
United States Patent [19]
Fischer

USOO5412717A

[11] Patent Number: 5,412,717
[45] Date of Patent: May 2, 1995

[54] COMPUTER SYSTEM SECURITY METHOD
AND APPARATUS HAVING PROGRAM
AUTHORIZATION INFORMATION DATA

- STRUCTURES

[76] Inventor: Addison M. Fischer, 60 14th Ave.
South, Naples, Fla. 33942

[21] Appl. No.: 883,868
[22] Filed: May 15, 1992

[51] Int. Cl.6 H04L 9/00
[52] U.S. Cl. 380/4; 380/23;

380/25
[58] Field of Search 380/23, 24, 25, 4

[56] References Cited
U.S. PATENT DOCUMENTS

4,652,990 5/1987 Pailen et al. 364/200
5,005,200 4/ 1991 Fischer .
5,047,928 9/1991 Wiedemer 364/406
5,109,413 4/1992 Comerford et a1. 380/4

5,142,578 8/1992 Matyas et al. 380/21

5,164,988 11/1992 Matyas et a1. 380/25

FOREIGN PATENT DOCUMENTS

0026590 4/1981 European Pat. Off. .

OTHER PUBLICATIONS

Graham et a1; “Protection—Principles and practice”,
Proc. Spring Joing Comp. Conf., vol. 40, 1972, Atalan
tic City, U.S. pp. 417-429.
Proc. 9th International Conf. on Comp. Comm. Mar.
11, 1988, Tel Aviv, IL, pp. 391-396, Kowalski et al,
“Security for Electronic Mail and Telematic Services”.
IEEE Symposium on Security and Privacy, Apr. 1988,
Oakland, US, pp. 39-49, Vinter et a1, “Extended Discre
tionary Access Controls”.
ACF2, The Access Control Facility, General Informa
tion Manual, Data Access Control, MVS Installations,
Data Access Control Sample Rule Sets, and Execution
Flow Jan. 15, 1985, pp. 21-23.
ACFZ, The Access Control Facility, Administrator’s
Guide, “Rule Settings: Access Rules” MVS Installa
tions, p. 74, Jan. 15, 1985.
IBM OS/V S2 System Programming Library: Supervi

sor, OS/V S2/MVS/ System Products: JES 3
5740-XYN and JES2 5740-XYS, pp. 39-44, Jul. 1985.
IBM OS/V S2 MVS System Programming Library: Job
management, MVS/System Product JES2 5740-XYS
and JES3 5740-XYN, GC28 1303-0, pp. 2-1 thru 2-5
Dec. 1982.

Primary Examiner-David C. Cain
Attorney, Agent, or Firm—Nixon & Vanderhye

[57] ABSTRACT
Method and apparatus are disclosed including a system
monitor which limits the ability of a program about to
be executed to the use of prede?ned resources (e.g.,
data ?les‘, disk writing capabilities, etc.). The system
monitor processes a data structure including a set of
authorities de?ning that which a program is permitted
to do and/ or that which the program is precluded from
doing. The set of authorities and/or restrictions as
signed to a program to be executed are referred to as
“program authorization information” (or “PAI”). Once
de?ned, the program authorization information is there
after associated with at least one program to be exe
cuted to thereby delineate the resources and functions
that the program is allowed to utilize and/or is not
allowed to utilize. The PAI associated with a particular
program may be assigned by a computer system owner
/user or by someone who the computer system owner
/user implicitly trusts. The PAI permits an associated
program to access what has been authorized and noth
ing else. The program may be regarded as being placed
in a program capability limiting “safety box”. This
“safety box” is thereafter associated with the program
such that when the system monitor runs the program,
the PAI for that program is likewise loaded and moni
tored. When the program is to perform a function or
access a resource, the associated PAI is monitored to
con?rm that the operation is within the de?ned pro
gram limits. If the program is prevented from doing
anything outside the authorized limits.

181 Claims, 10 Drawing Sheets

KCOMMUNICATIONS CHANNEL 12

MODEM MODEM MODEM

PROCESSOR
W/MAIN
MEMORY

KEYBOARD]
CRT

TERMINAL TERMINAL
8 N

NON-VOLATILE

STORAGE
7/ PROGRAM & PAI

/
TERMINAL A

Petitioner Apple Inc. - Exhibit 1029, p. 1

US. Patent May 2, 1995 Sheet 1 0f 10 5,412,717

KCOMMUNICATIONS CHANNEL 12

IO f’ 18 /
MODEM MODEM - MODEM

PROCESSOR TERMINAL TERMINAL
KEYBOAF‘ID/ WIMNN B . . . N

CRT ‘ MEMORY

' i

4/_ 2 /

NON-VOLATILE '
7/ PROGRAM & PAI Flg' 1

STORAGE

/
TERMINAL A

O

Flg. 3D Bl
SYSTEM DIRECTORY)
NAME OF PROGRAM

llxll

I32

.29 w
ONE USER'S PRNATE PAI ASSOCIATION DATA (/

,ls3 1st SET OF ASSOCIATION RULES
THAT ASSOCIATE THIS PAI INFO
WITH ONE OR MORE PROGRAMS. (9.9.,
PROG X) I35 (MAY BE SIMPLY A PROGRAM NAME; \

MAY BE VERY COMPLEX RULE ASSOC
S I Er) 2nd SET _ A37

SPECIFICATION OF PAI RULES Nth SET OF
(OR PERHAPS POINTER TO A PRQG Assoc
RULE SET) RULES & PAI

Petitioner Apple Inc. - Exhibit 1029, p. 2

US. Patent May 2, 1995 Sheet 2 of 10 5,412,717

0

F 1 . 2
SIzE OF FOLLOwING AUTHORIZATION INFO. '20 g

ID OF ALGORrrHM USED TO HASH PROGRAM ~22 \
__24

HASH OF PROGRAM ’

, _26
TYPE OF PROGRAM (OR OBJECT)

, -28
NAME OF PROGRAM

/ ‘29
DATE OF AUTHORIZATION

/ *\

SIzE OF SERIES OF AUTHORIZATION ENTRIES: 3O -
32 > AUTHORIZING SPEC

SIZE OF THIS ENTRY / l 34
. I / "

TYPE OF FUNCTION OR RESOURCE ‘

FUNCTION/RESOURCE SPECIFICATION 36
(POSSIBLY USING "W|LDCARDS")

LEVEL OF AUTHORITY WHICH
HAS BEEN GRANTED ~ ~~ L

\38
L

l J
_

AUTHORIZATION SIGNATURE:
\

7-) SIGNATURE: _ __ ,4O

- REFERENCE SIGNER'S CERTIFICATE
- DATE OF SIGNING
- ALGORrrHM ID’S (HASH & PUB KEY)
- AUTHORITY INVOKED FOR SIGNING

, (WITH ENHANCED AUTHORITY)
HASH OF "AUTHORIZING SPEC"

} AUTHORIZATION
SEAL

RESULT OF SIGNER‘S PRIvATE 42
KEY OPERATION lN ABOVE ITEMS —"

POSSIBLE 2ND SIGNATURE ,_ \44
(COSIGNATURE)

-, POSSIBLE NTH SIGNATURE
' (COSIGNATURE) 46

OPTIONAL: INCLUDE CERTIFICATES /
FOR ABOvE SIGNATURES. ~48

Petitioner Apple Inc. - Exhibit 1029, p. 3

US. Patent May 2, 1995

DIRECTORY OF PROGRAMS 86
//

Sheet 3 of 10

4/92
I I

NAME OF
PROGRAM
2

T NAME OF

PROGRAM

(I. //

(IIO
AUTHORIZING PROGRAM

INFO
Fig. 3B

/I I2
PROGRAM

I

NAME OF
PROGRAM

Fig. 3C II4
I

TYPE { TYPE OF OBJECT
(OR DESCRIPTION)

PROGRAM (8') SIGNED
AUTHORIZATION (PAI) H6 —

AUTHORIZATION FOR OBJECT'S
PROGRAM(S)

PROGRAM(S)
IIB "T

OBJECT PROGRAIVKS) ‘'
PROGRAM MAY BE DNIDED INTO
SEVERAL LOGICAL SEGMENTS
TO ACCOMMODATE DIFFERENT
USES OF THE OBJECT

DATA ‘2o

DATA ASSOCIATED WITH THIS
INSTANCE OF THE OBJECT.
THIS DATA IS TYPICALLY
NQT SIGNED BY A COMMON
AUTHORITY

5,412,717

Petitioner Apple Inc. - Exhibit 1029, p. 4

US. Patent

I

May 2, 1995 Sheet 4 of 10

USER RECEIVES PROGRAM
OF INTEREST, BUT OF
UNKNOWN TRUST. PROGRAM
MAY ARRNE OVER TELE
COMMUNICATIONS CHANNEL
OR DISKE'ITE

5,412,717

- I2I

I
TO PROTECT HIMSELF, USER
DEFINES PAI WHICH RESTRICTS
PROGRAM TO ONLY ULIIMPORTANT
OR EXPENDABLE FILES, AND NO
PRNILEGED FUNCTIONS. SYSTEM
ASSOCIATES THIS PAI WITH THE
PROGRAM. (SEE FIG. 3)

Fig. 4

I

USER CAN SAFELY RUN THE PROGRAM
NOW THAT IT IS IN A "SAFETY BOX“

I40

I PREVIOUS PCB /

STORAGE WHERE PROGRAM
IS LOADED

SIZE OF PROGRAM

’ AUTHORIZATION INFO FOR
THIS PROGRAM

ENTRY/RESUME ADDRESS
FOR PROGRAM

OTHER STATUS
INFORMATION

TERMINATION/ERROR INFO.

VARIOUS POINTERS, ETC.
WHICH ARE MAINTAINED SO
THAT "STRAY" RESOURCES
CAN BE RELEASED WHEN
PROGRAM ENDS.

CALLER’S PCB "I70

3 "ORIGINATING" PCB IEIBO

~ PISS

8 1
PROGRAM IN

I50

152
I T E J54 / s ORAG ,

IMAGE OF (ONE OR MORE)
PAls.

Petitioner Apple Inc. - Exhibit 1029, p. 5

US. Patent May 2, 1995 Sheet 5 of 10

200

ASK usER FOR Fi .
NAME oI= PROGRAM “202 g 6

DETERMINE WHETHER USER
WISHES TO "SIGN" AUTHORITY.
CR WISHES TO sET PROGRAM’S
AuTHoRITY FOR USER'S CW {204
PRoTECTIoN

/208
GET USER'S CERTIFICATE
AND SET SWITCH INDICATING
SIGNATURE BEING DONE P

ASK usER WHAT AuTI-ICRrrY —~2|Q
SHOULD BE ASSIGNED TO
PRCCRAM

2I2 2|4 \ 2l6 \
YEs

ASK usER To SPECIFY HAVE usER SPECIFY
FILE 9 THE FILE NAME CR TYPE OF ACCESS:
ACCESS- STEM, 0R WILDCARD - READ ONLY

FILE NAME PATTERN

YES

PROGRAMS

NO

OK TO
BE INVOKED

YES

ASK USER
TO QUALIFY

' INSERT INFORMATION
' UPDATE INFORMATION
' DELETE INFORMATION
' ERASE FILE
' TRANSMIT FILE

‘ASK USER
TO QUALIFY

5,412,717

Petitioner Apple Inc. - Exhibit 1029, p. 6

US. Patent May 2, 1995 Sheet 6 of 10 5,412,717

PROGRAM ALLOWED
TO GENERATE 22 4
ELECTRONIC MAIL? /

222 ASK usER WHETHER THIs
YES SHOULD BE QUALIFIED AND

IF so. wHAT THE
_ QUALIFICATION IS

NO
PROGRAM ALLOWED TO
TRANsMrr DATA TO

226 OTHER USERS?

YES

PROGRAM ALLOWED
NO TO PERFORM 230

DOCUMENT RELEASE? /

228 DETERMINE THE CLAss OF
YES DOCUMENTS TO WHICH

‘ THIs AUTHORITY APPLIES

[9.9. "Top Secret",
"Secret". "Sensitive", etc.]

No 0R: ENGINEERING RELEAsE

Is PROGRAM ALLOWED
TO ExECuTE MACHINE [233

232 LANGUAGE PROGRAMS? .

YES , HAvE usER SPECIFY I___>
QUALIFICATION

O
SHOULD PROGRAM BE [236
GIvEN SPECIAL MEMORY

234 ACCESS PRNILEGES?
YES HAvE usER SPECIFY

QUALIFICATION AS r___,
APPROPRIATE

_ DOES PROGRAM HAVE
NO AuTHORrrY TO

DISPLAY INFO TO
USER?

238 SUPPLY POSSIBLE
YES RESTRICTIONS. e.g.

ONLY IN A SPECIAL ———>
WINDOW, OR ON SPECIAL
CONsOLE.

NO
I

e 240
Fig. 7

Petitioner Apple Inc. - Exhibit 1029, p. 7

US. Patent May 2, 1995 Sheet 7 of 10

6 @
DOES PROGRAM HAVE 24 4
AUTHORITY TO SOLICIT

24 2 INPUT PROM USER? \

YES SPECIFY POSSIBLE
p RESTRICTIONS, 9.9. ____>

SPECIAL wINDOw, OR
TERMINAL, ETC.

No _

248
AUTHORITY TO ’
SOLICIT DIGITAL

246 S'GNATURES? DETERMINE TYPES OF SIGNATURES
YES ALLOwED. AND, IF APPROPRIATE.

THE LIMITS OF THE AUTHORITY.
OR THE SCOPE OF THE MATERIAL
WHICH MAY BE SIGNED

NO AUTHORITY TO
DIRECT "ROBOT"
DEVICES (or any
other computer

250 devices equipment) 252\ _

YES SPECIFY THE
DETAILS AND THE I

’ SCOPE OF ’
CONTROL

NO
ACCESS TO BE
GENERALLY 256,
LIMITED BY

254 SECURITY CLASS? SPECIFY LEVEUS):
YES SUCH AS "Secret",

"Sensitive", ’
’ "Con?dential", etc.

OR ALL OR NONE

N0

- ANY OTHER COMPUTER
' FUNCTION OR RESOURCE

TO BE CONTROLLED? 260
‘\

258 YES
HAVE USER SPECIFY ‘

' THE DETAILS '

NO

Fig. 8

5,412,717

Petitioner Apple Inc. - Exhibit 1029, p. 8

Sheet 8 of 10 5,412,717

Fig. 9A

US. Patent May 2, 1995

HAS USER FINISHED
SPECIFYING 264 AUTHORITY? 262 \

ISSUE MSG="UNKNOWN
AUTHORITY SPECIFIED"

266
\

COLLECT ALL PREVIOUSLY
DEFINED AUTHORIZATIONS,
BUILD PAI STRUCTURE

270
TO BE 268 \
DIGITALLY YES
SIGNED? PERFORM APPROPRIATE

DIGITAL SIGNATURE
ON PAI STRUCTURE

NO

RECORD PAI AND OPTIONAL

IS THIS AUTHORITY
BEING DIGITALLY
SIGNED?

DIGITAL SIGNATURE, As <-—» 274
APPROPRIATE, so IT CAN BE

AssOCIATED wITH THE PROGRAM

IS ENHANCED
CERTIFICATION
wITH AUTHORITY
BEING USED?

YES DOES UsER's
280 I ENHANCED

I AUTHORITY
CERTIFICATE PERMIT

ADD THE NEWLY ASSIGNING THIS
DEFINED AUTHORITY PARTICULAR

@<— TO AUTHORIZATION PROGRAM
INFO FOR THIs AUTHORITY

PROGRAM 278 SPEC?
NO 282

/

N0: ISSUE MEssAGE “YOUR
. CERTIFICATE DOEs NOT

Flg. 9B PERMrr AssIGNING THIs LEvEL
OF PROGRAM AUTHORITY"

é)

Petitioner Apple Inc. - Exhibit 1029, p. 9

US. Patent

302\

CREATE PCB &
LOCATE PROG. X

IS PAI
SIGNED?

May 2, 1995

HAS PAI YET BEEN
ASSOCIATED WITH

Sheet 9 0f 10 5,412,717

Fig. 10

aoe\

VERIFY
SIGNATURE

328
/

USE DEFAULT
AUTH.

35 32°

VERIFY ACCEPT UNSIGNED
SIGNATURE PM MANUFACTURER'S

258%?525
ARE '

, SIGNATURES
322 VALID? 324 \ YES

NO suPPREss
~ EXECUTION -

OF mm. x

326\ ‘ ‘

ALLOCATE STORAGE
AND LOAD mm x

(‘332.
GENERATE ERROR

MESSAGE ——->

\

r

PREPARE PoR /334
lNmAL EXEC

Petitioner Apple Inc. - Exhibit 1029, p. 10

5,412,717 U.S. Patent May 2, 1995 Sheet 10 of 10

f Q A
START/RESUME __>
EXECUTION 334

_ .p %

RESUME ExEC.IN ‘J38
ISOLATION MODE

)' 4 4 /3 0
REQUEST SUPERVISOR

& ExAMINE PAI r352

DOES PA!
344 INDICATE TYPE OF F N

glégivmggcm I \ ACCESS VIOLATION
SENERATE ERROR
MESSAGE

Is uSER
AUTHORIZED?

348\
DENY

ACCESS SHOULD PROGRAM
NO SEEKING

354 - INAPPROPRIATE
/ ACCESS BE

INFORMED?
I PERFORM

» FUNCTION h____
CALL EX" sEr STATUS MESSAGE k INDICATING

' /358 TERMINATION _

REMOVE PCB FROM \
TOP OF STACK 356

®
TERMINATION l0
PROCESSING

Fig. 1 1

Petitioner Apple Inc. - Exhibit 1029, p. 11

5,412,717
1

COMPUTER SYSTEM SECURITY METHOD AND
APPARATUS HAVING PROGRAM

AUTHORIZATION INFORMATION DATA
STRUCTURES

RELATED APPLICATION

This application is related to the applicant’s applica
tion Ser. No. 08/070,787, which is a continuation of
application Ser. No. 07/883,867 now abandoned, ?led
May 15, 1992 and entitled “COMPUTER SYSTEM
SECURITY METHOD AND APPARATUS FOR
CREATING AND USING PROGRAM AUTHORI
ZATION INFORMATION DATA STRUC
TURES”.

FIELD OF THE INVENTION

The present invention generally relates to a method
and apparatus for providing digital information with
enhanced security and protection. More particularly,
the invention relates to a method and apparatus for
providing enhanced computer system security while
processing computer programs, particularly those of
unknown origin, which are transmitted among users.

BACKGROUND AND SUMMARY OF THE
INVENTION

The potentially devastating consequences of com
puter “viruses” have been widely publicized. A com
puter virus may be viewed as a computer program
which, when executed, results in the performance of not
only operations expected by the user, but also unex
pected, often destructive, operations built into the pro
gram. A computer virus may also be viewed as a pro
gram which, when executed, takes a part of its code and
places such code in other programs to thereby infect the
other programs. The virus may modify other programs
within the system, set various traps in the system, alter
various control programs, erase or otherwise modify
?les in the system, etc.
Such a virus is typically maliciously constructed to

have such undesirable side effects which damage, probe
or compromise the user’s data in unexpected ways.
Problems with computer viruses are often compounded
by the fact that the virus controlling program is typi
cally executed “implicitly” when the user accesses cer
tain necessary data so that the user is not even aware
that the destructive program is executing.
The present invention provides protection from such

viruses and also from programs which execute on a
system but which are not actual computer virus carri
ers. In this regard, a program may have an unintended,
adverse impact on a computer system and/ or associated
data. For example, an executing program may inadver
tently cause certain user data to be sent to a third party.
Such a program may have been the result of a program
ming error or may have been intentionally designed to
cause a particular problem.

Prior art operating systems are typically designed to
protect data from computer users. In such systems,
users are often assigned various authorities and are
thereafter able to execute programs based on their asso
ciated authority. If a program is executing which ex
ceeds the user’s assigned authority, then such a system
will halt execution of the program. Such prior art sys
tems do not adequately protect computer users from
computer viruses or the like.

15

25

40

45

55

60

65

2
There are security systems which protect certain

“system” related ?les from being modi?ed by a pro
gram. However, such ‘systems do not typically protect a
computer user from a program executing and modifying
the user’s own ?les.
The present invention is directed to providing reli

able security, even when operating with complex data
structures, e.g., objects, containing their own program
instructions, which are transmitted among users. The
present invention also provides enhanced security when
processing more conventional programs, even those of
questionable origin, e.g., from a computer bulletin
board, without exposing system programs or data to the
potentially catastrophic consequences of computer vi
ruses or of incompetent programming.
The present method and apparatus utilizes a unique

operating system design that includes a system monitor
which limits the ability of a program about to be exe
cuted to the use of prede?ned resources (e. g., data ?les,
disk writing capabilities etc.). The system monitor
builds a data structure including a set of authorities
de?ning that which a program is permitted to do and/ or
that which the program is precluded from doing.
The set of authorities and/or restrictions assigned to

a program to be executed are referred to herein as “pro
gram authorization information” (or “PAI”). Once de
?ned, the program authorization information is thereaf
ter associated with each program to be executed to
thereby delineate the types of resources and functions
that the program is allowed to utilize. The PAI associ
ated with a particular program may be assigned by a
computer system owner/user or by someone who the
computer system owner/user implicitly trusts.
The PAI defines the range of operations that a pro

gram may execute and/ or de?nes those operations that
a program cannot perform. The program is permitted to
access what has been authorized and nothing else. In
this fashion, the program may be regarded as being
placed in a program capability limiting “safety box”
This “safety box” is thereafter associated with the pro
gram such that whenever the system monitor runs the
program, the PAI for that program is likewise loaded
and monitored. When the program is to perform a func
tion or access a resource, the associated PAI is moni
tored to con?rm that the operation is within the defined
program limits. If the program attempts to do anything
outside the authorized limits, then the program execu
tion is halted.

Thus, the present invention advantageously protects
a user from any program to be executed. The present
invention is particularly advantageous in light of cur
rent data processing practices where programs are ob
tained from a wide range of diverse, untrustworthy
places such as computer bulletin boards or other users
of unknown trustworthiness.
The present invention contemplates that the above

described PAI may be, together with the program itself
(or a hash of the program), digitally signed by some
entity that the user trusts. When digital signatures are
used to validate the PAI, the aforementioned PAI moni
toring will also involve verifying a digital signature on
a PAI to ensure that it belongs to an entity trusted by
the user and that it is properly authorized and that it and
the associated program have not been tampered with.
The present invention contemplates the use of the

hierarchical trust digital signature certi?cation systems
such as that described in the inventor’s US Pat. Nos.
4,868,877 and 5,005,200 which patents are hereby incor

Petitioner Apple Inc. - Exhibit 1029, p. 12

5,412,717
3

porated by reference herein. In accordance with the
teachings of these patents, it is possible for a single high
level authorizing entity to securely delegate the author
ity to authorize programs among a number of other
entities and to require co-signatures at any level,
thereby inhibiting the possibility of error, fraud by the
authorizing agents themselves. This allows a single
software validation group to service a large population,
thereby substantially reducing the per capita expense to
each user.

In one contemplated embodiment of the present in
vention, programs may be part of data objects, which
are written in a high-level control language and are
executed by a standardized interpreter program which
executes this high-level language. In this case, part of
the interpreter’s task is to verify that the functions en
countered in the high level logic are, in fact, permissi
ble. If such tasks are not permissible, the interpreter
then suppresses the execution of the program not autho
rized to perform such tasks.
Many advantages ?ow from the use of the present

invention. For example, the present invention advanta
geously serves to. bind limitations to programs so that it
becomes impossible for covert programs or viruses to
be introduced into the system. Users are protected
through specifying details as to the functions that may
be performed to ensure that programs which are in
tended for one function do not accidentally or inten
tionally cross-over and affect other unrelated or critical
resources (so as to effect the spread of computer vi
ruses). Through the use of the program authorization
information in the manner described herein, it is possi
ble for users to protect themselves against the programs
they execute.

Administrative agents can effectively limit the scope
of programs without the need to comprehend every
aspect of the program’s logic. Administrators can au
thorize and limit programs based on their intended func
tions and de?nitions to thereby reduce the dangers of
program defects. In this fashion, the dangers of the
distraught or mischievous programmer who might try
to plant a software “time bomb” or virus can be limited.
The present invention also permits digital signatures

to verify the PAL Thus, programs can be freely and
safely exchanged within a large population, where all
members trust the common high-level signing author
ity. '

Even programs with no known trustworthiness can
be used after program authorization information associ
ates a wide range of restrictions to thereby allow poten
tially bene?cial programs to be safely used-even if
they do not have an official certi?cation of trust.
The present invention also allows an unlimited num

ber of different resources and functions to be controlled.
For example, some useful resources/functions which
may be controlled include: the ability to limit a program
to certain ?les or data sets; the ability to transmit data
via electronic mail to someone outside the user’s do
main; the ability of a program to create or solicit digital
signatures; the ability to limit access to a program of
certain security classes, etc.
The present invention also provides the ability to

limit whether a program can perform digital signature
operations and limit how such signatures must be per
formed. In many cases, when a program is involved in
soliciting a digital signature from a user, it is up to the
program to make the user aware of the data to which
the signature is being applied. Such is likely to bethe

15

25

30

35

40

45

50

55

65

4
case with electronic data interchange (EDI) transac
tions. In this case, it is conceivable for a mischievous
application program to show the user one set of data
and yet feed another set of data for signature. In this
case, the program has tricked the user into digitally
signing totally different information than that which the
user has been led to believe. The present invention
provides a mechanism which protects the user from
programs which solicit digital signatures.
Through the use of the present invention, general

object oriented data may be transferred from user to
user without exposing users to the potential dangers of
viruses or mischievous users.

BRIEF DESCRIPTION OF THE DRAWINGS

These as well as other features of this invention will
be better appreciated by reading the following descrip
tion of the preferred embodiment of the present inven
tion taken in conjunction with the accompanying draw
ings of which:
FIG. 1 shows in block diagram form an exemplary

communications system which may be used in conjunc
tion with the present invention;
FIG. 2 is an illustration of a program authorization

information data structure;
FIGS. 3A-3D illustrate exemplary methods for asso

ciating program authorization information with a pro
gram;
FIG. 4 is a general ?owchart illustrating how a user

may use the present invention in conjunction with a
program of unknown origin;
FIG. 5 is an illustration of a program control block

data structure in accordance with an exemplary em
bodiment of the present invention;
FIGS. 6, 7, 8, 9A and 9B are a ?owchart delineating

the sequence of operations of a program for establishing
program authorization information;
FIGS. 10 and 11 illustrate the sequence of operations

performed by a supervisor program in processing pro
gram authorization information.

DETAILED DESCRIPTION OF THE
DRAWINGS

FIG. 1 shows in block diagram form an exemplary
communications system which may be used in conjunc
tion with the present invention. The system includes a
communications channel 12 which may, for example, be
an unsecured channel over which communications be
tween terminals A, B, . . . N, may take place. Communi
cations channel 12 may, for example, be a telephone
line. Terminals, A, B . . . N may, by way of example
only, be IBM PC’s having a processor (with main mem~
ory) 2 which is coupled to a conventional key
board/CRT display 4. Additionally, each processor is
preferably coupled to a non-volatile program and pro
gram authorization information (PAI) storage 7 which
may be a disk memory device. Each terminal, A, B . . .
N also includes a conventional IBM communications
board (not shown) which when coupled to a conven
tional modem 6, 8, 10, respectively, permits the termi
nals to transmit and receive messages.
Each terminal is capable of generating a message

performing whatever digital signature operations may
be required and transmitting the message to any of the
other terminals connected to communications channel
12 (or a communications network (not shown), which
may be connected to communications channel 12). The

Petitioner Apple Inc. - Exhibit 1029, p. 13

5,412,717
5

terminals A, B . . . N are also capable of performing
signature veri?cation on each message as required.
FIG. 2 is an illustration of an exemplary program

authorization information (PAI) data structure. The
PAI includes a set of authorizing speci?cation segments
22-38 and a set of authorizing signature segments 40-48
(which may be optional in certain situations).
A header segment 20 precedes the authorizing speci

?cation segments, and de?nes the length of the program
authorization information which follows. The ?eld
length information permits the programmer to readily
determine the extent of the associated authorization
information in memory. Thus, if, for example, an ob ject
oriented data structure (to be described below in con
junction with FIG. 3C) were to be utilized, ?eld 20
would serve to identify the point at which program
authorization information segment 116 ends to locate
program segment 118 shown in FIG. 3C.

Segments 22 and 24 are “hash” related segments. As
will be appreciated by those skilled in the art, a “hash”
is a “one-way” function in which it is computationally
infeasible to ?nd two data values which hash to the
same value. For all practical purposes, the value ob
tained from applying the hashing function to the origi
nal aggregation of data is an unforgeable unique ?nger
print of the original data. If the original data is changed
in any manner, the hash of such modi?ed data will
likewise be different.
The hashing of related segments insures against the

possibility that a properly authorized program in accor
dance with the present invention will be later tampered
with to result in a modi?ed program. By storing the
program hash in segment the hash may be later checked
to insure that the associated program has not been modi
?ed after it has been authorized. In segment 22, an iden
ti?er is stored to uniquely identify a particular hashing
algorithm.
The PAI may optionally include a segment 26 which

identi?es the type of program (or object) to, for exam
ple, indicate that the associated program is a machine
language program, an executive program of a particular
type, etc. By providing data identifying the type of
program, the system is provided with some information
regarding the nature of the operations to be performed
by the program. Such information can provide an indi
cation that something unexpected (and perhaps mischie
vous) is occurring. The PAI may also includes ?elds
identifying the name of the program at the time it was
signed (segment 28) and the date of authorization (seg
ment 29).

Section 30 is a segment which de?nes the size of the
following series of authorization related entries. This
?eld allows the remaining entries to be delimited as
desired.
Each authorization entry which follows includes a

segment de?ning the size of the particular entry (32).
Each entry likewise includes a segment 34 identifying
the type of function or resource 34 to which it relates. A
wide range of functions may be de?ned such as, for
example, whether the program may have the right to
authorize other programs to solicit digital signatures.
Segment 36 speci?es a speci?c function/ resource falling
within the generic type identi?ed in segment 34. For
vexample, speci?c user ?les may be designated in seg
ment 36 to more speci?cally identify the “?les” speci
?ed in segment 34. Segments 34 and 36 may, if desired,
be combined in a single segment. The reference to “wild
card” in segment 36 is intended to, for example, indicate

20

25

30

40

45

65

6
that a program may access any ?le having a predeter
mined pre?x or suf?x. For example, a designation “A*”
would indicate that the program may access any ?le
identi?ed by a tag beginning with “A”. Similarly, the
segment 36 may include an entry *DATA which may
signify that the program may access any ?le ending
with “DATA” or may alternatively signify that the
program can not access the designated set of ?les. Such
an entry may also indicate that the program can alter
any program ?les. Segment 36 may thus specify not
only what the program can do, but also what the pro
gram is not authorized to do.
Segment 38 shown in FIG. 2 speci?es the level of

authority which has been granted. For example, seg
ment 38 may specify that the program is granted a level
of authority permitting reading from a predetermined
set of ?les, but is denied the authority to alter, or delete
any such ?les.

If the PAI is to be made available to different users
(by virtue of the program being transmitted to desired
recipients), then it may become desirable for the PAI to
be digitally signed. Even within a single organization, it
may be desirable to include an optional authorization
signature.
The authorization signature includes a signature seg

ment 40. The signature segment 40 may include a refer
ence to the signer’s certi?cate, i.e., an identi?er for
identifying the signer’s certi?cate. In accordance with a
preferred embodiment of the present invention, such a
digital certi?cate is a digital message created by a
trusted entity which contains the user’s public key and
the name of the user (which is accurate to the entity’s
satisfaction) and possibly a representation of the author
ity which has been granted to the user by the party who
signs the digital message. Such a signer’s certi?cate is
preferably created utilizing the teachings of the inven
tor’s US. Pat. Nos. 4,868,877 and 5,005,200, which
patents are hereby expressly incorporated herein by
reference. In accordance with these patents, the certi?
cate is constructed by the certi?er to include the author
ity which is being granted and limitations and safe
guards which are imposed including information which
re?ects issues of concern to the certi?er, such as, for
example, the monetary limit for the certi?ee and the
level of trust that is granted, to the certi?ee. The certi?
cate may also specify co-signature and counter signa
ture requirements being imposed upon the certi?ee, as
speci?cally taught in the above-identi?ed US. patents.
The signature segment 40 may also include the sign

ing date, and algorithm identi?ers for both the hash and
public key. The segment 40 additionally includes the
authority invoked for signing which speci?es one or
more authorities designated in a certi?cate to, for exam
ple, grant the authority to authorize programs to mod
ify a predetermined ?le. Additionally, the signature will
include a hash of the authorizing speci?cation, e.g.,
including the entirety of segments 20 through 38 de
scribed above.
The result of the signer’s private key operation on the

items identi?ed in segment 40 is stored in segment 42.
This may be a standard digital signature such as de?ned
in X.500 or may be in accordance with the enhanced
digital signature teachings of the inventor’s above-iden
ti?ed US. patents. Additional (a possible second to
possible Nth) signatures (cosignatures) may be stored as
indicated in segments 44, 46. Optionally, the authoriza
tion signature may also include the digital certi?cate for
the above signatures in a segment 48. Alternatively,

Petitioner Apple Inc. - Exhibit 1029, p. 14

5,412,717
7

such certi?cates may be accessible from an identi?ed
data base (although it may be preferable to include the
digital certi?cates for associated signatures so that sig
natures may be veri?ed without the need to access any
such data base). The segments 40 through 48 constitute
the authorization seal which is associated with the au
thorization speci?cation described above. All further
details regarding the digital certi?cation/digital signa
ture techniques referenced herein may be performed
with any digital signature technology including stan
dard technology such as X500 or enhanced technology
such as in accordance with the above-identi?ed U.S.
patents.

In accordance with the present invention, a PAI is
associated with programs to be executed. FIGS. 3A
through 3D depict four exemplary approaches for asso
ciating program authorization information with a pro
gram. Turning ?rst to FIG. 3A, this ?gure exempli?es
how program authorization information is stored, under
access control, in association with a program. FIG. 3A
shows an exemplary schematic representation of a sys
tem’s directory of programs. The directory includes
data indicative of the name of each of the programs 1, 2,
. . . N (80, 86 . . . 92, respectively).

Associated with each program name identi?er is an
indicator 82, 88, 94, respectively, which identi?es the
location on disk 98 of the associated program, for exam
ple, program 1 (104). Additionally, associated with each
of the program related identi?ers is an indicator 84, 90,
. . . 96, respectively, which identi?es the location of its
associated program authorization information, e. g., PAI
1. Although the program authorization information,
PAI 1, is depicted as being stored in a separate memory
device 100, it may, if desired, be stored in the same
memory media as its associated program. As indicated
above, the program authorization information associ
ated with a program may or may not be digitally signed
depending upon whether the program authorization
information has been generated by the user himself (in
which case it may need not be signed) or has been gen
erated by a third party in which case the PAI frequently
should be signed.
FIG. 3B shows another approach to associating a

PAI with a program. In this approach, the program
authorization information 110 is embedded with a pro
gram 112. As described above in conjunction with FIG.
3A, the authorizing information may optionally be digi
tally signed depending upon the source of the PAI.
FIG. 3C shows an important application in which a

PAI data structure is associated with a program accord
ing to an embodiment of the present invention. FIG. 3C
shows an illustrative data structure for a secure ex
changeable “object”. The data structure may be signed
by a trusted authority. The signing of such a data struc
ture allows the object to be securely transmitted from
user to user. Although the data structure shown in FIG.
3 is set forth in a general format, it may be structured as
set forth in the inventor’s copending application ?led on
Apr. 6, 1992 and entitled “Method and Apparatus for
Creating, Supporting and Processing a Travelling Pro
gram” (U.S. Ser. No. 07/ 863,552.), which application is
hereby expressly incorporated herein by reference.
The data structure includes a header segment 114

which, by way of example only, may de?ne the type of
' object that follows, e.g., a purchase order related object
or any other type of electronic digital object. The pro
gram authorization information is embedded in a seg
ment 116 which speci?es the authorization for the ob

25

40

45

55

60

65

8
ject’s program or programs in a manner to be described
more fully hereinafter.
The data structure includes an object program(s)

segment 118, which for example, may control the man
ner in which an associated purchase order is displayed
so as to leave blanks for variable ?elds which are in
teractively completed by the program user. The object
program might store such data and send a copy of itself
together with accompanying data in a manner which is
described in detail in the applicant’s above-identi?ed
copending application. As indicated in FIG. 3C, the
program may be divided into several logical segments
to accommodate different uses of the object. For exam
ple, the program may present a different display to the
creator of a digital purchase order, than it displays to
subsequent recipients. When the program is received by
a recipient designated by the program, the recipient
invokes a copy of the transmitted program to, for exam
ple, control the display of the purchase order tailored to
the needs of the recipient. The recipient may verify all
received data and add new data and the program may
then send itself via the recipient’s electronic mail system
to, for example, a user who will actually ship the goods
purchased.
The data structure shown in FIG. 3C additionally

includes data segments 120 associated with the object
which include a “variables” segment and data ?les seg
ment, preferably as described in the above-identi?ed
patent application. The data segment 120 may be parti
tioned such that data associated with each version or
instance of the object will be separately stored and
separately accessible, since different users may have
different uses for the data structure shown in FIG. 3C.
Therefore, the data will vary depending upon how it is
collected from each user. The program 118, however,
will preferably remain intact for each user. The trusted
authority will sign the program together with the pro
gram authorization information (PAI) since it is the
program itself which needs to be authorized rather than
the data that is input in response to each execution of
the program (since the data may change during each
execution path and also since it is the program’s respon
sibility to ensure that accurate digital signatures are
properly collected on the input data).
FIG. 3D exempli?es a situation in which many users

access the same program (image)—each having their
own (possibly distinct) Program Authorization Infor
mation 129 associated with it and maintained in a spe
ci?c ?le belonging to the user. FIG. 3D shows a system
program directory 131, which identi?es via an indicator
associated with a program name, the location on a disk
132 of a program X. In this case, whenever program X
is invoked by a user, the system checks to determine if
the user has private PAI speci?cation(s) (e.g., 133, 135,
137) that can be associated with that program. Thus,
different users may limit a program according to their
own needs and perception of trust. This can be useful,
for example, when users with great inherent authority,
or who have been granted access to very important
information, must occasionally execute “pedestrian”
programs for mundane purposes. In this case, it may be
prudent for such critical users to de?ne a “safety box”
around some (or many, or all) “pedestrian” programs,
so that such programs may not inadvertently contain
“trojan horses” or other faults which might affect their
own especially critical data.

Therefore, such users could de?ne general PAI “as
sociation”, so that a protecting PAI could be automati

Petitioner Apple Inc. - Exhibit 1029, p. 15

5,412,717
cally associated with all programs-—except perhaps the
select trusted few programs which handle crucial data.
The present invention allows PAI information to be

associated in any appropriate manner, so that in princi
ple a user could de?ne one or more levels of PAI which
are then combined together with perhaps a more uni
versal PAI, or with a PAI which was signed and sup
plied by the or manufacturer of this program.
The present invention contemplates that the associa

tion between a program and its PAI can be constructed
very generally so that, if necessary, one program could
be associated with multiple PAI’s, or conversely, that
one PAI could be applied to multiple programs; or some
combination of these approaches. It therefore should be
understood that, while for purposes of simplicity we
generally discuss a single PAI in conjunction with a
single program, this should not be considered in any
way limiting.
FIG. 4 is a ?owchart which illustrates how a user

may bene?t from the use of program authorization in
formation, particularly when executing a program of
unknown trustworthiness. As indicated in block 121, a
user may have a desire to execute a program of interest
in which the user has no knowledge of the program’s
creator. Thus, the program has unknown trustworthi
ness and may, for example, have been accessed via an
electronic bulletin board and may have arrived at the
user’s terminal via a telecommunications channel or
diskette. Such a program, which might purport to be
only a game, carries with it a significant risk that it may
be infected by a virus.
As indicated in block 122, the user may be protected

by de?ning program authorization information which
restricts the program to only unimportant or expend
able ?les. If desired, the user may restrict such a pro
gram from modifying any ?les whatsoever. For exam
ple, the user may permit the program to only display
images on the display screen and to perform game play
ing related functions. Alternatively, if the program is
known to have a single work ?le, the PAI data may
only permit use of such a single ?le. By limiting access
only to a single work ?le, a program of unknown trust
worthiness, cannot inject a virus into other user’s pro
grams or otherwise initiate system program malfunc
tions. Thus, in accordance with the present invention, a
user, via a systems program, determines how much of
the user’s system will be put at risk by such a program
so as to, for example, completely eliminate the ability of
the program to use any privileged functions. The user
then associates, for example, through an operator
prompting, menu-driven system, a PAI with every pro
gram to be run on the system (or have such PAI or lack
of PAI associated through predetermined default mech
anisms). A system utility program is preferably em
ployed to create the program authorization information
in a manner which will be described in detail below in
conjunction with FIGS. 6-9.

After the PAI has been assigned, any time the system
runs the associated program, the system software (in a
manner to be described below) insures that the program
safely runs in a manner consistent with the PAI. Thus,
the program has been effectively placed in a. “safety
box” (124).

Turning back to FIG. 1, a program of unknown trust
may be injected into the system via communications
channel 12 or from a ?oppy disk loaded into terminal A.
The program may be initially stored in, for example, the
user’s program disk memory 7. Thereafter, the user on

20

25

40

45

55

65

10
keyboard 4 will, through interaction with the system’s
program identi?ed above (with respect to block 122 of
FIG. 4), associate the program authorization informa
tion with a program (in a manner such as shown in
FIGS. 3A through 3D) such that the program may
safely run on the user’s system or perhaps, a PAI arrives
with the program, in which case it is likely to be signed.
FIG. 5 is an illustration of a program control block

(PCB) data structure 140 in accordance with an exem
plary embodiment of the present invention. The pro
gram control block 140 is the data structure utilized by
the system monitor to control the execution of an asso
ciated program.
The program control block 140 is loaded with pro

gram authorization information such that the PAI can
be readily referenced as the associated program is exe
cuted so as to insure that the program performs func
tions and accesses resources in conformance with its
assigned authorizations. The program control block
associated with the program to be executed is located in
a storage area which cannot be modi?ed by the pro
gram.
As shown in FIG. 5, an originating program (whose

PCB is identi?ed at 180) calls a program (having a PCB
170) which will, in turn, will call the program 140 is
shown in detail in FIG. 5. Each new PCB will include
a ?eld such as 150 that points to the “previous” or call
ing program control block. A ?eld may also be utilized
to identify the “next” program control block ?le.
When a called program ?nishes executing, the system

removes its associated PCB from the top of the exe
cuted stack, removes the associated program from stor
age, removes the associated authorizing information
and accesses the program control block immediately
below it in the stack. When another program is called,
the reverse process occurs such that a new PCB is cre
ated which is placed on top of the stack, which again
points to the previous PCB as indicated in ?eld 150.
The program control block also includes a ?eld 152

which is a pointer to the location in storage where the
associated program is loaded, e.g., as indicated by mem
ory segment 153, shown in FIG. 5. Additionally, the
size of the program is indicated in ?eld 154 (which thus
indicates the amount of storage which will be released
when the program ?nishes execution).
A ?eld 156 of the program control block identi?es

the location in storage (157) of one or more PAI’s
(which are located in an area of storage which cannot
be altered by associated programs). The PAI’s pointed
to by ?eld 156 are preferably structured in the manner
indicated in FIG. 2 described above.

Field 158 identi?es the entry address for the associ
ated program. If the program, during its execution, calls
another program, the ?eld 158 is utilized to store the
address at which program execution will be resumed,
after the called program completes is execution.
The program control block also includes a set of

locations (160) for storing status information such as, for
example, program status words (PSW’s), stack informa
tion, etc. The program control block additionally in
cludes a ?eld 162 for storing information relating to an
error or termination message if an error occurs during
the execution of the program. Such a ?eld may be avail
able to the calling program to identify, for example,
why the program terminated unsuccessfully. Field 162
may store an indication that the program successfully
terminated.

Petitioner Apple Inc. - Exhibit 1029, p. 16

5,412,717
11

The program control block 140 additionally includes
various pointers which are maintained so that stray
resources can be released when the program ends (164).
Such pointers are useful to permit the release of re
sources which, for example, a programmer neglects to
release.
FIGS. 6 through 9 is a ?owchart illustrating an exem

plary sequence of operations of a utility program for
establishing program authorization information. Such a
utility program prompts a user, i.e., the end user, the
end user’s agent, or even the manufacturer, to de?ne a
range of authorities which are associated with a pro
gram to be executed by the user’s system.
As shown in FIG. 6, after entering the utility pro

gram for establishing the PAI (200), the user is
prompted to supply the name of the program for which
the PAI is to be established (202). Thereafter, the user is
prompted to determine whether the PAI should be
signed or not signed. The PAI need not necessarily be
signed if the PAI is for the user’s own use and protec
tion or if this PAI can be stored under satisfactory ac
cess control. Depending upon the user’s input in block
204, a determination is made (206) as to whether the
user wishes to sign or does not wish to sign. If the user
wishes to sign, then as indicated in block 208, a user’s
certi?cate is retrieved and a ?ag is set for later testing to
indicate that a signature operation is being performed.
The user’s certi?cate may be a conventional digital
certi?cate or an enhanced digital certi?cate providing
for the delegation of authority in accordance with the
inventor’s U.S. Pat. Nos. 4,868,877 and 5,005,200.
As indicated in block 210, the user is then prompted

to designate what authority should be assigned to the
program. It should be recognized that the authorities
which follow (and the order in which they are pres
ented) are provided for illustration purposes only and
are not intended to be a complete list of all possible
authorities which may be assigned in accordance with
the present invention.
As illustrated in FIG. 6, a check is made to determine

whether ?le access authority is to be invoked (212). A
menu may be displayed to the user to provide for a
selection of a ?le access authority (and each of the other
authorities hereinafter referenced). It should be recog
nized that ?le access authority may be used to indicate
authority with respect to any set of ?elds or ?le ele
ments in a ?le, any set of data or data elements, or any
set of ?les, etc. If the user selects ?le access authority,
then the user will be prompted to specify a ?le name or
a ?le stem or “wild card” ?le name pattern (214). As
explained above, for example, a wild card ?le name
pattern may be selected of the form DATA“, such that
the program will be given the authority to access any
?le name beginning with the pre?x “DATA”.

Thereafter, the user will be prompted to specify the
type of ?le access (216). In this regard, the user may
specify that the program’s authority shall be limited to
one or more of: only reading from ?les, inserting infor
mation into ?les, updating information in ?les, deleting
information from ?les, erasing ?les, transmitting a ?le,
etc. If ?le access or any other authority identi?ed below
in FIGS. 6-8 is selected, then an indication of this selec
tion is stored and the routine branches to block 274 of
FIG. 9 which will be described below.

If the user did not select ?le access, then a check is
made to determine if this is a request to authorize this
program to invoke other programs (218). If so, then a
determination is made (221) to ascertain what, if any,

5

20

30

40

45

60

65

12
limitations or quali?cations are to be established on
which programs can be invoked. There are many ways
that such quali?cations could be de?ned and combined.
For example, it may be that only one particular pro
gram name is allowed to be invoked; or perhaps only
programs with a name matching a certain (“wild card”)
pattern may be invoked. Perhaps the criteria would also
contain a speci?cation of the library, or set of libraries,
in which permissible programs may reside.
Another way of qualifying programs eligible to be

called by this program would be to specify that the
called program must have no greater authority than the
calling program. Alternatively, depending on the au
thority and need (and on how the system chooses to
combine the authority of invoking and invoked pro
grams), it might be appropriate to require the invoked
program to have no lesser authority than the invoking
program. In fact, as part of this “invocation authority”
quali?cation, it may even be appropriate to specify the
method by which authority is to be combined with the
called programs (e.g., by using the called program’s
natural authority, by using the most restrictive author
ity of the invoked and invoker, etc.).
As used herein, any reference to a quali?cation or

restriction, or limitation or permission of a speci?ed
authority is intended to include an entire rule speci?ca
tion set based on any collection of appropriate criteria.
The terms “rule”, “set of”, “quali?cation”, etc., are
used in their most general sense, whereby a speci?ca
tion can be determined by any type of rule, or com~
pound set of rules, which‘can distinguish elements by
any attribute, including, without limitation, for exam
ple: by direct speci?cation, by indirect speci?cation, by
exclusion, by a list, by a “wild card” rule, or any other
way which distinguishes elements by any appropriate
attribute, method or criteria. Such distinction is in
tended to encompass speci?cations that include only a
single element, that exclude all elements, or that include
all elements. The PAI may, in whole or in part, consist
of any number of contiguous or discontiguous segments
of data. In an appropriate context, there may be prede
?ned rules which are formulated for that context, which
are presumed in the absence of any explicit quali?ca
tion.
The terms “indicate”, “points to”, “address of’, etc.,

are generally intended to convey any type of appropri
ate association, including without limitation for exam
ple: direct speci?cation, any type of pointer, reference,
association, hash, linking value common identi?er, etc.;
it may include any level of indirection; it may be ex
plicit, or it may, as appropriate to the context, be im
plicit in the absence of any explicit association.
The term “limitations” is intended to refer to the

general notion of a limit—it frequently is used in the
common sense of a “restriction” over normal capability,
but it is also intended to re?ect situations in which the
limit is de?ned beyond normal capabilities.
The present invention, while it primarily focuses on

de?ning functions which restrict the ability of a pro
gram to access resources normally allowed to users,
could also, in an appropriate environment, be used to
extend the capabilities beyond those normally allowed
to a user. Thus, for example, programs whose PAI is
signed by an authority recognized by the supervisor,
could be allowed to perform extended functions.
While some exemplary rules have been given regrad

ing how the PAI should be veri?ed, the particular im
plementation could vary widely. As indicated, in some

Petitioner Apple Inc. - Exhibit 1029, p. 17

5,412,717
13

cases the PAI may not need to be signed at all——such as
when the user de?nes the PAI himself, or when a
trusted administrator stores the PAI in trusted access
controlled storage. When the PAI is signed, there are
any number of ways in which signature veri?cation
could be accomplished—e.g., in accordance with the
inventor’s other patents, US. Pat. Nos. 4,868,877 and
5,005,200. It is likely that the user will have previously
stored information defming the ultimate public key or
certi?cate whose signature the user trusts.
Turning back to FIG. 6, if the user did not select

program-invoking permission, then a check is made
(220) to determine if this is a request to specify situations
in which this program may be invoked. If so, then a
determination is made (223) to ascertain limitations or
quali?cations of such authority. One such speci?cation
might be that the program must be invoked directly by
the user (and perhaps this would be the default in lieu of
any speci?cation); perhaps this program could only be
invoked by programs with names from a speci?c list, or
from speci?c libraries similar to the “invoking author
ity” described above. Perhaps the program can only be
invoked by programs with greater authority, or with
lesser authority. Which rule is appropriate may be re
lated to how the underlying system combines PAI au
thorizations for programs called by other programs.
Another aspect of this quali?cation, may be to specify
how the authority of this program is to be combined
with the authority of an invoking program-—e.g. ,
whether this program’s effective authority is restricted
by the caller’s. Many other possibilities are also avail
able, perhaps even differing for each type of authority.
Turning to FIG. 7, if the authority identi?ed in block

220 was not selected, then a check is made to determine
whether the program is to be allowed to generate elec
tronic mail (222). If so, then a check is made as to
whether this ability to generate electronic mail is to be
quali?ed, e.g., restricted to certain individuals. If so,
such further quali?cations are speci?ed by the user
(224).

If the authority identi?ed in block 222 is not selected,
then the user is asked as to whether the program is to be
allowed to transmit data to other users (226). If so, the
above-identi?ed processing in block 224 is performed to
determine any quali?cations to this authority.

If the authority identi?ed in block 226 is not selected,
then as indicated inblock 228, a check is made to deter
mine whether the program is allowed to perform “doc
ument release” operations. If so, then quali?cations to
this authority may be selected and stored by, for exam
ple, determining from the user the class of documents to
which the authority applies (e.g., top secret, secret,
sensitive, etc.). Alternatively, the documents to be re
leased may not require “release” from a security point
of view, but rather may relate to an engineering release
of documents. In either event, any selected quali?ca
tions are recorded.

If the authority identi?ed in block 228 is not selected,
then a check is made to determine if the program is to be
allowed to execute machine language programs (232).
This authority may be useful to prevent certain routines
from inappropriately executing or being executed as a
machine language program. The user may be prompted
to specify any appropriate quali?cations 233. If the
authority identi?ed in block 232 is not selected, then a
check is made to determine whether the program
should be given any special memory access privileges,
e.g., access to storage reserved for certain operating

10

20

25

45

55

65

14
system programs (234). If so, then the user will be
prompted to specify any quali?cations to such access
privileges as appropriate.

If the authority identi?ed in block 234 is not selected,
then a check is made to determine whether the program
should have the authority to display information to the
user (238). In this regard, certain programs may be
intended solely for the purpose of performing certain
calculations. Such a program might be designed such
that there should not be any user interaction whatso
ever. If such a program were to be tampered with,
instructions may have been inserted to create an errone
ous message to the user which may cause a security
breach. For example, a screen may be displayed to the
user that there has been a system failure and that it is
necessary for the user to enter his secret password to
resume operation. Such a program may automatically
transmit the password to a party who will then have
access to the password and any other information en
tered on such a screen.

If a program is given the authority to display informa
tion to the user, as indicated in block 240, this authority
may be restricted, for example, by only permitting dis
play in a special window, or only on special consoles.

If the authority identi?ed in block 238 was not se
lected, then a check is made as indicated in the FIG. 8,
block 242 as to whether the program is to have the
authority to solicit input from the user. If so, then this
authority may be quali?ed by specifying possible re
strictions, for example, via soliciting from a special
window or terminal, (244).

If the authority identi?ed in block 242 is not selected,
then a check is made as to whether the program is to
have the authority to solicit digital signatures (246). In
this regard, a mischievous program might trick a user
by displaying one set of information, but causing the
actual digital signature to be applied to an entirely dif
ferent set of digital material. Thus, by requiring PAI
authorization to solicit and/or perform digital signature
operations, an unauthorized program is prevented from
mimicking the external attributes of an authorized pro
gram, but internally applying the user’s digital signature
capability to fraudulent material.

If the program is authorized to solicit digital signa
tures, limitations may be placed on this authority as
indicated in block 248. Thus, the program may be only
allowed to effect digital signatures on material with
limited scope, value, authority or other characteristics.

If the authority identi?ed in block 246 is not selected,
then a check is made to determine whether a program
may have authority to direct robot devices, or any spec
i?ed computer equipment or computer related devices.
If such authority is selected, quali?cations may be
placed on such authority by specifying the details and
scope of control over such equipment (252).

If the authority identi?ed in block 250 is not selected,
then a check is made to determine whether access is to
be generally limited by security class (254). Thus, cer
tain resources, ?les, etc. may be associated with a par
ticular security class, such as secret, sensitive, etc. If
such authority is to be associated with the program,
then restrictions may ‘likewise be speci?ed, including
designations of the particular security level (256).

If the authority identi?ed in block 254 is not selected,
then a check is made as to whether any other computer
function or resources are to be controlled (258). If so,
then the user is prompted to specify details as to such
other computer functions or resources (260).

Petitioner Apple Inc. - Exhibit 1029, p. 18

5,412,717
15

If the authority identi?ed in block 258 is not selected,
then a check is made to determine whether the user has
?nished specifying authority (262) as shown in FIG.
9A. If the user has not ?nished specifying authority,
then a message is issued indicating that the user is at
tempting to specify an unknown authority speci?ed
(264) since the array of authority selections has, at this
point, been exhausted. The routine then routine
branches back to FIG. 6, at entry point G to resume
processing at block 210.

If the user has ?nished specifying authority, as deter
mined in block 262, all previously de?ned authoriza
tions are collected and the PAI structure shown in FIG.
2 is completed, except for digital signature related
entries.
A check is then made in block 268 to determine

whether the PAI structure is to be digitally signed. If so,
then the appropriate digital signature operation is per
formed on the PAI structure, as indicated in block 270.
The digital signature may be performed in accordance
with the teachings in the inventor’s U.S. Pat. Nos.
4,868,877 and 5,005,200 or by using more conventional
digital signature and certi?cation techniques as desired.
Thereafter, the PAI is stored using, for example, one of
the approaches set forth in FIGS. 3A through 3D so
that it is associated with its program 272 and the routine
is thereafter exited.
Turning to FIG. 9B, at entry point F, after each of

the authorizations described in regard to blocks 212
through 258 have been selected, and an indication of the
selection recorded, the routine branches to block 274 to
determine whether the authority speci?cation is being
digitally signed. If the authority is not being digitally
signed, then the newly de?ned authority is added to the
authorization information for the associated program
(280) and the routine branches back to block 210 at
entry point G in FIG. 6.

If the authority is to be digitally signed, then a check
is made as to whether the enhanced certi?cation (with
authority) is being used in accordance with the inven
tor’s U.S. Pat. Nos. 4,868,877 and 5,005,200 (276). If no,
then the routine branches to block 280 as described
above.

If enhanced digital certi?cation is being used, then a
check is made to determine whether the user’s en
hanced authority certi?cate, as described in the above
identi?ed patents, permits assigning this particular pro
gram’s authority speci?cation. If the enhanced author
ity certi?cate does permit assigning such authority, then
the above-identi?ed processing in block 280 is per
formed. If not, then a message is issued to the user that
“Your certi?cate does not permit assigning this level of
program authority” as indicated in block 282. The rou
tine then branches back to FIG. 6 and entry point G for
the processing of block 210.
FIGS. 10 and 11 illustrate the sequence of operations

of a supervisor program for controlling the processing
of a program being executed in accordance with its
program authorization information. The processing of a
program “X” and its program authorization information
illustrated in FIG. 10 is initiated while the computer is
executing a supervisor routine. As shown in FIG. 10 at
300, a calling program calls program X for execution.
Thereafter, a program control block is created for pro
gram X. The program control block created will not be
added to the top of the execution stack until it is deter
mined that the program is permitted to be invoked and
veri?cation is successful completed. Thus, if the pro

10

15

25

30

35

40

45

55

60

65

16
gram fails a security check, it will not be placed in the
program execution chain. In addition to creating a “ten
tative” program control block, the called program will
be located through an appropriate program directory
during the processing in block 302.

Thereafter, a check is made at block 304 to determine
whether PAI has yet been associated with program X
so as to place program X in the so-called “safety box”
described above. This PAI may or may not be signed
depending upon its particular application as described.
above.

If no PAI has yet been associated with the program,
then a check is made to determine whether the program
has an associated signed “pedigree” from the manufac
turer (306). Thus, if a well known manufacturer of pro
grams has signed the program with a public key or
digital certi?cate, then, if desired, such a program may
be assigned whatever level of authority desired depend
ing upon how much the manufacturer is trusted and the
system may permit execution of such program. Such a
digital signature from the manufacturer can be used to
verify that the associated program had not been in
fected with a virus since it can be determined whether
or not the program is exactly the same as it was when it
was generated by the manufacturer.

If the check in block 306 indicates that there is a
digital signature from the manufacturer in block 308,
the manufacturer’s “pedigree” will be veri?ed by veri
fying the digital signature and performing whatever
certi?cation and authorization checks are appropriate,
given the trust criteria which has previously been estab~
lished by the user (and signed by a manufacturer in
which the user has previously established trust). Mecha
nisms for performing digital signatures which delegate
authority are speci?ed in detail in the inventor’s U.S.
Pat. Nos. 4,868,877 and 5,005,200, which patents have
been expressly incorporated herein by reference.
Depending upon the outcome of veri?cation opera

tions in block 308, a decision is made in block 320 as to
whether the manufacturer’s pedigree is acceptable. If
the manufacturer’s pedigree is not acceptable, the rou
tine branches to block 324 where the execution of the
program is suppressed, as will be explained further be
low.

If the manufacturer’s pedigree is acceptable, then the
routine branches to block 326 where storage is allocated
for the program and the program is loaded in a manner
to be described in detail below.
As indicated at block 310, if it is determined that a

PAI has been associated with program X, a check is
made to determine whether the PAI is signed. If the
PAI is signed, then as indicated at block 316, the signa
tures are veri?ed. In the presently preferred embodi
ment, signatures are veri?ed through a certi?cate hier
archy. The preferred methodology for determining
whether the signatures are valid and whether they are
trusted by the caller and whether the authority dele
gated by the program is permitted to have been dele
gated by the signer is taught in the inventor’s U.S. Pat.
Nos. 4,868,877 and 5,005,200. As indicated in these
patents, the trust level may be determined by which
high level public keys, and/or metacerti?ers have been
speci?ed as trusted by the user. Alternatively, more
conventional digital signature techniques may be em
ployed.
Depending upon the processing in block 316, a deci

sion is made in block 322 whether the signatures are
valid, authorized and trusted. If the signatures are not

Petitioner Apple Inc. - Exhibit 1029, p. 19

5,412,717
17

determined to be valid, then the routine branches to
block 324 where the execution in program X is sup
pressed.

If the check in block 310 reveals that the PAI is not
signed, then a further check is determined at 312 as to
whether the particular system or application demands
that the PAI be signed (312). If, for example, a user
generated program is being executed for the user’s own
use, then no signature may be necessary since the pro
gram is not being distributed and the user trusts what he
has done. If it is determined in block 312 that no digital
signature was necessary, then block 318 would accept
and use the unsigned PAI and storage would be allo
cated and the program X would be loaded (326).

If it is determined that a digital signature is necessary
at block 312, then a check is made at block 314 as to
whether the system has a “minimal” authority default
for programs that have no explicit PAI or an unsigned
PAI. Thus, for example, the system may permit a pro
gram to run under a minimum authority default as long
as it does not attempt to modify any permanent ?le. If
there is no minimum authority default, then the execu
tion of the program is suppressed (324). In the process
of suppressing the execution of the program, an error
code or message will be returned to the calling pro
gram. For example, a message may be displayed to the
calling program that “program X does not have valid,
signed authorization.” The routine then branches to
block 410 which operate to actually suppress the execu
tion as will be explained further below.

If the processing in blocks 322 and 316 reveal that the
signatures are valid, then the processing in block 326 is
performed. Initially, storage is allocated for the pro
gram. The program may or may not be loaded into
memory which only the supervisor is allowed to alter
depending upon the constraints built into the computer
system and the nature of the program. If the program
modi?es itself, then it cannot be loaded into memory
which only the supervisor is allowed to alter.

Thereafter, the program X’s program authorizing
information is combined, as appropriate, with the PAI
associated with the PCB of the calling program, if any.
This combined PAI, which may include multiple PAI’s,
is then stored in an area of storage which cannot gener
ally be modi?ed by the program and the address of the
PAI is stored in the process control block (PCB) as
indicated in ?eld 156 of FIG. 5. Thus, if program X is
called by a calling program, it is subject to all its own
constraints as well as being combined in some way with
the constraints of the calling program, which aggregate
constraints are embodied into program X’s PAI. In this
fashion, a calling program may not be permitted to
exceed its assigned bounds by merely calling another
program. There are many alternative ways that a pro
gram’s PAI could be combined with the PAI of the
program which invokes it-depending on the strategies
which are applicable to the current environment, and
the inherent nature of the programs themselves. It may
even be likely that even the method of combination is
itself one of the PAI authorities, or quali?ers, of either
or both the invoking or invoked program.
For example, it is reasonable to restrict a called pro

gram to the lesser of its “normal” PAI authority and
that of its calling programé-to insure the calling pro
gram cannot mischievously misuse the called program’s
greater authority to circumvent its own limitations.
On the other hand, for called programs which care

fully verify their own actions, it could be possible to

20

25

35

40

45

60

65

18
allow the called program greater inherent authority
than the program which calls it-this way sensitive
resources could be made available to wider use by medi
ating such use through trusted sub-programs. The possi
bilities for such combination must be carefully consid
ered, not only by the designers of the underlying con
trol system, but also by those who assign authority to
each program. Thereafter, the program is loaded and
the hash of the program is computed based on the algo
rithm speci?ed in the program’s PAI.
Turning back to block 314, if it is determined that the

system has a minimum authority default, then as indi
cated at block 328, the minimum default authority is
used. Such minimum default authority is combined as
appropriate with the PAI of the calling program, if any,
and inserted into the new PCB as explained above in
conjunction with block 326. The storage for the PAI is
allocated from memory that the program generally
cannot alter. Thereafter, the storage is allocated for the
program as explained above in conjunction with block
326 and the address is saved in the PCB. The processing
in block 328 using the default authority does not involve
computing a hash of the program and the routine
branches to block 334 to prepare for program execu
tion.
Turning to block 330, a check is made to determine

whether the computed program hash in block 326
agrees the hash stored in the PAI. If the hashes do not
match, then the routine branches to block 332 in which
an error message is forwarded to the calling program
such as “program X has been altered or damaged” and
the routine branches to block 410 to suppress execution
of the program.

In block 334, the program is prepared for initial exe
cution, after it has been determined that the hashes
match or after the processing in block 328. The prepara
tion for initial execution includes setting initial status
and “resume” information in the program’s PCB so that
the program will start at the proper entry point. Addi
tionally, the program’s PCB will be placed on the top of
the execution stack.
Turning to FIG. 11, in block 336 the execution of the

current program either starts or resumes execution
upon being placed on top of the execution stack. The
processing which occurs in blocks 336 through 410
includes operations which are conventionally pre
formed to execute a program. Processing operations
will now be described with emphasis on those opera
tions involving PAI processing. In block 336, the super
visor prepares to continue a program at a saved “re
sume” point by reloading (or loading) the state of vari
ous registers to re?ect their state at the point in time
when the program was last interrupted (or initialized).
Additionally, system status information is restored, e.g.,
such as stack pointers, etc., depending upon the particu
lar system environment being utilized.

After the processing in block 336, if an application
program is being executed, then the system switches
from a “supervisor” mode to a “isolation” mode so that
the program resumes execution in the isolation mode
(338). In the isolation mode, the program is unable to
affect computer resources except through protected
supervisor calls which switch the computer back to the
“supervisor” mode (it is noted that in certain cases and
in certain environments, it may be possible that the
program is designed and required to run in a “supervi
sor” mode. In this case, provided the program is prop
erly authorized as de?ned in its PAI, it will at some

Petitioner Apple Inc. - Exhibit 1029, p. 20

Petitioner Apple Inc. - Exhibit 1029, p. 21

Petitioner Apple Inc. - Exhibit 1029, p. 22

Petitioner Apple Inc. - Exhibit 1029, p. 23

Petitioner Apple Inc. - Exhibit 1029, p. 24

Petitioner Apple Inc. - Exhibit 1029, p. 25

Petitioner Apple Inc. - Exhibit 1029, p. 26

Petitioner Apple Inc. - Exhibit 1029, p. 27

