
Defending Systems Against Viruses through

Cryptographic Authentication

George I. Davida Yvo G. Desmedt Brian J. Matt

Electrical Engineering and Computer Science Department

University of Wisconsin-Milwaukee

Milwaukee, WI 53201

Abstract

This paper describes the use of cryptographic au-

thentication for controlling computer viruses. The

objective is to protect against viruses infecting soft-

ware distributions, updates and programs stored or

executed on a system. The authentication deter-

mines the source and integrity of an executable, re-

lying on the source to produce virus free software.

The scheme presented relies on a trusted (and verifi-

able where possible) device, the authenticator, used

to authenticate and update programs and convert

programs between the various formats. In addition,

each user’s machine uses a similar device to perform

run-time checking.

1 Introduction

Computer security has been tbe subject of research for a

number of years. The research in this area concerned it-

self with preventing unauthorized changes to programs and

data [12, 14, 15, 18]. One type of attack that has been

studied is the so called Trojan Horse attack. More recently

the computer virus, a special type of Trojan Horse, namely

one that can propagate itself, has heightened concerns about

computer security both in the computer science community

and the public [3]. Current computer systems offer limited

protection against attacks by computer viruses. These vi-

ruses spread by working with the existing access control

mechanisms infecting executable files. If left untreated, a vi-

rus can spread to the transitive closure of all system objects

that are accessible by the users of the infected program(s)

and are infectible. The success and rate of penetration are

related to the design of the virus and such things as the num-

ber and the utility / popularity of the program. currently

infected and their availability.

It is well known [1, 10, 19] that determining whether an

executable has viral properties is hard. This is indepen-

dent of whether the executable is stored on a disk, ROM,

PLA or clesigued into a chip. However, determiningif a

virus has been added to an executable is simply detecting

the moclilication of a file or message. Many techniques ex-

ist for detecting the modification of data. Error detecting

codes[16] are widely known and are used for this purpose.

However, while such codes may be sufficient for “random”

and certain other types of errors, they are quite insufficient

for protection against a determined adversary. Therefore, it

is necessary that signatures be generated by strong crypto-

graphic techniques.

Our view of software creation is similar to what one ob-

serves in the manufacturing of drugs. Just as people depend

on pharmaceutical companies to produce uncontaminated

products, users depend on software vendors’ products being

virus free. We assume that trustworthy software vendors

have sufficiently clean environments that they can determine

that their product, as released, is virus free. Our main goal

is the protection of software from tampering during distri-

bution and storage and execution. Consider software as if

it were a drug. Our goal is to protect the product from tbe

moment it leaves the “clean room” till it is consumed, Un-

like a drug, software is consumed many times and must be

protected even after it has been “injected” into the body,

i.e. stored on disk in the user’s system.

We assume that the software produced by a vendor is

produced in a clean environment and is virus free. To protect

software during distribution, storage and execution we:

1. Distribute software, releases and updates, to users in

tamper proof ‘(containers”. The tamper proof nature

of these devices is provided by cryptographic authen-

tication.

2. Update software without introducing viruses into the

new release.

3. Authenticate software, both when fetched from disk

and during execution.

z Previous Work

The concept of a virus has received considerable attention

since it was first introduced, both in the academic literature

and the popular press. The use of cryptographic verification

to check programs prior to and during execution was pro-

posed in Popek and Kline [1S], Davida and Livesey [5] and

Davida and Matt [6, 7, 8].

Cryptography, as a means of protection against viruses

appeared in POZZO and Grey [19, 20]. There a mechanism

312

CH2703-7/89/OOOO/0312$Ol.00 01989 IEEE

Petitioner Apple Inc. - Exhibit 1033, p. 1

was proposed to sign executable load modules using a pub-

lic key cryptosystem [11], and check signatures as programs

are loaded. Another approach suggested was to encrypt the

entire executable. Cohen [4] presents another approach for

checking executable as they are loaded.

A scheme based on linear feedback shift registers (LFSR)

for protecting executable during run-time appears in Joseph

and Aviiienis [13]. Their approach involves having the com-

piler and loader generate a signed control flow graph (CFG)

for a program using LFSRS and encrypting the result to

form the program’s %ignature”. At run time, the CFG is

decrypted by a special device and the signatures checked as

the program executes the instruction corresponding to the

edges of the graph. Several open questions exist about their

approach.

1. Flow control change instructions are not included in

the signatures. Can a virus be installed by modifying

only these instructions?

2. Is it possible to create a new version of an existing

branch of a control flow graph that contains a virus?

The signature generator used is LFSR based, and it

is well known that LFSRS are vulnerable to known

plaintext attack [2, 17]. The authors attempt to pro-

tect against this by encrypting the CFG and signa-

tures. However, when an interrupt occurres, the con-

tents of the LFSR must be saved along with the pro-

gram counter in order to restart the LFSR after the in-

terrupt has been serviced. Unless the interrupt stack is

encrypted, or a separate physically secure stack is used,

enough information will be available to determine the

polynomial used. Unless the CFG is referenced at each

interrupt return, the polynomial would have to be re-

tained on a stack as well. The alternative to storing

the LFSR at interrupt is to roll back to the beginning

of the current CFG path on each interrupt.

Once the program’s polynomial is determined the sig-

nature for all edges of the CFG can be determined. An

edge can be selected for infection such that the edge’s

simnatl]re. with the vinls. is identical to the original.

3. Consider the following attack: The Back Track At-

tack

(a)

(b)

(c)

(d)

Dis-assemble the executable.

Add the virus to a load-module.

Assemble and link. The software generates new

CFG with primitive polynomial and signatures

and encrypts the new CFG. (Is this precluded by

their remark about proper key management?)

The program is replaced with the new ve~sion.

The general form of the Back Track Attack is to back up

from the executable, or come forward from source or load-

modules, until the point where the encryption is performed.

Then let program development tools (linker, assembler, etc)

perform the encryption and replace the old version. All the

designs mentioned [20, 19], and [13] appear to be susceptible

to this attack.

The Back Track method of virus insertion is difficult

to stop unless either programs in all their forms (source,

load-modules, execut ables) are protected from their owners,

or the users of signature generating programs are authen-

ticated. The user or system, manager* can supply a key

for use in the program authentication process but the key

must identify the individual as well, i.e. not be supplied to

the signature genemting program automatically. The act of

generating a program signature must require the active user

participation. This participation must authenticate the user,

and verify that the user knowingly requests the program sig-

nature creation.

Having the authentication generator as part of an on-line

system as has been done in previous works is dangerous. It

is far easier to verify and protect a stand alone device.

3 Software Distribution

Our model of software distribution is the classical insecure

communication channel [9], as in Figure 1. Vendors ship

software, both full releases and updates, either directly to

end users or to retailers. While undergoing development,

or being processed by the authenticator, we assume that

the software is protected. While in storage, at the vendor

awaiting shipment or at the retailer, or in the system itself,

it is in an insecure channel.

The scheme consists of performing the following:

1.

9
“.

3.

4.

5.

The vendor generates signed software.

The user is able to verify the signed software.

The user installs (/ or customizes) the software, pro-

ducing a local executable module.

The user creates a signed, block and overall, module.

During execution, the user’s machine checks the exe-

cuting programs using a built in hardware authentica-

tor.

For stand-alone single-user systems, steps 2 thru 5 can be

performed on a machine incorporating a hardware authenti-

cator. In multi-user systems, on the other hand, steps 2 thru

4 have to be done either on a separate dedicated authenti-

cator system or, if the hardware authenticator unit is part

of the computer system, during a special single-user session.

Our choice of hardware authenticator devices is moti-

vated by the following:

1. The Vendor Level

Given the nature of the vendor’s environment it is

“possible” to authenticate a product using strictly soft-

ware. However, confidence in such a procedure will not

be high.

lIn a multi-user system many of the procedures described in this

paper would be performed by a system manager.

313

Petitioner Apple Inc. - Exhibit 1033, p. 2

&..
%’A

USER’S KEY

!

~ ~’ +~~OR)S

USERAuthenticat or ~
IPUBLIC KEY 1

......................................v..............*'
—.——————————-——. _———L .––l.–...–.. –––––––.––

\\

\
INJECT VIRUS

DISTRIBUTION
MEDIUM —m

——.——- ——————.—————————————.——.—_____—____
VENDOR

\\

ml? SOURCE

Authenticator

VENDOR ‘ S PRIVATE KEY
L

2. The User Level

At the user level

Figure 1: Software Distribution

it is even more important, if not Our solution utilizes public key cryptosystems for distri-

absolutely necessary, to implement authentication in

hardware. The users of a software product may be

considerably less sophisticated than the vendor.

Hardware is in general more tamper resistant than software.

Hardware authentication devices are less susceptible to soft-

ware tampering than software authentication procedures.

A purely software authentication system must rely on

considerably more complex protocols to verify the authen-

ticity of a software product. A cold start must be em-

ployed and the normal system disk(s) must be removed. The

disks/diskettes used in the authentication process are more

vulnerable to tampering than a dedicated unit, and the ini-

tialization process is more complex than most ordinary users

can be expected to handle.

bution of software between vendors and users; if you will,

between apharmaceutical house and the indivicfual. Soft-

ware retailers, like pharmacists and others with access to the

product, are not trusted. The vendor signs the software dis-

tribution or update using a private key, The corresponding

public key is available to all by means of a public directory.

The user or system manager authenticates the software by

using the vendor’s public key.

Cryptosystems are used to authenticate software in the

user’s possession. The user must first authenticate the ven-

dor’s software and then ‘{seal” the result by creating his/her

own authenticator for it. For software systems that need to

be configured (or customized) at the user site, this step is es-

sential if the authentication of an installed software module

is to be carried out without going through a reinstallation

314

Petitioner Apple Inc. - Exhibit 1033, p. 3

process and authentication of the original unconfigured prod-

uct.

The cryptosystem used to generate the user’s seal maybe

a conventional cryptosystem or a public key cryptosystem.

If a public key system is chosen it may well be the same

system used by the vendor.

To continue with the pharmaceutical analogy, the con-

sumer takes the drug home and checks the “tamper proof”

seal(s). If the seals are in an acceptable state, the drug is

removed from the vendor’s package and may then be further

protected, as when parents keep drugs in child-proof cabinets

or containers. The product may be placed in a medicine cab-

inet (software kept off-line) or “injected” immediately into

the system (placed on-line).

The creation of signed software distributions by the ven-

dor is performed by the vendor’s authenticator device. The

additional signing of the installed software is carried out by

the user’s authenticator.

The vendor’s authenticator performs the following steps

for a software release:

1. Read the vendor’s private key.

2. Generate the signature for the release including the fol-

lowing pertinent clata: program name, serial number,

version number and date of release.

The user’s authenticator performs the following steps for

a software release:

1.

9.,.

3.

4.

Store the venclor’s public key ancl the user’s key.

Verify that the signature for the release is correct and

display pertinent clata: program name, serial number,

version number, date of release, and so on.

Configure the program, if necessary.

Create a block ancl overall signed program.

It is the block-signed version that is loaded into the system.

The block signature scheme involves generating a signa-

ture for every page / segment (independently loaded block)

along with a new overall signature. The block signature
method utilizes the starting logical address of the block and

a system wide program identification / version number, in

the signature generation. The logical address is used to pre-

vent any re-ordering of the blocks in the program. The use of

the program identification / version number prevents substi-

tution of signed bloclis from another program or a different

version of the same progl am2.

The signed version is checked at run tilne by the authem

ticator unit located on the llser’s machine, see Section 5.

‘As an alternative to program identification numbers, different keys

could be used to sign each new version of each progiam but tbe number

of keys becomes too large, Another approach is to use fewer keys and

incorporate a program / version identifier into the key.

3.1 Updates

Performing an update requires the combination of the most

recent complete release of the software available to the user,

with one or more updates. Updates are distributed, as op-

posed to sending out new releases to reduce costs. If the

amount of information necessary to patch the software is

significantly less than would be contained in a new release,

then an update is chosen.

To perform an update the vendor’s authenticator creates

a signed update by performing the following steps:

1.

2.

3.

4.

Read the vendor’s private key.

Generate a signature for the new complete release, in-

cluding the following pertinent data: program name,

serial number, version number and date of release.

Generate a signature for the updates only including the

following pertinent data: program name, serial num-

ber, version number and date of release.

Send the signed update for the new complete release

to the users. In addition, the signature for the new

complete release is sent. (The complete release is not

sent.)

The user combines the update with the most recent complete

release (see Figure 2) as follows:

1.

2.

3.

4.

4

Verify the vendor supplied update signature.

Perform the update creating the new release.

Verify the new release signature.

Create a new block and overall signed executable pro-

gram.

Authenticator Design

Ideally, the authenticator is so simple and its users suffi-

ciently sophisticated that they can verify the ilnplementation

of the authenticator. As a practical matter, the supplier of

the authenticator or some “indepencleut” testing laboratory

would perform the verification.

How the design is implemented, the technology used, is

critical not only to verification but to protecting the device

against “hardware>’ viruses [1 O] as well. Viruses can be im-

planted into ROM chips, PLAs or coded into complex chips

during the design process. Simple components make reverse

engineering feasible and helps the detection of tampering.

The use of simple components offers other advantages:

1

2

Tile complexity of the chips will be low.

Stock items can be used, making it more difficult for

a manufacturer or supplier to infect chips destined for

the authenticator.

315

Petitioner Apple Inc. - Exhibit 1033, p. 4

VENDOR’S

n IPUBLIC KEYI

UPDATE(S)

\
\
\

\
I

, 1

I
I

MOST RECENT
COMPLETE RELEASE

Figure 2: Software Updates by a User

3. htultiple chips should be necessary to perform a sin-

gle function, for example a register. This is intended

to force the virus to be spread across devices. If the

chips used to perform the function are from different

manufacturers the difllculty of implanting a virus is

increased.

4. Older chips can be utilized. Items can be selected that

were manufactured years apart. More significantly,

chips can be used that are older than the virus concept.

When a user operates an authenticator, he/she along

with the authenticator clevice provides a guarantee of the

authenticity and integrity of the software. The autheutica

tor creates a signed version that could include the vendor’s

signature.

This provides software users with more security than

what is often available with clrugs. Many drugs are dis-

tributed to pharmacists in large quantities, and though the

container may have a seal when it arrives at the pharma-

cist, the seal is broken for the first customer and it is the

pharmacist’s responsibility to protect it from that point on-

ward. Signing the result provides even more protection than

locking the unsealed container in a safe.

Individual users may execute their own un-authenticated

programs. In multi-user systems, users who wish to protect

their own private programs against viruses may ask a system

manager to have their programs signed. For stand-alone

systems, this is obviously simple to do.

5 “Invivo” Protection

Even after the vendor’s signature has been validated soft-

ware is still vulnerable. The threat is not lessened by storing

it in theuser’s machine. Sincewe consider theuser)s system

to be ahostile environment, we must authenticate the code

316

Petitioner Apple Inc. - Exhibit 1033, p. 5

that we run as often as feasible. This isthefunction of the

machine’s authenticator.

The key stored in the authentication unit must be pro-

tected, both from (read3) and write access. In our design

the (secret3) key is stored in the authentication unit directly.

Even the operating system kernel, while using the unit to au-

thenticate programs, does not have access to the key. The

authentication unit must have its own external input/output

channel for initialization.

Two main difficulties must be surmounted. Making sure

that the operating system utilizes the authentication unit

properly, and how often and how much of a program should

be checked. We note in passing that the operating system

itself may be checked as described above. This may even

be done using “surprise inspections” techniques using exter-

nally generated schedules. Special architectural support is

needed.

5.1 When to Check

A program can be checked in is entirety when it is loaded into

the system and in addition, periodically by some background

task. A complete check when the program is executed may

not be feasible. Some systems use a demand load format

which results in pages or segments being loaded from the

executable only as needed. If, on the other hand, the au-

thenticator unit is sufficiently fast and all of the program is

brought into memory, (possibly with some of it being paged

out into the page / spool area on disk), then it is feasible to

check the entire program before executing it.

Even a running program (a process) is at risk. When-

ever a process does not have control of the processor, it is

vulnerable to attack’i. Pages, segments, entire programs are

moved by the operating system to and from the paging /

swapping area on disk. While in the paging / swapping

area this information is vulnerable to tampering. To protect

against this, all data moving into main memory from the

paging / swapping area, should be authenticated requiring

appropriate architectural support.
The authentication may result in adjustments to the op-

erating system’s memory manager. If the cost of moving

information between disk and main memory is significant,

it may be necessary to decrease the number of concurrently

executing programs or keep processes swapped out longer.

The importance of providing this level of protection should

not be underestimated. Certain operating systems, (for ex-

ample UNIX systems), allow for a program to be loaded into

the page / swap area on first execution and have the text

portion remain there, even after all current executions of it

have finished. This copy is the “source” for all subsequent

executions. Programs of this type are read, at most, once

from the copy in the file system between system boots.

In addition to attacks mounted against the process by

using the page / swap area,, it is possible to infect the process

by changing the information currently in memory. Whenever

31f a conventional system is used.

41n the following we assume a uni-processor system.

r “;

/\
PROGRAM LEVEL

SIGNATURE

BLOCK LEVEL

SIGNATURE

sig
INSTRUCTION

LEVEL

SIGNATURE

Figure 3: Signature Granularity

a context switch or interrupt occurs another program runs

and all suspended programs are at some risk. This can be

detected if instructions can be checked concurrently with

their execution.

5.2 What to Check: The Granularity

Problem

In the previous section we proposed that the authenticator

signs the entire executable and units of pages and / or seg-

ments. We now propose that individual instructions can be

authenticated as the CPU executes them. This authentica-

tion can be performed as part of the flow of control as in [13],

but with all instructions signed, as in Figure 3. Instruction

checking is performed in parallel with the execution cycle

and generates a signature fault if it fails. The signature

mechanism must prohibit relocation.

6 Remarks

The advantages of the proposed system are:

1. Increased confidence in software security.

317

Petitioner Apple Inc. - Exhibit 1033, p. 6

2.

3.

4.

5.

7

Simple checking mechanisms based on hardware which

are more tamper resistant.

Updates are easily allowed.

Allows for variable granularity of checking during ex-

ecut ion.

Separation of checking hardware from the system hard-

ware.

Acknowledgments

The authors would like to thank the reviewers of this paper

for several helpful comments.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

L. Adleman. An abstract theory of computer vi-

ruses. Presented at Crypto’88, Santa Barbara, Cali-

fornia, U. S. A., to appear in: Advances in Cryptology.

Proc. of Crypto’88 (Lecture Notes in Computer Sci-

ence), Springer–Verlag, August 1988.

A. Bauval. Crypt analysis of pseudo-random, number

sequences generated by a linear congruential recurrence

of given order. In Eurocrypt 86, pages 2.5 A–2.5D, 1986.

ISBN 91-7870-077-9.

F. Cohen. Computer viruses: Theory and experiments.

Seventh National Computer Security Conference, pages

240-263, September 1984. Also appears in Second IFIP

International Conference on Computer Security.

F. Cohen. A cryptographic checksum for integrity pro-

tection. Computers and Security, 6(6), December 1987.

G. I. Davida and J. Livesey. The design of secure CPU-

multiplexed computer systems: The master/slave ar-

chit ect ure. Proceeding of the 1981 IEEE Symposium on

Security and Privacy, April 1981.

G. I. Davida and B. J. Matt. Crypto-secure operating

systems. National Computer Conference, 1985, 54:575–

581, 1985.

G. I. Davida and B. J. Matt. UNIX guardians: Active

user intervention in data protection. Fourth Aerospace

Computer Security Applications Conference, December

1988.

G. I. Davida and B. J. Matt. UNIX guardians: Del-

egating security to the user. USENIX UNIX Security

Workshop, pages 14-23, August 1988.

D. E. Denning. Cryptography and Data Security.

Addison-Wesley, Reading Mass., 1981.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Desmedt. Is ~here an ultimate use of cryptography?

In A. Odlyzko, editor, Advances in Cryp~~log~, Pr~c.

of Crypto ’86 (Lecture Notes in Computer Science 2’63),

pages 459-463. Springer-Verlag, 1987. Santa Barbara,

California, U. S. A., August 11-15.

W. Diffie and M. Hellman. New directions in cryptog-

raphy. IEEE Trans. on Inform. Theory, 22(6):644–654,

1976.

V. D. Gligor, E. L. Burch, C. S. Chandersekaran, L. J.

Dotterer, M. S. Hecht, W. D. Jiang, G. L. Luckenbaugh,

and N. Vasudevan. On the design and the implemen-

tation of secure Xenix workstations. Proceeding of the

1986 IEEE Symposium on Security and Privacy, April

1986.

M. K. Joseph and A. Aviiienis. A fault tolerance ap-

proach to computer viruses. Proceeding of the 1988

IEEE Symposium on Security and Privacy, April 1988.

P. A. Karger. Limiting the damage potential of dis-

cretionary troj an horses, Proceedings of the 1987 IEEE

Symposium on Security and Privacy, pages 32-37, April

1987.

T. F. Lunt and R. Jagannathan. A prototype real-

time intrusion-detection model. Proceedings of the 1988

IEEE Symposium on Security and Privacy, pages 59-

66, April 1988.

W. W. Peterson and E, J. Weldon Jr, Error Correcting

Codes. MIT Press, Cambridge Mass,, 197’2.

J. B. Plumstead. Inferring a sequence generated by

linear recurrence. Proceedings 23rd IEEE Symposium

on Foundations of Computer Science, pages 153–159,

1982,

G. J. Popek, M. Kampe, C. S. Kline, A. Stoughton,

M. Urban, and E. J. Walton. UCLA secure UNIX, Na-

tional Computer Conference, 1979, 48:355-364, 1979.

M. M. Pozzo and T. E. Gray. A model for the contain-

ment of computer viruses. Second Aerospace Computer

Security Conference Applications Conference, pages 11-

18, December 1986.

M. M. Pozzo and T. E. Gray. An approach to containing

computer viruses. Computers and Security, 6(4):321-

331, August 1987.

318

Petitioner Apple Inc. - Exhibit 1033, p. 7

