
RC 12401 (#55642) 12/18/86
Computer Science 31J pages

•. ~ .. . [;

ABYSS: A Basic Yorktown Security System
PC Software Asset Protection Concepts

Dec. 18, 1986

Vincent J_ Cina Jr. (CINA at YKTVMH)
SteveR. White (SRWHlTE at YKTV1viH)

Lia:xn Comerford (crvm.FRD at YKTVMH)

ffiM Thomas J. Watson Research Center
P.O.Box104

Yorktown Heights. New York I 0598

mM Research Report Number RC 12401

MST00007708

APL_INTR-0017965
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034

RC 121.01 (#556Ll2) 12/18/86
Computer Science 34 pages

ABYSS: A Basic Yorktown Security System
PC Software Asset Protection Concepts

Vincent J. Cina Jr., Steve R. White. Liam Comerford

ffiM Thomas J. Watson Research Center
P.O. Box704

Yorktown Heights. NY 10598

Abstract

This paper describes the technical concepts of ABYSS (A Basic Yorktown
Security System) as it relates to the problem of personal computer (PC)
software aSset protection. The curreot PC software environment is de­
scribed as it relates to the protection or software assets. The basic concepts
or the ABYSS system are then presented. 1b.is is followed by a discussion
of new PC software marketing op[ioos that are made possible by tbe system.

Aln'SS: A Basic YorJ.'"town Security System: PC Soltwarc Asset Pro!eetion Concepts

MST00007709

APL_INTR-0017966
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. i

Preface

The ABYSS system can spaa a range of capabilities, from tbe low end, applicable to small work­
stations (such as the IBM PC) to the high end. applicable to configurations containing large lBM
mainframe processors aod communications networks. This paper describes ABYSS concepts ooly
as they relate to the IBM PC famiJy of products.

ABYSS is a hardware and software system. Any ABYSS implementation oo ao mM PC requires
both hardware and software changes or additions to tbe personal computer system. A prototype
ABYSS system is being developed by r.be Research Division of ffiM.

The ABYSS system also provides solutions to related security problems, such as remote terminal ac­
cess security and local area network (LAN) resource controL 11tis paper does not discuss these as­
pects or the ABYSS system. The details· of the cryptographic system or the cryptographic key
management algorithms used in this system are also beyond the scope of this paper.

A glossary is provided in lbe appendix to describe new terms or terms that bave a new usage in tbis
paper.

ii

MST0000771 0

APL_INTR-0017967
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. ii

CONTENTS

Introduction •.....•••••••• : ••.•.••••••••••.••••••••••••••••••.••..•••••••••••.• 1
Organization • • •. . . . • • . . • • . • • • . • • • • • . • I
Scope•...... ·•....................•.•....•.•......... 1
Current PC envirorunent•..•....••........••............•.••••.•........... I

Software Piracy ProbleiUS•..........•.......•.........•••.•.....•....... 1
Goals••.........•......•........ ·•.••.....••...... 2

Impact •...........•..........•...•...••..........•..••.••...........•...... 2
Cost•.•..•.•................•........•....•.•.•..••...........•....•. 2
Performance•.•.....•...••.•....•..•.....•.....•..........•••.•..• 3
Distribution methods•..................•..•..•..•..........•..•.••..... 3
Flexible terms aod cooditiocs•.......•...•............•............ 3
Ability to publish .•.•.•...........•....•............... :•...•.•.... 3
Security .••••..••.....••......•...•....•..•..•.•.•.............•.••.•..•.•.. 3

Components • • • . • • . . . • . . . • . . ••...••.•.•..••.. 4
PC software asset protection architecture ...•...•...•.........•...•...••.•.•....•.. 4
Protected processor ...••........•..........••.•......•.•.•.......••.•.•.....•• 4
Software panitioning•.....•......•.•.......•.•.•...•....•... 4
The right to execute•..............•...•................•..•........•.... 4
The authorization process•.....•...................................... 5
Distribution methods•.................•......•......•...... 5
Application data store•......................•.......•........ 5

AuthorU::.tron process • • • • • • • • • . • • • • • •••••••••••••••.••••••••••••••••••••••••••..• 6
Vlbat it does .•.........•.•.................••......•......•..••......•........ 6
The form it takes•••••.•. ~ •.•.•...••........•....•....... " .•......•......... 6
Electronic tokens •.....••.•......•... : ••.......•...•..•.•.....••............... 6
Token communications ...•...•....•.•.•.•.•..•..••....•.•...•.•••............... 7
Electronic token identification•.•....•.•..•••....••......•.•........•......... 7
Summary .•.•....••........•.•.........•.....•••.....•...••..•......•......... 7

PC .sofrware asset protection system architecture •••.•••••..•..•.••••.••••••••••••••••.. 8
Supervisor SeiVices .•...........•..•.............•..•.•.•.•.........•...•..•...• 8

Load right to execute•.........•..•......•....•.•••..•.••.••••.•..••.••.. 8
Distribution set•...•....•.•.......•.•..••..•..••....•..•.••..•... 8
Right to execute•..•.•....••.•...........•..••...•.••..••.••••...• 8
Example ...•............•..•.•.•.•.•.....•...•..••••.••••.•.•.•..•.••...• 8
Conservation of right to execute .••..•.•••••.•..••••.....•...••..•..•....•.•..• 9

Load and execute application •••.••...•....•••.....•...•.•....••.•...•.•.••••.•• 9
Application loading ..•..••.•...•..•.••••.••• ~ .•••..•...••••••••...••.•••...• 9
Decryption ...•••••..•.•...•••.....•....••.........•.....••.....••••.. · ... 10
Application execution .•.••.•.......••..••....•••...•••.•...•..•..•......... IO
Application security •.•.•..••........•••......•••.•..••••.•••.•..•..•...•.. 10

Create backup . • • . • • • • • . . . • . . . • • . . . • . • . • • . • J 0
Software back: up • • • • . • • . • . • • . • • • • . . . • • • • • J 0
Protected processor backup .•..........•....•........••....•..•.••••.•••••.. 10
Install backup . . • . • . . • . • . . . • . . • • . . • . . . • • • . . • . • . . • • • . • • . • . . . • • • • • . . • . . • 1 1
Backup co.otrol ..•....•••...•.....••.......•...••••..•.•••.•.••.......•... J 1

Retain backup ...•.....••.......•....••....•.•....•..•.•...•.•...•..•....... 11
Perspectives on backup servjces •.•.•....•••..•.••...••.••••.•.•.......••...... 12

Transfer right 1.0 execute•..••••..••••••.•...••.•.••. 12
How is it dooe•......................................•........... 12
Communications between protected processors••.•..•.•.••..•........••..•. 12

Co1>1en1S

MST00007711

APL_INTR-0017968
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. iii

Creating a transfer set ...•................•......•........................• 13
Summary •.•...•.......•..•.•..•.•........•.•.........••.•.•..••......... 13

Access applkatioa data store . • . . . • • • . • • . . . 13

Protected proc~r • : •.••..••••••.•....••••...•.•.•.•.•••••.••.•••••.•...••.•.. 14
Logical security ...•. : . • • . . • • . . • • • . . • • • • . . . 14

Supervisor process .•..•.•.•....•................•........................... J 4
The key store ..•..••.•.••......•......•......•.....•.....•.••••.......•.•.. 14

Supervisor keys •••••.••••••..•••.•.•.•....•..•••..•.•••....••••.•.•....... 14
Application keys .•....•......•..................•...............•......... J 4

Application data store ...••....•.•.......•.•.....••...•..•....•............... 15
Application process•..•.........•.........•.....•..•.........•..... 15
Random cumber generator . • . • • . . • . • • . • . . . • . • . . • . 16

Real time clock • • • . J 6
Encryption-decryption processing •.••.•..........•.•...•..•.•..........•....•.... 16

Physical security . • • 16
Summary •.••.••••.••.•••••...••••.•••••• • .••.••...••.•. - •.•••••••.•....•.... 17

Distribution methods •••••••••••••.•••..••••.•••••••••••••••••••••..••••..•.•••. 1 8
Separation of distributed parts•........•....•...•......................... 18
Types of distribution methods •••..•.•••.....••.....•..•..••••••...•....••...••... 18

Untargeted software product. untargeted right to execute•.......•.••............ 18
Untargeted software product,. targeted rigbt to execute ..•..•..••..•.•.•.•....•...... 19
Targeted software product, targeted right to execute•.................... 19

Future disUibutioo tecbniq ues••.•..........•.•......•....•.................. 19
Sununary : ...••...•.•...•.................•.......•...•.......... 19

New tenns and conditions· In license agreements ••••••••••••••.••.••.•••••••....•••.•••• 20
Unlimited software backup : •.......•...•......•...•....•..••..•........... 20
Limited lifetime software .• .' ...•......•..•.....•..•.•••.••.•.••.•....•..•....... 20
Allowable execution periods .•..•.•••....••..•..•••......•.••........•.•....••... 20
Demonstration software .••.••....•..•...•.....•.•...•...•......•.•.•.••••..•••• 20
Software guarantee •.••...••.....••....•..•••..•..•.•..........•...•.••.•...•.. 20
Rental software .••••.•.••.•............•.•..•....••..••....••.•..•. _ 21
Test level software •....••.•..•......•..•.•.••.......•.•..........••.••......•. 21
Usage priciog •••.•.••.••.•..•..•...•...•.•....•••..•...••.•....•..••..•.•...• 21
Site license•••....•..•..•..•......•......•............................ 21
Leodiog library . • • • • • . • • . . • • . • . . . • . . . •••.•...•.••.•..••.•.••.•.••..••..• 21
Conclusions••...••............•...•...........................•...... 21

. Software partitioning •••••••••••••••••••••••••.••••••••••••••••••.•• _ •••• _ •••••• 22
Basic requirement • • • • • . • • • • • • • • . . • . • • . • . • . • • . • . • . . • • • • • • •••..•.•.••.. 22
Investigations .••.•••.•.•.•.•..•.•.•...• : •...•.•.••..••.••.••.•.•..•...•••.••. 22
Summary ••••••••••••••••••.••••••.•••••.••••••••••••••.••••.•.•••••••••••••• 22

Protected processor to protected processor coltlJDurlications •••••••••••••••••••••••••••••• 23
Secure communications •••.•••.•.•.•......••..•.....•••......•..•..•.•.••...•... 23
Transfer of rights .••.•.•.••..•.......••••••.•.••..•.•.•.•...•..•..•.•••..••.•. 23
Summary •.•••••••••••••••.••.•.•.••••••.••.•••••••.••••••.•••••••••.••••••.• 23

T echnfc.al $UIIUll:U')' ••• 24

References ••••••••••••••••••••. ~ •• 25

Appendix A. Usage scenarios ••• 26

ContentS iv

MST00007712

APL_INTR-0017969
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. iv

Computer· store purchase•........••.....•..........•.....•.•......•••. 26
Assumptions .•.......••..........•........•.................•......•....••. 26
Actions•...........•.•......................••.......•....... 26

Broadcast software•..•......•.•....•............................•. 26
Assumptions•••.................•..............•............. 26
Actions•..•.•...........•.................................... 26

Transfer ownership•........•...•..................•........... 21
Assumptions ..•............•..........................•..•........•.•...... 27
Actions ..•........••.........•.•......•................•..•.............•. 27

Office a:od home use•.................•.•......•...........•.•........•.... 27
Assumptions ...•....•••..•.•...••........•.•.....••...•.•.......•.....••... 2 7
Actions •..•.•••.........••.••........•......•..•.•....•...•.•......•.••... 27

Protected processor hardware failure .••....•.••...•..•.....•..............•...•.•. 27
Assumptions•.....•.......•...•....••..•.••...•.............•..•..•..•. 27
Actions witb a backup . • . • . • • • . . . • . • • ••......... 28
Actions without a backup ...•••....•.•.....•...................•..........•... 28

Demonstration software .•.......••.•......•••..•....•.......•.............•..•. 28
Assumptions ••...•.•.•.••.•..............••.......•.......••..•............ 28
Actions ..•....•.....•••..••••.••.•.•.••.•......••.....•....•....••...•.... 29

Software guarantee •.•.....••...•••........... l •••••••••.••••••.••••.•.••••..••• 29
Assumptions ...•..........•......................•.........•..........••... 29
Actions .••••..•.•...•......•...•.....•......•.............••.............. 29

Rental software•.•.•......................••...............•............ ·. 29
Assumptions .•..•..•...•......... 29
Actions ••.•••...•.•.•....••.........................••...........•••.....• 29

Portable rights •..•.•..••••...•••.••......•.••..•.......•.......•.............. 30
Assumptions •...•..•.•..••.....•.....•....•...........•.......•.... ··• 30
Actions •••.•.. · •.•....•..•.•.••....•..•••.•........•••.•.........••.•...... 30

A pirating attempt ..•...••..•.•.....•...•.................................•..•• 30
Assumptions .•..•..•.••...•..•...•.•.•.•.••..•.••.•.........•...•.....••... 30

· Actions ..•........••..•..••.....•.................•....................•.• 30

Appendix B. Glossacy. • .•••.•••••••.••..•.•••••••••••.••••..••...•••.•••••...•.• 3 I

Index •••••••••••••••••••••••••••••••••••.•••••••••••••..••••••••••••••.••••• 33

Contents

MST00007713

..

ocr..::- Gl?

APL_INTR-0017970
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. v

Introduction

Much bas been written about tbe problem of personal computer software piracy. This paper discusses
why previous attempts at a technical solution to this problem have failed and develops the concepLS
of a system that can prevent software piracy.

Organization
The current persooal computer environment is described as it relates to tbe problems that are ad­
dressed by the software asset protection system. The goals of the system are then described. An
overview of the the major components and new concepLS is presented in preparation for a run dis­
cussion later in the paper.

Later sections describe the personal computer software asset protection architecture and the major
components and concepts used io the system. New marl:eting·t.ecbniques are made possible with the
personal computer software asset protection system. These new techniques are surveyed in later
sections.

"Appendix A. Usage scenarios .. on page 26 in the appendi't contains examples of bow this system
might be used.

Scope
The purpose of this paper is to introduce the concepts of the PC software asset protection system and
illustrate how the system may be used.

Any implementation examples used in this paper are just used to help iiii!Strate the concept beiog
discussed. It should not be assumed that any implementation examples presented ia this paper rep­
resent the beSt implementation alternative. Research is being conducted on specific implementation
prototypes and the new ideas that have been formulated during tbe development of the system.

The research work that bas produced the coocepts and architecture for the personal computer soft­
wate asset protection system tbat is described in this paper is called A Basic Yorktown Security
System or ABYSS. This paper essentiaUy describes the concepts that are needed for a fuller under­
standing of the ABYSS system. The tenns .. ABYSS system .. and "PC software asset protection
.system'" are used interChangeably in tbis paper.

Current PC environment
Part of the success of the IBM personal compuli:r family stems from tbe fact tbe IBM PC is designed
to be an "open system... The term «open syStem .. refers to the design characteristic of the IBM PC
family that exposes all hardware and software, and associated interfaces, to tbe end user. These
interfaces are described by IBM and enable anyone to examine or modify any information in the IBM
PC.l The ability for end users. third party vendors, and other IDM divisions to modify or extend tbe
hardware and software in an 1BM PC bas resulted iD a wealth of hardware and software products for
the PC. These products have contributed greatly to the success of the ffiM PC produce line.

Sofhmll! Piracy Problems
Since the ffiM PC is an open system, there is no way to prevent anyone from examining or modifying
any pan of the system. This bas greatly contributed to the problem of ··software piracy". The fol­
lowing situations are common io today's environment:

• An end user purchases a game from the computer store. The user tries the game and likes it.
A number of duplicate disks are cre"ted and given to friends. Botb the software developer and
the sonware distributor Jose revenue when illegal copies are distributed.

Even read only mc:mol)' (ROM) in the PC c:an be modilicd or rcplaa:d b:ouse all hanlv.."2re interl'sces :ate exposed.

lntrOductioot

MST00007714

APL_INTR-0017971
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 1

• The software de\leloper uses a "copy protection" mechanism to (try to) prevent the end user
froQl making backup copies of the software. This can create any of the following problems.

• The distribution diskette becomes unusable due to a physical defect. the user cao DO longer
execme the program. · ·

• The copy protection mechanism does DOt allow the user to execute the program from a hard
disk.

• The copy protection mechanism allows iosta!Iatioo on a bard disk but tbe original distrib­
ution diskette must be preseot for the program to execute. If the original distribution
d.is.kette becomes unusable, the user cannot execute the program. A backup of the bard
disk does Dot effectively back up tbe installed (copy protected) program.

• The copy protection mecbaoism allows installation on a bard disk and there is DOW no way
for the user to execute that program on another machine, such as a backup machine.

• Copy protection systems have been produced that are sold to software developers to protect
their software as~ts.

• Eohacced COfTY products (bardware acd software) bave been produced and sold to end users to
defeat the copy protection systems.

A vicious cycle exists. New copy protection systems are developed. then new copy programs that
defeat the new copy protection systems are developed. In fact a new sub-industry bas developed with
a set of vendors developing new copy protection systems and a set of vendors developing newer copy
programs, which are able to defeat the newest copy protection scheme.

With current technology there is no end in sight for tbis problem. With the current open PC system
it will always (tbeoreticaUy) be possible to defeat whatever copy protection mechanism can be de­
veloped. The fact that the system is open prevents an effective solution [() the software piracy prob­
lem.

Goals
A set of objectives or goals have been established for a solution to the PC software asset protection
problem.. This section describes these goals and objectives.

Impact

Any solution to the PC software asset protection problem must have minimal impact to the software
developer. the software distributor. and tbe eod user. For example, current copy protection mech­
anisms are a great inconvenience to tbe end user. these types of solutions are oot acceptable. Soft­
ware developers should be able to produce protected software without mucb more effort than tbey
are using toc:fay with copy protection mechaoisms..

The cost to the end user must be minimal The purchase of a secure software asset protection system
(hardware and software) may provide little direct eeonomic benefit to an individual end user2• Most
of tbe direct economic benefit goes to the software developer and distribulor. The cost should be low
enough to the software developer or distributor so tbat they do not Deed to pass oo ~ large cost in­
crease to the end user. Eventually. tlle end user should benefit economically from an effective PC
software asset protection system. Since unauthorized elCecutioa of a software package is prevented.
software developer and distributor revenues may be higher through greater sales volume. Thus the
eod user cost for an individual software package may even decrease.

Din:cr economic benefit is possible to !he end 'OSCr il' the $O(t·rr.n~ developer takes advantace or new license =-~cmcnts
that are made possible witb !.his system. An economic benefit from !he ability to returq soil 'l\.'3re lor a refund or rent
soltwnre is now possible.

Introduction 2

MST00007715

APL_INTR-0017972
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 2

Perform11nce
The execution speed of the protected application should not be greatly reduced by the software asset
protection system. A slight performance degradation may be acceptable, but the user should not
perceive poor performance or inconsistent response times due to the software asset protection sys­
tem.

Distribution mdltods
The term "distribution method" refers to the way tbe software developer gets the software to tbe
distributor and the way tbe distributor gets the package to the end user. A PC software asset pro­
tection system should not adversely affect any current or future distribution channeL

A common distribution channel in use today is tbe local neighborhood computer store. Software
products are kept on the shelf or on display in the computer store. An end user buys the package off
the shelf. brings it honie, installs it and runs iL A future distribution channel may involve the broad­
casting of software from a satellite. The PC software asset protection system should complement any
existing or planned distribution methods, and possibly enable new distribution or marketing methods.

Flexlble temrs and conditions
The following relationships exist between personal computers and eod users:

• An end user exclusively uses·only one PC.

• One PC is used by many different people at different times.

• One user uses many personal computers3•

• The PC being used may be a pan of a local area network (LAN) with services to access shared
data aod programs.

• The PC may be connected to a host mainframe system to obtain services or data that reside on
the host.

In addition to tbese relationships both the hardware and software may be owned by a farge enterprise.
an organization within an enterprise, or an individual.

These factors contribute to lbe software piracy problem because existing license agreements do oot
make good provisions for them. The lack of an effective PC software asset protection system limits
the types of license agreements that might be developed to permit more nexible tenns and conditions
to encourage tbe legal use of these relationships.

The goal is to permit flexible terms and conditions and be able to enforce them.

Ability to pllblish
The details of ~ PC software asset protection system should be publisbable without compromising the
sectJrity of the system. 4 This wiiJ enable tbe system to become a standard in the indUStry. Software
developers and distributors wiD be able to examine the systems details, know how it works. and have
l.nl.st in its security and usability.

Security
Ooe guideline for the level of security needed in a software asset protection system is that it should
take more effort (mooey, time, or resource) to defeat the system tbao it would take to independenf:)y
develop tbe protected resource.s Unfonunately, while this guideline is necessary, it is oot sufficient
to describe the goals of an effective software asset protection system. Some pirates may cot care bow
much time and effort it takes to break the security of a system, it is the challenge that is important.

Those pertoru.l computers may or may not be ~d by other users. and m:ay or may not be portAble.
An. c:umplc of such a system is the Dau Encryption Standard; lhe details are published and the system is s.:aurc.
For an c:ureme ex:~mple: You can put a mud pie in the ~ult at Fort ~and il will be very secun:. bul, since aJI)'Qne
wi!h xmu: ""'3ttr and din can m:11::e a mud pje, pt.>cing one In a vall.Jt d~s not in=e the security of mud pies.

3

MST00007716

APL_INTR-0017973
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 3

For example, a student in a large university might spend all weekend, in a university lab, Using uni­
versity equipment,. to break a security system, then publish sensitive information in lbe campus
neWspaper, all just for the .. fun of it''.

Components
The ABYSS system introduces some new concepts that are mentioned in thiS introduction and cov­
ered in more detail later in the paper.

PC software asset protection archifectun
An architecture has been developed to describe lbe software asset protection system at a level inde­
pendent of any implementation. The architecture cont.aios a set of services wlUch constitute the op­
er.ltions of the software asset protection system. The concepts described ia this section are discussed
in detail in [WbitB6].

Protected processor
As stated earlier, with an open system, software piracy canoot be prevented ~ffectively. The ABYSS
architecture defines a proted~ processor which is a .. closed'' portion of the system. Since part of the
system is now closed, it is now possible to build an effective software asset protection system to pre­
vent piracy. The protected processor consists of both hardware and software and is botb logically
and pbysicaUy secure.

The logical security of the system preveo[S aoy software in the system from accessing and exposing
secret inform-ation. Cryptographic techniques are used as part of the logical security system. Wbeo
protected ioformatio.o is outside the protection of the physical ~curity system it is encrypted.

The physical security system prevents tbe access aod exposure of secret information by physical
means. For example,' the physical security system is designed to prevent tbe use or hardware probes
to access secret information within !be protected processor. [Wein86]

.Software partitioning
In order for a software package to be protected some or it must execute in the protected processOr,
where it cannot be accessed by any otber hardware or software. The software must be split into a
.. protected" part and an .. unprotected" part. This is called software partitioning. The unprotected
pan of the software resides in personal computer memory and executes in the personal computer's
main processor (such as the Intel 80286 processor in the ffiM PC/AT). The protected part of the
software executes in the protected processor and therefore cannot be e.xamined or modified. When
the protected part of the software producl is not in tbe protected processor it is encrypted. This
prevents a pirate from obtainiDg any useful information about lhe protected pan of tbe software.
Both the protecLed aod unprolected parts of the software must be present in the system for the ap­

. plication execute..

The way tbe software package is partitioned into a protected aod unprotected pan is important to the
logical security of the system. The protected pan of the software must be chosen in such a way that
its contents caonot be determined by enrnining either the unprotected part of the .software or the
interaction between the protected aod unprotected parts.

11re right to execute
Today, the possession of a software distribution diskette, or a dupfzcate copy (backup) of the dis­
tribution dislcette is aU that is needed to execute a program. The software asset protection architec­
ture separates lhe possessioo of tbe software from the right to eret:lll~ that software.. Having a copy
of tbe software package does not give one the right ro execute the package.

The control of the right ro execute a software product protected by the software asset protection
system is a very important part of tbe system. The .. right to execute" is kept in the protected
processor where it cannot be direCIIy examined or changed, except as spectned by tbe software ven­
dor.

latroduction

MST00007717

APL_INTR-001797 4
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 4

The authorization proces$
In order for the software asset protection system to control the "right to execute'' for a particular
software product, it must be able to control tbe number of times that "right to execute'' is installed
in a protected processor. The architecture describes a general process, caUed the autlroriurticm process,
which can control the number of times .a supeJVisor service is dooe. The authorization process can
be performed by trusted humaas, trusted protected processors, or by a hardware implementation of
a "token"

For now, suffice it to say that the aulborization process can securely control the number of execution
rights for a program. For example. the number of end users given the "'right to execute .. for a soft­
ware product just purchased in a computer store can be limited to ooe.

Distribut;on mdhods
Any full discussion of the PC software asset protection problem must include a discussion of distrib­
ution methods. lbe architecture bas separated possession of the software from possession of the
.. right to e.xecute" that software. The software asset protection system is concerned witb both the
distribution of the software product and distribution (and control) of the "right to execute'' that
software.

Some security systems fit some distribution methods nicely and do not work weiJ with others. We
analyze current and possible future distribution methods and categorized their essential character­
istics. The PC software asset protection system described here works with all known distribution
methods.

Application data store

One or the goals of the PC software asset protection sys~m is to support flexible terms and condi­
tioos. This requir~s persistent storage in tbe protected processor. associated with protected software
productS. There are a number of other facilities that applications might want to provide that require
saving some application data securely between executions of that application. Today this is usuaUy
accomplished by storing that dab~ in a rile. Such a file can be examined or changed by the end user.
so sensitive iafonnation is not ~cure wbeo Stored. in this manner. The "protected processor .. pro­
vides a secure place to store sucb information, called tbe opp/la:ttion data stor~. Since tbe application
data store is in tbe protected processor it can not be examined or changed by any hardware or soft­
ware, except the owniog application.

The application data store can bold data that is used to enforce the flexible terms and conditions in
the license agreement and any other sensitive facility the application wishes to implement.

Introduction s

MST00007718

APL_INTR-0017975
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 5

Authorization process

The "authorization process" is a very important concept in the PC software asset protection system.
This section describes the autlrori=tion proc~. the tolu!n, and the token descriptor which can be used
by tbe authorization process. The authorization process is described before a discussion or the PC
software asset protection architecture because it is used e;xtens.ively wilhin the architecture.

What it does
In geoer.~l. an authorization process is a mechanism which limits the number of times an action or
process can take place. An example of a process which one might want to limit is the loading of the
"right to execute" a software product into a protected processor. Authorization processes are used
by the software asset protection system to control execution rights. An authorization process must
be highly resistant to forgery. The eotir~ process must be capable of being observed wilhout signif­
icantly increasing the chance· of forgety. U the authorization process could be forged, the software
asset protection system would lose control of the number of execution rights.

The form it takes
A.o authorization process does not necessanly require any special hardware. For example, your em­
ployer may oaJy allow you to ask for one day off with pay. A note may be made (mentally or phys­
ically) when the request is granted. This effectively limits your days off lO one. .

An aulhorization process may also use a special piece of hardware. called a tok.ur wbicb is used in the
limiting function. An example or a "token" is a theater tickeL You purchase a theater ticket good
for ooe entry into a sbow. When the ticket is presented al the door you are admitted and lhe ticket
(token) is destroyed. The ticket must have tbe property that it is difficult to duplicate or forge..

The software asset protectio~ system uses authorization processes in maoy of its operatioos. Imple­
mentations may or may not require a token (special hardware). Some i..rilplementatioa scenarios use
a central service bureau to keep track of when things are done. Contact with the service bureau might
be through per5onal contact. telephone conversation. or data communications (PC to service bureau
computer). Any such communication bas to be protected against duplication or forgery aod service
bureau records must be kept secure.

Electronic tokens
The ABYSS system introduces a novel authorization process. embodied in an electronic token. A
sample implemematioo is a SIJ1all ·chip that can be inserted into a token reader slot in the protected
processor. A token can also be implemented in a small protected processor which is the size of a
common credit card, caUed a "smart c::~rd". The prot.e~d processor collllect.ed to the personal
computer would contain a reader for the credit card sized protected processor. In either implemen­
tation token information is accessed by the protected processor through tbe reader6. Electronic to­
kens are described more fuUy in (StroB6].

Regardless· or implementation, the tok:en information is discharged (logically or physically) from the
token when the subject function is performed (in much the same way tbat the ticket taker at the
theater door destroys your ticket upon admittance to the theater)'. The token itselr must be logically
and physically secure. Information contained within the token is used by tbe authorization process
to identify the resource and the specific fuoctioo to be performed. For example. if the function being
limited is entry into the theater, a .. token" contains information (unlike a oormallheater ticket) that
identifies the person (resource) that is aUowed entry. If the token information could be completely

A tol:en could :also be implemented in a·largc mainframe host system ~nd eommuniate wilh the: protea.c:d processor via
n:lecommunic:.tions.. ·
Titis e:~tampl~ a$$umes the ;>t.thorization proceu using the to~n is to limit the numbu o[acnions to one. Tol;ez c:an
be: produced to limit the number or :actions to any (rcll5onable) nwnbcr. In lhc PCsoftwan::assctprotectionsystcm the
limit of one is rnost often used.

Authoriz:ltion pi'XCSS 6

MST00007719

APL_INTR-0017976
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 6

examined, the token could be forged. The token could not detect that this bas occurred and tbe au­
thorization process could not perform irs limiting function.

Token commUJlications
The communication between the token and the protected processor does oot have to be secure. Such
communications can be completely observed without sacrificing lbe integrity of the authorization
process or exposing token information. Observation of Uris communication does ool afiow the
would-be pirate to forge or duplicate the token. This aUows the protected processor to interact with
the token using any communications path, for example, token reader slot in the protected processor
or telephone based data cooununications.

Electronic token identification
The electronic token contains the information to ensure that the token process perfonns an action
once (or any limited number of times). In the PC software asset protet:tioo system tokens are used
to authorize the "right to execute" for an application to be loaded uno a protected processor. The
token is bound to a specific application by what is caUed a toka deScriptor. The "token descriptor"
is encrypted data that describes the contents of the physical token. The token descriptor is encrypted
with a cryptographic key that is associated with the protected resource.

Whenever a token is produced to protect a sensitive resour~ a "token descriptor" is also created.
Botb the sensitive resource and the tol:eo descriptor are encrypted using the same cryptographic key.
This biods the token to the sensitive resource. The token io.fonnation is discharged when the opera­
tion that is being limited by the authorization process is requested.

Summary
Authorization processes can securely limit the number of times an action can take place (sucb as tbe
ability to transfer a "right to execl!te"). Tokens can be used to authorize the function being re-
quested. ·

Aulhoriutioll process 7

MST00007720

APL_INTR-0017977
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 7

PC software asset protection system architecture

In order to specify, in an implementation-independent way. the functions that a PC software asset
protection system must perform, an architecture has been developed. The architecture calls tbese
functions .rupervisDr UTvius.

Supervisor Services
The architecture defines a number of services. some required for any software asset protection system
implemeotatioa and some optiooa!8• The important services that are needed for a complete solution
to the PC software asset protection problem are discussed in this section.

Load right to execute
. As stated earlier, one of the most imponant jobs of a PC software asset protection system is to
manage or control the "right to execute" for a particular application. This service manages the "right
to execute" for a software product after it is purchased or transferred.

Distribution sd

When a software package is purchased it comes in what the archilecture caJls a distribution set. To the
architecture the distribution set is a logical construct: it bas oo physical form. We will use a oommoo
reai-Jife exampJe of a distribution set in this section for ease of understanding. You can think of the
d.isl:libutioo set as the physical package that you talce off of the computer store shelf. This package
usually contains diskettes, document:ttioo. and possibly a tolcen. The diskettes contain the protected
p:art of the software package (encrypted), the uoprotected part of tbe software, aod the ''right to ex­
ecute" the software package in the form of an application key (encrypted). A token may be included
ro authorize a "load right to execute" service.

Right to execute
The "right to execute" an application needs to- be stored in a protected processor where it cannot be
inspected or modified. The .. right to execu~" takes the form of a ccyptographic key, called the ap­
plication key. When the applicarioo key is not in the protected processor it must be encrypted The
application key is suppl..ied by tbe software developer and is normally known (in the plain text form)
only by lbe software developer.

The "load right io execute" service moves, in a secure manner. the "right to execute" from the dis­
tnoution set to the protected processor. Normally this service is onJy performed once, when tlie
software product is initially purchased and installed on a pen;ona! computer. The license agreement
for the package may stipulate that lhe use.r may only use the software on one personal computer. The
authorization process is used to control the number of times the "load right to execute" service can
be performed.

While in a protected processor, lbe "right to exec.ute" is the application decryption l:ey that is used
to decrypt the protected part of the software when the ·•toad and execute application" service is ex­
ecuted.

A simple example. using c\ltl'ent distribution methods. is used to illustrate the ··road right to
execute" service.

Ex:o.rnple

When you purchase the new program product io your neighborhood ccimputer store the distribution
set contains the "right to execute .. that produCL The right to execute a software package must be
loaded into the «protected processor" before lhe application can be executed. The authorization to

Other services are also needed for :.n crree1lve soft'l>r.lrc asset proteaioq syStem. These services exist in other s:l$tems
and arc not deuiled in this section of the papc:r. They include: enc:rypti011 and decryption services. :opplication progr:am
tnnslc:r of control .services. and raJKiom number generatiori services.

PC sofl"lll3re uset protection system architcc:ture

MST00007721 PAGE.15

APL_INTR-0017978
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 8

move the "right to e:xecute" into the protected processor is also contained in the distribution set9•

The license agreement states that this package can be used on only one system.

You take the distribution set liome to your personal compUter (an ffiM PC/XT. with~ hard disk) and
follow the instaUation instructions in the documentation. You place tbe distribution diskette in the
floppy disk drive and type INSTALLI0• The instaU program uses the "load right to execute" service
to move the right to execute from the distribution set into the protected processor11• You may make
:as many backup copies of the distribution diskette (at any time) as you wish.

Conservation of right to execute

The term "conservation of right to execute" bas to do with the logical security of the system. A sys­
tem tbat conserves the right to execute does not allow the "right to execute'' an application to pro­
liferate to unamborized users. Much care was put into the development of the cryptographic key
management algorithms of this system to ensure the conservation of the right to execute.

The distribution set contains the "right to execute'" (or application key) of the subject software
package. The end user is allowed to make any cumber of backup copies of the distribution diskette.
This does not proliferate the .. right to execute" to unauthorized users for the following reasons.

• While on tbe distribution diskette the application key is encrypted. It can only be decrypted by
a valid protected processor, which is pbysicaUy and logically secure.

• The application key is decrypted in the pruwcted processor and stored in the protected processor
by the "load right to execute,. service. This service must be authorized to eJZecute by the au­
thorization process, which can limit the number or times the service can be done (the limit is
usually set to one). The token is associated with the application by the fact that the token de­
scriptor and tbe protected part of the application are encrypted using the same cryptographic
key.

Therefore, having the original distribution diskette is of no use to tbe would-be software pirate. Tbe
pirate can have maoy copies of the distribution set diskettes. Such copies are useless because the
"right to execute" is onJy meaningful when it resides in a protected processor. The authorization
process completely controls tbe number of times tbe "right to execute'' can be placed in protected
processors.

Load and I!XI!CIIte applfcation

After the software bas been purchased and inst.al1ed on the system the end user wants to execute the
application many times. The "load and execute application" service is used when the application is
executed. The "load and execute .application" service will be the most frequently used software asset
protection service.

Appliadon loading

The software product bas two parts: an unprotected pan, and a protected part that is encrypted by
the software developer with the application lcey.

When lhe application is sa:arted. the unprotected part of tbe application is loaded into the personal
computer processor. The "load and execute application" service is used to load tbe protected part
of the :application intO the protected processor. If the "right to execute" !.he application has beeo
loaded into the protected processor (using the "load right to execute .. service at application installa­
tion time) the protected processor can operate on !lJe protected pan of the software •

•
•• ..

The authori%:ation to load the -right to execute" is CC>Iltained in a "tol.:cn~ •
Dc:pcnding on the implemen~!Xm or the authorization process yo" may have to insen a token into a slot in the ABYSS
p=:ssor when (llnd only 'lllhen) the prour.om d. iruili>Uy Wull<Jd.
The authorization process is used intcrruoUy to m:U:e sure the service is performed only onee for this distnbll1ion set or
any copies of the distn"butio11 set.

PC sort ware liSSet protection system architeCture 9

MST00007722

APL_INTR-0017979
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 9

Decryption

The .. right to execute,. the application exists in the protected processor in the form of an application
decryption key. This key is used to decrypt the protected part of the application inside the protected
processor.

Application execution

Now that lbe unprotected part of the application is in tbe personal computer and the protected part
of tbe application is in the protected p~sor in plain text (not encrypted) application execution can
begin. Application execution begins on the personal romputer wbicb periodically makes calls to the
protected pan of the application execmillg in the logically and physically secure protected processor.

The application must be partitioned in such a way that both the protected part and lbe unprotected
pan must be present to successfully execute tbe application.

Application security

The protected part of the application is always encrypted when it fs not in the logically and physically
secure protected processor. The content of tbe protected part of the application is not accessible to
the would-be pirate. Essentially, lbe protected part of the application executes in the "closed"' part
or the system.

The "right to execute•• the application must be present in the protected processor in order for tbe
protected part or tbe application to be decrypted and made executable. Since the system is built to
control the "right to execute", Lbe application can only be executed when authorized.

Create backup
The problem of backup, in case of failure. changes with the PC software asset protection system.
This section describes why making backup copies of the software is no longer a problem. Creating
a backup of tbe protected processor, which contains execution rights and application data, is ad­
dressed.

Software backup

With tbe PC software asset protection system as many backups of the software can be made as nec­
essary. Any medium can be used, such as:

• Diskette to diskette copy

• Hard disk to bard disk copy

• Bard disk to diskette backup
• Diskette to host copy or archive
• Hard disk to host copy or archive

In addition tbe software can be stored on a PC network file server system or mainframe host system
and be accessible to many users..

There are oo restrictions placed on the ability to bact up the software, and this includes the protected
part of the software (encrypted), and tbe unprotected part of the software.

Protecud processor backup

The ••create backup" service addresses the need to make a backup copy of tbe applic:atioo keys (and
application data store) that are contained in the protected processor.

Whenever tl_le end user changes lbe infonnation in tbe protected processor a backup sbould be gen­
erated. This is to protect against the possibility of a bardwat"e failure in tbe protected processor, and
thus Joss of the "eight to execute•· tbe protected applicatioosJ2• This is a simple operation for the enq
user. The ''BACKUP" rommand is issued and a baclwp set is created with aD the imponant infor·

The probillbllity or a hardware (aUUl'C in the physicallY secure protected proocssor is expected to be smnU :as compared
to the: probability of a hardwur: failure in the pcJSOn3l C0111putr:r system i!Sclf.

PC $0ftW'IIIrc asset protection system M'Chitr:cture JO

MST00007723

APL_INTR-0017980
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 10

mation that is kept ill the key store and application data store of the protected processor. The
"backup set" iocJudes an autborizatio'n process, which can authorize the insta!Jatioo or the backed
up ''rights to execute" on a replacement protected processor. The "backup set" can be implemented
on a diskette and smart card pair. Along witb the application keys and application data store, the
unique serial number for the protected processor is also stored on the backup seL The "BACKUP ..
command uses the "create backup'' sef'\lice to copy this data to the backup seL

Tbe data that is written to the bacl:up set is eoC'l)'Pted with a special cryptograpruc key. This key is
associated with the authorization process, to ensure that the backed up "rights to execute'' can be
instalJed on only a single replacement protected processor. The infonnation in the bad:up set (but
oot the authorization process) can be duplicated any oumber of times by any convectional system.

Install badtup

Jl the protected processor fails, the end user obtains another protected processor. The user can oow
the "install backup" serv:i~ to load the backup information from the backup set ioto the working
protected processor. The user can immediately start \.ISing the set of protected applications that were
available on the cow damaged pro~cted processor: The .. create backup'' service uses the authori­
zation process to ensure only the last backup level can be loaded with the "install backup" service.

Backup control

At this point, the end user bas made a backup of the information in the protected processor and bas
installed that backup on another protected processor. H we just stop here we have introduced aa in­
tegrity exposure into the system. What if the user made a backup of his protected processor with a
targeted backup protected processor that bis friend owned. The backup cao now be given to the
friend, wbo uses the special form of the "load right to execute" service to Joad the rights to execute
onto his system. Now both usen have the right to execute the programs. The software asset pro.
rectioo system bas Jose control of the "right to execute" for a set of applications, its primary job.

This exposure can be prevented When a protected processor backup is made with the "create
backup,. service the serial number of the original protected processor is placed on the backup set io
such a way that it cannot be chaoged. When tbe "instaJJ backup" service is used to install the rights
to execute from a protected processor backup, a time limit is placed on the restored .. rights to
execute"13 • This limits tile amount of lime the baclcup protected processor is \!Sable for tbose rights
to execute. For example, a time limit of two months might be used. After that time perio<l the rights
to execute in the backup protected processor tbat came from the backup set of lbe faulty processor
will be made inactive. These "rights to execute'' may be reactivated, or may be kept from becoming
inactive in the f"ICSt place, by using the .. retain backup'' service.

The PC software asset protection system has other optioos to protect agamst temporary unauthorized
use of the protected processor backup set. lodividuaJ application developers can prevent the "right
to execute'' for their product from being placed on tbe protected processor backup set'"· The "install
backup" service can onJy be executed once for any giveo protected processor.

Retain backup

The life of a restored set of execution rights is limited when they are installed The "retain backup"
sezvice removes that limitation. The conditions under wWcb .. retain backup .. can be authorized are
as restrictive and secure as possible.

Only some centralized ageocyU can authorize the execution of the "retain backup" sef'\lice. The end
user must present the damaged protected processor in order for the agency to execute the .. retaio
b.acl:up" service16• A number of checks· are made, which migbl include:

.. ..
"

Protected processors conuin :a n=~l time clock •
Ia this case the softw:ue developer would :supply another bac.l"Up mcdlanism. •
Au example of such :In :a~ncy Jllight l>e ~ cenlr.ll scrvi~ bureau, the prot<:aed proC:cs!or manufacturer. or the computer
Sto~.

PC s.ol'tware a:ssct protectlou system architecture 11

MST00007724

APL_INTR-0017981
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 11

• The protected processo~ must be damaged .. The only reason for the central agency to remove
the time limitation is if the original protected processor, which origioally contained the execution
rights, is no longer usable.

• The int.emaJ serial cumber of the backup must match the serial number of the protected
processor17•

• Centralized records must show that no "retain backup·· services have been completed previously
using this serial number.

H all checks are passed, the agent may perform tbe ••retain backup" service or authori2e tbe end user
to perform iL In either case, the serial number of the original protected processor is recorded in order
to prevent tbe "retain backup .. service from being performed again for the same backup set.

Perspectives on baclcup seniccs

Two things should be kept in mind when considering the way the PC software asset protection system
provides for proteCted processor failure. ·

l. Actual failures of protected processo,rs should be very infrequent. It is expected that protected
processor failure frequency will be much Jess than tbe failure rate of the rest of the hardware
system. Some reasons for this are that tbe protected processor package itself is very durable due
to the physical security reqllir'ements and the num~r of components within the protected
processor is relatively smaH.

2. Misuse of the backup facilil.ies yield poor results for the pirate. The "right to execute'" for a set
of applications can be given to one (and only one) unauthorized user for a short firute lime and
the original user loses tbe ability to back up his syst.em.

Even though a central agency is involved for the "install backup" service. the number of times an
average user would have to use such facilities should be quite smaU.

Transfer right lo execute
The ability to transfer ownership (the "right to execute") of a software product must be possible
wit,hout loss of control of tbac "right to execute••. The "transfer right to execute'" service io the PC
software asset protection system provides lhat ability.

How is ft done

Whee a "right to execute" moves from one pro~cted processor to another the "right to execute"
must be removed from the original protected processor.

The transfer of a ''right to execute" can be accomplished securely in two ways. through a protected
processor to protected processor communication or by creating a '"transfer set ... A '"transfer set"
contains essentially the same information as the original distribution seL

In both cases the '"transfer right to execute" service will remove the .. right to execute" from the ori­
ginal protected ptoCeS$or. This can be assured because the program that implements the "transfer
right to execute" seJVice is part of tbe protected processor and is therefore logically and physically
secure. A potential pirate cannot alter the way the service works.

CommWlications IM:tweeu protected processors

An implementation using the protected processor to protected processor communication method must
establish a communications coo.nection between tbe two protected processors. This communications
channel need ·not be physically secure. The protected processors can establish a logically secure

••

17

The agency mast have a policy 3$ to what to do it \he end user claims the protc:cted processor i$ ·]ost. and !hilS c:annol
be presentc:d for the serial number vcruu:ation chccl:. "This is no different than the situation today if' an end user says
UIC soft~ pr<>clucc he ju..t purch0$Cd JS minute::> "3<' wa.s W< b:yll!;hmlnJ!: and clhlntcgr.stc:d on the "'ay !lome. What
the agency docs in this= is a m:mer or poliq.
The agent uses the intc:mal serial nwnber of the protected proc::r::ssor if it is ac:ccssiblc, or an external scri:sl nwnbcr on
the protectod p:roc:cssor. ·

PC software :asset protectioa system architecture J2

MST00007725

APL_INTR-0017982
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 12

communication session between themselves- using cryptographic techniques. This allows anyone to
lisLen to the conversation between Lbe two protecLed processors but does not allow any one to effec­
tively alter or forge the conversation. See "Protected processor to protected processor
communications .. on page 23 for more information on !.his type of interaction.

Creadng a transfer ser

The method that creates a transfer set essentiaUy reverses the "load right to execute .. service process.
This only requires the creation of a diskette with the protected portion of tbe software (encrypted),
the "right to execute .. (in lbe fonn of an encrypted application key), and the unprotected portioo of
the software. In addition a tolcen must be created that authorizes the "load right to execute" service
to be performed ocly once.

Both methods h01ve advantages and disadvantages. They can both be used in the same system. tbus
obtaining the advantages of botb.

SUI:JlJilalY

The "transfer right to execute" service securely transfers the ownership of a software product from
one end user to another (or back to the distributor for a refund). The teclmiques used effectively
prevent a would-be pirate from obtaining an unaulhori.zed .. right tO execute"

Access application data store
There is a need to lceep certain information about an application in a secure place where it can be
stored between executions of tbe application. Cenain types of information, related to lbe software
asset protection problem need to be stored to be able (o enforce flexible terms and conditions in li­
cense agreements (see "New tenns and conditions in license agreements•• on page 20). Applicarions
may also want to save other types of application related information in a secure place. Today appli­
cations usuaUy store such information on an external storage medium like disk: or tape. Unfonuoately
such information can be easily examined, changed, or destroyed

The proLected processor contains a section of persistent memory where application related informa­
tion cao be securely stored; this is called the application data s:ftXe. The application data store is a
log.\caUy and physically secU{e slOrage area within the protected processor. Each application is ~
signed a section of this storage area. Applications can -only access their assigned section of the ap­
plication data storage area. TPe "access application data store" service is used by applications to
access (rea,d and write) their section of tbe application data store. The "access application data
store•• service is implemented by trusted programs within the protected pr~r. Only the protected
pan of the application, executing in the protected processor, can use the "access appl~cation data
store'' service.

Using the "a~ application data store'' service, applications cao now securely save any information
they desire.

l>C soft~ 3!Scl prolection system :~rc:hltcawc J3

MST00007726

APL_INTR-0017983
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 13

Protected processor

Effective PC software asset protection requires that some portion of tbe system be closed (oot
available for inspection or modification by the end user). The "protected processor' is the closed part
of the system, and is both logically and physically secure. The JogicaJ security of the system is dis­
cussed first followed by information on the physical security of tb.e protected processor.

Logical security
The logical security of the protected processor ensures that information within the protected
processor cannot be examined, changed, or erased. except by authorized users in a controlled manner.
Application programs and data are loaded into the protected processor by a super"is« proci!SS within
the protected pr~ssor.

Supenisor process

The "supervisor process•• is a processor state and a set of Sllpert~isor pognrms that execute in tbat
processor state. The supervisor programs implement the PC software asset protection services. They
reside in read-only memory (ROM) within the pbysicaDy secure protected processor. The routines
that implement a supervisor process are supplied by tbe protected processor manufacturer.· The state
the protected processor is in when supervisor programs are executing may allow access (read and
write) to all the memory in the protected processor. Application code does not execute when the
protected processor is io this state. ·

The main purpose of the supervisor programs is to control access to information in tbe protected
processor. Requests for access to data and services in the protected processor are made by issuing
PC software 3SSet protection services. The code tbat implements these services (tlle supervisor pro­
grams) cannot be examined or altered by the end user.

These supervisor programs control the loading of the protected pans of applications, tbe loading of
~tographic keys, access to cryptographic keys. and access to the application data siore.

The key store

Cryptographic keys are stored in an area of pbysicaDy and logica.lly secure memory within the pro­
tected processor. Some keys, caUed super11isDr ~ are placed io the protected processor by tbe man­
ufacturer of tbe protected processor. Other keys. caUed applii:a.lion ke)!f are placed in the protected
processor by a supervisor program when certain ABYSS services are executed.

Supd"Visor keys

There are two reasons supervisor keys are needed in the protected processor:

I. The protected processor must be uniquely identifiable in order to support targeted distribution
methods (see "Distribution methods"" on page 18). secure backup, and transfer of execution
rights. •

2. In order to transmit secret information between any two parties. both parties must share some
common information. The common information shared by an protected processors is the other
type of supervisor key contained withia tbe protected processor. This is called a ''commoo
supervisor key".

AppUcadon keys

Application keys are contained within the .logically and physicaUy secure protected processor. The
keys are loaded into tbe protected processor by the "load right ro execuLe" service. Wben in the key

l'mtected pn>OCS:Sor l4

MST00007727

APL_INTR-0017984
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 14

store, an application key represents the "right to execute" for the application. Outside lbe protected
processor, the application keys are encrypted by supervisor keys111•

Application data store
The application data store is an area of logicaJJy and physically secure memory Within the protected
processor which contains sensitive data related to individual protected applications. Access to tbe
application data store is comroUed by supervisor programs.

The application data store is divided into sections, one section for each application. Each application
is aiJowed access only to the section of tbe application data store assigned to that application. There
are two types or information kept in the application data store.

The supervisor programs keep information related to a standard set or tenns and conditions tbat are
supported by the ABYSS system in the application data store. At a mioimum the application data
store must hold the expiration date associated wir.b the "tight to execute". if any. The "load right to
execute .. service places an expiration date in the application data· store if the source of the "right to
execute" is a protected processor backup set.

The other type of information kept in the application data store is derwed by the application. An
applicalioo can access (read or write) its section or the applicalioo data store .using the "access ap­
plication data store .. service. Data placed in tbe application data store by an application is retained
between executi<>ns of the application.

There are many possible uses an application can make of the application data store. For example,
an application can keep track. of the number or times it is executed, and thus implement usage biJJing.

Even though the amount or application data store memory available to an application is liaUted, acy
amount of information can be protected by using only a small amount of space in the appJjcation data
store. This is best illustrated witb an example. Suppose an application needs to store a large anay
between executions. Also suppose that it is extremely important that the next time the application
executes, the array produced from the previous execution be loaded. Without the PC software asset
protection system the best that could be done would be to encrypt the array so it could not be
changed. There is no way to ensure the array being loaded was the last one created. A copy of the
array from many exeClltioos earlier could be used without detection. With a logically and physically
secure protected processor the following technique can be used to ensure the correct array is ·loaded.
The protected part or the application, executing. in the protected processor. oblains a random number
from lhe protected processor. The random number is added to the array to be stored and is also
stored in the application data store by using the "access applicalion data store,. service. The array
aod random number is then encrypted (in tbe protected processor) and passed outside the protected
processor for external storage. The next execution of the application decrypts the array and verifies
it is the correct version by using the random number in its application data store. That random
number never leaves the pbysicaUy and logically secure protected processor (wilhout being en­
crypted) and thus is highly resistant to forgery. This technique is just as secure as placjog aU lhe data
in the application data store except that there is no protection agailist tbe data being erased.

In summary. the application data store can be used by a proteCted application to store any amount
of information securely between executions of the application.

Application prot:l!Ss
For an application to be protected by the PC software asset protection system it must be partitioned
into a protected pan and an unprotected part. The protected pan of the application executes in tbe
protected processor in what is called the ''application process". The protected part of tbe application
is loaded into the "application process·· by the "load and execute application .. service. The way the
protected part of the application interacts witb the unprotected pan of the application depends oo tbe
software partitioning method used to split the application. The application process is a processor state

•• A supervisor prognm is supplied in the pro ~=ted processor to :allow an application developer to p:us the application key
illto the prote~d p~r ~ Juve ic a11ccypted by a ~upe~r l.:cy.

:ProteCled processor 15

MST00007728

APL_INTR-0017985
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 15

in which there is no direct access (read or write) to the key store, application data store, or supervisor
process.

The key store contains righ£s lo execute (application keys) of all procected applications. The pro­
Lected part of !.he application has no need to access the lcey store. JJ tbe protected pan or an appli­
cation bad access to the key store it could move supervisor and application keys (for other
applications) outside tbe protected processor, thus completely compromising the security and integ­
rity of the system.

The protected part of the application does need access to the application data store. This is accom­
plished in a controlled way by using the ·•access application data store .. service. The supervisor
process that implements the "access application data store" service limits access to the section of the
application data store assigned to that application.

The protected part of an application does not need access to lbe supervisor process. The supervisor
process bas access to all the memory within tbe protected processor aod if an application could
change a supervisor process the integrity of the system would be lost.

Random number generator
Many· of the cryptographic techniques and other logical security schemes used in the PC software
~t. protection require the ability to generate a good random numberJ'.

Real lime clock

One effective implementatioo of a good random number generator uses a real time clocJ;;20• The low
order bits of a high resolution clock make good input into a random number generation algorithm.
The real time clock. must be contained within the physically secure protected processor so its opera­
tion and contents catlJlot be disturbed.

The real time clock is also necessary to enfo~ some of the time dependent tenns and conditions that
this system supports.

Encryption-decryption processing
The protected processor provides the encryption aod decryption services used in the PC SQ(tware

asset protection system. The following types of information are encrypted or decrypted in the system.

• The protected part or the application

• The application key
• The tolcea descriptor
• Data transmitted over a secure commuoicatioos channel

• The .tey store
• The application data store

In addition to these types o(data. applications may wish to encrypt data for reasons related to appli­
cation processing wbicb have fittle to do with tbe control of eJtecution rights.

The protected processor provides encryption aod decryption services which are accessible from
supervisor programs and applications.

Physical security
It bas been said that it is impossible to provide peifect physical security. While this may be true, il is
also true that it is oot necessary to provide "perfect'' physical security to implement an effective PC
software asset protection system (see .. Security" on page 3). The level of physical security provided
ill the protected processor is ao importaot impJemeotation question.

• The abWtJ' to c::nabli:5h a secure c:oJJUJtunJc:adoQS Cllannc:l and vt:lify Ulc COntents of a lol:cJI are examples of the need for
r.JIIdom number gcncnation.
A h.ig)l n:~lution c.ounlcr oould also be used in pbc::c or a n:altime clod;.

Protected p=ssor 16

MST00007729

APL_INTR-0017986
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 16

Research ~ being done into new and innovative pbysicai security measures which we believe provide
more than adequate physical security. Some of tbe new physical security technjques employ active
detection mechanisms which destroy all sensitive information witbin tbe protected processor when a
physical intrusion is detected. The level of security provided is designed to not only thwart the
bard ware hacker but also the university student who bas access to the most sophisticated laboratory
equipmeol.

Summary
The protected processor is both physically and logicaJiy secure. The components within the protected
processor are the "supervisor process" which controls access to the ••key store" and "application data
store" and the "application process .. which executes the protected part of the application. The pro­
tected process-or also provides services to generate random numbers, and cryptographic serv.ices.

Prorecu:d processor 17

MST00007730

APL_INTR-0017987
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 17

Distribution methods

One of the goals of the PC software asset protection system is to support. current and future distrib­
ution methods. This section discusses the way the PC software asset protection system views dis­
tribution methods. Distribution methods are generically classified. The classification method
employe~ eoables possible i:mplememations to be judged as to their level of support for the differing
distribution methods.

Separation of distributed parts
The PC software asset protection system separates the possession of a software product. or access to
a software product, from tbe .. light to execute•• the software product This separation is a fuoda­
mentar concept and control of the «right to execute" is the primary responsibility of tbe PC software
asset protection system.

Types of distribution methods
This section describes three types of distnbution methods. Eacb distribution metbod takes into ac­
count bow the software product is distributed and bow tbe .. right to execute•• is distributed. The way
we bave classified distribution methods is not the only way to think about this problem though we
have found il· very useful in detennioing bow flexible various implementation alternatives are in re­
lation to distribution methods.

There are many ways in Which things can be disrributed today and tbe future will open new. exciting.
distribution capabilities. In any distribution method the item being distributed is ••targeted'• to a po­
tential customer. If the item is being distributed for an individual (system or user) we call it a targdwl
dlstrihutnon. A targeted distribution requires the item be tailored (individual~ed) to tbe purchaser.
If tbe item is distributed for any potential user or system we call it an untat-gefod dis:tribution. With an
untargeted' distribution any distribution set can be purchased by any user.

To arrive at our classification scheme we combined the tWO items we are distributing (the software
product and the "right to execute") wjth the .. targeted" and "untargt:ted" distribution techniques to
forin a set of different distribution methods. The following distribution methods have been identified:

I. Uatargeted software product. untargeted "right to execute••

2. Umargeted software product. targeted "right to execute"

3. Targeted software product, targeted "right to execute,.

The combioatioo "Targeted software product., untargeted right to execute" is not considered to be a
useful combination and is not discussed. The following sections discuss the useful distribution
methods.

Untorgded software produd. llnforgeted right to ert!Dlle

This type or distribution method .is closest to the way PC soft:ware is distributed today. There are
many software packages on the shelf in the neighborhood computer store. Each package of a pu­
tic:ular product is identicaJ and contains both the software and the (implied) .. right to execute•• the
software. Neither the software aor the ••ngbt to execute" are tailored to any individual system or
use~. Anyone can purchase aod use the product.

The PC software asset protection system supports this type of distribution. Tbe authorization to load
the "right to execute" can be represented by a token that is contained within the packageZ!. The
pack:age call be purchased off tbe sbeJf by any poteotiaJ user.

21 Some software products c:ontaill unique serial numb~ ot1 the d".skenes. 'Ihe$e unique serial numbers do not mate these
pach£CS "L:ugctcd'•. They do not crt.ctivcly repreoenl .. MrigJil l(> ==teo" d u.cy do not al(e<;l program cxccullon.
Other implementations. using oUter types or "aulhori2ation processes- arc pos:siblc:.

Distn'bution 111clhods 18

MST00007731

APL_INTR-0017988
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 18

Untargeted sqftware produd, targeted right to erecs~te

1bis distribution method is not commonly used today for marketing PC based software. With this
distribution method software is readily available in identical packages23• Some contact with a service
bureau is usually required to su~ssfully execute tbe software. This service bureau contact repres~
ents the transfer of the "right to execute" to the purchaser.

The PC software asset protection system can support this type of distribution method without the use
of a service bureau. Protected processor to protected processor communications can be established
(in the computer store or over telephone Jines} to transfer the "right to execute". A token can also
be used.

Targeied software produd, targeted right to e:recute
1bis distribution method is not commonly used today for marketing PC-based software. In this case
both the software package and the ''right to execute" are tailored to l.be individual purchaser. This
is the most secure distribution method. It is also the most expensive distribution method. The soft­
ware and the ''right to execute" are useful only to the individual to which it was tailored.

The PC software asset protection system supports this type of distnoution method. A unique serial
number is used to identify tbe targeted system. It is thought that this distribution method will only
be used for fairly expensive, specialized software. The mairitemmce of tbe .. right to execute .. can be
done without the use of a "common supervisor key".

Future distribution techniques
The foUowiog distribution technique is supported by the PC software asset protection system with
good usability characteristics. This technique is a possible distribution implementation and is pre~
sented here to illustrate some of tbe possibilities in the system.

A software development company can distribute its entire line of software oo optical disk to all po­
tential users for the cost of tbe media. The ''right to execute" for any particular software product can
be sold separately. This optical disk can also be used to demonstrate the software before the fuU li­
cense is purchased. Satellite broadcast, FM broadcast. public data network access. local area network
access. or host mainframe access can be substituted for the optical disk: media

Summary
The PC software asset protection system supports both Cllrrent and future distriburion methods with
minimal negative impact on the software developer. distributor. and end user. Some cumbersome
distribution techniques are made easier (by eliminating the need for a centraJ service bureau) and new
distribution techniques are made possible with prolection of software assets.

:u nus includes broadcast softW2re lllld son ~res available from a me se"""r on "' local an:• l>el'lllorl:: or malnfr:>me host
system.

Distribution methods l9

MST00007732

APL_INTR-0017989
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 19

New terms and conditions in license agreements

One of the exciting benefits that is realiZed with the PC software asset protection system is the ability
to suppon new, flexible terms and oooditions in the license agreements for software. The PC soft­
ware asset protection system not only suppons new license agreements. It also provides a secure way
to eDforce terms and conditions in license agreements.

This section discusses some of the new types of terms and agreements that are possible with the PC
software asset protection system. The actual usage of these new terms and conditions depends on the
exact nature of the PC software asset protection system implementation and in the use of the appli­
cation data store in the protected processor.

Unlimited software backup
The ability to make unlimited oopies of software products is a direct consequence of the base archi­
tecture. Any implementation supportS this capability. The ability to make unlimited backup oopies
of software oomes directly from the fundamental concept that access to (or possession of) the soft­
ware is separate from the .. right to execute" the software. There are no restrictions on Lbe ability to
mal:e backup copies of the software, t.hough copies of the .. right to execute•• are strictly cootroUed
by the system.

Limited lifetime software
H the implementation has a real time dock a time limit can be placed on the "right to execute" for a
software product. For example, an application can be sold to work only one year, or only until a
specific date. The application data store is used to hold the expiration date.

AJ.Jowable execution periods
The application can be built to execute only during certain time ~nods. For example. only on Sat­
urdays, Sundays, or holidays will tbe games on tbis local area netWork be enabled for execution, or
only during the last week of the year can lhis year-end financial repon be generated. This requires
a real time clock and appfjcalioo processing using lhe application data store.

Demonstration software
A software author may wish to freely distribute a demonstration copy of a new software product.
Today this is accomplished by putting limited function in the demonstration copy. Witb the PC
software asset protection system that bas a realtime clock the full functioning package can be freely
distributed. The .. right to execute" the fuU functioning demoostratioo copy can expire in a short time

·period (for example, teo days) or on a specific date. This is a specific use of the limited lifetime
software technique described above. If the end user l.i'kes the demonstration copy of the program an
unlimited "right to execute" can ~ purchased for full price.

Software guarantee
Many software packages are sold today "as is", without guarantee t.bat the software fulfills the in­
tended need for the end user. Distributors are usually unwilliog to take software back because there
is no assurance the end user does not still have a usable copy. The PC software asset protection
system controls and conserves the .. rigbt to execute .. a software package. A software return policy,
with full refund, can now be established if the end user not only returns the software but also the
.. right to execute".

This new capability has a large positive economic benefit to the end ~- End users typically have
many software packages sitting oa their shelf. full price paid, tbat are not used because the software
did not operate as desired.

New terms am! eonditions in license a~ementS 20

MST00007733 PA(.;I=- ??

APL_INTR-0017990
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 20

Distributors or software developers could also offer partial refunds for software returned after some
period of time.

Rental software
Personal computer software could be rented. in much the same way that video cassettes are rented
today. The software asset protection. system is used to control execution rights and lbe application
data store contains rental license information.

Test level software
Application developers may wish to distribute ac early release of a new product to a select set of users
to help test the new system. When the minor errors that are found are corrected tbe official product
version is released to the general public. All the users that participated in the early test program now
have copies of the program that are almost the same as the official product version. They have litlle
incentive to purchase the official version. With the PC software asset protection system the ability
10 execute the lest level software could expire after the date when the product level is available. Early
product testers would then bave to purchase the official product level io order to continue to execute
the program. The number of potential testers can be increased. increasing the quality of the shipped
software.

Usage pricing
Applications could keep track of when the software is executed. This is done by keeping a counter
in the application data store. The application could also keep track of what import.ant ruoctions were
being used within the application. The end user could then be billed for tbe usage of tbe application
or important functions within the application.

Site license
All the personal computers ~thin a site can be aulhorlzed to execute a particular software product.
A single copy of the software could be kept on a file server on a local area network or host mainframe
connection.. Today many software developers find it difficult to make site license agreements because
there are no guarantees that copies are not being used outside the legitimate systems. With a PC
software asset protection system sucb assurances can be made.

I.-ending library
Ao enterprise may want to pllfChase a number of rights to execute a particular program and lend the
rjghts out oo a first come first served basis. For example, ten rightS to execute for a specific program
may be purchased. The program may be controDed by a me server on a local area network. The file
server would allow authorized borrowers lO "cbeck out" a "copy'" of the program for temporary us­
age. The me server Jceeps track. in the application data store. of the number or "copies" currently
on loan. The file server would ensure .rio more than ten copies are ia use at any one time.

Conclusions
The PC software asset protection syslem can enforce any t}'pe of license term or condition that can
be programmed. Maximum flexibility is pennitted. Combinations of the above examples may be
implemented.

l"be implementation of acy of tbese tenns and conditions normally uses the real time cJock or the
application data store tbat is within tbe protected processor. both of which are physically aod Jogicalfy
secure.

The ability to enfora! a rich set of terms and conditions is one of !.be major benefits of !.be PC soft­
w:are :lS.Set protection sYstem.

New tenns and conditions in Uoc:nse agreements 2.1

MST00007734

APL_INTR-0017991
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 21

Software partitioning

The PC software asset protection system protects products by executing part of the software in tbe
logically and physically secure "protected processor". The software product or application must be
split or partitioned by tbe developer. 1b.is split produces two parts, the pan that executes in Lbe per­
sonal computer processor (called tbe UlfproUded pari) and tbe part that executes in the protected
processor (called the proleded part). This section discusses the requirements for effective software
partitioning.

Basic requirement
The prote~d part of the application executes io the "application process•• in the protected processor.
While in tbe protected processor tbe protected part of the application cannot be examined or changed
by lbe end user. The. protected part of the application is encrypted wben it is not in the protected
processor. The application developer must decide how to partition the application into a protected
pan and an unprotected part. The basic requirement for tbe protected part or the application is that
it be difficult to reconstruct and it must perform important and necessary fuoctioo. The would be
pirate knows all about the unprotected part of the application and the interface between lbe protected
part and the unprotected part of the application.

11 tbe function of the protected pan of the application could be easily guessed the pirate could create
the function in the PC and thus create a ropy of tile application without tbe protected pan. This
would effectively defeat the protection for that application.

Investigations
In much the same way that work continues in the general field of application development technolo­
gies, research is continuing into the effectiveness of different partitioning methods. When analyzing ·
a partitioning melbod the security afforded by the method needs tO be determined Partitioning
methods with good security characteristics have beeo identified. Security is not the only parameter
to be examined for a successful system. Performance, usability and cost are also important aspects
lO be. investigated. Both analytical and experimental techniques are being used in these investigations.

A range of effectiveness using various partitioning methods bas beeo demonstrated. The security of
some methods is easy to break, using automated techniques. Olber techniques provide an extremely
high level of security. Specific protected processor implementalions are being investigated to deter­
mine their effe<:t on system performan~. application performance, application security, and the pro­
gram development process.

Summary
There are probably as many ways to partition software as there are ways to create the original soft­
Ware. Just as work continues today in ways to improve the application development process, we ex­
pect research to continue in ways to improve software partitioning~ Security. usability. and
performance need to ~ ma:tim.ized while cost is minimized.

Reasonably secure software partitiooiog techniques have been identified aod·are being used today.

Soh wan: pntitioning 22

MST00007735

APL_INTR-0017992
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 22

Protected processor to protected processor communicatioos

Protected processors can communicate directly with each other. Such communication enables sensi­
tive infonnatioo to be transferred between protected processors.

Secure communications
An protected processors contain a secure common supervisor key. The common supervisor key is
used by the protected processol"S to verify the identity of the protected processor they are communi­
cating with. A protected processor will not pass sensitive information to aoother protected processor
uoless its identity has been verified. This prevents the would-be pirate from making a protected
processor that diwlges secret inf'ocmatioo.

"The i:aodom number generator is used in generating a secure communications session key. All
transmissions between the protected processors are encrypted using the session key to aUow maxi­
mum flexibility in transmission medium. Protected processon; can communicate over a public tele­
phone network without any loss or security.

Transfer of rights
The protected processor holds the ''right to execute" and the license agreement terms and conditions
for each protected application. Secure communications between two protected processors can be
used to move rights between protected processors. The supervisor programs within tbe protecled
processors make sure the "right to execute'' for any application ·is conserved and that tenns and
conditions iD olicease agreements are not viQiated.

Summary
Protected processor'$ can communicate securely over an open channel, safely transmitting sensitive
information. Such communication can be completely observed without loss of security.

Protected processor to protected proa::ssor communications 23

MST00007736

APL_INTR-0017993
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 23

Technical summary

These are the maio coocepts of lbe PC software asset protection system:

• The ffiM PC is an open system. It is not possible to protect information in ao open system. The
pn:•tedtxl procenor is an addition to the personaJ computer syste~J! that provides a "dosed'' por­
tioo of the system where secure information is kept and managed.

• Pan of the function or the application to 1>e protected must execute in the "protected
processor'', this is called the prol~ed pan or the application. The rest of the application, called
the Ullproloctctl pa1'1, executes in the personal computer. ·

• The possession of, or access to, software is separated from the rigid to aearle that software.

The main job of the PC software asset protection system is to manage the "right to execute .. for
protected applications in accordance with the terms and conditions specified in the license agreement.
Cryptographic techniques are used to protect seositive information when it is not inside (and thus
protected by) the "protected processor".

Control of execution rights is accomplished without adversely affecting the end user, software dis­
m1mtor, software developer, system performance, or application performance.

Current software distribution melbods arc supported and oew distnoulioa methods aod license
agreement terms and conditions are made possible.

Implementations can be designed to meet a broad range or security requirements. The system is se­
cure eoough to be completely published avd has the potential to become a security standard.

The ABYSS systtm provides the technical means for solving the PC software asset protectioo prob­
lem.

MST00007737

APL_INTR-0017994
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 24

References

[Stro86] Bill St.rohm. Uam Comerford. SteveR. White. "ABYSS Tokens," IBM Research Report
Number RC 12402 (Dec. 18. 1986)

(Weio86] Steve H. Weingart. "Physical Security for the pABYSS System." subm.iued to 1987/EEE
Symp. on Security and PriKJcy (~o IBM Research Report Number RC 12344 (Nov. 24,
1986))

[Wh.it86] SteveR. White, Liam Comerford, "ABYSS: A Trusted Architecture for Software Pro­
tection." submitted to 1987 IEEE Symp. on Secun'ty and Priwcy (aJso ffiM Research
Report Number RC 12343 (Nov. 24, 1986))

Rd'eren~s 2S

MST00007738

APL_INTR-0017995
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 25

"

Appendix A. Usage scenarios

Scenarios are presented here to help clarify bow the PC software asset protection s stem might be
used. Each :scenario contains a set of assumptions, usually about implementation. · tribution tech­
nique, or Ji~nse agreement.. Then. the actions that make up the scenario are preseo

Computer store purchase
This scenario is closest to the way people buy software tOday.

Assumptions
The PC software asset protection system uses a "token" for one-time authorization of rights to exe­
cute. The distribution method used is untargeted software and unta.rgeted Iigbt to execute distrib­
ution. The end user bas a PC with a bard disk, diskette drive, and an attached protected processor.

A.dions
1. Alice goes to her neighborhood computer store to buy a software product orr of Ule shelf.

2. Alice pays for tbe product and brings it home.

3. Alice opens the package. The package contains a distribution diskette, a token, and documeo­
t.atioo.

4. Alice makes a backup copy of tbe distribulioo diskette.

5. Alice, foUowiog the installation instructions, inserts the distribution diskette, the token. and
types INSTALL.

6. When Alice wants to execute the program, she just types the program name.

Broadcast software
This scenario iUustrates a possible future distribution technique.

Assumptions
A Jarge company distributes its entire software product line each day by satellice. A toll free tefe­
pbooe number is supplied to obtain the right to exeCllte. The toll free number aJJows a compu~r
connection for ordering software. The software vendor's central computer has protected processor
functions. The software is paid for by credit card. The end user's credit is good.

Ad ions
·1. Bob obtains the latest issue of aU the software vendors products, via sateUite receiver or cable

TV.

2. Bob wan[$ to purchase one of the products..

3. Bob calls the toll free number and connects his personal computer to the software vendor's
computer.

4. Bob enters the product name and his credit card number

5. Th.e protected processor attached to Bob's personal computer establishes a secure protected
processor to protected processor communications channel to the vendor's computer.

6. The software vendor's cOmputer checks Bob's crediL

7. One "right to execute,. is transferred to Bob's protected proces~r.

8. Protected pJ'QCessor to protected processor commuoicatioos is termi.Dat.ed.

9. Bob can now execute the program.

Appcm!ix A. U~l)e SCCII3rlos 26

MST00007739

APL_INTR-0017996
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 26

Transfer oMtership
This scenario illustrates bow the ownersltip of the product might be transferred.

Assumptions
l[be license agreement anows the software product to be transferred. Both the current and new
owner have protected processors. Protected processor to protected processor communications is used
to make the transfer (a token could also be used).

Ad ions
1. Alice brings her protected processor to Bob's bouse to receive ownership of the product.

2. Alice's protected processor is connected to Bob's protected processor.

3. Secure protected processor to protected processor communications is established .

.f.. Bob instructs his protected processor to transfer the execution rights for the program to Alice's
protected processor.

5. The "right to execute" is transferred to Alice's protected processor and removed from Bob's
protected processor.

6. Bob gives Alice a copy of the software.

7. Alice can now execute the software, Bob cannot..

Office and home use
This scenario ill_ustrates how a business soflware package can be used in the office and at home.

Assumptions
A portable ABYSS processor is used. The license makes provision for use of the software in the of­
fice and at home, but ool at the same time. The software is installed at work. The protected
pro<:essor contains the "right to execute" for the software product..

Ad ions
1. Bob makes a copy of the software and brings it bome.

2. Wben Bob goes home at night. be brings his protected processor with him (it is the size of a small
pocket calculator).

3. At home Bob attaches his protected processor to his personal computer and executes the pro­
gram.

4. The next morning Bob goes to work with his protected processor.

5. The protected processor is attacbed to his work computer and be executes the program.

Protected processor hardware failure
"'bis scenario illustrates what happens if a protected processor breaks.

Assumptions
There are two scenarios presented here. The first assumes lbe user bas a backup protected processor
when the one being used fails. The second scenario ?Ssumes the user does cot have a baclcup pro­
tected processor. In each case the pro~cted processor manufacturer allows a protected processor
backup to be used for sixty days Protected processors are sol<t by the local computer store. "Ille
software developers allow their software execution rights to be backed up by the protected processor
••create backup" service. A .. smart C3I'd" is used for the authorization process.

Appendix A. USllgc scenarios 27

MST000077 40

APL_INTR-0017997
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 27

Adions with a backup
These actions assume Alice owes a second protected processor tha[can be used as a backup.

1. Alice creates a "backup set" onto diskette and "sman card". This backup set contains aU the
information needed to backup her primary protected processor. The .. create backup"' service is
used to create tbe backup set. The backup set is targeted to ber second protected processor.

2. The primary protected processor fails.

J. Alice uses the "inslal.l backup" service to load execution rights into her backup protected
processor. The information in the .. sman card .. is verified and discharged. These executioo
tigbts have a time limit of sixty days.

4. Alice can immediately execute her programs using her backup protected processor.

5. Sometime within the oext twenty days Alice must visit the local computer store and bring her
failed protected processor. the backup set. and her working protected processor.

6. The computer store verifies the protected processor has failed and lhat the backup set is for r.bat
protected processor.

1. The computer store establishes a secure protected processor to protected processor communi­
cation between tbe store's protected processor and Alice's working protected processor. The
time limit of sixty days is removed from Alice's working protected processor.

8. The computer store records the service, including r.be unique serial number of the failed pro­
tected processor, and will notify the protected processor manufacture of lhe failure.

9. Alice can obtain anolher protected processor lo act as a potemial future backup. The failed
protected processor may have been under a guarantee from the manufacturer allowing Alice to
receive a replacement for free.

Adions without 11 backup
These actions assume that Alice does cot own a second protected processor that can be used as a
backup.

1. Ali<'.e creates a .. backup set" octo diskette and "smart card ... Tbe backup set is not targeted to
· any protected processor.

2. The primary protected processor fails.

3. Alice must go to the computer store wir.b her failed protected processor aod backup set.

4. The computer store veriraes the protected processor has failed aod that the backup set is for lhat
protected processor. The "sman card" infonnation is verirred and diScharged..

5. The computer store provides a new protected processor (possibly under guarantee).

6. The computer store establishes a secure protected processor to protected processor oommuni­
cation between the store's protected processor and Alice's new protected processor. The exe­
cution rights are transferred from lhe backup set to the new protected processor wir.bout a time
limit.

7. The computer store records the sesvice, including the unique serial uumber or tbe failed pro­
tected processor and wiU oolify the protected processor manufacturer of the failure.

8. Alice may obtain another protected processor to act as a potential future backup.

Demonstration software
. This scenario sbows bow demonstration software can be used as a marketing technique.

Assumptions
A software distributor distributes a fuU function demonstration copy of ~ Dew product as part of a
sales campaign. Potential customers may use tbe demonstration package for one week wilhout re­
striction. Demonstration packages are available at the local computer store. The oew software

Appen~ A. Ysaue scenario$ 2.8

MST000077 41

APL_INTR-0017998
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 28

package is very user friendly, containing on-line help, tutorials. and machine readable documentation.
The pad:age is to sell for about .$500. ·

Ad ions
1. Bob goes to the computer store and obta.ias a demonslCation package. This computer stOre re-

quires be leave a $5 deposit for the diskette.

2. Bob takes tbe demonstration package home. The package contains a token and a diskette.

3- Bob makes a backup copy of the diskeue.

4. Bob inserts the diskette and the token into tbe system and types INSTALL.

5. Bob can now use the fuU function of the new product for one week. At the eod of the one week
the execution rights for the product expire.

6. Bob can purchase a full right to execute for the product at any time.

7. Bob need oot return the demonstration package to the computer store unless be wants bis .$5
deposit back.

Software guarantee
This scenario shows a marketing technique that may be used to guarantee software.

Assumptions
The local computer store had a policy that all sales were final. The only returns tbat would be per­
mitted were returns of packages ·that were not opeoed. Now that there is an effective PC software
asset protection system, the poJicy has changed. Anyone who returns all materials. including tbe
••ngbt to execute" within one mooth of purchase can get a full refund24• A transfer set is used to
transfer the execution rigb.ts. Protected processor to protected processor communications could have
also been used.

4dions
J. Alice purchases the software from tbe locaJ computer store.

2. Alice installs the software on her system (see "Computer store purchase" on page 26).

3. After using tbe softwaf'C in her own environment. on her own data, Alice decides sbe does not
want the software.

4. Alice creates a transfer set for the software package. The transfer set contains the "right to
execute". The right to execute no Jonger exists in AJice's protected processor.

5. Alice brings the package and transfer set back to the computer store.

6. The computer store vermes the "right to execute" oo tbe transfer set and gives AJice a rerund.

Rental software
This scenario shows bow software can be rented.

Assumptions
The computer store wishes to rent software in much the same way video cassettes are reoted.

Adioru
1. Bob goes to the computer software rental store to rent, for one month, a word processor to do

a term paper for school.

2.

..
The computer store prepare$ a pacl:age with a right to execute that is limited for one month.

If m:muals :and dislccttes are Jl'turned in other thu pcrfec:t conditiGn,leu than a "run" refund may be U.en •

MST000077 42

29

cor.:C' <C.

APL_INTR-0017999
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 29

;

3. Bob taJ::es the software borne and uses it to do his term paper.

4. Bob returns the software to tbe compoter store. The right to execute does not have to be re­
turned because it expires at the eod of one month.

Portable rights
This sceoario shows how a user can cany her execution rights with ber wherever she goes.

Assumptions
The software license allows the software to be executed on aoy personal computer but only one ar a
time. All personal compncers have a protected processor built in and a .. sman card" reader. The
·•smart card" contains the protected processor (without the ability to execute applications) aod is used
to carry execution rights.

Ad ions
1. Alice purchases the software at her local computer store. The ''right to execute" is loaded into

her portable protected processor (smart card).

2. Alice goes to any personal computer, inserts her credit card sized protected processor into the
smart card reader and a copy of the disUibution diskette into the diskette drive.

3. Alice executes the program.

A pirating attempt

Asszmrptions
A potential pirate owns a protected processor and wishes to obtain cryptographic keys from the pro­
tected processor.

Ad ions
t. The pirate attempts to physically eoter the protected proceSSQr.

2. The pro£ected processor tamper detection circuitry detects tbe intrusion.

3. The umper detection circuitry removes power from the volatile memory that contains the l:.ey
store and tbe application data store.

4. The pirate cannot get any useful information from the protected processor. AU execution rights
and cryp£ograpWc information are losL ·

30

MST000077 43 oar.c <'7

APL_INTR-0018000
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 30

Appendix B. Glossary.

This glossary defines terms and acronyms that may be new or used in a special way in this paper.

ABYSS: Stands ford Basic Yorktown Security System. An IBM Research Division project to ad­
dress the problem of protecting software assets.

Application data store: A logically and physically secure portion or memory used by applications and
the software asset protection system to store information between executions of the application. The
application data store is contained within the pro~cled processor.

AppUcarioo key: A cryptographic key supplied by the software developer that is used to encrypt the
protected pa!t of lbe software. This application key also becomes the "right to execute .. for lhe
software package.

Authorization process: The authorization process can securely limit the oumber of times an action
lakes place. The authorization process can use a "token".

Backup set: A set of information on any media (usually a diskette a:ad token) which is used to back
up (bold a copy of) sensitive information from wir.hio tbe protected processor in case the protected
processor becomes unusable. Sensitive information is encrypted in the "backup set••. Backup sets
are created and used oaly by trusted protected processors. An authorization process authorizes fu­
ture backups or restoration of the backup seL

Copy protecdon: Any mechanism designed to limit the number or functional copies of a software
product. Usually the number of copies is limited to zero or one.

Distribution ser: The original package tbat is obtained when a software product is initially purchased
by an end user. This package usually contains items such as distribution diskettes and documentation.
For products protecled by the PC software asset protection system the clistribution set contains lbe
unprotected software, protected software (encrypted), "right to e:~~:ecut.e" or application key (en­
crypted), 3lld possibly a token.

Qpen system: A system in which all interfaces, hardware and software specificatioos are logically
and physically accessible and. therefore any hardware or software component of the system can be
exainined, changed or extended by the end user.

PC: Personal Computer - any member of the ffiM personal computer product line or compatible
system.

P1:otedcd processor: A logically and physically secure processor. The protected processor coosti­
cutes the closed portion of the computer system in whicb sensitive data a:ad programs reside. Its
memory holds cryptographic keys, seos.itive application data, the protected part of application pro­
grams and supervisor programs. Tbe secure processor executes supervisor programs and the pro­
tected parts of applications.

Rrghr to execute: The authorization for an end user to execute an application or software package.

ROM: Read only memory. A type of computer memory that normally contains permanem programs
or data. This memory cannot be modified by programs executing in the computer system.

SeM'ice: A function or service that is part of the PC software asset protection architecture. Also
referred to as a .. supervisor service".

Software piracy: The illegal distribution of licensed software. This is commonly accomplished by the
••software pirate•• making a copy of the distribution diskette (or backup diskette) and giving or selling
it to unauthorized users.

Supemsor key: A cryptographic l:ey placed in tbe protected processor by the manufacturer of the
protected processor. Supervisor keys are used to uniquely identify the protected processor, establish
a secure chaanel for communication with tbe outside world, and encrypt seasitive informacion.

Supemsor proces$: The -protected processor state in wbicb supervisor programs are executed. All
of the memory in the protected processor is accessible when the protected processor is in the
''supervisor process•· state.

Appendix B. Glossary. 31

MST000077 44

APL_INTR-0018001
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 31

l

Supenic;or program: A trusted program that executes in the supervisor process in the protected
processor. The supervisor program is usually supplied by the protected processor manufacturer. PC
software asset protection services are implemented by supervisor programs.

Token: The "authorization process" can be implemeuLed with tbe use of a physical device that at­
taches to the protected processor when the authorization process takes place. The token contains Lbe
authorization for the service that is being executed and controlled by the authorization process. Like
a theater ticket whlcb is destroyed wben it is used to enter tbe theater. it cannot be used again.

Token descripfor: A description of tbe contents of a token. The token descriptor identifies the sen­
sitive resource that the token is protecting. The token descriptor is used to verify tbe validity of a
token and to make sure the action lhal is being authorized is acting on the correct resource.

Transfer set; A package that is created when owne~bip or a software product is to be transferred.
The transfer set contains the same type of i.ofonnation that is contained in the original distribution
set.

ADvcnclix 13. G losury. 32

MST000077 45

APL_INTR-0018002
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 32

Index

Index

A

ABYSS ii. 1.31
~cass application d~t3. StOre 13, J 5, 16
appllcnlon data store S, 10, 13,].(,IS. 16. 20, 21,~1
application execution I 0
;spplication J:ey 14, 8, 9. 10, J3, 14. 16.3 I
applie2tion proee5$ JS, 22
application securi1y 10, 22.
architecture 4, 8-13
authoriz.ntion proocss 5, 6-7, lJ, 31

B

BACKlJP c:or~~~Mnd JO
backup set JO, 15,31

c
cJoos.ed system 4, 24
copy protection 3 J
create bac\.-up 10, JJ, 12
ClllTent environment J

D

decryption I 0, 16
distributioll methods 18.3.5, 14.18-19.2-4
distribution set 8, 12, I 8, 31

E

electronic tokens
Sec tol:en

encryption J 6

G

gloss:uy 3 J
goals of softv.'3rc asset pro teet ion system 2·3

oost 2
distn'bution mclliods 3
impact 2
performance 3
publislt (ability to) 3
security 3
terms and conditions 3

I

INSTAll COmmaJid 9

K

key stor<: 10. 14,16

L

load and execute application B. 9. IS
load riJ:Into execute: 8, 10, 13, J4, 15
logial securily 4, 9, J 4, J 6

0

open system I, 4, 24. 3 J

p

panitioning
Sec software p::~nicioning

physical scourily 4, 16
protected part 22.4, !,)0, 13,14, JS, 16,24
protected PI"DCCSS9f 4. 6, 8, 14
pro~ected pi:OOC3sor bacl.-u.p J 0
protected pi"'CeMor to protected proeesM>r

commurucations 12.23

R

r.mdom number 1 S.)6, 23
realtime clock 16, 20, 21
ret.ain bacl:up J J
right to execute 4, B, 24, 3 I

s
socnarios 26-JO
security 3
scMcc:s 8,31

access application data store 13
crc:ate bicl:up JO
103d lind Qccutc: application 9
to.ad righl to execute 8
reuin bacl:up J J
~nsfer ri&ht to accute 12

sman card 6. 10
sort"'11re b3cL"Up 10, 20
software putitionint: 4, 22
solt ware piracy J, J I
supervisor key 14. 23, 31
Sllpervisor procc:u 14, lS, 31
supervisor pro.~:nUn 14, 16. 23.3 J

33

MST000077 46

APL_INTR-0018003
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 33

lndr:x

T

lemu :~nd conditions 3, 5, 2().2 1
allo.....,ble cJCecution periods 2.0
demonstration software 20
lending library 21
lim.itcd lifetime softw:ue · 20
renta.IsoftW3n: 21
site license 2 J
softw:nc ~rantcc 20
tesllevcl soCtwarc 2 J

unlimited software b:a.cl:1.1p 20
usage pricing 21

lOken 4. 6.. 8, 10, 13, 18, 32
lOken descriptor 6, 7. 16.32
u:a.nsfcr rlghtto aecute 12, 23
tnru.ferset 12,13. 32

u
WIJ'TOtectcd p3n 22, 4. ~. J 0. Is. 24

34

MST000077 47
lr.tr::c:' A1

APL_INTR-0018004
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 34

Copies may be requested from:

IBM Thom:u J. Watson Research Center
Distribution Services 73-F 11
Post Office Box 218
Yorktown Heights, New York 10598

MST000077 48

APL_INTR-0018005
lntertrust v. Apple

N.D. Cal. 4:13-cv-01235-YGR

Petitioner Apple Inc. - Exhibit 1034, p. 35

