

#

Petitioner Apple Inc. - Exhibit 1040, Cover

Thinking in
PostScrıpt

Petitioner Apple Inc. - Exhibit 1040, p. i

Please enjoy this book, but DO NOT redistribute it in any way without the author's permission.Glenn Reidhttp://www.rightbrain.comglenn@rightbrain.com

Petitioner Apple Inc. - Exhibit 1040, p. ii

Thinking in
PostScrıpt

Glenn C. Reid

Addison-Wesley Publishing Company, Inc.

Reading, Massachusetts • Menlo Park, California • New York
Don Mills, Ontario • Wokingham, England • Amsterdam • Bonn

Sydney • Singapore • Tokyo • Madrid • San Juan

Petitioner Apple Inc. - Exhibit 1040, p. iii

Library of Congress Cataloging-in-Publication Data

Reid, Glenn C.
Thinking in PostScript / Glenn C. Reid.
 p. cm.
Includes indexes.
ISBN 0-201-52372-8
1. PostScript (Computer program language) I. Title.

QA76.73.P67R46 1990
005.26’2—dc20 90-43721

 CIP

Copyright © 1990 by Glenn C. Reid

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of America. Published
simultaneously in Canada.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book and Addison-Wesley was aware of a trademark
claim, the designations have been printed in initial capital letters.

The name

PostScript®

 is a registered trademark of Adobe Systems Incorporated (Adobe). All instances
of the name

PostScript

 in the text are references to the PostScript language as defined by Adobe unless
otherwise stated. The name

PostScript

 also is used as a product trademark for Adobe’s implementation of
the PostScript language interpreter.

Any references to a PostScript printer, a PostScript file, or a PostScript driver refer to printers, files, and
driver programs (respectively) that are written in or that support the PostScript language.

Sponsoring Editor: Carole McClendon
Technical Reviewer: Ken Anderson
Cover Design: Doliber Skeffington
Text Design: Rex Holmes
Set in 10-Point Times Roman

ABCDEFGHIJ-MW-943210
First printing, September, 1990

Petitioner Apple Inc. - Exhibit 1040, p. iv

Table of Contents

Preface... xi

Chapter 1
PostScript as a Programming Language 1

DESIGN FEATURES..2

STRUCTURED PROGRAMMING TECHNIQUES3

PROGRAMMING TASKS...4

WINDOW SYSTEMS, COMMUNICATIONS, AND DISPLAYS............4

DATA STRUCTURES AND ALGORITHMS...6

CONCLUDING THOUGHTS ..6

EXERCISES.. 7

Chapter 2
PostScript is Not Like C.. 9

COMPARISON OF LANGUAGE MECHANISMS...............................11

EXPRESSING AN ALGORITHM AS A PROGRAM...........................12

THE UNIX SHELL AND OPERATING SYSTEM................................13

INPUT, OUTPUT, AND THROUGHPUT..14
v

Petitioner Apple Inc. - Exhibit 1040, p. v

CONCLUDING THOUGHTS ..15

EXERCISES... 16

Chapter 3
Foundations... 17

POSTSCRIPT LANGUAGE SYNTAX ..19

SIMPLE PROGRAM STRUCTURE..20

SETTING UP TEMPLATES..24

DECLARING AND USING VARIABLES...26

ALLOCATING MEMORY..29

GETTING MEMORY BACK..31

OPENING AND CLOSING FILES ..31

COMPARISONS AND EQUALITY OF OBJECTS..............................32

CONCLUDING THOUGHTS ..34

EXERCISES... 34

Chapter 4
Some Typical Programs ... 37

A TYPICAL PAGE DESCRIPTION PROGRAM.................................38

FONT PROGRAMS..40

PROGRAMS THAT READ DATA...42

QUERY PROGRAMS...43

ENCAPSULATED POSTSCRIPT PROGRAMS.................................43

PERSISTENTLY RESIDENT PROGRAMS46

CONCLUDING THOUGHTS ..49

EXERCISES... 49

Chapter 5
Understanding the Stack.. 51

A QUICK OVERVIEW OF DATA TYPES...51
vi Table of Contents

Petitioner Apple Inc. - Exhibit 1040, p. vi

NAME LOOKUP ...53

HOW OPERATORS USE THE STACK..53

GROUPING AND VISUAL CHUNKING ...56

THINKING BACKWARD AND SIDEWAYS..58

COMPOSITE OBJECTS ..61

THE OTHER STACKS ...62

CONCLUDING THOUGHTS ..63

EXERCISES.. 64

Chapter 6
Trusting the Stack ...67

SAFETY OF DATA ON THE STACK ...68

WHERE ARE THE DATA GOING?..69

REARRANGING THE STACK..71

CONDITIONALS AND LOOPS...73

RECURSION AND LOCAL VARIABLES..76

CONCLUDING THOUGHTS ..77

EXERCISES.. 78

Chapter 7
Building Conditional Statements79

SIMPLE CONDITIONALS ..80

SETTING UP THE CONDITION...81

CONDITIONALS ARE NOT MAGIC...86

NESTED CONDITIONALS AND ELSE CLAUSES87

COMPOUND CONDITIONALS ..88

CONCLUDING THOUGHTS ..90

EXERCISES.. 91
Table of Contents vii

Petitioner Apple Inc. - Exhibit 1040, p. vii

Chapter 8
Using Looping Constructs 93

LOOP BASICS ...94

USING THE LOOP INDEX...95

LOOPS ARE PROCEDURE BODIES ..99

LOOPS OF INSTRUCTIONS ...101

EXITING LOOPS PREMATURELY..102

CONCLUDING THOUGHTS ..103

EXERCISES... 103

Chapter 9
Procedures .. 105

WHAT EXACTLY IS A PROCEDURE?..106

PARAMETER PASSING ..108

CONSTRUCTING GOOD PROCEDURES111

SELF-MODIFYING PROCEDURES...114

CONCLUDING THOUGHTS ..116

EXERCISES... 117

Chapter 10
Using Dictionaries... 119

DICTIONARIES FOR NAME SCOPING ..120

LOCAL DICTIONARIES ...121

GLOBAL DICTIONARIES OF PROCEDURES123

MAINTAINING THE DICTIONARY STACK......................................124

INTO AND OUT OF DICTIONARIES ...126

LOOKING INTO DICTIONARIES...127

REDEFINING OPERATORS..130

CONCLUDING THOUGHTS ..132

EXERCISES... 133
viii Table of Contents

Petitioner Apple Inc. - Exhibit 1040, p. viii

Chapter 11
Creating and Manipulating Data.............................135

CONSTRUCTING AN ARRAY ...135

CONSTRUCTING A STRING...137

MANIPULATING DATA WITH PUT AND GET.................................137

CONCATENATING ARRAYS AND STRINGS.................................139

INPUT AND OUTPUT OF STRING DATA140

ARRAYS VERSUS DICTIONARIES ..141

ADVANCED TECHNIQUES...142

CONCLUDING THOUGHTS ..143

EXERCISES.. 144

Chapter 12
Storing and Using Data...145

CLASSICAL DATA STRUCTURES..151

CONCLUDING THOUGHTS ..156

EXERCISES.. 156

Chapter 13
Program Data and Instructions157

TURNING DATA INTO INSTRUCTIONS...159

TURNING INSTRUCTIONS INTO DATA...161

DATA CONVERSIONS ..163

CONCLUDING THOUGHTS ..165

EXERCISES.. 165

Chapter 14
Using Files and Input/Output Techniques167

OPENING AND CLOSING FILES ..170

READING AND WRITING FILES...172
Table of Contents ix

Petitioner Apple Inc. - Exhibit 1040, p. ix

WRITING FORMATTED DATA TO FILES175

FILE STATUS INFORMATION...178

RANDOM VERSUS SEQUENTIAL ACCESS179

CONCLUDING THOUGHTS ..180

EXERCISES... 180

Appendix
Answers to Exercises ... 185

Index of Example Programs 209

Subject Index ... 217
x Table of Contents

Petitioner Apple Inc. - Exhibit 1040, p. x

Preface

This book is intended to provide a practical, intriguing, and fresh look at
the PostScript programming language. PostScript is a mysterious
language, powerful and cryptic. It is expressive and complicated and yet
surprisingly simple. In order to master a programming language, you have
to learn to think like the compiler or interpreter, and instinctively know
how to solve problems. You develop a “tool kit” of useful approaches,
proven solutions, and techniques. You reach an understanding that is
based on analogy and connections with other things that you know.

This book helps you build a solid foundation of understanding for the
PostScript language. It teaches you to become an expert programmer and
to have confidence that you have written the best possible PostScript
program. It shows you how to combine the elements of the language into
a strong, well-designed, modular program that is easy to develop and
maintain. It is not a problem-solving book, nor simply a reference to the
language; it is a guide to developing programming techniques and to
learning how to use the PostScript tool kit, which is filled with hundreds
of individual operators.

Comparisons are drawn to other programming languages throughout the
book, particularly to C, which is a very common language and one that is
often used in the same environments where the PostScript language is
found. If you are a competent C or Pascal programmer but you have had
limited exposure to PostScript, this book should be exactly what you
need. If you are a BASIC, Forth, or Lisp programmer, you should find
this book at just the right level for introducing you to the PostScript
xi

Petitioner Apple Inc. - Exhibit 1040, p. xi

language. If you think of yourself as an expert PostScript programmer,
you will still find some useful techniques in this book, and it is a very
worthwhile addition to your library of PostScript books, since it overlaps
very little with existing material.

The most fundamental level of a program is the set of techniques used in
the development of the program itself, regardless of what the program
does. This book addresses that area of PostScript programming in a way
rooted partly in computer science theory, encompassing algorithms and
data structures, but it is very practically oriented toward real-world
programming and programmers.

Each chapter contains a section of Exercises. You should find these
problems easy to solve if you have understood the concepts in the chapter.
Many concepts do not gel fully without some direct application to a
problem. In these cases, the exercises should stimulate you to think about
the issues that have been presented and give you a chance to confront a
situation that requires you to apply your knowledge. The appendix
contains answers to the exercises.

To give you a feel for what this book is about and to whet your appetite,
the following code segment illustrates a common (though advanced)
technique that is used in many PostScript programs. If you instantly
recognize what it does and could have written it yourself, then you may
use this book to discover other techniques that you may not have yet
encountered. If this example seems mysterious or you have to spend a lot
of time analyzing it, then you need this book to help you start thinking this
way.

% print out all the elements in an array or procedure
dup type /arraytype eq 1 index type /packedarraytype eq or { %ifelse

0 exch { %forall
exch dup (XXX) cvs print (:) print 1 add exch ==

} forall pop
}{ pop } ifelse

This particular example is a bit advanced and special-purpose, but it
should not be intimidating even to a beginning or intermediate
programmer. A typical question in an end-of-chapter exercise might be
“Rewrite the previous program fragment using local variables rather than
using the operand stack.”
xii Preface

Petitioner Apple Inc. - Exhibit 1040, p. xii

In order to get the maximum benefit from this book, you probably should
have written at least one program—from scratch—longer than 100 lines
of code (and gotten it to work correctly). This program might have been
written in virtually any programming language. If you then modified the
program for an additional 100 hours after it first started to work, if you
understand variables, arrays, and strings—and if you want to become a
very good PostScript programmer—then you are an ideal candidate for
this book.
Preface xiii

Petitioner Apple Inc. - Exhibit 1040, p. xiii

xiv Preface

Petitioner Apple Inc. - Exhibit 1040, p. xiv

Chapter 1

PostScript as a
Programming Language

It probably is true that PostScript is not everyone’s first choice as a
programming language. But let’s put that premise behind us, and assume
that you need (or want) to write a program in the PostScript language.
How do you become an expert in this language, and how do you develop
the instincts and learn the techniques necessary to tackle challenging
problems with confidence?

As a programming language, PostScript is somewhat unusual—and
frankly, many of the programming instincts you’ve developed from using
other languages may not be directly applicable with the PostScript
language. The first few chapters of this book help you put PostScript into
perspective by comparing it to languages you probably already know,
such as C. There are stronger similarities between PostScript and, say,
Forth or Lisp, but if you are expert in either of those languages you
probably won’t have much trouble mastering PostScript.
1

Petitioner Apple Inc. - Exhibit 1040, p. 1

Every programming language was designed with a specific purpose, even
if that purpose was to be a “general-purpose programming language.” To
use a language effectively, you should understand its design and learn its
strengths and weaknesses. PostScript is a full-fledged programming
language, and it is possible to accomplish almost any task with it. It
includes many high-level language constructs and data structures. The
PostScript language is a tool kit filled with hundreds of special-purpose
tools. Mastery of the language teaches you to select just the right
instrument, swiftly and instinctively, and to use it effectively.

DESIGN FEATURES

PostScript’s most obvious language features are that it is an interpreted
language, it is stack-based, and it is heavily oriented toward graphics and
typography. These design choices were all made in order to make it useful
as a device-independent page description language for imaging on raster
devices. These language features also make it a fairly unusual language in
which to write programs.

The PostScript language is stack-based (resulting in “backwards” syntax)
primarily so that a program can be evaluated with very low overhead in
processing and storage. Each instruction can be acted upon immediately,
without the need to buffer large amounts of the program.

PostScript is interpreted (rather than compiled) for a couple of reasons.
The most obvious one is device independence. If the program remains in
source form until it reaches its final destination, it is extremely portable to
new computer environments, processors, etc. It is an interpreted language
also because documents are often transmitted long distances, archived, or
saved and printed many times, and this enables the documents to remain
in ASCII text source form for better life expectancy and resiliency in a
device-independent environment.

And finally, PostScript is heavily biased toward graphic imaging and
typography because it was originally conceived as a mechanism to control
raster imaging devices like laser printers and display screens.

The design choices made in the PostScript language have quite an impact
on the programmer’s experiences in mastering the language, but they
2 Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE

Petitioner Apple Inc. - Exhibit 1040, p. 2

were not made arbitrarily, nor intended to make the programmer’s life
more difficult.

STRUCTURED PROGRAMMING TECHNIQUES

If you have had any formal training in programming, you are familiar
with the various structured programming techniques, up through and
including object-oriented programming. These techniques vary, but are
largely based on the concept of a procedure, or a modular functional unit
(sometimes called a black box). A black box is typically any set of
operations that has a specific input and output and performs a single task.
The mechanics of the operation are hidden from one who uses the black
box. This is the notion behind writing procedures, creating software
libraries, object-oriented programming, block-structured code; it is a
widely recognized technique in computer science.

To start out, PostScript simply isn’t well suited to structured
programming, and if you try too hard to formalize the interfaces, declare
local variables, and observe many tried and true programming practices,
you may end up with a complicated, inefficient, and ill-designed program.
On the other hand, if you ignore structured programming techniques and
write code off the top of your head, you will probably have something
worse. The trick is to borrow enough of the useful concepts from
structured programming to make programs readable, easy to maintain,
easily debugged, and efficient, while using the expressive power of the
language to your advantage.

There is no concept of goto in the PostScript language, or even explicit
control transfer, so you don’t have to worry about that particular dogmatic
concern. You do have to be careful about procedure-calling interfaces,
where they exist, since all program checking is done at run-time.

Many of the concepts in structured programming can be used quite
effectively in PostScript. You can define procedures to help you share
similar code across parts of your program. You can use the operand stack
for your temporary data rather than having many global variables. You
can design interfaces between components of your program and pass
parametric information on the stack. You can even define functions that
return results onto the stack for use by other procedures.
Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE 3

Petitioner Apple Inc. - Exhibit 1040, p. 3

PROGRAMMING TASKS

There are many different kinds of tasks associated with programming.
There are data-crunching tasks, user interface tasks, communication with
other computers or programs, file operations, graphics, and various
others. In some tasks, such as numerical computation, the algorithm by
which the task is carried out is of the utmost importance, both for
accuracy and for performance. Other tasks, such as user interfaces and
graphics, are much more results oriented: what is important is whether it
looks good and/or works well. In file operations, arguably the accuracy
with which the operations are carried out is the most important aspect of
the task, and the algorithm and performance of the task are secondary.

The nature of the task has a strong influence on the programming style
and technique. If your purpose is to draw graphics, your programming
efforts should be minimal, clear, and used only to streamline the process
of drawing. In the PostScript language in particular, graphics
programming is the means to the end, not the end in itself. The PostScript
Language Reference Manual mentions that any marks made on the page
are a side effect of the execution of the program, but from your
perspective as a programmer, it is the other way around. The fact that you
have to write PostScript programs is a side effect of the fact that you are
trying to draw pictures on a PostScript-based system.

WINDOW SYSTEMS, COMMUNICATIONS, AND DISPLAYS

Recently, the PostScript language has evolved from a printer control
language into a communications medium on host computers. There are
window systems and networks based on the PostScript language. In light
of this, there are many new kinds of programming tasks that must be (or
can be) carried out in the PostScript language.

One of the more interesting aspects of a window system or
communications environment based on a programming language is that
you can send an algorithmic description of the picture you want drawn (or
of the operation you want carried out) instead of the individual bits or
instructions. For instance, if you wanted to draw a grid of parallel lines,
both horizontally and vertically, you might express this graphic operation
4 Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE

Petitioner Apple Inc. - Exhibit 1040, p. 4

(which has a strongly repetitive basis) as two loops of instructions. (See
Example 1.1. The results of Example 1.1 are shown in Figure 1.1).

Example 1.1: Repetitive Algorithms

% 18-pt spacing, 24 lines
0 18 18 24 mul { %for

dup 0 moveto
600 lineto

} for stroke

% 18-pt spacing, 36 lines
0 18 18 36 mul { %for

dup 0 exch moveto
436 exch lineto

} for stroke

Figure 1.1: Output of Example 1.1

This is quite a bit more compact than it would be to draw 60 individual
lines, each with its own coordinates and moveto and lineto instructions.
In this particular example, 25 percent of the data end up being 0; just
avoiding the transmission of those zeroes is significant. The loops above
consist of 30 PostScript language tokens to be transmitted, whereas the
same program done with moveto and lineto instructions would require
360 PostScript tokens.
Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE 5

Petitioner Apple Inc. - Exhibit 1040, p. 5

In addition to providing power and compactness of representation, having
an interpreted programming language at the network and graphics layer of
a computer system provides a very neat solution to problems of
transportability and machine independence, since many of the decisions
are delayed until run-time. One important concept in object-oriented
programming in general is to keep the interface between objects clean
enough that there are not any problems when you hook them together.
This is especially important where you have to write programs at the
places where objects meet. It is important for you, the reader and
programmer, to understand PostScript well enough to create programs
that behave well in the nested, shared, cut-and-pasted environments that
exist today.

DATA STRUCTURES AND ALGORITHMS

The classic view of a computer program is a synthesis of data structures
and algorithms. Books often have titles that contain these two words, and
every program probably has one or the other in it somewhere. If you use
PostScript to describe pages and to drive laser printers, your need for real
data storage and computation should be minimal. However, if you use
PostScript in a windowing environment to arbitrate input events from the
keyboard (as an extreme example), you will definitely need to create data
structures and implement some potentially difficult algorithms.

CONCLUDING THOUGHTS

The next several chapters help you build some solid approaches to
PostScript data structures and help you master the language elements
thoroughly so that you will feel comfortable implementing your favorite
algorithms. In particular, the data types unique to PostScript are explored
(dictionaries and names) as well as traditional data types such as strings,
arrays, and numbers. Other chapters are devoted entirely to seemingly
simple things like the ifelse operator or looping. However, since
PostScript was not originally designed for heavy programming, these
traditional programming techniques have never been thoroughly
addressed. And you simply can’t write a serious PostScript program
without using ifelse or writing a procedure or two.
6 Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE

Petitioner Apple Inc. - Exhibit 1040, p. 6

EXERCISES

Each chapter in this book comes with some exercises at the end of it, to
help you to test your understanding of the concepts presented. Since this
first chapter has taken a philosophical overview of PostScript as a
programming language, the exercises are more like essay questions than
problems.

1. Why do you want to write a PostScript program? (This is a serious
question, and one which should be given some thought; reflection on
why may provide you with good horse sense throughout your pro-
gramming experience.)

2. Why is PostScript a “backwards” language, in which the operators
come after the operands?

3. Why is PostScript an interpreted language?

4. Why is it silly to write fractal programs in PostScript?
Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE 7

Petitioner Apple Inc. - Exhibit 1040, p. 7

8 Chapter 1: POSTSCRIPT AS A PROGRAMMING LANGUAGE

Petitioner Apple Inc. - Exhibit 1040, p. 8

Chapter 2

PostScript is Not Like C

Many programmers try to treat a new language as if it were an old
language with which they are already familiar. “If you know one
programming language, you know them all.” That is somewhat true with
procedural languages like C, Pascal, Modula 3, or maybe FORTRAN.
There are only so many ways to say if ... then ... else, and once you learn
one language, you can learn the others without too much difficulty. These
languages typically only have a dozen or so language elements; if you
were to name all the “reserved words” in Pascal or C, how many would
you come up with? If you named the built-in features of the language, you
wouldn’t get much past control structures, procedure definitions, data
types, and input/output capabilities. These languages are general-purpose
procedural languages.

But PostScript has over 300 individual special-purpose operators, it is
interpreted rather than compiled, it uses post-fix notation, and is quite
different from C. This is good, to a large extent, but again, you need to
9

Petitioner Apple Inc. - Exhibit 1040, p. 9

understand the differences rather than to take the posture that it’s just
another language.

In a procedural language, the interface between components of a program
is formalized in the notion of a procedure call. (For more information
about procedures, see Chapter 9). The program is typically written as a
series of modular procedures or functions, with a well-defined calling
mechanism for transferring control and passing data between the
modules. This calling mechanism is artificial, and is apparent only at the
programming language level. When compiled, the data (or pointers to the
data) are in fact placed on the operand stack of the hardware processor,
and an instruction to jump to a subroutine (JSR) is issued to transfer
control to the other procedure, which then uses the data on the stack. The
notion of type checking is carried out at the language level by requiring
that the data be declared to be of an explicit type as the data are being
passed to or from a procedure or function.

When writing C programs, the programmer designs the modules, the
interfaces, and the interaction between them. The data structures are
designed to work cleanly within the modular design of the program, and
the parameters to the various procedures are set up to pass data
appropriately between the modules or procedures. Data types and
structures should be appropriate for the task at hand; some of them are
made globally visible (and therefore can be used throughout the entire
program); others are local to a particular procedure (and can be used only
within that procedure). A fairly high percentage of coding time is spent
just selecting names for data types, structure elements, procedures,
variables, and modules. The names given to these program elements
contribute heavily to the readability and maintainability of the code.

The PostScript language is an interesting hybrid between high-level and
low-level languages. It is high level in the sense that there are individual
operators that encompass very powerful functionality (the show operator,
for example), yet the mechanics of the language are less structured than
other high-level languages, and the manipulation of objects on the
operand stack more closely resembles assembly-language programming.
10 Chapter 2: POSTSCRIPT IS NOT LIKE C

Petitioner Apple Inc. - Exhibit 1040, p. 10

COMPARISON OF LANGUAGE MECHANISMS

One of the first skills a programmer develops is the ability to
conceptualize the procedures that will be needed for a program to be
implemented effectively. These procedures are designed by deciding what
data are needed, how that data ought to be passed through the control
sequence of the program, and how the naming of the procedures will
contribute to the readability and flow of the program. Procedures should
not be too big and complex, nor too small and inefficient.

There is a major difference between PostScript and C that makes program
design completely different. In C, you basically have no built-in language
elements. There are a few control structures, loop constructs, some
input/output operations, and the inherent procedure call mechanism, but
there aren’t a lot of individual operators as there are in PostScript. In a
sense, the entire program design is based on the implementation of
procedures or modules.

In PostScript program design, almost the opposite is true. There are well
over 300 individual PostScript operators. Very efficient, well-designed
programs can be constructed without ever writing a single procedure, just
by using the built-in operators. Then, when the functionality of the
program fully emerges, the ability to define procedures can help you to
organize the code or to make it more efficient, but usually it is not a good
approach to begin by designing the procedures themselves, since the work
is ultimately carried out by the individual operators anyway.

TIP A PostScript procedure is simply a set of operations that are grouped
together and that can be invoked by a single instruction. They do not
replace the individual operations, they merely provide another way to
cause them to be executed. The principle advantages to defining
procedures is to collect sequences of operations that may be performed
repeatedly.

Furthermore, the operand stack is the communication area between
procedures; it is the only place where you can pass data between
procedures. But, since this is also the way data are passed to individual
PostScript operators, the distinction between a sequence of PostScript
Chapter 2: POSTSCRIPT IS NOT LIKE C 11

Petitioner Apple Inc. - Exhibit 1040, p. 11

operators in-line versus grouped into a procedure is not particularly great.
The differences amount to the ordering of operands and whether data are
interleaved with instructions or pushed as a series of operands before the
procedure is invoked. This difference is crucial only for readability,
organization, and efficiency, and it is never required to define a procedure
for good program flow.

EXPRESSING AN ALGORITHM AS A PROGRAM

If you start with a flowchart to represent an algorithm, the components of
the flowchart are somewhat abstract. They represent actions and objects
that are traditionally found in programming languages, and the structure
and control flow of the program are represented symbolically. The use of
a flowchart is predicated on the notion that the program’s algorithm can
be embodied in a diagram showing the steps required to carry out the task.

Each program’s implementation is affected strongly by the language
itself. Design decisions must be made based on the inherent strengths and
weaknesses of the language, and the details of the implementation must
ultimately be expressed using the native language constructs.

In order to represent your flowcharted algorithm as a program in some
programming language, you must apply the language elements
appropriately, within a structure you design. To do this, the language you
are using must be fully general and must allow conditional expressions
and be able to transfer control to other parts of the program. Yet each
programming language was created with a particular purpose in mind, and
each programming task is bent and shaped by the language in which it is
implemented. The language provides the foundation. Beyond that, it is
your skill as a programmer that creates a working program from the
building blocks of the language. This is the art of programming.

Although it is possible to start with an abstract algorithm and then
implement it in whatever programming language is handy, it is probably
more realistic to assume that algorithms are developed in light of a
particular language, and in such a way as to take advantage of that
language’s features. For example, the kinds of data structures that exist
(or are easy to implement) in a language can greatly affect the approach to
solving the programming problem. PostScript has a specialized dictionary
data structure that can provide entirely new approaches to problems
12 Chapter 2: POSTSCRIPT IS NOT LIKE C

Petitioner Apple Inc. - Exhibit 1040, p. 12

where one might end up implementing lots of pointers and structures in a
C program.

THE UNIX SHELL AND OPERATING SYSTEM

There are some interesting similarities between the PostScript language
and the command-line interface to the UNIX operating system. At first
glance, they are quite dissimilar; one is a programming language, the
other is an operating system. But consider that the shell program at which
the user types UNIX commands is in fact an interpreter. The shell
supports a very simple programming framework, with loops and
conditionals, and has a few real operators built in. It is intended only as a
skeletal environment, and the UNIX programs themselves provide most
of the language elements for shell programs.

The PostScript language has an extensible set of operators, each of which
is invoked by name (for example, moveto). The names are looked up, at
run-time, in the dictionary stack of the interpreter. This is exactly
analogous to the UNIX shell, which has an extensible command set and a
name lookup mechanism through which all commands are invoked. The
name lookup is controlled by the concept of a search path, or an ordered
set of directories in which to look for the named program. Either language
can be extended simply by adding another name into the search path, and
using it in the same way that the existing names are used.

TIP Here’s a trick that you may find very helpful in assimilating the large
space of operators in the PostScript language. (It evolved from my mech-
anism for learning about UNIX.) If you are having a difficult time with a
particular part of your program or you think to yourself that there must be
a better way, the chances are that the designers of the language encoun-
tered the same situation, and designed an operator that exactly solves the
problem. Quickly review a summary list of operators (see the Appendix)
to see if there is some other operator that could make short work of your
task.

Furthermore, both the PostScript language and the UNIX operating
system offer a very large and relatively flat set of operators or commands,
Chapter 2: POSTSCRIPT IS NOT LIKE C 13

Petitioner Apple Inc. - Exhibit 1040, p. 13

making the basic language easy to learn, but offering a very rich and
sometimes intimidating array of possibilities.

Data are not shared in the same way in the UNIX shell as they are in the
PostScript language, since the shell provides a pipeline mechanism for
communicating between processes, whereas the PostScript language has
an operand stack where all operators look for their operands (and leave
their results).

The comparison with the UNIX operating system is offered only to trick
you into thinking about the language as a set of powerful operators set in
the framework of a simple interpreted programming language. If you are
an experienced UNIX programmer, you probably have developed a feel
for the kinds of problems that are best solved with shell scripts versus
those that require the writing of full-fledged C programs. If your
PostScript programming task is in an environment where you have the
opportunity to balance the work load between a C program and a
PostScript program (in a client / server environment for example), this
analogy may give you a feel for the kinds of tasks that might be more
appropriate for each side of the equation.

INPUT, OUTPUT, AND THROUGHPUT

A program is usually only as good as the data you put through it. Most
programs do not come with data already in them, you have to provide the
data, and wait for the program to provide output based on the input. This
is also true with PostScript, although the input and output may depend on
the environment in which the program operates. For example, a
PostScript program is often just a vehicle for printing or displaying
information. In this sense, the data are provided en masse from a
document, and the output of the program is simply the display or printing
of the data in the document.

The input and output of a program depend greatly upon the environment
in which the program is running. If your PostScript program is running on
an interpreter built into your laser printer, there are few choices for input
and output. The input can either come from the cable leading into the laser
printer (which is also where the program comes from, typically) or it can
come from an internal disk system built into the printer. The choices of
output are the same, although the output can also be the printed page itself
14 Chapter 2: POSTSCRIPT IS NOT LIKE C

Petitioner Apple Inc. - Exhibit 1040, p. 14

(which is normally the whole point of PostScript programming). In this
case, the throughput of the program can be measured by how fast the
pages print when you send it your program to draw pictures. And it is very
much up to you and your program to control how fast those pages print.

The vast majority of all computer programs in existence today simply
read data from a file, let you edit the data in some way, and then write it
back to a file again. These are thought of as editors, word processors,
spread sheets, drawing programs, statistical packages, and so forth. The
files they read and write are documents. For the most part, documents are
not interchangeable between systems or programs, so you just read into
and write out from your single program, and hope to glean something
useful from the data itself when the document is visible in the program.

PostScript programs rarely operate directly on files and usually are not
constructed just to rearrange bodies of data. PostScript is a language
designed for expression of visual images, communication of data to
remote systems, and one-way data manipulation. Throughput is
everything. PostScript programs are perhaps more analogous to utility
programs or device drivers, where the task is not to perform a specific
application task, but to provide a general mechanism for accomplishing
data transfer, imaging, or device control. The input may well be arbitrary
(as opposed to a carefully constructed data file), and the output may be
simply a sheet of paper with some marks on the surface.

CONCLUDING THOUGHTS

This chapter positions PostScript alongside popular conventional
languages such as C, to point out the similarities and differences in a
slightly abstract sense. The ideas presented may raise more questions than
they provide answers, but they should arm you with a sense of perspective
on the PostScript language that will help you approach challenging
programming tasks with some imagination, confidence, and with open
eyes. The comparison with C, in particular, might help by convincing you
to revisit some old habits of programming as you implement the guts of
your program. Writing loops, making simple ifelse statements, and
inventing variables should be done with a full appreciation of the
language and understanding of its strengths and weaknesses.
Chapter 2: POSTSCRIPT IS NOT LIKE C 15

Petitioner Apple Inc. - Exhibit 1040, p. 15

The next chapters get increasingly specific about the PostScript language
and help you to build a solid foundation of programming skills.

EXERCISES

1. Rewrite the following C program segment in PostScript:

factorial = 1;
for (index = 10; index > 0; index--)
{

factorial = factorial * index;
}
printf (“10 factorial is %d\n”, factorial);

2. What would you say are PostScript’s greatest strengths as a general-
purpose programming language? What are its greatest weakness?

3. Name four basic language constructs that are available in both the C
and PostScript languages (or, if you don’t know C, pick any language
of your choice).

4. Name three things provided in the PostScript language that are not
provided as a standard part of any other language.
16 Chapter 2: POSTSCRIPT IS NOT LIKE C

Petitioner Apple Inc. - Exhibit 1040, p. 16

Chapter 3

Foundations

This chapter presents some fundamental concepts for programming in
PostScript. Some of the information may seem extremely introductory
and perhaps carried over from other languages, but there are many tips
and techniques presented that should benefit even the seasoned PostScript
programmer.

The chapter starts with a basic paradigm of program development that
will serve as a foundation for developing PostScript programming skills.
This paradigm is certainly not the best or the only approach to
constructing programs, but it may help even to contrast the steps with
your own thoughts on software development.

There is a cyclic pattern to all kinds of program development, although it
varies considerably based on the tools and the environment in which you
are working. To build the PostScript programming paradigm, we will
look at the sequence of steps involved in learning to develop software in a
new language or on an unfamiliar system (see Example 3.1). The list may
17

Petitioner Apple Inc. - Exhibit 1040, p. 17

seem a little light-hearted in places, but is an attempt to accurately
identify the learning curve and problem areas that real people encounter.

Example 3.1: The Programming Cycle

1. Get a trivial “Hello world” example program working, proving to
yourself that the basic system is working correctly, your
documentation isn’t lying to you, and that it is possible to
construct a working program in your environment.

2. Excitedly type in a one-page program that you designed on a
legal pad, and attempt to get it to work. At this stage it is difficult
to tell why your program isn’t working, because it typically just
doesn’t do anything, so you have nowhere to start in debugging it.

3. Find some simple oversight that caused your program not to
work, like the lack of a begin or a %! or something trivial.

4. Develop a skeleton program, either in your mind or in a file, that
has all of the basic ingredients necessary for a working program,
based on the lessons learned in Steps 1, 2, and 3.

5. Develop several small, useful, working programs using some of
the basic language constructs you have learned.

6. Attempt to tackle something bigger, or a new language construct,
but with a solid foundation on which to test and debug.

7. Get confused by the documentation for new language features,
causing the program to become buggy. Learn some ad-hoc
debugging skills based on your frustration in finding the bugs in
your program.

8. Go back and read the introduction to your documentation and
learn that your basic model of the programming language was
slightly incorrect. Adjust your thinking accordingly.

9. Create an entirely new skeletal program and get it to work.
10. Be inspired by your new, working program and begin to think of

features to add.
11. Develop a rough working feature, inventing procedures,

variables, and interfaces as you go.
12. Attempt to fit the new feature into the skeleton of your working

program; readjust the basic framework slightly to accommodate
it.

13. Test the new feature, and discover some bugs, some related to the
basic workings of the original program.
18 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 18

14. Debug the new feature thoroughly, getting it to work well with
the existing program.

15. Go back to Step 10 and repeat through Step 15 indefinitely

Steps 1 through 9 in this list represent the learning curve for a new
language or system, before you have become comfortable with the
process. Steps 10 through 15 comprise one view of the basic software
cycle for a single-person programming project (without a lot of advance
planning, which is typical of most programming projects).

The software cycle is very important to consider because it very much
affects the quality of the programs you write. You may adopt techniques
during your learning phase that lead to very poor quality programs, but
you may not even know it. You may introduce fundamentally bad design
or deeply-rooted bugs during the development process that could have
been prevented had you designed the entire program at the beginning, or
if your techniques had been sound enough to prevent cancer in the core of
your software.

Good programming skills will make your PostScript programming task
much more successful and enjoyable. Some of the techniques presented in
this and subsequent chapters should strike a chord with you and help you
to develop a sound methodology of your own.

POSTSCRIPT LANGUAGE SYNTAX

One of the first problems that beginning programmers encounter when
learning a new language is how to get the basic syntax right. It seems
trivial once you get past it, but the first step always is learning how to
represent strings, how to divide two numbers, how to find mismatched
brackets, or any of the other details involved in getting a simple program
to work.

In order to write good, solid programs, it is important to understand the
syntax of the language well enough that you can write legal, working code
instinctively, without hesitating about whether you need a slash, a
backslash, parentheses, or curly braces. Luckily, the rules for PostScript
syntax are pretty straightforward and easily remembered. Rather than
providing an exhaustive review of the language syntax and representation,
the following section presents some “seat of the pants” rules that should
Chapter 3: FOUNDATIONS 19

Petitioner Apple Inc. - Exhibit 1040, p. 19

be all you need to avoid syntactic problems when you are writing
PostScript programs.

Here are some general rules of thumb to help you with PostScript
language syntax. These rules should help you avoid common pitfalls.

• Make sure all your delimiters match; for instance, { }, (), and [].
Using good indentation style will help you avoid the problems of
mismatched or missing delimiters.

• Use parentheses for string delimiters (rather than quotation
marks, as used in other languages). If your string contains
parentheses or backslashes, quote them with a backslash, as in the
following string:
 (this string contains two parens \) and \(a backslash \\)

• Always use a slash that leans to the right for literal names, as in
/Palatino-Roman or /MyEncoding. There is nothing special
about the slash, it just keeps the name from getting executed
immediately. Instead, it lets the name be put on the operand stack.

• Remember that the operators always come after the operands
(postfix notation). The order of the operands on the stack makes
the rightmost operand the one at the top of the stack (closest to
the operator itself).

• Spaces, tabs, and newlines are all treated as white space. Use
them wisely to make your program layout more readable.

• Anything following a % (through the end of the line) is treated as
a comment, unless the % is inside a string body (in parentheses).

In practice, you will probably not encounter very many syntax errors. It is
much more likely that the execution of your program will go astray with a
typecheck or stackunderflow error, indicating that you gave the wrong
arguments to some operator. If you can look at the contents of the operand
stack when the error occurs, you will usually be able to find the problem
quickly.

SIMPLE PROGRAM STRUCTURE

There is no enforced structure to a PostScript program. You don’t need to
start the program with a magic word like Begin, nor end it with anything
special. You don’t have to declare variables at the beginning of the file,
20 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 20

you don’t have to declare procedures in any particular order. The only
checking is done when you run the program. If it works, it works. If it
doesn’t, you will get an error message explaining why it doesn’t work.

However, since most people who read your program (including you, most
likely) are used to seeing some structure in code, there is a strong case for
structuring your program carefully. If nothing else, it will help you to
maintain the program, to update it and revise it as necessary.

Make Definitions First

Typically, a PostScript program contains a fair number of definitions,
either procedure definitions or variables of some kind. In general, you
should define these up front in the PostScript program. A good approach
is to set up all the named objects you will need at the beginning of the
program, then set up all the procedures, then begin to call them by name
at the appropriate time. This is in fact very similar to the traditional
structure found in other programming languages, where the definitions
must come before the procedures. Example 3.2 shows some definitions of
objects that can then be referenced by name later in the program.

Example 3.2: Defining and Using Named Objects

% an often-used font stored as a named object
/headerfont /Times-Bold findfont 24 scalefont def

% using the named font object
headerfont setfont
72 600 moveto
(Section 1.1) show

For PostScript page descriptions (documents), Adobe Systems has
defined PostScript Document Structuring Conventions that break a
document file down into several components. The first component, the
prologue, consists only of definitions that may be referenced by the rest of
the document. The rest of the document is composed of pages, with an
optional setup section before the pages. These structuring conventions
make it easier for post-processing programs such as print spoolers to
manipulate the files in helpful ways.

In a PostScript program that is not a page description, these delineations
don’t make quite as much sense, but it is still helpful to make the
Chapter 3: FOUNDATIONS 21

Petitioner Apple Inc. - Exhibit 1040, p. 21

definitions at the beginning of the program. An exception to this rule is
that if a procedure requires some data structures for its operation but they
must be defined outside the procedure, it is often best to group them with
the procedure, to make the program easier to maintain (see Example 3.3).

Example 3.3: Keeping Variables with Procedure Definitions

/filebuff 1024 string def
/countlines { %def

0 % counter on stack
/fd (filename) (r) file def
{ %loop

fd filebuff readline { %ifelse
pop 1 add

}{ %else
pop 1 add exit

} ifelse
} loop

} bind def

/specialchar (\037) def
/parsestring { %def

specialchar search {
pop pop
(after special char:) print =

}{
(no special chars found:) =

} ifelse
} bind def

Indentation Style

The single most important step you can take to make your program
readable is to adopt a good indentation style. The PostScript language is
very unstructured, and without proper indentation, it can be made quite
impossible to read or maintain.

There are a few basic rules of indentation that you should observe, based
on the structure of your program:

• Wherever one part of your program is contained within some
clear beginning and ending constructs (such as gsave and
grestore, begin and end, or curly braces), you should indent all
of the included program text an equal amount.
22 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 22

• Use indentation to make it easy to find the beginning and ending
of any matched construct visually.

• Be careful that adding and deleting lines from inside a structural
element does not disturb the structure or readability of the
program.

The indentation style used in the examples in this book is one developed
over several years of maintaining programs, and it works well. There are
other approaches, of course. The most common alternative to the method
used in this book is to move the opening delimiters to a new line; this
provides a much better balance, visually, to the delimiters, but it costs an
extra line in the program (see Example 3.4). Extra lines don’t consume
much space, but editing a program is much easier when you can see more
of the program at once in the screen of your text editor.

Example 3.4: Alternative Indentation Style for Procedures

/mapgray % -mapgray -
{ %def

currentgray 0.5 gt
{ %ifelse

1.0 setgray
}
{ %else

0.0 setgray
} ifelse

} bind def

It is also a good idea to indent other program elements that have distinct
beginning and endings, such as begin and end with dictionaries, save and
restore, gsave and grestore, [and]. Example 3.5 shows some of these
indentation styles in a dummy program.
Chapter 3: FOUNDATIONS 23

Petitioner Apple Inc. - Exhibit 1040, p. 23

Example 3.5: Indentation Style for Dictionaries and Structure

/mydict 24 dict def
mydict begin

/draft % - draft -
{ %def

/saveobj save def
500 600 moveto 10 rotate
/Helvetica 24 selectfont
0.5 setgray
gsave

(DRAFT) show
grestore
0 setgray 1 setlinewidth
(DRAFT) false charpath stroke

saveobj restore
} bind def

end %mydict

SETTING UP TEMPLATES

A very strong technique for building a structured PostScript program is to
create an empty template for each construct in your program and then to
go back and fill in the body of the template. This keeps you from having
to remember to close all your delimiters and lets you perform your
housekeeping all at once, so you can concentrate on other things.
Anything that inherently has a beginning and an end will benefit from this
technique, including making entries in a dictionary, creating an array, a
procedure, a string, a loop, or a conditional.

The advantage to the template approach for ifelse statements, procedure
definitions, loops, or other structural components is that you never have a
partially written program with mismatched braces, which can be difficult
to debug. The procedure body will already “work” when you finish with
the template, although it may not do anything very interesting. At least
you won’t have a break in the structure of your program, even for the time
it takes you to finish writing the procedure. Even if you are interrupted in
the middle of building your true clause, the braces will still be balanced.
It is also highly readable this way.

Example 3.6 shows how to lay out a template for a procedure definition, a
dictionary, an array, an ifelse statement, and a loop. Once the template is
24 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 24

in place, you can then come back to fill it in. The blank lines in the
templates are where you add code later.

Example 3.6: Setting Up Templates

% dictionary template:
/mydict 24 dict def
mydict begin

end %mydict

% procedure template:
/newline % - newline -
{ %def

% this procedure will simulate “newline”
% on a line printer

} bind def

% conditional template:
currentgray 0.5 gt { %ifelse

}{ %else

} ifelse

% loop template:
0 10 360 { %for

} for

% combination template:
/mydict 24 dict def
mydict begin

/newline % - newline -
{ %def

currentpoint pop 550 gt { %ifelse
}{ %else

0 10 360 { %for
} for

} ifelse
} bind def

end
Chapter 3: FOUNDATIONS 25

Petitioner Apple Inc. - Exhibit 1040, p. 25

Templates aren’t just a learning tool, they are sound practice. The very
best programmers use this technique every day, whether they are writing a
simple example program for a book on PostScript or developing a quick
hack to turn off the start page on the printer. Using templates will save
you enormous amounts of time in the long run, and it is a highly
recommended technique. If you learn nothing else from this book, please
develop a habit of laying out templates as you program. Close those curly
braces right after you open them, then go back and fill them in. Or, if you
hate to use templates, at least develop your own techniques for laying out
and maintaining the structure and indentation of the program source.

DECLARING AND USING VARIABLES

Variables serve two distinct purposes in a computer program. They
provide a place to put data, especially data that might change, and they
make the program much more readable than if you filled it up with
numbers or string data. In PostScript, it is especially important to consider
for which of these two purposes your variables were designed. In an
interpreted language, you can pay a fairly high premium in execution time
for only a little more readability.

There really is no such thing as a variable in PostScript, at least not in the
sense that other languages have them. In C, for example, if you declare a
variable of type int, the compiler will actually set aside a portion of
memory big enough to hold an integer, and whenever you refer to that
variable, the program knows to look in that location in memory.
PostScript has no mechanism for declaring variables before they are used.
It also does not require you to give names to any data structures. You can
use data directly from the operand stack without ever storing the data into
a variable, which you typically cannot do in other languages.

A variable in PostScript is just a name in a dictionary; what you really
mean by “variable” probably is just a named bit of data. You refer to it by
name instead of explicitly referring to the number or its location in
memory. In that sense, any object can be a variable in a PostScript
program, if you choose to define it in a dictionary. Let’s look at a simple
example (see Example 3.7).
26 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 26

Example 3.7: Declaring Variables

/LeftMargin 72 def
/TopMargin 792 72 sub def
/DocumentName (Thinking in PostScript) def
/ScaleFactor 300 72 div def
/DefaultFont /Courier findfont 12 scalefont def

In order to reference a variable, you simply use its name (without the
slash). Whenever you use the name, the value will be looked up and
executed. As long as the variable you have defined is not a procedure, the
value of the variable will placed on the operand stack. In Example 3.8 you
can see all the variables from Example 3.7 being used in some typical
situations.

Example 3.8: Using Variables

ScaleFactor dup scale
LeftMargin TopMargin moveto
DefaultFont setfont
DocumentName show

Arithmetic with Numeric Variables

In most programming languages, you can easily perform arithmetic with
variables, as in Example 3.9. But in the PostScript language, you have to
do all your arithmetic on the operand stack, perhaps calling up the values
of some variables to do so, then use the def operator to put the new value
back into your variable. There is no operator that performs assignment
like the = notation does in C. Example 3.10 shows the same arithmetic
problems from Example 3.9 carried out in PostScript. Assume, of course,
that in both examples all of the variables have been set up to contain
reasonable values.

Example 3.9: Arithmetic in C

grade = (test1 + test2 + test3 + final) / 4;
counter = counter + 1;
Chapter 3: FOUNDATIONS 27

Petitioner Apple Inc. - Exhibit 1040, p. 27

Example 3.10: Arithmetic in PostScript

/grade test1 test2 add test3 add final add 4 div def
/counter counter 1 add def

Remember, since all PostScript operators require their operands to be on
the operand stack, the use of variables is never required. The same results
can always be obtained using just the operand stack to hold your data.
You can choose when you use a variable and when you don’t.

Using the // Notation for Constants

PostScript has a special syntax for immediate name lookup and
evaluation: the double slash. Any name that is preceded by a double slash
(//) is looked up immediately when encountered in the program, even if it
is inside a procedure body, where names are not normally looked up until
the procedure is executed.

One excellent use of this notation is to set up constants that you want to
work like variables but will never change. That way you can obtain the
readability of having named variables, but when the program executes,
they will actually be replaced by their constant value and the name lookup
at run-time will be avoided. For a simple illustration of this technique, see
Example 3.11.

Example 3.11: Evaluation of Constants with //

/LeftMargin 108 def % constant definitions
/TopMargin 792 72 sub def
/RightMargin 612 72 sub def
/BottomMargin 72 def
/Leading 12 def
/space % - space -
{ %def

currentpoint exch //RightMargin gt { %ifelse
//Leading sub dup //BottomMargin lt { %ifelse

pop showpage
//LeftMargin //TopMargin moveto

}{ %else
//LeftMargin exch moveto

} ifelse
}{ pop } ifelse

} bind def
28 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 28

Notice that all of the variables for margins and leading are used with the
double slash notation inside the procedure body. The names are there for
you to look at when you are editing the program, but when it is executed,
they are replaced by their numeric values inside the body of the procedure
before the procedure is ever encountered. In fact, if you look at the
procedure body on the stack right before bind is executed, you will see a
procedure that looks quite a bit different than the one in your source
program. (For instance, compare Example 3.11 and Example 3.12).

Example 3.12: After Immediate Name Lookup with //

/LeftMargin 108 def % constant definitions
/TopMargin 792 72 sub def
/RightMargin 612 72 sub def
/BottomMargin 72 def
/Leading 12 def
/space % - space -
{ %def

currentpoint exch 540 gt { %ifelse
12 sub dup 72 lt { %ifelse

pop showpage
108 720 moveto

}{ %else
108 exch moveto

} ifelse
}{ pop } ifelse

} bind def

NOTE: The // syntax for immediate name lookup is not available in the
very first implementations of a PostScript interpreter, which are those
with version numbers below 25.0 from Adobe Systems Incorporated.

ALLOCATING MEMORY

There are two ways that memory gets allocated in a PostScript program. It
is either allocated implicitly when an object is created or it is allocated
explicitly by using one of a handful of operators that create empty data
structures of a particular size. See Table 3.1 for a list of operators that
explicitly allocate memory for data storage.
Chapter 3: FOUNDATIONS 29

Petitioner Apple Inc. - Exhibit 1040, p. 29

Table 3.1: Operators that Explicitly Allocate Memory

Arguments Operator Action
int array array create array of length int
int dict dict create empty dictionary with

capacity for int elements
± matrix matrix create identity matrix

any0 ... anyn-1 int packedarray packarr
create packed array consisting
of specified int elements

int string string create empty string of length int

The operators in Table 3.1, with the exception of matrix, all take an
integer argument specifying exactly how large a data structure to allocate.
The matrix operator always creates an array with six elements, and is
equivalent to the code sequence [1 0 0 1 0 0].

There are also a number of ways to allocate memory implicitly,
sometimes without even realizing it. In general, whenever a composite
object is created, memory must be allocated to store its contents. There
are a few operators that create composite objects implicitly, and a few bits
of PostScript language syntax that will cause a composite object to be
created. These operations are summarized in Table 3.2.

Table 3.2: Implicit Memory Allocation

Arguments Operator Action
[obj0 ... objn-1] array create a literal array
{ any0 ... anyn } proc create an executable array

(any bytes) create a string body
<hex bytes> create hexadecimal string body
gstate gstate_obj create a new gstate object
save save_obj create a new save object

The most common of these methods for implicitly allocating memory are
procedure bodies and strings. The latter would literal strings, if they are
created by the PostScript interpreter when it recognizes a string
represented with the () notation.

A composite object, whether created explicitly or implicitly, uses memory
in proportion to its size. For example, when you create a dictionary object,
a certain amount of memory is allocated for each entry in the dictionary,
and the total amount allocated depends on how many empty slots are in
the dictionary to be created. Similarly, a string object will require more
30 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 30

memory if the string is a long one. In either case, the memory allocated is
exact, and should be predictable. A string that is thirty bytes long requires
exactly ten bytes more storage than a string that is twenty bytes long.

This discussion does not cover the precise details of memory allocation,
but it does provide a pretty good framework for understanding how
memory is consumed in a PostScript program. If you are concerned about
gaining precise control over memory allocation, it is best to get specific
documentation for the interpreter that you are using.

GETTING MEMORY BACK

Once you have allocated memory in your program, either by creating data
structures or by executing some code that uses memory, there are only
two ways to reclaim that space:

• Use the save and restore operators to reclaim all memory used
since the last save was executed.

• Use the undef, undefinefont, and vmreclaim operators available
in the Display PostScript extensions to the PostScript language
(not available in all products).

When using save and restore, you have to plan carefully where you want
to restore the contents of memory, because the save/restore mechanism
also affects other aspects of the interpreter, including the current graphic
state, the current device, and so on. In a typical page description, save and
restore may be done at each page boundary or around each page element
(like a block of text or a photographic image).

OPENING AND CLOSING FILES

Opening and closing files is a fundamental operation in any program,
which is why this section is included in this chapter on the basics. The
quick overview is that there are a lot of file-related PostScript operators
for reading and writing files; there is one for opening files (the file
operator) and one for closing files (the closefile operator). The file
operator returns a file object that you must retain for all subsequent file
operations (including closefile). Please see Chapter 14 for a complete
discussion of file operations.
Chapter 3: FOUNDATIONS 31

Petitioner Apple Inc. - Exhibit 1040, p. 31

COMPARISONS AND EQUALITY OF OBJECTS

PostScript has several distinct data types and is fairly strict about type-
checking. However, you can easily convert one type to another, assuming
that the type conversion makes some sense, and you can then compare
them. (See Data Conversions in Chapter 13 for a discussion of type
conversions.) In many instances, the PostScript comparison operators will
even do this for you as a convenience. Strings and names, for example,
are both simply composed of bytes, so they can easily be compared, as
shown in Example 3.13.

Example 3.13: Comparison of Different Types of Objects

% comparing reals with integers:
103.0 103 eq % true
103.0 103 ge % true
103.0 103 gt % false

% comparing mark objects:
mark [eq % true

% comparing null objects to integers and booleans:
null 0 eq % false
null false eq % false

% comparing strings and name objects:
(Palatino-Roman)
/Palatino-Roman eq % true
(abc)
(defabc)
3 3 getinterval eq % true
(abc) (abc) eq % true (an exception)

% comparing array objects:
[1 2 3] dup eq % true
[1 2 3]
[1 2 3] eq % false (arrays created independently)
matrix matrix eq % false
{ 1 exch sub }
{ 1 exch sub } eq % false

% comparing dictionary objects:
5 dict dup begin
currentdict eq % true
32 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 32

/show where { %if
systemdict eq % true (if “show” has not been redefined)

} if
5 dict 5 dict eq % false (dictionaries created independently)

% comparing file objects:
(%stdin) (r) file
currentfile eq % true (most of the time)

% comparing operator objects:
{ 1 2 add } bind 2 get
/add load eq % true (if “add” has not been redefined)

As you may have noticed upon careful reading of Example 3.13, some
composite objects (dictionaries, procedures, and arrays) get a little bit
tricky when you compare them. In particular, when you use, say, the eq
operator, you are comparing the objects themselves, not the structure to
which they point. Composite objects represent a structure that is stored in
memory somewhere. If you create two different structures, even if they
happen to contain the same elements, the structures themselves are
independent, and therefore the objects that represent them are not
considered to be equal. However, if you have two copies of the same
composite object, the eq operator will confirm that they are in fact equal.

Example 3.14: Procedure to Compare Array Contents

/arrayeq % array1 array2 arrayeq bool
{ %def

2 copy eq { pop pop true }{ %ifelse
% if lengths are not equal, return false
2 copy length exch length eq { %ifelse

% We now have to compare all elements
true % arr arr true
0 1 3 index length 1 sub { %for

3 index 1 index get % arr arr bool index val1
3 index 2 index get % arr arr bool index val1 val2
eq exch pop and % arr arr bool

} for
exch pop exch pop

}{ pop pop false } ifelse
} ifelse

} bind def
/arrayne { arrayeq not } bind def
Chapter 3: FOUNDATIONS 33

Petitioner Apple Inc. - Exhibit 1040, p. 33

If you really need to find out if two independently formed composite
objects are equivalent, you can compare their contents. If their contents
are exactly equal and the lengths of the two composite objects are equal,
then you can consider the two composite objects to be equivalent, if not
equal. In Example 3.14 is a procedure definition called arrayeq that will
compare two arrays, returning true if their contents and lengths are equal.

CONCLUDING THOUGHTS

If you build a solid foundation of PostScript programming skills, you
should be able to write programs that work the very first time. There isn’t
much to forget, really. You don’t have to declare variables, the syntax is
very free, and you cannot get compile-time errors. It helps to get the
indentation right, so that all of the parentheses and curly braces balance
correctly, and if you develop the skill of always laying out a template for a
structure before you go back and fill it in, you should never run into that
problem.

The next chapter provides a few examples of typical PostScript programs
to help you adopt a style and structure that is appropriate for the task you
are faced with. A program to render a graph on a laser printer may be
quite different from a program that constructs a downloadable font, for
example, and the programming techniques you use should reflect the task.

EXERCISES

1. Syntax errors arise very infrequently in PostScript, but when they do,
it can be difficult to track them down.

a.Find the syntax error in the following program segment:

0 1 20 { (Hello world (part 1) == flush } for

b.Find the syntax error in the following program segment:

currentpoint exch 32 gt {
72 lt { showpage 36 500 moveto

} if { %else
(hello world \(part 2) show

} ifelse
34 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 34

2. Create a simple procedure named line that takes four operands, the
x, y location for the beginning of the line and the x, y location for the
end of the line. The procedure should perform the necessary moveto,
lineto, and stroke operations. Use your procedure once or twice to
create some sample lines.

3. Create a template for a procedure that contains an ifelse statement.

4. Design a procedure called ++ that will increment a variable. The pro-
cedure should be able to increment any variable that contains an inte-
ger or a real value. Design it so that the following sample will add 1 to
the value of the variable named counter each time it is called:

/counter 0 def
/counter ++
/counter ++
counter == % should be 2
Chapter 3: FOUNDATIONS 35

Petitioner Apple Inc. - Exhibit 1040, p. 35

36 Chapter 3: FOUNDATIONS

Petitioner Apple Inc. - Exhibit 1040, p. 36

Chapter 4

Some Typical Programs

This chapter presents some of the most common variations in PostScript
programs. It provides you with a glimpse of different programming styles
and lets you know when they might be appropriate. Not all PostScript
programs draw pictures or print pages. Some of them are purely
utilitarian, some are exploratory, some may delete files from your desk,
download a font, or query a printer for a list of built-in typefaces.

A lot has been written about PostScript page descriptions, since that was
the original purpose of the language. Many of the recommended
techniques and program structural rules were intended mostly for page
descriptions. Part of the purpose of showing some other kinds of
programs is to address squarely the issue of creating PostScript programs
that are not simply documents.

The samples in this chapter are not necessarily intended for you to copy as
great programming examples. The idea is to present several different
classes of programs, to point out that the programming style and the
37

Petitioner Apple Inc. - Exhibit 1040, p. 37

problems faced may differ dramatically between, say, a font program and
an Encapsulated PostScript program (which is explained later in this
chapter).

A TYPICAL PAGE DESCRIPTION PROGRAM

Although PostScript is a full-featured programming language, its primary
purpose was originally for page description. In this sense, the program is
only the means to an end. The point of a page description is purely
graphical, and the marks on the page or on the screen are the intent; the
program’s role is to facilitate the rendering of graphics.

Let’s look at a very simplistic page description from a programming point
of view. Typically page descriptions are produced by a document
processing application, and are not generally written by hand. Machine-
generated PostScript programs always have some amount of hand-tuned
code, especially in the procedure definitions, but the body of the
document is usually generated directly by the document production
system.

For instance, if you wrote a drawing program that allows the user to draw
boxes, you might create a PostScript procedure to help you draw boxes
efficiently, but this procedure would be very general, and would require
information about where to draw the box and how big it should be. This
data would be supplied by the drawing program itself, based on the boxes
drawn by the user. The box procedure would then be invoked as many
times as necessary to render all the boxes drawn by the user.

Since documents can be composed of many, many elements, and since the
set of possible graphic elements is normally fixed, it makes sense to make
the representation for each individual object as compact and efficient as
possible, using the ability to define procedures as a mechanism. Example
4.1 shows the output of a fictitious text-setting application, with a typical
blend of procedure definitions and invocations in the body of the
document; Figure 4.1 shows the text generated by the code.
38 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 38

Example 4.1: Sample Page Description Program

%!PS-Adobe-2.1
%%Title: sample document
%%Creator: textset v-1.0
%%DocumentFonts: Times-Roman Times-Italic
%%BoundingBox: 0 0 612 792
%%Pages: 2
%%EndComments
%%BeginProcSet: textset 1.0 0

/selectfont where { %ifelse
pop

}{ %else
/selectfont { %def

exch findfont exch scalefont setfont
} bind def

/F /selectfont load def
/T { moveto show } bind def

%%EndProcSet
%%EndProlog
%%Page: 1 1

/Times-Roman 24 F
(Now is the time for all good) 72 72 T
/Times-Italic 24 F
(people) 349 72 T
/Times-Roman 24 F
(to come) 416 72 T
 (to the aid of their country.) 72 46 T
showpage

%%Page: 2 2
/Times-Roman 24 F
(Now is the time for all good) 72 72 T
/Times-Italic 24 F
(people) 349 72 T
/Times-Roman 24 F
(to come) 416 72 T
 (to the aid of their country.) 72 46 T
showpage

%%Trailer
Chapter 4: SOME TYPICAL PROGRAMS 39

Petitioner Apple Inc. - Exhibit 1040, p. 39

Figure 4.1: Output from Example 4.1

There are several things that affect the programming style in page
descriptions. First, there is usually a great deal of structure in the program,
and in fact the whole program can be thought of as a document containing
pages, illustrations, and so on. In Example 4.1, the structure is delineated
according to document structuring conventions, where comments like
%%EndProlog mark the boundaries between the elements of the
document. In this case, there are really only two major components,
known as the prologue and the script. The prologue is simply a few
PostScript language definitions that permit more powerful and compact
representations to be made in the document. The script is the body of the
document, and contains mostly data from the document processing
system such as fonts, locations on the page, and bits of text. The prologue
is usually the same for all documents, and is hand-written, whereas the
script is generated by the document processing program.

FONT PROGRAMS

A font program is simply a PostScript program that creates a font
dictionary and registers it as a font. Since it is a program, there is no
required font file format to adhere to. The dictionary structure of the font

output page

Now is the time for all good people to come
to the aid of their country.
40 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 40

is important, but it can be built in a variety of ways. (See the PostScript
Language Reference Manual for a complete specification of the required
font dictionary structure.) Example 4.2 is a very minimal program that
illustrates the structure of a font program. The characters in this font draw
completely random line segments (see Figure 4.2); its practical merit is
questionable.

Example 4.2: Sample Font Program

%%BeginFont: UserFont
 14 dict begin

/FontName /UserFont def
/FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBoundingBox [0 0 1000 1000] def
/Encoding /StandardEncoding load def
/BuildChar % fontdict charcode BuildChar -
{ %def

exch begin
Encoding exch get
500 0 setcharwidth
CharDefs exch get exec

end
} bind def
/CharDefs 256 dict def
CharDefs begin

Encoding { %forall
{ %def

4 { rand 1000 mod } repeat
moveto lineto stroke

} def
} bind forall

end
 currentdict end dup /FontName get exch definefont pop
%%EndFont
/UserFont 48 selectfont
10 10 moveto (abcdefg) show
showpage
Chapter 4: SOME TYPICAL PROGRAMS 41

Petitioner Apple Inc. - Exhibit 1040, p. 41

Figure 4.2: Output from Example 4.2

PROGRAMS THAT READ DATA

One of the most common operations in a computer program is to read and
write data from a file. In the past, most PostScript programs have not had
access to a file system anywhere other than on the printer, if the printer
happened to have a hard disk attached. In window system environments
based on PostScript, it is much more likely that a file system is available.

Example 4.3: Sample Program that Reads Data

%!PS-Adobe-2.0
%%Title: data reading example
/infile (input.ps) (r) file def
/outfile (output.ps) (w) file def
/buffer 128 string def
{ %loop

infile buffer readstring { %ifelse
outfile exch writestring

} { outfile exch writestring exit } ifelse
} bind loop
infile closefile outfile closefile

PostScript error (invalidfon

output page
42 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 42

The program in Example 4.3 reads lines from one text file and writes
them to another output file; in other words, it just copies the file.

QUERY PROGRAMS

Sometimes you need to retrieve some information about a printer or
network server, like a list of the currently installed fonts. This is an
example of a query program. Query programs always generate a response
of some kind as part of their execution. Example 4.4 is a query program
that returns a list of the fonts currently defined in the FontDirectory
dictionary in a PostScript interpreter.

Example 4.4: Sample Query Program

%!PS-Adobe-2.0 Query
%%EndComments
%?BeginFontListQuery
FontDirectory { pop == } forall flush
(*) = flush
%?EndFontListQuery: *

Since query programs are intended to write results to the standard output
communications channel (terminology borrowed from UNIX and C),
their behavior depends to a great degree upon the environment in which
they are executed. Some printers do not have two-way communications
channels; in such cases the results will be lost. Some operating
environments think that anything coming back from a printer must be an
error message, so the results may be written to an error log file
somewhere, and they may even have extra text added to them by the
printer control program.

ENCAPSULATED POSTSCRIPT PROGRAMS

Encapsulated PostScript files (EPS files) are illustrations or other self-
contained programs that can be included into another document. They are
restricted in a few ways to keep them from disturbing the environment in
which they are included, but generally can use the entire expressive power
of the PostScript language (see Example 4.5).
Chapter 4: SOME TYPICAL PROGRAMS 43

Petitioner Apple Inc. - Exhibit 1040, p. 43

Example 4.5: Sample Encapsulated PostScript Program

/EPSsave save def
.25 .25 scale .7 .7 scale 200 200 translate 20 rotate
/showpage { } def
% begin included EPS file
%!PS-Adobe-2.0 EPSF-1.2
%%Title: EPSF example program
%%BoundingBox: 100 100 500 500
%%DocumentFonts: Palatino-BoldItalic
%%EndComments
%%BeginProcSet: adobe_DPSrectanglepack 1.0
/rectfill where { pop }{ %ifelse

/*buildrect {
dup type /integertype eq 1 index type /realtype eq or { %ifelse

4 -2 roll moveto dup 0 exch rlineto
exch 0 rlineto neg 0 exch rlineto
closepath

}{ %else
dup type /arraytype eq {

aload length 4 div cvi { %repeat
*buildrect

} repeat
} if

} ifelse
} bind def
/rectfill { %def

gsave *buildrect fill grestore
} bind def
/rectstroke { %def

gsave *buildrect stroke grestore
} bind def
/rectclip { %def

newpath *buildrect clip newpath
} bind def

} ifelse
%%EndProcSet: adobe_DPSrectanglepack 1.0
%%EndProlog
gsave

.75 setgray 100 100 500 500 rectfill
0 setgray 3 setlinewidth 100 100 500 500 rectstroke

grestore
120 400 moveto /Palatino-BoldItalic findfont 75 scalefont setfont
gsave (Encapsulated) show grestore 0 -100 rmoveto
(PostScript) show
% end included EPS file
EPSsave restore
44 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 44

In Figure 4.3 you can see the output of Example 4.5; it has been scaled
smaller, translated to another position on the page, and rotated 20 degrees.
All of these changes reflect the way EPS files are typically used, and are
designed to reinforce the fact that the code in an Encapsulated PostScript
file should not disturb the environment into which it is placed.

Figure 4.3: Output from Example 4.5

The specification for Encapsulated PostScript files allows for an optional
preview component of the file, to accommodate weak display systems
that cannot execute the PostScript code directly. This preview component
is usually a bit map in a format appropriate to the native environment on
which the document was created (it may be a Macintosh PICT resource,
for example). The preview component of an Encapsulated PostScript file
is strictly optional and is in no way connected to the PostScript code,
except that it is supposed to represent the same picture.

Encapsulated

PostScript

output page
Chapter 4: SOME TYPICAL PROGRAMS 45

Petitioner Apple Inc. - Exhibit 1040, p. 45

PERSISTENTLY RESIDENT PROGRAMS

Yet another type of PostScript program is one that makes some persistent
definitions that are visible to all subsequent programs. This provides a
mechanism for redefining operators, making fonts semipermanent in the
interpreter, or defining some procedure definitions once in such a way
that they are usable to all subsequent programs.

On most printer implementations, this can be accomplished using the
exitserver operator. This operator permits the program to exit the job
server loop’s save/restore context, causing any definitions made to stay
resident until the printer is rebooted. Example 4.6 shows the use of
exitserver, in this case to make a font definition semipermanent.

Example 4.6: Sample Printer-Resident Program

%!PS-Adobe-2.0 ExitServer
%%EndComments
%%BeginExitServer: 0

serverdict begin 0 exitserver
%%EndExitServer
%%BeginFont: UserFont
 13 dict begin

/FontName /UserFont def /FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBoundingBox [0 0 1000 1000] def
/Encoding /StandardEncoding load def
/BuildChar % fontdict charcode BuildChar -
{ %def

exch begin
Encoding exch get 500 0 setcharwidth
CharDefs exch get exec

end
} bind def
/CharDefs 256 dict def CharDefs begin

Encoding { %forall
{ %def

4 { rand 1000 mod } repeat moveto lineto stroke
} def

} bind forall
end

 currentdict end dup /FontName get exch definefont pop
%%EndFont
%%EOF
46 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 46

In window system environments, the concept of a job server loop is often
not present, since a windowed environment is usually not a batch system.
With the Display PostScript System, there is a dictionary called
shareddict, in which all entries are shared by all processes (and hence
visible to all). Example 4.7 shows the same font definition made
permanent or public in Display PostScript. Notice the use of the
currentshared and setshared operators.

Example 4.7: Sample Display-Server-Resident Program

%!PS-Adobe-2.0 ExitServer
%%EndComments
%%BeginExitServer: 0
dup 0 eq { pop } if true setshared
%%EndExitServer
%%BeginFont: UserFont
 13 dict begin

/FontName /UserFont def /FontType 3 def
/FontMatrix [.001 0 0 .001 0 0] def
/FontBoundingBox [0 0 1000 1000] def
/Encoding /StandardEncoding load def
/BuildChar % fontdict charcode BuildChar -
{ %def

exch begin
Encoding exch get
500 0 setcharwidth
CharDefs exch get exec

end
} bind def
/CharDefs 256 dict def CharDefs begin

Encoding { %forall
{ %def

4 { rand 1000 mod } repeat
moveto lineto stroke

} def
} bind forall

end
 currentdict end dup /FontName get exch definefont pop
%%EndFont
%%EOF
Chapter 4: SOME TYPICAL PROGRAMS 47

Petitioner Apple Inc. - Exhibit 1040, p. 47

TIP The exitserver operator is not a standard part of the language. It is de-
fined in most printers, but is usually not implemented in display servers or
stand-alone interpreters. In general, use of exitserver is restricted to sys-
tem administrators. It should never be part of the output of a program, nor
should it be used routinely in any program.

Figure 4.4: Shared Memory Configuration

Figure 4.4 provides an illustration of the concept of shared virtual
memory (often referred to as VM).

shared virtual memory

process 1

process 2

process 3

private
virtual

private
stacks

private
stacks

private
stacksmemory

private
virtual
memory

private
virtual
memory

shareddict
48 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 48

CONCLUDING THOUGHTS

The examples in this chapter should provide a feeling for the different
kinds of programs that can be written, and the different techniques that
might be required for each. As you learn more about the details of writing
PostScript programs, it is helpful to keep a bit of perspective about the
kind of program you are constructing, so you can make your code
readable where it should be, efficient where it counts, and well-behaved.
The next two chapters take a hard look at the operand stack, since it is the
principle mechanism for all program execution.

EXERCISES

1. In a page description program, is it more important to write code that
is easily readable or code that is efficient? What kinds of procedures
would you define, and why?

2. What kinds of PostScript programs would you expect to consume
memory?

3. What do you think is a reasonable way to use a query program in an
environment where there is only one-way communication (or in a
batch system, which is essentially the same thing) ?
Chapter 4: SOME TYPICAL PROGRAMS 49

Petitioner Apple Inc. - Exhibit 1040, p. 49

50 Chapter 4: SOME TYPICAL PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 50

Chapter 5

Understanding the Stack

The operand stack is the central mechanism in the PostScript language.
All data are placed on the operand stack at one time or another during the
execution of your program. The operand stack holds PostScript language
objects, which are the basic representation for all data types in a
PostScript program, including procedures and instructions.

A QUICK OVERVIEW OF DATA TYPES

All PostScript data types are represented by a single object. There are
three varieties: simple objects like integers, reals, marks, and booleans;
composite objects (like arrays and strings) that will not fit into an object;
and some special types that behave like simple objects but which have
some internal structure that you can’t see (these include save objects and
FontID objects). For the purpose of this discussion, only simple and
composite objects will be covered.
51

Petitioner Apple Inc. - Exhibit 1040, p. 51

Data types are represented in the interpreter as objects, which are a fixed
size and are easily manipulated by the interpreter, placed on the operand
stack, or stored into arrays or dictionaries. For the most part, it is not
necessary to know that data types are represented as objects, but it does
affect some things. For a more complete discussion of PostScript
language objects and data types, please refer to the PostScript Language
Reference Manual.

Probably the most important distinction to understand between the
various data types is the difference between a simple object and a
composite object. Composite objects can be thought of as pointers to the
real data, whereas simple objects really are data themselves. Figure 5.1
shows the various data types available in PostScript.

Figure 5.1: PostScript Data Types, Simple and Composite

PostScript objects are created in one of two ways: they are either created
directly by the language interpreter when it reads the program from the
input file, or they are created directly by the executing program itself
through an explicit allocation. Some data types (the real number is an
example) cannot be created explicitly by a program except by converting
another data type (an integer). It must be created by the scanner, as it
reads a number from the input stream (for instance, 103.46). Other data
types cannot be created at all by the scanner. For example, the data types

Simple Objects Composite Objects

integer

real

boolean
mark

string

name

array

dict

(string body)

/name characters
52 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 52

mark and boolean are created by the PostScript operators mark, true, or
false, or as side effects of some other operators such as known or search.

NAME LOOKUP

The standard method for retrieving something that has been stored into a
dictionary is to use the name lookup mechanism. An executable name
encountered by the interpreter is looked up in the context of the current
dictionary stack, and if there is an entry corresponding to that name, the
value will be placed on the operand stack—with one notable exception. If
you happen to retrieve a procedure body (an executable array object)
under the name you look up, that procedure will be placed on the
execution stack and immediately executed, rather than being placed on
the operand stack and treated as data.

TIP If you need to retrieve a procedure body that you have stored into a dictio-
nary, but don’t want to execute it just yet, you can get a copy of it onto the
operand stack using the load operator, using the name of your procedure
(with the leading slash, to make it a literal name) as the argument to load.

When a name is looked up, the dictionary stack is searched from the top
down, and the first instance of the key that is encountered is the one that is
used. That enables you to redefine a name that is already built into the
PostScript language, although you should do so with great care (see
Redefining Operators in Chapter 10 for further discussion of this topic).

HOW OPERATORS USE THE STACK

The operand stack is a global communication area for all PostScript
programs. All operators look for their operands on the stack and produce
results there, although they may also produce side effects such as marks
on the page, changes to the graphics state, or changes to the contents of
memory.

Let’s look at a very simple program to follow the use of the operand stack
(See Example 5.1).
Chapter 5: UNDERSTANDING THE STACK 53

Petitioner Apple Inc. - Exhibit 1040, p. 53

Example 5.1: Simple Use of the Operand Stack

/Times-Roman 12 selectfont
/Xlocation 100 def
/Ylocation 200 def
Xlocation Ylocation moveto
(text sample) show

This code segment looks like a definition of two variables, Xlocation and
Ylocation, which are then used as the coordinates for the moveto
operator. From the point of view of stack manipulation, the def operator
simply takes two objects from the stack and puts them in the current
dictionary, and the subsequent name lookup of, say, Xlocation, retrieves
the object associated with that key from the current dictionary. As shown
in Figure 5.2, by the time you get to moveto, there are no variables or
anything else left; there are just two numbers on the operand stack, which
is what is required by the moveto operator. So in effect, the numbers 100
and 200 start out on the operand stack, are stored into a dictionary,
retrieved from that dictionary back onto the operand stack, and used by
the moveto instruction. A variable is a name used to reference data.

TIP When you define a variable in your PostScript program, you are actually
taking something off the operand stack and putting it into a dictionary. In
order to use the variable, you must always recall it from the dictionary
back onto the operand stack. Be aware that using “variables” is always
somewhat slower than using the operand stack directly.

To understand how the operand stack works, it is worthwhile to step
through a simple program, executing it in your head. It is important
enough that you might spend some real time at this, until you are
extremely comfortable talking through a program, understanding exactly
what happens to it as it is being executed.
54 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 54

Figure 5.2: Tracing the Execution of Example 5.1

All PostScript operators expect their operands in a particular, fixed order.
For example, the put operator requires the following operands:

compositeobject index value put

 /Xlocation 100 def

 /Ylocation 200 def

 Xlocation Ylocation moveto

 (text sample) show

/Xlocation /Xlocation

100

/Ylocation /Ylocation

200

100 100

200

(text sample)

represents the operand stack

lines from the
 program
Chapter 5: UNDERSTANDING THE STACK 55

Petitioner Apple Inc. - Exhibit 1040, p. 55

If you mix up the index and the value, you will very likely get an error,
although not always, if the values are still within range. Remember that
the PostScript operators themselves don’t know what you have in mind.
They are flexible, and will allow you to do things that you may not have
intended. It is very easy to lose track of what is on the operand stack, or to
supply incorrect operands to some operator, leading to bugs in your
program that are sometimes difficult to locate.

GROUPING AND VISUAL CHUNKING

One of the best ways to learn to read and write PostScript programs is to
be able to “chunk” together sequences of instructions into a block that has
a well-understood input and output. In many programming languages,
you can usually read a single line of the source code and make sense of it.
In fact, usually one line of the program represents a single statement in
that language, which may be an assignment statement or a procedure call.
But in the PostScript language, the statements can get fairly complex, and
each operator and its arguments represents one phrase of the statement.
The programs that are the most difficult to read are those that use one
operator to manufacture the arguments for the next operator.

Let’s look quickly at two examples that illustrate the concept of one
operator leaving behind results that become arguments for the subsequent
operation. The first case (Example 5.2) shows a series of code samples of
gradually increasing complexity, culminating in some that may look a
little bit confusing at first glance. Take a moment to mentally execute the
program to see what it does.

Example 5.2: Each Operator Uses the Operand Stack

% currentgray leaves result for setgray
currentgray 1 exch sub setgray

% save leaves a value for restore (“3 exch” is just there to confuse you)
save 3 exch restore

% search leaves three strings and a boolean
(ABCD) (B) search { = pop = flush }{ = flush } ifelse
56 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 56

Example 5.3 is an extremely familiar program fragment that is actually
somewhat tricky in its operation. The findfont operator returns a
dictionary that is used by the scalefont operator, and if you ever mix up
the order of these operators, you might never even know that this object
was there, since it no sooner is produced than it is consumed again. The
(Testing) exch part of this example demonstrates that there really is a font
dictionary on the operand stack, and if you put something else on top of it
and use exch to flip the two, scalefont will still have the right information
on the stack to perform its task, but the string will now be on the bottom
of the stack, ready to be used by show at the end of the example.

Example 5.3: The findfont Operator Returns a Dictionary

/Times-Roman findfont (Testing) exch 12 scalefont setfont show

The secret to “visual chunking” is to recognize an operator and its
operands in the middle of a program segment. You might have noticed
several candidates for visual chunking in the short program of Example
5.3. Even if you didn’t, with a little practice, you’ll learn to chunk
program fragments together visually, greatly improving your ability to
read PostScript code. There are really three kinds of things you can see:

1. A sequence of operators that, combined, yields a new object or
group of objects on the operand stack.

2. A sequence of operators that may rearrange or duplicate some
elements of the stack, but which do not inherently add anything
new to the stack.

3. Operations that consume or otherwise remove things from the
operand stack.

Visual chunking for the code of Example 5.3 is illustrated graphically in
Figure 5.3.

After a while, you start to see bigger chunks all at once, which makes it
much easier to follow the program.
Chapter 5: UNDERSTANDING THE STACK 57

Petitioner Apple Inc. - Exhibit 1040, p. 57

Figure 5.3: Visual Chunking for Example 5.3

THINKING BACKWARD AND SIDEWAYS

A stack-based language such as PostScript makes you think differently
than most programming languages. It seems, at first, as though you have
to think backwards, since all the operators come after their operands.
However, if you think of the entire expression at once, it is only slightly
different than thinking in prefix or infix notation (see Example 5.4
through Example 5.6).

Example 5.4: Operator Prefix Notation in C

/* In a function call, the operands come in parentheses after the function name */
value = currentpoint(Y);
value = sqrt(X);

Example 5.5: Operator Infix Notation in C

/* Arithmetic operators typically come between their operands */
value = value - 12;
if (value <= 72) showpage();

/Times-Roman findfont (Testing) exch 12 scalefont setfont show

/Times-Roman findfont (Testing) exch12 scalefont setfont show

(Testing) /Times-Roman findfont 12 scalefont setfont show

(Testing) /Times-Roman findfont 12 scalefont setfont show

(Testing) /Times-Roman findfont 12 scalefont setfont show

exch

operators boxed operations produce new objects

bold operations rearrange their operands

empty boxes indicate values removed from stack
bold-italic operations consume their operandssetfont
58 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 58

Example 5.6: Postfix Notation in PostScript

% In PostScript, the operators always come after the operands:
currentpoint exch pop 72 lt { showpage } if

Since the PostScript language allows you to write programs in a very
open format, the emphasis on backward thinking is even less, and
sideways thinking becomes more important, such as in Example 5.7. The
language would feel much more stack-oriented if you were forced to write
only one token on each line, more like assembly language. That is, in fact,
almost exactly what the interpreter sees, since it reads a single token and
acts on it before reading the next token.

Example 5.7: Programming One Token at a Time

/Times-Roman
findfont
(Testing)
exch
12
scalefont
setfont
show

In reality, the most common occurrence is a combination of horizontal
and vertical thinking. Consider the common case of a procedure that uses
local names for its arguments (Example 5.8). Its output is shown in Figure
5.4 for your reference.

Example 5.8: Procedure Arguments on the Stack

/graybox % gray linewidth Lx Ly Ux Uy graybox -
{ %def

/upperY exch def
/upperX exch def
/lowerY exch def
/lowerX exch def
/linewidth exch def
/gray exch def
lowerX lowerY moveto
lowerX upperY lineto
upperX upperY lineto
upperX lowerY lineto closepath
Chapter 5: UNDERSTANDING THE STACK 59

Petitioner Apple Inc. - Exhibit 1040, p. 59

gsave
gsave gray setgray fill grestore
linewidth setlinewidth stroke

grestore
} bind def
0.5 2 100 200 500 400 graybox

Figure 5.4: Output of Example 5.8

Since stacks are last-in, first-out data structures, the last object on a line is
at the very top of the operand stack. In this example, this can be seen most
clearly by looking at the procedure call itself; that’s why the first line in
the procedure grabs the last argument on the line, since it is now on the
top of the operand stack (see Figure 5.5).

You can start to see the relationship in this example between the left-to-
right distribution of objects in the source program and the top-to-bottom
result on the operand stack. Notice the way the arguments to the
procedure line up with the exch def lines in the procedure definition itself.

TIP When reading a PostScript program, find the executable names and use
them as reference points. If the name is a procedure call, look to the left of
the name in the body of the program to follow along as you read down
through the procedure definition (as in Figure 5.5).

output page
60 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 60

Figure 5.5: Last Object In is the First Out

COMPOSITE OBJECTS

The values associated with composite objects do not exist on the operand
stack. There is an object on the stack that represents the composite object
data, and it behaves, for the most part, as though the whole object were on
the stack. The only time it is confusing is during copying and
manipulation of the internal structure of a composite object, when you
have to realize that you really have a pointer to the object, not a self-
contained object. For example, if you dup a string object and then change
one of the letters in the copied object, the original string changes, too,
since there really is only one string and you have only copied the pointer
to it, not the string itself.

Figure 5.6: Duplicating a Composite Object

0.5 2 100 200 500 400 graybox

400

500

200

100

2

0.5

/graybox { %def
/upperY exch def
/upperX exch def
/lowerY exch def
/lowerX exch def
/linewidth exch def
/gray exch def
% ...

} bind def

(PostScript) dup % code to be executed

PostScript
string object

string object

length: 10

length: 10

somewhere in memory
Chapter 5: UNDERSTANDING THE STACK 61

Petitioner Apple Inc. - Exhibit 1040, p. 61

The illustration in Figure 5.6 gives you an idea of what happens when you
duplicate a composite object like a string. All stack manipulations to
composite objects operate on the single object, not on the entire body of
the composite data. In this example there are two string pointers on the
operand stack that have the same value. If one of these is changed, they
are both changed, as can be seen in Figure 5.6.

Figure 5.7: Changing a Composite Object

THE OTHER STACKS

There are three other stacks used by the interpreter during the execution
of your program in addition to the operand stack, which you have been
studying: the dictionary stack, which helps with name lookup and in
making definitions; the execution stack, which holds partially executed
procedure bodies, file objects, and other executable objects; and the
graphics state stack, which keeps track of your gsave and grestore
operations.

These stacks will be described briefly so that you’ll know about them. For
more detailed information, refer to the books PostScript Language
Reference Manual and PostScript Language Program Design, both by
Adobe Systems, available from Addison-Wesley Publishing Company.

(PostScript) dup
dup 0 (Pre-) putinterval

string object

string object

length: 10

length: 10

somewhere in memory
Pre-Script
62 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 62

The Dictionary Stack

The dictionary stack controls name lookup and dictates where an entry is
made when you use the def operator. You can only place dictionary
objects onto this stack, and only with the begin operator. You must use
the end operator to remove entries from the dictionary stack. There is also
a discussion of these operations in the section entitled Maintaining the
Dictionary Stack in Chapter 10.

The Execution Stack

The execution stack is used only internally by the interpreter, to keep
track of your program’s execution. It contains any portion of the program
that has not yet been executed, including the input file stream, any
partially-executed procedure bodies, and loops. There are very few ways
to take advantage of the execution stack in a user program, but it can help
in complicated debugging situations.

The Graphics State Stack

The graphics state stack is used only by the gsave and grestore operators
to maintain the graphics state. The gsave operator effectively pushes the
current graphics state onto the graphics state stack, making it available
later for grestore. The stack-based nature of the graphics state stack
makes gsave and grestore nestable up to the limits of the graphics state
stack, which is typically about 20 levels or more.

In the Display PostScript extensions to the PostScript language, the notion
of a graphics state object has been introduced, which allows you to
capture the current graphics state into an object that can be treated like
any other object. There are companion operators like setgstate that will
take a graphics state object and set all the current graphics state
parameters according to its contents. This is much more flexible than the
graphics state stack, since instantaneous changes can be made to the
graphics state without having to push and pop the current state.

CONCLUDING THOUGHTS

This chapter provided you with a brief overview of data types and some
examples of how operators use the operand stack. The stack and its
Chapter 5: UNDERSTANDING THE STACK 63

Petitioner Apple Inc. - Exhibit 1040, p. 63

various uses have been presented in some depth, yet there is a lot to learn
about the stack, and you may not yet feel you fully understand it. The next
chapter sets forth still more wisdom about the operand stack, to help you
learn to trust and rely upon this important resource.

EXERCISES

1. What is left on the operand stack after the following code is executed?

/Times-Roman 24 selectfont
100 dup moveto
(Vocabulary) stringwidth 2 div neg rmoveto (Vocabulary) show

2. For each of the following code segments, determine what error, if
any, would arise (not all of the code segments raise errors):

a. (string one) (string2) copy

b. 12 /Times-Roman findfont scalefont setfont

c. % center some text
306 500 moveto /Times-Bold 14 selectfont
(Report Title) dup stringwidth 2 div 0 rmoveto
show

d. save
/Optima 12 selectfont 20 40 moveto
(Save me!) dup show

restore

3. Rewrite the following code using just stack operators, without storing
anything into a dictionary.
64 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 64

36 750 moveto /Times-Roman 24 selectfont
% works like “show”, leaving current point at proper location
/ushow % linethickness lineposition (words) ushow -
{ %def

LOCAL begin
/text exch def
/linepos exch def
/linethick exch def
gsave

0 linepos rmoveto
text stringwidth rlineto
linethick setlinewidth stroke

grestore
text show

end
} dup 0 4 dict put def
0.5 -4 (test underlined text) ushow
Chapter 5: UNDERSTANDING THE STACK 65

Petitioner Apple Inc. - Exhibit 1040, p. 65

66 Chapter 5: UNDERSTANDING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 66

Chapter 6

Trusting the Stack

Most beginning PostScript programmers don’t trust the operand stack. It
seems like just a vehicle for transporting data to their procedures, and the
sooner the data can be retrieved from the stack and put safely into a
variable, the happier the programmer is.

There is a vague truth to this feeling, but it has only to do with the
programmer, and not the PostScript language itself. It is a bit more
difficult to think like a stack-based interpreter, so you can get confused
about what is on the stack, how it got there, and what you should do with
it, and this confusion can lead to bugs and lost data. However, since you
cannot avoid the operand stack when writing PostScript programs, it is
best just to master it, rather than to mistrust it.
67

Petitioner Apple Inc. - Exhibit 1040, p. 67

SAFETY OF DATA ON THE STACK

In truth, the safest place for a piece of data is on the operand stack, with a
few small caveats.

• If your program has bugs, you may inadvertently remove
something from the operand stack that you needed, or leave
something extra that will cause some later operation to trip over
it. Sometimes these stack alignment programs persist for a long
time, unless you consistently test all the paths through your
program.

• Stack-based manipulations of more than a few operations or more
than a few operands can be tricky to read and maintain, leading to
the bugs just mentioned.

• If you transfer control temporarily to some other program, as you
might do with an embedded illustration, for example, you should
not be surprised if something you left on the operand stack is no
longer there.

In general, the cleanest, fastest and best programs are those that make
judicious use of the operand stack. As a rough rule of thumb, in designing
a PostScript program you should spend 65 percent of your time thinking
about the order of operands on the stack, whether or not you should divide
all of your coordinate numbers by 1,000 before sending them to the
interpreter, and whether you can get away without sending the X
coordinate every time you plot a vertical line. You should spend 20
percent of your time adjusting the procedures you have defined to match
the decisions you have made about operand order and use. (The remaining
15 percent is for debugging and getting distracted.)

Of course, these principles of careful use of the operand stack are derived
primarily from printer drivers, which are inherently batch programs. If
you are writing an interactive application in PostScript, or if you are
writing a utility program that is entirely self-contained, you may have
different goals—but the basic ideas still apply. The data must be on the
operand stack in order for any PostScript operator to use it, so you might
as well take advantage of that premise and try not to take things off the
stack and put them on too many times unnecessarily.
68 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 68

The name of this chapter is the key: trust the operand stack. You should
not simply follow a recipe that says always to use the stack or always to
use variable names. Use the operand stack wisely, use it when speed is
important, and use it because it is already there. Use it because you have
mastered it and have learned its strengths and weaknesses and because
you have to use it anyway.

Remember that the operand stack is used by every PostScript operator and
procedure as the way to pass data and operands. The more cleanly your
program supports this natural interface, the faster and more efficient it
will be.

WHERE ARE THE DATA GOING?

One of the important things to consider when you’re designing a
PostScript program is what you’re using the stack for at any given
moment. Are you passing parameters to a function? Is the information on
the stack raw data? Will the information be used once or many times? If
you only need the data once, it is best to arrange it in such a way that you
can use the data directly from the operand stack and never think about it
again.

A common approach to dealing with data on the operand stack is to store
the data under some name in a dictionary, rather than leaving the values
on the operand stack. This has a few advantages.

• The data can be recalled onto the stack many times.

• Debugging can be easier with named data.

• Storing the data helps to minimize nasty stack manipulations.

The first few times you try to read or write PostScript programs, it may be
difficult to understand what is going on in a statement like the one in
Example 6.1. What is exch doing exactly where you would expect to see
the value part of the definition?

As you know, the def operator requires its key and value in a particular
order on the stack. If the value—the object you want to store—got put on
the operand stack before you had a chance to put the key—the name under
which you store that value—on the stack, then you would have them in
the wrong order for def. In this case, you need to call exch to get them in
Chapter 6: TRUSTING THE STACK 69

Petitioner Apple Inc. - Exhibit 1040, p. 69

the right order. It gets just slightly more confusing when the expression is
buried inside a procedure somewhere. You can’t see the value at all in that
case, because it isn’t on the stack yet. It won’t be until you run the
program and some operation produces the value as it executes.

If you call a procedure with many pieces of data on the operand stack as
arguments, it can be a little bit tricky to get them stored into a dictionary.
The typical trick is to associate keys with them and to execute def. A
small amount of operand stack manipulation is required. Since the
operands are in stack order, they need to be taken from the stack in the
opposite order (see Example 6.1).

Example 6.1: Using exch def in a Procedure

/proc % A B C proc -
{ %def

/C exch def
/B exch def
/A exch def

} def

(a) (b) (c) proc

Remember that the code fragment

(a) /A exch def

is equivalent to

/A (a) def

(without the exch), which is why it works. (See also Thinking Backward
and Sideways in Chapter 5.)

Once you have collected the operands into the current dictionary, you
simply call them by name in order to use them. Each time you supply the
name in your program, it will be looked up in the current dictionary (or
dictionary stack) and the value will be placed on the operand stack again.
70 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 70

REARRANGING THE STACK

If you want to use the operand stack directly in your program, the chances
are you will need to perform some stack manipulation. It’s almost
unavoidable. There are a few operators that you will find indispensable
for stack manipulation. There are also some techniques worth learning to
help you keep bugs out of your stack exercises. Table 6.1 contains a
summary of the stack operators in the PostScript language for quick
reference. Don’t worry if you don’t understand how to use all the
operators in the table; it will become more clear as you read on.

Table 6.1: PostScript Stack Manipulation Operators

Arguments Operator Action
±| any1 ... anyn clear discard all elements

mark obj1 ... objn cleartomark discard everything through mark
A B C 3 copy B C A B C duplicate top three elements

±| any1 ... anyn count any1 ... anyn n count elements on stack
mark any_objects counttomark mark count elements down to mark

any
n

any dup any any duplicate top element
any1 any2 exch any2 any1 exchange top two elements
D E F G 2 index D E F G E duplicate second element from top

(where top is 0th element)
± mark mark push mark on stack

any pop ± discard top element
a b c d e f 3 -2 roll a b c f d e take top three elements and roll

negative two times

The most important operators for stack manipulation are dup, exch,
index, and roll. Of these four operators, dup and exch are fairly easy to
understand, since they apply only to the topmost item or items on the
stack, but index and roll can be a bit more confusing.

Using the dup and index Operators

Although the dup operator is very simple in its operation, knowing when
and how to use it effectively requires some skill in manipulating the
operand stack. The index operator has almost exactly the same function
as dup, except it will let you duplicate an object further down on the
operand stack (dup duplicates only the topmost object). There are two or
three places where these operators are used most commonly.
Chapter 6: TRUSTING THE STACK 71

Petitioner Apple Inc. - Exhibit 1040, p. 71

1. If you need to use a piece of data twice, use dup to make a
temporary copy of the data. The copy will be used by the first
operation, leaving the original data for the second operation.

2. When you are debugging, you can make a temporary copy of an
object (using dup) to print or write to a debugging file without
disturbing the execution of the program.

3. In a loop where you may need the same piece of data each time
around the loop, that data can be left on the operand stack and it
can be copied (with dup or index) each time before it is used
inside the loop. Just make sure to remove it from the stack when
you exit the loop. This technique can be seen in Example 6.2.

Example 6.2: Using index in a Loop Body

/Encoding 256 array def
Encoding % leave on operand stack throughout loop
0 1 255 { %for

1 index % dup the Encoding array object on stack
exch % correct order for “put”
/.notdef put

} bind for
pop % get rid of extra copy of Encoding

Using the roll Operator

The roll operator is one of the most useful stack operators, and one of the
most confusing. Its purpose is to rearrange several of the topmost
operands on the stack by rolling them. It takes two operands: one to
supply the total number of elements to participate in the roll operation
(this total is called the roll group in the following discussion) and the
other to indicate how many elements within that total should actually be
rolled (called the roll amount).

Let’s look at the anatomy of the roll operator (Figure 6.1).
72 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 72

Figure 6.1: Anatomy of the roll Operator

One helpful way to conceptualize the roll operator is to verbalize it. For
the example shown in Figure 6.1, one might say “Take the top four
elements on the stack and roll it negative one times.” The top four
elements are easy enough to understand, but what does it mean to roll
something “negative one times?” The sign of the number (negative or
positive) indicates the direction to roll, and the magnitude of the number
indicates the number of elements to be rolled. The easiest way to think of
the direction of the roll is like this:

• If the roll amount is negative, that means you take the elements
from the bottom of the roll group and bring them to the top.

• If the roll amount is positive, you take the elements from the top
of the stack and roll them to the bottom of the roll group.

Figure 6.2 and Figure 6.3 show the effects of rolling with a positive and a
negative roll amount.

CONDITIONALS AND LOOPS

One of the most difficult things to do in PostScript programming is to
make sure you don’t inadvertently leave something on the stack or
consume something from the stack that you weren’t supposed to. Keeping
track is easy enough when there is only a single path through the code, but
if there are lots of ifelse statements and loop constructs, it gets more
difficult to trace through all the possibilities to make sure you’ve not
forgotten anything.

One of the most common instances of this problem is caused by operators
that return different numbers of arguments depending on whether they
succeed or fail. Example 6.3 shows a conditional that accidentally leaves

/A /B /C /D /E /F /G
4 -1 roll

miscellaneous data already
on the stack

roll amount

roll group
Chapter 6: TRUSTING THE STACK 73

Petitioner Apple Inc. - Exhibit 1040, p. 73

a dictionary behind on the operand stack when the where operator
succeeds (returns true), but works fine when the operator returns false.

Figure 6.2: Positive Rolling

Figure 6.3: Negative Rolling

/A /B /C /D /E /F /G 6 2 roll

roll group of 6

roll amount 2
roll direction “to bottom of roll group”

/A /B /C /D /E /F /G

6 2 roll

/A /F /G /B /C /D /E

result of 6 2 roll

/A /B /C /D /E /F /G 6 -2 roll

roll group of 6

roll amount -2
roll direction “to top of roll group”

/A /B /C /D /E /F /G

6 -2 roll

/A /D /E /F /G /B /C

result of 6 -2 roll
74 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 74

Example 6.3: Accidentally Leaving Dictionary on Stack

/selectfont where not { %if
/selectfont { %def

exch findfont exch scalefont
setfont

} def
} if

Unfortunately, the where operator returns the dictionary in which the key
is found in the event that it does find the key, but returns nothing other
than the boolean if it does not find the key. Example 6.3 shows a simple
fix to correct this problem. The if statement is changed to ifelse, and the
extra dictionary is popped from the stack if the where operator returns
true.

Example 6.4: Correctly Maintaining Dictionary Stack

/selectfont where not { %if
/selectfont { %def

exch findfont exch scalefont
setfont

} def
}{ %else

pop % throw away dictionary returned by “where”
} ifelse

Table 6.2 provides a list of operators that can cause you some trouble by
returning sometimes unexpected results on the operand stack. If you get a
typecheck error that you have trouble finding, this might be the cause.

Table 6.2: Operators with Unexpected Stack Results

Operator Results Returned

anchorsearch different results on success and failure

for unexpected loop index

forall different results with different data types

scalefont returns scaled dictionary onto stack

search different results on success and failure

stringwidth unexpected extra y value

where different results on success and failure
Chapter 6: TRUSTING THE STACK 75

Petitioner Apple Inc. - Exhibit 1040, p. 75

RECURSION AND LOCAL VARIABLES

If you create a procedure that calls itself recursively, you have to be
careful about the names you use. Recursion is inherently stack-based. To
make recursion work correctly in PostScript, you need either to use the
dictionary stack or the operand stack to store intermediate results until
your recursion is unwound back to the original invocation level.

Let’s look at a recursive function that has an integer passed to it as an
argument, and that will ultimately return an integer as its result (Example
6.5). If the argument is even, the function calls itself recursively and adds
one to the argument. If the argument is odd, the function returns. The
result of this function is always an odd number.

Example 6.5: Recursion Using the Dictionary Stack

/recurse_proc % int recurse_proc int
{ %def

save
2 dict begin

/save_obj exch def
/arg exch def
arg 2 div truncate
2 mul cvi
arg eq { %ifelse

% even number
arg 1 add recurse_proc

}{ %else
arg

} ifelse
save_obj % leave on stack

end
restore % to save_obj on stack

} bind def
2 recurse_proc

If you want to store the function’s argument in a dictionary, you have to
create a new dictionary and push it onto the dictionary stack each time the
function is called, to maintain the name local to that instance of the
function. In this example, the memory allocated by the dictionary is
reclaimed by save and restore, putting each save object into the recursion
dictionary until it is needed. If the function is called recursively, more
76 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 76

than one save object may be generated, but each will ultimately be
restored as the recursive calls return.

In Example 6.6 is the same procedure as the one in Example 6.5, rewritten
to use the operand stack instead of the dictionary stack. This looks much
simpler and better than using the dictionary stack, but if your recursive
procedure requires more than a couple of operands, you may have a
difficult time writing and understanding it if you use only the operand
stack for your recursion. One additional advantage to this method is that it
does not require memory allocation (for the local dictionary) or use of
save and restore, and there are fewer instructions executed overall.

Example 6.6: Recursion Using the Operand Stack

/recurse_proc % int recurse_proc int
{ %def

dup 2 div truncate
2 mul cvi
1 index eq { %ifelse

% even number
1 add recurse_proc

} if
} bind def

2 recurse_proc

There are several ways to accomplish recursion, as you have seen. None
of them is perfect, due partly to the lack of true local variables in the
PostScript language. It is easy enough to implement recursion, though,
and you need only exercise a reasonable amount of care to keep out of
trouble and to avoid execstackoverflow, dictstackoverflow, or
stackoverflow errors.

CONCLUDING THOUGHTS

The operand stack is an integral part of the PostScript language, and you
cannot avoid using it. Once you start to understand it and to trust it, you
will be able to write programs that make very effective use of the stack. A
stack-based language seems to make you think backward and upside-
down, but in fact it only makes you think in chunks, where each chunk is
the result of one operation. Every operator is grouped with its operands,
Chapter 6: TRUSTING THE STACK 77

Petitioner Apple Inc. - Exhibit 1040, p. 77

and the program is almost read from the middle outward, rather than from
top to bottom or from bottom to top.

This chapter touched upon the use of conditionals and loops; the next two
chapters address these in much greater detail.

EXERCISES

1. What is the result of the following short piece of PostScript code?

 0 0 10 100 { add } for

2. What are the contents of the operand stack after executing the follow-
ing program segment?

clear
/A /B /C /D /E /a /b /c /d /e
2 copy 6 index 6 index 12 -4 roll exch 5 3 roll

3. Write a procedure called reversestack that will reverse the contents of
the operand stack (the topmost element becomes the bottom element).

4. Write a procedure called standardfonts that finds all fonts defined in
FontDirectory that have a standard encoding. You can assume the
presence of the built-in name StandardEncoding and use it to com-
pare to the Encoding in each font. This procedure should not define
any variables. Leave the names of the fonts on the operand stack.
78 Chapter 6: TRUSTING THE STACK

Petitioner Apple Inc. - Exhibit 1040, p. 78

Chapter 7

Building Conditional Statements

A conditional is what most people call an if statement. It provides a
mechanism for executing one piece of code or another based on a
condition that is evaluated while the program is running. In the PostScript
language, there are two operators for building conditional statements: if
and ifelse. The only difference between them is that the if statement has
only one clause and the ifelse statement has two. There is no built-in case
statement in the PostScript language, but in this chapter we will discuss
how to fabricate one.

Conditionals are the most fundamental and most useful construction in
any programming language. A conditional belongs to a family of notions
known as control structures, which are program mechanisms for letting
you execute different parts of a program discontinuously, rather than
having the whole program be one long piece of string. Other control
structures are while loops, case statements, goto instructions, and
subroutines. The ability to branch to a different part of your program
when certain conditions are met is absolutely crucial to any moderately
79

Petitioner Apple Inc. - Exhibit 1040, p. 79

complex program. You should learn inside and out how if and ifelse work
in the PostScript language.

SIMPLE CONDITIONALS

The simplest way to build a conditional statement in your program is to
use the template technique, as in Example 7.1.

Example 7.1: Constructing a Conditional

% the conditional expression comes first
myvariable 3 gt { %ifelse

}{ %else

} ifelse

This creates an empty conditional statement with the conditional
expression in place. The if and else clauses can then be filled in after the
template is in place as shown in Example 7.2. (For more information,
refer back to Setting up Templates in Chapter 3.)

Example 7.2: Filling in the Conditional Template

/myvariable 0 def
myvariable 3 gt { %ifelse

(my variable got to 3; resetting to 0) == flush
/myvariable 0 store

}{ %else
/myvariable myvariable 1 add store
(my variable is now) print
myvariable == flush

} ifelse

A standard way of thinking about a conditional statement is to state the
expression out loud, and to imagine first the true clause, then the false
clause. That is the way the ifelse statement is laid out in the PostScript
language. You have to remember that the ifelse operator itself goes at the
end of the construction (as in the examples given). But you can still think
of the conditional in much the same way you think in any other
programming language (Example 7.3).
80 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 80

Example 7.3: Thinking through a Conditional

% if the variable is greater than three,
myvariable 3 gt { %ifelse

% then set it back to 0,
/myvariable 0 def

}{ %else
%otherwise, add one to it and tell me its current value:
/myvariable myvariable 1 add store
(my variable is now) print
myvariable == flush

} ifelse

As long as you think about your algorithm as a straightforward sequence
of steps and can figure out how to write the expression and each of the
clauses, the ifelse statement itself should be easy to master. You can lay it
out in a template in seconds. Then you are left with the task of the
carefully implementing the algorithm, not the details of the conditional
statement.

The major advantage to the indentation style and position of the { } braces
seen in these examples is that program lines can be easily added to or
deleted from the clauses of the ifelse statement without disrupting the
syntactic balance of the braces. This becomes especially important when
braces are nested several deep.

SETTING UP THE CONDITION

All conditional statements depend on something being true or false. There
are many PostScript operators that return a boolean value (remember, this
just means that it can only be true or false). The purpose of this boolean
returned on the operand stack is so that you can use it with an ifelse
statement. The simplest of these is the eq operator (see Example 7.4).

Example 7.4: Setting Up the Conditional

dup type /stringtype eq { %ifelse
% topmost element on stack is a string

}{ %else
% it is not a string

} ifelse
Chapter 7: BUILDING CONDITIONAL STATEMENTS 81

Petitioner Apple Inc. - Exhibit 1040, p. 81

Remember that comparing an object to another object with eq pops both
objects from the stack before pushing the result of the comparison. If you
need the object again, you should either use dup to make a copy before
you compare, or give the object a name in a dictionary (see Declaring and
Using Variables in Chapter 3).

There are many other operators that return booleans. For example, the
readhexstring operator returns a boolean, even though most of the
examples of its use (with the image operator, especially) simply throw the
boolean away. For a more careful use of this boolean, see Example 7.5.

Example 7.5: Using a Conditional with readhexstring

currentfile 128 string readhexstring { %ifelse
% readhexstring filled up the buffer

}{ %else
% it encountered EOF or other problems

} ifelse

Table 7.1 shows the most useful PostScript operators that return booleans.
An ifelse or if statement can follow any of these operators. In fact, the
operators were designed to be followed by a conditional.

Table 7.1: PostScript Operators that Return Boolean Values

Arguments Operator Action
any1 any2 eq bool test equal to
any1 any2 ne bool test not equal to

obj1 obj2 ge bool test greater than or equal to
obj1 obj2 gt bool test greater than
obj1 obj2 le bool test less than or equal to
obj1 obj2 lt bool test less than

bool1 bool2 and bool3 logical and
bool1 not bool2 logical not

bool1 bool2 or bool3 logical inclusive or
bool1 bool2 xor bool3 logical exclusive or

± true true push boolean value true
± false false push boolean value false

dict key known bool test whether key is in dict
key where dict true find dict in which key is defined

 false
82 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 82

string seek anchorsearch post determine if seek is initial substring
match of string
true

or string or return string if not
false

string seek search post match pre search for seek in string
 true
or string false

string token post token true read a token from start of string
 false

any stopped bool execute and catch any call to stop
any xcheck bool test executable attribute

string rcheck bool test read access
string wcheck bool test write access

file_object read int true read one character from file
 false

file_object string readhexstring read string in hexadecimal from
 substring file_object into buffer string
 boolean

file_object string readline string bool read through newline
file_object token token true read PostScript token from file

 false
file_object status† boolean is file_object still valid?

NOTE: Operators marked by a dagger (†) are not available in all
interpreters; check before executing.

It is also useful to combine a few simple operations into powerful tests. In
Example 7.6 are some techniques for type checking and other tasks, in the
context of other simple procedures.

The program in Example 7.7 will open up a file from the disk and print (or
display) it one line at a time, starting a new page as necessary. There are
several interesting conditionals here, based on the current point and the
results of the readline operator.
Chapter 7: BUILDING CONDITIONAL STATEMENTS 83

Petitioner Apple Inc. - Exhibit 1040, p. 83

Example 7.6: Procedure with Typechecking

/typecheck_moveto { %def
% if either argument is not a number, use 0
dup type /realtype ne
1 index type /integertype ne or { %if

pop 0
} if
exch
dup type /realtype ne
1 index type /integertype ne or { %if

pop 0
} if
exch moveto

} bind def

Example 7.7: Conditionals at Work

% note: this program will only work on a UNIX workstation, since it explicitly
% opens the file /etc/passwd and uses the non-standard “selectfont” operator
/bottom 72 def
/lineshow % (string) lineshow -
{ %def

% works like show, but checks for bottom
% of page and also moves current point
% down one line after each call
currentpoint exch pop% just the Y coord
bottom lt { %if

showpage
72 750 moveto% top of new page

} if
gsave show grestore
0 -12 rmoveto % down one line

} bind def

%list the /etc/passwd file
/Times-Roman 10 selectfont
72 750 moveto
/datafile (/etc/passwd) (r) file def
/buffer 256 string def
84 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 84

{ %loop
datafile buffer readline { %ifelse

lineshow
}{ %else

fd closefile showpage exit
} ifelse

} bind loop

A very common source of program bugs is to have one else clause in a
conditional that leaves something on the operand stack (or uses too many
elements from it). If you change the conditional expression so that the
stack holds different elements, be careful to debug each of the individual
clauses fully. If the else clauses handle obscure possibilities or error
conditions, they may not be executed (and hence debugged) under normal
testing, but may fail under heavy use. Watch for this source of errors and
bugs, and try to develop a sound methodology that will help to eliminate
the cause of them.

TIP It is important to test both the true and false clauses of your conditional
statements, especially as you gradually change your code and evolve the
contents or the type of items on the stack before going into the condition-
al. You can “rig” this testing by redefining the ifelse operator to reverse
the sense of all your conditionals (see Example 7.8), just to give a dry run
through them, or you can test each one by hand.

Example 7.8: Redefining ifelse for Testing

% flip the sense of “ifelse” so you can test both sides of the operation
/orig_ifelse /ifelse load def
/ifelse % boolean { true_proc } { false_proc } ifelse
{

exch % execute procs in other order
orig_ifelse

} bind def

As you gain more experience with the language, you will become expert
in the use of the ifelse statement, which is a fundamental and useful
operator in any PostScript language program.
Chapter 7: BUILDING CONDITIONAL STATEMENTS 85

Petitioner Apple Inc. - Exhibit 1040, p. 85

CONDITIONALS ARE NOT MAGIC

A conditional statement is not magic. There is no operator in the
PostScript language that is different from the others. Even though you
will learn to think of the entire conditional as a single construction, it is
not. Only the execution of the if and ifelse operators make something into
a conditional. Otherwise, and until you execute one of those operators, the
rest of the code is just a couple of procedures and a boolean on the
operand stack.

Just to confuse you and to reinforce this point, let’s look at a simple
conditional rearranged in a perfectly legal, although somewhat unusual,
configuration. The first conditional (Example 7.9) is very straightforward.
The second program (Example 7.10) has the same result, but is
constructed very differently. The procedures for the true and false clauses
are defined like any other procedure, then brought up on the operand with
the load operator, ready for the final execution of ifelse. As an added
twist, a random string is put on the stack in between, and then moved out
of the way.

Example 7.9: Basic Conditional Statement

currentpoint exch pop 72 le { %ifelse
showpage 72 650 moveto

}{
0 -12 rmoveto

} ifelse

Example 7.10: The Same Conditional Built on the Fly

% set up procedures to generate a boolean and to act as the
% “true” and “false” procedure bodies for “ifelse”
/off_bottom_of_page % off_bottom_of_page bool
{ %def

currentpoint exch pop 72 le % boolean is on stack
} bind def
/off_bottom_proc { showpage 72 650 moveto } bind def
/regular_proc { 0 -12 rmoveto } bind def

% now invoke the conditional by loading the boolean and
% the two procedures onto the stack and rearranging them a
% little bit to show there is no magic:
86 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 86

off_bottom_of_page % boolean
/regular_proc load % “false” proc
(a random string)
/off_bottom_proc load % “true” proc
exch pop exch % get rid of random string
ifelse

Another interesting example that illustrates the fact that ifelse is just an
ordinary operator is Example 7.11, which redefines the ifelse operator to
get a little extra information while it is executing, for debugging purposes.

Example 7.11: Redefining ifelse for Debugging

% redefine “ifelse” to trace which clause is being executed:
/orig_ifelse /ifelse load def
/ifelse % bool proc1 proc2 ifelse
{ %def

2 index dup % look at the boolean
(condition:) print ==
{ %ifelse % show us which proc will execute

1 index == % show the “true” procedure
}{ %else

dup == % show the “false” procedure
} orig_ifelse
orig_ifelse % now execute “ifelse” normally

} bind def

NESTED CONDITIONALS AND ELSE CLAUSES

Fairly often, in a complicated program, you need to have conditionals that
have more conditionals on each of the two result clauses. When these nest
more than one level deep, it can become tricky to maintain them without
leaving things on the operand stack or introducing bugs of some sort.

The first issue is simply balancing the curly braces correctly, so that there
are no basic syntactic errors in the program. Using the template technique
for this is a good approach, and one that can be expanded as necessary
later (see Example 7.12).
Chapter 7: BUILDING CONDITIONAL STATEMENTS 87

Petitioner Apple Inc. - Exhibit 1040, p. 87

Example 7.12: Nested Conditionals

myfont /Optima eq { %ifelse
ptsize 12 eq { %ifelse
}{ %else

ptsize 100 gt { %ifelse
}{ % else
} ifelse

} ifelse
}{ % else
} ifelse

The second important thing to keep straight in a complicated nested
conditional statement is the contents of the operand stack. This is
particularly important if you use dup or keep data on the operand stack
that must survive into the middle of the conditional somewhere.
Otherwise, nested conditionals are fairly straightforward to use.

TIP If you use ifelse rather than if, make sure you supply both procedures, and
that you think carefully about what is on the operand stack for each of
them.

COMPOUND CONDITIONALS

Compound conditionals are found wherever there is a single condition but
many possible else clauses. In other languages, this might be handled by a
case statement, but—as you’ve already learned—there is no case operator
in the PostScript language.

First, let’s look at an example of a compound conditional implemented in
the most straightforward manner, as a series of else clauses. Remember
that PostScript is not a compiled language. Therefore, you should try to
put the most likely conditions first, since they will be tested in order.
Since there is no way to choose from a parallel set of procedure bodies,
the only way to implement a compound conditional with ifelse is to nest
the conditionals, adding a new test for each else clause. This can get very
tricky to maintain, since it may nest very deep to supply all of the required
clauses (see Example 7.13).
88 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 88

You can imagine how complicated that would get if you had twenty or
thirty different commands to look for. Example 7.14 uses a very slightly
different structure for the same conditional that makes it a little flatter and
easier to maintain.

Example 7.13: Compound Conditional with ifelse

% read a token from the input stream and look for a command
% like “PRINT”, “QUIT”, or “HELP”.

currentfile 256 string readline token { %ifelse
% a token is a command
dup /PRINT eq { %ifelse

do_print
}{ %else

dup /QUIT eq { %ifelse
do_quit

}{ %else
dup /HELP eq { %ifelse

do_help
}{ %else

do_unknown
} ifelse

} ifelse
} ifelse

}{ %else
(no more commands.) =
stop

} ifelse

Example 7.14: Compound Conditional with loop

currentfile 256 string readline token { %ifelse
% a token is a command
{ %dummy loop, always exited

dup /PRINT eq { do_print exit } if
dup /QUIT eq { do_quit exit } if
dup /HELP eq { do_help exit } if
do_unknown
exit

} loop
}{ %else

(no more commands.) = stop
} ifelse
Chapter 7: BUILDING CONDITIONAL STATEMENTS 89

Petitioner Apple Inc. - Exhibit 1040, p. 89

Example 7.15 presents one more way to set up a compound conditional,
one that uses the power and flexibility of the PostScript language,
particularly the name lookup and dictionary mechanisms. In this
implementation, the multiple cases are stored as procedures in a
dictionary (the current dictionary, for simplicity in this example), and the
command string is looked up in the current dictionary and executed. Note
that this requires only a single conditional (for the unknown case).

Example 7.15: Compound Conditional Using Name Lookup

/commands 4 dict def
commands begin
/PRINT { do_print } def
/QUIT { do_quit } def
/HELP { do_help } def
currentfile 256 string readline token { %ifelse

% a token is a command
dup where { %ifelse

exch get exec
}{ %else

do_unknown
} ifelse

}{ %else
(no more commands.) = stop
end % commands dictionary

} ifelse

As you can see, there are several approaches to setting up a compound
conditional. The language is very flexible, but it is a bit of trouble to do
without a case statement.

CONCLUDING THOUGHTS

The most important thing to remember about conditionals and the ifelse
operator is that the whole construction is interpreted each time it is
encountered. The condition (true or false) is computed each time, the two
procedure bodies are loaded onto the operand stack, and the ifelse
operator pushes one or the other of them onto the operand stack. There’s
nothing really magical about the way it works, and the procedure bodies it
uses are interchangeable with all other procedures in the PostScript
language.
90 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 90

The next chapter presents a look at looping constructs. Loops share many
properties with conditionals, since they require procedure bodies as
arguments. Some of the concepts learned in this chapter will also apply in
the next chapter.

EXERCISES

1. Design a case operator for the PostScript language, and design a pro-
cedure that will implement it. Think about the design trade-offs be-
tween ease of use (once your case operator exists) versus ease of
implementation for you. Supply some simple documentation (com-
ments in your program are good enough) explaining how to use your
new case operator.

2. The following procedure emulates the setcmykcolor language exten-
sion by using setrgbcolor and doing a simple conversion. Design a
conditional statement with the where operator that will define this
procedure only if the setcmykcolor operator does not already exist.

/setcmykcolor { %def
1 sub 4 1 roll
3 { %repeat

3 index add neg dup 0 lt {pop 0} if 3 1 roll
} repeat setrgbcolor pop

} bind def

3. The “standard” procedure used with the image operator uses the
readhexstring operator to get a line of data from the input file. The
trouble is, it ignores the boolean returned by readhexstring, which is
not really a good idea. Please rewrite this procedure body to check for
the end-of-file condition reported by the readhexstring operator.
(The second line of hex data is incomplete in this example, causing an
error in the execution of the program as it stands. Fill out the line of
data to see what the program is supposed to do.)

/picstr 16 string def
100 100 translate 100 900 scale
16 2 8 [16 0 0 16 0 0]
{ currentfile picstr readhexstring pop } image
00FF00FF00FF00FF00FF00FF00FF00FF
00FF00FF00FF00FF
Chapter 7: BUILDING CONDITIONAL STATEMENTS 91

Petitioner Apple Inc. - Exhibit 1040, p. 91

92 Chapter 7: BUILDING CONDITIONAL STATEMENTS

Petitioner Apple Inc. - Exhibit 1040, p. 92

Chapter 8

Using Looping Constructs

Loops are useful for repeating a sequence of steps in a quantized manner.
There are various conditions under which looping is appropriate. One of
the most common is to iterate over data structures of known size, such as
arrays. Another use is to repeat a set of commands more than once.

If you want to perform a repetitive task that uses some fixed parameters,
you generally think of loops in most programming languages. For
example, you could create a grid of lines or a spiral of text by setting up a
for loop and using the loop increment to set up the next line or the next
rotation of characters.

One fairly common use of loops is to generate “synthetic” graphics. The
data for a grid of lines or a spiral actually can be manufactured within the
loop rather than being supplied as a large body of individual x, y
coordinates and sequences of moveto and lineto instructions. However,
using one of the loop operators can be an extremely useful technique even
with real data that are not synthetically generated within the loop itself (as
93

Petitioner Apple Inc. - Exhibit 1040, p. 93

you’ll see later in this chapter). For example, a routine to draw a polygon
with hundreds of sides could benefit from being put into a loop.

LOOP BASICS

There are several different looping operators in the PostScript language
(see Table 8.1). Each of them has a particular purpose and a style of use
that is worth considering.

Table 8.1: Looping Operators

Arguments Operator Action
– exit – jump out of loop body immediately

pattern proc buffer filenameforall execute proc for each file that
matches pattern string

start index end proc for – execute proc as many times as
(end-start) / index dictates.

composite_obj proc forall – execute proc for each element of
composite_obj

proc loop – execute proc indefinitely
count proc repeat execute proc exactly count times

If you want to execute a sequence of instructions a precise number of
times, you should use either the repeat operator or the for operator. Use
repeat if you don’t need to use the loop index within the body of the loop
(as discussed in the next section). If you want to keep executing a loop
until some condition is met, you should use the loop operator, and use
exit to pop out of the loop when the condition is satisfied. If you want to
execute some instructions on each element of an array, a string, or a
dictionary, you can use the forall operator, which supplies each element
of a composite object to the loop as it is executing. This is useful for
searching through arrays and sometimes for processing each character in
a string, although it is a fairly labor-intensive operation compared to other
string operators.

To construct a simple program loop, first start with a template for the loop
body and make sure to supply the correct arguments for the looping
operator you have chosen. Example 8.1 shows a simple repeat loop that
draws an octagon; its result is displayed in Figure 8.1.
94 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 94

Example 8.1: Simple Loop to Draw an Octagon

4 setlinewidth
300 200 moveto
7 { %repeat

0 100 rlineto
45 rotate

} bind repeat
closepath stroke

Figure 8.1: Output of Example 8.1

USING THE LOOP INDEX

Looping operators are useful because they let a task be performed more
than once. They can be even more useful when you keep track of the loop
index and use it effectively.

starting point 300,200

output page
Chapter 8: USING LOOPING CONSTRUCTS 95

Petitioner Apple Inc. - Exhibit 1040, p. 95

Example 8.2: Ignoring Loop Index

gsave
250 250 translate
0 10 360 { %for

pop % do not use loop index this time
0 -50 moveto 200 0 lineto 0 50 lineto
10 rotate

} for
stroke

grestore

Example 8.2 sets up the loop index to give 10-degree increments around a
circle, but actually does not use the loop index explicitly within the loop.
The results are shown in Figure 8.2.

Figure 8.2:Output of Example 8.2

In Example 8.3 is a short program that uses the loop index to set the line
weight of a series of stroked lines and to control their spacing; its results
are shown in Figure 8.3.

output page
96 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 96

Example 8.3: Using Loop Index for Line Weight

00 100 translate
2 3 div setgray 0 0 612 250 rectfill
0 setgray
2 2 20 { %for

dup setlinewidth % use loop index as line weight
0 exch 12 mul moveto% and use for line spacing
612 0 rlineto
stroke % must stroke to use line weight

} for

Figure 8.3: Output of Example 8.3

When using a loop index, make sure you either pop the unwanted data off
the stack or use it within the loop body, or you will leave unwanted data
on the operand stack which may affect other portions of the program.

Several looping operators push data onto the stack each time around the
loop. In particular, the forall operator pushes each element of an array or
string onto the stack; it pushes both the key and value for each dictionary
entry onto the stack. Table 8.2 provides a summary of each looping
operator and the data that are pushed onto the stack for each iteration of
the loop.

output page
Chapter 8: USING LOOPING CONSTRUCTS 97

Petitioner Apple Inc. - Exhibit 1040, p. 97

TIP Don’t forget that the for, forall, kshow, and filenameforall looping oper-
ators push values onto the operand stack that must either be used or
popped from the stack.

Table 8.2: Arguments Supplied by Looping Operators

Operator Data Pushed onto Operand Stack for Each Iteration
for loop index (integer)
forall for strings: integer ASCII code for each byte of string

for arrays: each element of the array, of arbitrary type
for dictionaries: both the key and the value for each entry

kshow character code for character just printed and for the
character about to be printed

loop none
repeat none
filenameforall a string containing each file name that matches the pattern

Example 8.4 shows both a forall loop and a filenameforall loop being
used to find out all the font names defined in FontDirectory and on the
disk of a printer. Notice the way that the data are used inside the loop
bodies.

Example 8.4: Finding Font Names with Looping Operators

/scratch 128 string def
FontDirectory { %forall

pop % get rid of “value” part of dictionary entry
scratch cvs print (\n) print

} bind forall
(fonts/*) { %filenameforall

dup length 6 sub 6 exch getinterval print (\n) print
} scratch filenameforall

As you can see, there are a lot of ways to use the looping operators
effectively, especially if you take advantage of the operators that push
data onto the operand stack during execution of the loop body.
98 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 98

LOOPS ARE PROCEDURE BODIES

Since the proc passed to all of the looping operators is just an ordinary
procedure body, you can perform any of the standard operations on it.
One often-overlooked but very important detail is to apply bind to the
procedure body before executing the loop instruction, so that the loop will
execute more quickly (see Example 8.5). Be careful, however, not to
apply bind to a loop that is inside a procedure body that has also been
bound; it doesn’t accomplish anything further (since bind applies to all
nested procedure bodies recursively) and may degrade performance
slightly if bind is executed each time the procedure is called.

Example 8.5: Using bind on Loop Bodies

0 1 1000 { %for
0 moveto 0 400 rlineto stroke

} bind for

You can also take advantage of the fact that a loop body is an array (all
procedures are arrays) and actually put objects directly into it to save
time. Example 8.6 shows this technique applied to creating an Encoding
array for a font, where you have to supply the array object itself 255 times
during the execution of the loop. This saves the interpreter name lookup
overhead each time around the loop.

Example 8.6: Putting Objects into Loop Bodies

/encoding currentfont /Encoding get def
0 1 255 { %for

ENCODING_HERE exch /.notdef put
} dup 0 encoding put bind for

This example is a bit tricky, but it has a simple underlying concept. The
trick is to put a dummy object into the procedure body (in this case, the
executable name ENCODING_HERE, but it could be any object), then,
before the procedure is ever executed, to replace that dummy object with
the actual encoding array itself, instead of a name. The advantage to this
approach is that you don’t have to look up the name all 256 times around
the loop; the array object itself is in the procedure body, which saves you
256 name lookups and a lot of time.
Chapter 8: USING LOOPING CONSTRUCTS 99

Petitioner Apple Inc. - Exhibit 1040, p. 99

Even though image, colorimage and imagemask are not technically
considered looping operators, they may in fact be executed many, many
times. This makes them qualify as looping operators to a large degree, and
the techniques just discussed also apply to these operators.

In the most standard situation where you supply the image data in-line in
your input file and read from currentfile, the size of the buffer for
readhexstring is typically only as big as one scan line of the image. This
means that the data acquisition procedure for image or imagemask will
be executed once for each scan line in the image, which may result in the
procedure’s being executed hundreds of times—that certainly qualifies it
as a looping operation.

The technique just illustrated in Example 8.5 of using bind on the
procedure body is a very good idea for images, and the idea presented in
Example 8.6 can also be applied to both currentfile and the string buffer
for readhexstring, as shown in Example 8.7. However, a slightly
different approach will be used to construct the image procedure (other
than using put), to make it a little bit more readable.

Example 8.7: Optimizing the Image Procedure

/currfile currentfile def %get the current file object
/buffer 128 string def % image buffer
128 400 1 [1 0 0 -1 0 400]
[currentfile buffer /readhexstring cvx /pop cvx] cvx bind
image
% hex data goes here

The procedure in this call to image now contains four objects, none of
which are executable names, thanks to bind and the way we constructed
the procedure. (The procedure contains a file object, a string object, and
two operator objects.)

If you’re having difficulty following the way the procedure body was
constructed in Example 8.7, you might skip ahead and read Constructing
an Array in Chapter 11.
100 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 100

LOOPS OF INSTRUCTIONS

One very powerful use of looping operators is to perform repeated
instructions, such as a series of lineto or curveto operators. This can be
particularly effective in a printer driver or any situation in which you
might want to avoid repeating the names of the operators many times.
Example 8.8 has a large number of repetitive instructions; the program
sets several lines of text sequentially down the page. It can be written to
minimize the number of individual instructions issued, as seen in
Example 8.9.

Example 8.8: A Program with Repeated Instructions

72 750 moveto
/Times-Roman findfont 10 scalefont setfont
gsave
(Sometimes you have to construct a loop that may run for an indeterminate) show
grestore
0 -12 rmoveto
gsave
(length of time. For example, you might loop until an EOF condition is) show
grestore
0 -12 rmoveto
gsave
(met, or until no more spaces are found in a string, etc.) show
grestore
0 -12 rmoveto

Example 8.9: Using repeat for Instructions

72 750 moveto
/Times-Roman findfont 10 scalefont setfont
(met, or until no more spaces are found in a string, etc.)
(length of time. For example, you might loop until an EOF condition is)
(Sometimes you have to construct a loop that may run for an indeterminate)
3 { %repeat

gsave show grestore 0 -12 rmoveto
} bind repeat
Chapter 8: USING LOOPING CONSTRUCTS 101

Petitioner Apple Inc. - Exhibit 1040, p. 101

Figure 8.4: Output of Example 8.9

EXITING LOOPS PREMATURELY

Sometimes you have to construct a loop that may run for an indeterminate
amount of time. For example, you might loop until an end-of-file
condition is met, or until no more spaces are found in a string. The best
way to construct a loop of this type is to use the loop and exit operators.
The exit operator will simply cause the innermost looping context to be
broken, allowing exit from the loop at any point.

Here is the basic loop construct:

{ %loop
exit_condition { exit } if

} loop

The exit_condition is some test that decides whether or not it is time to
exit the loop. For example, in the program in Example 8.10, the exit
condition is provided by the readline operator, which returns false if the
end of the file is reached, true otherwise.

Sometimes you have to construct a loop that may run for an indeterminate
length of time. For example, you might loop until an EOF condition is
met, or until no more spaces are found in a string, etc.

output page
102 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 102

Example 8.10: Exiting a Loop

/fd (/user/glenn/Book/current/pictures/test.eps) (r) file def
/buff 128 string def
/Helvetica 10 selectfont
20 130 moveto
{ %loop

fd buff readline { %else
gsave show grestore
0 -12 rmoveto

} { fd closefile exit } ifelse
} bind loop

CONCLUDING THOUGHTS

In this chapter you have seen many different situations for loops, some of
which use data, some of which use instructions, and some of which are
simply executed until it is determined that they are done. It is up to you to
decide which of the looping operators is best suited for your needs, and to
use it appropriately. In the next chapter you will see how to construct and
use procedures in your programs.

EXERCISES

1. Rewrite the following C program segment in PostScript.

main ()
{

long factorial;
int index;
factorial = 1;
for (index = 10; index > 0; index--)
{

factorial = factorial * index;
}
printf (“10 factorial is %d\n”, factorial);

}

2. Rewrite the following PostScript code fragment using a repeat loop.
Don’t worry about manufacturing the data inside the loop, just use the
data directly from the operand stack.
Chapter 8: USING LOOPING CONSTRUCTS 103

Petitioner Apple Inc. - Exhibit 1040, p. 103

0 0 moveto
100 200 lineto
200 200 lineto
300 400 lineto
400 400 lineto
500 600 lineto
600 600 lineto
closepath fill

3. Write a loop that takes a single string on the operand stack, counts the
number of spaces in the string, and returns the string and an integer
count of spaces back on the operand stack when finished. For this ex-
ercise, use the search, loop, and exit operators.

4. Rewrite the above exercise using the forall operator instead of search
and loop.

5. Find the bugs in the following program (there are at least two or three
of them). The program should print a grid of 20 lines by 10 lines.

% draw a grid of 20 x 10 lines
save

0.1 setlinewidth
20 20 translate
0 10 200 { %for

dup 0 moveto 0 100 rlineto
} for
stroke
0 10 100 { %for

0 1 index moveto 200 0 rlineto
} for
stroke

restore
104 Chapter 8: USING LOOPING CONSTRUCTS

Petitioner Apple Inc. - Exhibit 1040, p. 104

Chapter 9

Procedures

In most programming languages, procedures are used to group together a
set of instructions into a package that can be given a name and invoked by
that name. The PostScript language provides a similar mechanism,
although it is not as formal as many other languages. In particular, there
are no local variables or specific parameter-passing conventions. It is up
to you to decide what resources the procedure will use and how it will
interact with its environment.

A PostScript procedure does not have to take its “traditional” form as a
parcel of instructions to be called as a sort of subroutine. In fact,
procedure bodies are used in many places without having names at all.
For example, an ifelse statement requires two procedure bodies among its
arguments, although only one of them is used each time ifelse is invoked.

In traditional procedural programming languages, a distinction is made
between a procedure and a function. A function is simply a set of
instructions that returns a value or values to the caller. For example, if you
wanted to compute the average of three numbers, you might use a
105

Petitioner Apple Inc. - Exhibit 1040, p. 105

function that had three operands passed to it and returned a real number
(their average). In most traditional procedural programming languages,
you need to specify what kind of value will be returned by the function
while you are setting up the function itself.

PostScript procedures can act as functions quite simply by leaving
something behind on the operand stack when they exit. In fact, since there
is no compile-time checking of your program, a procedure might return a
value inadvertently. Furthermore, a PostScript procedure acting as a
function can return a value of any type, which is both good and bad.
Although there are explicit data types in the PostScript language, the lack
of a compile cycle forces run-time type checking, which, although it does
a good job of checking types, often does so a bit too late.

WHAT EXACTLY IS A PROCEDURE?

In formal PostScript language terms, a procedure body is just an
executable array, which is an array of PostScript objects that has its
executable flag set. There are no further requirements of a procedure from
the language’s point of view. In fact, the procedure does not even have to
be composed of legal language elements for you to declare it. Since
PostScript is an interpreted language, it is not until you try to run the
program that the procedure will be interpreted (and that you will find out
if it is written reasonably).

There are several places where procedure bodies are often found (or are
required).

• Procedure bodies are used with operators like loop, for, forall,
and filenameforall.

• Procedure bodies are used in ifelse statements to provide the true
and false clauses of the conditional.

• Some operators—including image, kshow, forall, settransfer,
and others related to these—require procedure bodies as
operands.

• User-defined procedures can behave just like built-in operators,
and are a useful way to extend the language.

Let’s look at a typical procedure definition and its use (Example 9.1).
106 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 106

Example 9.1: Typical Procedure Definition

/S { moveto show } def
(some text) 100 200 S

The procedure’s name is S, and it takes three bits of data as parameters:
two real numbers (the x and y locations for moveto) and a string.

There is no mention of parameters or data required on the operand stack
in the typical procedure definition. It’s okay to define procedures that are
dependent on the operand stack, because you have to use them, and only
you must keep the contents of the stack straight. The language does not
enforce it, other than by generating an error if something doesn’t work.

In order to gain a real understanding of this common procedure definition
and invocation, let’s rearrange it in some interesting ways, all of which
are legal and will work just fine. Example 9.2 sets forth some alternative
ways to define the S procedure of Example 9.1.

Example 9.2: Alternative Ways to Define a Procedure

(S) cvn { moveto show } def

{ moveto show } /S exch def

currentdict /S { moveto show } put

/S [(moveto) cvn (show) cvn] cvx def

All of the definitions shown in Example 9.2 have exactly the same effect.
They are not different procedure definitions, they are the same procedure
definition, accomplished in various ways. This illustrates that procedures
are not magic; they are simply a collection of instructions in an executable
array.

You can associate a procedure body with a name if you like, by creating a
definition in a dictionary. This can be done in various ways (including use
of put as shown as the third alternative in Example 9.2), but the simplest
of them is the method that just uses the def operator. The def operator is
very simplistic. All it does is take two objects and make an association
between them in the current dictionary. It does not help you write correct
Chapter 9: PROCEDURES 107

Petitioner Apple Inc. - Exhibit 1040, p. 107

programs. In particular, you don’t have to use a name as the key, and if
you get things backwards, it won’t complain.

{ moveto show } /S def

In this case, of course, if you tried to use the S procedure, it would tell you
it was undefined, because it has no dictionary entry with S as the key.
Now let’s look at the procedure call itself, which requires three values to
be on the operand stack.

(some text) 100 200 S

This can be looked at as a single procedure call and its arguments,
although it is better to keep in mind that the interpreter does not see it that
way. It sees simply a sequence of tokens to execute.

(some text)
100
200
S

Of course, the string (some text) and the numbers 100 and 200 are literal
objects, so they are simply pushed onto the operand stack. When the S is
encountered, looked up, and the procedure is executed, the correct
arguments just happen to be on the operand stack.

PARAMETER PASSING

The best way to pass specific information to a procedure is to place it on
the operand stack. There is, however, no procedure declaration to give
names to the parameters. In fact, no rule says you must use the
parameters. The cooperation between the definition of the procedure and
its invocation is entirely up to you. In general, though, a procedure should
consume all of its operands from the stack, unless it returns a value of
some kind.
108 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 108

Example 9.3: Procedure S of Example 9.1

/S { moveto show } def
(some text) 100 200 S

The procedure S in Example 9.3 has three parameters, a string body and
the x, y coordinates. These are supplied on the operand stack in the order
required. That is, since moveto must be executed before show, the
parameters used by moveto appear on the top of the stack. Note that this
requires them to be actually written after the string, so that they will be on
top (last in, first out). Let’s rearrange this example a little to see what is
going on (Example 9.4).

Example 9.4: Procedure S and Data Rearranged

(some text) 100 200 /S { moveto show } def S

This also is perfectly legal. The procedure is defined just before it is
invoked, with the operands delicately hanging on the operand stack. This
probably is not the way you would write a program like this, but it makes
it a little easier to imagine how the procedure evolved, and to see how the
operands are used. If you just remove the definition and the curly braces,
as in Example 9.5, the program would work the same way, but read
slightly differently.

Example 9.5: Code without the Procedure

(some text) 100 200 moveto show

This is a little unusual, because the data and instructions are not
interleaved in a comfortable and readable fashion, as in Example 9.6.

Example 9.6: Data in a More Familiar Arrangement

100 200 moveto (some text) show

In a procedure body, you don’t have the luxury of interleaving data and
instructions, so you need to rearrange slightly the way data are presented
to the procedure. You must pile all of the data up on the operand stack and
use it piece by piece from within the procedure. Or you can simulate local
Chapter 9: PROCEDURES 109

Petitioner Apple Inc. - Exhibit 1040, p. 109

variables, and interleave the data and instructions in a familiar and
readable way (see Example 9.7).

Example 9.7: Data Arrangement for Use by a Procedure

/S % Xloc Yloc (string) S -
{ %def

/text exch def% string is on top of stack
/Y exch def% Y and X reversed on stack
/X exch def

X Y moveto
text show

} def
100 200 (some text) S

To some extent, the program has gotten more complicated in favor of
readability. The last bit of the program, X Y moveto text show, is more
readable than it was before, in the sense that the data and instructions are
interleaved sensibly. However, this is at the expense of three pairs of exch
def instructions and three name lookups for X, Y, and text.

There is a trade-off, in readability and efficiency, between creating these
local names versus using data directly from the operand stack. If the data
from the stack are used several times within the procedure, or if they are
used in a very unusual order, significantly increased readability and a
more easily maintained program can be constructed using the exch def
approach. Otherwise the reduction in the number of operators executed
and the number of name lookups required results in significantly
improved performance.

TIP A good rule of thumb is that if the operators within a procedure use each
parameter just once or twice, it is better not to use local names for the pa-
rameters. Conversely, in a complicated procedure, it is usually better to
choose sensible names for the parameters to heighten readability and to
make the program more robust.
110 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 110

CONSTRUCTING GOOD PROCEDURES

Simplicity, readability, efficiency, and correctness are the most important
aspects of your PostScript procedure, although not necessarily in that
order. The overall size of a procedure body should be maintained as small
as possible, but it is not more efficient to break a big procedure up into
smaller ones to call by name from within the larger one, due to the
additional name lookup and overhead on the execution stack.

What to Name Your Procedure

Assuming that you will create a procedure to be used by the rest of your
program, you will typically give it a name and invoke it by that name. Of
course, as with any programming language, the name should reflect the
functionality of the procedure as much as possible. Select poor names for
your smaller procedures and you may in fact make the program much less
readable.

In choosing a name, it is important to consider just how the procedure will
be used. If the procedure will be used in the “script” of a document and be
invoked hundreds of times, its name should be short, to save space and
time in the execution of the program. However, if the procedure is called
only from other procedures that you have defined, you gain very little by
giving it a short name, since the name is represented by a name object of
fixed size once the procedure body has been constructed.

Let’s consider some examples. Can you guess what the procedure called p
does in Example 9.8?

Example 9.8: Disorganized and Inefficient Use of Procedures

/b { bind def } bind def /d { def } b
/x { exch } b
/m { moveto } b
/r { rlineto } b
/c { closepath } b
/f { fill } b
/p { %def

/#4 x d /#3 x d /#2 x d /#1 x d
#3 #4 m #1 0 r 0 #2 r #1 neg 0 r c f

} b
100 100 400 50 p
Chapter 9: PROCEDURES 111

Petitioner Apple Inc. - Exhibit 1040, p. 111

It is difficult to decipher all the short names for operators given in
Example 9.8, and the function of the program segment becomes less clear
as a result. Furthermore, the program is very inefficient, since each of the
short names actually invokes a procedure call (and therefore requires a
fair amount of overhead).

The procedure in Example 9.9 does the same thing as the one in Example
9.8 but it takes much less time, is more readable, and occupies less
memory.

Example 9.9: Efficient Procedure

/rectfill % Xloc Yloc Width Height rectfill
{ %def

/Height exch def
/Width exch def
/Yloc exch def
/Xloc exch def
Xloc Yloc moveto
Width 0 rlineto
0 Height rlineto
Width neg 0 rlineto
closepath fill

} bind def
400 50 100 100 rectfill

Also, for comparison, Example 9.10 presents the same program without
any local names defined for the arguments:

Example 9.10: Efficient Procedure without Local Names

/rectfill % Xloc Yloc Width Height rectfill
{ %def

4 -2 roll moveto
1 index 0 rlineto
0 exch rlineto
neg 0 rlineto
closepath fill

} bind def
400 50 100 100 rectfill

The purpose of this procedure is much more clear now, since the native
PostScript operators can be seen easily, and since the names chosen for
112 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 112

the procedure and its arguments are intuitive and make sense. The original
example, even though it used local names for all of the arguments, was
extremely difficult to understand, mostly because the names were poorly
chosen. The last example, without any local names at all, is much easier to
follow thanks to the native PostScript operator names. Example 9.9 is
probably the easiest of all to understand. Interestingly enough, the only
way it differs from Example 9.8 is in the names chosen (and in the
indentation style).

Some of the very most difficult programs to understand are those that
define hundreds of two-letter names for procedures and have each
procedure call three others, making it almost impossible to trace the
execution of the program, to cut pieces from it, to maintain it, or to
understand it.

A Useful Naming Convention

To cement the ideas behind good naming of procedures and variables,
following is an example of a naming convention that can help keep it all
straight. You may adopt your own naming conventions, of course.

• Use lower-case letters only for procedure names, since they
behave more or less like the PostScript built-in operators, which
are all lower-case.

• Use mixed-case for variables, like /LeftMargin or /FontSize.

• If the procedure names are never transmitted in quantity (as they
might be in the body of a document), there is no reason to make
them short. The interpreter will make them into tokens anyway.

• Use single-letter names for the most commonly called procedures
in the body (or script) of a document, keeping them as mnemonic
as possible. For example, use /s for show, /f for setting the font, /c
for curves, and so on.

• For procedures that are called frequently in the script of a
document but which are not the “workhorses,” use two-letter
names rather than using one-letter names that are not mnemonic.
For example, it is better to use /ml for { moveto lineto } than to
use, say, /q.

• For procedures that are called from within other procedures, use
descriptive names like /newline or /reencodefont.
Chapter 9: PROCEDURES 113

Petitioner Apple Inc. - Exhibit 1040, p. 113

• Be very careful not to inadvertently redefine any built-in
operators. Common names that are accidentally used by
programmers include begin, end, print, and lt (which seems
natural for lineto, but which is already used for less-than).

SELF-MODIFYING PROCEDURES

This is a pretty fancy concept, “self-modifying procedures.” It invites
thoughts either of artificial intelligence or of assembly language
techniques that are usually discouraged. However, in a simpler form, self-
modifying procedures can be extremely useful—without being
dangerously difficult.

Since a PostScript procedure is just an array, it is relatively easy to change
the contents. It is just a matter of using array operations. Let’s look at a
practical example. When using the settransfer operator to set up a gray-
level transfer function, it is correct to add your function to the end of the
transfer function that is already in place, rather than to replace it. Let’s
assume that the existing transfer function exchanges black for white, as in
Example 9.11.

Example 9.11: Existing Transfer Function

{1 exch sub }

This is a simple function that inverts the sense of black and white. Let’s
imagine that you want to set another transfer function that makes a single
exception of black and makes it 50 percent gray instead (see Example
9.12).

Example 9.12: New Transfer Function to be Set

{ dup 0 eq { pop 0.5 } if }

To concatenate the two procedures, you would want a result in which both
procedures are executed in order (see Example 9.13).
114 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 114

Example 9.13: Resulting Transfer Function

{ 1 exch sub dup 0 eq { pop 0.5 } if }

But in order to do this, you must know the size of the existing transfer
function, allocate a new array, and copy the contents of both the old and
the new functions into the third array. This is both time-consuming and
uses storage space inefficiently.

Let’s look at an alternative that is predicated on modifying a procedure
body as if it were just an array. Strictly speaking, this is not a self-
modifying procedure, but shares the notion of creating new procedure
bodies from existing ones (Example 9.14).

Example 9.14: Invoking the Old Function from the New One

{ OLD exec dup 0 eq { pop 0.5 } if }
dup currenttransfer exch 0 exch put
settransfer

This is a bit tricky, but it has a simple underlying concept. You want the
new procedure simply to execute the old one before it starts, which could
be done with the exec operator if you had the object to exec. The trick is
that the new transfer function is created with a dummy element as the
argument to exec. The name OLD is not a name that is defined anywhere,
but since the procedure has not yet been executed, it is okay to put any
name into it. The trick is to replace that name with the actual body of the
existing transfer function. The exec that immediately follows will then
execute it. The advantage to this approach is that you don’t have to
allocate a new array, and since all procedures are represented by a single
PostScript object, you can always replace the name OLD with the object
that represents the entire previous transfer function.

In Example 9.14, the currenttransfer operator produces the existing
procedure object on the operand stack. The fancy dup currenttransfer
exch 0 exch put code just inserts that procedure object into location 0 of
the new procedure array, and carefully leaves a copy of the procedure
body on the stack when done. (That’s what the instances of dup
accomplish.) The net result, in memory in the interpreter, looks something
like Figure 9.1.
Chapter 9: PROCEDURES 115

Petitioner Apple Inc. - Exhibit 1040, p. 115

Figure 9.1: Object Pointer in a Procedure Body

An interesting example of self-modifying code is a procedure that does
something only once, the first time it is called, then redefines itself so that
the action will not be repeated. Example 9.15 uses this technique to set up
the font and point size the first time the text-setting procedure is called,
but it redefines itself not to bother setting up the font each time thereafter.

Example 9.15: Procedure that Redefines Itself

/S % (string) Xloc Yloc S -
{ %def

% initialization code, only done once:
/Times-Roman 12 selectfont
0 setgray
% now carry out the task and redefine self:
moveto show
/S { moveto show } def

} bind def
(some text) 100 600 S
(more text) 100 587 S

This is not necessarily recommended practice, but demonstrates a fairly
useful technique that can be used when other methods of initialization are
not possible. For example, you could change the behavior of an existing
document by redefining a procedure that was called by the document,
even if you could not add additional procedure calls to the document
itself.

CONCLUDING THOUGHTS

Procedures are executable arrays. This gives you the power to execute
array operations on them occasionally, to copy them, to add elements, or
to replace dummy objects with real ones. Procedure bodies are also used
as arguments to many PostScript operators. Since the procedure bodies
used by the ifelse operator are no different than ones you might define for

{ 1 exch sub }

{ exec dup 0 eq { pop 0.5 } if }
116 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 116

your own use, you can use the same techniques, apply bind to them, or
dynamically replace them with something else.

The PostScript procedure mechanism is extremely powerful and flexible,
and with your new and increasing understanding of the way procedures
work, you should be able to put them to good use in your own programs.
The next chapter opens still more possibilities, as it explains the use of
dictionaries for various purposes in PostScript.

EXERCISES

1. Replace the following PostScript sequence with an equivalent one
that makes use of a single procedure call named TEXT instead of the
in-line PostScript operators.

100 100 moveto
/Times-Bold findfont 24 scalefont setfont
(This is an example of Times-Bold) show

2. Write a procedure that takes two procedure bodies and concatenates
them into a third procedure body, which it leaves on the stack. Call
your procedure concatprocs.

3. Rewrite the def operator as a procedure that has the same functional-
ity, but don’t use def within your procedure. (HINT: You must use
another PostScript operator to accomplish the same thing.) It’s okay
to use def to define your procedure, but it should not contain the def
operator.

4. Redefine the moveto operator to check for operands that are off the
page, and to report these errant coordinates with the == operator. Use
a page size of 612 by 792 points, and don’t worry about a scaled coor-
dinate system.
Chapter 9: PROCEDURES 117

Petitioner Apple Inc. - Exhibit 1040, p. 117

118 Chapter 9: PROCEDURES

Petitioner Apple Inc. - Exhibit 1040, p. 118

Chapter 10

Using Dictionaries

Dictionaries are the basic form of storage in the PostScript language.
Whenever you use the def operator, you are storing something into a
dictionary. Each time you use a name like moveto or call up one of your
procedures named L, you are retrieving data out of a dictionary.

To fully understand how dictionaries store data, it is necessary to realize
that all PostScript data types are represented by objects. These objects are
all the same size, even if the data that they represent are too big to fit
inside the object. A dictionary is a place to make key–value pairs of
objects. (Remember: the value is the object you want to store, and the key
is the name under which you store it.) To get the value back, you need the
key again. If your value is a composite object (such as a string, an array,
or another dictionary) the data will actually be in memory that has been
previously allocated to hold it, and the object stored in the dictionary
points to it. Example 10.1 is a simple example of a dictionary entry.
119

Petitioner Apple Inc. - Exhibit 1040, p. 119

Example 10.1: Sample Dictionary Entry

/redraw % strokegray fillgray redraw -
{ %def

gsave
setgray myuserpath ufill
setgray myuserpath ustroke

grestore
} def

In this case, the object that is stored as the value is the procedure body
{ gsave setgray myuserpath ufill setgray myuserpath ustroke
grestore }, and the key under which it is stored is the name redraw.

TIP The memory used for storage of PostScript objects is allocated when the
object is created, not when it is stored into a dictionary. The dictionary
must have room for the definition in it already; only the two objects repre-
senting the key and the value are actually saved in the dictionary. In Ex-
ample 10.1, the procedure body consumes about 72 bytes of memory
when it is created, but no additional memory is used when it is stored into
the dictionary with def.

DICTIONARIES FOR NAME SCOPING

Name scoping involves making names context-sensitive, depending on
the dictionaries currently on the dictionary stack. To understand its
usefulness, you must know that the most common method for retrieving
data that have been stored into a dictionary is to use the name lookup
mechanism. With this mechanism, an executable name encountered by
the interpreter is looked up in the context of the current dictionary stack.
You can use a key more than once and it can have different values
associated with it in different dictionaries. When the name is looked up,
the dictionary stack is searched from the top down, and the first instance
of the key that is encountered is the one that is used.

This provides a simple mechanism for changing name scoping. As an
example, consider the problem of underlining text. You may want to have
a simple text-setting procedure that you use when you’re not underlining
120 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 120

(which is most of the time, usually), and a different procedure that you
use when you are underlining. One way to approach that might be to have
a separate dictionary with underlining information that gets pushed onto
the dictionary stack when you want to underline (Example 10.2).

Example 10.2: Using Dictionary to Control Name Scoping

% these procedure turn underlining on and off by
% pushing the underlinedict dictionary on the dict stack
% or popping it off:
/underlineON { underlinedict begin } def
/underlineOFF { end } def

% here is a sample regular definition for “S”:
/regulardict 4 dict def
regulardict begin % (string) /Font size Xloc Yloc S

/S { moveto selectfont show } bind def
end

% alternate definition for “S” that does underlining:
/underlinedict 4 dict def
underlinedict begin

/S % (string) Xloc Yloc S –
{ %def

moveto selectfont currentpoint 3 -1 roll show
0 UnderLinePosition neg rmoveto
UnderLinePosition sub lineto stroke

} bind def % (or whatever)
end

LOCAL DICTIONARIES

A local dictionary is a dictionary that is visible only under certain
circumstances. If a procedure body references a particular dictionary, it is
said to be local to that procedure body.

Local dictionaries are very useful. One of the most common uses of a
local dictionary is to store local definitions that might be used by a
procedure. This is especially important if you use the def operator, which
writes into the current dictionary. It is best to make sure you know where
all of the definitions are being made, to prevent errors like dictfull or
invalidaccess.
Chapter 10: USING DICTIONARIES 121

Petitioner Apple Inc. - Exhibit 1040, p. 121

Example 10.3 shows the most common technique for using local
dictionaries for temporary storage for procedures. There are two things
worthy of note in this example.

1. The dictionary is created (allocated) outside of the procedure
itself. This keeps it from being created each time the procedure is
called.

2. The same dictionary is shared among several procedures, since
the data storage is only temporary. Even though the names X and
Y are defined by both procedures, they do not interfere with one
another as long as the use of those names does not go outside the
scope of the procedure.

Example 10.3: Dictionary as Local Storage for a Procedure

/LOCAL 5 dict def % one dictionary used by all procedures

/Text % (string) Xloc Yloc Text -
{ %def

LOCAL begin
/X exch def
/Y exch def
/text exch def
X Y moveto text show

end
} bind def
/Box % X Y Width Height Box -
{ %def

LOCAL begin
/Height exch def
/Width exch def
/Y exch def
/X exch def
X Y moveto
Width 0 rlineto
0 Height rlineto
Width neg 0 rlineto
closepath stroke

end
} bind def

In Example 10.3, the LOCAL dictionary stores only the data, and the
procedures themselves are simply written into the current dictionary.
122 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 122

GLOBAL DICTIONARIES OF PROCEDURES

The only time you really need local dictionaries is for re-entrant code or
recursion. For most other situations, a good approach is to create one
larger dictionary to hold both procedures and their data, as long as you are
careful about name conflicts (Example 10.3). They are not really “local
variables,” but if you need to be careful about storage space but are not
worried about recursion or name conflict within your own code, this is
much simpler and more efficient. This technique also relieves each
procedure of having to begin and end the dictionary, which makes it
easier to maintain and faster at the same time.

TIP Most PostScript drivers and any program with more than a small handful
of procedures should make sure to build its own dictionary for storing the
procedures, to avoid the dictfull error that might result if you trust the exe-
cution environment to have enough room in, say, the userdict dictionary
for all your definitions.

Example 10.3 shows the use of a single dictionary for all definitions made
by the program. This technique can be a little bit riskier, since there is still
a chance that another dictionary might be left on top of ProductDict
(perhaps by an included illustration); this would make all subsequent
instances of def write into the wrong dictionary. However, you can make
sure to check the dictionary stack whenever you include an illustration.
This technique is the best general approach for storing definitions in a
private dictionary.

Example 10.4: All Procedures within One Global Dictionary

/ProductDict 7 dict def

ProductDict begin
/Text % (string) Xloc Yloc Text -
{ %def

/X exch def
/Y exch def
/text exch def
X Y moveto text show

} bind def
Chapter 10: USING DICTIONARIES 123

Petitioner Apple Inc. - Exhibit 1040, p. 123

/Box % X Y Width Height Box -
{ %def

/Height exch def
/Width exch def
/Y exch def
/X exch def
X Y moveto
Width 0 rlineto
0 Height rlineto
Width neg 0 rlineto
closepath stroke

} bind def
end %ProductDict

%%BeginSetup
% make sure “ProductDict” is available at run time:
ProductDict begin

%%EndSetup
%%Trailer

% make sure to remove “ProductDict” when done:
end %ProductDict

%%EOF

MAINTAINING THE DICTIONARY STACK

The dictionary stack in a PostScript interpreter is not as readily
manipulated as the operand stack. There are no equivalent operators for
the dictionary stack operators such as exch, roll, and dup. The only way
to rearrange dictionaries is to place them temporarily on the operand
stack, rearrange them there, then replace them on the dictionary stack.

For the most part, it should not be necessary to rearrange the dictionaries
on the dictionary stack, but it is occasionally important to make sure your
dictionary is the topmost one. In these circumstances, it might be best to
simply use begin to explicitly place your dictionary on the top, even if it
might already be present further down on the dictionary stack.

Example 10.5 presents a procedure to implement dictexch, the equivalent
of the exch operator for the dictionary stack. This example is intended to
give you the flavor of the necessary dictionary manipulation; to see how it
works, see Example 10.5. The procedure shown is not necessarily a
recommended approach for using the dictionary stack.
124 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 124

Example 10.5 Exchanging Topmost Dictionaries with dictexch

/dictexch % - dictexch -
{ %def

currentdict end % dictionary A moved to operand stack
currentdict end % dictionary B moved
exch % exchange A and B on operand stack
begin % dictionary A back on dictionary stack
begin % dictionary B is now on top

} bind def

Figure 10.1: Mechanics of the dictexch Procedure

One of the most important aspects of maintaining the dictionary stack is
to make sure you remove any dictionaries that you may have put onto the
dictionary stack. The mechanism for doing this is the end operator, which
pops the topmost dictionary off the dictionary stack. Make sure you have
thought through any potential conflicts with other programs, embedded
illustrations, or other code that might add or subtract dictionaries from the
dictionary stack. It is usually best to remove your local dictionaries from
the stack before transferring control to an embedded program, then
reinstating them when you get control back.

The PostScript dictionary stack operations are not as powerful or flexible
as those for the operand stack. The dictionary stack is intended for lighter-
duty manipulation, and to provide a strong mechanism for name lookup
and storage. Keep this in the back of your mind if you are thinking of
writing a dictroll, dictdup, or other procedure just for this purpose.

A

B

B

A

A

B A

B

currentdict end

currentdict end exch
begin

begin
Chapter 10: USING DICTIONARIES 125

Petitioner Apple Inc. - Exhibit 1040, p. 125

INTO AND OUT OF DICTIONARIES

The dictionary stack holds dictionary objects. There are built-in operators
in the PostScript language for putting things into or retrieving things from
the current dictionary. There are also several other ways to manipulate the
contents of dictionaries directly.

A dictionary is a normal PostScript object and can exist on the operand
stack as well as on the dictionary stack. The put operator lets you put an
entry directly into a dictionary that is on the operand stack, and get lets
you retrieve from it. (See Example 10.6.)

Example 10.6: Using put and get for Dictionary Entries

/MyFont % leave on operand stack
15 dict % leave on operand stack

dup /FontName /MyFont put
dup /Encoding StandardEncoding put
dup /BuildChar { whatever } put
dup /CharStrings 100 dict put

definefont pop

% This is not the recommended way to call an operator:
statusdict /ledgertray get exec
systemdict /showpage get exec

If your needs are simple, you may be able to avoid having to place a local
dictionary on the operand stack at all. You can use the get and put
operators to explicitly reference a dictionary without ever placing it on the
dictionary stack. In Example 10.7, the save object that results from
executing save is stored away into a dictionary, and is retrieved later for
restore. Since there is only a single entry to be written into the dictionary,
it is a little bit simpler (although perhaps no clearer) to use put rather than
begin, def, and end.

Example 10.7: Scoping with put and get

userdict /mysaveobj save put
 % embedded illustration here
userdict /mysaveobj get restore
126 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 126

LOOKING INTO DICTIONARIES

Dictionaries contain key–value pairs. In addition to being able to retrieve
specific entries from a dictionary with the get or load operator, you can
see what entries already exist in the dictionary with the forall operator.
This can be useful for various purposes, such as finding out what fonts are
currently defined in the interpreter (looking in the FontDirectory or
SharedFontDirectory dictionaries) or in debugging, to figure out which
dictionary is currently on top of the dictionary stack.

Using the forall Operator

Looking through existing dictionaries can be instructive, even if it isn’t
part of any production code you are writing. One of the most useful
operators for this purpose is the forall operator. This operator loops
through the contents of a dictionary and executes your procedure for each
key–value pair found in the dictionary. Example 10.8 shows a simple way
to enumerate a dictionary with the forall operator.

Example 10.8: Browsing a Dictionary with forall

/browse-dict % dictionary browse-dict –
{ %def

{ %forall
exch % name first
(key:) print ==
(val:) print ==

} forall
} bind def
userdict browse-dict

The entries will not come out in a particularly sensible order. Instead, they
are in hash table order, in which the location in the dictionary is
determined by deriving an index directly from the key you used. (To
digress slightly, an example hash function might be to add up the byte
values of all the characters in a name object and use that number as an
index into an array.) To make the forall operator a little more useful, you
can use the type operator to take a look at each value in the dictionary,
and take different measures depending on the data type. This will help to
look into other dictionaries and arrays that might be lurking inside the
Chapter 10: USING DICTIONARIES 127

Petitioner Apple Inc. - Exhibit 1040, p. 127

dictionary you are perusing. But be careful if you use a recursive
approach, since a dictionary may contain a reference to itself.

Example 10.9 shows another implementation of the browse-dict
procedure; this implementation also browses subdictionaries and arrays. It
uses the type operator to recognize these composite data types. This is
much more complicated-looking code, mostly because of the inelegance
of the ifelse constructs in the middle that are needed to check on the types
of the data.

Example 10.9: Using type on each Element in a Dictionary

/browse-dict % dictionary browse-dict -
{ %def

{ %forall
exch (key:) print ==
dup type
dup /dicttype eq { %ifelse

(subdictionary:) print
browse-dict % recursively browse dictionary

}{
(value:) print ==

} ifelse
} forall

} bind def

/browse-array % array browse-array -
{ %def

{ %forall
dup type
dup /dicttype eq { %ifelse

(subdictionary:) print
browse-dict % recursively browse dictionary

}{
dup /arraytype eq { %ifelse
(array:) print
browse-array
}{ %else
(value:) print ==
} ifelse

} ifelse
} forall

} bind def
128 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 128

Using the where and known Operators

A very good way to make sure your code is portable if you are using
features that may or may not be present on all implementations is to use
either the known or the where operators. These operators allow you to
check for the existence of names in dictionaries, and execute some
conditional code based on whether or not you find them.

For example, let’s say you want to use four-color operations in the
CMYK color space (cyan, magenta, yellow, and black). As a point of
interest, the reason K is used by convention—rather than B—to represent
black is that B is already used to represent the color blue in the RGB color
model (red, green, blue).

You want to use the setcmykcolor operator, but if it isn’t available, you
can simulate it using setrgbcolor. Using the where operator, you can
define a simulation only if the name setcmykcolor is not defined already
in the interpreter (see Example 10.10).

Example 10.10: Conditionally Defining a Procedure

% /C points to “setcmykcolor” if it exists, else it emulates it with “setrgbcolor”
/C

/setcmykcolor where { %ifelse
/setcmykcolor get

}{ %ifelse
{ %def

1 sub 3 { %repeat
3 index add neg dup 0 lt { pop 0 } if 3 1 roll

} repeat
setrgbcolor

} bind
} ifelse

def

In this case the /C is left on the operand stack while where is executed to
determine whether or not the simulation is needed for setcmykcolor. If
the name setcmykcolor is found, the current definition of it is loaded onto
the operand stack. In either case, the name /C will have equivalent
functionality to the setcmykcolor operator, and can be used throughout
the program with the same arguments that setcmykcolor requires,
without having to adjust the rest of the program according to the color
model or the interpreter used.
Chapter 10: USING DICTIONARIES 129

Petitioner Apple Inc. - Exhibit 1040, p. 129

REDEFINING OPERATORS

There are very often instances in which you want to change the behavior
of your program, even just temporarily, by redefining some of the names
in it before the program executes. This has many possible uses, for
debugging, page accounting, distilling documents into another form, or
adding to the functionality of an existing program.

As you have learned, name lookup is done in the context of the dictionary
stack. There are correspondingly two basic ways to redefine a name non-
destructively.

• Make a simple redefinition in the current dictionary with def.

• Push a special dictionary onto the dictionary stack into which the
redefinitions are placed.

If you put the redefinitions in a separate dictionary, then it is easy to put
them in place or remove them temporarily, simply by pushing or popping
the dictionary from the dictionary stack. However, this method is a little
bit more subject to problems, since the program may inadvertently
remove your special dictionary from the dictionary stack, or try to write
into it as if it were its own dictionary.

Changing the Behavior of Operators

When you redefine an operator to have some other behavior beyond or
instead of its default, you must take care to preserve at least the way in
which the operator interacts with the operand stack, and you probably
need to simulate some of the side effects, as well. For example, the
moveto operator pops two numbers off the stack and installs a current
point into the graphics state. If you redefine moveto, you should at least
make sure to pop exactly two numbers from the stack, and you probably
ought to establish a current point while you’re at it, if you want the
program to continue to execute beyond the next instruction or so (without
generating a nocurrentpoint error). One very good way to accomplish
this is simply to invoke the original definition of the name when you are
finished with your extensions. Example 10.11 shows a redefinition of
showpage that adds a “draft” notice onto the edge of the document as it is
being printed. The original (or previous, to be more accurate) definition of
130 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 130

showpage is loaded at the beginning, and is executed from within the
redefined showpage procedure:

Example 10.11: Redefining showpage to Print Draft Notice

/startingCTM matrix currentmatrix def
/old_showpage /showpage load def
/showpage % - showpage -
{ %def

gsave
startingCTM setmatrix
90 rotate 30 -590 moveto
/Helvetica-Bold findfont 24 scalefont setfont
(DRAFT document. Please destroy promptly.) show

grestore
old_showpage

} bind def

Debugging with Redefined Names

A very good way to track the execution of your program is to redefine one
of the operations in it to produce some extra tracking information as it is
being called. For instance, you could redefine the show operator to echo
each string back to the standard output file as it is being printed, or you
could redefine the moveto operator to watch for coordinates that are off
the page and to warn you. Then, once you get the program working, you
can simply remove your redefinitions, and the program should work
without further modification.

Example 10.12 contains a simple redefinition of the show operator that
will track each string as it is being printed.

Example 10.12: Redefining show to Help Debugging

/old_show /show load def
/show % (string) show -
{ %def

dup == flush
old_show

} bind def
Chapter 10: USING DICTIONARIES 131

Petitioner Apple Inc. - Exhibit 1040, p. 131

Proper Nesting of Redefinitions

It is important to redefine names carefully so that they can be nested
reasonably. It is always good to use the load operator when you pick up
the old definition of a name. This is much better than, say, looking up the
name directly in systemdict. However, it is also useful to keep your own
name (like /old_show) from clobbering itself if you install your
procedures a second time. One good way to accomplish that is to push a
special dictionary onto the dictionary stack, but to avoid giving it a name
(or your name will conflict with itself the second time you install the
procedure). Example 10.13 illustrates this technique by loading the
existing value stored under the name show, storing it away under the
name old_show.

Example 10.13: Using load to Get Previous Definitions

/old_show /show load def
/show { %def

dup == flush
old_show

} bind def

CONCLUDING THOUGHTS

Dictionaries are flexible and powerful. The main uses for them are as
storage for items that you don’t want to leave on the operand stack and as
a name lookup mechanism for scoping program execution or local
variables. You have learned several ways to manipulate dictionaries, store
and retrieve entries from dictionaries, and look at their contents.
Dictionaries are not heavily used in most PostScript programs other than
to store simple definitions, but they can be exploited for some interesting
purposes when the need arises, as you have seen. In the next chapter,
dictionaries are contrasted to arrays and various methods of creating and
manipulating data are presented.
132 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 132

EXERCISES

1. What value is left on the operand stack after executing the following
short program segment?

/variable 7 def
5 dict dup begin

/variable 9 def
end
/variable dup load 3 1 roll get add

2. Replace the dictionary named LOCALDICT in the following proce-
dure with an anonymous dictionary. (The dictionary itself should
have no name, and the only instance of the dictionary object should
be inside the procedure body.)

/LOCALDICT 12 dict def
/boxproc % Xloc Yloc Width Height boxproc -
{ %def

LOCALDICT begin
/height exch def
/width exch def
/Y exch def
/X exch def
X Y moveto
0 height rlineto
width 0 rlineto
0 height neg rlineto
closepath
fill

end
} bind def

3. Name three operators in the PostScript language that use the dictio-
nary stack in some way.

4. Write a program that shows (with the == operator) the names of all
the fonts stored in the dictionary called FontDirectory.
Chapter 10: USING DICTIONARIES 133

Petitioner Apple Inc. - Exhibit 1040, p. 133

134 Chapter 10: USING DICTIONARIES

Petitioner Apple Inc. - Exhibit 1040, p. 134

Chapter 11

Creating and Manipulating Data

The two most basic types of data structures are arrays and strings.
PostScript arrays can contain any other type of PostScript objects,
including composite objects. Strings contain individual characters, as in
most languages.

CONSTRUCTING AN ARRAY

To construct an array, the simplest thing to do is to use the [and]
operators. These operators create an array on the fly, during the execution
of your program, and put into that array anything that is on the operand
stack down through the matching [at the time the] operator is executed.
A simple example is seen in Example 11.1.

Example 11.1: Sample Constructed Array

[/one dup dup (four) /five 3 3 add /seven { 8 (the whole procedure) } 9 10]
135

Petitioner Apple Inc. - Exhibit 1040, p. 135

This array contains ten elements:

/one /one
/one (four)
/five 6
/seven { 8 (the whole procedure) }
 9 10

Notice that the second and third instances of /one were created by the
execution of dup and the 6 was constructed by the add operator before
the] was executed. The elements between the [and] operators are all
executed, unlike the way procedure bodies are declared.

If you want to construct a literal array (the kind with [] brackets) that
contains an executable name like dup or add, obviously you have to be
careful, or the operators will actually execute instead of landing in your
array. We could have created the array first as a procedure, taking
advantage of the fact that the execution of objects inside the procedure is
deferred, and then converted it to a literal array after it has been
constructed (see Example 11.2).

Example 11.2: Making a Procedure into a Literal Array

{ /one dup dup 3 3 add } cvlit

The array generated from the executable procedure body is identical to
one that might be constructed with the [and] operators. It contains six
elements:

/one dup
dup 3
3 add

Another way to construct an array is to create an empty one with the
array operator, and put data into it yourself with the put or putinterval
operators, or with the astore operator, as seen in Example 11.3.
136 Chapter 11: CREATING AND MANIPULATING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 136

Example 11.3: Creating and Filling an Empty Array

10 array dup
/one /one /one (four) /five
6 /seven { 8 (the whole procedure) } 9 10
astore

CONSTRUCTING A STRING

Strings can be constructed in much the same way as arrays. You can
create one at run-time in the original input program by using the notation
found in Example 11.4 for simple strings or hexadecimal strings (also
called hex strings).

Example 11.4: Creating Strings with the Scanner

(This is a string created at run-time; following is a hex string:)
<a32989e4ff>

Hexadecimal strings are scanned two bytes at a time to create the single
byte represented by the 8-bit number. (One byte of hexadecimal, since it
is base 16, provides only 4 bits of data; it requires two bytes of
hexadecimal to represent a full 8 bits.) Hex strings are generally used only
for image data, strings for Kanji character sets, or other places where full
8-bit string data must be used. The string operator can also be used to
create an empty string body, and you can use put or putinterval to put
bytes into the string.

MANIPULATING DATA WITH PUT AND GET

Strings and arrays are composite data structures. They are both
represented by single objects, but really they are composed of collections
of objects. There are a few different ways to read and write the contents of
these composite data structures, included in Table 11.1. The fundamental
mechanism is the family of put and get operators. We’ll start with the
simplest ones.
Chapter 11: CREATING AND MANIPULATING DATA 137

Petitioner Apple Inc. - Exhibit 1040, p. 137

Table 11.1: Operators to put and get Data

Arguments Operator Action
array length int number of elements in array

array index get any get array element indexed by index
array index any put ± put any into array at index

array index count getinterval subarray subarray of array starting at
index for count elements

array1 index array2 putinterval ± replace subarray of array1 starting
at index by array2

array aload a0...an-1 array push all elements of array on stack
any0 ... anyn-1 array astore array pop elements from stack into array

array1 array2 copy subarray2 copy elements of array1 to initial
subarray of array2

array proc forall ± execute proc for each element of
array

int string string create string of length int
string length int returns the number of elements in

string
string index get int get string element indexed by index

string index int put ± put int into string at index
string index count getinterval substring substring of string starting at index

for count elements
string1 index string2 putinterval ± replace substring of string1 starting

at index by string2
string1 string2 copy substring2 copy elements of string1 to initial

substring of string2

The put operator requires three arguments: the thing you want data put
into, the key or position in that composite data structure where you want
the data put, and finally the piece of data itself that is to be added (see
Example 11.5).

Example 11.5: Anatomy of the put Operator

% data_structure position_key new_data put
currentdict /key (value) put
10 array 0 (first element) put
(XXXXX) 4 (a) put

The putinterval operator is similar to put, but the piece of data you
supply needs to be of the same type as the data structure into which you
are putting it. The data gets copied from the supplied data into the
destination, rather than putting just one piece of data (see Example 11.6).
138 Chapter 11: CREATING AND MANIPULATING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 138

Example 11.6: Anatomy of the putinterval Operator

data_structure position_key data_structure putinterval
12 array 5 [/f /g /h /i /j /k] putinterval
(abcDEF) 0 (ABC) putinterval

TIP If you have difficulty remembering the order of operands to the put and
get operators, remember that they work in the same order that def and load
take their operands: the key comes before the value.

CONCATENATING ARRAYS AND STRINGS

Arrays and strings have a fixed length. You cannot dynamically extend
them. In order to tack two of them together, you must allocate a third
array or string that is big enough to hold the other two, then copy them
both into it. There is no easier way to do it, unfortunately.

Example 11.7 sets forth a procedure called concatenate. This
concatenate procedure tacks together two string bodies into a third string
that is left on the operand stack as the result of the procedure call. The
procedure works with arrays in precisely the same way. If you copy this
example, be careful not to call it concat, since that is the name of another
PostScript operator for concatenating matrices.

The roll operator is used in the body of this procedure to avoid having to
make any dictionary entries. This is intentional, since a procedure used as
an operator-equivalent (as concatenate is) should have as few side effects
as possible.

Note the use of putinterval in this procedure. It is called once to copy the
body of the first argument into the destination at position 0, then it is
called a second time with the position in the destination equal to the
length of the first argument, so the second argument lands exactly where
the first part left off. Note the use of length to determine this position, and
the careful use of dup and index to keep copies of the various strings or
arrays until we are done with them. The length, putinterval, and type
operators all consume their operands, so you must take care to operate on
a copy of the original arguments until they are no longer needed.
Chapter 11: CREATING AND MANIPULATING DATA 139

Petitioner Apple Inc. - Exhibit 1040, p. 139

Example 11.7: Concatenating Two Strings Together

/concatenate % (string1) (string2) concatenate string3
% array1 array2 concatenate array3

{ %def
dup type 2 index type 2 copy ne { %if

pop pop
errordict begin (concatenate) typecheck end

}{ %else
/stringtype ne exch /arraytype ne and {

errordict begin (concatenate) typecheck end
} if

} ifelse
dup length 2 index length add 1 index type
/arraytype eq { array }{ string } ifelse
% stack: arg1 arg2 new
dup 0 4 index putinterval
% stack: arg1 arg2 new
dup 4 -1 roll length 4 -1 roll putinterval
% stack: new

} bind def
(string1) (string2) concatenate ==
[/zero /one /two] [/three /four /five /six] concatenate ==

INPUT AND OUTPUT OF STRING DATA

A string is basically a chunk of memory in which characters are stored.
The string body is created first, then characters may be added to it with
the copy, put, putinterval, read, readstring, or readhexstring
operators.

There are two primary sources for string data. The most commonly used
one is to supply the data as a literal string (using the familiar parentheses),
as shown in Example 11.8.

Example 11.8: Creating a Literal String

% normal “show” string:
(This is a string) show
% exactly the same result using a hex string:
<54686973206973206120737472696e67> show
140 Chapter 11: CREATING AND MANIPULATING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 140

The scanner allocates a string body of the appropriate size and copies the
bytes into it for you, leaving a string object on the top of the operand
stack. The string is delimited by parentheses, and can contain parentheses
if they are quoted with a backslash character before the parens, like this:

 (some \) parens in a \(string body).

The other main source of string data, other than synthetically created
strings, is a file object. You can open a file and read bytes directly into
string bodies, but the strings must have been allocated beforehand.
Example 11.9 shows this quite well.

Example 11.9: Reading String Data from a File

/buffer 128 string def
currentfile buffer readline % reads directly from input
This is a string
show

% read through /etc/password and print line containing “Glenn”
/buffer 128 string def
/passwd (/etc/passwd) (r) file def
{ %loop
 passwd buffer readline {

dup (Glenn) search {
pop pop pop
print(\n) print flush
exit

}{ pop } ifelse
 }{ exit } ifelse
} loop
passwd closefile

ARRAYS VERSUS DICTIONARIES

There are several differences between arrays and dictionaries that make
them more (or less) appropriate for a given task. The most important
differences are:

• Arrays can be accessed sequentially, but dictionaries cannot be
accessed sequentially (the forall operator uses hash table order).
Chapter 11: CREATING AND MANIPULATING DATA 141

Petitioner Apple Inc. - Exhibit 1040, p. 141

• Dictionary access can be made automatic using name lookup. By
contrast, the only way to retrieve something from an array is with
get or getinterval.

• Arrays need about half the memory that dictionaries require,
since there is no key to be stored.

• Arrays can be created dynamically, without having to know
ahead of time how many entries may be needed.

It is unfortunately very common for programs to allocate huge
dictionaries but never to use all the space that was allocated. This is often
a result of the debugging cycle, when a dictionary was made large in
response to a dictfull error or in anticipation of larger program growth.
This is easily enough avoided, of course, but it is common enough that it
is worth mention.

As a rule of thumb, if the data you need to store are needed sequentially or
all of the entries are needed at once, you are better off using arrays than
dictionaries. Dictionaries are most powerful for storing procedures and
variables for your program, and have only specialized applications for the
data that is used by a program.

ADVANCED TECHNIQUES

PostScript programs that read data directly from a file sometimes have to
perform extensive string manipulation to use the data. An interesting trick
for parsing data is to use the token operator. If your data are ASCII and
can be interpreted somehow as PostScript-like objects, your parsing task
can be greatly simplified.

Consider the program in Example 11.10 that reads pairs of points from the
input file and constructs line segments from them. The output of this
example is shown in Figure 11.1.

Example 11.10: Reading and Executing Data from a File

%!PS-Adobe-2.0 EPSF-2.0
%%BoundingBox: 0 0 150 150
%%EndComments
100 300 translate
142 Chapter 11: CREATING AND MANIPULATING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 142

/buff 256 string def
{ %loop

% assumes no errors in the data...
currentfile buff readline not { exit } if
(%%EOF) anchorsearch { exit } if
token pop exch token pop exch 3 1 roll moveto
token pop exch token pop exch pop lineto
stroke

} bind loop
96 17 20 30
15.5 75.25 120 145.789
30 89.75 168.5 76.5
80 40 60 140
%%EOF

Figure 11.1: Output of Example 11.10

CONCLUDING THOUGHTS

In this chapter, you’ve seen how to construct arrays and strings and how
to manipulate them with put and get. You have also seen how to

output page
Chapter 11: CREATING AND MANIPULATING DATA 143

Petitioner Apple Inc. - Exhibit 1040, p. 143

concatenate arrays and strings and how to do some simple and powerful
manipulation of the data.

The PostScript language is not particularly strong in string-handling
operations compared to some other languages, but it has all the necessary
ingredients to do very respectable string manipulation when necessary.

When you work with arrays and strings, the most important thing to
remember is that they are composite objects and work more like pointers
than actual bodies of data. If you can keep track of when you need to copy
the whole string or the whole array, you will have few problems with this
kind of data manipulation.

In the next chapter you will see more in-depth treatment of the basics of
data storage and retrieval and how to build data structures and use
dictionaries creatively.

EXERCISES

1. What are the contents of the array constructed by the following code?

[0 0 moveto 100 100 lineto currentpoint]

2. Show the PostScript code to create a two-dimensional array five ele-
ments wide and ten elements deep.

3. The filenameforall operator is very useful in obtaining a list of font
files written to the disk on a printer. However, the file names that the
operator returns are of the form (fonts/Palatino-Roman) rather than
simply (Palatino-Roman). Write a procedure called extractfont-
name that will take a string like (fonts/Palatino-Roman) as input
and strip off the (fonts/) part of the name, leaving just (Palatino-Ro-
man).
144 Chapter 11: CREATING AND MANIPULATING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 144

Chapter 12

Storing and Using Data

There are various kinds of data that get used by computer programs. Some
programs “crunch” data, bent on achieving a particular result based on its
input. Other programs allow users to create, edit, or rearrange data; the
result is up to the user’s imagination. Still others use input data only to
guide them through labyrinthine paths, producing no results at all.

When writing your own program, it is worth considering just what the
numbers and text will be used for before you decide on your data
structures. For example, if your program takes a sequence of numbers and
plots them, you probably don’t want to store the numbers in a permanent
place. In fact, the sooner you get rid of them (plot them), the better.
However, many bits of data are in fact used internally by the program
itself, to establish state, and are never intended as part of any output.
(These bits of data may include, for example, the current page margins,
the point size of the font you are using, or maybe a string buffer needed
for reading from a file object.)
145

Petitioner Apple Inc. - Exhibit 1040, p. 145

Data and the Operand Stack

Remember that all PostScript operators require their operands to be on the
stack. Even if you store something into a dictionary, it must eventually get
put back on the operand stack before it can be used for anything.

Of course, the operand stack is also the first place any data land on the
way into your program. Assembling these ideas in our minds, we realize
that maybe, under some circumstances, the data should just stay on the
operand stack until they are used. That is the first principle of data storage
and use in PostScript programming.

The exaggerated instance shown in Example 12.1 is a procedure that
requires several operands, all of which are eventually used by some
PostScript operators internally. In this example, these operands are given
names within the procedure body, ostensibly so that the procedure will be
easier to maintain. But notice that the values are no sooner stored into a
dictionary than they are recalled onto the operand stack, which is
unnecessarily slow.

Example 12.1: Using Too Many Variables

% This program draws a shaded, outlined box
/BX % X Y Bwidth Bheight fillgray linewidth linegray BX
{ %def

/linegray exch def
/linewidth exch def
/boxgray exch def
/Bheight exch def
/Bwidth exch def
/Y exch def
/X exch def
fillgray setgray
X Y Bwidth Bheight rectfill
linegray setgray
linewidth setlinewidth
X Y Bwidth Bheight rectstroke

} bind def

In this example, variables are created to hold data that are inherently
transitory. The data really represent the box itself, and are not used by the
program in any other way. To give them names and make them into
variables has no purpose other than to make the program a bit more
146 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 146

readable and easier to maintain. But the important lesson is to actually
stop and consider how the data are being used, and design your data use to
match that use.

Data and Algorithms for Underlining

Let’s look at a slightly more involved example, one that is not quite so
easy a choice. We need to underline some text on the page, and must keep
track of the location and thickness that the underline should be. This is a
typical situation that comes up when writing the PostScript printer driver
for a word processor. We know where the underline for the text will start,
since it is very closely related to the place where the text starts that you
want to underline. It is a little more trouble to determine where the
underlining should end, since you have to calculate exactly where the end
of the text is, taking the font and point size into account as well as any
kerning or other positioning decisions you may have made. Very likely,
your word processor already has this information on hand, since it had to
set the text. You also have to decide how far below the text the line should
be, and how thick a line to use.

It is a simple matter to draw a horizontal line. In fact, all you need to
know are its end points and how thick it should be. But the data that
represent that line are actually derived from something else, namely the
text being underlined.

A common model for underlining in a word processor is to have what
amounts to “underline ON” and “underline OFF” commands, and have
the program automatically underline whatever you type while the
underlining is turned on. Let’s suppose our PostScript driver models that
behavior exactly (see Example 12.2).

Example 12.2: Simple Model for Underlining Text

/underlineON { /underline true def } def
/underlineOFF { /underline false def } def

These procedures simply set an internal variable in the program, called
underline, to either true or false. But this variable must be noticed by the
text-setting routines. First, let’s look at the way we would like to use these
procedures. We’ll assume that a simple text-setting procedure definition
is in place (see Example 12.3).
Chapter 12: STORING AND USING DATA 147

Petitioner Apple Inc. - Exhibit 1040, p. 147

Example 12.3: Sample Use of this Underlining Model

% not yet fully functional, but illustrates the desired syntax
/underlineON { /underline true def } def
/underlineOFF { /underline false def } def
/TEXT { moveto show } def

/Times-Bold 24 selectfont
underlineON
(Hamlet, Act II) 200 650 TEXT
underlineOFF

/Times-Roman 12 selectfont
(This should be the first line from Hamlet.) 72 600 TEXT
(And this, of course, the second.) 72 570 TEXT

This example, unfortunately, won’t draw any underlines yet, but it shows
the use of the underlineON and underlineOFF procedures.

In our example driver, we don’t want to have to change our use of the
TEXT procedure to use underlining, we just want to be able to turn
underlining on or off whenever the command is issued from the word
processor. Of course, somewhere along the way the underlining has to
actually happen. In this case, the TEXT procedure must check the
underline flag to see if it is supposed to underline the text, and it must also
calculate the appropriate parameters and location for the text itself
(Example 12.4).

Example 12.4: Fleshing Out the Underlining Code

/underlineON { /underline true def } def
/underlineOFF { /underline false def } def
/TEXT { %def

underline { %ifelse
}{ %else

moveto show
} ifelse

} bind def

So far, this doesn’t seem too bad, since only a single test has been added
to our TEXT procedure. Of course, it still doesn’t do any underlining,
because the other half of the ifelse statement is still empty. Let’s expand
148 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 148

the underline clause, just to see what kinds of variables or data are
produced in calculating the underlining parameters (see Example 12.5).

Example 12.5: Actually Drawing the Underlines

/underlineON { /underline true def } def
/underlineOFF { /underline false def } def
/SCALE { 1000 div 24 mul } bind def
/TEXT % (string) Xloc Yloc TEXT -
{ %def

underline { %ifelse
moveto
gsave

currentfont /FontInfo known { %ifelse
currentfont /FontInfo get begin

0 UnderlinePosition SCALE rmoveto
UnderlineThickness SCALE setlinewidth

end
}{ %else

0 -10 rmoveto 0.5 setlinewidth
} ifelse
dup stringwidth rlineto stroke

grestore
show

}{ %else
moveto show

} ifelse
} bind def

/Times-Bold 24 selectfont
underlineON
(Hamlet, Act II) 200 650 TEXT
underlineOFF

/Times-Roman 12 selectfont
(This should be the first line from Hamlet.) 72 600 TEXT
(And this, of course, the second.) 72 570 TEXT

This is quite a bit more involved than the version without underlining, but
most of it is fluff (ifelse statements, curly braces, known, and so on).
Notice that the underline position below the baseline and the thickness of
the underline are borrowed from the FontInfo dictionary in the current
font, if it exists; if it does not, the values are hard-wired to 12 and 1. This
data actually exist (or should exist) upstream at the word processor.
Chapter 12: STORING AND USING DATA 149

Petitioner Apple Inc. - Exhibit 1040, p. 149

NOTE: In Example 12.5 the underline thickness and position are very
roughly calculated. In a real driver, these values should be much more
carefully calculated based on the point size of the font being used and the
recommended values provided in the font metrics files for the fonts.
Rather than complicating this example unnecessarily, an overly simplistic
algorithm was used to determine these values.

Let’s look at two ways to eliminate some of the extraneous commands
from this last example. The first is to pass down appropriate data for the
underline position and thickness from the host, but continue to calculate
the ending position in the PostScript driver. The other enhancement will
be to introduce two slightly different versions of the TEXT procedure
(one that underlines, one that doesn’t) and set it up so that the
underlineON and underlineOFF procedures select the right one. We’ll
also beef up the underlineON procedure to pass down the values for the
position and thickness of the underline itself. Notice also the way that the
-ON and -OFF procedures redefine the TEXT name to use the correct
procedure (see Example 12.6).

Example 12.6: Simplifying the Underlining Code

/underlineON % - underlineON -
{ %def

/underline true def
/underlinethick exch def
/underlinebelow exch def
/TEXT { TEXTwith } def

} def
/underlineOFF % - underlineOFF -
{ %def

/underline false def
/TEXT { TEXTwithout } def

} def
/TEXTwithout { moveto show } bind def
/TEXTwith { %def

moveto
gsave

0 underlineposition rmoveto
underlinethickness setlinewidth
dup stringwidth rlineto stroke

grestore
show

} bind def
150 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 150

/Times-Bold 24 selectfont
1.0 -5 underlineON
(Hamlet, Act II) 200 650 TEXT
underlineOFF

/Times-Roman 12 selectfont
(This should be the first line from Hamlet.) 72 600 TEXT
(And this, of course, the second.) 72 570 TEXT

The resulting program has a nice balance of data use, passing some of it
from the host word processor, storing some of it, and reducing the
complexity of the program itself in the way it relies on the data. Notice
that the only change to the way we wanted to set the program up was to
add two operands to the underlineON procedure call. The rest of it stayed
the same.

CLASSICAL DATA STRUCTURES

There are some classic data structures in the field of computer science that
you might want to construct in your PostScript program. For instance, you
might want to make use of doubly-linked lists, queues, stacks, trees, and
so forth. (Stacks are generally free in PostScript because of the inherent
stack-based model, but sometimes you need to create your own.)

Linked Lists

Linked lists can be very useful data structures. A linked list is basically a
sequential list of chunks of data that you can traverse either forward or
backward (if it is doubly-linked). The main advantage to linked lists in
traditional programming languages is that you can allocate memory as
you need it, and it doesn’t have to be contiguous. In each data block, you
store a pointer to the next block, wherever it may be. In PostScript, the
need for these lists diminishes greatly, since you don’t need to worry
about the way memory is allocated in order to access data. PostScript
language arrays are arrays of other PostScript objects, each of which is
self-contained (and very likely occupies some memory that is not adjacent
to the next element in the array). But, readjusting the terminology very
slightly, lists are still extremely useful, even if you don’t have to spend
much time worrying about the links between the elements.
Chapter 12: STORING AND USING DATA 151

Petitioner Apple Inc. - Exhibit 1040, p. 151

Let’s assume that you have a single block of data representing text from a
drawing program. You want to store the x, y location of the text on the
page, the font in which the text is to appear, the text itself, and the color.
In the C language, you might come up with something like the code in
Example 12.7.

Example 12.7: List Elements as C Structures

struct textchunk {
float X,Y; /* X,Y location on screen */
char font [128]; /* font name */
float ptsize; /* point size of font */
float R,G,B; /* color */
char *text /* the text itself */
struct textchunk *next; /* link for list */

} *head, *tail;

What might be the best way to implement a composite data structure like
a struct in PostScript? You have only a few choices.

• You could use an array that contains all of the pieces of data.

• You might use dictionaries, creating one for each chunk of data.

• You might simply accumulate piles of data on the operand stack,
keeping track of what was where.

Since the operand stack is likely to be unwieldy for a structured approach
such as this, let’s consider arrays and dictionaries, to see which one seems
better.

Using Arrays to Form Lists

Let’s look at an array that contains everything that the C struct does, but
which does not have the links to the next item in the list (see Example
12.8).
152 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 152

Example 12.8: List Elements as PostScript Array Objects

[
72.0 100.0
/Times-Italic
24.0
1.0 0.0 0.0
(Julius Caesar)

]

Notice that the names have disappeared, since arrays contain just the data.
But how would you create a link to the next chunk of data? Since a
PostScript array object is already a pointer to a composite data structure,
we could use it directly, including an array object within the array that
represents the next item in the list. It looks as though the arrays are nested
when you look at them syntactically, but in effect one array simply
contains a pointer to another. An array might even contain a circular
reference by including a copy of itself as one of its elements, but we will
try to avoid that in our examples. Notice that the original array (the one
containing the name Julius Caesar) has been reproduced, but is written a
little more compactly to save some space on the page (Example 12.9).

Example 12.9: Forming a List of Array Objects

[
72.0 650.0 /Times-BoldItalic 24.0 1 0 0
(Julius Caesar)
[

72.0 600 /Times-Italic 18.0 1 0 0
(William Shakespeare)
[]

]
]

The actual structure of these arrays looks more like Figure 12.1 when it is
represented internally in the PostScript interpreter.
Chapter 12: STORING AND USING DATA 153

Petitioner Apple Inc. - Exhibit 1040, p. 153

Figure 12.1: Structure of the PostScript Linked List

This method is very compact and efficient, but it does present one
difficulty: the elements of the structure cannot be referred to by name, but
only by their position within the array (although you could write
procedures to help you with this). Arrays could be troublesome to
maintain effectively and to debug, but are much more space-efficient than
dictionaries.

Using Dictionaries to Form Lists

Let’s try the same idea using a dictionary to store the elements of the
structure (see Example 12.10).

Example 12.10: List Element as a PostScript Dictionary

/head 9 dict def
/tail head def
head begin

/X 72 def
/Y 470 def
/font /Times-Roman def
/ptsize 16 def
% red, green, and blue stored as R,G,B:
/R 1 def
/G 0 def
/B 0 def
/text (Act One) def
/next null def% points to nothing

end

72.0 650.0 /Times-BoldItalic 24.0 1 0 0 (Julius Caesar) []

72 600 /Times-Italic 18 1 0 0 (William Shakespeare) []
154 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 154

When a new chunk of data is created to add to the list (in much the same
manner as this one was created), the list may be maintained by judicious
definition of the next name to point to the next chunk in the list (see
Example 12.11).

Example 12.11: Linking a New Element to the List

9 dict begin
% field definitions here
/next null def % end of list

currentdict end
dup head exch /next exch put
/tail exch def

Notice that the next pointer in the first chunk of data has been updated to
be a reference to the newly-created list element, which is now stored as
the tail of the list. The only elements in the list that have names are the
head and tail entries in the list. The rest are anonymous, and can only be
referenced by following the next pointers from the other dictionaries in
the list.

Queues, Trees, and Other Data Structures

The concepts that have just been introduced for creating lists can easily be
extended to create queues, stacks, or even trees of all sorts, since pointers
are so easily created and assigned in PostScript.

For example, a queue can be implemented as a linked list of items that are
always accessed in a first-in, first-out basis (FIFO). A stack could be built
the same way, accessing the data on a last-in, first-out basis (LIFO), but it
makes much more sense to use the PostScript operand stack to collect the
objects if you need them in that order anyway. For more complicated
structures like binary trees, you need only extend the basic “structure”
model of a dictionary or an array to contain references to the appropriate
elements of the tree. The structure of these classic data structures is
beyond the scope of this book, but is discussed at great length in other
volumes.
Chapter 12: STORING AND USING DATA 155

Petitioner Apple Inc. - Exhibit 1040, p. 155

CONCLUDING THOUGHTS

Although the data structures we have discussed in this chapter are very
sound principles in computer science, they may not be the most
appropriate storage paradigm in your PostScript program. Think very
carefully about the relationships between your data elements and the way
that they will be created, used, and destroyed. Consider the benefits and
drawbacks of arrays, dictionaries, and the operand stack before deciding
on the final representation for your data structures. Keep these points in
mind as you read about program data and instructions in the next chapter.

EXERCISES

1. When drawing a vertical line, you only need the x coordinate once,
since it is the same for both endpoints of the line. Design a procedure
called V that draws only vertical lines. Your procedure should be able
to draw a line at any thickness, at any x,y location, and of any length.

2. In order to underline some text, you must determine the position and
thickness to draw the line.

a.What are the disadvantages to performing this calculation in your
PostScript code?

b.What are the disadvantages to performing the underlining calcula-
tion in your word processor application?

3. Create a data structure that could serve as a stack (you can restrict its
size to 50 elements). Write two procedures called stackpush and
stackget that will let you place objects on your stack and then retrieve
them back again. The stackpush procedure should take just one argu-
ment—the object to be pushed onto the stack data structure. The
stackget procedure should return one value onto the operand
stack—the value retrieved from the stack data structure. Don’t worry
about stack overflow or underflow error conditions.
156 Chapter 12: STORING AND USING DATA

Petitioner Apple Inc. - Exhibit 1040, p. 156

Chapter 13

Program Data and Instructions

Programs generally consist of instructions and data in the same sense that
an arithmetic problem does: there are operations (such as addition or
multiplication) and there are numbers or other data that are fed to those
operations. However, in the same sense that you can’t add without having
a few numbers, many PostScript programs require data just to make them
programs. Example 13.1 presents a very simple program to show the
distinction between data and instructions in some typical code.

Example 13.1: Identifying Data and Instructions

/Times-Roman % data
findfont % instruction

24 % data
scalefont setfont % instructions

100 300 % data
moveto % instruction

(Data and Instructions) % data
show % instruction
157

Petitioner Apple Inc. - Exhibit 1040, p. 157

The dichotomy between the data and instructions in Example 13.1 can be
made more clear by a slight rearrangement of the instructions into a
procedure, which is then called with all of the data on the operand stack,
as in Example 13.2.

Example 13.2: Separating Data and Instructions

/textset % (string) Xloc Yloc scale fontname textset -
{ %def

findfont exch scalefont setfont
moveto show

} bind def

(Data and Instructions) 100 300 24 /Times-Roman%data
textset % instruction

But in another context, the font used and the position on the page might be
part of the algorithm, and not really just data used by the algorithm. For
instance, in a simple text formatter, the page number might always appear
in a fixed location in a particular font, but the page number itself would be
passed as data (see Example 13.3).

Example 13.3: Data as Part of the Algorithm

/pagenum % int pagenum -
{ %def

306 36 moveto /Courier 12 selectfont
(xxxx) cvs show
showpage

} bind def

3 % data
pagenum % instruction

A good working definition of data and instructions might be as follows:
instructions are the fixed aspects of the program, and data are things that
are provided by the user each time you run the program. That is a little
more forgiving (and useful) than a very strict definition in which an
operator (such as moveto) is always an instruction and its operands are
always data.
158 Chapter 13: PROGRAM DATA AND INSTRUCTIONS

Petitioner Apple Inc. - Exhibit 1040, p. 158

But why does it matter? What advantage is there in making a distinction
between the program’s instructions and its data?

One of the most common sources of program bugs (having the wrong
objects on the operand stack) can result when you change your mind
about the interaction between a program and its data. For example, you
might decide that the operands to your procedure should be presented in a
slightly different order as an optimization, but you might forget to change
one clause in your ifelse statement to reflect the change in data
representation. There are other ways in which the distinction between data
and instructions becomes important, as we see in the rest of this chapter.

TURNING DATA INTO INSTRUCTIONS

The instructions in your program are the fixed part, and the data are the
elements that can be different each time you run the program. But there
are circumstances in which data may actually be executed as instructions.

Let’s look at an example. If you were to write an emulator in PostScript
that made your printer pretend to be a line printer, then you may want to
make it recognize some simple line printer commands among the lines of
text to be printed. To simplify this somewhat, let’s say that you want to
recognize the form feed primitive that is often used in line printers. In
particular, the ASCII character for form feed is octal 013. Example 13.4 is
a very simple line printer emulator, written in PostScript, that will print
any lines of text it gets, and will eject the page to start a new one
whenever it encounters the form feed character. The form feed character
has been changed to (X) instead of (\013) in this example so you can see
the form feeds.
Chapter 13: PROGRAM DATA AND INSTRUCTIONS 159

Petitioner Apple Inc. - Exhibit 1040, p. 159

Example 13.4: Treating Carriage Return as an Instruction

% yet another line printer emulator
/left 36 def % margins
/bottom 36 def
/top 792 48 sub def
/buffer 1024 string def
/setup % - setup -
{ %def

/Courier 12 selectfont
left top moveto

} bind def
/emulate % - emulate -
{ %def

{ %loop
currentfile buffer readline { %ifelse

(X) search { %ifelse
gsave show grestore
pop showpage setup

} if
gsave show grestore
0 -14 rmoveto
currentpoint exch pop bottom le { %if

showpage setup
} if

}{ %else
showpage exit

} ifelse
} loop

} bind def
setup emulate
form feed is octal 013. Here is a very simple line printer emulator, written in
PostScript, that will print any lines of text it gets, and will eject the page to start a
new one whenever it encounters the form feed character:
Here comes a form feed X and some more text following it (should appear on the
new page).
X
Top of third page

There are many other possibilities for turning data into instructions.
Occasionally instructions must be read from a file rather than being
included in the program itself, in which case the instructions are data
while they are being read from the file, and before being executed.
Example 13.5 shows a simple looping program that reads lines from a file
and executes them (assuming that they are in fact PostScript instructions).
160 Chapter 13: PROGRAM DATA AND INSTRUCTIONS

Petitioner Apple Inc. - Exhibit 1040, p. 160

Although the run operator can perform precisely this task, the technique
of looping through a file is still useful in many situations.

Example 13.5: Executing Data Found in a File

/datafile (/usr/local/lib/sample.ps) (r) file def
/buffer 1024 string def
{ %loop

datafile buffer readline { %ifelse
cvx exec % execute the line of data just read

}{ %else
datafile closefile exit

} ifelse
} bind loop

This simplistic program won’t work with all data files, since it attempts to
execute exactly one line of the program at a time. If any delimiters such as
parentheses or braces are opened on one line but not closed until a
subsequent line, the code will not execute correctly.

TURNING INSTRUCTIONS INTO DATA

A good example of turning program instructions into data is the task of
listing (or printing out) a PostScript program so you can look at it on
paper. You may have already run into this situation if you have worked
much with the PostScript language. The previous example program that
works as a simple line printer emulator actually does convert PostScript
program code into data for typesetting if you should happen to feed it a
file that contains PostScript. Example 13.6 shows this same emulator with
slightly different data at the end. You might have to look closely to see
that last ten lines of the program are not executed, but are printed on the
page.

Figure 13.1 shows what the top of the output page would look like when
the program in Example 13.6 is executed.
Chapter 13: PROGRAM DATA AND INSTRUCTIONS 161

Petitioner Apple Inc. - Exhibit 1040, p. 161

Example 13.6: Instructions as Data (to be Line Printed)

% even more line printer emulation
/left 36 def % margins
/bottom 36 def
/top 792 48 sub def
/buffer 1024 string def
/setup % - setup -
{ %def

/Courier 12 selectfont
left top moveto

} bind def
/emulate % - emulate -
{ %def

{ %loop
currentfile buffer readline { %ifelse

(X) search { %ifelse
gsave show grestore
pop showpage setup

} if
gsave show grestore
0 -14 rmoveto
currentpoint exch pop bottom le { %if

showpage setup
} if

}{ %else
showpage exit

} ifelse
} loop

} bind def
% everything after the following “setup emulate” line will be printed on
% paper instead of executed:
setup emulate
%!
/datafile (/usr/local/lib/sample.ps) (r) file def
/buffer 1024 string def
{ %loop

datafile buffer readline { %ifelse
cvx exec % execute the line from the file

}{ %else
datafile closefile exit

} ifelse
} bind loop
162 Chapter 13: PROGRAM DATA AND INSTRUCTIONS

Petitioner Apple Inc. - Exhibit 1040, p. 162

Figure 13.1: Output of Example 13.6

DATA CONVERSIONS

Quite a few PostScript operators convert one data type to another. Once
you know that they exist, they are easy enough to use. There are also
some fancy ways to accomplish data conversion in the next few sections.
But first, some examples of common data conversions using the
appropriate PostScript operators (see Example 13.7).

Example 13.7: Converting Strings to Numbers

(12456) cvi % 12456
(2898.87) cvi % 2899
(117.5) cvr % 117.5
(120) cvr % 120.0
(5837.9) cvx exec % 5837.9
(612.0) token pop exch pop % 612.0
(612.0 792.0 moveto) token pop
exch token pop exch pop % 612.0 792.0

Example 13.8 shows the conversion of decimal numbers to an octal or
hexadecimal representation (the result is a string, since octal numbers do
not exist in the interpreter except as notation).

%!
/datafile (/usr/local/lib/sample.ps) (r) file def
/buffer 1024 string def
{ %loop
 datafile buffer readline { %ifelse
 cvx exec % execute the line from the file
 }{ %else
 datafile closefile exit
 } ifelse
} bind loop

output page
Chapter 13: PROGRAM DATA AND INSTRUCTIONS 163

Petitioner Apple Inc. - Exhibit 1040, p. 163

Example 13.8: Converting Decimal Numbers to Octal or Hex

/scratch (0000) def
32 8 scratch cvrs % (40)
193 16 scratch cvrs % (C1)
(y) 0 get 16 scratch cvrs % (79)

The program segments shown in Example 13.9 show how to convert back
and forth between name and string data types, which are very similar in
content. Remember that the slash (/) character often seen in programs is
not really part of the name, but just the syntax used to express a literal
name to the interpreter.

Example 13.9: Converting between Names and Strings

/scratch 128 string def
/Palatino-Roman scratch cvs % (Palatino-Roman)
(Palatino-Roman) cvn % /Palatino-Roman

Example 13.10 shows one way to convert an array to a procedure. Since
arrays are built in real time, you have to be careful not to accidentally
execute something that you intend to be placed on the operand stack.

Example 13.10: Converting Arrays to Procedures

% careful about executable names:
[

0 0 /moveto cvx
/Optima 24.0 /selectfont cvx
(Optima sample) /show cvx

] cvx

The cvs operator converts arbitrary data types to strings, which can be
useful for printing out data. However, the cvs operator cannot convert
composite objects like dictionaries or arrays to a string representation. An
example of this simple kind of conversion is given in Example 13.11,
with a workaround for composite objects. A better approach would be to
use the type operator to explicitly determine the type of the object, then
take some appropriate action to convert it to a string. Exercise 3 at the end
of this chapter explores this concept more fully.
164 Chapter 13: PROGRAM DATA AND INSTRUCTIONS

Petitioner Apple Inc. - Exhibit 1040, p. 164

Example 13.11: Converting Arbitrary Data to Strings

% /scratch 128 string def
/printobject { %def

dup 128 string cvs dup (--nostringval--) eq { %ifelse
pop type 24 string cvs

}{ %else
exch pop

} ifelse
} bind def
FontDirectory printobject
StandardEncoding printobject

CONCLUDING THOUGHTS

In this chapter, you’ve learned about data and instructions and how they
can be converted from one to the other. You’ve also seen how various
data types can be converted into other data types. These techniques will
come in handy in the next chapter as you begin using files.

EXERCISES

1. Take the following code segment and rewrite it so that all the data are
on the operand stack and all the instructions are inside a procedure.
Since the example has two sets of data, please call your procedure
twice, once with each set of data.

100 200 moveto 0.5 setgray
/Times-Roman findfont 96 scalefont setfont
(G) show
143 171 moveto 0.7 setgray
/Times-Roman findfont 96 scalefont setfont
(R) show

2. Write a procedure called cvhex that will turn an integer into a hexa-
decimal string and leave that string on the operand stack.

3. Write a procedure called tabshow that shows a string of text in the
current font, but treats tab characters specially by moving the current
point to the right by some fixed amount. (HINT: the ASCII code for a
tab is 9.)
Chapter 13: PROGRAM DATA AND INSTRUCTIONS 165

Petitioner Apple Inc. - Exhibit 1040, p. 165

166 Chapter 13: PROGRAM DATA AND INSTRUCTIONS

Petitioner Apple Inc. - Exhibit 1040, p. 166

Chapter 14

Using Files and
Input/Output Techniques

Opening a file to read or write data is one of the most fundamental
operations a program can perform. The PostScript language has good
support for file operations, although some conceptual understanding of
files is required to understand how to use these operators effectively.

File Objects

A file is always represented by a file object in a program. This is even true
in other languages, such as C, where a file descriptor is used in all file
references once you have opened the file. There is a bona fide PostScript
object for file objects, and all of the file-related PostScript operators
require the use of it. The file operator and the currentfile operator
provide the two standard ways to obtain a file object.
167

Petitioner Apple Inc. - Exhibit 1040, p. 167

Streams and Files

A stream is a special case of a file object that can only be accessed
sequentially. You have no real way to know, given an arbitrary file object,
whether or not you can read or write arbitrary parts of the file. It is best
always to assume that the file is a stream, and only to read sequentially
from it (or write sequentially to it). For example, the currentfile operator
will often return the file stream representing the serial port on the printer,
although it might represent a real disk file in an environment where there
is a file system available to the interpreter. As long as you use the
setfileposition operator with some care, the distinction between a stream
and a file probably won’t matter.

TIP Some file operations will work on virtually any PostScript interpreter,
such as reading from the current file or writing to the standard output
stream. Other file operations, such as explicitly opening a file by name,
checking the status of a file, or using a very specific operator like set-
fileposition, depend heavily on the existence of a file system supported
by the interpreter. It is very important to make sure that the interpreter
supports these operations before attempting them, or you may get an er-
ror. You can use the known or where operators to check for the existence
of certain operators, or you can consult the manual for your interpreter to
find out how to test for the presence of a file system.

As a rule of thumb, any printer equipped with a hard disk or any worksta-
tion running a PostScript interpreter will have access to the full range of
disk operations described in this chapter.

PostScript File Operators

Many PostScript operators read to, write from, or administer files. They
differ quite a bit in the details, but they all work in pretty much the same
way. Remember that you almost always need either a file object or a file
name with each of these operators. Also, keep in mind that the reading
and writing operators are analogous to the get and put operators. This will
help you to conceptualize the file operations somewhat; they both require
168 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 168

two basic pieces of information: what you want to read or write, and
which file you are interested in.

Table 14.1 contains a list of PostScript file operators. Some of these
operators are not available in early implementations of PostScript
printers, especially those without hard disk capabilities.

Table 14.1: PostScript File Operators

Arguments Operator Action
string1 string2 file file_object open file string1 with access string2

file_object closefile close file
string deletefile† ± remove file from device

string1 string2 renamefile† ± change file name string1 to string2
pattern proc scratch filenameforall† ± execute proc for files that match

pattern string (can use *)
file_object read int true read one character from file

 false
file_object int write write one character to file

file_object string readhexstring read hexadecimal strings
substring
boolean

file_object string writehexstring write hexadecimal strings
file_object string readstring string read string from file
file_object string writestring write string to file
file_object string readline string read through newline

file_object token token true read PostScript token from file
 false

file_object bytesavailable† int how many bytes left in file
flush flush stdout file

file_object flushfile flush file_object
file_object resetfile† reset file pointer to beginning of file

file_object int setfileposition† set file position to int
file_object fileposition† int return current position in file
file_object status† boolean is file_object still valid?

string status† pages return information on disk file named
 bytes string and leave data on stack
 referenced
 created
 true
or
 false
diskstatus†

 pages_used
 total_pages

string run execute contents of file string
currentfile file_object returns currently active file object
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 169

Petitioner Apple Inc. - Exhibit 1040, p. 169

string print write string to stdout output file
any = convert any to a string and write

string to stdout file, followed by a
newline

any1... anyn stack print contents of stack
any == convert any to a readable

representation and write to stdout
(works like =, but is more powerful),
followed by a newline

any1... anyn pstack print contents of stack non-
destructively

prompt used only in interactive (executive)
mode

echo used only in interactive (executive)
mode

NOTE: Operators marked by a dagger are not available on all
implementations (they are language extensions).

OPENING AND CLOSING FILES

To open a file in PostScript, you use the file operator (which you can
think of as an “open” operator, for all practical purposes). Opening a file
gives you a file object that you can then use for reading from or writing to
that file. The only tricky part is to make sure that there really is a file to
open.

The file operator requires a file name and a mode or permission string.
The file name is obvious. The mode is how you specify that you want to
open the file for reading, writing, or (in some implementations)
appending. If you open a file for writing (not appending), it will instantly
create a file of zero length, destroying any other file that might have
existed with that name. Because of this you should be especially careful
when you open files for writing the first few times.

Let’s look at the syntax of the file operator a little more closely.

filename mode file file_object

The exact syntax of the filename operand depends, to some extent, on the
environment in which the interpreter is running (see Table 14.2).
170 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 170

Table 14.2: Example File Names in Different Environments

Environment Example File Name
UNIX (/LocalLibrary/fonts/outline/Palatino-Roman)
Macintosh (:root:System Folder:PalatRom)
DOS (D:\FONTS\PALATROM.FNT)
PostScript (fonts/Palatino-Roman)

You will have to find some documentation for your system that details the
syntax for file names.

Table 14.3: Modes for Opening Files with file Operator

Mode Explanation
(r) open file for reading only
(w) open file for writing and delete any existing contents of file

The best way to make sure that the file name you are about to use is valid
is to use the status operator first (see Example 14.8 later in this chapter).

Example 14.1 shows some examples of the file operator in use, to give
you the flavor of some file names and modes:

Example 14.1: Sample Use of the file Operator

% NOTE: this is not a working program, just several individual examples
% of using the file operator
(/etc/passwd) (r) file
(fonts/Palatino-Roman) (w) file
(%stderr) (w) file
(%stdin) (r) file

Once your file is open, you can read from it (if you opened it with a mode
for reading) or write to it, as detailed in the next section. Don’t forget to
close it properly (with closefile) when you’re done (Example 14.2).

Example 14.2: Closing a File

/file_object (/etc/passwd) (r) file def
% ...
file_object closefile
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 171

Petitioner Apple Inc. - Exhibit 1040, p. 171

READING AND WRITING FILES

Once you have a valid file object, either from the file operator or the
currentfile operator, you can read from it or write to it any number of
times (or at least until you run out of data to read or until you fill up the
file system).

The read operator (and its variants) returns an exit status boolean to let
you know whether or not it succeeded. This lends itself nicely to an ifelse
statement for error checking, unless you are very sure that the operation
will succeed and you want the code to execute as fast as it can (which is,
actually, fairly often the case).

Reading from a File

There are several PostScript operators that you can use to read from a file
object. All but one require you to provide a buffer into which the operator
can place the bytes read from the file. The exception is the read operator;
it just reads a single byte from a file, and therefore it doesn’t need a
buffer. The size of the buffer is up to you. Most of the read operations in
PostScript will simply read until they fill up your buffer. In contrast, the
readline operator reads until it sees a specific end-of-line condition. This
can create two possible error conditions.

1. You might run out of data to read before you fill your buffer.
2. You might run out of buffer space before you get to an end-of-

line condition.

If you run out of data before the buffer is full, the operator you were using
to read from the file will tell you (by leaving false on the stack). There is
no general way to make sure that your use of readline won’t overflow
your buffer. If you’re worried about it, you can certainly use a very large
buffer (some implementations limit string sizes to about 64 kilobytes).

Example 14.4 illustrates use of the readstring operator to read data from
a file and write it to a new file.

Writing to a File

Writing to a file is very similar to reading from a file, with a couple of
exceptions. First of all, the writing operators do not return a boolean
172 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 172

indicating their success or failure. And second, there are a few special
character string conventions for such things as newlines and parentheses
that apply to strings that you write to a file (detailed in Table 14.4).

Table 14.4: Special Characters

In String Body Actual Character
\n newline
\r return character
\t tab
\b backspace
\f form feed
\\ backslash
\(left parenthesis
\) right parenthesis
\XXX three-digit octal character code, such as \037
\ a backslash followed by a newline indicates

no character, and is used to continue a long line
to avoid problems in environments where line lengths
are restricted

The most common operator for writing to a file is the writestring
operator, which takes an arbitrary string and writes it to the file object you
supply. The string is written exactly, byte for byte, to the output file, with
the exception of the special backslash escapes. In particular, writestring
does not automatically add a newline or carriage return to each line of text
written to the file. (If you want a newline, just put \n at the end of your
string before you call writestring.)

The program in Example 14.3 writes the StandardEncoding array out to
a temporary file.

Example 14.3: Writing an Array Out to a File

/tmpfile (/user/glenn/encoding.ps) (w) file def
/scratch 128 string def

tmpfile (/StandardEncoding [\n) writestring
StandardEncoding { %forall

tmpfile (/) writestring
tmpfile exch scratch cvs writestring
tmpfile (\n) writestring

} forall
tmpfile (] def\n) writestring
tmpfile closefile
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 173

Petitioner Apple Inc. - Exhibit 1040, p. 173

Copying and Renaming Files

In order to copy a file, you need to open it with mode (r), open the
destination file with mode (w), and use the loop operator to read from one
file and write to the other until you reach the end of the input file.
Example 14.4 copies the file (/etc/passwd) to a new file named
(/etc/passwd.BAK). It assumes that the original file already exists and
can be opened for reading.

Remember to write out the last partial buffer. When the readstring
operator returns false, there may be a few bytes in the substring that were
read before the end-of-file indication was encountered. This can be seen
in the else clause of the conditional in Example 14.4. The contents of the
string are written before the files are closed and before the loop is finally
exited.

Example 14.4: Copying a File

/infile (/etc/passwd) (r) file def % open files and save file objects
/outfile (/etc/passwd.BAK) (w) file def
/buff 128 string def % your buffer for reading operations
{ % loop

infile buff readstring { %ifelse
outfile exch writestring

}{ %else
outfile exch writestring
infile closefile
outfile closefile
exit % exit the loop

} ifelse
} bind loop

To rename a file, simply use the renamefile PostScript operator if it
exists. The program in Example 14.5 checks for the existence of
renamefile and if it is not found, it defines a procedure called renamefile
that emulates the behavior of the operator by copying the file to the new
name and then deleting the original file.
174 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 174

Example 14.5: Renaming a File

% emulate “renamefile” if it doesn’t exist (copy the old file to the new and
% then try to delete the old file if possible)...
/renamefile where { pop }{ %ifelse

/renamefile % (oldname) (newname) renamefile -
{ %def

(w) file /new exch def
dup (r) file /old exch def
/buff 256 string def
{ % loop

old buff readstring { %ifelse
new exch writestring

}{ %else
new exch writestring
old closefile new closefile exit

} ifelse
} loop
/deletefile where { pop deletefile } if

} bind def
} ifelse
(/user/glenn/encoding.ps) (/user/glenn/StandardEncoding.ps) renamefile

WRITING FORMATTED DATA TO FILES

If you need to write out a data file or create a file with formatted data in it,
you’ll need to become very familiar with the whole family of file writing
operators, as well as the data conversion operators (discussed in Chapter
13). Let’s look at some useful techniques.

Writing Out Various Data Types

There are many different PostScript data types. Some of them are easy to
write to a file; others present some challenges. To overgeneralize, simple
data types (including integer, real, boolean, and mark) are relatively easy
to convert into strings and write to a file, whereas composite objects such
as dictionaries and arrays require some extra steps.

Let’s look at a few procedures that will help you write out some data
types to a file. Example 14.6 and Example 14.7 provide some code that
you can draw from. The basic idea is to turn your data into a string, then
write that string to the output file with the writestring operator. Example
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 175

Petitioner Apple Inc. - Exhibit 1040, p. 175

14.6 shows you how to write numbers and names to a file. You should be
careful about white space and newline characters to keep the syntax of the
numbers and names correct.

Example 14.6: Writing Numbers and Names to a File

/fd (outputfile.ps) (w) file def
/scratch 1024 string def

/Wnum % num Wnum -
{ %def

scratch cvs fd exch writestring
} bind def
/Wname % /name Wname -
{ %def

dup type /nametype ne { %ifelse
fd (% invalid name\n) writestring pop

}{ %else
dup xcheck not { fd (/) writestring } if
scratch cvs fd exch writestring

} ifelse
} bind def

FontDirectory { %forall
pop Wname
fd (\n) writestring

} forall

fd closefile

Notice that the Wnum procedure in Example 14.6 doesn’t pay much
attention to the type of its operand, so you could use it for either an integer
or a real number. The beauty of the cvs operator (used inside the Wnum
procedure to convert the number to a string) is that it is polymorphic; it
doesn’t matter what type of object you present to it, as long as there is a
reasonable string equivalent. The Wname procedure is very much the
same as the Wnum procedure, except that it prints a leading slash if the
name presented to it is a literal name. Note that the slash is not part of the
name itself. The slash syntax helps you to create a literal name when your
program is parsed for the first time, but it just sets the literal flag on the
name object, and does not otherwise differ from an executable name.
176 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 176

Spaces, Tabs, Returns, and Special Characters

If you intend to do any serious formatting of the output file, you will need
to create white space, and you may need to write out some special
characters. For the most part, the backslash syntax used for special
characters will do this for you (see Table 14.4). To get them into your
output file, just put them into a string body and write that string to the file
with the writestring operator. You may find it convenient to use some
procedures to do this for you, such as those found in Example 14.7.

Example 14.7: White Space and Special Characters

/fd (outputfile.ps) (w) file def
/scratch 1024 string def

% these procedures all depend on “fd” being a valid output file descriptor
/Wname % /name Wname -
{ %def

dup type /nametype ne { %ifelse
fd (% invalid name\n) writestring pop

}{ %else
dup xcheck not { fd (/) writestring } if
scratch cvs fd exch writestring

} ifelse
} bind def
/Wstring { fd exch writestring } bind def
/Wline % (string) Wline -
{ %def

fd exch writestring return
} bind def
/space % - space -
{ %def

fd () writestring
} bind def
/return % - return -
{ %def

fd (\n) writestring
} bind def
/tab % - tab -
{ %def

fd (\t) writestring
} bind def
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 177

Petitioner Apple Inc. - Exhibit 1040, p. 177

% the following three lines of code will reproduce the
% first two lines of this program in the output file:
(%!) Wline
/fd Wname space ((outputfile.ps) (w)) Wstring
/file cvx Wname space /def cvx Wname return

fd closefile

FILE STATUS INFORMATION

One of the most useful bits of information about a file is the number of
bytes it contains. On most PostScript interpreters with file systems
(including printers with a hard disk), there are two ways to determine this.
The first is the status operator, to which you pass a file name. The status
operator actually provides several kinds of information about the file,
including how many pages of disk space it occupies (a page is typically
1,024 bytes), when it was last accessed, when it was written, and how
many bytes it contains. Here is the syntax of the status operator.

filename_string status
 pages bytes referenced created true
or
 false

The status operator returns a boolean which is false if the file exists, true
otherwise. If the file exists, the status operator also returns the other
fields shown in the syntax of the status operator. Example 14.8 shows the
status operator in use.

Example 14.8: Using status to Check a File

% this code opens a file for reading if it exists, else error message
(/etc/passwd) dup status { %ifelse

4 { pop } repeat % get rid of interesting file data
(r) open

}{ %else
print (is not a valid file name. Cannot open.\n) print flush
stop

} ifelse
178 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 178

NOTE: The status operator and the bytesavailable operator may not be
present in all implementations of the PostScript language. It is wise to
check for its existence before using it.

If the file is already open and you have a file object that represents it, you
can use the bytesavailable operator to determine how many bytes remain
in the file object. If you have already read some of the bytes,
bytesavailable will always return the remainder, or 0 if there are no more
bytes to be read.

Here is the syntax of the bytesavailable operator:

file_object bytesavailable int how many bytes left in file

The program in Example 14.9 uses the bytesavailable operator to pick a
random number for file access.

NOTE: The bytesavailable and setfileposition operators may not be
present in all implementations of the PostScript language. It is wise to
check for its existence before using it.

Example 14.9: Random File Access with setfileposition

% get a random word from UNIX dictionary file:
/fd (/usr/dict/words) (r) file def % open the file
rand fd bytesavailable mod % random number within file size
fd exch setfileposition % seek to that position in the file
fd 128 string readline pop pop % read partial line (at random position)
fd 128 string readline pop % read entire line --> your word
100 600 moveto
/Times-Italic 24 selectfont show

RANDOM VERSUS SEQUENTIAL ACCESS

Under normal circumstances, you should treat a file as though it were
only readable sequentially. That way, your program will not break if it is
transported into another environment where files may be implemented
differently. If you really need to perform random access on a file object,
the setfileposition operator will help you. You need to open the file either
for read (r) or write (w) to use the setfileposition operator (see Example
14.9).
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 179

Petitioner Apple Inc. - Exhibit 1040, p. 179

If you try to set the file pointer beyond the end of the file with
setfileposition, you will get an ioerror, so be careful that you know how
big the file is (using either the status or the bytesavailable operator).

CONCLUDING THOUGHTS

This chapter presented a broad overview of file operations in PostScript
and how to use them effectively. PostScript supports file I/O operations in
much the same way that other languages do, assuming that you have an
interpreter with full support for a file system. Remember, these and other
language extensions must be used somewhat carefully to make your code
truly portable across all implementations of the PostScript interpreter.

You should now have a pretty solid understanding of the PostScript
language and how it relates to other languages that you already know.
Hopefully by now you have even started to enjoy the fact that PostScript
works backwards and upside down, and you have learned to appreciate its
strengths and unique language characteristics—in short, you have learned
how to think in PostScript.

The simplicity and power of PostScript makes it a very good language to
write programs quickly and confidently that work the very first time, like
many of the examples in this book. By now you will have developed a
strong programming style and technique that lets you rough out a
program, look up the syntax of an occasional PostScript operator, and
proceed quickly with the knowledge that you are doing the right
thing—and in one of the world’s most interesting programming
languages.

EXERCISES

1. Write a procedure that finds all the fonts on the local hard disk speci-
fied as (fonts/FontName) and write just the font names to the stan-
dard output file. (HINT: use the filenameforall operator.)

2. Adapt the program from Exercise 1 to write both the font names and
the byte sizes of the font files to the standard output file.

3. Write a program that will open a file called prog.ps and execute the
file one token at a time (using the token and exec operators), writing
180 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 180

each token to another file called trace.ps. This program might be use-
ful for debugging prog.ps, since you can determine exactly how
much of the file prog.ps has been executed by looking in the trace
file. Don’t worry about getting the tokens to look exactly right in the
output file, as long as something gets written for each one and the
program executes to completion without error. (HINT: You will need
to be very careful with procedure bodies.)

4. In Exercise 2, you may have noticed that a lot of PostScript language
tokens do not have readable representations once they have been to-
kenized by the interpreter. Expand on Exercise 2, making sure that
strings, procedure bodies, and literal names are represented correctly
in the output file. You should be able to actually execute the resulting
trace.ps file and get the same results as the original file.
Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES 181

Petitioner Apple Inc. - Exhibit 1040, p. 181

182 Chapter 14: USING FILES AND INPUT/OUTPUT TECHNIQUES

Petitioner Apple Inc. - Exhibit 1040, p. 182

APPENDIX 183

Appendix
Appendix

Petitioner Apple Inc. - Exhibit 1040, p. 183

184 APPENDIX

Petitioner Apple Inc. - Exhibit 1040, p. 184

Appendix

Answers to Exercises

CHAPTER 1
1. Your answers to the question Why do you want to write a PostScript

program? will be varied, and there is no answer to this exercise, of
course. Here are some potential responses that might stimulate some
thought.

• You want to write a driver to control a laser printer.

• You are writing a graphics application for a computer system that
uses PostScript for display graphics.

• You want to modify the behavior of an existing PostScript
program, or to add functionality to (or fix bugs in) an existing
piece of application software you have been using.

• You want to include graphics in a text document you are
preparing.

• You are interested in PostScript as a programming language, and
want to write any program you can.

• You want to write fractal programs to draw fancy pictures on
your display or on your printer.
Appendix: ANSWERS TO EXERCISES 185

Petitioner Apple Inc. - Exhibit 1040, p. 185

These answers may seem contrived, but consider that the program
you write to include a figure in a paper you are writing may be
dramatically different than a graphics application running on a
PostScript display and even more different than a laser printer driver.

2. PostScript is a “backwards” (post-fix) language in order to minimize
the overhead, and to permit a program to be executed directly from a
stream or file without fitting the whole thing into memory.

3. PostScript is an interpreted language in order to keep it device
independent and to make it more portable. It also allows a program to
be executed directly from a file, regardless how long or complicated
the program is.

4. It is silly to write fractal programs in PostScript because the
calculations necessary to draw fractals usually are complex and take
forever in an interpreted language like PostScript. Also, since the
pictures themselves are generally static (the same picture will be
drawn each time you execute the program), it makes more sense to
execute the fractal algorithm in a compiled language, and generate a
PostScript description of the resulting image. That is a use of the
PostScript language that is more in keeping with its design.

CHAPTER 2
1. Notice that no variables or names are required to implement this fac-

torial algorithm. There are, of course, many other ways to accomplish
this task.

1 % leave on stack
10 -1 0 { mul } for
(10 factorial is) print ==

2. Here are some possibilities for PostScript’s greatest strengths as a
programming language.

• It is extensible and flexible.

• It is standard, extremely portable, and machine-independent.

• It is an interpreted language, making it easy to debug.

• It has many powerful “convenience” operators.
186 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 186

Here are some candidates for its greatest weaknesses.

• It is an interpreted language, making it fairly slow.

• It is not highly structured.

• It does not interface easily with other compiled languages.

3. Here are several language constructs that are available in both the C
and PostScript languages, of which you may have come up with four.
There may be others, as well.

• while loops

• if statements

• the ability to define and call procedures

• built-in mathematical operations for addition, subtraction,
multiplication, division, exponentiation, etc.

• boolean operations for and, not, or, and related bit-wise
operations

• array and string data types.

4. Here are some capabilities of the PostScript language that are not
available in other languages (you may have come up with any three
from this list, or perhaps others).

• built-in typographic operators for typesetting text (the show
operator or the findfont operator, for example)

• the dictionary data type

• the name data type

• the “path and paint” graphics model for constructing shapes and
filling or stroking them with color

• device-independent halftoning for shades of gray or color

• the ability to convert literal data types into executable program
fragments (for example, you can create an array of objects and
then make it an executable procedure body with one instruction).
Appendix: ANSWERS TO EXERCISES 187

Petitioner Apple Inc. - Exhibit 1040, p. 187

CHAPTER 3
1. The only syntax errors you can get arise from mismatched delimiters.

a) The parentheses are not nested correctly. The interpreter will read
past the (part 1) looking for the closing parenthesis. The corrected
code should be either of the following.

0 1 20 { (Hello world (part 1)) == flush } for
0 1 20 { (Hello world \(part 1) == flush } for

b) The syntax error in this program is the incorrect nesting of { }
brackets in the ifelse statement. The first clause does not have a
closing bracket. Better indentation shows this problem much more
clearly.

currentpoint exch 32 gt { %ifelse
72 lt { %if

showpage 36 500 moveto
} if

{ %else
(hello world \(part 2) show

} ifelse

2. Here is a simple procedure named line that takes four operands, the
x, y location for the beginning of the line and the x, y location for the
end of the line.

/line % X1 Y1 X2 Y2 line -
{ %def

4 -2 roll moveto
lineto stroke

} bind def
100 150 300 600 line
650 75 50 500 line

missing }
188 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 188

3. Here is a template for a procedure that contains an ifelse statement.

/myproc % - myproc -
{ %def

A B gt { %ifelse
% if A is greater than B

}{ %else
% B is greater than A

} ifelse
} bind def

4. Here is a procedure called ++ that will increment a variable.

/++ % /anyname ++ -
{ %def

dup load % load current value onto stack
1 add % add 1 to that value
def % store it back into same name

} bind def
/counter 0 def
/counter ++
/counter ++
counter == % should be 2

CHAPTER 4
1. In a page description, the prologue of procedure definitions should be

made as readable as possible, but the script that is generated by the
application should be made compact and efficient, since the prologue
is only executed once per document, but each procedure may be
called many times in the script.

2. Here are the kinds of PostScript programs that you might expect to
consume memory.

• downloaded font programs

• programs that load procedures into memory

• documents with string data in the body

• any program that stores data.

3. There is no reasonable way to use query programs in an environment
with one-way or batch communications.
Appendix: ANSWERS TO EXERCISES 189

Petitioner Apple Inc. - Exhibit 1040, p. 189

CHAPTER 5
1. The stringwidth operator returns a value for both x and y, a fact that

is often overlooked. The value 0 is left on the operand stack, since
only the y value is consumed from the call to stringwidth.

2. Here are the errors found in the various program segments.

a. This code segment raises no errors.

b. There is a typecheck error on command scalefont. Remember that
the findfont operator returns a dictionary on the operand stack that
is used by scalefont, but the scale factor is in the wrong position on
the stack. This could be fixed simply by changing scalefont to
exch scalefont in the exercise.

c. There is a typecheck error on command show. The trick in this ex-
ercise is to remember that stringwidth returns two values, one for
y and one for x. The 0 y component is used inadvertently instead of
the value for x, resulting in 0 0 rmoveto, then the x value is on the
stack when show is called, resulting in typecheck.

d. There is a typecheck error on command restore. Remember that
the restore operator leaves an object on the operand stack, and this
object is required by restore. In the exercise, the string body is du-
plicated with dup before show, leaving a copy on the stack when
restore executes. If you came up with invalidrestore, you were
close. If the code had been exch restore instead of just restore, an
invalidrestore error would have occurred, since the string object
that was still on the stack was created more recently than the last
save, making it illegal to restore as long as an instance of the
string is still on the operand stack. To fix this, you would need pop
restore instead of restore, or simply to remove the dup.
190 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 190

3. This is a fairly difficult problem. Once you eliminate the local
dictionary and the exch def lines, you have to start thinking carefully
about what is on the stack, where it is, and exactly how many times
you will need it. Here is one answer.

36 750 moveto /Times-Roman 24 selectfont
% works like “show”, leaving current point at proper location
/ushow % linethick lineposition (string) ushow -
{ %def

gsave
exch 0 exch rmoveto
dup stringwidth rlineto
exch setlinewidth stroke

grestore
show

} bind def
0.5 -4 (test underlined text) ushow

The following figure shows the output of this code.

test underlined text
output page

test underlined text
Appendix: ANSWERS TO EXERCISES 191

Petitioner Apple Inc. - Exhibit 1040, p. 191

CHAPTER 6
1. Each time around the for loop, the loop index is pushed onto the oper-

and stack and is added to the number that is already on the stack
(which starts out as 0). The program is equivalent to the following
arithmetic expression.

0 + 10 + 20 + 30 + 40 + 50 + 60 + 70 + 80 + 90 + 100

The result of this expression (and of the exercise) is 550.

2. Here is the program segment again. The results left on the operand
stack after its execution follow.

clear
/A /B /C /D /E /a /b /c /d /e
2 copy 6 index 6 index 12 -4 roll exch 5 3 roll

% results on operand stack.
/A /B /b /c /d /e /d /e /a /D /a /E /b

3. This is a pretty tricky task. Here is a procedure called reversestack
that will reverse the contents of the operand stack (the topmost
element becomes the bottom element). Notice the clever use of the
for operator and the loop variable it provides. Notice also that the
loop begins at 2 to avoid a 1 -1 roll.

/reversestack % any0 ... anyn reversestack anyn ... any0
{ %def

2 1 count 2 sub { %for
% use the loop counter as argument to “roll”
-1 roll

} for
} bind def
/a /b /c /d /e /f /g reversestack
192 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 192

4. Here is a procedure called standardfonts that finds all fonts defined
in FontDirectory that have a standard encoding. This procedure
leaves the names of the fonts on the operand stack.

/standardfonts % - standardfonts font0 ... fontn
{ %def

FontDirectory { %forall
/Encoding get StandardEncoding ne { pop } if

} forall
} bind def

standardfonts

CHAPTER 7
1. Here is a sample program that implements a case operator. It is cer-

tainly not the best nor the only way to implement it. Compare this
version to the one you came up with.

/case % mark proc bool0 proc0 ... booln procn case -
{ %def

% requires a pair of operands on
% the stack for each option: the
% matching case item and a procedure.
% You must have a mark at the bottom
% of your case pairs, and you must
% supply the thing to be tested on
% the top of the operand stack:
% mark { default }
% case3 { proc3 }
% case2 { proc2 }
% case1 { proc1 }
% item_to_test case

Appendix: ANSWERS TO EXERCISES 193

Petitioner Apple Inc. - Exhibit 1040, p. 193

/test_item exch def% save this
exch dup type /marktype ne { %ifelse

test_item eq { %ifelse
counttomark 2 add 1 roll
cleartomark
exec

}{ %else
pop

} ifelse
} %else

exec % default case
} ifelse

} bind def

2. The following procedure installs an emulation of the setcmykcolor
language extension by using the where operator to define this
procedure only if the setcmykcolor operator does not already exist.

/setcmykcolor where { %ifelse
pop % don’t need the dictionary

}{ %else
/setcmykcolor { %def

1 sub 4 1 roll
3 { %repeat

3 index add neg dup 0 lt {pop 0} if 3 1 roll
} repeat setrgbcolor pop

} bind def
} ifelse
194 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 194

3. Here is a rewrite of the image procedure body to check for the end-of-
file condition reported by the readhexstring operator.

/picstr 16 string def
100 100 translate 100 900 scale
16 2 8 [16 0 0 16 0 0]
{ %image

currentfile picstr
readhexstring not { %if

(ERROR end of file) == flush
stop

} if
} bind image
00FF00FF00FF00FF00FF00FF00FF00FF
00FF00FF00FF00FF

CHAPTER 8
1. The loop index is used directly as provided by the for operator on the

operand stack. Notice that neither the loop index nor the factorial
variable are stored into a dictionary. They are used directly from the
operand stack.

1 % leave 1 on stack
10 -1 1 { mul } for
(10 factorial is) print ==

2. The only trick to this is to rearrange the data in the opposite order on
the operand stack and to provide the correct number for the loop
constraint.

0 0 moveto
600 600
500 600
400 400
300 400
200 200
100 200
6 { lineto } repeat closepath fill

3. Notice the way the loop in the following segment of code takes
advantage of the way the search operator works, and uses the
arguments in a very natural way.
Appendix: ANSWERS TO EXERCISES 195

Petitioner Apple Inc. - Exhibit 1040, p. 195

(Here is a string with some spaces in it)
/count 0 def
dup % save the original string body
() % a space
{ %loop

search { %ifelse
pop /count count 1 add store

}{ %else
pop exit

} ifelse
} bind loop

4. Remember that the forall operator, when applied to a string body,
leaves the integer byte value of each character on the operand stack.
A string comparison won’t work, so we need to compare it to the byte
value for a space (retrieved directly from a string to maintain device-
independence).

(Here is a string with some spaces in it)
dup % save the string
0 % initial value of counter
() 0 get % byte code for space
3 -1 roll % 0 32 (Here is a string...)
{ %forall

1 index eq { exch 1 add exch } if
} bind forall
pop % byte code for space

% counter is now on top of stack
% original string is just below it

5. There were two bugs in the program, each of which alone would
result in a typecheck error on restore when executing the program.
In both cases, the problem was that the loop index was left on the
operand stack. In the first loop, the dup operator should not have been
used, since it caused the loop index to be left on the stack after each
iteration. In the second loop, the 1 index had the same effect, and
should have been simply exch.
196 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 196

% draw a grid of 20 x 10 lines
save

0.1 setlinewidth
20 20 translate
0 10 200 { %for

% dup
0 moveto 0 100 rlineto

} for
stroke
0 10 100 { %for

% 0 1 index moveto 200 0 rlineto
0 exch moveto 200 0 rlineto

} for
stroke

restore

CHAPTER 9
1. The secret is to rearrange the order in which the data are provided on

the operand stack to suit the order in which the operators in the proce-
dure require data.

/TEXT % (string) ptsize /fontname X Y TEXT -
{ %def

moveto
findfont exch scalefont setfont
show

} bind def
(This is an example of Times-Bold)
24 /Times-Bold 100 100 TEXT

2. This requires copying one of the procedures.

/concatprocs % proc1 proc2 concatprocs proc3
{ %def

dup length 2 add array
exch 1 index 2 exch putinterval
dup 1 /exec cvx put
dup 3 1 roll 0 exch put
cvx

} bind def
Appendix: ANSWERS TO EXERCISES 197

Petitioner Apple Inc. - Exhibit 1040, p. 197

Here is another alternative that uses a LOCAL dictionary.

/concatprocs % proc1 proc2 concatprocs proc3
{ %def

LOCAL begin
/proc2 exch def
/proc1 exch def
/new /proc2 load length 2 add array def
new 2 /proc2 load putinterval
new 1 /exec cvx put
new 0 /proc1 load put
/new load cvx

end
} bind def
/concatprocs load 0 3 dict put

3. Here is a procedure called def that is functionally equivalent to the
built-in def operator. The key is to use the put operator, and to make
sure the entry goes into the current dictionary.

/def % key value def -
{ %def

currentdict 3 1 roll put
} bind def
198 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 198

4. Here is a “debugging” version of the moveto operator. Make sure you
don’t get into a recursive loop; load the existing value of moveto into
your procedure.

/moveto load
/moveto % X Y moveto -
{ %def

LOCAL begin
dup /Y exch def
1 index /X exch def
X 612 gt Y 792 gt
X 0 lt Y 0 lt or or or { %if

(errant X:) print X ==
(errant Y:) print Y ==

} if
end
MOVETO

} bind def
% replace LOCAL (in position 0 of proc):
/moveto load 0 2 dict put
% replace MOVETO (in last position of proc):
/moveto load dup length 1 sub 3 -1 roll put

CHAPTER 10
1. The value left on the operand stack after executing the following short

program segments is 16. The following walk-through of the program
segment shows how that answer was derived.

/variable 7 def % define /variable in current dict
5 dict dup begin % new dict on op-stack and dict-stack

/variable 9 def % /variable is 9 in new dict (both places)
end % remove one copy of new dict from dict-stack
/variable dup load % loads from original (current) dict => 7
3 1 roll get % “get” from new dict copy still on op-stack (9)
add % 7 + 9 = 16
Appendix: ANSWERS TO EXERCISES 199

Petitioner Apple Inc. - Exhibit 1040, p. 199

2. The following definition for boxproc replaces the dictionary named
LOCALDICT with an anonymous dictionary.

/boxproc % X Y W H boxproc -
{ %def

REPLACE_ME begin
/height exch def
/width exch def
/Y exch def
/X exch def
X Y moveto
0 height rlineto
width 0 rlineto
0 height neg rlineto
closepath
fill

end
} %now replace the dictionary
dup 0 12 dict put bind def

3. These three operators in the PostScript language have an effect on the
dictionary stack: begin, end, currentdict.

4. This program shows the names of all fonts stored in FontDirectory.

FontDirectory { pop == } forall

CHAPTER 11
1. The contents of the array constructed by the code

[0 0 moveto 100 100 lineto currentpoint]

are simply [100 100]. The code in between [and] is actually
executed, and only the final currentpoint operator leaves anything
on the operand stack.
200 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 200

2. Here is some PostScript code to create a two-dimensional array 5
elements wide and 10 elements deep.

[5 { 10 array } repeat]

Another, more straightforward way to get this would be

[10 array 10 array 10 array 10 array 10 array]

This actually produces a single array with 5 arrays as its elements;
each sub-array contains ten elements. Although this can be thought of
as a two-dimensional array, there is actually no easy way to access an
element in two-space. You have to use the get operator twice, once on
the primary array, and again in the sub-array.

3. Here is a procedure called extractfontname that will take a string
like (fonts/Palatino-Roman) as input and strip off the (fonts/) part of
the name, leaving just (Palatino-Roman).

/extractfontname % (fonts/FontName) extractfontname (FontName)
{ %def

dup length 6 sub 6 exch getinterval
} bind def
(fonts/Palatino-Roman) extractfontname
Appendix: ANSWERS TO EXERCISES 201

Petitioner Apple Inc. - Exhibit 1040, p. 201

CHAPTER 12
1. To create a procedure that draws a vertical line, you will need to get

some data from somewhere, but you can generate some of the data in-
ternally within the procedure. In particular, you only need the x loca-
tion of one of the endpoints, and need not duplicate that data. Here is
a procedure called V that does this.

/V % linewidth Height Xloc Yloc V
{ %def

gsave
moveto % Xloc and Yloc from stack
0 exch rlineto % use Height from stack
setlinewidth % use linewidth from stack
stroke

grestore
} bind def

3.5 150 200 200 V
1.0 125 300 200 V

2. The calculation of where to put the underline and how thick to make it
depends on several things. First of all, the position of the underline
depends on the text being underlined—both its position on the page
and its point size (the underline should be further away from the text
baseline for larger text). This font information is available in the
PostScript interpreter as well as in Font Metric files or other tables in
the host environment.

a. The main disadvantage of performing this calculation in your Post-
Script program is performance; it will take some time to execute in
PostScript. Also, it will increase the complexity of your PostScript
code a fair amount. The other disadvantage is that you don’t know
anything else about the page on which you’re underlining text. For
example, if you underline three words in a row, each of which is in
a different font, you would prefer not to have the underline change
thickness beneath the second or third word, and there is no reason-
able way to know about this at the PostScript level.
202 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 202

b. The main disadvantage of doing underline calculations in your
word processor is that you may not have the font metric informa-
tion available to you on the host end, or the information could be
mismatched with the actual font used in the interpreter.

3. An array turns out to be the most convenient data type to use to
implement a stack. You will need a variable that serves as a stack
pointer (to point to the top of the stack) and two procedures,
stackpush and stackget. The following code implements all of this.

/STACK 50 array def % the stack data structure
/PTR 0 def % the stack pointer

/stackpush % any stackpush
{ %def

STACK exch PTR exch put
/PTR PTR 1 add def

} bind def

/stackget % stackget any
{ %def

/PTR PTR 1 sub def
STACK PTR get

} bind def

(Testing) stackpush
/Times-Roman 24 stackpush stackpush
72 600 stackpush stackpush

stackget stackget moveto
stackget stackget selectfont
stackget show
Appendix: ANSWERS TO EXERCISES 203

Petitioner Apple Inc. - Exhibit 1040, p. 203

CHAPTER 13
1. Here are the two sets of data separated from the instructions.

/myproc % (string) /FontName ptsize gray Xloc Yloc myproc
{ %def

moveto setgray
exch findfont exch scalefont setfont
show

} bind def

(G) /Times-Roman 96 0.5 100 200 myproc
(R) /Times-Roman 96 0.7 143 171 myproc

2. Here is a procedure called cvhex that takes an integer and turns it into
a hexadecimal string. It just uses the cvrs operator.

/scratch 128 string def
/cvhex % int cvhex <hex_string>
{

16 scratch cvrs
} bind def

1245 cvhex

3. Here is a procedure called tabshow that shows a string of characters,
moving 24 points to the right for each tab character encountered.

/tabshow % (string) tabshow
{ %def

{ %loop
(\t) search { %ifelse

show % show pre string
pop % get rid of tab
24 0 rmoveto % move current point

} { %else
show exit

} ifelse
} loop

} bind def

/Times-Roman findfont 24 scalefont setfont
100 100 moveto (abc\tdef\tghi) tabshow
204 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 204

CHAPTER 14
1. Here is a program that will write all the font names from the hard disk

to the standard output file.

(fonts/*) { %filenameforall
dup length 6 sub 6 exch getinterval
print (\n) print flush

} 128 string filenameforall

2. Here is an adaptation of Exercise 1 that includes the byte sizes of the
font files, too.

(fonts/*) { %filenameforall
dup dup length 6 sub 6 exch getinterval
print () print
status { %if

% status returns: pages bytes referenced created
pop pop exch pop (XXXXXXX) cvs print

} if
(\n) print flush

} 128 string filenameforall

3. Here is a program that will open a file called prog.ps and execute the
file one token at a time, writing each token to an output file.

% open prog.ps and execute one token at a time, writing each token
% to trace.ps as you go

/infile (prog.ps) (r) file def
/outfile (trace.ps) (w) file def
/buff 65535 string def % very large buffer
Appendix: ANSWERS TO EXERCISES 205

Petitioner Apple Inc. - Exhibit 1040, p. 205

{ %loop
infile token { %ifelse

dup buff cvs
outfile exch writestring
outfile (\n) writestring
dup type /arraytype ne { %if

exec % execute the token
} if

} { %else
infile closefile
outfile closefile
exit

} ifelse
} bind loop

4. Here is the program from Exercise 2, enhanced to handle procedures,
arrays, and names correctly in the output file.

/infile (prog.ps) (r) file def
/outfile (trace.ps) (w) file def
/buff 65535 string def % very large buffer
/writeout % (string) writeout
{ %def

outfile exch writestring outfile (\n) writestring
} bind def
/writeany % any writeany
{ %def

dup type /arraytype ne { %ifelse
dup type /nametype eq { %ifelse

dup xcheck not { outfile (/) writestring } if
buff cvs writeout

}{ %else
dup type /stringtype eq {

outfile (\() writestring
outfile exch writestring
(\)) writeout

}{ %else
buff cvs writeout

} ifelse
} ifelse

}{ %else
206 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 206

dup xcheck { %ifelse
({ %begin procedure) writeout

{ outfile () writestring writeany } forall
(} %end procedure) writeout

}{ %else
% can't have any other kind of array
(% encountered regular array) writeout

} ifelse
} ifelse

} bind def

% loop through the input file, reading and executing
% the tokens
{ %loop

infile token { %ifelse
dup writeany
dup type /arraytype ne { exec } if

} { %else
infile closefile
outfile closefile
exit

} ifelse
} bind loop
Appendix: ANSWERS TO EXERCISES 207

Petitioner Apple Inc. - Exhibit 1040, p. 207

208 Appendix: ANSWERS TO EXERCISES

Petitioner Apple Inc. - Exhibit 1040, p. 208

209

IndexesIndexes

Petitioner Apple Inc. - Exhibit 1040, p. 209

210 INDEX OF EXAMPLE PROGRAMS

Petitioner Apple Inc. - Exhibit 1040, p. 210

Index of
Example Programs

Chapter 1: PostScript as a
Programming Language .. 1

Example 1.1: Repetitive Algorithms .. 5

Chapter 2: PostScript is Not Like C 9

Chapter 3: Foundations .. 17

Example 3.1: The Programming Cycle .. 18
Example 3.2: Defining and Using Named Objects................................. 21
Example 3.3: Keeping Variables with Procedure Definitions................ 22
Example 3.4: Alternative Indentation Style for Procedures 23
Example 3.5: Indentation Style for Dictionaries and Structure.............. 24
Example 3.6: Setting Up Templates ... 25
Example 3.7: Declaring Variables.. 27
Example 3.8: Using Variables .. 27
Example 3.9: Arithmetic in C... 27
Example 3.10: Arithmetic in PostScript ... 28
Example 3.11: Evaluation of Constants with // 28
Example 3.12: After Immediate Name Lookup with // 29
211

Petitioner Apple Inc. - Exhibit 1040, p. 211

Example 3.13: Comparison of Different Types of Objects 32
Example 3.14: Procedure to Compare Array Contents........................... 33

Chapter 4: Some Typical Programs....................... 37

Example 4.1: Sample Page Description Program................................... 39
Example 4.2: Sample Font Program... 41
Example 4.3: Sample Program that Reads Data 42
Example 4.4: Sample Query Program .. 43
Example 4.5: Sample Encapsulated PostScript Program........................ 44
Example 4.6: Sample Printer-Resident Program 46
Example 4.7: Sample Display-Server-Resident Program....................... 47

Chapter 5: Understanding the Stack 51

Example 5.1: Simple Use of the Operand Stack..................................... 54
Example 5.2: Each Operator Uses the Operand Stack............................ 56
Example 5.3: The findfont Operator Returns a Dictionary 57
Example 5.4: Operator Prefix Notation in C .. 58
Example 5.5: Operator Infix Notation in C .. 58
Example 5.6: Postfix Notation in PostScript .. 59
Example 5.7: Programming One Token at a Time 59
Example 5.8: Procedure Arguments on the Stack 59

Chapter 6: Trusting the Stack 67

Example 6.1: Using exch def in a Procedure.. 70
Example 6.2: Using index in a Loop Body .. 72
Example 6.3: Accidentally Leaving Dictionary on Stack....................... 75
Example 6.4: Correctly Maintaining Dictionary Stack 75
Example 6.5: Recursion Using the Dictionary Stack 76
Example 6.6: Recursion Using the Operand Stack................................. 77

Chapter 7: Building Conditional Statements 79

Example 7.1: Constructing a Conditional... 80
Example 7.2: Filling in the Conditional Template 80
212 Index of Example Programs

Petitioner Apple Inc. - Exhibit 1040, p. 212

Example 7.3: Thinking through a Conditional 81
Example 7.4: Setting Up the Conditional ... 81
Example 7.5: Using a Conditional with readhexstring.......................... 82
Example 7.6: Procedure with Typechecking .. 84
Example 7.7: Conditionals at Work.. 84
Example 7.8: Redefining ifelse for Testing.. 85
Example 7.9: Basic Conditional Statement .. 86
Example 7.10: The Same Conditional Built on the Fly.......................... 86
Example 7.11: Redefining ifelse for Debugging 87
Example 7.12: Nested Conditionals ... 88
Example 7.13: Compound Conditional with ifelse................................. 89
Example 7.14: Compound Conditional with loop 89
Example 7.15: Compound Conditional Using Name Lookup................ 90

Chapter 8: Using Looping Constructs................... 93

Example 8.1: Simple Loop to Draw an Octagon.................................... 95
Example 8.2: Ignoring Loop Index... 96
Example 8.3: Using Loop Index for Line Weight 97
Example 8.4: Finding Font Names with Looping Operators.................. 98
Example 8.5: Using bind on Loop Bodies.. 99
Example 8.6: Putting Objects into Loop Bodies 99
Example 8.7: Optimizing the Image Procedure.................................... 100
Example 8.8: A Program with Repeated Instructions 101
Example 8.9: Using repeat for Instructions.. 101
Example 8.10: Exiting a Loop .. 103

Chapter 9: Procedures .. 105

Example 9.1: Typical Procedure Definition ... 107
Example 9.2: Alternative Ways to Define a Procedure........................ 107
Example 9.3: Procedure S of Example 9.1 .. 109
Example 9.4: Procedure S and Data Rearranged.................................. 109
Example 9.5: Code without the Procedure ... 109
Example 9.6: Data in a More Familiar Arrangement 109
Example 9.7: Data Arrangement for Use by a Procedure 110
Example 9.8: Disorganized and Inefficient Use of Procedures............ 111
Example 9.9: Efficient Procedure... 112
Index of Example Programs 213

Petitioner Apple Inc. - Exhibit 1040, p. 213

Example 9.10: Efficient Procedure without Local Names 112
Example 9.11: Existing Transfer Function ... 114
Example 9.12: New Transfer Function to be Set.................................. 114
Example 9.13: Resulting Transfer Function ... 115
Example 9.14: Invoking the Old Function from the New One............. 115
Example 9.15: Procedure that Redefines Itself..................................... 116

Chapter 10: Using Dictionaries 119

Example 10.1: Sample Dictionary Entry .. 120
Example 10.2: Using Dictionary to Control Name Scoping 121
Example 10.3: Dictionary as Local Storage for a Procedure................ 122
Example 10.4: All Procedures within One Global Dictionary 123
Example 10.5 Exchanging Topmost Dictionaries with dictexch 125
Example 10.6: Using put and get for Dictionary Entries 126
Example 10.7: Scoping with put and get .. 126
Example 10.8: Browsing a Dictionary with forall 127
Example 10.9: Using type on each Element in a Dictionary 128
Example 10.10: Conditionally Defining a Procedure........................... 129
Example 10.11: Redefining showpage to Print Draft Notice 131
Example 10.12: Redefining show to Help Debugging 131
Example 10.13: Using load to Get Previous Definitions...................... 132

Chapter 11: Creating and Manipulating Data...... 135

Example 11.1: Sample Constructed Array ... 135
Example 11.2: Making a Procedure into a Literal Array...................... 136
Example 11.3: Creating and Filling an Empty Array 137
Example 11.4: Creating Strings with the Scanner 137
Example 11.5: Anatomy of the put Operator 138
Example 11.6: Anatomy of the putinterval Operator........................... 139
Example 11.7: Concatenating Two Strings Together........................... 140
Example 11.8: Creating a Literal String ... 140
Example 11.9: Reading String Data from a File................................... 141
Example 11.10: Reading and Executing Data from a File 142

Chapter 12: Storing and Using Data.................... 145
214 Index of Example Programs

Petitioner Apple Inc. - Exhibit 1040, p. 214

Example 12.1: Using Too Many Variables .. 146
Example 12.2: Simple Model for Underlining Text............................. 147
Example 12.3: Sample Use of this Underlining Model........................ 148
Example 12.4: Fleshing Out the Underlining Code.............................. 148
Example 12.5: Actually Drawing the Underlines................................. 149
Example 12.6: Simplifying the Underlining Code 150
Example 12.7: List Elements as C Structures....................................... 152
Example 12.8: List Elements as PostScript Array Objects................... 153
Example 12.9: Forming a List of Array Objects 153
Example 12.10: List Element as a PostScript Dictionary..................... 154
Example 12.11: Linking a New Element to the List 155

Chapter 13: Program Data and Instructions 157

Example 13.1: Identifying Data and Instructions 157
Example 13.2: Separating Data and Instructions.................................. 158
Example 13.3: Data as Part of the Algorithm....................................... 158
Example 13.4: Treating Carriage Return as an Instruction 160
Example 13.5: Executing Data Found in a File.................................... 161
Example 13.6: Instructions as Data (to be Line Printed)...................... 162
Example 13.7: Converting Strings to Numbers.................................... 163
Example 13.8: Converting Decimal Numbers to Octal or Hex 164
Example 13.9: Converting between Names and Strings 164
Example 13.10: Converting Arrays to Procedures 164
Example 13.11: Converting Arbitrary Data to Strings 165

Chapter 14: Using Files and
Input/Output Techniques 167

Example 14.1: Sample Use of the file Operator 171
Example 14.2: Closing a File.. 171
Example 14.3: Writing an Array Out to a File 173
Example 14.4: Copying a File .. 174
Example 14.5: Renaming a File.. 175
Example 14.6: Writing Numbers and Names to a File......................... 176
Example 14.7: White Space and Special Characters 177
Example 14.8: Using status to Check a File... 178
Example 14.9: Random File Access with setfileposition 179
Index of Example Programs 215

Petitioner Apple Inc. - Exhibit 1040, p. 215

216 Index of Example Programs

Petitioner Apple Inc. - Exhibit 1040, p. 216

Chapter 1: PostScript as a
Programming Language 1

Chapter 2: POSTSCRIPT IS NOT LIKE C 9

Chapter 3: FOUNDATIONS 17

Chapter 4: Some Typical Programs 37

Figure 4.1: Output from Example 4.2 43
Figure 4.2: Output from Example 4.5 47
Figure 4.3: Shared Memory Configuration 51

Chapter 5: Understanding the Stack 53

Figure 5.1: Tracing the Execution of Example 5.1 57
Figure 5.2: Visual Chunking for Example 5.3 60
Figure 5.3: Output of Example 5.8 63
Figure 5.4: Last Object In is the First Out 63
Figure 5.5: Duplicating a Composite Object 65
Figure 5.6: Changing a Composite Object 65

Chapter 6: Trusting the Stack 69

Figure 6.1: Positive Rolling 76
Figure 6.2: Negative Rolling 76

Chapter 7: Building Conditional Statements 83

Chapter 8: Using Looping Constructs 97

Figure 8.1:Output of Example 8.2 100
Figure 8.2: Output of Example 8.3 101
Figure 8.3: Output of Example 8.9 106
Thinking in PostScript: Index of Figures 253

Petitioner Apple Inc. - Exhibit 1040, p. 217

Chapter 9: Procedures 109

Figure 9.1: Object Pointer in a Procedure Body 120

Chapter 10: Using Dictionaries 123

Figure 10.1: Mechanics of the dictexch Procedure 129

Chapter 11: Creating and Manipulating Data 139

Figure 11.1: Output of Example 11.11 148

Chapter 12: Storing and Using Data 151

Figure 12.1: Structure of the PostScript Linked List 160

Chapter 13: Program Data and Instructions 163

Figure 13.1: Output of Example 13.6 169

Chapter 14: Using Files and
Input/Output Techniques 173
254 Thinking in PostScript: Index of Figures

Petitioner Apple Inc. - Exhibit 1040, p. 218

Subject Index
A
algorithms 6, 12, 158
allocating memory 29
argument passing 76
arithmetic 27
array object 51
arrays 135

concatenating 139
construction 135
converting to procedures 164
for linked lists 152
versus dictionaries 141

ASCII 2

B
backslash 20
backspace 173
basic skills 17
begin 22
begin operator 126
booleans 82
braces 20, 22
bytesavailable operator 169, 179

C
C programming language 9

C structures 152
carriage return 160, 173, 177
case statement 79
closefile operator 31, 169
closing a file 170
comments 20
comparison of objects 32
composite objects 30, 51, 61
concatenating arrays 139
concatenating strings 139
conditionals 73, 79

compound 88
constructing 80
nesting 87
templates for 80
true and false 81

currentfile operator 167, 168, 169, 172
cvs operator 164

D
data

converting types 163
storing and using 145
versus instructions 157

data on operand stack 69
data storage in dictionaries 119
217

Petitioner Apple Inc. - Exhibit 1040, p. 219

data structures 6, 69, 141, 151, 155
data types 51
def operator 54, 126
definitions 21
deletefile operator 169
delimiters 20
dictfull error 123
dictionaries 119

for linked lists 154
global 123
local 121
versus arrays 141

dictionary stack 62, 63, 75
disk (see files) 167
diskstatus operator 178
displays 4
Document Structuring Conventions 21
dup operator 71

E
emulator, line printer 159, 161
Encapsulated PostScript 43
end operator 126
EPSF 43
equality 32
error, syntax 19
/etc/passwd 174
example programs 37
exch def 61, 70
exch operator 71
executable names 60
execution model 54
execution stack 62, 63
exitserver operator 46

F
file objects 167
file operator 167, 169
filenameforall operator 169

files
copying and renaming 174
file naming 171
open modes 171
opening and closing 31, 167, 170
random access 179
reading and writing 168
reading instructions from 160
sequential access 179

findfont operator 57
flow charts 12
font names 98
font programs 40
for loops 93
forall operator 127
form feed 159
functions 76, 105

G
get operator 126
goto 3
graphics state stack 62, 63
grouping 56

H
hard disk (see files) 167
hard disk status 178

I
ifelse operator (see also conditionals) 79
image operator 100
immediate name lookup 29
indentation 20, 22
index operator 71
input/output 14
instructions versus data 157
intuition 56
ioerror 180

K
known operator 129
218 Subject Index

Petitioner Apple Inc. - Exhibit 1040, p. 220

L
language

// notation 28
arrays versus dictionaries 141
dictionaries 119
extensibility 13
indentation 22
name lookup 53
name scoping 120
names 26
syntax 19
thinking backward 58

last-in, first-out 60
line printer 161
linked lists 151
local dictionaries 121
local variables 76
loop operator 174
loops 73, 93

as procedure bodies 99
exiting 102
finding font names 98
image operator 100
loop index 95
table of arguments 98
table of operators 94
template for 94
using bind 99

M
memory 29

N
name lookup 29, 53, 60
name scoping 120
names 26, 60

converting to strings 164
writing to a file 176

naming conventions 111, 113
naming procedures 111
newline 173

numbers
converting from strings 163
converting to octal or hex 163
writing to a file 176

O
object types 32
objects

composite 51, 61
converting to strings for printing 164,

175
simple 51

octal characters 173
opening a file 170
operand stack 53, 56, 67, 146
operands 60
operators, redefining 130

P
page description 37
parameter passing 108
parentheses 20
persistently resident programs 46
postfix 58
prefix 58
preview 45
procedures 105

arguments 59
concatenating 114
constructing good 111
converting to arrays 164
defining 21, 107
efficiency 111
interleaving data 109
naming 111
organization 111
overview 106
parameter passing 108
perspective on 11
self-modifying 114

program development cycle 17
program structure 20
Subject Index 219

Petitioner Apple Inc. - Exhibit 1040, p. 221

programming cycle 18
prologue 21
pstack operator 170
put operator 126

Q
query programs 43
queues 155

R
read operator 169
readhexstring operator 82, 169
reading data 42
reading data from a file 142
readline operator 169, 172
readstring operator 172, 174
recursion 76
redefining operators 130
renamefile operator 169, 174
repetitive algorithms 5
roll operator 71, 72
run operator 161, 169

S
save object 51
search path 13
self-modifying procedures 114
setfileposition operator 168, 169, 179
shared memory 47
showpage operator 131
simple object 51
software cycle 19
stack

dictionary 62
looping 73
overview 53
rearranging 71
rolling 72
trusting the 67

StandardEncoding 173
status operator 169, 178
stream (see file) 168

string object 51
strings 135

concatenating 139
construction 137
converting to names 164
converting to numbers 163
I/O 140
put and get 137
scanner syntax 137

structured programming 3
style

ifelse statements 24
indentation 22
local dictionaries 121
naming conventions 113
templates 24

syntax 19
// name lookup 28

T
tab character 173, 177
templates 24
token operator 169
transfer function 114
trees 155
trusting the stack 67
type operator 127
typecheck operator 75
types 32
typical programs 37

U
underlining 147
UNIX 13
UNIX files 171, 179
/usr/dict/words 179

V
variables 22, 26, 146
visual chunking 56
220 Subject Index

Petitioner Apple Inc. - Exhibit 1040, p. 222

W
where operator 75, 129
while loops 93
while operator 79
window systems 4
write operator 169
writestring operator 169, 173
Subject Index 221

Petitioner Apple Inc. - Exhibit 1040, p. 223

	Preface
	PostScript as a Programming Language
	DESIGN FEATURES
	STRUCTURED PROGRAMMING TECHNIQUES
	PROGRAMMING TASKS
	WINDOW SYSTEMS, COMMUNICATIONS, AND DISPLAYS
	DATA STRUCTURES AND ALGORITHMS
	CONCLUDING THOUGHTS

	PostScript is Not Like C
	COMPARISON OF LANGUAGE MECHANISMS
	TIP A PostScript procedure is simply a set of oper...

	EXPRESSING AN ALGORITHM AS A PROGRAM
	THE UNIX SHELL AND OPERATING SYSTEM
	TIP Here’s a trick that you may find very helpful ...

	INPUT, OUTPUT, AND THROUGHPUT
	CONCLUDING THOUGHTS

	Foundations
	POSTSCRIPT LANGUAGE SYNTAX
	SIMPLE PROGRAM STRUCTURE
	Make Definitions First
	Indentation Style

	SETTING UP TEMPLATES
	DECLARING AND USING VARIABLES
	Arithmetic with Numeric Variables
	Using the // Notation for Constants

	ALLOCATING MEMORY
	Table 3.1 : Operators that Explicitly Allocate Mem...
	Arguments Operator Action
	Arguments Operator Action

	GETTING MEMORY BACK
	OPENING AND CLOSING FILES
	COMPARISONS AND EQUALITY OF OBJECTS
	CONCLUDING THOUGHTS

	Some Typical Programs
	A TYPICAL PAGE DESCRIPTION PROGRAM
	FONT PROGRAMS
	PROGRAMS THAT READ DATA
	QUERY PROGRAMS
	ENCAPSULATED POSTSCRIPT PROGRAMS
	PERSISTENTLY RESIDENT PROGRAMS
	TIP The exitserver operator is not a standard part...

	CONCLUDING THOUGHTS

	Understanding the Stack
	A QUICK OVERVIEW OF DATA TYPES
	NAME LOOKUP
	TIP If you need to retrieve a procedure body that ...

	HOW OPERATORS USE THE STACK
	TIP When you define a variable in your PostScript ...

	GROUPING AND VISUAL CHUNKING
	THINKING BACKWARD AND SIDEWAYS
	TIP When reading a PostScript program, find the ex...

	COMPOSITE OBJECTS
	THE OTHER STACKS
	The Dictionary Stack
	The Execution Stack
	The Graphics State Stack

	CONCLUDING THOUGHTS

	Trusting the Stack
	SAFETY OF DATA ON THE STACK
	WHERE ARE THE DATA GOING?
	REARRANGING THE STACK
	Table 6.1 : PostScript Stack Manipulation Operator...
	Arguments Operator Action
	Using the dup and index Operators
	Using the roll Operator

	CONDITIONALS AND LOOPS
	RECURSION AND LOCAL VARIABLES
	CONCLUDING THOUGHTS

	Building Conditional Statements
	SIMPLE CONDITIONALS
	SETTING UP THE CONDITION
	Table 7.1 : PostScript Operators that Return Boole...
	Arguments Operator Action
	TIP It is important to test both the true and fals...

	CONDITIONALS ARE NOT MAGIC
	NESTED CONDITIONALS AND ELSE CLAUSES
	TIP If you use ifelse rather than if, make sure yo...

	COMPOUND CONDITIONALS
	CONCLUDING THOUGHTS

	Using Looping Constructs
	LOOP BASICS
	Table 8.1 : Looping Operators
	Arguments Operator Action

	USING THE LOOP INDEX
	TIP Don’t forget that the for, forall, kshow, and ...
	Operator Data Pushed onto Operand Stack for Each I...

	LOOPS ARE PROCEDURE BODIES
	LOOPS OF INSTRUCTIONS
	EXITING LOOPS PREMATURELY
	CONCLUDING THOUGHTS

	Procedures
	WHAT EXACTLY IS A PROCEDURE?
	PARAMETER PASSING
	TIP A good rule of thumb is that if the operators ...

	CONSTRUCTING GOOD PROCEDURES
	What to Name Your Procedure
	A Useful Naming Convention

	SELF-MODIFYING PROCEDURES
	CONCLUDING THOUGHTS

	Using Dictionaries
	TIP The memory used for storage of PostScript obje...
	DICTIONARIES FOR NAME SCOPING
	LOCAL DICTIONARIES
	GLOBAL DICTIONARIES OF PROCEDURES
	TIP Most PostScript drivers and any program with m...

	MAINTAINING THE DICTIONARY STACK
	INTO AND OUT OF DICTIONARIES
	LOOKING INTO DICTIONARIES
	Using the forall Operator
	Using the where and known Operators

	REDEFINING OPERATORS
	Changing the Behavior of Operators
	Debugging with Redefined Names
	Proper Nesting of Redefinitions

	CONCLUDING THOUGHTS

	Creating and Manipulating Data
	CONSTRUCTING AN ARRAY
	CONSTRUCTING A STRING
	MANIPULATING DATA WITH PUT AND GET
	Table 11.1 : Operators to put and get Data
	Arguments Operator Action
	TIP If you have difficulty remembering the order o...

	CONCATENATING ARRAYS AND STRINGS
	INPUT AND OUTPUT OF STRING DATA
	ARRAYS VERSUS DICTIONARIES
	ADVANCED TECHNIQUES
	CONCLUDING THOUGHTS

	Storing and Using Data
	Data and the Operand Stack
	Data and Algorithms for Underlining
	CLASSICAL DATA STRUCTURES
	Linked Lists
	Using Arrays to Form Lists
	Using Dictionaries to Form Lists
	Queues, Trees, and Other Data Structures

	CONCLUDING THOUGHTS

	Program Data and Instructions
	TURNING DATA INTO INSTRUCTIONS
	TURNING INSTRUCTIONS INTO DATA
	DATA CONVERSIONS
	CONCLUDING THOUGHTS

	Using Files and Input/Output Techniques
	File Objects
	Streams and Files
	TIP Some file operations will work on virtually an...
	PostScript File Operators
	Table 14.1 : PostScript File Operators

	Arguments Operator Action
	OPENING AND CLOSING FILES
	Environment Example File Name
	Mode Explanation

	READING AND WRITING FILES
	Reading from a File
	Writing to a File
	Copying and Renaming Files

	WRITING FORMATTED DATA TO FILES
	Writing Out Various Data Types
	Spaces, Tabs, Returns, and Special Characters

	FILE STATUS INFORMATION
	RANDOM VERSUS SEQUENTIAL ACCESS
	CONCLUDING THOUGHTS

	Appendix
	Answers to Exercises

