O RO

US005109413A
Patent Number: 5,109,413
Apr. 28, 1992

Dafe of Patent:

United States Patent [

- Comerford et al.

(11]
[45]

[54] MANIPULATING RIGHTS-TO-EXECUTE IN
CONNECTION WITH A SOFTWARE COPY - FOREIGN PATENT DOCUMENTS
PROTECTION MECHANISM 2124808 2/1984 United Kingdom .
[75]1 Inventors: Liam D.Comerford, Carmel; Steve R.
White, New York, both of N.Y. . OTHER PUBLICATIONS .
[73] Assignee: International Business Machines Best, “Preventing Software Piracy with Crypto-Micro-
Corporation, Armonk, N.Y. processors”, IEEE, 1980. .
. 22 ’ Everett, “Padlock”, Computer Bulletin, Mar. 1985, pp.
[21] Appl No.: 441,221 16 et seq/"Software Protection”, Open Computer Se-
[22] Filed: Nov. 28, 1989) curity.
o : Herzberg, “Public Protection of Software”, Lecture
Related U.S. Application Data Notes in Computer Science, vol. 218, 1986, pp. 158 et
[63] Continuation of Ser. No. 927,299, Nov. 5, 1986, aban- S€Q. .)
doned. Kent, “Protecting Externally Supplied Software in
B o/ HO4L 9/00 Small Computers”, Ph.D. Thesis, M.LT., 1980.
Bo] US. G o w04 Lipson, “Litle Black Box ‘Blocks' Tiiit Sofoware
(58] Field of Searchooccs 380/4; 364/200, 900 COPYing”, Stamford Advocate (Sep. 14, 1986), pp. El
X K ’ an .
[56] References Cited Maude, “Hardware Protection Against Software Pi-
U.S. PATENT DOCUMENTS racy”, The Communications of the ACM, Sep. 1984,
) 178/2 vol. 27, No. 9, pp. 950 et seq.
g;ggé;‘i’ g; ig;‘; g;lss‘aenl'neta] """""""""""""" 17822 gt(x)rdy,r“A Software Protection Scheme”, IEEE 1982,
1958, L3 N ——— I
2 . .
soseais 1196 st o IR S o to (Sasctivey) rosdes Serer
4.120,030 10/1978 Johnstone —...... 364/200 }DE.EE 1985.
4.168,396 9/1979 BESt covoerrevoerrssresseseseeresn 178/22 rimary Examiner—Thomas H. Tarcza
4,183,085 171980 Roberts et al. ... 3647200 Assistant Examiner—David Cain
4,238,854 12/1980 Ehrsam et al. covvevcvvvnnnirinnnes 37572 Aviorney, Agent, or Firm—Pollock, Vande Sande &
4,246.638 1/1981 Thomas 36472 Priddy
4,278,837 7/1981 Best e 17872209 [57] ABSTRACT
222%% g;}gg: g;sgmas]7386(42/23.8(9) A software asset protection mechanism segregates the
4’ 458‘?1 5 71984 Uchenickm 364,200 r@ght to execute software from the software itself. The
4465001 8/1984 BeSt .o .. 178/2208 Tights to execute, when installed on a composite com-
4.471:163 9/1984 Donald et al. . 178/22.08 puting system, are stored in a coprocessor element of
4471216 9/1984 Herve 2357380 the composite computing system. The software asset
4.558,176 12/1985 Arnold et al. .. 364/900 protection mechanism is enhanced as described herein
4,562,306 12/1985 Chou et al. 17872208 by providing for the manipulation of those rights to
4,599,489 7/1986 Cargile 178/22.08 execute. More particularly, the rights to execute can be
4,609.777 9/1986 Cargile 178/22.08 conditioned at least in terms of a valid period of execu-
4,621,321 11/1986 Boebert et al. .. 3647200 tion at least in terms of a valid period of execution or a
4,633,388 12/1986 Chiuccoec.e.. ... 364/200 valid number of executions. The rights to execute can
4,644,493 2/1987 Chandra et al. 364/900 be safely transferred from one coprocessor to another,
14,646,234 2/1987 Tolman et al. ... we 3647200 or can be returned to the software vendor. Finally, a
4,652,990 3/1987 Pailenetal. .. - 3647200 method of backing up the rights to execute to provide
4,796,181 1/1989 Wiedemer . - 38074 the user with the rights to execute in case the coproces-
gg‘_’;;ggg ;; }ggi 1&1;:;’;; - ggg; : sor element of the composite computing system fails.
5:052:040 9/1991 Preston et al.vcvnriereennn 380/4 43 Claims, 19 Drawing Sheets
18 i' 1
I : P
0] B T
) APPLICATION FILE A
Epg (APPLICATION FILE B)
HoST — - Egsk (AK)
Eax (1))
-
IPERMANENT WEMORY[TEMPORARY WENORY |
v CK 1| 20
: -
i \
S e R et D e
25 / L 26

Petitioner Apple Inc. - Exhibit 1035, p. 1

Sheet 1 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

(t1) ¥v3
() 1533

(8 3714 NOILYDI1ddv) MV3
¥ 3114 NOILYDI1ddv

Petitioner Apple Inc. - Exhibit 1035, p. 2

4
% [

e S S =
H []
! “
t
0z | NSy !
| Kyon3n CALLELET I ININVIR3d:

—~ |

Gl
(o) - - % 1SOH
S . om\\. “| .“ ﬁc—
31
I Il_ Cgl
F'Old

Sheet 2 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

()3
(£861°1 HIYYN SI 31VQ
TVNINYILNOILIONOD MY)¥S 93

(8 3714 NOILYDI1ddv)¥Y3
v 3114 NOILVOI iddV

¢ 9ld

r——

-

L — g

92 GZ
] (
i S NI Y- 3
] []
' "
¥ E
0z | 5 I
| AHONIN ABVHOWIL [ANONIN LNINVAY I,
—~ 1
Gl
— 1SOH
Lo
f:

Petitioner Apple Inc. - Exhibit 1035, p. 3

5,109,413

Sheet 3 of 19

Apr. 28, 1992

U.S. Patent

92 6z
] (
R s et e 7
“ JLV0, !
| WNIWYIL Y
0z | I
| AHONIN AUVYOAWIL JAMONIN LNINVAY3d!
A
(H)¥Y3 !
(£861°1 HOYYN SI 31V | S
TYNINYILNOLLIGNOD'MY)ISI 3 o)] CLE
(8 3114 NOLLYIIIddY)¥Y3
vV 34 NOILVIITddv
—{r =1 .
3 I._ gl
¢ old

Petitioner Apple Inc. - Exhibit 1035, p. 4

5,109,413

Sheet 4 of 19

Petitioner Apple Inc. - Exhibit 1035, p. 5

Apr. 28, 1992

U.S. Patent

9z GZ
] (
e B -
[}]
' . '
1 w1
0z | XS) !
| ANONIN ANVHONIL [ANOWIN ININVANId:
—~— 1
()3
(9 SI SNOILMI3X] uwéo 9t .
4IGNAN NOTLIONODMY)¥SI 3 o . - - |
(@ 3714 NOILYIITddv) V3 1S0H
v 3114 NOILYIITddV
] 1 ¥
0g | ﬁo_
L ._ gl
Y '9ild

5,109,413

Sheet S of 19

9% P
() 73 e S S
() 1533 m "
(8 31 NOILYDI1dav) V3 ~1 oo
¥ 3113 NOILYOT lddv o |t ¥y |
! AYONIN ;ss.;: AONIN ININVIYId!

>~ lEmemmemeeeee-

Apr. 28, 1992

Petitioner Apple Inc. - Exhibit 1035, p. 6

v_ .
(8114503 4\.@\7 N Loy

U.S. Patent

NS

S Old

Sheet 6 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

(1) ¥¥3
(%v) X533

(g 3114 NOILYDITddv)¥Y3
¥ 314 NOILVDI1dav

(¢11%593

9 9ld

9t

9

1]

0¢

- . - - - -

]
| 2 |
L__]

Petitioner Apple Inc. - Exhibit 1035, p. 7

5,109,413

(F1) ¥V3 Ty 52

(iv) X593

(8 3714 NOILVIITddv) ¥V3
vV 3114 NOILVOI1ddv

1
1
1
1
—+
]
|
]
]
!
{
]
t
|
i
1
1
i
i
(
]
1
]
]
~
i
]
]
I
1
1
o

Sheet 7 of 19

ASD
AYOWIN AYVHOJWIL [AYOWIN ININVNYI

Apr. 28, 1992

U.S. Patent

(21) W._%ou A -
o gy | 0T T e
— o
I| I;) fw_

0b
L'9l4 L__

Petitioner Apple Inc. - Exhibit 1035, p. 8

Sheet 8 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

0¢

- - ——— - ——— o -

AJOWIN ININVAYId

- -t —— = ————

|
|
I
I
~4
!
]
I
]
|
i
o

Fyy
4S9

A

8 Old

Petitioner Apple Inc. - Exhibit 1035, p. 9

Sheet 9 of 19 5,109,413

Apr, 28, 1992

U.S. Patent

(8))¥59;3

0¢

i B n - e - wn - - —— o o -

i

36

= —

?_zg:_ﬁ = 8

-
h

o/

Petitioner Apple Inc. - Exhibit 1035, p. 10

Sheet 10 of 19 5,109,413

Apr. 28, 1992

~U.S. Patent

RIBRLF

96

|
L

8\ ot ‘914

9 sz
— {
............................. -
C Ny 18 §=u9 T
ON m zm.— Nm._.+ Bh ¥SD m
| YOI ANVHOAW 3L | ANONIN LNINVAN3G:
-
Sl
- % 2" 1SOH
INg, .28 g, ‘ol
[N8,...28)418)] = Ly C
— 8|

Petitioner Apple Inc. - Exhibit 1035, p. 11

Sheet 11 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

(81)¥593

96

HE'OId

cm\

zomzu euumozm
ON $34
9z Ge
] (
T vl
¢ Ho=4v w_|\‘\\\ﬂmuum 4o Ny Fyy m
0z m NE .48 4 1) %S9 m
| AHONIN AUVHOIN3L AONIN ININVIYId:
— ¥l
Gl
G o
e o o o1
I[N8) ... €8] 4 28 | (< C
L 1 81

Petitioner Apple Inc. - Exhibit 1035, p. 12

5,109,413

Sheet 12 of 19

74 4

] [
S X 3
m yy v
ol HE T byy
A R ¥
| AHOWIW AYVHOAWIL [RUOWIN ININVAAI]

(NS0 iy Iiy) iy

() 1593 o . - W) ooy
(N8 .. £8p4 28) X¥y : ASId

96

Apr. 28, 1992

U.S. Patent

———

0t

_ﬁ?_ﬂ. ,z::@ml

2t 914 05~

Petitioner Apple Inc. - Exhibit 1035, p. 13

5,109,413

Sheet 13 of 19

U.S. Patent

(yop'Hiy‘ INy) N3

(yy) ¥S93 |
(N8 ...£8.20)) ¥ 5

Apr. 28, 1992

€t '9ld

96

onL

A 5z
] (
S RS —— -
i i
] !
'l '
ozt |} oy
©7 [AUONIN ANVHOIWIL [ANONIN LNINVIIG:
A
1
I
o . - % 1SOH
@m! 68y 1 207) | on
- -84 >
_ J fw—

Petitioner Apple Inc. - Exhibit 1035, p. 14

Sheet 14 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

(usnt ¥y ‘ Py) Yig
(yy) ¥89;

96

bt "O1d

4ouy3

q

0333044

ON
9 ~ 52
——— e ————— e ——— = - — -
43=4v §I ! (N¥S'¢81)) S.zzgm m
¢ = ~————! !
\\m N ... £8) 4+ 28) m
ozt |t ¥y !
P AYORIN ABYVHOANIL [AYORIN LNINVIId
—~ |
Gl
- 1SOH
- . Lon
[Wey .. . v8y 4 £8) i C
8l
on.;

Petitioner Apple Inc. - Exhibit 1035, p. 15

Sheet 15 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

404y 3 0330044

ON 3]

mNJ \mm
< “llll+ lllllllllllllllllll *Nlll.l_...l.“
((30405 s NS ¥S03) YNIS 503 = 30406 ¥sn kanan—— 1! W
ozl | A4143A 304005 ¥Sn:?
| \JONIN ABVHONIL ANONIN ININVIY G

.]
~ ¥l
- | o
(308n03 wsn) WNIS 45y o - . — % 1SOH
99
- Loy
TRCTE ‘a1

Petitioner Apple Inc. - Exhibit 1035, p. 16

Sheet 16 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

9z Gz
] (
P Lrrrrw e -
! eyy
~ | by
0z | o N
 AYONIN AYVYOJNIL [AMONIN ININVINYId!
—~— 1
Gl
(@) s
Los
rm_

ot '914

Petitioner Apple Inc. - Exhibit 1035, p. 17

Sheet 17 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

QE: - _
000834 3004——
L |
13A0N3Y G31IVISNI
NOI LION0D 4NNV
| | 0ct
NISNST L8VIS /:82828
31314 K09
%S9
sl sgwwh.wmx 3/581 G304
WNIS ¥SN " N\ 02
[t3oanos ysn) _s:mz T 40553904409
. L ETT 2
NS0 AJI4IA 2t ‘914
31V3Y9
4+ S+ Eny
8t ‘914 4+ SNV + ONy
44+ v+ by
%59 ‘ Eyy
(34 + EXv+ Eny) M9 _ _ :
(44 + Cyv + Cny) NS03) o] ¥05S3904d09 | ey)
(a4 tav+ ey X893 L | w:
. 1)

Petitioner Apple Inc. - Exhibit 1035, p. 18

U.S. Patent Apr. 28, 1992 Sheet 18 of 19 5,109,413
BINARY FLAGS MULTI-BYTE ENTRIES
¢ 1
TR ‘
MID|RIAA LOCATION AND
E1T A ¥| S| conoimion VERIFICATION KEY
A } E Flu INFORMATION
0 E|P
N
0({0]0}10}0 —_ CSK 1
ojo{0}|010 —_— CSK 2
0j]010]0]0 _ CSK N
olof{t]ol1]| —m AK 1
ofolo]1]1 AK 2
oli1{tl1lo DATA AK 3
0 1110 DATA AK N
filolt]1]1 MAK 1
B EIERERE N MAK 2

Petitioner Apple Inc. - Exhibit 1035, p. 19

Sheet 19 of 19 5,109,413

Apr. 28, 1992

U.S. Patent

LLEENLIITH

pAYS (YY) NS 3
(¥v)¥S3
NS=ZNY « INY
(LNY) FNSD3

Y

(ZNY) ¢XSI3
4.1]

6

0313736 9V @
¥Y 313130 !

9

(%3 g

N ENY=XS b
(ZNY ¢¥SI3 ¢

(INY) ENSIT 2
INY }

A

A

A

40553004409 ANIS

40553904403 3I4n0S

9z

J i
R s S - 7
[} '
) !
| “
” 2489 1089 |
{ RHONIN AYVHOJNIL |ANONIN ININVIY3d!

1SOH

Ot
00¢

0¢

i2°9l1d

|
W
2¥SY 1S |
MHONIN AHYHOJNIL |AYONIN ININVINYID!

e v —— - - - -]

02914

1SOH

0t

Petitioner Apple Inc. - Exhibit 1035, p. 20

5,109,413

1

MANIPULATING RIGHTS-TO-EXECUTE IN
CONNECTION WITH A SOFTWARE COPY
PROTECTION MECHANISM

This is a continuation of copending application Ser.
No. 06/927,299 filed on Nov. 5, 1986 abandoned.

DESCRIPTION
Technical Field

The invention is in the field of data processing, espe-
cially in connection with a software copy protection
mechanism. That mechanism restricts software, distrib-
uted on a magnetic disk or other medium, for use on any
computer which is associated with an authorized, physi-
cally secure coprocessor where the mechanism does not
interfere with the user creation of n“backup” copies,
but the protection is not compromised by any such
*“backup™ copies. The present invention is particularly
directed at manipulating a right-to-execute which is a
distinguishing characteristic of that copy protection
mechanism.

CROSS-REFERENCE TO COPENDING
APPLICATIONS

Reference is made to the following copending appli-
cations, assigned to the assignee of this application:

U.S. patent application Ser. No. 927,309, filed Nov. 5,
1986; U.S. patent application Ser. No. 927,306, filed
Nov. 5, 1986; U.S. patent application Ser. No. 927,629,
filed Nov. 5, 1986; U.S. patent application Ser. No.
927,298, filed Nov. 5, 1986; U.S. patent application Ser.
No. 927,286, filed Nov. 5, 1986; and U.S. patent applica-
tion Ser. No. 927,297, filed Nov. 5, 1986.

BACKGROUND OF THE INVENTION

The basic copy protection mechanism is described in
copending application Ser. No. 927,629; this mechanism
separates the software which is to be protected from the
right to execute that software. To provide security and
implement the mechanism, each computer on which a
protected application is to run (hereinafter referred to as
a host) is associated with a logically and physically
secure coprocessor. When installed in the coprocessor,
the right-to-execute a particular protected application
exists in the form of a software decryption key called an
application key (AK). So long as the software decryp-
tion key AK is retained in the permanent memory of the
coprocessor, the corresponding protected software can
be executed on the composite system including the host
and coprocessor. The software copy protection mecha-
nism has the advantage that it negligibly interferes with
present and contemplated software distribution tech-
niques, it allows the user to make unlimited numbers of
“backup” copies and it does not require any two-way
communication between the user and the software ven-
dor. This is supported by distribution of an authoriza-
tion to the coprocessor to accept a right to execute
provided in the form of a hardware cartridge (or token).
Furthermore, the user need only employ the token the
first time the protected application is run in order to
transfer the right to execute, which is represented by
the unused token, to the coprocessor. Thereafter, the
token may be discarded and it is thereafter totally un-
necessary to maintenance or use of the right to execute.

The invention described in copending application
Ser. No. 927,629 does not address manipulation of the
right to execute {(other than describing how a user may
first acquire it), nor does it describe the possibility of

20

25

30

35

40

45

50

55

60

65

2 :
conditioning the right to execute. The present invention
is particularly directed at conditioning or manipulating
or transferring the right to execute which exists in a
COprocessor. :

In particular, the present invention provides the capa-
bility of safely transferring the right to execute. The
right to execute may be transferred to another co-
processor or may be merely transferred outside the
coprocessor for external storage. In either event it is
essential that the process of transferring the right to
execute not generate or allow spurious or duplicate
rights to execute which would of course defeat the
purpose of the copy protection mechanism. As de-
scribed herein, the transfer of a right to execute can be
indirect, through the use of a transfer set (which in
many respects is identical to the distribution set through
which the right to execute was acquired) or direct via a
COprocessor to coprocessor communication link. Safety
is maintained even though the communication is unse-
cured in the sense that the transfer transaction may be
observed.

The present invention also provides techniques for
conditioning the right to execute. For example. the
right to execute might be conditioned by a time period
(a right to execute which exists up until a cut-off date
and/or time) or it could be conditioned based on the
number of times it is invoked (for example the vendor
could sell a user the right to execute the protected appli-
cation ten times). As will be described, the right to
execute can be conditioned on any other parameter so
long as it can be measured by the coprocessor to the
satisfaction of the source of that right to execute (the
software vendor). The availability of conditioned rights
to execute provides the software vendor with additional
flexibility and it further opens up the possibility, for the
first time in the software field, of a truly safe “return™
policy. For obvious reasons. a software vendor, using
today’s software distribution techniques, will be in jeop-
ardy of giving his products away free if he accepts the
“return” of software for full purchase credit. The ven-
dor has no way of verifying with present distribution
techniques whether or not the user has already dupli-
cated the software so that after the return the user could
still maintain a fully usable copy of the application.
Using the principles described herein, however, the
software vendor can implement a “return” policy and
be assured that if a user returns the software, the user no
longer retains an executable copy.

Because the software copy protection mechanism
operates in the real world, with real world devices, and
because the distinct right to execute exists in the form of
a cryptographic key stored in the permanent memory of
a coprocessor, it is necessary to address the possibility
that the coprocessor storing the right to execute may
fail. Such failure should not result in the complete loss
of the user’s rights to execute, and the present invention
provides apparatus and methods for securing the user
against the loss of the right to execute in the event his
coprocessor does fail. Much as in the case with moving
or transferring the right to execute, any hardware
“backup” technique (available in case a coprocessor
fails) should not have the property of being useful to
generate spurious rights to execute. The hardware
backup method provides minimal opportunity (and
significant disincentive) for improperly multiplying
rights to execute.

Petitioner Apple Inc. - Exhibit 1035, p. 21

5,109,413

3

SUMMARY OF THE INVENTION

The invention meets these and other objects as de-
scribed below.

Conditioned Right-to-Execute

In order to condition the right to execute, in a system
such as described in our copending application Ser. No.
927,629, there must be:

1) a statement of the condition (or conditions) under
which the .application software may (or may not) be
allowed to execute fully, and

2) some objective criteria against which the condition
or conditions can be measured, and

3) a software program which can test the conditions

4

for storage of a last allowed use (terminal) date along
with the software decryption key. Since the coproces-
sor maintains a real time clock, whenever the decryp-
tion key is accessed or at intervals during application
execution, the terminal date and the current date are
available. The terminal date provision is protected
against unauthorized alteration by the security of the
coprocessor as is the real time clock setting. The en-

. crypted portion of the software (the protected portion)

—

5

against the criteria and act in a way determined by _

results of that test.

These objectives must be met in a way which is se-
cure against attempts of the user, or anyone else not
specifically authorized by the software vendor, to either
vary the conditions or the objective criteria under
which the conditions are met. In accordance with the
invention, the criteria are stated in software, and more
particularly, in the protected or encrypted portion of
the application software. As is described in our copend-
ing application Ser. No. 927,629, the only form in which
application software is available to the user is in en-
crypted form; because the user does not have access to
the decryption key as a data object, he is unable to
modify, or even read the protected software. Thus,
incorporating the conditions of the right to execute
within the protected software results in securing these
conditions against alteration by the user or anyone else
unless authorized by the software vendor. In order to
save (for testing) the conditions which are tested against
the programmed criteria, we use some storage space in
the non volatile memory of the coprocessor; this stor-

25

age space has already allocated to it the function of .

storing the decryption key necessary to decrypt the
encrypted software. Thus the storage space allocated to
a particular protected piece of software is expanded to
include the condition which can be measured against
the criteria. Because of the non-volatility of the mem-
ory, so long as the right to execute is available in the
coprocessor, the objective conditions are also available.
1t should be understood that the coprocessor contains a
continuously powered real-time clock within its physi-
cally secure boundary so that in the case that criteria
involving time are to be used, the time information is
available. Because the information is stored in a co-
processor’s non-volatile memory, and only the portion
of this memory allocated to any particular application
can be accessed by that application, the information is
secure against any attempt at modification by the user.

" The application software may modify the conditions
stored in its portion of non-volatile memory, but may
not change the value of the real-time clock.

For example, the software thus could count the num-
ber of times or the total period it had been used by
changing numbers kept in this storage and executing
only until criteria related to number or total period of
executions were no longer met by the stored conditions.

As an example, assume that the software vendor has
transferred to the user the right to execute on the condi-
tion that a certain terminal date had not passed, (i.e. the
user has the right to execute the protected application
up to, but not after Mar. 1, 1987). The coprocessor’s
operating instructions necessarily, therefore, provide

40

45

55

60

65

describes the criterium that execution is not available
beyond the terminal date. Whenever the protected soft-
ware is run, the decryption key and the terminal date
are accessed from the coprocessor’s non-volatile mem-
ory. The criterion tested in the protected software re-
quires that the terminal date be compared to the current
date; if the current date is beyond the terminal date,
then execution of the protected software does not pro-
ceed. The protected software can also be arranged to
provide for deleting the particular software decryption
key in the event that the current date is beyond the
terminal date. It should be apparent to those skilled in
the art that another condition which can be substituted
for the terminal date condition is the number of times
the software is executed. For this case, the protected
software describes the number of executions which
have been authorized, and in lieu of storing the current
date along with the software decryption key, a count of
allowed uses is stored which is decremented each time
the software is executed. The protected portion then
tests the allowed number of executions against the crite-
rion that the number is greater than zero. It then either
decrements the number or, if the number of authorized
executions is zero, denies the user’s request to execute
the software (and perhaps the software decryption key
is also deleted). It should be apparent that there are
many variations to these specific implementations, in-
cluding elapsed time, passwords, and combinations of
these and other measurables, all of which are within the
scope of the invention.

Transfer of Right-to-Execute

Transferring the right to execute from one user to
another (or more particularly, from a source coproces-
sor to a sink coprocessor) can be accomplished by re-
constructing a distribution set. This procedure returns
the right to execute to a portable form which is substan-
tially identical to that from which it was acquired in the
first place, see copending application Ser. No. 927,629.
This procedure, necessarily, removes the right to exe-
cute from the source coprocessor.

This transaction requires that the user obtain either a
token or a disk and a token pair (also referred to as a
Transfer Set), depending on the structure of the token.
These sets can be provided by the hardware vendor.
The token (or cartridge) in the set is loaded by the
coprocessor hardware manufacturer. The Transfer Set,
prior to manipulation by the user has a single piece of
information, token data, stored in two forms. The token
is loaded, by the hardware vendor with clear text token
data; the physical characteristics of the token protect
this sensitive information from unauthorized persons.
The same data is encrypted under a hardware manufac-
turer secret key called a Common Supervisor Key
(CSK) to generate Ecsx(token data). It is stored either
on the disk of the Transfer Set, or in the token if it is so
structured as to allow it. Because Ecsk(token data) is
encrypted, it may be stored on the disk even though in
that form it can be read and even copied by anyone. It

Petitioner Apple Inc. - Exhibit 1035, p. 22

15,109,413

5

is necessary that the transfer set be prepared by a trusted
source, such as a hardware vendor, because if the token
- contents are known, other tokens could be loaded with
known contents and the transferred right to execute

replicated. Assuming that the user has acquired a suit-

able transfer set, the distribution set is prepared using a
Reconstruct Distribution Set (RDS) process, by the
user and his composite computing system, for example,
as follows.

A utility program, running on the host computer,
signals the (source) coprocessor that an RDS sequence
is about to begin. The utility program identifies to the
coprocessor the location of the key to be transferred.
The coprocessor executes a CBS (Create Backup Set)
procedure on all allowed keys except the indexed key.
The CBS procedure is described below. At this point it
is sufficient to note that the CBS procedure invalidates
any existing hardware backup mechanism. The co-
processor requests and receives a copy of the encrypted
token descriptor Ecsk(token data) from the transfer set.
The coprocessor decrypts the token descriptor to pro-
vide clear text token data. This clear text token data is
then encrypted using the software decryption key iden-
tified by the index to produce Egx(token data). The
coprocessor then stores this encrypted token descriptor
E 4x(token data) in a reserved non-volatile storage area
of the token or on the disk and either erases or other-
wise de-activates the software decryption key AK at
the given storage location. The coprocessor then passes
the encrypted token descriptor to the host for storage
on the transfer set disk. As will be described later, the
key (AK) to be transferred may be associated with
conditions of execution. If these conditions of execution
are unchanging (such as terminal date) then the en-
crypted application key may be copied to the transfer
set disk. If the conditions of execution are changing
(such as remaining hours of use or remaining number of
uses), then the encrypted file containing the application
key and the conditions of execution cannot be copied
from the distribution disk without resetting the condi-
tions. This synchronization of a token descriptor file
and an application key file can be achieved by including
a correspondence test number in each file. The next step
in transfer is thus the preparation of an encrypted appli-
cation key file for storage on the transfer disk. This
preparation is identical to the encrypt vendor key
(EVK) transaction described below save that the corre-
spondence test number is substituted for the random
number. This correspondence number could be a frac-
tion of the token data. After this preparation and trans-
fer, the utility program, running in the host, then trans-
fers to the transfer set disk the two files containing the
plain text and cipher text parts of the protected pro-
gram. The reader can now verify that the distribution
set is identical to the distribution set described in appli-
cation Ser. No. 927,629 in that it includes the encrypted
token data, encrypted with the software decryption key
AK, the plain text file and the protected or encrypted
software file, also encrypted under the software decryp-
tion key AK, as well as the software decryption key AK
encrypted by the hardware vendor’s key CSK. The
latter three elements may be copied from the original
distribution disk or any backup copy of those files if
permitted by execution conditions. It should be self-evi-
dent that since the distribution set is now identical in ail
but one respect, it is usable with any coprocessor to
transfer the right to execute the particular encrypted
software file. The only difference between the distribu-

20

25

30

35

40

45

50

55

65

6

tion set and the original set from which the right to
execute was acquired, is that the token data is very
likely to be different; this is immaterial as long as both
portions of the set (the token cartridge and the diskette)
have been derived from identical token data. The
(source) coprocessor now deletes the decryption key
AK from its temporary memory. At this point, the right
to execute has been deleted from the source coproces-
sor and exists solely in the Transfer Set.

Transfer of the right to execute, however, need not
be indirect, e.g. through the transfer set already referred
to. Transfer of the right to execute can be direct, e.g.
using a coprocessor to coprocessor communication link.
Furthermore, the coprocessor to coprocessor commu-
nication link need not be secure in order to maintain the
safety of the right to execute being transferred; rather
the safety is cryptographically secured as will now be
described. In the following discussion we will refer to a
transfer from coprocessor to coprocessor, however, the
reader should understand that the communication link
between coprocessors can either be through direct con-
nection, or can be through any bidirectional data com-
munication system. A transfer of a right to execute from
one coprocessor to another is considered safe when the
two coprocessors involved are able to identify one an-
other as “members of the family” and generate a one
time only Session Key for their use in that transaction.
The identification as members of the family is needed
for assurance that the procedures used by each will
mesh correctly, so that proliferation of rights to execute
will not occur, and so that other protected information
will not be revealed.

The transaction in which the Session Key is gener-
ated relies on the presence of information in high privi-
lege memory which is common to the two coprocessor
systems participating in the transaction and on the abil-
ity of coprocessors to generate good random numbers.
The process which generates a Session Key will result
in both coprocessors involved in the transaction pos-
sessing the same key only if both coprocessors have the
necessary antecedent information in common.

The transaction for mutual identification and genera-
tion of a Session Key is as follows. For purposes of this
description we will refer to the user or the user’s com-
posite computing system or the user’s coprocessor as
the source user, source composite computing system or
source coprocessor if the right to execute is being trans-
ferred from that user, composite computing system or
coprocessor. We will refer to the user, composite com-
puting system or coprocessor as the sink user, sink com-
posite computing system or sink coprocessor if the right
to execute is being transferred thereto. The source user
signals the source coprocessor that a Session Key is
needed. The source coprocessor generates a random
number which will be used in generating the session
key, pads it with another random string of bits, and
appends a Message Authentication Code (MAC). The
MAC can be used to ensure that the plain text message
which is recovered on decryption is identical to the one
transmitted. The source coprocessor then encrypts the
number with a key CSK and sends the encrypted num-
ber to the sink coprocessor. The sink coprocessor has
performed the same function and has sent its random
encrypted number to the source coprocessor. The
source coprocessor decrypts the number received
under the encryption key (CSK). In the event that each
coprocessor stores multiple CSKs, then each coproces-
sor decrypts the received number under each CSK in

Petitioner Apple Inc. - Exhibit 1035, p. 23

5,109,413

7

succession until either a valid MAC is obtained, or the
collection of supervisor keys (CSK) is exhausted. If a
valid MAC is not found. then an error message is re-
turned. This will be the typical outcome if a processor
which is not a “member of the family™ tries to pass itself
off as one. If a valid MAC is obtained, then the random
numbers generated in the two coprocessors are com-
bined in both coprocessors and are used as the Session
Key. Of course, part of the operating instructions for
the coprocessors will define, a priori, the particular
manner in which the random numbers are to be com-
bined in order to generate the Session Key; one number
could be concatenated with another; the numbers could
be EXCLUSIVE-OR’ed, etc.

In order to avoid the procedure which may require
successive decryptions in a search for the *“correct”
supervisor key, location information such as an index
for the supervisor key which had been used could be
sent along with the encrypted number. There is an ad-
vantage, however, to the technique which requires
coprocessors to *“search” for the correct supervisor key.
A procedure which transmits an index number along
with the encrypted number provides a growing collec-
tion of information about the supervisor keys to any
observer.

Once the Session Key has been generated, it is possi-
ble for the coprocessors to transfer rights to execute by
encrypting them under the Session Key. The coproces-
sors’ firmware, controlling the procedure, ensures that
the rights are erased from the source processor. The
right to execute could be erased when transmitted by
the source processor, although a preferable technique is
to erase the right to execute (the software key) only
when the sink coprocessor indicates that the right to
execute has been safely received and to activate the
right to execute only when the source coprocessor
indicates the right to execute has been deactivated. The
right to execute, which is transferred in encrypted form,
is secured against an observer by its encryption and
there is no need to employ a secure communication link
or channel.

Direct or inter-coprocessor communication is the
method of choice for movement of rights to execute in
a network or a mainframe link environment. In these
cases or others involving placing more than one right to
a particular application in a particular coprocessor, a
count of the rights for a given package is maintained in
the key storage area of the source coprocessor so that
the number of rights which have been received limits
the number which are distributed.

1t should be clear from the above descriptions that it
is within the realm of this mechanism to associate with
an AK a description of the life span of an AK in several
dimensions (time, numbers of use, etc.). It should also be
clear that it is within the capacity of this mechanism to
divide or parcel out this span under control of software
provided by the software vendor and executed by a
coprocessor. Libraries of software could be maintained
in distributed computing systems by these means with-
out violating the conservation of rights to execute while
providing benefit to the distributed computing system’s
user.

In the event that a transfer of multiple rights to exe-
cute is required, the coprocessor to coprocessor transfer
proceeds as follows once a Session Key has been cre-
ated. The source user identifies to the source coproces-
sor those rights to execute (AKs) to be transferred. The
source coprocessor executes a CBS procedure (defined

—_—

0

20

25

30

40

45

50

60

65

8

hereinafter) in order to update any backup set of rights
to execute. The source coprocessor then encrypts the
software keys under the Session Key and stores them
with the Session Key in a reserved location of tempo-
rary memory. The source coprocessor marks each soft-
ware key from the key store (permanent memory) as
inactive and sends the encrypted information to the sink
coprocessor. The sink coprocessor receives the collec-
tion of encrypted keys from the source coprocessor, and
decrypts them under the Session Key. The sink co-
processor then stores the decrypted keys in its key store
(permanent memory) marking them inactive and sends
its host computer location information by which the
applications can access the keys in the load decrypt run
procedure. The files actually comprising the protected
software can be sent by any conventional (unprotected)
technique or apparatus. The sink coprocessor can re-
turn a message to the source coprocessor indicating
receipt of the particular software key or keys to induce
the source coprocessor to eliminate those software keys
from its temporary memory. When the source co-
processor confirms the removal, the keys are then acti-
vated by the sink coprocessor.

It should be noted that a software vendor may not
wish to allow transfer of a right to execute and that this
constitutes a term or condition of sale. Conditions
which control the allowed movement of rights to exe-
cute can be stored in association with an AK as part of
the procedure in which it is acquired. If a manipulation
of an AK is requested by a user, then these conditions
(flags) are tested against go/no-go criteria stored in the
coprocessor firmware which implements the requested
manipulation.

Backup of Right-to-Execute

The backup procedure to be described is one which is
intended to insure that the collection of rights to exe-
cute stored in a user’s coprocessor are not lost due to an
unforeseen failure of, for example, the supply of power
to the coprocessor’s non-volatile memory. This is to be
distinguished from backup procedures which are ap-
plied to files of data and software. The latter procedures
are entirely conventional, well understood, and are
applicable to those kinds of objects, where they exist, in
this system (plain text and encrypted software and en-
crypted application key). Many functional copies of
such objects may be kept for use by any authorized
system, thus ensuring against their loss. It is, rather, the
objective of the backup procedure described below to
back up rights to execute so that they are not lost but so
that many functional copies of that kind of object can-
not be made.

Because the backup procedure is designed to circum-
vent the results of an unforeseen failure in the coproces-
sor, the backup procedure must create, external to the
coprocessor, sufficient information so that the right to
execute can be installed entirely independently of the
(source) processor which stores an entirely valid right
to execute. Because of this necessary independence, the
backup procedure itself is a potential source of a (dupli-
cate or spurious) right to execute. Allowing the creation
of backup rights is a policy decision for the software
vendor. It is a potential detriment to his security and
would be provided for his customers’ convenience. As
noted earlier with respect to transfers of rights, a pro-
vider of software may not wish to allow backup. This
condition of sale is enforceable by the same mechanism
as described for control of transfer given the existence

Petitioner Apple Inc. - Exhibit 1035, p. 24

5,109,413

9

of a no-backup flag associated with an AK. This option
is desirable in the case that the conditions of execution
may change. To minimize the impact of backup rights,
they are. in this system, made conditional in that they
expire after a conveniently short interval which is long
enough for the user who has actually had a failure in his
coprocessor to have that failure verified, for example by
the hardware manufacturer. Assuming the hardware
manufacturer verifies the failure of the user’s coproces-
sor, the means are provided to the user to carry out an
additional procedure to remove the condition on the
backup rights. In order to safely integrate the creation
of backup rights with the other capabilities described
herein, the creation of backup rights should be thought
of as beginning a transfer of all allowed rights which is
then left pending completion. Transfer procedures are
necessarily interrelated with the backup procedures so
that any user backup set (which carries a potential right
to execute) is invalidated at the time any complete trans-
fer is effected. This prevents the transferred rights from
also being present in a valid backup. Accordingly, the
user has the following options in connection with the
procedures described herein:

1. With his right to execute installed on a coproces-
sor, the user can have a backup set (representing a col-
Iection of potential rights to execute) which can be
converted into an actual, but conditioned, right to exe-
cute, or

2. The user can remove one or more rights to execute
from his coprocessor and install them in a transfer set or
directly transfer them to another coprocessor, but that
procedure requires invalidation of the existing backup
set. This requirement is entirely consistent with the
user’s rights since when rights to execute are removed
from a coprocessor, there is no need for the rights to be
represented in the backup set. Obviously, a new backup
set which correctly reflects the diminished set of in-
stalled rights to execute may be prepared immediately
after a transfer.

The procedures arranged for creating backup rights
are comprehensive in that a single backup set can retain
potential rights to execute for multiple applications.
The procedurés contemplate that the user’s collection
of rights on execute may be dynamic, e.g. his collection
of rights on one day may be greater or less than his
collection of rights on another day. This necessarily
requires that the backup rights be dynamic too and
track changes in the user’s collection of rights to exe-
cute.

Basically, the backup procedure is a two-step process,
in a first step a Backup Set is created (Create Backup
Set, or CBS); the Backup Set includes a disk on which
an encrypted file of rights to execute (for a group of
applications) is stored. A supervision key which is
unique to this (source) processor (USK) is also included
in this file. This information will allow the hardware
manufacturer to verify that the failed processor which
they receive as evidence of the failure is the processor
claimed to have contained these rights. A token which
can validate this collection to a coprocessor is also part
of the set. The key used to encrypt this file is a random
number generated by the coprocessor, possibly by en-
crypting the date and time with a unique supervisor key
(USK). It is the authorization to use this random num-
ber (RK) key which is validated by the backup set to-
ken. As noted above, the Backup Set is considered a
pending transfer.

25

40

45

50

60

65

10

The second step in the backup process is Install
Backup Set (IBS); in this step the potential right(s) to
execute represented by the backup set, consisting of the
token and disk, is installed on a coprocessor. Because it
is contemplated that the user is likely to execute the
CBS step of the backup procedure on plural occasions
before ever executing the IBS step, the token which is
employed in the Backup Set must be more capable than
the token used in the Distribution Set; this capability is
required because of the fact that the user may execute
the CBS step each time a new application is acquired.
The user’s existing backup must be invalidated at that
time to prevent the creation of additional rights to exe-
cute. Accordingly, the token data will typically be
much longer than the token data used in a Distribution
Set so that a portion of that token can be read as part of
each CBS transaction, changing the token content as a
consequence, and invalidating previous backup disk
files, without in the process completely discharging the
token. The same token may then be used for the IBS
transaction if or when it is needed. It is presently con-

templated that rather than employing shift register stor-

age on such a Backup Set token, storage will be de-
signed around random access memory. The description
which follows however will for simplicity assume that
the backup token is based on shift registers as in copend-
ing application Ser. No. 927,297, but containing extra
length shift registers.

Prior to initiating a CBS step, the user has acquired a
Backup Set consisting of a token and a disk. The disk, as

acquired by the user, stores encrypted token data, Ecsk.

(token data). The token, as acquired, stores clear text
token data.

The CBS step proceeds as follows:

A utility program signals the coprocessor that a CBS
sequence is about to begin.

The coprocessor requests and is given the encrypted
token data corresponding to the token portion of the
Backup Set.

The coprocessor decrypts the token data and selects
the amount of the token data that will be used. “Use” of
a portion of the token data implies that this portion of
the token data will be destroyed; the remaining portion
of the token data is available for subsequent executions
of the CBS procedure, for example when the user ob-
tains a subsequent application, the rights to which he
desires to backup.

The coprocessor generates a random number of
length equal to the amount of the token data to be used
and employing the random number *“reads” or challen-
ges the token and obtains the token response. Since the
coprocessor already has available to it the clear text
token data and the random number it has generated, it
can predict or compute the correct response. The com-
puted response and the actual response of the token are
compared. If the comparison indicates that the token
response and the computed response do not correspond,
then an invalid token has been presented, an error mes-
sage is returned, and the sequence terminates. Assum-
ing, however, that the computed and actual responses
correspond, then the transaction continues. By reading
or challenging the backup token, the token data con-
tained therein is changed (as well as verified). Changing
the token data invalidates all copies of any previous
backup. Thus the necessity for the length of the token;
it can only be used a number of times given by the ratio
of the bit length of the token portion to the portion used
each time the CBS step is executed. When the token

Petitioner Apple Inc. - Exhibit 1035, p. 25

5,109,413

11
contains only enough data for one more transaction, it
may be read to be destroyed and a new backup token
may be started.

For the remainder of this transaction, it is assumed
that the cryptographic system employed in the co-
processor allows any number to be a valid key. Random
numbers are thus valid keys. This property is a charac-
teristic of the DES system.

Having verified the authenticity of the token, the
coprocessor now encrypts, under a second random
number, the remaining, unused portion of the token
data, the allowed portion of its key store and the unique
supervisor (USK) key which identifies that source pro-
cessor. The encrypted block, as described, can then be
stored on a disk. This file will be used for the Install
Backup Set procedure.

A copy of the random number used as an encryption
key above is now encrypted under a supervisor key
using the encrypt vendor key procedure. This datum is
now stored on the backup disk.

These files can be copied in the same way the pro-
tected software can be copied, i.e. an unlimited number
of times. However, the file is usable only with the token
and then only in the event the token has not been read
in the interim. As already described, any subsequent
transfer operations require invalidating the token. The
Install Backup Set step is now described, assuming that
the user has access to both the file that was created
during the last execution of the CBS step, as well as the
token, which has not been read in the interim.

We also assume that in the interim the user’s co-
processor, the source coprocessor, has failed, but the
user has available another (sink) coprocessor. The In-
stall Backup Set procedure will install, on the sink co-
processor all the rights to execute that had existed on
the user’s source coprocessor (to the extent backup was
allowed). However, in order to protect the software
vendors, the entire collection of rights to execute will
be conditioned by a grace period. During the grace
period. each of the rights to execute will be operative
and the user can employ them as he would have in his
(source) coprocessor. During the grace period, the user
can return his failed (source) coprocessor to the hard-
ware vendor. The hardware vendor, after verifying that
the coprocessor has indeed failed. will provide to the
user a disk having an encrypted message verifying, to
the (sink) coprocessor that the (source) coprocessor has
failed so that the grace period condition on the rights to
execute can be lifted. Accordingly, the IBS step in-
cludes two sub-steps; a first sub-step installs the rights to
execute in the (sink) coprocessor. At the time these
rights to execute are installed, they are conditioned so
they become ineffective at the expiration of a grace
period. The second sub-step in the IBS step is removal
of the condition on the rights to execute by employing
a disk acquired from the hardware vendor. The 1BS
step then proceeds as follows.

A utility program signals the sink coprocessor that an

IBS sequence is about to begin. The coprocessor first
requests, and is sent, the encrypted random number key
which has been used to encrypt the backup file. This is
decrypted under the appropriate CSK. The coprocessor
then requests and is given the encrypted backup file.
The encrypted backup file includes the encrypted token
data, the contents of the key store from the (source)
coprocessor and the unique supervisor key of the source
processor.

20

30

35

40

45

50

55

65

12

The (sink) coprocessor decrypts the backup file using
the random number key found in the previous step,
removes the token data and verifies the token. Token
verification proceeds as in verification of the Distribu-
tion Set, i.e. the verification changes the token contents.
As a result, the token can be used to perform an IBS
procedure only once. Assuming the token is valid, the
set of backup rights to execute is installed in the perma-
nent memory of the (sink) coprocessor, along with an
expiration date, thus determining the extent of the grace
period.

A message is now prepared by the (sink) coprocessor
containing a copy of both coprocessors’ unique keys.
This message is returned with the failed source co-
processor so that the condition-lifting message from the
hardware vendor can be identified by the sink coproces-
sor as intended for it, and as intended for the set of
rights to execute of the particular source coprocessor.

At this point, the (sink) coprocessor is in the same
condition that the (source) coprocessor was at the time
it was last backed up, except that all the rights to exe-
cute are conditioned on the expiration date. Assuming
that the user obtains, from the hardware vendor within
the grace period, the verification disk, the second sub-
step of the IBS step proceeds as follows.

A utility program signals the (sink) coprocessor that
an IBS sequence is about to be completed. The (sink)
coprocessor requests and receives the validation file and
decrypts it under its supervisor key (the USK of the
sink). If the file contains the unique key which identifies
the (source) coprocessor, then the condition is lifted. If
the file does not contain the unique key of the (source)
coprocessor, then an error message is returned and the
sub-step is not completed.

Backup Through Inter-Processor Communication

In the preceding, the “hardware” backup has been
described as comprising the CBS and IBS procedures,
both of which rely on an extended token. Use of a token
or extended token however, is not essential to “hard-
ware” backup, and an intermediate coprocessor can be
employed in lieu of the token or extended token for
“hardware” backup purposes so long as the intermedi-
ate coprocessor can be arranged to firstly communicate
with the source coprocessor (for the CBS procedure)
and then communicate with a sink coprocessor (for the
IBS procedure).

The inter-processor wvariant of the “hardware”
backup procedure is now described.

For this description, we assume that the source co-
processor is in communication with the “intermediate”
coprocessor. The coprocessors initially exchange en-
crypted random numbers, each encrypted under a su-
pervisor key selected by the transmitting coprocessor.
As already described, each of the coprocessors can
decrypt and recognize that it has decrypted the en-
crypted random number transmitted by the other co-
processor even though it is not initially aware of the
specific supervisor key employed. Assuming that each
of the receiving coprocessors successfully decrypts the
encrypted random number, they both combine those
clear text random numbers to generate the Session Key
which will be used for subsequent communications.

The source coprocessor then extracts the application
key (AK) or keys sought to be backed up from its per-
manent memory and encrypts that key information and
its USK under the Session Key to generate an en-
crypted key block. This is stored on a backup disk. The

Petitioner Apple Inc. - Exhibit 1035, p. 26

5,109,413

: 13

Session Key is stored by the intermediate coprocessor
in its secure memory along with a descriptor indicating
that the key corresponds to a backup set. At this point
the intermediate coprocessor has possession of the key
needed to access the AK or AKs which are being
backed up and were it not a trusted recipient, it could
generate spurious rights to execute. However, the iden-
tification procedure referred to above has identified, to
the source coprocessor that the intermediate coproces-
sor is a “‘member of the family”. As such a member of
the family, the logical and physical security of the inter-
mediate coprocessor protects the right(s) to execute
which have been transferred from spurious duplication
or use. The actual encrypted application(s) can be trans-
mitted to the intermediate coprocessor for the IBS pro-
cedure, by any conventional means.

If at a subsequent time the source coprocessor is re-
quested to transfer right(s) to execute which have been
backed up via an “intermediate” coprocessor, as al-
ready described that transaction cannot take place until
the source coprocessor communicates with the “inter-
mediate” coprocessor to invalidate the backup rights.
Such communication hads only three essential compo-
nents. The first component is the identifier sequence as
already described. This satisfies the source and interme-
diate coprocessors that the communicating parties are
indeed “members of the family”. The second compo-
nent is the transmission from the source coprocessor to
the intermediate coprocessor of a message requesting
invalidation of the backup rights key. The third compo-
nent is the reply from the intermediate coprocessor that
it is indeed the intermediate coprocessor which stored
the backup rights and that the rights have been invali-
dated. The backup rights stored in a “intermediate™
coprocessor can either be installed, using an IBS proce-
dure, in the intermediate coprocessor, or can be in-
stalled in a different (sink) coprocessor. If the backup
rights are to be installed in the intermediate coproces-
sor, that action is readily effected by a user request
through the host associated with the intermediate co-
processor; the rights are installed without requiring a
token but, as already described, those rights are condi-
tioned on the grace period.

In the event that an IBS procedure using an interme-
diate processor is performed, the processors first estab-
lish their mutual identities as “members of the family”
by establishing a session key. The random key may then
be encrypted under the session key and transferred to
the sink coprocessor. The sink coprocessor is thus au-
thorized to install the set of backup rights to execute
with the grace period and prepares a message for the
hardware manufacturer as previously described.

Encrypt Vendor Key

As described both in this application as well as in
copending application Ser. No. 927,629, the coproces-
sor is also used to provide a service to a software ven-
dor of encrypting the software decryption keys (AK). It
is essential to the protection provided by the entire
software copy protection system that the supervisor
keys (CSK) which are used to encrypt the software
vendor’s decryption key be maintained secret. By al-
lowing the software vendor the use of a coprocessor
and the ability to encrypt an unlimited number of keys,
the software vendor is in a position to mount a conven-
tional “chosen plain text” attack on the hardware ven-
dor’s encryption keys (CSK). In the event that a soft-
ware vendor were able to learn the hardware vendor’s

20

25

30

35

40

45

50

55

60

65

14
keys (CSK), that software vendor could use those keys -
in an attack on encrypted software of other software
vendors. The “chosen plain text” attack requires that
the attacker have access to sets of corresponding plain
text and cipher text. Using these sets the attacker may
attempt to identify the key which will produce the
cipher text from the plain text or visa versa. The diffi-
culty of doing this is, of course, dependent on the cryp-
tographic system chosen and the computing power
available to the backtracking task. Some cryptographic
systems (such as DES) are extremely resistant to unlim-
ited plain text attacks.

In a first limitation on use of the coprocessor in a
plain text attack, the coprocessor is arranged so that the
software vendor requires authorization from the hard-
ware manufacturer in order to create rights to execute.
This authorization is sold, by the hardware vendor to
the software vendor. Accordingly, one limitation on the
software vendor’s use of the coprocessor in a plain text
attack is the economic cost expended in generating sets
of plain text and corresponding encrypted text. Another
technique is the use of the following Encrypt Vendor
Key (EVK) procedure.

A utility program signals the coprocessor that an
EVK sequence is about to begin. The coprocessor re-
quests and is given the key (AK) to be encrypted, typi-
cally a software vendor’s key. The key is supplied by
the software vendor along with desired settings of su-
pervisor flags. These flags control whether or not the
supervisor will allow (for example) backup or transfer
of the associated key.

The conditions of execution which will be examined
and/or changed by the application key are also sup-
plied. It should be understood that in the following
discussion AK refers to the entire datum (flags, key and
conditions) to be prepared for transfer by this process.

The coprocessor generates a random number (RN)
and uses it to pad the front end of the key AK. The
coprocessor pads the back end of the key with a recog-
nition flag (RF). As previously described, the RF may
be a MAC of any kind which is appropriate both to
verifying that the correct CSK has been used (during
decryption) and to the cryptographic system employed
by the coprocessor. Both the random number and the
recognition flag are unknown to the user, e.g. the soft-
ware vendor. The coprocessor encrypts the resulting
block under a supervisor key (CSK) and passes the
result back to the utility program. The result, Ecsx(R-
N.AK.RF), where “.” represents string concatenation,
i.e,, 01.111 produces the string 01111, can be decrypted
by any coprocessor that is aware of CSK. The result of
such a decryption RN.AK.RF includes the three com-
ponents, i.e,, a random number (RN), the decryption
key (AK), and a recognition flag (RF). The decrypting
coprocessor can always identify AK so long it has a
priori access to the length of the suffix recognition flag.
The random number padding assures that even if the
same key (AK) is submitted many times, the resulting
blocks and the encrypted results will be different thus
foiling the plain text attack. The EVK procedure has
another advantage in that so long as the decrypting
coprocessor has a priori knowledge of the recognition
flag (RF) it can decrypt the encrypted block without
specific a priori knowledge of CSK so long as it has a
priori knowledge of all possible CSKs. More particu-
larly, assume that each coprocessor is provided by the
hardware vendor with CSK1-CSK5. If appropriate
measures are taken to avoid cryptanalytic attack one

Petitioner Apple Inc. - Exhibit 1035, p. 27

5,109,413

15

can further assume that the recognition flag (RF) which
is used is always the encryption key itself. These mea-
sures must in the case of block ciphers include that the
RN is not an integral number of blocks in length. Fur-
ther assume that the encrypting coprocessor randomly
selects CSK3 with which to encrypt a particular soft-
ware key AK. Thus the encrypted block is Ecsk3(R-
N.AK.CSK3). Any other coprocessor having access to
CSK1-5 can correctly decrypt this block even though it
is not aware which of the keys CSK1-5 have been used.
It is only necessary for the coprocessor to decrypt the
encrypted block with each of the keys CSK1-5. In only
one instance will the plain text version include, as a
suffix, the decryption key actually used.

Virtual Key Storage

In any practical implementation of the software pro-
tection mechanism described herein and described in
Ser. No. 927,629, there must be some limit to the ability
of the coprocessor to store rights to execute. If a user
obtains such a number of rights to execute greater than
can be stored in the coprocessor, the user could convert
seldom used rights to execute back to transportable
form through the transfer transaction. The act of swap-
ping AKs into and out of the coprocessor by these
methods could easily prove burdensome to users and
would be contrary to the spirit of this mechanism. It is
easy, however, given the resources of the coprocessor,
10 overcome this problem.

In the simplest case, the AK represents the right to
access the services of a piece of software. Extending
this concept slightly, a Meta-AK (MAK) may be
thought of as representing the right to access a collec-
tion of rights to execute. This sort of Key has already
been seen in a limited form in the RK or random key
used in the backup transaction. ’

Assuming a user has filled all the key positions in his
processor and wishes to install yet one more, the co-
processor can give the user the option of starting a file
of keys on a system disk (hard or floppy). This collec-
tion of virtualized keys is stored in an encrypted form
under a MAK. Each time the collection is accessed to
move or add an AK, the collection is re-encrypted
under a new random MAK. The MAK is stored in the
key store and is marked as a MAK in the flags which
control backup and transfer to facilitate its correct han-
dling by the processor. The change of MAK on each
access is needed to keep the virtualized key store which
is used by the processor synchronized with the actual
collection of rights to execute possessed by the user.
Copies of old virtualized key stores which contain
_ transferred virtualized rights to execute cannot be
foisted on the coprocessor because they will not de-
crypt correctly on loading.

A specific procedure for creating virtualized keys
(for the purpose of freeing up key storage) proceeds as
follows. A utility program running on the host signals
the coprocessor that the user has requested creation of
a virtualized key. The coprocessor requests the user, via
the host, to identify by location information, the AKs
which should be included within the virtualized store.
Based on the user identification, the AKs identified are
extracted from the key store along with their flags
(identifying authorization for transfer, backup, etc.),
conditions of execution and location information. The
coprocessor generates a random number and encrypts
the block consisting of that data. The resulting en-
crypted block can now be written to disk (hard or

16
floppy). The random number (the key to the virtualized
store) is then written in the permanent memory in place
of one of the AKs which has been virtualized. A key
reference path file which maps the virtualized keys to
the random number MAK index can be provided in

~ plain text to an access utility on the host to allow refer-

20

25

30

35

40

45

50

55

60

65

ence ambiguity to be resolved. This file associates the
random number key with the location information iden-

- tifying the AKs which have been virtualized. If the

user, at any later time, requires execution of software
protected by one of the virtualized keys, the coproces-
sor first attempts to use the key at the referenced loca-
tion. The correctness of the key found in that location
can be tested by conventional message authentication
techniques. This key verification can be performed by
loading and decrypting a short message file with an
authentication section (provided as part of the pro-
tected program). If on decryption the authentication is
valid, the correct key has been found. If the authentica-
tion is invalid then the access utility can provide a list of
virtualized key access paths which will contain the key
if the user indeed possesses that key. These keys are
obtained by decrypting the virtualized block and ex-
tracting the appropriate AK. These keys may then be
tested for validity by repeating the authentication pro-
cedure described above. At this point the coprocessor
has access to the selected, previously virtualized AK.

Clearly a virtualized key store could itself contain
MAKSs so that the size of the key store can be extended
indefinitely.

Demonstration Software

The virtualized storage technique also provides for
supporting demonstration software without the need
for any validating mechanism such as a token source or
cartridge. The transaction proceeds as described below.
The set of flags which allow or disallow transfer and
backup of keys includes a further flag which allows or
disallows erasure of keys. If an AK is to be accepted in
the absence of a token, then the data files for loading
that AK include 2 null token descriptor so that the
empty token connector will respond correctly to the
token query. The flag settings for this particular AK
include settings that allow it to be backed up and do not
allow it to be moved or erased. Installation of such an
AK also requires a search of both installed and virtual
key stores to see if this key had been installed before.

Conditions for executing demonstration software
(preferably) include elapsed time or number of uses. An
AK installation which proceeded under conditions as
described above would allow a person to acquire the
right to execute a piece of software for demonstration
purposes, typically a one time use. A second attempt to
install the identical AK would detect the prior acquisi-
tion, since the key store is searched and the key cannot
be moved or erased. The user is protected from filling
his key store with useless demonstration keys by having
them virtualized. The software vendor is protected
from having his code reinstalled repeatedly, using dem-
onstration software, without control.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will now be described in such
detail as to enable those skilled in the art to practice the
same in the following portions of the specification when
taken in conjunction with the attached in which like
reference characters identify identical apparatus and in
which:

Petitioner Apple Inc. - Exhibit 1035, p. 28

5,109,413

17

FIG. 1 schematically identifies the important compo-

nents of the software asset protection mechanism and
- how they interact; ’

FIGS. 2-4 are similar to FIG. 1 but are useful in
explaining the use and application of conditioned rights-
to-execute;

FIGS. 5-7 are similar to FIG. 1 and are useful in
explaining transfer of a right to execute;

FIGS. 8-16 are similar to FIG. 1 and adapted to
illustrate the two steps of the backup procedure, partic-
ularly Create Backup Set (CBS) and Install Backup Set
(IBS);

FIG. 17 shows a typical time sequence in employing
the CBS and IBS procedures;

FIG. 18 is useful in explaining the Encrypt Vendor
Key (EVK) procedure;

FIG. 19 is useful in explaining the appearance of a
key store-illustrating several features of the flags and
conditions accompanying keys; and

FIGS. 20 and 21 are useful in explaining a direct
transfer of a right-to-execute.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENTS

Reference has already been made to copending appli-
cation Ser. No. 927,629, the disclosure of which is in-
corporated by this reference along with Ser. No.
927,297 (disclosing an example of a token). Application
Ser. No. 927,629 discloses the basic software asset pro-
tection mechanism. That mechanism will be briefly
reviewed in connection with FIG. 1. The software asset
protection mechanism requires that the user employ a
composite computing system including a host 10 and a
coprocessor 20, connected via some communication
link or path 14. As described in Ser. No. 927,629, the
path 14 may be an internal bus, e.g. enclosed within the
covers which encompass both the host 10 and the co-
processor 20, or the path 14 can comprise a link be-
tween an 1/0 device included within the coprocessor 20
and an 1/0 device associated with the host 10. Regard-
less of the specific nature of the link 14, the coprocessor
20 is provided with physical security which is effective
to prevent mechanical tampering or access to the inte-
rior of the coprocessor 20 by a user or a pirate. That
physical security is represented in FIG. 1 by the interior
dashed line boundary. Two important features of the
coprocessor 20 are its permanent, non-volatile memory
25 and a temporary memory 26; the latter akin to the
working memory (RAM) of a conventional computer.
The coprocessor 20 is provided to the user in a form in
which it has at least one decryption key CSK stored in
the permanent memory 25; the decryption key CSK is
provided and stored by the vendor of the coprocessor
20. In order for the user to execute a protected applica-
tion, he must install a right to execute the application in
the permanent memory 25; this right to execute is repre-
sented by a software decryption key AK. As described
in the application Ser. No. 927,629 the user, in order to
install the right-to-execute, receives from the software
vendor a distribution set which includes a hardware
cartridge 30 and a distribution disk 16. As shown in
FIG. 1, the distribution disk 16 typically stores three
files; of these files, one is the protected application.
Typically the protected application will appear as two
parts in two sub-files, a plain text application file A and
an encrypted or protected portion application file B. As
FIG. 1 shows the application file B is encrypted under
the software decryption key AK. A second file on the

—

5

20

25

30

35

40

45

50

60

65

18

distribution disk 16 is the software decryption key, en-
crypted under the key CSK. Finally, the last file on the
distribution disk is token data, T}, encrypted under the
software decryption key AK. As is also explained in
Ser. No. 927,629, it is not essential that the third file be
incorporated in the distribution disk 16 and alterna-
tively it may be incorporated in the hardware cartridge
30.

The hardware cartridge stores the token data, T}, in
plain text form. Like the coprocessor 20, the hardware
cartridge 30 is provided with physical security. To
install the right-to-execute, the hardware cartridge 30 is
coupled to or linked to the combined computing sys-
tem; FIG. 1 represents this coupling via a connecting
cable 18. The coprocessor decrypts the software de-
cryption key AK in temporary memory. Before accept-
ing the software decryption key AK into permanent
memory, the coprocessor 20 verifies that the hardware
cartridge 30 is authentic in a forgery-resistant query/re-
sponse transaction (since its contents, T, correspond to
the encrypted file E4x(T1)). The hardware cartridge 30,
because of its destructive read property, will only con-
tain the token data, Ty, if it has not been used. After
verifying that the hardware cartridge 30 is both authen-
tic and unused (and destroying the utility of the hard-
ware cartridge in this process) the coprocessor will
accept the right to execute, and store in its permanent
memory 25 the software decryption key AK. With
access to the software decryption key AK, the pro-
tected application file B can be decrypted and stored in
the temporary memory 26 of the coprocessor 20 so that
it may be executed by the coprocessor 20. Because of its
physical and logical security, the plain text form, in
which application file B is stored in temporary memory
26 during the course of execution and is not available to
the user or a pirate.

Conditioning Rights to Execute

The software asset protection mechanism, as briefly
described above, installs an unconditioned right to exe-
cute in the coprocessor 20. However, it is one of the
features of the invention that the right to execute can be
conditioned, and examples of conditions are terminal
dates and times, or numbers of executions. FIG. 2 is
similar to FIG. 1 except that in the case of FIG. 2 the
protected portion of the application file includes a crite-
rion for execution, e.g., if the terminal date and/or time
is later than the present date then execution is allowed.
On presentation of a distribution set as shown in FIG. 2
to the combined processing system of the host 10 and
the coprocessor 20, the installation of the right to exe-
cute proceeds exactly as was described in connection
with FIG. 1. The coprocessor 20, via the agency of the
host 10, verifies (and destroys) the token 30 by compar-
ing its plain text contents (T1) with a decrypted version
of the file E 4x(T1) read from the disk 16. On verifying
the authenticity and the previously unused nature of the
token 30, the coprocessor 20 stores the software de-
cryption key AK in the permanent memory 25. The
conditions of execution can be stored in the same file as
the AK and can be installed at the same time as AK. In
the case shown in FIG. 2, the coprocessor 20 stores the
datum which can be interpreted as a terminal date and-
/or time. This interpretation will be performed by the
protected part of the application on any occasion of its
use. The terminal date storage is associated with the
software decryption key AK, as shown in FIG. 3. More
particularly, FIG. 3 is entirely identical to FIG. 2 ex-

Petitioner Apple Inc. - Exhibit 1035, p. 29

5,109,413

19

cept that it shows the software decryption key AK, and
the terminal date and/or time, stored in the coprocessor
20's permanent memory as well as indicating that the
token 30 has been depleted. Thereafter, each time the
protected application is run on the coprocessor 20, prior
to authorizing execution, the application uses the crite-
rion stated in the encrypted application file that the
current date and/or time not be later than the terminal
date and/or time and only authorizes execution in the
event the criterion is met. The current date and/or time
is supplied on demand by the coprocessor 20 to the
executing application.

FIG. 4 is similar to FIG. 3 except that the conditions
stated in the encrypted application key file gives the
remaining number of authorized executions. On installa-
tion of the right to execute, the software decryption key
AK is associated with a count C; each time execution of
the application is requested, the contents of the count C
is tested against the criterion that the number C of au-
thorized executions remaining is greater than zero. The
coumt C is then decremented. Only so long as C is
greater than zero will execution be authorized.

It may be advisable, regardless of whether or not the
condition is a terminal date and or time, or a number of
executions, to provide the coprocessor 20 with instruc-
tions to delete the associated software decryption key
AK, once the initial conditions are no longer met. Thus,
the software decryption key AK is automatically re-
moved from the permanent memory and thus the right
to execute is deleted.

FIGS. 5-7 are useful in illustrating transfer of the
right to execute. As shown in FIG. §, the coprocessor
20 has installed the right to execute a particular pro-
tected application in the form of the software key AK in
its permanent memory 25. The user, in order to effect
the transfer of the right to execute, obtains a transfer set.
The transfer set includes a token 40 and an accompany-
ing disk 46. The token 40 had been loaded via a trusted
source such as the coprocessor hardware manufacturer
with token data T3, and the disk is written with the
token data encrypted under the hardware vendor’s key
so the disk stores the file ECSK(T3). The user also has
available his original source disk 16 which includes the
files enumerated in FIG. 5.

FIG. 6 shows the condition of these components after
the first step in the transfer sequence has been com-
pleted. More particularly, the disk 46 of the transfer set
is read, and its contents are decrypted so that the co-
processor 20 can store, in its temporary memory 26 the
token data T2. The software decryption key AK to be
transferred, is moved from the permanent memory 25 to
the temporary memory 26.

The next step in the transfer sequence is to encrypt
the token descriptor T user the key RK (to obtain
Exx(T2)) and to write a number of files onto the disk 46.
The application file A (plain text), the encrypted appli-
. cation file E 4x(application file B), the software decryp-
tion key Ecsk(AK) (prepared if need be as previously
described) and the encrypted token data E 4x(T>). Thus
at the conclusion of the steps shown in FIG. 7, the disk
46 of the transfer set is substantially identical to the
original disk 16 which the user had acquired. The differ-
ences are that the token data (which exists in encrypted
form) is different on the disks 46 and 16 and if the condi-
tions of execution (such as count) have changed a new
encrypted application key file Ecsx(AK) has been used.
This file is associated with the new token through the
synchronous mechanism described previously. Transfer

20

. is thus made useless as a piracy method. Of course in

15

20

25

30

35

40

45

50

55

60

65

installing the right to execute on the coprocessor 20, the
user had used (and hence invalidated) his token contain-
ing the token data T, and as a result the file set on the
original disk 16 is not usable to install a right to execute
in another coprocessor. However, the disk 46 includes
the encrypted token data corresponding to the token 40
which is now in the user’s possession. Accordingly, the
user is now in a position to install the right to execute
the protected application on another coprocessor; note
at the same time that the original coprocessor which
previously stored the software decryption key AK, no
longer stores that key. Accordingly, the right to execute
the protected application has been transferred from the
coprocessor 20 to the portable form represented by the
distribution set including the cartridge 40 and the disk
46.

While the transfer set including the disk 46 and the
cartridge 40 could be used to install the right to execute
the protected application on a different coprocessor, it
is also usable as a form of external storage for the right
to execute, e.g. the user could if he wished install the
right to execute back into the coprocessor 20 from
which it was derived in the first place.

The direct transfer, from coprocessor to coprocessor,
of a right to execute is shown in FIGS. 20 and 21. FIG.
20 shows that a source composite processor includes a
host 10 and coprocessor 20, a sink composite processor
includes a sink host 110 and a sink coprocessor 120. As
shown in FIG. 20, the source coprocessor includes the
right to execute (AK) which is to be transferred. In
general, both coprocessors 20 and 120 would contain
the same collection of supervisor keys (CSK); for gen-
erality purposes FIG. 20 shows that the source co-
processor will, in the following process, employ the
supervisor key CSK 1, whereas the sink coprocessor 120
will employ a different supervisor key, CSK2. Neither
coprocessor has a priori knowledge of which supervisor
key is employed by the other. The source and sink
processors are interconnected via a communication link
200.

As already described, once communication is estab-
lished, the coprocessors begin an identifier sequence to
ensure themselves that the other is a “member of the
family”. In step 1 of FIG. 1 outlining this process, each
coprocessor generates a random number, so that the
source coprocessor generates RN1 and the sink co-
processor generates RN2. In step 2 each of the random
numbers are encrypted under a supervisor key indepen-
dently chosen by the generating coprocessor and the
encrypted information is transferred, so that in step 3
the sink coprocessor 120 has access to Ecsx1(RN1) and
the source coprocessor has access to Ecsg2(RN2). As
previously explained, only “members of the family” are
capable of decrypting and recognizing the random
numbers transmitted thereto. Assuming that the source
and sink coprocessors are “members of the family”,
then each can decrypt the transmitted message so that
thereafter both coprocessors have available RN1 and
RN2. As already indicated, the session key SK is a
composite of both the random numbers, and in step 4 of
FIG. 21 each coprocessor independently determines the
identical session key SK.

Thereafter, after the user has identified the right to
execute which is to be transferred (AK), the source
coprocessor encrypts the right to execute under the
session key SK and transmits it to the sink coprocessor
(step 5). At this point while the sink coprocessor 120 has

Petitioner Apple Inc. - Exhibit 1035, p. 30

5,109,413

21

access to the right to execute, AK, it is not yet effective.
This lack of effectiveness is enforced by the trusted safe
procedures imposed on each of the coprocessors. The
sink coprocessor returns a message to the source (step 6)
indicating receipt of the right to execute. Consequently
the source coprocessor can delete the right to execute
(step 7). Finally, the source coprocessor (step 8) trans-
mits a message to the sink coprocessor that the right to
execute has been deleted. Only thereafter, in step 9,
does the sink coprocessor activate the right to execute.

Having described direct transfer of a right-to-exe-
cute, or a collection of rights-to-execute it is a simple
extension to describe safe procedures for a library type
of software distribution among computers in a network.
For the reasons already given protected software can
only be distributed to composite computing system as

—

5

heretofore described, i.e. each consists of a host (for -

example a PC) and a coprocessor. It should be clearly
understood that protection is preserved even if some of
the participants in the network are not composite com-
puting systems as previously described. The only conse-
quence of the existence of such interlopers is that the
protected software is simply unavailable to them. In
such a network any pair of such composite computing
systems can safely transfer right(s)-to-execute by the
procedures already described. The fact that transfers
may be observed (and copied) is of no moment for the
reasons already given. One observing a transfer of a
right-to-execute would merely observe encrypted mes-
sages passing back and forth; without access to the
supervisor or session keys protection is preserved by the
inability to decrypt or read any of the messages. In such
a network there may exist one or more software sources
in the sense that a source has available many right(s)-to-
execute, including, typically, multiple rights for a single

. protected application. Clearly such a source may trans-
fer a right-to-execute (assuming that the software flag
allows transfer) to many other composite computing
systems. Each time a right-to-execute is transferred the
source’s collection of rights is reduced by the trans-
ferred right, and each time a right is returned the
source’s collection of rights is augmented by that re-
turn. The permanent memory of any source always
retains a count of available rights and at any time trans-
fer of one or all of the available rights can be effected.
It should also be apparent that a source may condition
a transferred right, such as for example requiring the
transferee user have an account which is charged for
the transfer. The transferred right could also be condi-
tioned in terms of time or number of uses, etc. In some
cases, for example if a transferred right is conditioned to
expire on a date in the future then the source may be
arranged to increment its collection of rights-to-execute
on passing of the date in an implied transfer transaction.
In other words since the transferred right was condi-
‘tioned to expire on the specified date it is quite appropri-
ate for the source to “reacquire” the previously trans-
ferred right after the specified date even though no
actual transfer took place. A source may also retain a
count of available rights measured by the number of
executions, and of course such a source could transfer
all or a part of such collection in one or many transac-
tions. Some of those rights could also be returned to
augment the source’s collection.

In any transfer transaction the only necessary data
actually transferred from coprocessor to coprocessor is
the encrypted key (and associated flags and conditions);
the protected software itself, both encrypted and plain

20

30

40

45

50

60

22

text portions, can be transferred by any conventional
means. If efficient, all composite computing systems
could have preexisting access to all (or less than all) of
the protected software (in encrypted form) so only the
key need be transferred. Software which must be trans-
ferred could be transferred through the same network
by which the keys are transferred or the software could
be transferred through another network such as the
postal service.

Backup the Right to Execute

In the following description, reference is repeatedly
made to “reading” a token; the structure of the hard-
ware cartridge storing the token, and the manner in
which it is read is described more fully in Ser. No.
927,629, Ser. No. 927,297, the disclosure of which is
incorporated by this reference.

Because the entire backup sequence refers to a failed
coprocessor and installs the right to execute on a differ-
ent coprocessor, we will refer to the failed coprocessor
as the source coprocessor and the different coprocessor
as the sink coprocessor.

It should already be clear that the right to execute, in
the form of a software decryption key AK is stored in
the (source) coprocessor 20.

While the coprocessor 20 has features which make it
unique. it is similar in at least one respect to any other
processor, i.e. it is capable of a failure. With current
software distribution techniques, when a user has a
processor failure, that failure interrupts his ability to
execute software, but that ability can be reacquired by
repairing or replacing the failed processor. In the case
of the coprocessor 20, however, failure of the device
may well permanently impair the right to execute
which had been stored therein. Accordingly, software
vendors may desire to provide their customers with a
“hardware” backup of their rights-to-execute. The
*hardware” backup which will be described herein is
arranged to minimally impact the security of the right-
to-execute, e.g., limit the number and duration of any
spurious or duplicate rights to execute. The *“hardware”
backup to be described can be conceptualized as a pend-
ing or inchoate transfer of rights. Because the necessity
for the backup depends on a future and uncertain event,
e.g. failure of-the coprocessor 20, it must be arranged so
that the inchoate right to execute can be converted to an
actual and usable right to execute entirely independent
of the processor 20. For this reason, it does have the
feature of generating a duplicate right to execute which
could be used by the unscrupulous to thwart the protec-
tion sought by the software vendor. However, as will
be described, the installation of a backup can only be
performed once for any (source) processor and pro-
duces a conditioned right to execute, conditioned on a
grace period (typically measured from the time of the
backup installation). At the conclusion of the grace
period, in the absence of further action, the rights to
execute derived from the backup rights are no longer
effective. The cost of this severely limited piracy to the
unscrupulous is the sacrifice of the possibility of re-

_ claiming that collection of rights to execute in the event

65

of a real coprocessor failure. In the case of a scrupulous
user, in the interim, the user is obligated to “prove” to
a trusted observer, such as the hardware vendor, that
his coprocessor indeed has failed. Typically, this
“proof™ is effected by physically transmitting the failed
coprocessor to the hardware vendor. On review of the
failed coprocessor, the hardware vendor will provide to

Petitioner Apple Inc. - Exhibit 1035, p. 31

5,109,413

23

the user a verification disk. The verification disk can be
used by the user to provide validated authorization to
the (sink) coprocessor to eliminate the condition on the
backup rights to execute and convert them into rights to
execute conditioned only by the condition set at the
time of their acquisition. To ensure that the verification
disk is prepared based on evidence of the failure of a
coprocessor which is identical to the coprocessor
which originally stored the right to execute being re-
placed, the verification disk carries, in encrypted form,
a unique identifier of the failed coprocessor. This unique
identifier is necessary to allow the removal of the condi-
tion. It is also to be desired that the sink processor be
able to recognize that the message to remove the condi-
tion from the installed set of rights to execute is in-
tended to be received by it. This is accomplished by
including in the message a copy of the (sink) coproces-
sor’s unique key to serve as validation of the message or
by encrypting the message with the sink coprocessors
unique key. Both the source and sink processor identi-
fiers are made available to the hardware vendor in an
encrypted (under CSK) message prepared by the sink
processor to be returned with the failed source proces-
SOT.

The procedure as just outlined is graphically illus-
trated, as a function of time which proceeds left to right,
in FIG. 17. Initially, coprocessor 20 includes a set of
rights to execute. A CBS procedure (create backup set)
is initiated; this creates a backup set including a car-
tridge and a disk. Although this backup set bears some
similarity to the transfer set, as will be described below,
the CBS procedure is preferably carried out each time
the user acquires a new right to execute, so that the
single backup set provides a backup for every right to
execute within the repertoire of the coprocessor or at
least a backup right for each application for which
backup is authorized by the software vendor. FIG. 17
also shows that subsequent to execution of the CBS
procedure, the coprocessor 20 fails. Thereafter, the user
effects an install backup set (IBS) procedure at a time
T,. Accordingly, subsequent to time T; the user can
employ his rights to execute on the coprocessor 120 in
lieu of the failed coprocessor 20. During that time the
user can transmit the failed coprocessor 20 to the ven-
dor who creates a verification disk as a message to the
sink coprocessor 120. So long as the user receives the
verification disk prior to the expiration of the grace
period, he completes the install backup set procedure
using the verification disk so as to remove the condi-
tional nature of the rights to execute in the coprocessor
120 (at time T,).

Referring now to FIG. 8, the coprocessor 20 has a
collection of rights to execute represented by the soft-
ware decryption keys AK| and AK>. It is these rights
which need to be backed up. The first step (FIG. 9) in
the backup procedure is for the user to acquire an un-
used backup set consisting of token 50 and the disk 56.
The token includes token data T g which, for illustration
purposes, is shown to consist of a number of portions,
TB1, TB2, and so on through TBn. The disk 56 includes
the token data encrypted under the key CSK. The user
effects a reading of the disk and by the appropriate
utility procedure on the host 10 the coprocessor 20
decrypts the encrypted file read from the disk 56 so that
it can store Tpin its temporary memory. At this time,
(FIG. 10) the user couples the token §0 to the host 10
via the cartridge connector 18. The coprocessor 20
selects the amount of the token data for use; for this

—

0

20

25

35

40

45

60

65

24

description we assume that the portion TB1 is selected
for use. The coprocessor 20 generates a random number
RN and computes a function of TB1 and RN, denomi-
nated CR, the computed response of the token. The
coprocessor 20 causes the random number RN to be
applied to the token 50 to “read” destructively the first
portion TB1. Reading this portion of the token 50 de-
stroys the portion TB1 and returns to the coprocessor
20 the actual response AR.

FIG. 11 shows the apparatus in this configuration,
e.g. the token 50 no longer stores TB1 and the tempo-
rary memory includes the actual response AR. At this
point the coprocessor 20 compares AR and CR. If they
do not correspond, an error condition has been de-
tected, the token 50 is considered unauthentic and the
backup procedure terminates. On the other hand, as-
suming that AR and CR correspond, then the coproces-
sor 20 accepts the token 50 as authentic and is allowed
to proceed further in the backup sequence. FIG. 12
shows that the host 10, via prompting from the co-
processor 20 has generated a new random number for -
use as a key (RK) and has written the disk 56 to include
a number of files. The first mentioned file is merely the
encrypted (under RK) version of the token data as mod-
ified by the reading operation required to verify the
authenticity of the token 15, e.g. the token data Tp has
been modified by deleting the portion TB1 prior to
encryption. The second file created on the disk 56 by
the coprocessor 20 is the encrypted version of the ran-
dom key used to encrypt the token data. The third file
is a copy of the AKs and their individual associated
flags and conditions encrypted under the key provided
in encrypted form in the second file. This file also con-
tains a copy of the unique supervisor key (USK source)
which identifies the source processor. At a later time, as
will be described below, in the verification process, the
verification disk will identify the coprocessor whose
failure has been evidenced to the vendor. The verifica-
tion process will proceed to remove the expiration con-
dition on the set of rights to execute which have been
installed if and only if the verification has correctly
identified both the source and sink processors. The
resemblance in structure and function of this set of files
and hardware to those in the acquire right to execute or
transfer transactions should be obvious. At this point, it
suffices to note that the user has a backup set token 50
and disk 56 in which the clear text token data in the
token corresponds to the encrypted token data in the
disk 56. These devices are sufficient to allow a user to
install the rights to execute AK; and AK3 on any co-
processor; because the procedure used to install these
rights is an IBS, the set of rights to execute when in-
stalled will be conditioned by the grace period.

If, subsequent to creating the backup set shown in
FIG. 12, the user obtains a right to execute another
application, application 3, and installs that right to exe-
cute AKj in the coprocessor 20, he can employ the
backup set to create a backup set encompassing not only
AK; and AK;, but also AK3. In that event the user
presents the disk 56 to the composite computing system
wherein the encrypted token data is read. The user then
performs the steps already described with relation to
FIGS. 9-12. In the course of this process, the token
portion TB2 will be destroyed in verifying the token;
thereafter the resulting token data will consist of TB3 .
. . TBn, the encrypted token descriptor file on the disk
56 will correspond and the disk 56 will include the
encrypted version of AK3. If the user had made copies

Petitioner Apple Inc. - Exhibit 1035, p. 32

5,109,413

25
of disk 56 prior to this point, these disks would now be
useless for either CBS or IBS transactions as the en-
crypted token descriptor and RK on these disks would
not correctly validate the backup token.

Of course, the user can continue using the backup set
consisting of the token 50 and the disk 56 until there is
only a single token descriptor portion left in the token
50. At this point, a new backup is required if another
CBS is to be performed. The last portion of the backup
token may be read by the coprocessor to invalidate the
old backup, and a new backup set may be started.

In the event the coprocessor 20 fails, the user can
employ the backup set consisting of the token 50 and the
disk 56 in an Install Backup Set (IBS) procedure which
is described below, beginning with reference to FIG.
13.

As shown in FIG. 13, the user has presented the
backup set to a different composite computing system
consisting of a host 110 and a coprocessor 120; it is not
at all essential that the host 110 be different from the
host 10 in the original composite computing system, it is
only necessary that the coprocessor 120 be different
from the failed coprocessor 20. As shown in FIG. 13,
the coprocessor 120 does not contain any rights to exe-
cute in its permanent memory. When the user presents
the disk 56, the encrypted random key Ecsk (RK) is
read and decrypted so that the encrypted token data
Erx(TB2+TB3... TBn) can be read from the disk and
decrypted as shown in FIG. 14, The temporary mem-
ory now includes that token descriptor in plain text
form. The coprocessor 120 then generates another ran-
dom number, SRN, and computes a function of a selec-

tion portion (TB2) of the clear text token data and the -

random number SRN: denominated as CR. The co-
processor 120 then interrogates the token and in doing
so destroys the next portion TB2 and generates an ac-
tual response AR. FIG. 14 is a snapshot of the apparatus
at this point. The coprocessor 120 then determines if
AR and CR correspond. If they do not, then the token
50 is not considered authentic, an error condition is
entered and the Install Backup Set procedure is termi-
nated. On the other hand, if AR and CR do correspond,
then the Install Backup procedure continues.

In the next step (which is not specifically illustrated),
the encrypted file containing AKi, AK; and USK
(source) are read from the disk 56, decrypted and stored
in the permanent memory along with their individual
conditions and an indication that they are all condi-
tioned by the grace period.

The sink coprocessor now prepares a message to the
hardware vendor which is encrypted under a supervi-
sor key CSK and is stored on disk by the host. The
message contains a copy of the unique supervisor key
(USKs) of both the source and sink processors en-
crypted under a common supervisor key Ecsx(USK-
source and USKsink). This information is used to verify
that the failed processor presented to the hardware
vendor is the source processor and to prepare a verifica-
tion message which will only allow that sink processor
to relieve the expiration date condition from that source
processor’s set of rights.

With coprocessor 120 in this condition, the user can
execute protected applications enabled by AK1 and
AXK2 during the duration of the grace period. The grace
period is measured beginning at the performance of the
IBS. In the absence of completing the IBS during the
grace period, the rights to execute are suspended but
may be reinstated by completing the IBS.

5

10

15

20

25

30

35

40

45

50

55

60

65

26

Assuming, however, that the user obtains the appro- -
priate verification disk from the vendor, then the 1BS
procedure can be completed as shown in FIG. 15. As
shown in FIG. 15, the user has presented to the compos-
ite computing system the verification disk 66. The veri-
fication disk 66 includes a single file encrypted under
the unique key of the sink processor which carries
within it a copy of the unique supervisor key identifying
the source coprocessor (Eysksink{(USKsource)), whose
failure has been proved to the vendor. The coprocessor
120 reads the verified disk 66 and decrypts the file. The
coprocessor 120 can then compare the contents of the
verify file with the copy of the source USK it has
stored. If they do not correspond, an error condition is
detected, and the conditional rights to execute remain
conditioned; they will be suspended with the expiration
of the grace period. On the other hand, assuming the
verify file does correspond in all respects, then the co-
processor 120 is authorized to take the final IBS steps;
these delete the conditional nature of the set of rights to
execute AK; and AK>. At the completion of the IBS
procedure (FIG. 16), the coprocessor 120 includes
rights to execute AK| and AK; (conditioned only by
their conditions at time of source processor backup) in
its permanent memory. In this condition it is in an iden-
tical condition, as the coprocessor 20 just prior to the
time it failed (F1G. 8). Thus the foregoing steps provide
for a “hardware” backup for the coprocessor 20 with
minimal impact on the security of the software vendor’s
rights e.g. unauthorized duplication of the right to exe-
cute.

The backup procedures employing a token use the
token and the procedures associated with it to validate
to any coprocessor to which the set is presented, that it
can accept the rights to execute which are represented
by the set. When an “intermediate™ coprocessor is em-
ployed for backup purposes, the token is unnecessary; it
is the procedures which govern the coprocessors (and
which are beyond the reach of a user) which provide
the safety. Thus, in the case of using an “intermediate”
coprocessor for backup purposes, the disk 46 is pre-
pared essentially similar to the manner in which it is
prepared when a token/disk pair are used except of
course that the disk file representing the token data is
completely unnecessary. Perhaps the only other differ-
ence is that when the backup set was employed, the
decryption key is encrypted under a supervisor key;
such an arrangement if used without the cautions might
allow any coprocessor to whom such a disk was pres-
ented to accept the backup. To prevent this, the key
under which the decryption key is encrypted is a Ses-
sion Key, which is generated between the source co-
processor and the ‘“intermediate” coprocessor. The
generation of such a Session Key has already been de-
scribed; the only information stored by the “intermedi-
ate coprocessor” is the Session Key, along with an
indication that it is associated with a backup. Because
the transfer procedures require invalidation of any exist-
ing backup, the “intermediate” coprocessor can be as-
sured that if it has the Session Key available, any Install
Backup Set procedure is valid. And, as has already been
described, the backup set can be installed on a “sink”
coprocessor so long as the “intermediate™ coprocessor
transfers the Session Key to the sink coprocessor.

Encrypt Vendor Key (EVK)

As described herein, the majority of coprocessors
will be employed in a user’s composite computing sys-

Petitioner Apple Inc. - Exhibit 1035, p. 33

5,109,413

27

tem (including, in addition to the coprocessor, the host)
for the execution of protected application software. In
this setting the coprocessor has the function of storing
in a protected fashion rights to execute one or more
pieces of software as well as the function of manipulat-
ing such right or rights as described above. Asis already
described, however, that is not the only function of the
coprocessor; coprocessors are also required by the soft-
ware vendor in preparation of the distributable pack-
age. While the software vendor could employ any com-
puting system to provide for the encryption of token
data and software under his own secret key (AK) in
accordance with the software protection mechanism
described in copending application Ser. No. 927,629,
another component of the distributable set is the soft-
ware decryption key, encrypted under the hardware
vendor’s key, e.g., Ecsx(AK). In order to secure the
hardware vendor’s key CSK from knowledge by the
software vendor, the software vendor can use a co-
processor (which is equipped with the key CSK in
secure storage) for this function. It is already described
that this service can be used to facilitate a plain text
attack on the key CSK. While we have postulated the
use of DES, which is particularly resistant to the plain
text attack, by using the procedures described below
that resistance can be enhanced. The plain text attack
requires the attacker to have access to plain text and
cipher text encrypted under the key under attack. By
use of the procedures to be described, we deny the
attacker access to such information.

FIG. 18 shows a typical coprocessor 220 used in the
mode required by the software vendor wherein input is
one or more software decryption keys AK;, AK), etc,,
and output is the keys encrypted under the key CSK.
Using the convention already established, the coproces-
sor 220 is physically and logically secure; that security
is indicated by the dashed inner boundary. If the co-
processor 220 merely outputs Ecsx(AK) for each soft-
ware decryption key input, it would readily provide an
attacker with the data necessary for a chosen plain text
attack.

In accordance with this aspect of the invention, how-
ever, the coprocessor 20 modifies the decryption key
prior to encryption; the modification, however, is one
of which all coprocessors are aware, so that all other
coprocessors can perform the inverse modification. In
general, each software decryption key AK is modified
by padding it, front and rear. More particularly, as
shown in FIG. 18, a suffix recognition flag (RF) typi-
cally in the form of a message authentication code
(MAC) of known bit length is used along with a prefix
random number (RN). Thus, in response to presentation
of AK}, the coprocessor 220 generates RN1.AK.RF
(where . indicates concatenation). The coprocessor
thereafter encrypts the resulting concatenation of data
blocks under some key CSK among the set of CSKs to
produce Ecsk{RN1.AK1.RF). It is self-evident from an
understanding of the DES that another coprocessor
with access to CSKi can decrypt the result to produce
the string RNJAK;RF. Because the decrypting co-
processor has a priori knowledge of the content and bit
length of RF as well as the bit length of a software
decryption key such as AKj, it readily follows that the
coprocessor can decrypt the message Ecski
(RN1.AK.RF) with each of the set of CSKs until the
RF decrypts correctly. Once the Coprocessor has
found the correct CSK and has decrypted the en-
crypted information it can also segregate and specifi-

25

30

35

40

45

50

55

60

65

28

cally identify AK1; the prefix RN is merely discarded
(unless as stated earlier it is needed to perform some
other verification task).

An understanding of DES should also make it appar-
ent that whereas a plain text attack requires knowledge
of sets of plain text and encrypted information such as
AK1, E(AK)); AK2, E(AK32); AK3, E(AK3); and so on,
someone with access to the coprocessor 220 may

. readily be able to identify the following sets: AK;, Ec.

sk{RN1AK|RF); AK3:, Ecsg{RN2.AK2RF); AKj,
Egski(RN3.AK3.RF); and so on. This set or sets of
plain text and encrypted data is of substantially less
assistance to the attacker in attempting to identify the
key under which these various strings are encrypted,
even with knowledge of the plain text AKj, AK3, AK3,
and so on.

Accordingly, the coprocessor 220, representing all
coprocessors employed by software vendors for en-
crypting their software decryption keys, performs the
following Encrypt Vendor Key (EVK) procedure. A
utility program signals the coprocessor 220 that a EVK
sequence is about to begin. The coprocessor 220 re-
quests and is given the vendor key AK to be encrypted.
The coprocessor 220 generates the random number
(RN) and uses it as a prefix to pad the front end of the
key AK. The coprocessor 220 also pads the back end,
using the recognition flag (RF) as a suffix. The resulting
block or string is encrypted under the supervisor key
CSK and the result is passed to the host.

This EVK procedure has the property that by prop-
erly selecting the recognition flag, a data block can be
encrypted under a selected supervisor key, selected by
one coprocessor, and the encrypted block can be de-
crypted by another coprocessor even though the de-
crypting coprocessor does not have a priori knowledge
of which of the supervisor keys has been selected for
the encryption, so long as the decrypting coprocessor
has access to a set of supervisor keys which includes all
possible supervisor keys. This can be accomplished by a
number of means including a priori knowledge in both
processor, message authentication codes and by select-
ing, as the recognition flag (RF) the encrypting supervi-
sor key. For example assume that the encrypting co-
processor selects CSK3 for the purpose of encrypting
AK,. By the foregoing procedure, the encrypting co-
processor produces Ecsk3(RN.AK,.RF). We assume
for this purpose that the decrypting coprocessor has
access to all CSKs, although it is not aware of which
CSK has been selected for the encryption. The decrypt-
ing coprocessor begins with CSK1, and decrypts the
encrypted block, with each decryption key in turn.
Each time the block is decrypted, the suffix is compared
to the decryption key. When the suffix and the decryp-
tion key match, the decrypting coprocessor has identi-
fied the encryption key and at the same time has access
to AK, since the block has already been decrypted
using the correct decryption key. Similarly, if a priori
knowledge is used the expected string must be found in
the RF position or if a MAC is used then the MAC must
be valid for the AK, or for RN.AK,,.

Throughout the previous description reference has
been made to the software decryption key AK. For
reasons which are described below, the block referred
to as AK may include not only the software decryption
key, but several flags, the conditions of which are se-
lected by the software vendor so as to allow or not to
allow certain procedures to be performed. For example,
a 1-bit flag can be set to either allow or not allow “hard-

Petitioner Apple Inc. - Exhibit 1035, p. 34

5,109,413

29
ware” backup procedures to be employed. In the event
the “hardware” backup flag is set to disallow the
- backup procedure, then any coprocessor storing that
decryption key would limit the backup procedures to
exclude that key (and any others so marked). The soft-
ware vendor may wish to prevent transfer of a software
decryption key once installed. For this purpose, a 1-bit
transfer flag may be provided which will either allow or
disallow the transfer operation. If a host requests a
transfer procedure, that procedure is allowed only if the
transfer flag is set to allow the transfer operation. Each
of these limitations are to be understood as data pro-
vided to the functions provided in each coprocessor.
AKs may also contain the aforementioned conditions of
execution which are tested by the individual applica-
tions.

FIG. 19 is an example of the appearance of a portion
of the permanent memory 25 of a typical coprocessor
which has been in use for some time and stores a collec-
tion of rights to execute. As shown in FIG. 19, the
permanent memory 25 includes a record (or entry) for
each of a plurality of different keys, CSK1 through
CSKn, AK1 through AKn and MAK1 and MAK2 are
illustrated in FIG. 19. Each record includes a number of
fields, one of the fields is the key itself. Associated with
each key are a number of binary flags, a bit for each of
the following: Meta, Condition, Erase, Transfer and
Backup. It should be understood that this list is a useful
subset of such flags and that the set would almost cer-
tainly be extended by one skilled in the art. The binary
flag identifies, for example under the first column,
whether or not the key is a Meta key and as shown in
FIG. 19 only the last two records indicate storage of
Meta keys. In the next column (headed “Condition™), a
binary 1 indicates that the key is conditioned and as
shown in FIG. 19, keys AK3 and AKn are conditioned.
The third column (headed “Erase”) indicates, by the
binary 0, that a erasure of the key is not permitted; this
condition applies to each of the supervisor keys as well
as to a particular application key AK2. The fourth col-
umn, headed “Transfer” indicates, by the binary 1, that
all keys except AK1 are authorized for transfer (except
for the supervisor keys, the transfer of these keys is not
at all necessary nor desirable). The last column under
the binary flag portion of FIG. 19 is headed “Backup”,
and the binary 1 indicates that the associated key is
authorized for backup. As shown in FIG. 19, keys AK3
and AKn are not authorized for backup.

The memory depicted in FIG. 19 includes a number
of multibyte entries for each of the keys. One of the
multibyte entries is headed “Condition” and this field
includes the data associated with a conditioned key, and
thus keys AK3 and AKn include data in that field which
can be tested by criteria stored in the application they
decrypt to determine if execution is authorized. The last
column in the multibyte entry portion of FIG. 19 pro-
vides location and verification information which aid
searches for an applications key and verification of the
key as the one sought.

Software Return

From the foregoing description it should be apparent
that the procedures described for manipulating rights to
execute allow the software vendor to institute a soft-
ware return policy which is fair to his customers as well
as to himself. For economic reasons, some vendors may
desire to limit the return of software to some fixed per-
iod (akin to a warranty) although that has no bearing on

20

25

35

40

45

65

30

the present invention. A software vendor may for exam-
ple allow the return of software (for full or partial credit
at the vendor’s selection) by requiring the user to pro-
vide the vendor with a transfer set including the right to
execute the particular software application package.
The manner in which the user can create such a transfer
set has already been described. If the user presents to
the software vendor a valid transfer set including the
particular application .package for which return is
sought, the software vendor is assured (by the operation
of the software copy protection mechanism) that the
user himself no longer retains the right to execute that
software. As is described above, creation of a transfer
set requires deletion of the decryption key from the
COprocessor.

It should be apparent from the foregoing that the
invention provides wide flexibility for manipulating
rights to execute in the software protection mechanism
described in copending application Ser. No. 927,629.
The present application describes several of these pro-
cedures by describing the logical operations and their
interrelation. To generate from the description pro-
vided herein, software to execute those logical opera-
tions will be apparent to those skilled in the art and
hence a specific description of software to implement
the procedures which have been described is deemed
unnecessary. Furthermore, although specific logical
operations have been described for different ones of
these procedures in specific orders, those skilled in the
art after reviewing this description will understand that
various changes and modifications can be effected with-
out departing from the spirit and scope of the invention
which is not to be limited by the specific embodiments
described herein but is to be construed in accordance
with the attached claims.

Having thus described our invention, what we claim
as new, and desire to secure by Letters Patent is:

1. A method of safely extracting a right to execute
from a logically secure coprocessor associated with a
host processor, where said coprocessor stores at least a
supervisor key and further stores a software key repre-
senting said right to execute a particular application,
said host processor having access to said particular
application encrypted under said software key, said
method comprising the steps of:

a) providing to the coprocessor a transfer set includ-
ing at least a writable medium and a physically and
logically secure medium, said physically and logi-
cally secure medium storing clear text token data,

b) providing to said coprocessor a data block com-
prising said clear text token data encrypted under
said supervisor key,

c) decrypting said data block, in said coprocessor to
produce said clear text token data,

d) encrypting said clear text token data in said co-
processor under said software key to produce a
corresponding data block,

€) encrypting said software key under said supervisor
key to produce an encrypted software key, and

f) writing said corresponding data block, said en-
crypted application file and said encrypted soft-
ware key to said transfer set and deleting said soft-
ware key from said coprocessor,

whereby said software key is removed from said
coprocessor and written to said transfer set to con-
stitute said transfer set as a backup set.

Petitioner Apple Inc. - Exhibit 1035, p. 35

5,109,413

31

2. A method as claimed in claim 1 wherein said en-
crypted token data is read by said coprocessor from said
writable medium of said transfer set.

3. A method as claimed in claim 1 wherein said corre-
sponding data block, said encrypted application file and
said encrypted software key are written to said writable
medium of said transfer set.

4. A method as claimed in claim 1 in which said writ-
able medium of said transfer set comprises a magnetic
medium and said physically and logically secure me-
dium comprises a read once storage cartridge.

5. A method as claimed in claim 4 in which said mag-
netic medium comprises a magnetic disk.

6. A method of transferring a right to execute a par-
ticular protected application from a logically secure
coprocessor associated with a host processor to a differ-
ent host processor associated with a different coproces-
sor, said method comprising the steps of:

A) extracting said right to execute and writing to a

transfer set as claimed in claim 1,

B) providing said transfer set to said different co-
processor storing said supervisor key but not said
software key, and

1) extracting and decrypting said encrypting software
key,

2) extracting said corresponding data block and de-
crypting said corresponding data block to produce
corresponding clear text data,

3) reading said physically and logically secure me-
dium to determine whether said clear text token
data does or does not correspond to said corre-
sponding clear text data, said reading step necessar-
ily altering said clear text token data as stored in
said physically and logically secure medium,

4a) if said data do not correspond, rejecting said

transfer, or
b) if said data do correspond, storing said de-
crypted software key,

whereby said reading step destroys said clear text
token data so that no further transfers may be ef-
fected by said physically and logically secure me-
dium.

7. A method as claimed in claim 1 which includes the

further steps of:

el) presenting to said coprocessor any previously
written backup set,

€2) invalidating said backup set, and

e3) only after executing said step el) and step e2), if
there was any backup set, proceeding to execute
said step f).

8. A method of safely transferring a right to execute

a protected application from a logically secure first
coprocessor, where said first coprocessor stores a soft-
ware key representing said right to execute said pro-
tected application, to a logically secure second co-
processor, said method comprising the steps of:

a) coupling said first coprocessor to said second co-
processor for bidirectional communication,

b) challenging said second coprocessor by said first
coprocessor to determine if said second coproces-
sor is a trusted recipient and simultaneously trans-
ferring antecedent information from said first co-
processor to said second coprocessor to allow ac-
cess to an encrypted software key,

c) if said second coprocessor is determined to be a
trusted recipient by said first coprocessor, encrypt-
ing said software key under a specific key, deriv-

5

20

25

40

45

50

55

65

32
able by a trusted recipient from said antecedent
information, to produce an encrypted software key
and transmitting said encrypted software key from
said first coprocessor to said second coprocessor,

d) if said second coprocessor is not determined to be

a trusted recipient by said first coprocessor, then
returning an error condition without transmitting
said encrypted software key.

9. A method as recited in claim 8 in which said second
coprocessor is determined to be a trusted recipient only
if it stores a set of cryptographic keys in common with
a set of cryptographic keys stored in said first coproces-
sor, wherein said step b) comprises:

bl) generating a random number at said first co-

processor, concatenating said random number with
a message authentication code to produce a concat-
enated result and encrypting said concatenated
result with a key selected by said first coprocessor
from said set of cryptogaphic keys,

b2) transmitting a result of step bl) to said second

coprocessor corresponding to said antecedent in-
formation,
b3) receiving, from said second coprocessor a mes-
sage and decrypting said message with a crypto-
graphic key from said set of cryptographic keys, if
a decrypted result includes a valid message authen-
tication code, proceeding to a step b5), otherwise,

b4) repeating step b3) with each other cryptographic
key in said set of cryptographic keys until each key
in said set of cryptographic keys is used without
producing a result as set forth in step b3), and
thereafter proceeding to said step d),

b5) creating a session key by concatenating said ran-
dom number with the decrypted result of step b3)
exclusive of the message authentication code of
step b3),

b6) thereafter using said session key as the specific

key,

whereby only if said second coprocessor is a trusted

recipient will an encrypted software key be trans-
mitted and only the second coprocessor with ac-
cess to said session key can decrypt said encrypted
software key to secure access to said software key.
10. A method as recited in claim 9 in which said
method includes the following steps performed at said
second coprocessor if said second coprocessor is a
trusted recipient:
bla) generating a second random number and select-
ing a key from said set of cryptographic keys,

b2a) concatenating said second random number of
step bla) and a message authentication code to
produce a concatenated result,

b3a) encrypting said concatenated result of step b2a)

to produce said message and transmitting said mes-
sage to said first coprocessor.

11. A method as recited in claim 10 in which said
second coprocessor:

bda) decrypts information transmitted by said first

coprocessor with a key from said set of crypto-
graphic keys,

bSa) if a decrypted result includes a valid message

authentication code, retaining said decrypted result
exclusive of the key of step bda),

b6a) combining said retained result of step b5a) with

said second random number to produce said session
key,

whereby both said first coprocessor and said second

coprocessor have access to said session key with-

Petitioner Apple Inc. - Exhibit 1035, p. 36

5,109,413

33

out said session key being accessible even if all
information exchanged by said coprocessors is
observed and copied.

12. A method as recited in claim 8 which comprises

the further steps of:

e) acknowledging, to said first coprocessor receipt by
said second coprocessor of said encrypted software
key,

f) deleting said software key from said first coproces-
sor and transmitting an indication of said deletion
to said second coprocessor, and

g) in response to said indication of said deletion trans-
ferring said software key to a permanent memory
of said second coprocessor.

13. A method as recited in claim 8 in which said first

coprocessor stores said software key in permanent

memory along with an indication as to the existence of

any backup rights and in which said step c) includes the
further steps of:

cl) checking for existence of an indication of any
backup, in the presence of such indication,

¢2) invalidating such backup,

c3) verifying such invalidation and only thereafter,

c4) encrypting and transmitting said encrypted soft-
ware key.

14. A method of conditioning a right to execute a
particular protected application on a composite com-
puting system including a host processor and a physi-
cally and logically secure coprocessor, wherein said
protected application includes at least a portion en-
crypted under a software key and said right to execute
is represented by said software key stored in a perma-
nent memory of said coprocessor, said method compris-
ing the steps of: .

a) incorporating at least one condition within said

encrypted portion of said protected application,

b) providing to said coprocessor said at least one
condition,

c) providing for storage in said permanent memory
data associated with said at least one condition
along with storage of said software key,

d) requiring said coprocessor to access said condition
and said data prior to authorizing any use of said
protected application,

e) further requiring said coprocessor to compare said
condition and said data to determine if said at least
one condition is met, and authorizing use if, and
only if said at least one condition is met.

15. A method as claimed in claim 14 wherein:

e) said condition provides authorization for execution
of said protected application no more than N times,
wherein N is any integer,

f) said data represents either a count C which is incre-
mented each time said coprocessor authorizes exe-
cution of said protected application or said integer
N decremented each time said coprocessor autho-
rizes execution of said protected application, and

g) said coprocessor either compares C to N or com-
pares N to zero and said coprocessor authorizes
execution if and only if N>C or N>O.

16. A method as claimed in claim 14 wherein:

¢) said limits authorization for execution of said pro-
tected application until a current date and/or time
reaches a terminal date and/or time,

f) said data represents said terminal date and/or time,
and

g) said coprocessor compares said current date and-
/or time with said terminal data and/or time and

15

20

25

30

[
n

40

45

50

55

65

34
authorizes execution if, and only if said current
data and/or time precedes said terminal date and-
/or time.

17. A method of providing backup for a right to
execute a particular protected application on a compos-
ite computing system including a host processor and a
physically and logically secure coprocessor, wherein
said protected application includes at least a portion
encrypted under a software key and said right to exe-
cute is represented by said software key stored in a
permanent memory of said coprocessor which co-
processor also stores a first key in said permanent mem-
ory, said method comprising the steps of:

a) providing a backup set to said coprocessor includ-
ing a writable medium and a physically and logi-
cally secure medium, said physically and logically
secure medium storing token data and said backup
set also storing said token data encrypted under a
first key, -

b) passing said encrypted token data to said coproces-
sor and decrypting said token data so that said
coprocessor has access to decrypted token data,

c¢) probing said physically and logically secure me-
dium to verify that the decrypted token data corre-
sponds to the token data stored by said physically
and logically secure medium,

ci) in the event there is no correspondence, rejecting
said backup set and terminating said steps,

cii) in the event there is correspondence, then

d) modifying and then encrypting said decrypted
token data under said software key,

e) encrypting said software key under said first key,
and

1) writing results from steps d) and e) to said backup
set, and writing said protected application to said
backup set.

18. A method as claimed in claim 17 in which said

step c) comprises:

cl) generating and storing a random numiber in said
COPprocessor, :

¢2) generating a computed response as a function of
both said random number and said decrypted token
data,

¢3) transmitting said random number to said physi-
cally and logically secure medium,

c4) generating in said physically and logically secure
medium an actual response by reading said token
data as selected by said random number,

¢5) transmitting said actual response to said coproces-
sor, and

c6) comparing said actual response and said com-
puted response.

19. A method as claimed in claim 18 in which said

step c4) includes:

c4i) modifying said token data stored in said physi-
cally and logically secure medium so that thereaf-
ter said physically and logically secure medium
stores modified token data.

20. A method as claimed in claim 19 in which said
step d) modifies said decrypted token data in a fashion
identical to a modification of said step c4i) so that said
encrypted modified decrypted token data corresponds
to said modified token data stored in said physically and
logically secure medium.

21. A method of installing a right to execute on a
different coprocessor comprising creating a backup set
as claimed in claim 17 and comprising the further steps
of:

Petitioner Apple Inc. - Exhibit 1035, p. 37

5,109,413

- 35

g) presenting said backup set to said different co-
processor,

h) passing said encrypted modified token data of said
step d) to said coprocessor and decrypting said
encrypted modified token data so that said co-
processor has access to decrypted modified token
data, '

i) probing said physically and logically secure me-
dium to verify that the decrypted modified token
data corresponds to the modified token data stored
by said physically and logically secure medium,

i-i) in the event there is no correspondence, rejecting
said backup set and terminating said method of
installing,

i-ii) in the event there is correspondence, then

j) accessing, decrypting and storing in permanent
memory of said different coprocessor said software
key representing a right to execute said protected
application by a user of said different coprocessor,
and

k) conditioning said right to execute for use only

. within a grace period.

22. A method of removing said grace period condi-
tion of a backup right to execute as installed by a
method as claimed in claim 21 comprising the further
steps of:

1) receiving an encrypted message in exchange for

proof of failure of said coprocessor,

m) coupling said encrypted message to said different
COprocessor,

n) verifying, by said different coprocessor that said
encrypted message relates to said coprocessor, and

0) in response to said verification removing said grace
period condition established by said step k).

23. A method as claimed in claim 22 in which said

step i) comprises: .

il) generating and storing a random number in said
different coprocessor,

i2) generating a computed response as a function of
both said random number and said decrypted modi-
fied token data,

i3) transmitting said random number to said physi-
cally and logically secure medium,

i4) generating in said physically and logically secure
medium an actual response by reading said modi-
fied token data as selected by said random number,

i5) transmitting said actual response to said different
coprogcessor, and

16) comparing said actual response and said computed
response.

24. A method of providing backup for a right to
execute a particular protected application on a compos-
ite computing system including a host processor and a
physically and logically secure coprocessor, wherein
said protected application includes at least a portion
encrypted under a software key and said right to exe-
cute is represented by said software key stored in a
permanent memory of said coprocessor which co-
processor also stores a first key in said permanent mem-
ory, said method comprising the steps of:

a) coupling said coprocessor to a different coproces-

sor,

b) challenging said different coprocessor by said co-
processor to determine if said different coprocessor
is a trusted recipient and simultaneously transfer-
ring antecedent information from said coprocessor
to said different coprocessor to allow access to an
encrypted backup,

15

20

25

30

40

45

50

55

65

36

c) if said different coprocessor is determined to be a
trusted recipient by said coprocessor, encrypting
said software key under a specific key derivable
from said antecedent information to produce an
encrypted backup and transmitting said encrypted
backup from said coprocessor to said different
COprocessor,

d) if said different coprocessor is not determined to be
a trusted recipient by said coprocessor, then return-
ing an error condition without creating said
backup.

25. A method as recited in claim 24 in which a co-
processor is determined to be a trusted recipient only if
it stores a set of cryptographic keys in common with a
set of cryptographic keys stored in said coprocessor, of
which said first key is a member of said set, wherein said
step b) comprises:

b1) generating a random number at said coprocessor,
concatenating said random number with a message
authentication code to produce a concatenated
result and encrypting said concatenated result with
a key selected by said coprocessor from said set of
cryptographic keys,

b2) transmitting a result of step bl) to said different
coprocessor corresponding to said antecedent in-
formation,

b3) receiving, from said different coprocessor a mes-
sage and decrypting said message with a key from
said set of cryptographic keys, if a decrypted result
includes a valid message authentication code, pro-
ceeding to a step b5), otherwise,

b4) repeating step b3) with each other key in said set
of cryptographic keys until each key in said set is
used without producing a result as set forth in step
b3), and thereafter proceeding to said step d),

b5) creating a session key by combining said random
number with the decrypted result of step b3) exclu-
sive of the message authentication code of step b3),

b6) thereafter using said session key as the specific
key,

whereby only if said different coprocessor is a trusted
recipient will an encrypted backup be transmitted
and only the different coprocessor with access to
said session key can decrypt said backup to secure
access to said software key.

26. A method as recited in claim 25 in which said
method includes the following steps performed at said
different coprocessor if said different coprocessor is a
trusted recipient:

bla) generating a different random number and se-
lecting a key from said set of cryptographic keys,

b2a) concatenating said different random number of
step bla) and a message authentication code to
produce a concatenated result,

b3a) encrypting said concatenated result of step b2a)

" to produce said message and transmitting said mes-
sage to said coprocessor.

27. A method as recited in claim 26 in which said

different coprocessor:

bda) decrypts information transmitted by said co-
processor with a key form said set of cryptographic
keys,

bSa) if a decrypted result includes a valid message
authentication code, retaining said decrypted result
exclusive of the message authentication code,

b6a) combining said retained result of step b5a) with
said different random number to produce said ses-
sion key,

Petitioner Apple Inc. - Exhibit 1035, p. 38

35,109,413

37

whereby both said coprocessor and said different
coprocessor have access to said session key with-
out said session key being accessible even if all
information exchanged by said coprocessors is
observed and copied.

28. A method of installing a right to execute on a
further coprocessor subsequent to failure of said co-
processor comprising creating a backup as claimed in
claim 24 and comprising the further steps of:

¢) coupling said different coprocessor to said further
COprocessor,

f) challenging said further coprocessor by said differ-
ent coprocessor to determine if said further co-
processor is a trusted recipient and simultaneously
transferring further antecedent information from
said different coprocessor to said further coproces-
sor to allow access to an encrypted software key
corresponding to said encrypted backup,

g) if said further coprocessor is determined to be a
trusted recipient by said different coprocessor,
encrypting said software key under a specific key
derivable from said further antecedent information
to produce an encrypted software key and trans-
mitting said encrypted software key from said dif-
ferent coprocessor to said further coprocessor,

h) if said further coprocessor is not determined to be
a trusted recipient by said different coprocessor
then returning an error condition without transmit-
ting said encrypted software key,

i) accessing, decrypting and storing in permanent
memory of said further coprocessor said software
key representing a right to execute said protected
application by a user of saxd further coprocessor,
and

j) conditioning said right to execute for use only
within a grace period.

29. A method of removing said grace period condi-
tion of a-backup as installed by a method as claimed in
claim 28 comprising the further steps of:

k) receiving an encrypted message in exchange for

proof of failure of said coprocessor,
1) coupling said encrypted message to said further
COprocessor,
m) verifying, by said further coprocessor that said
encrypted message relates to said coprocessor, and
n) in response to said verification removing said grace
period condition established by said step j.
30. A method of safely distributing demonstration
software only for demonstration use on composite com-
" puting systems comprising a host computer and a logi-
cally and physically secure coprocessor, wherein the
coprocessor stores at least a specific key, said method
comprising the steps of:
a) distributing said demonstration software in a form
in which at least a portion thereof is encrypted
under a software key,
b) distributing, along with said demonstration soft-
ware said software key encrypted under said spe-
cific key and a null token data file, encrypted under
said software key, said software key including at
least a condition of use flag inhibiting any co-
processor from erasing said software key,
¢) installing said software key on a coprocessor by:
cl) decrypting said software key under said spe-
cific key, and

c2) searching permanent memory of said coproces-
sor to determine if said software key had previ-
ously been installed,

Petitioner Apple Inc.

20

25

30

35

40

45

50

55

60

65

38

¢3) writing said software key to said permanent
memory only if said step ¢2) indicates that said
software key had never been previously in-
stalled, whereafter said demonstration software
can be executed on said composite computing
system by decrypting encrypted portions by said
COProcessor, or

c4) inhibiting said writing step ¢3) in the event said
software key had been previously installed
wherefore said demonstration software cannot
be executed on said composite computing sys-
tem,

whereby a user may install said demonstration soft-
ware into a composite computing system only on a
single occasion thereby protecting software ven-
dors from users repeatedly installing demonstration
software.

31. A method as recited in claim 30 in which said
composite computing system includes a cartridge con-
nector for connection to a hardware cartridge storing
clear text token data and wherein said step c) further
comprises:

cl.1) reading said encrypted software key and said
null token data file, decrypting and temporarily
storing said software key and said null token data
file,

cl.2) generating a random number, temporarily stor-
ing said random number, driving said cartridge
connector with data corresponding to said random
number and storing data produced at said cartridge
connector,

cl.3) computing in said coprocessor an expected re-
sponse of a cartridge by combining said null token
data file and said random number,

cl.4) comparing said expected response with said data
stored in said step cl.2),

cl.5) if said comparison is favorable transferring said
software key to said permanent memory and if said
comparison is unfavorable not transferring said
software key to said permanent memory.

32. A method of encrypting software keys as a service
by a physically and logically secure coprocessor under
a first key which method is resistant to a plain text
attack on said first key, said method comprising the
steps of:

a) accepting a software key for encryption,

b) padding said software key with a number of a
given length, said number including at least a com-
ponent which is random,

c) encrypting a result produced by said step b) under
said first key,

whereby said padding produces an encrypted result
in response to a first encryption operation which is
different form an encryption result produced on a
second encryption operation even though an iden-
tical software key is presented on each occasion
thus foiling a plain text attack on said first key.

33. A method as recited in claim 32 in which said step

b) includes:

bl) padding said software key with a prefix compris-
ing a random number of a first bit length,

b2) padding a result of step b1) with a message au-
thentication code of a second bit length.

34. A method of decryptmg a software key encrypted

as claimed in claim 32 comprising the steps of:

d) employing said first key to decrypt a result pro-
duced by said step c), and

- Exhibit 1035, p. 39

5,109,413

39

e) discarding, from a result of step d) padding added
in said step b) to leave said software key.

35. A method of decrypting a software key encrypted

as claimed in claim 33 comprising the steps of:

d) employing said first key to decrypt a result pro-
duced by said step c), and

e) discarding, from a result of step d) said random
number prefix added in said step bl),

f) discarding, from a result of step e) said message
authentication code to leave said software key.

36. A method as recited in claim 33 in which said
message authentication code comprises a recognition
flag stored in the coprocessor.

37. A method as recited in claim 36 in which said
recognition flag comprises said first key.

38. A method of identifying first and second proces-
sors to each other as companion processors which com-
panion processors are characterized by storing a set of
keys, which set includes a number of keys greater than
one, comprising the steps of:

a) at a fist processor, generating a first random num-
ber, concatenating said first random number with a
message authentication code, to produce a concate-
nated result and encrypting said concatenated re-
sult under one key of said set of keys to produce a
first identifier,

b) at a second processor, generating a second random
number, concatenating said second random num-
ber with a message authentication code, to produce
a concatenated result and encrypting said concate-
nated result under another key, said another key
selected by said second processor from said set of
keys, to produce another identifier,

¢) transmitting said first and another identifiers to said
second and first processors, respectively,

d) determining, at said processors that said identifiers
were generated by companion processors by:

1) decrypting said identifiers with keys selected
from said set of keys until a decrypted result
includes a valid message authentication code as a
portion, or

e) determining that said first and second processors
are not companion processors if all keys in said set
are employed without any decrypted resuit includ-
ing a valid message authentication code.

39. A method of inter-processor communication
which restricts exchange of key information to within a
class of companion processors which are characterized
by storage of a set of keys greater in number than one,
said method comprising the steps:

i) using a method of identification as recited in claim

1i) combining said first and another identifiers at both
said processors to produce a session key, and

iii) exchanging key information by first encrypting
said key information under said session key and
transmitting said encrypted key information from
said first to said second or from said second to said
first processor.

40. A method of safely transferring a right to execute
from a logically secure source coprocessor associated
with a host source processor to a logically secure sink
coprocessor associated with a host sink processor,
where said source coprocessor stores at least a source
key and a software key representing said right to exe-
cute a particular application and said sink coprocessor
stores a sink key, both said source and sink keys in-
cluded within a set of keys stored in both said source

10

15

20

25

30

35

40

45

50

60

65

40
and sink coprocessors, said host processors having ac-
cess to said particular application encrypted under said
software key, said method comprising the steps of:

€) at said source coprocessor, generating a first ran-
dom number, concatenating said first random num-
ber with a first message authentication code to
produce a concatenated result and encrypting said
concatenated result under said source key to pro-
duce a source identifier,

b) at said sink coprocessor, generating a second ran-
dom number, concatenating said second random
number with a second message authentication code

- to produce a concatenated result and encrypting
said concatenated result under said sink key to
produce a sink identifier,
c) transmitting said source and sink identifiers to said
sink and source coprocessors, respectively,
d) verifying, at said coprocessors that said identifiers
were generated by companion coprocessors by
1) decrypting said identifiers with keys selected
from said set until a decrypted result includes a
valid message authentication code as a portion,
or

2) until all keys in said set are employed without
any decryption result including a valid message
authentication,

3) terminating an attempt to transfer a right to
execute if step d2) is reached, and otherwise,

€) creating a session key at each coprocessor from
said source and sink identifiers,

f) encrypting said software key at said source co-
processor under said session key to produce a
transmittable software key and deleting said soft-
ware key from said source coprocessor,

g) transmitting said transmittable software key from
said source to said sink coprocessor,

h) decrypting said transmittable software key at said
sink coprocessor with said session key to recreate
said software key, and

i) storing said software key in a non-volatile memory
of said sink coprocessor,

whereby said software key has been extracted and
transferred from source to sink coprocessors with-
out exposing said software key and without reveal-
ing either said source or sink keys.

41. A method of safely increasing storage capacity
without compromising security for software keys nor-
mally stored within a logically and physically secure
storage of finite storage capacity, said storage accessible
to a logically secure coprocessor element of a compos-
ite computing system comprising the steps of:

a) selecting one or more software keys for storage
external to said logically and physically secure
storage to form a key block,

b) generating a random number,

¢) encrypting said key block under said random num-
ber to produce an encrypted key block,

d) storing said random number internally to said
physically and logically secure coprocessor,

e) storing said encrypted key block external to said
physically and logically secure coprocessor in un-
secured storage, and

f) erasing said software keys form storage internal to
said logically and physically secure coprocessor.

42. A method of storing and retrieving a set of soft-
ware keys without compromising security where said
set of software keys are stored external to a physically
and logically secure coprocessor element of a compos-

Petitioner Apple Inc. - Exhibit 1035, p. 40

5,109,413

41
ite computing system, wherein said coprocessor has
access to a set of supervisor keys, said method compris-
ing the steps of:

i) storing said software keys as recited in claim 41,

ii) retrieving said encrypted key block and said en-
crypted key from said external storage,

iii) decrypting said encrypted key with a selected one
of said supervisor keys and verifying the presence
of a valid message authentication code,

iv) repeating step iii with each different supervisor
key until one such step results in a valid message
authentication code,

v) decrypting said encrypted key block with that
unselected portion of the result of step iv),

whereby a result of said step v) is the original key
block including each of said selected software keys.

43. A method of conditioning manipulation, in the

form of transfer, hardware backup or erasure, of a right
to execute a protected application on a composite com-
puting system including a host processor and a physi-

20

25

30

35

40

45

. 50

55

65

42
cally and logically secure coprocessor, wherein said
protected application includes at least a portion en-
crypted under a software key and said right to execute,
if present, is represented by said software key along
with a data object stored in a permanent memory of said
coprocessor, said method comprising the steps of:

a) providing said data object to said coprocessor,

b) storing said software key in association with said
data object in said permanent memory of said co-
-processor,

¢) in response to a request for said manipulation of
said software key, requiring said coprocessor to
access said data object prior to any such manipula-
tion of said software key, and

d) thereafter requiring said coprocessor to interpret
said data object as a specification of permitted
manipulations and executing said manipulation if,
and only if, said manipulation is a permitted manip-

ulation.
* * * * *

Petitioner Apple Inc. - Exhibit 1035, p. 41

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENTNO. : 5,109,413
DATED : Dpril 28, 1992 Page 1 of 2
INVENTOR(S) : Comerford et al

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

Abstract, line 10, delete "at least in terms of a valid period of execution".

Col. 1, line 17, change "n"backup"" to -backup-;
line 28, after "1986" insert -, now U.S. Patent No. 5,117 ,457~-;
line 29, after "1986" insert -, now U.S. Patent No. 4,916,738-;
line 30, after "1986" insert -, now U.S. Patent No. 4,817,140-;
line 31, after "1986" insert -, now U.S. Patent No. 4,860,351-;
line 33, after "1986" insert -, abandoned-.

Col. 3, line 26, after "which" insert -the protected-.

Col. 19, line 42, change "ECSK(TZ)" to —ECSK(TZ)—;
line 54, change "user" to -using-.

Col. 21, line 16, change "system" to -systems-.

Col. 23, line 19, change "coprocessors" to —coprocessor's-.

Col. 28, line 11, change "EI‘SIG{(RNTAKB'RF) " to _ECSIﬂi(RNTAKB'RF)_'

Col. 29, line 38, delete "a".

Col. 31, line 24, change "encrypting" to -encrypted-.

Col. 33, line 60, change "O" to -0-;

line 62, after "said" (lst) insert —condition-.

Petitioner Apple Inc. - Exhibit 1035, p. 42

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION

PATENT NO. 4,109,413

DATED * April 28, 1992 Page 2 of 2
INVENTOR(S) : Comerford et al

Itis certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below: .

Col. 35, line 35, change "22" to -21-.
Col. 36, line 61, change "form" to -from-.
Col. 38, line 55, change "form" to -from—.
Col. 39, line 21, change "fist" to -first-.
Col. 40, line 4, change "e)" to -a)-;

line 63, change "form" to -from-.

Signed and Sealed this
Fourteenth Day of September, 1993

Attest: @“a Q‘ {” “‘\

BRUCE LEHMAN

Artesting Officer Commissioner of Patents and Trademarks

Petitioner Apple Inc. - Exhibit 1035, p. 43

