s e b B LR ALt 2334
X2 000159229 -

/33 - //‘,aé

€ y:

I PAPER . (Special Issue on Cryptography and Infomation Security)

The Transactions of the Enstitu:g of
Electronics, Information anc Comm. Engineers
THE TRANSACTIONS OF THE IEICE, V E73(1890)July, No.7, Tokyo, JP .

I'IO"'L z’mﬁo §

gagfl/owt/

Superdistribution : The Concept and the Architecture

GoTF 17/16

Ryoichi MORI' and Masaji KAWAHARAT, Members

SUMMARY Superdistribution is an approach to distributing
software in which software is made available freely and without
Trestriction but is protected from modifications and modes of usage
not authorized by its vendor. By eliminating the need of software
vendors to protect their products against piracy through copy
.protection and similar measures, superdistribution promotes un-
restricted distribution of software. The superdistribution architec-
ture we have developed provides three principal functions:
administrative arrangements for collecting accounting informa-
tion on software usage and fees for software usage ; an account-
ing process that records and accumulates usage charges. pay-
ments, and the allocation of usage charges among different soft-
ware vendors; and a defense mechanism, utilizing digitally
protected modules, that protects the system against interference
with its proper operation. Superdistribution software is distribut-
ed over public channels in encrypted form. In order to participate
in superdistribution, a computer must be equipped with an S-box
—a digitally protected module containing microprocessors, RAM,
ROM, and a real-time clock. The S-box preserves secret informa-
tion such as a deciphering key and manages the proprietary
aspects of the superdistribution system. A Software Usage Moni-
tor insures the integrity of the system and keeps track of account-
ing information. The S-box can be realized as a digitaily protect-
ed module in the form of a three-dimensional integrated circuit.

1. Introduction

Superdistribution js an approach to distributing
software in which software is made available freely and
without restriction but is protected from modifications
and modes of usage not authorized by its vendor. Super-
distribution relies neither on law nor ethics to achieve
these protections ; instead it is achieved through a com-
bination of electronic devices, software, and administra-
tive arrangements whose global design we call the
“Superdistribution Architecture”. The concept was
invented by Mori in 1983 ; it was first called the “Soft-
ware Service System™'®_ Since 1987, work on superdis-
tribution has been carried out by a committee of the
Japan Electronics Industry Development Association
(JEIDA), a non-profit industrywide organization. That
committee is now known as the Superdistribution Tech-

Manuscript received February 14, 1990.
Manuscript revised April 17, 1990.

t The author is with the Institute of Information Sciences
and Electronics, University of Tsukuba, Tsukuba-shi, 305
Japan.

ft The author is with Master's Degree Program in Sciences
and Engineering, University of Tsukuba. Tsukuba-shi, 305
Japan.

nology Research Committee.

Superdistribution of software has the following
novel combination of desirable properties:

(1) Software products are freely distributed without
restriction. The user of a software product pays for
using that product, not for possessing it.

(2) The vendor of a software product can set the
terms and conditions of its use and the schedule of fees,
if any, to be charged for its use.

(3) Software products can be executed by any user
having the proper equipment, provided only that the user
adheres to the conrditions of use set by the vendor and
pays the fees charged by the vendor.

(4) The proper operation of the superdistribution
system, including the enforcement of the conditions set
by the vendors, is ensured by tamper-resistant electronic
devices such as digitally protected modules.

From a different viewpoint, the needs of users and
the needs of vendors have until now been in irreconcila-
ble conflict because the protective measures needed by
vendors have been viewed by users as an intolerable
burden. The superdistribution architecture provides a
resolution to that conflict that serves the interests of
both parties. Wide distribution benefits vendors because
it increases usage of their products at little added cost
and thus brings them more income. It benefits users
because it makes more software available and the lower
unit costs lead to lower prices. It also creates the possibil-
ities of additional value-added services to be provided
by the software industry. Moreover, users themselves
become distributors of programs that they like, since
with superdistribution there is absolutely nothing wrong
with giving a copy of a program to a friend or colleague.

It might seem at first that publicly distributed soft-
ware such as freeware and shareware already solves the
problem addressed by superdistribution. But the likeli-
hood of the authors being paid is too small for public for
public domain software to play a leading role in the soft-
ware industry. Superdistribution software is much like
public domain software for which physical measures are
used to ensure that the software producer is fairly com-
pensated and that the software is protected against
modification. While public domain software might
achieve the aims of superdistribution in an idealized
world where all users paid for software voluntarily and
none of them abused it, we see little hope that such an

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 1

507?7/006

1134

{

THE TRANSACTIONS OF THE IEICE, VOL.E 73, NO.?

Table | Levels of software protection technology.

level| key concept

remarks

4 | superdistribution

SdA(Superdistribution Architecture))
1983 R.Mori(University of Tsukuba)- -~

privileges

3 execution "Right-To-Execute™:ABYSS(A Basic Yorktown Security System)

1987 S.R.White(I8M)"™

2 software with
a computer |0

costomizing deciphering key (software is common) }
customizing 1986 A.Herzberg PPS(Public Protection of Saltware) ‘;‘
1984 D.J.Albent (Enciphering and key managemant)

1982 G.B.Purdy SPS(Software Protection Scheme) “

custamizing each copy of the software

1 hardware

controling execution:
hardware key, e.g., ADAPSO Key-ring "

protection inhibiting duplication:
capy protection, noncompatible ROM

no physical

o protection laws & ethics

idealized world will ever come to exist.

Table 1 describes a hierarchy of levels of software
protection®~”. The previous work most similar to
superdistribution is the ABYSS architecture®® devel-
oped by White, Comerford, and Weingart at the IBM
Thomas J. Watson Research Center in Yorktown
Heights, New York. ABYSS is based on the notion of a
use-once authorization mechanism called a “token” that

provides the “right to execute” a software product. All _
" or part of the software product is executed within a
protected processor, and is distributed in encrypted

form. Physical security for an ABYSS processor is
provided by a dense cocoon of wires whose resistance is
constantly monitored by the processor. A change in
resistance indicates a likely attempt to penetrate the
system. The chief difference between superdistribution
and the ABYSS scheme is that superdistribution does
not require the physical distribution of tokens or any-
thing else to users of a software product. In other words,
ABYSS requires that software be paid for in advance
while superdistribution does not.

2. The Superdistribution Architecture

The superdistribution architecture we have devel-
oped provides three principal functions :

(1) Administrative arrangements for -collecting
accounting information on software usage and fees for
software usage.

(2) An accounting process that records and accumu-
lates usage charges, payments, and the allocation of
usage charges among different software vendors.

(3) A defense mechanism, utilizing digitally protected
modules, that protects the system against interference
with its proper operation.

In order to participate in superdistribution, a com-
puter must be equipped with a device known as an S-box
(Superdistribution Box)!. An S-box is a protected
module containing microprocessors, RAM, ROM, and a
real-time clock. It preserves secret information such as

a deciphering key and manages the proprietary aspects
of a superdistribution system. An S-box can be installed
on nearly any computer, although it must be specialized
to the computer’s CPU type. It is also possible to inte-
grate the S-box directly into the design of a computer.
We call a computer equipped with an S-box an S-
compuler.

Programs designed for use with superdistribution
are known as S-programs. They can be distributed freely
since they are maintained in an encrypted form.

In order to make it acceptable to users, software
vendors, and hardware manufacturers, the superdis-
tribution architecture has been designed to satisfy the
following requirements :

(1) ‘The presence of the S-box must not prevent the
host computer from executing software not designed for
the S-box. The presence of the S-box must be invisible
while such software is active.

(2) The modifications needed to install an S-box in an
existing computer must be simple and inexpensive.
(3) The initial investment required to make S-
programs generally available must be small.

(4) The execution speed of an S-program must not
suffer a noticeable performance penailty in comparison
with an ordinary program.

(5) The S-box and its supporting protocols must be
unobtrusive both to users and to programmers.

(6) The S-box must be compatible with multipro-
gramming environments, since we anticipate that such
environments will become very common in personal
computers.

In our current design a program can be written
without considering the S-box, but the program must be
explicitly encrypted before it is distributed if it is to gain
the protections of superdistribution. This encryption can
be done by a programmer, using the S-box itself.

T The S-box is unrelated to the S-boxes used in the Data

Encryption Standard.

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 2

ORI and KAWAHARA : SUPERDISTRIBUTION ARCHITECTURE

The design of a superdistribution architecture can

be decomposed into four tasks:

(1) Design of the superdistribution network.

(2) Logical design of the S-box and its interfaces.

(3) Design of the supporting software and file struc- 5
tures, including appropriate cryptographic protocols and
techniques.

{4) Design of the protection for the S-box.

Technology for-accomplishing each of these tasks is
now nearly within to the state of the art. In the rest of /¢
this paper we describe our approach to these tasks. We
have already designed and constructed two prototype
S-computers with their supporting software. Prototype
[1, the version we are now working with, satisfies the six

1135

terms set by each software vendor for executing that
vendor’s products and keeps track of how much the user
owes to each vendor. The S-box generates a payment
file that contains this information. The fees charged for
software usage are measured in units that we call
S-credits. Payment files are encrypted and transmitted to
the collection agency through the network as shown in
the figure.

The collection agencies receive the payment files
from users, process those files, and transmit payments to
vendors ——both the authors of the S-programs and
the manufacturers of the S-boxes. Each collection
agency has an S-box in its computer. The payment files
are decrypted and processed under control of this S-box

requirements stated above. /s~ so as to ensure the integrity of payments to the vendors

3. Design of the Superdistribution Network

The technical innovations that we describe here are
best understood in the context of a network that pro-
vides superdistribution of S-programs and the files need-
ed in a user’s computer in order to support the use of the
superdistribution services. We emphasize, however, that
distributing the S-software itself is not a function of the
network since a user can obtain that software by any
convenient means — from a bulletin board, making a
copy of a friend's program, or perhaps purchasing a
collection of S-programs at a nominal price. S-programs
are stored and transmitted in encrypted form, so the
transmission paths need not be protected in any way.

Figure 1 illustrates a typical software distribution
system that utilizes the superdistribution architecture.
Each S.computer —that is, an end-user computer
supporting superdistribution —is equipped with an
S-box. The S-box contains a metering program, the
Software Usage Monitor (SUM), that enforces the

executing S-software

of S-programs and of the supporting hardware as well.

The clearinghouse keeps track of funds transfers
engendered by superdistribution. The clearinghouse can
be either a new organization or an existing one, e. g. a
credit card company, that is prepared to provide the
necessary services. The advantage of creating a new
organization is that it provides additional degrees of
freedom in the systems design. The disadvantage is that
it requires a large initial investment. Using an existing
organization as the clearinghouse not dnly saves that
investment but also gives that organization the opportu-
nity to enlarge its market.

Identification numbers (ID's) are essential to this
arrangement. Each user, each software vendor, each
S-box manufacturer, and each collection agency has a
unique ID. In addition, users can also have ID’s, either as
individuals or as organizations. The ID of a user i$
usually in a different name space than the ID of that
user’'s machine. User [D’s provide a convenient mecha-
nism for establishing credit, since they are associated
with the individual or organization who-is actually

e

credit fimit
iy a— =t newark ‘V . o eﬁaﬁ -
e R sales outlets
payment fileg-— -~—-~
S-computer
b N
payments payv"nent
/ tiles
copy them .
from neighbors A o - - - [EERAE credit
distribution media: software maker limit
< network .
- broadcasting
© neighbor CD-ROM
. IEAm
acquisition of S-software hardware maker

T . payments

financier

Fig. | Example of software distribution system utilizing the
superdistribution architecture.

Petition@rEél;li)leAIVné!-LéPiLE IOCZ7, pP 3

THE TRANSACTIONS OF THE [EICE, VOL.E 73, NO. 7

1136

paying for the software. (An organization or even an
individual may have more than one machine.) On the
other hand, a software distribution system based purely
on S-box [D's can provide a high degree of privacy for
users.

Requiring prepayment for software usage avoids
any risk of default, but such a requirement is
unattractive to users and negates the social benefits that
we hope to see provided through superdistribution. It is
easy to understand why this should be so if we consider
how people would react to being required to pay for all
their water and electricity in advance.

The superdistribution scheme does not provide any
absolute guarantee that users will pay what they owe, or

5

e

even that they will return the necessary payment files tos

the collection agents. However, the S-box, which con-
tains. a real-time clock, will suspend its services (other
than transmitting payment files) if the conditions, which
are specified by the vendor or the system, are not met.

Transmission can be either over a telecommunication 2o

link or with a2 memory card. In the event that a user

.transmits the payment files but does not remit the

corresponding payment, a collection agent can apply
appropriate sanctions.

transmit a message specifying my usage to date of each
S-program that I have run. This message is generated by
the S-box and enciphered so that it cannot be tampered
with by anyone. The agent charges my credit card
account for that usage and credits the vendors of the
software that I have used. He then transmits back to me
an enciphered message that resets my authorizagion to
$100.

On the other hand, suppose that [physically present
the memory card either in person or by mail. I can either
have it renewed on the spot or (if I choose to mail it in)
can have a second card sent to me in advance so that [
am never without a card.

3.2 Customer Support and Manuals in Superdistribu-
tion

Superdistribution can also be helpiul in conjunction
with forms of support for users of S-programs that are
not yet provided electronically.

Superdistribution changes the environment for tele-
phone support. First, superdistribution eliminates the
need to discriminate illicit and authorized users, because
the incidence of illicit usage can be képt reasonably low.

Superdistribution does not rely on the honesty or :5 Second, superdistribution provides a way of charging for

goodwill of the manufacturer of the S-box. It is even
possible to protect software designed for the S-box
against attacks perpetrated by the manufacturer of the
S-box. However, the methods of providing such protec-
tion are beyond the scope of this paper.

To join the system, a user need only insert an S-box,
most likely in the form of a coprocessor chip, into his or
her own personal computer. A collection agency can join
the system in the same way. The collection agency needs

3o

telephone support fairly. An S-program can generate a
code number, with internal checking, and charge the
user for that code number. The user then calls the
vendor, asks his questions, and provides the code num-
ber. The vendor validates the code number.
Superdistributed software can be supported by
hypertext and other forms of electronic documentation,
but such documentatica is still unlikely to replace
printed manuals entirely. Currently, manuals serve both

a slightly different form of S-box, one that contains the 3 to educate the user and to provide an additional safe-

software for decoding and processing the payment files.
Processing at and between the collection agencies and
the clearinghouse can be conveniently handled by a
Credit Authorization Terminal (CAT) very similar to
the ones now in use in many retail establishments.

3.1 Usage of the S-Box

Suppose that I am interested in using some S-
programs. [obtain an S-box from an agent either in
person or by mail. My agreement with the agent
includes a credit authorization or a prepayment of, say,
$100. I can now use up to $100 worth of S-programs.
When I obtain the S-box, I can also obtain a memory
card for it. The memory card is used to record account-
ing information that describes my usage of S-programs
as well as the balance in my account.

To renew my usage, | must communicate the
accounting information to the agent. [can do this either
by establishing modemn communication with the agent or
by physically presenting the memory card (if I have
one) to the agent. Suppose I use a modem. Then I

Yo

guard for the vendor against piracy (since a user can't
buy the manuals separately from the software). With
superdistribution, the safeguarding function is unneces-
sary and paper manuals can be sold as freely as books.
In particular, a user can obtain several copies of the
printed manuals if he wishes, and can even purchase the
manuals without purchasing the software at all. Similar
remarks apply to manuals distributed on CD-ROMs,
which could be used to generate customized versions of
the printed manual for particular configurations of the
software, the hardware, or other aspects of the working
environment.

4. Design of the S-Box and its Interfaces

The function of the S-box is to execute the Soft-
ware Usage Monitor in a secure way. The S-box also
contains the cryptographic keys that ensure the integ-
rity of the system. These keys are kept secret by storing
them within a digitally protected modules (see Sect. 6).

An S-box can be added to an existing computer in
any of several ways: -

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 4

7
L]

-r

MORI and KAWAHARA: SUPERDISTRIBUTION ARCHITECTURE

(1) Attaching it to an I/O port.

(2) Connecting it to the bus.

{3) Placing it between the CPU and the bus.

{4) Placing it on the same chip as the CPU or inside
the CPU.

Methods (1) and (2) require no modification to
the computer ; our Prototype I used method (1). This
method has the disadvantage that it introduces
significant overhead in a multiprogramming environ-
ment. Method (4), though more difficult to implement
initially, offers the best performance and the lowest cost.
Because methods (3) and (4) require modifying the

.computer, we chose to use method (2), connection to
the bus, for Prototype II.

This connection is best realized by making the
_S-box a coprocessor and using an existing coprocessor
socket. Qur current implementation uses a second com-
puter connected to the coprocessor socket of the first
one; our goal is to fabricate the S-box as a single chip
that can be placed in that coprocessor socket. We are
using an MC68020-based computer because of its com-
patibility with other equipment in our laboratory, but
adapting the design to other types of processors is not
difficult. '

All the protection needed to ensure the integrity of
the payment files and of the software is concentrated in
the S-box. There is no need to protect any of the commu-
nication paths shown in Fig. 2. The signals sent over the
communication paths are all encrypted, so dedicated
networks are not necessary to ensure the security of the
system. Any public network can be used, and the added
cost of a dedicated network can be avoided. In fact,
since the communications links need not be kept con-
stantly active the system is even suitable for use with
portable personal computers.

The S-box provides a limited form of protection
against viruses, in that programs that are specifically
designed to work with the S-box cannot be modified at
the user's computer and so cannot be disabled or other-
wise taken over by a virus. However, the S-box does not

safe communication path

7

still unsate at
both ends

safe communication on
unsafe communication path

concentrale the prolecing
functions into the ends. . -}

Fig. 2 No protection of communication paths results better
performance/cost.

1137

protect against programs, distributed through superdis-
tribution or otherwise, whose effect is on parts of the
system unrelated to the S-box.

Some of the functions called for may appear to be
expensive—in particular, the ability to provide the neces-
sary physical protection and to erase the cryprographic
keys recarded in the S-box in the event of an attack.
However, these functions can be achieved at reasonable
cost if the S-box is mass-produced as a single IC chip (or
a small group of such chips).

The workings of the S-box, which we describe
below, depend on the existence of cryptographic keys
within the S-box. A potential problem could arise were
the equipment manufacturing the S-box to be disabled
and the values of the keys to be lost. This problem can
be solved, although it requires the use of a different kind
of protected module.

We have considered but rejected the idea of using
simpler memory cards, similar to the farecards used in
some transit systems, that would merely record an
account balance. There are two problems with such
cards. First, separate mechanisms would still be needed
to record and transmit the accounting information de-
scribed above. Second, the devices generally available
for reading and writing such cards are insufficiently
secure. A cheater could obtain such a device and'modify
the data on the card without using the S-box at all.

4.1 The Software Usage Monitor

The Software Usage Monitor is executed in the
S-box. It performs the following functions:

(1) It monitors the execution of an S-program in
order to make sure that it is only executed in the
manner intended by its vendor.

(2) It encrypts and decrypts S-programs and other
necessary information. ’

(3) 1t maintains an account of the charges associated
with the execution of an S-program.

An S-program can issue instructions to the Soft-
ware Usage Monitor. These instructions are realized as
extended instructions of the CPU.

In Prototype I we have implemented the Software
Usage Monitor through an emulation of the coprocessor
functions. We have used an MC68020 board fitted with
an MC68881 coprocessor socket, connecting a second
computer (the emulator) to that socket through an
interface circuit as shown in Fig. 3. The current imple-
mentation does not provide for multiprogramming
because the Apple Macintosh we are using, to which an
MC68020 board is plugged in, does not yet have that
capability.

Further limitations on Prototype I are that it does
not provide encryption and that it is not encapsulated as
a digitally protected module. We consider those limita-
tions acceptable because the purpose of our experiments
at this stage is to validate the execution control and

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 5

A

THE TRANSACTIONS OF THE IEICE, VOL.E 73, NO.7 ¢

1138

charge control functions of the Software Usage Moni-
tor.

4.2 Architecture of Prototype [i

Figure 4 shows a conceptual diagram of the archi-
tecture of Prototype |I.
® The MC68020 processor executes the S-program and
communicates with the coprocessor. The coprocessor

" ensures the legitimacy of the execution.

® The interface section communicates with the
MC68020 according to the standard MC68020 coproces-
sor protocol®'®,

® The processing section interprets and executes the
coprocessor commands issued by the MC68020.

® The execution control section monitors the execution
of the S-program.

® The accounting buffer contains pricing information
for each currently executing S-program as well as
accumulated usage information. The pricing informa-
tion in the accounting buffer is a subset of the informa-
tion in the tariff section of an S-program (see Sect. 5.1).
® The payment file contains a record of payments.

® The charge control section updates the S-credit bal-
ance, utilizing the information in the accounting buffer
and the payment file. It also keeps a record of access
violations and halts execution of the S-program if the

Fig. 3 Implementation of Prototype [I.

MCBS222 R
[LApplian’on Program 5 J
! ¥
f [} L)
[Y
Interface Section

R) t

J
Processing (Execuu'on Control -
Section Section Accounting
Buffer

l Cryptagraphy ‘
Section

Fig. 4 Conceptual diagram of Protatype II.

Charge Control Payment
Section File

Coprocessor Physically Protected by OPM J

number of violations exceeds some threshold. (Our
experience suggests that access violations occasionally
happen by accident, so this threshold should be nonze-
ro). The charge control section also implements func-
tions required to support the user utility program..

® The cryptography section performs three functions :
(1) It decrypts the information in the tariff section of
the S-program and enters that information into the
accounting buffer, It does this as part of the process of
loading an S-program into the S-box. Either a public-key
or secret-key cryptosystem methods can be used.

(2) It decrypts the encrypted portions of the S- .
program itself, using in this case a high-speed conven. -
tional cryptosystem. ‘
(3) Itencrypts arbitrary programs upon request. This .
facility is necessary so that a programmer can create
new S-programs without outside assistance. In particu-
lar, no assistance is needed from the manufacturer of
the S-box.

5. Design of the Supporting Software and File Struc-
tures

5.1 Structure of an S-Program

The structure of an S-program as implemented in
Prototype II is shown in Fig. 5. The pricing information

" for a S-program is contained in its tariff section. When

execution of the S-program is initiated, the coprocessor
verifies the information in the tariff section and copies
the pricing information into the accounting buffer of the
S-box. A verification routine, describec’ below, is embed-
ded in the body of the S-program. Execution is aborted
if the verification routine detects any inconsistency in
the tariff section.

The tariff section includes the following :
(1) Software ID: an identifier unique to the S.
program. ’
(2) Access control key: A key used by the authenti-
cation routine in the S-program body. This key is
checked by the coprocessor.

rﬁ S-Program H
Tariff Section
{1) Software ID
(2) Access Control Key
(3) Enerypting Key Bady of
o
(4) Charging Interval éfggnéa‘_::on

(S) Service Pricing Schedule

(6) Size of Free Memory Space

-)
— J

Fig. 5 Structure of S-program.

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 6

MORI and KAWAHARA : SUPERDISTRIBUTION ARCHITECTURE

(3) Encrypting key: A key used to encrypt the
machine instructions in the body of the S-program. An
encrypted biock of instructions is transferred to the
coprocessor, where it is decrypted using this key and
then executed. A

(4) Charging interval: the length of execution time
for which a single S-credit is charged to the user.

(5) Service pricing schedule : the number of S-credits
charged to the user each time a particular software
service, e. g. saving a file, has been rendered and success-
fully completed.

(6) The amount of memory required within the co-
processor for executing the S-program.

Note that items (4) and (5), which together
constitute the pricing information, allow for two styles
of charging : per unit of time (by setting (5) to zero)
or per execution (by setting (4) to zero). Combinations
of the two styles are aiso possible.

5.2 Execution of an S-Program

Execution of an S-program is monitored by the
program and the coprocessor working together. The
coprocessor halts execution whenever it detects a pro-
tocol violation. For proper protection, the S-software
must be structured so that anzlysis of it by an intruder
is not possible. Some methods of achieving this are:
(1) The coprocessor receives a number from the
S-software and compares it with an encrypted value,
returning the result of the comparison.

(2) The coprocessor receives data from the S-
software and returns a jump address.

(3) The coprocessor verifies that a particular mes-
sage is sent by the S-software within a prescribed
period.

(4) The coprocessor receives a block of encrypted
MC68020 instructions and executes them, placing the
resuits of the execution in the registers and/or the
memory of the MC68020.

These methods can be used individually or in combi-
nation.

The sequence of events that takes place as an item
of S-software is executed is as follows:

@ Initialization. The pricing information is sent to the
coprocessor by the initialization routine when execution
of the S-software commences. This can be done using
general purpose coprocessor instructions®'?. S-credits
are then decreased periodically until execution of the
S-software is terminated.

@ Execution. The check routine in the software body
is executed, and execution of the software is aborted if
the prescribed protocol is not satisfied. Methods (1)~
(3) of execution control as described above have been
implemented. The implementation _techniques are as
follows:

—For (1), the software ID, the access control key, and
a random number are sent to the coprocessor. The

136

random number can be encrypted, although we have not
yet done this. The result of comparing the random
number with a known value is then returned to the
processor.

—~For (2), we transfer a jump address table to the
coprocessor during initialization. This table can subse-
quently be referenced oy the S-software. The coproces-
sor then returns the appropriate jump address. :
—For (3), the access control key, the range of accept-
able response times, and a random number are sent to
the coprocessor. The range is represented as a lower
limit and an upper limit. The coprocessor then checks
that the time of the next message is within the limits. If
it is not, the coprocessor aborts execution of the S-
software by interrupting the main processor.

e Termination. The coprocessor is informed when
the S-software has completed execution. This can be
implemented using general purpose coprocessor instruc-
tions. At this time the payment file is updated to account
for the usage.

5.3 Supporting Files

The payment jfile keeps track of S-credits that are
owed as the result of software usage. Each record in a.
payment file ordinarily contains three fields: a payer, a
receiver, and an amount. The collection of payment files
is an essential function in a superdistribution system in
order to make sure that revenues are properly distribu-
ted to the providers of services.

The privilege file records a user's privileges with
respect to software usage. For example, if a user has.
purchased a program then the user has the privilege of
using it thereafter without paying any additional fees.
Another kind of privilege is a volume discount : after a
certain amount of usage, the charging rate is decreased.

Carryover is a form of discount in which the money
that a user pays for usage of a program is deducted from
its purchase price if the user chooses to purchase the
program at some later time. Carryover can be accom-
modated by associating a carryover parameter ¢ with a
particular program, where ¢ is no greater than 1. Should
the user decide to purchase the program, a credit of ¢
times the accumulated usage charges is deducted from
the purchase price. If a vendor chooses to set ¢ to 1 for
a particular program, then a user of that program need
not make any decision as to whether or not to purchase
the program. Carryover, if provided, is also recorded in
the privilege file.)

Some forms of superdistribution can be realized
without having a privilege file. In these forms the
charges are based on services provided, e.g. 10 credits
for each program execution, 2 credits for each file save,
5 credits per printout, and 1 credit per 18 seconds of
execution time.

The privilege file grows with time, since informa-
tion is added to it but is rarely if ever deleted. Moreover

peiioBESTENEILABRE GOPY

'~ -

THE TRANSACTIONS OF THE [EICE. VOL.E 73, NO.7

1140

it must be preserved indefinitely. It is ordinarily the
obligation of a software vendor to provide backup for
the portion of the privilege file pertaining to that vendor’
s software.

A record in the privilege file is ordinarily generated
at the same time as a record in the payment file and
stored in the user’s machine. In some environments in
which users send payments separately, the vendor may
generate records to be placed in the privilege file, but
this arrangement is usually less convenient for users.

The portion of the privilege file pertaining to a
particular vendor’s software can be kept either in the
user's machine or by the vendor. If privilege records are
generated in one place and stored in another, then the
superdistribution system must make allowances for
delays in transmission and in confirmation.

If a superdistribution system provides for trial
usage of software either free or at a discount, it must
keep records of that usage in a trial usage file. Otherwise
a user could use software indefinitely on a trial basis.
These records need to be backed up, although backup is
less critical than it is for the privilege file. The reason is
that trial usage is not an obligation but rather a gratuity
on the part of a vendor, and a vendor can reserve the
right to cancel the privilege of trial usage at any time.

The benefit file keeps track of special benefits grant-
ed to the user by various vendors. The benefit file differs
from the privilege file in that the information in the
benefit file has no direct correspondence to the informa-
tion in the payment file and is unaffected by what soft-
ware is used or how much it is used. Examples of infor-
mation in the benefit file are a certification entitling the

‘user to educational discounts or a secret number enti-

tling the user to run a certain program not available to
the general public.

The account file is an aggregation of the particular
files we have just discussed : the payment file, the privi-
lege file, the trial usage file, and the benefit file.

A superdistribution system needs to provide secure
backup for its accounting files and for the privilege file
in particular. It need not make any special provision for
backing up software since a user can back it up by any
convenient means or get another copy without cost if the
original copy is lost.

The backup requirements for the privilege file
depend on whether or not privileges can decrease with
time. If not, it suffices to ensure that the process of
restoring the privilege file from its backup cannot gener-
ate additional privileges. This requirement can be met
by associating an ID and a randomly generated valida-
tion number with each privilege file and encrypting the
file before backing it up. The restoration process checks
to make sure that the decrypted validation number is
correct and that the backup file is indeed a proper one.

¢ Fie fait JL0) B

b @55 (herging tnformation S=em

(1) Nsme of S-Soltware i
$-Editor

(23 Fees

SR Protoiype

New 100 Sec/Cr
Open 200 Sec/Cr
Save 2 CriSave
Prni S Cr/Prat

t3) Ceedut Used
$-Editor ?
Tatal 17

Display of charges

Screen image of application
9 Pp icat! of S-Pragram

program in execution

Fig. 6 Example of execution of user utility program.

5.4 Implementation of the User Interface

Since a user of an S-computer should be able to
ascertain the status of his account at any time, we have
built a user interface for retrieving and displaying that
information. The user interface program provides two
functions:

(1) Transmitting the payment file
(2) Displaying the accumulated charges for S-
programs.

In Prototype [we implemented the user interface
within the Software Usage Monitor ; in Prototype {1 we
have implemented it as a separate program. By making
it a separate program we reduce the size and complexity
of the software that needs to be permanently resident in
the S-box. Prototype [allowed a great deal of
flexibility in the way that usage was charged; Proto-
type [I has adopted a simpler system based on a combi-
nation of charges for performing specific actions, e.g.
opening a file, and charges per unit of time.

An example showing the execution of the user
utility program is shown in Fig. 6. The user can inspect
the record of software charges, the remaining credit
balance, etc., through this program. Although Prototype
I1 does not have a general multiprogramming capabil-
ity, it does allow the user utility program to be executed
while an application program is also executing.

6. Digitally Protected Modules
6.1 Design of the Digitally Protected Module

A protected module (PM) is a container for infor-
mation that protects that information from attacks
intended to read or write it in an unauthorized manner.
Protected modules have also been described in the litera-
ture as “tamper resistant modules” or “protected proces-
sors”. We prefer “module” to “processor” because we

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 8

MORI and KAWAHARA : SUPERDISTRIBUTION ARCHITECTURE

are not concerned with protecting the hardware itself,
but only with protecting the information being proces-
sed by the hardware.

The design presented here assumes that the S-box is
implemented as a digitally protected module — that
is, 2 module whose protective logic is based on digital
technology. We plan to use three-dimensional integrated
circuit technology, since we believe that a high level of
physical protection can eventually be achieved by apply-
ing fabrication methods such as chip bonding to three-
dimensional circuitry.

Increasingly effective levels of protection are pos-
sible :

(1) A protective method may rely on the ignorance or
lack of resources of the attacker. For example, software
can be stored in ROM in a form where access is difficuit
and does not follow the usual conventions of the com-
puter to which it is attached.

(2) A protective method may rely on keeping a per-
manent record of attacks rather than on withstanding
those attacks. If the proprietor of a protected module
can retrieve this record, then attackers will be dissuaded
by the knowledge that their activities will be discovered.
Examples of devices using such methods are the
counters on rented copying machines, the odometers on
rented automobiles, and the electric meters placed on
the main power lines of buildings.

(3) A protective method may be designed to defend z
protected module even when the proprietor of the
module has no access to it, either physically or logically.
Since no physical device can be expected to resist
destruction indefinitely when the attacker has sufficient
time and resources, a device using methods of this kind
must be able to detect attacks and erase its contents
before the attacker can retrieve them. Then an attacker
is simply left with a broken module and has gained
nothing.

(4) A protective method may be designed to defend a
protected module even from attacks by its manufac-
turer. Since in some cases a protected module may
contain information that the module’s manufacturer is
not authorized to access, this case is also of interest.

The device we discuss in this article is intended to
achieve the third level of protection abave, although we
believe that it is even possible to achieve the fourth and
highest level of protection.

Most earlier research on protected modules has
either been theoretical in nature or has been subject to
military classification. The zABYSS module® is an
exception. Using this approach, an entire circuit board is
enclosed in a cocoon of nichrome wire of approximately
0.09 mm diameter. Several windings, each having thou-
sands of turns, are used. The circuit board records the
protected information. The resistance of the windings is
monitored in analog fashion to detect attacks (see Fig.
7).

In tABYSS, a 5% change in resistance of the wire

1141

11O & power connector

/ potting material

protection card

card suppunl’winding ramp processor card

approx. ¢0.09mm wire winding
Source: Steve H. Weingart, {BM Thomas J Watson Research Center

Fig. 7 Physical structure of uABYSS.

is taken as a threshold to determine whether an attack
is taking place. This comparison is made with the
original resistance value. A change of at least 1 % from
the most recently measured value is also taken as an
indication of an attack.

6.2 Operation of the Digitally Protected Module

One of our approachs is illustrated in Fig. 8. The
protective mechanism consists of a random access
memory (RAM) containing a great number of closely-
spaced microscopic one-bit detectors. The DPM con-
tains one or more layers of these detectors, packed
tightly so as not to leave enough room for penetration
between them. Layers of detectors can be staggered so
as to increase the effective density. The memory can be
implemented using either IC’s or printed circuits. With
these technologies the center-to-center distance of adja-
cent detectors can be made as small as 3 um. The
detectors are individually addressable, and each one can
be read or written. A possible attack is indicated when
any detector is found to have lost its normal operating’
functions.

The testing method is simple: write a random
value into the detector and read it back. Then write the
complement of that value into the detector and read it
back. The element is considered to be working if and
only if the retrieved values agree with the written
values. If the values do not agree, a possible attack is
indicated. We call this event an exception.

If an exception occurs, the microprocessor exam-
ines the faulty detector several more times. Repeating
the test provides protection against random transient
failures such as might be caused by alpha rays. The
probability of such a failure and the consequent change
of state is proportional to the time between writing and
reading. If a detector is read immediately after it is
written, the probability becomes very small. In some
environments the probability of transient errors may be
low enough so that transient errors can be disregarded
altogether.

If an exception is judged not to be a transient error,
then the DPM can test other detectors in the physical
vicinity of the erroneous one. The number of faulty
elements can then be compared to a threshold. If that
threshold is exceeded, we assume that the DPM has been
attacked. The threshold test reduces the chance of a

Petitioner g%!lAXAEE&%lﬁE 1 (%,OpP9Y

THE TRANSACTIONS

1142

layer(s) of densely distributed
microscopic detectors

(LS! at, e.qg., 1um rule}

OF THE [EICE, VOL.E 73, NO.7

bonding wire —

power supply for
protected region

layer #2 7 7]

vertical wire between
layer #1 and #2 (few)

orotected resion Pz .o+

LS| circuits at technology level of,

layer #1

e.g., 1Mbit DRAM :
(1)memory for holding
secret information
(2)anack detection mechanism
- global monitoring
(voltage, temperature)
- addressing & verification
mechanism for layer #2
(3)mechanism tor erasmg
secret information

Fig. 8 Three-dimensional IC implementation of a digitally

protected module.

false alarm.

Techniques that apply to RAM used in other appii-
cations can also be used for the DPM. For instance, the
microprocessor can be provided with a list, resembling
the list of bad tracks on a disk, that indicates elements
known to be faulty. Similarly, it is possible to read and
write blocks of several bits in parallel instead of operat-
ing on a single bit with each test. However, some econ-
omies are possible for the DPM that are not possible in
general. For instance it is not necessary to refresh the
memory because it can hold its state for at least ten
milliseconds without being refreshed. That interval is
much greater than the interval between writing and
reading a bit. Such economies can help to reduce the
cost of manufacturing the DPM.

The design of any type of protected module must
address an inherent conflict. In order to make the device
more likely to detect an attack it must be made more
sensitive ; but the more sensitive it is, the greater the
likelihood of a false alarm. The more information that
can be gotten about a presumed attack, the easier it is to
resolve this conflict.

The digital design can provide more information
than an analog design in the event of a fault because the
digital design has more discrete components. In an
analog design such as #ABYSS there are relatively few
windings. If a resistance measurement is off, there is no
way to localize the fault further. In a digital design it is
possible to check the detectors in the vicinity of the
faulty one. The analog design can be brought closer to
the digital one by using many small windings, but the
control logic then becomes™ far more complex and it
becomes much harder to manufacture the device.

We next consider various kinds of potential attacks
on a digitally protected module and the protection

Petitioner Apple Inc.

against them:

(1) An attacker might attempt to separate the detect-
ing layer and the protected region. Such an attack can
be detected by monitoring the continuity of the inter-
layer wires.

(2) An attacker might aim at the detection mecha- -

nism itself rather than at the information being protect-
ed. This strategy can be foiled by placing the detectwn
mechanism in the protected region.

(3) An attacker might attempt to mampulate the
wires that connect the circuitry to the outside world.
Such attacks can be prevented by a structure where the
wires pass through the detecting layer, as described in
the next section.

(4) Itis possible to reuse a digitally protected module
that has erased its cryptographic keys in response to an
apparent attack, but caution is necessary in order to
guard against Trojan horses or other attempts at sub-
version of the logical protection.

The protective capability of any protected module
cannot be regarded as permanent. Once a module has
been installed the hardware implementation of its defen-
sive technology is fixed, even though the technology of
attack advances continually. With time it becomes
easier and easier to find ways of bypassing or otherwise
neutralizing whatever defenses the module utilizes. Thus
the useful life of a protected module is determined by
the progress of the technology of attacks. A useful life
of five years is probably not difficult to achieve. Twenty
years would be desirable ; ten years is probably about
the longest time that we would consider practical.
However, it is likely that the state of the art in attack-
ing protected modules would be known to their proprie-
tors, and the modules could be replaced when they are
known to have become vulnerable.

BEST AVAILABLE COPY

- Exhibit 1027, p. 10

MOR! and XAWAHARA

6.3 Realization of Digitally Protected Modules

Three-dimensional large-scale integrated circuits®"",
possibly manufactured using chip-bonding methods, pro-
vide an excellent method of realizing digitally protected
modules. We have assumed such an implementation in
Fig. 8.

Layer 1 consists of a protected region where the
information to be protected is stored. The memory for
the information can be implemented using technology at
the level of 1 Mbit DRAMs. The protected region either
has its own power supply or uses an external power
supply. It is possibie that there is more than one power
supply. The protected region also contains circuitry
whose function is to erase the information if an attack

" is detected. The erasure is accomplished by cutting off

the power to Layer .

An attack might involve making holes in the device,
etching it, or subjecting it to electro-optical reading.
L.ayer 2 is made of devices and wirings designed to
detect these kinds of attacks. It will be constructed
using a technology such as 1-2 um rule semiconductor
devices.

The distance between Layer 1 and Layer 2 can be
made sufficiently small, on the order of 3 um, so that an
attacker will not be able to penetrate between the
layers. An attack from below Layer 1 is not feasible
because any attempt to reach the components from that
direction will cause the components to lose their charge.
Should penetration from below be a concern, it is pos-
sible to place a layer of detectors there too. thus enclos-
ing the protected region in a sandwich of detectors.

The wires between the two layver; serve two pur-
poses: to provide signal paths between the circuitry in
the layers and to provide signal paths from the protected
layer to the outside world. These wires are connected to
small pads on the inner surface of each layer. They
cover the entire perimeter of the DPM. Any disruption
of their signals will have the same effect as a distur-
bance to the detectors, so they provide an additional
level of protection to the device.

The larger pads on the upper surface of the detect.
ing layer are bonding pads like those of a conventional
IC. Their purpose is to provide connections for external
wiring. Although external connections are logically
necessary only for the protected circuits in Layer 1, the
wires are routed via Layer 2 in order to prevent an
attacker from gaining access to the protected region via
the external connections.

The DPM can be encapsulated using an appropriate
resin, preferably one that is not transparent. By mixing
a substance such as alumina with the resin we can
increase the resistance of the device to attacks using
mechanical or chemical methods, or even attacks using
lasers or plasmas. Simpler measures may, however,
suffice for some environments.

SUPERDISTRIBUTION ARCHITECTURE

1143

The RAM in Layer ! depends on a continuous
supply of power to maintain its state. If the protective
logic of the DPM concludes that an attack has taken
place, it grounds the power supply and erases the secret
information in the protected region. [t is pointless for an
attacker to disrupt the power supply because the effect
of doing that will be to erase the protected information.

The DPM is not a demanding application of thres-
dimensional IC technology. The number of lines of inter-
layer wiring is small, particularly in comparison with
typical applications of three-dimensional IC's. For
example, an image processor would usually require
several interlayer connections for each pixel. An image
processor capable of handling large images would thus
need thousands of inter-layer lines. Far fewer lines are
needed for the DPM: power supplies, inputs, outputs,
and addresses.

Furthermore, the DPM is a general-purpose device
that will be produced in quantity. Mass production of
DPM'’s will lead to economies of scale, just as it has with
memories, microprocessors, and personal computers.

6.4 How to Detect Attacks

A likely form of attack is to attempt to make a hole
in the device. Because of the spacing of the detectors, a
hole whose diameter is as small as ten microns will stil}
destroy at least one detector. and a hole not larger than
twenty microns will destroy at least four. The design of
the DPM makes it possible to determine not only that
four detectors are faulty, but that the four are all in the
same region.

The DPM has several different memories. and these
memories have distinct purposes. The memory in Layer
1, the protected region, stores the information that is to
be protected. The memory in Laver 2 is devoted to
detecting attacks.

The order in which the detectors are tested is
arbitrary, but the tota! test duration must be kept short.
The detectors can be tested individually or in groups.
Group testing helps to keep the testing interval short
because the detectors in a group can be tested in paral-
lel.

If we have a million elements and test one element
every microsecond, then it will take just one second to
test all the elements. If we test in parallel, the testing
time can be made much less than that. The time
required to erase the protected information is negligible
by comparison.

There are at least three levels of protection that can
be provided for the information in the protected region :
(1) The lowest level of protection is provided by
using the same physical structure in every DPM. The
protected information is represented by the presence or
absence of electrical charges at particular physical loca-
tions in the structure.

(2) The second level of protection is provided by

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 11

THE TRANSACTIONS OF THE IEICE, VOL.E 73, NO.7

1144

storing the protected information in a way that is
different for each individual DPM. One way of doing this
is as follows: Each module contains a random number,
which is generated independently for each module. The
information is encoded in such a way that it can be
decoded by using the random number. Full cryptogra-
‘phic protection is not necessarv for this encoding ; even
such a simple method as exclusive or'ing the stored
information with the random number is sufficient.

(3) The third level of protection is provided in a
similar way as the second, but the random number and
the decoding function change with time and are not
always stored in the same location.

The choice among these levels should be made
according to the defensive strength that is required and
the cost that is acceptable.

In some applications a less effective method of
protection may suffice. The protected information is
kept on a mask ROM, and the chip containing the ROM
is encapsulated in resin. For applications in which the
attackers are not expected to be sophisticated, or in
which the protecting device can be inspected by the
owner of the protected information. this method may be
appropriate since it is simpler and cheaper. Further
discussion of it, however, is outside of the scope of this
article.

6.5 The Protected Region

Layer 1 of the DPM is the protected region. Layer
2 of the DPM covers the protected region.

The purpose of the detectors is to insure that
nobody can physically invade the protected region
without destroying one of the detectors. However, if it is
known that physical invasion will not result in the theft
of the protected information, the invasion can be tolerat-
ed.

It is highly desirable to use RAM rather than
EPROM for the memory in the protected region, at least
in the initial stage of commercial production of the
DPM. The advantage of RAM over EPROM is that
RAM can be erased almost instantaneously by cutting
off its power. EPROM retains its information even when
it is not powered.

Near-instantaneous erasure.is particularly impor-
tant because the protected information typically
includes an encryption key, and that key will be common
among many DPM's. If the key in one DPM is stolen
then the information in any device using the same type
of DPM becomes vulnerable. Because the rewards of a
successful attack are so great, we can expect the DPM
to be subject to thorough, well-planned, and prolonged
attacks. The explicit action required to erase EPROM
makes it far more susceptible to attack.”

At very low temperatures, a RAM may hold an
electrical charge for some length of time even without
power. Therefore the protected region can contain a

monitoring circuit that will erase the secret information
should the temperature drop below a specified threshold.

The DPM requires a continual supply of electrical
power, whether it is constructed using RAM or EPROM.

-Once the DPM has been loaded with its protected infor-

mation, power is needed for the memory that contains
the secret information, the addressing logic, and the
testing circuitry.

6.6 The Power Supply

Maintaining the power supply is not necessary for

protection, since if the power is disrupted the device _
simply loses its information. It is necessary, however, to

insure that in the event of a power loss the protected
information is erased before the protective mechanism
itself fails. This can be achieved by having the protec-
tive mechanism monitor the power supply and ground-
ing it entirely if its voltage is not within acceptable
limits.

Nevertheless it is very important to protect the
device against accidental loss of power, since such an
event can lead to the loss of cryptographic keys, and will
be a great inconvenience to the user. Thus it is very
desirable that the protected region have its own power
supply. Using current CMOS and battery technology, we
can build power supplies that have a lifetime of ten
years. As.we noted above, the useful lifetime of the
DPM is unlikely to be longer than that because of the
progress we can anticipate in the technology of attacks.

However, it is also possible to use an external
power source provided certain precautions are taken.
An external backup battery must be connected at all
times once the device has been loaded with its informa-
tion. It is possible to safeguard against momentary
power loss by attaching a condenser to the power line.
This condenser can be integrated into the device or
external to it.

It will still be necessary occasionally to replace the
backup battery. A device such as an electromagnetic
plunger can be used to prevent the backup battery from
being removed accidentally when the external power
line is not connected.

7. Current Status and Future Plans

Prototype I (Fig.9)* has been operating in our
laboratory for three years and is available for demon-
stration. The S-box of Prototype [is connected to a
NEC 9801 personal computer through an RS232C inter-
face, but any other personal computer could be used.
Prototype [was constructed when we were using the
“Software Service System” name for these ideas.

Prototype II (Fig. 10) is now working. We expect
to fabricate the S-box chip during 1990. We further plan
to demonstrate the chip and distribute a limited number
of copies of it to groups that will test it. We then hope

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 12

MOR! and KAWAHARA: SUPERDISTRIBUTION ARCHITECTURE

Fig. 10 Prototype Il for superdistribution architecture.

to make available sufficient technical information so
that others can design and produce S-boxes with the
same function and purpose as ours. These S-boxes
would be coprocessors for the 68020, 68030, 80286, and
80386 chips. The coprocessor implementation is clearly
superior to the free-standing implementation because it
has less overhead, would make multitasking possible,
and is nearly invisible to users.

Prototype II does not provide encryption, nor does
it physically protect the coprocessor against attacks.
However, we anticipate no difficulty in using existing
ASIC technology as embodied in encrypting units using
established cryptographic technology to satisfy all the
requirements of Section 1 of this paper.

The accounting algorithms of Prototype II are
simple—simpler, even, than those of Prototype 1. We are
now investigating methods by which various charging
methods, e. g. outright purchase and free trials, can be
gotten by having a collection agent process the payment
files.

The extension of these methods to multiprogram-
ming is not difficult, given appropriate hardware. The
MC68020 coprocessor interface has save-restore instruc-
tions for the coprocessor status, and these can be adapt-
ed to halt or resume processes within the coprocessor. It
is also possible to disable interrupts in the main proces-
sor while the coprocessor is executing instructions,
provided that the coprocessor can return control within

1145

a suitably short period of time. The time can be kept
short because it usually requires only one general pur-
pose coprocessor instruction to carry out the authentica-
tion required by the checking routine.

We have implemented Prototype II using the
MC68020, but the interface section of Fig. 4 is the only
part of the system that depends on the coprocessor
interface of the MC68020. Thus our architecture can be
adapted to other MPU's just by changing the interface.

Our work on Prototype [I has verified that superdis-
tribution can be achieved without a large initial invest-
ment, and reinforces our belief that a production system
will be feasible in the near future. Our future plans
include the following :

(1) Investigating the details of integrating the entire
system.

(2) Systematic investigation of the software for the
emulating computer.

(3) Fabrication of the coprocessor chip that provides
encryption and decryption functions using ASIC technol-
ogy.

(4) Distributing the coprocessor chips to other experi-
menters in order to verify that the system functions as
expected and to learn from the experiences of others.

Although we have directed our work towards super- .
distribution of computer software, our architecture can
be applied to other forms of digital information as well.
One example is music in the forms that it is recorded on
digital audio tapes.

8. Conclusions

We have developed an implementation for one step
in the realization of a superdistribution architecture.
This implementation has been achieved by inserting an
emulated coprocessor containing the Software Usage
Monitor into the coprocessor socket of an existing
computer. Most personal computers already have such a
socket in order to support a floating point coprocessor.
It is possible to construct a single chip that combines the
S-box with a floating point coprocessor, thus avoiding
conflicts over the use of the socket. For those computers
lacking a coprocessor socket, a special-purpose board
inserted into an expansion slot can be used instead. In
this case software is needed that simulates the coproces-
sor interface, but the overhead is not excessive.

Although we have described our system in terms of
application programs, it can also be applied to system
programs as well. Our methods, moreover, can be adapt-
ed to a virtual computer system that supports multiple
operating systems, an arrangement that is likely to be
supported in personal computers of the future.

Containers for tangible items reflect the value and
importance of their contents. No similar containers have
existed for digital information despite the progress of
microelectronics and communications networks. The
lack of such containers has invited problems such as

BEST AVAILABLE COPY

Petitioner Apple Inc. - Exhibit 1027, p. 13

-(3)

THE TRANSACTIONS OF THE IEICE, VOL.E 73, NO.7

1146

computer viruses and software piracy.

Digitally protected modules promise to provide such
containers and thus to become one of the most funda-
mental applications of integrated circuits in the informa-
tion society. We have. viewed them as a fundamental
support for our work on superdistribution, which aims
to provide unrestricted distribution of commercial soft-
ware.

Acknowledgement

We wish to thank Dr. Paul Abrahams, Consulting -

Computer Scientist, Deerfield Massachusetts and Pro-
fessor Takashi Tokuyama, University of Tsukuba for
their advice on this paper.

References

(1) R.Moriand S. Tashiro: The concept of ‘Software Service
System (SSS)™, Trans. IEICE. J70-D, 1, pp.70-81 (Jan.
1987).

S. Tashiro and R. Mori: “The implementation of a small
scale prototype for Software Service System (SSS)",
Trans. [EICE. J70-D, 2, pp. 335-345 (Feb. 1987).

S.R. White: "ABYSS : A trusted architecture for software
protection”, Proc. 1987 IEEE Symp. on Security and
Privacy, Oakland, CA. pp. 38-31 (April 1987).

A. Herzberg and ‘G. Karmi: “Public protection of soft-
ware”, in Advances in Cryptology ; Proc. Crypto 85, ed. H.
C. Williams, p. 138 (1986).

D.J. Albert and S. P. Morse: “Combating software piracy
by encryption and key management”. [EEE Computer, pp.
68-73 (April 1984).

G. B. Purdy. G. J. Simmons and J. A. Studier: “A software
protection scheme”, Proc. 1982 Symp. on Security and
Privacy, Oakland, CA. pp. 99-103 (April 1982).

“Proposal for software authorization system standards”,
Ver.0.30. ADAPSO, Association of Data Processing Ser-
vice Organization, (1983).

S. H. Weingart: “Physical security for the xABYSS sys-
tem”. Proc. 1987 IEEE Symp. on Security and Privacy,
Oakland, CA. pp. 52-58 (April 1987).

MC58020 32-Bit Microprocessor User's A{anual, Motorola
Inc. (1986).

MC68881 Floating-Point Coprocessor User's Manual,
Motorola Inc. (1988).

Y. Akasaka and T. Nishimura : “State of the art of three
dimensional ICs™, J. IEICE. 72. pp. 1417-1421 (1989).

(2)

(4)

Ryoichi Mari was bormn in 1929. He
received the B.E. and Ph. D degrees from
The University of Tokyo in 1953 and 1962,
respectively. In 1959 he joined ETL, MITI
then moved to the Institute of Information
Sciences and Electronics, University of
Tsukuba, in 1978, where he is a professor.
He has been a Chairman of the Microcom-
puter Technology Committee of the Japan
Electronic Industry Development Associa.
tion since 1974. He is a Director of Euromi-
cro. He received the Silver Core from IFIP in 1986.

Masaji Kawahara was bom in Kagawa,
degree from University of Tsukuba, Tsu-
kuba, Japan, in 1983. From 1983to 1988. he
joined Fujitsu Program Laboratory Ltd..
Japan. He is now the first year graduate
student of the master cource of University
of Tsukuba.

BEST AVAILABLE COPY

\J

{

on April 9. 1962. He received the B.S, -

"
-

BEST AVAILABLE COP'

Petitioner Apple Inc. - Exhibit 1027, p. 14 =

