to (Selectively)
Broadcast a Secret,” Proc. 1985 Symp. on Security
and Privacy, Oakland, California, pp. 108 (April
22-24, 1985)

Bill Strohm, Liam Comerford, Steve R. White,
“ABYSS Tokens,” IBM Research Report Number RC
12402 (Dec. 18, 1986)

John Voelker, Paul Wallich, “How disks
‘padlocked’,” IEEE Spectrum, pp. 32 (June 1986)

are

[Wein86] Steve H. Weingart, “Physical Security for the

pABYSS System,” 1987 IEEE Symp. on Security and
Privacy, these proceedings

Petitioner Apple Inc. - Exhibit 1016, p. 14





