e |/
| intellectual
i propeity
| project

" PROCEEDINGS

Technological Strategies for
Protecting Intellectual Property
in the
Networked Multimedia Environment

COALITION FOR NETWORKED INFORMATION

7]

INTERACTIVE MULTIMED]A ASSOCIATION

JOHN F. KENNEDY SCHOOL OF GOVERNMENT
SCIENCE, TECHNOLOGY & PUBLIC POLICY PROGRAM

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROGRAM ON DIGITAL OPEN HIGH-RESOLUTION SYSTEMS

e

"VOLUME 1 ISSUE 1 o JANUARY 1994

The Journal of ihe Interactive Multimedia Association Intellectual Property Project

Petitioner Apple Inc. - Exhibit 1057, p.1

3
\



intellectual

bz property
projec

TSR

‘I
i T

PROCEEDINGS

January 1994
Volume 1, Issue 1

The Journal of the Interactive Multimedia Association Intellectual Property Project

Petitioner Apple Inc. - Exhibit 1057, p. ii



January 1994 IMA Intellectual Property Project Proceedings

AL £
MAIN

Copyright ©1994 Interactive Multimedia Association. Permission to copy without fee all or part
of this material is granted provided that the copies are not made or distributed for direct commer-
cial advantage and the IMA copyright notice appears. If the majority of the document is copied or
redistributed, it must be distributed verbatim, without repagination or reformatting. To copy
otherwise requires specific permission.

All brand names and product names are trademarks or registered trademarks of their respective
companies. Rather than put a trademark symbol in every occurrence of other trademarked names,
we state that we are using the names only in an editorial fashion, and to the benefit of the trade-
mark owner, with no intention of infringement of the trademark.

Published by:

Interactive Multimedia Association
Intellectual Property Project

3 Church Circle

Suite 800

Annapolis, MD 21401-1933
Phone: (410) 626-1380

FAX: (410) 263-0590

Petitioner Apple Inc. - Exhibit 1057, p. iii



Volume 1 » Issue 1

IMA Intellectual Property Project Proceedings

Dyad: A System for Using Physically Secure Coprocessors

by J. D. Tygar and Bennet Yee

ABSTRACT

INTRODUCTION AND
MOTIVATION

Physically secure coprocessors, as used in the Dyad project at Carnegie
Mellon University, provide easily implementable solutions to perplexing
security problems. This paper presents the solutions to five problems: (1)
protecting the integrity of publicly accessible workstations; (2) tamper-
proof accounting/audit trails; (3) copy protection; (4) electronic currency
without centralized servers; and (5) electronic contracts.

The Dyad project at Carnegie Mellon University is using physically
secure coprocessors o achieve new protocols and systems addressing a
number of perplexing security problems. These coprocessors can be
produced as boards or integrated circuit chips and can be directly in-
serted in standard workstations or PC-style computers. This paper
presents a set of security problems and easily implementable solutions
that exploit the power of physically secure coprocessors.

Standard textbook treatments of computer security assert that physical
security is a necessary precondition to achieving overall system security.
While meeting this condition may seem reasonable for yesterday’s
computer centers with their large mainframes, it is no longer so easy
today. Most modern computer facilities consist of workstations within
offices or of personal computers arranged in public access clusters, all of
which are networked to file servers. In situations such as these where
computation is distributed, physical security is very difficult—if not
impossible—to realize. Neither computer clusters, nor offices, nor
networks are secure against intruders. An even more difficult problem is
posed by a user who may wish to subvert his own machine; for example,
a user who wishes to steal a copy protected program can do so by gaining
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read access to the system memory while the system runs the nominally
“execute only” program. By making the processing power of worksta-
tions widely and easily available, we’ve also made the system hardware
accessible to casual interlopers. How do we remedy this?

Researchers have recognized the vulnerability of network wires and
have brought the tools from cryptography to bear on the problem of non-
secure communication networks, and this has led to a variety of key
exchange and authentication protocols [15, 16, 20, 35, 37, 45, 46, 53, 54]
for use with end-to-end encryption to provide privacy on network
communications. Others have noted the vulnerability of workstations and
their disk storage to physical attacks in the office workstation environ-
ment, and this has led to a variety of secret sharing algorithms for
protecting data from isolated attacks [24, 42, 48]. Tools from the field of
consensus protocols can also be applied [24]. These techniques, while
powerful, still depend on some measure of physical security.

Cryptography allows us to slightly relax our assumptions about
physical security; with cryptography we no longer need to assume that
our network is physically shielded. However, we still need to make
strong assumptions about the physical protection of hosts. We cannot
entirely eliminate the need for physical security.

All security algorithms and protocols depend on physical security.
Cryptographic systems depend on the secrecy of keys, and authorization
and access control mechanisms crucially depend on the integrity of the
access control database. The use of physical security to provide privacy
and integrity is the foundation upon which security mechanisms are built.
With the proliferation of workstations to the office and to open computa-
tion clusters, the physical security assumption is no longer valid. The
recent advent of powerful mobile computers only exacerbates this
problem, since the machines may easily be physically removed.

The gap between the reality of physically unprotected systems and this
assumption of physical security must be closed. With traditional main-
frame systems, the security firewall was between the users’ terminals and
the computer itself—the mainframe was the physically secure component
in the system.! With loosely administered, physically accessible worksta-
tions, the security partition can no longer encompass all the machines.
Indeed, with most commercially available workstations, the best that can
be found is a simple lock in the front panel which can be easily picked or
bypassed—there really is no physically secure component in these
Systems.

This paper discusses the use of physically secure processors to achieve
new, powerful solutions to system security problems. (Physically secure
coprocessors were first introduced in [6].) A secure coprocessor embod-
ies a physically secure hardware module; it achieves this security by
advanced packaging technology [62]. We focus on systems and protocols
that can exploit the physical shielding to achieve novel solutions to
challenging problems. There are many applications that need to use
secure coprocessors; we discuss five of them here.

1. Consider the problem of protecting the integrity of publicly
accessible workstations. For normal workstations or PCs, it is
very easy to steal or modify data and programs on the hard disks.
Operating system software could be modified to log keystrokes
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to extract encryption keys that you may have used to protect
data. There is neither privacy nor integrity when the attacker has
physical access to the machine, even if we prevent the attacker
from adding Trojan horses to hardware (e.g., a modified key-
board which records keystrokes or a network interface board
which sends the contents of the system memory to the attacker).

2. The problem of providing tamper-proof audit trails and account-
ing logs is similar to that of workstation integrity, except that
instead of protecting largely static data (operating system kernels
and system programs), the goal is to make the generated logs
unforgeable. For normal workstations or PCs, nothing prevents
attackers from modifying system logs to erase evidence of
intrusion. Similarly, secure system accounting is impossible
because nothing protects the integrity of the accounting logs.

3. The problem of providing copy protection for proprietary
programs is also insoluble on traditional hardware. Distributing
software in encrypted form does not help, since the user’s
machine must have the software decrypted in its memory to run
it. Because we cannot guarantee the integrity of the machine’s
operating system, we have no assurances as to the privacy of this
in-memory copy of the software.

4. Another difficult problem is that of providing electronic currency
without centralized control. Any electronic representation of
currency is subject to duplication—data stored in computers can
always be copied, regardless of how our software may choose to
interpret them. When electronic currency no longer remains on
trusted, centralized server machines, there is no way to guarantee
against tampering.

Given that we cannot trust the system software on our publicly
accessible computers, any electronic currency on our machines
might be arbitrarily created, destroyed, or sent over a network to
the attacker. Alternatively, an untrustworthy user can record the
state of his computer prior to “spending™ his electronic currency,
after which he simply resets the state of his computer to the
saved state. Without a way to securely manage currency, attack-
ers may “print” money at will. Furthermore, the attacker may
take advantage of a partitioned network in order to use the same
electronic currency in transactions with machines in different
partitions. Since no communication is possible between these
machines, users (or computers acting as service-providers) have
no way to check for duplicity.

5. A closely related problem arises when we want to provide
“electronic contracts” that obligate secure coprocessors to
perform certain actions or enforce certain restrictions. The notion
of an electronic contract provides a mechanism for controlling
the configuration of security constraints listed in the above items.
Note that it does not suffice to merely cryptographically sign
contracts; we must ensure that contracts are enforced on all
machines that are parties in the contract.
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All of these problems are vulnerable to physical attacks which result
in a loss of privacy and integrity. Software protection systems crucially
rely on the physical security of the underlying hardware and are com-
pletely useless when the physical security assumption is violated.

‘We can, however, close the assumption/reality gap in computer
security. By adding physically secure coprocessors to computer systems,
real, practical security systems can be built. Not only are secure
coprocessors necessary and sufficient for security systems to be built;
placing the security partition around a coprocessor is the natural model
for providing security for workstations. Moreover, they are cost effective
and can be made largely transparent to the end user.

The rest of this paper outlines the theory of secure coprocessors. First
we discuss a model for physically secure coprocessors and describe a
number of platforms that use secure coprocessor fechnology. Then we
consider several important security problems that are solved by using
secure coprocessors. We next present a hierarchy of traditional and new
approaches to physical security, and demonstrate naturally induced
security partitions within these systems. We give an approach which
allows secure coprocessors to be integrated into existing operating
systems; we continue with a machine-user authentication section, which
tackles the problem of verifying the presence of a secure coprocessor to
users. Finally, we discuss previous work. For the sake of readers who are
not computer scientists, we include a glossary of technical terms at the
end of the paper.

SECURE COPROCESSORS ~ What do we mean by the term secure coprocessor? A secure coprocessor
is a hardware module containing (1) a CPU, (2) ROM, and (3) NVM
(non-volatile memory). This hardware module is physically shielded
from penetration, and the I/O interface to this module is the only means
by which access to the internal state of the module can be achieved.
(Examples of packaging technology are discussed later in this section.)
Such a hardware module can store cryptographic keys without risk of
release. More generally, the CPU can perform arbitrary computations
(under control of the operating system) and thus the hardware module,
when added to a computer, becomes a true coprocessor. Often, the secure
coprocessor will contain special-purpose hardware in addition to the
CPU and memory; for example, high speed encryption/decryption
hardware may be used.

Secure coprocessors must be packaged so that physical attempts to
gain access to the internal state of the coprocessor will result in resetting
the state of the secure coprocessor (i.e., erasure of the NVM contents and
CPU registers). An intruder might be able to break into a secure
coprocessor and see how it is constructed; the intruder cannot, however,
learn or change the internal state of the secure coprocessor except
through normal I/O channels or by forcibly resetting the entire secure
coprocessor. The guarantees about the privacy and integrity of non-vola-
tile memory provide the foundations needed to build security systems.
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Physical Assumptions for Security

All security systemns rely on a nucleus of assumptions. For example, it
is often assumed that it is infeasible to successfully cryptoanalyze the
encryption system used for security. Our basic assumption is that the
coprocessor provides private and tamper-proof memory and processing.
Just as attackers can exhaustively search cryptographic key spaces, it
may be possible to falsify the physical security hypothesis by expending
enormous resources (possibly feasible for very large corporations or
government agencies), but we will assume the physical security of the
system as an axiom. This is a physical work-factor argument, similar in
spirit to intractability assumptions of cryptography. Our secure
coprocessor model does not depend on the particular technology used to
satisfy the work-factor assumption. Just as cryptographic schemes may
be scaled to increase the resources required to penetrate a cryptographic
system, current security packaging techniques may be scaled or different
packaging techniques may be employed to increase the work-factor
necessary to successfully bypass the physical security measures.

In the section on applications, we will see examples of how we can
build secure subsystems running partially on a secure coprocessor by
leveraging off the physical security of the coprocessor.

Limitations of Model

Even though confining all computation within secure coprocessors
would ideally suit our security needs, in reality we cannot—and should
not—convert all of our processors into secure coprocessors. There are
two main reasons: the first is the inherent limitations of the physical
security techniques in packaging circuits, and the second is the need to
keep the system maintainable. Fortunately, as we shall see in the section
below, the entire computer need not be physically shielded. It suffices to
physically protect only a portion of the computer.

Current packaging technology limits us to approximately one printed
circuit board in size to allow for heat dissipation. Future developments
may eventually relax this and allow us to make more of the solid-state
components of a multiprocessor workstation physically secure, perhaps
an entire card cage; the security problems of external mass storage and
networks, however, will in all likelihood remain a constant.

‘While it may be possible to securely package an entire multiprocessor
in a physically secure manner, it is likely to be impractical and is unnec-
essary besides. If we can obtain similar functionalities by placing the
security concerns within a single coprocessor, we can avoid the cost of
making all the processors (in multiprocessors) secure.

Making a system easy to maintain requires a modular design. Once a
hardware module is encapsulated in a physically secure package, disas-
sembling the module to fix or replace some component will probably be
impossible. Moreover, packaging considerations, as well as the extra
hardware development time required, imply that the technology used
within a secure coprocessor may lag slightly behind the technology used
within the host system—perhaps by one generation. The right balance
between physically shielded and unshielded components will depend on
the class of applications for which the system is intended. For many
applications, only a small portion of the system must be protected.
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Potential Platforms

Several real instances of physically secure processing exist. This
subsection describes some of these platforms, giving the types of attacks
which these systems are prepared against, and the limitations placed on
the system due to the approaches taken to protect against physical
intrusion.

The LABYSS [62] and Citadel [64] systems provide physical security
by employing board-level protection. The systems include an off-the-
shelf microprocessor and some non-volatile (battery backed) memory, as
well as special sensing circuitry which detects intrusion into a protective
casing around the circuit board. The security circuitry erases the non-
volatile memory before attackers can penetrate far enough to disable the
sensors or to read the memory contents from the memory chips. The
Citadel system expands on LABYSS, incorporating substantially greater
processing power; the physical security mechanisms remain identical.

Physical security mechanisms must protect against many types of
physical attacks. In the LABYSS and Citadel systems, it is assumed that
in order for intruders to penetrate the system, they must be able to probe
through a hole of one millimeter in diameter (probe pin voltages, destroy
sensing circuitry, etc). To prevent direct intrusion, these systems incorpo-
rate sensors consisting of fine (40 gauge) nichrome wire, very low- power
sensing circuits, and a long life-time battery. The wires are loosely but
densely wrapped in many layers about the circuit board and the entire
assembly is then dipped in a potting material. The loose and dense
wrapping makes the exact position of the wires in the epoxy unpredict-
able. The sensing electronics can detect open circuits or short circuits in
the wires and erase the non-volatile memory if intrusion is attempted.
The designs show that physical intrusion by mechanical means (e.g.,
drilling) cannot penetrate the epoxy without breaking one of these wires.

Another physical attack is the use of solvents to dissolve the potting
material to expose the sensor wires. To block this kind of attack, the
potting material is designed to be chemically “stronger” than the sensor
wires. This implies that solvents will destroy at least one of the wires—
and thus create an open-circuit condition—before the intruder can bypass
the potting material and access the circuit board.

Yet another physical attack uses low temperatures. Semiconductor
memories retain state at very low temperatures even without power, so an
attacker could freeze the secure coprocessor to disable the battery and
then extract the memory contents at leisure. The designers have blocked
this attack by the addition of temperature sensors which trigger erasure
of secrets before the low temperature reaches the dangerous level. (The
system must have enough thermal mass to prevent quick freezing—by
being dipped into liquid nitrogen or helium, for example—so this places
some limitations on the minimum size of the system.)

The next step in sophistication is the high-powered laser attack. Here,
the idea is that a high powered (ultraviolet) laser may be able to cut
through the protective potting material and selectively cut a run on the
circuit board or destroy the battery before the sensing circuitry has time
to react. To protect against such an attack, alumina or silica is added to
the epoxy potting material which causes it to absorb ultraviolet light. The
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APPLICATIONS

generated heat will cause mechanical stress, which will cause one or
more of the sensing wires to break.

Instead of the board-level approach, physical security can be provided
for smaller, chip-level packages. Clipper and Capstone, the NSA’s
proposed DES replacements [3, 56, 57] are special-purpose encryption
chips. The integrated circuit chips are designed in such a way that key
information (and perhaps other important encryption parameters—the
encryption algorithm is supposed to be secret as well) are destroyed
when attempts are made to open the integrated circuit chips’ packaging.
The types of attacks which this system can withstand are unknown.

Another approach to physically secure processing appears in smart-
cards [30]. A smart-card is essentially a credit-card-size microcomputer
which can be carried in a wallet. While the processor is limited by size
constraints and thus is not as powerful as that found in board-level
systems, no special sensing circuitry is necessary since physical security
is maintained by the virtue of its portability. Users may carry their smart-
cards with them at all times and can provide the necessary physical
security. Authentication techniques for smart-cards have been widely
studied [1, 30].

These platforms and their implementation parameters together provide
the technology envelope within which secure coprocessor hardware will
likely reside and this envelope will provide constraints on what class of
algorithms is reasonable. As more computation power moves into mobile
computers and smart-cards and better physical protection mechanisms
are devised, this envelope will grow larger with time.

Because secure coprocessors can process secrets as well as store them,
they can do much more than just keep secrets confidential. We can use
the ability to compute privately to provide many security related features,
including (1) host integrity verification; (2) tamper-proof audit trails; (3)
copy protection; (4) electronic currency; (5) and electronic contracts.?
None of these are realistically possible on physically exposed machines.

Host Integrity Check

Trojan horse software dates back to the 1960s, if not earlier. Bogus
login programs are the most common, though games and fake utilities are
also widely used to set up back doors as well. Computer viruses exacer-
bate the problem of host integrity—the system may easily be inadvert-
ently corrupted during normal use.

The host integrity problem can be partially ameliorated by guarantee-
ing that all programs have been inspected and approved by a trusted
authority, but this is at best an incomplete solution. With computers
getting smaller and workstations often physically accessible in public
computer clusters, attackers can easily bypass any logical safeguards to
modify the disks. How can you tell if even the operating system kernel is
correct? The integrity of the computer needs to be verified. The integrity
of the kernel image and system utilities stored on disk must be verified to
be unaltered since the last system release.?

There are two main cases to examine. The first is that of stand-alone
workstations that are not connected to any networks, and the second is
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that of networked workstations with access to distributed services such as
AFS [52] or Athena [4]. While publicly accessible stand-alone worksta-
tions have fewer avenues of attack, there are also fewer options for
countering attacks. We will examine both cases concurtently in the
following discussion.

Using a secure coprocessor to perform the necessary integrity checks
solves the host integrity problem. Because of the privacy and integrity
guarantees on secure coprocessor memory and processing, we can use a
secure coprocessor to check the integrity of the host’s state at boot-up
and have confidence in the results. At boot time, the secure coprocessor
is the first to gain control of the system and can decide whether to allow
the host CPU to continue by first checking the disk-resident bootstrap
program, operating system kernel, and all system utilities for evidence of
tampering.

The cryptographic checksums of system images must be stored in the
secure coprocessor’s NVM and protected both against modification and
(depending on the cryptographic checksum algorithm chosen) against
exposure. Of course, tables of cryptographic checksums can be paged out
to host memory or disk after first checksumming and encrypting them
within the secure coprocessor; this can be handled as an extension to
normal virtual memory paging. We have more to say on this subject in
the section on system architecture. Since the integrity of the crypto-
graphic checksums is guaranteed by the secure coprocessor, we can
detect any modifications to the system objects and protect ourselves
against attacks on the external storage.

One alternative model is to eliminate external storage for networked
workstations—to use trusted file servers and access a remote, distributed
file system for all external storage. Any paging needed to implement
virtual meriory would go across the network to a trusted server with disk
storage.

‘What are the difficulties with this trusted file server model? First, note
that non-publicly readable files and virtual memory pages must be
encrypted before being transferred over the network and so some hard-
ware support is probably required anyway for performance reasons. A
more serious problem is that the workstations must be able to authenti-
cate the identity of the trusted file servers (the host-to-host authentication
problem). Since workstations cannot keep secrets, we cannot use shared
secrets to encrypt and authenticate data between the workstation and the
file servers. The best that we can do is to have the file servers use public
key cryptography to cryptographically sign the kernel image when we
boot over the network, but we must be able to store the public keys of the
trusted file servers somewhere. With exposed workstations, there’s no
safe place to store them. Attackers can always modify the public keys
(and network addresses) of the file servers so that the workstation would
contact a false server. Obtaining public keys from some external key
server only pushes the problem one level deeper—the workstation would
need to authenticate the identity of the key server, and attackers need
only to modify the stored public key of the key server.

If we page virtual memory over the network (which we assume is not
secure), the problem only becomes worse. Nothing guarantees the
privacy or integrity of the virtual memory as it is transferred over the
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network. If the data is transferred in plaintext, an attacker can simply
record network packets to break privacy and modify/substitute network
traffic to destroy integrity. Without the ability to keep secrets, encryption
is useless for protecting their memory—attackers can obtain the encryp-
tion keys by physical means and destroy privacy and integrity as before.

A second alternative model, which is a partial solution to the host
integrity problem, is to use a secure-boot floppy containing system
integrity verification code to bring machines up. Let’s look at the as-
sumptions involved here. First, note that we are assuming that the host
hardware has not been compromised. If the host hardware has been
compromised, the “secure” boot floppy can easily be ignored or even
modified when used, whereas secure coprocessors cannot. The model of
using a secure removable medium for booting assumes that untrusted
users get a (new) copy of a master boot floppy from the trusted operators
each time a machine is rebooted from an unknown state. Users must not
have access to the master boot floppy since it must not be altered.

What problems are there? Boot floppies cannot keep secrets—encryp-
tion does not help, since the workstation must be able to decrypt them
and workstations cannot keep secrets (encryption keys) either. The only
way to assure integrity without completely reloading the system software
is to check it by checking some kind of cryptographic checksum on the
system images.

There are a variety of cryptographic checksum functions available,
and all obviously require that the integrity of the checksums for the
“correct” data be maintained: when we check the system images on the
disk of a suspect workstation, we must recompute new checksums and
compare them with the original ones. This is essentially the same proce-
dure used by secure coprocessors, except that instead of providing
integrity within a piece of secure hardware we use trusted operators. The
problem then becomes that of making sure that operators and users
follow the proper security procedures. Requiring that users obtain a fresh
copy of the integrity check software and data each time they need to
reboot a machine is cambersome. Furthermore, requiring a centralized
database of all the software that requires integrity checks for all versions
of that software on the various machines will be a management night-
mare. Any centralized database is necessarily a central point of attack.
Destroying this database will deny service to anybody who wishes to
securely bootstrap their machine.

Both secure coprocessors and secure boot floppies can be fooled by a
sufficiently faithful emulation of the system which simulates a normal
disk during integrity checks, but secure coprocessors allow us to employ
more powerful integrity check techniques to provide better security.
Furthermore, careless use (i.e., reuse) of boot floppies becomes another
channel of attack—boot floppies can easily be made into viral vectors.

Along with integrity, secure coprocessors offer privacy; this property
allows the use of a wider class of cryptographic checksum functions,
There are many cryptographic checksum functions that might be used,
including Rivest’s MD35 [44], Merkle’s Snefru [31], Jueneman’s Message
Authentication Code (MAC) code [26], IBM’s Manipulation Detection
Code (MDC) [25], chained DES [60], and Karp and Rabin’s family of
fingerprint functions [28]. All of these require integrity; the last three
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require privacy of keys. The strength of these rely on the difficulty of
finding collisions—two different inputs with the same checksum, The
intractability arguments for the first four of these are based on conjec-
tured numbers of bit operations required to find collisions, and so are
weak with respect to theoretical foundations. MDC, chained DES, and
the fingerprint functions also keep the identity of the particular checksum
function used secret—with MDC and DES it corresponds to keeping
encryption keys (which select particular encryption functions) secret, and
with fingerprint functions it corresponds to keeping an irreducible
polynomial (which defines the fingerprint function) secret. DES is less
well understood than the Karp-Rabin functions.

The secrecy requirement of MDC, chained DES, and the Karp-Rabin
functions is a stronger assumption which can be provided by a secure
coprocessor and it allows us to use cryptographic functions with better
theoretical underpinnings, thus improving the bounds on the security
provided. Secrecy, however, cannot be provided by a boot floppy. The
Karp-Rabin fingerprint functions are superior to chained DES in that
they are much faster and much easier to implement (thus the implemen-
tation is less likely to contain bugs), and there are no proven strong lower
bounds on the difficulty of breaking DES.

Secure coprocessors also greatly simplify the problem of system
upgrades. This is especially important when there are large numbers of
machines on a network: systems can be securely upgraded remotely
through the network. Furthermore, it’s easy to keep the system images
encrypted while they are being transferred over the network and while
they are resident on secondary storage. This provides us with the ability
to keep proprietary code protected against most attacks. As noted below
in the section on copy protection, we can run (portions of) the proprietary
software only within the secure coprocessor, allowing vendors to have
execute-only semantics—proprietary software need never appear in
plaintext outside of a secure coprocessor.

The later section on operational requirements discusses the details of
host integrity check as it relates to secure coprocessor architectural
requirements, and the section on key management discusses how system
upgrades would be handled by a secure coprocessor. Also relevant is the
problem of how the user can know if a secure coprocessor is running
properly in a system; our section on machine-user authentication dis-
cusses this.

Audit Trails

In order to properly perform system accounting and to provide data for
tracing and detecting intruders on the host system, audit trails must be
kept in a secure manner. First, note that the integrity of the auditing and
accounting logs cannot be completely guaranteed (since the entire
physically accessible machine, including the secure coprocessor, may be
destroyed). The logs, however, can be made tamper evident. This is quite
important for detecting intrusions—forging system logs to eliminate
evidence of penetration is one of the first things that a system cracker
will attempt to do. The privacy and integrity of the system accounting
logs and audit trails can be guaranteed (unless the secure coprocessor is
removed or destroyed) simply by holding them inside the secure
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coprocessor. It is awkward to have to keep everything inside the secure
coprocessor since accounting and audit logs can grow very large and
resources within the secure coprocessor are likely to be tight. Fortu-
nately, it is also unnecessary.

To provide secure logging, we use the secure coprocessor to seal the
data against tampering with one of the cryptographic checksum functions
discussed above; we then write the logging information out to the file
system. The sealing operation must be performed within the secure
coprocessot, since all keys used in this operation must be kept secret. By
later verifying these cryptographic checksums we make tampering of log
data evident, since the probability that an attacker can forge logging data
to match the old data’s checksums is astronomically low. This technique
reduces the secure coprocessor storage requirement from large logs to the
memory sufficient to store the cryptographic keys and checksums,
typically several words per page of logged memory. If the space require-
ment for the keys and checksums is still too large, they can be similarly
written out to secondary storage after being encrypted and checksummed
by master keys.

Additional cryptographic techniques can be used for the cryptographic
sealing, depending on the system requirements. Cryptographic
checksums can provide the basic tamper detection and are sufficient if
we are only concerned about the integrity of the logs. If the accounting
and auditing logs may contain sensitive information, privacy can be
provided by using encryption. If redundancy is required, techniques such
as secure quorum consensus [24] and secret sharing [48] may be used to
distribute the data over the network to several machines without greatly
expanding the space requirements.

Copy Protection

A common way of charging for software is licensing the software on a
per-CPU, per-site, or per-use basis. Software licenses usually prohibit
making copies for use on unlicensed machines. Without a secure
coprocessor, this injunction against copying is unenforceable. If the user
can execute the code on any physically accessible workstation, the user
can also read that code. Even if we assume that attackers cannot read the
workstation memory while it is running, we are implicitly assuming that
the workstation was booted correctly—verifying this property, as dis-
cussed above, requires the use of a secure coprocessor.

When secure coprocessors are added to a system, however, we can
quite easily protect executables from being copied and illegally utilized
by attackers. The proprietary code to be protected—or at least some
critical portion of it—can be distributed and stored in encrypted form, so
copying it without obtaining the code decryption key is futile. Public
key cryptography may be used to encrypt the entire software package or
a key for use with a private key system such as DES. When a user pays
for the use of a program, a digitally signed certificate of the public key
used by his secure coprocessor is sent to the software vendor. This
certificate is signed by a key management center verifying that a given
public key corresponds to a secure coprocessor, and is prima facie
evidence that the public key is valid. The corresponding private key is
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stored only within the NVM of the secure coprocessor; thus, only the
secure coprocessor will have full access to the proprietary software.
What if the code size is larger than the memory capacity of the secure
coprocessor? We have two alternatives: we can use crypfo-paging or we
can split the code into protected and unprotected segments.

We discuss crypto-paging in greater detail in the section on system
architecture below, but the basic idea is to dynamically load the relevant
sections of memory from the disk as needed. Since good encryption
chips are fast, we can decrypt on the fly with little performance penalty.
Similarly, when we run out of memory space on the coprocessor, we
encrypt the data as we flush it out onto secondary storage.

Splitting the code is an alternative to this approach. We can divide the
code into a security-critical section and an unprotected section. The
security-critical section is encrypted and runs only on the secure
coprocessor. The unprotected section runs in parallel on the main host
processor. An adversary can copy the unprotected section, but if the
division is done well, he or she will not be able to run the code without
the secure portion.

A more primitive version of the copy protection application for secure
coprocessors originally appeared in [63]. ’

Electronic Currency

With the ability to keep licensed proprietary software encrypted and
allow execute access only, a natural application would be to allow for
charging on a pay-per-use basis. In addition to controlling access to the
software according to the terms of software licenses, some mechanism
must be available to perform cost accounting, whether it is just keeping
track of the number of times a program has run or keeping track of
dollars in the users’ account. More generally, this accounting software
provides an electronic currency abstraction. Correctly implementing
electronic currency requires that account data be protected against
tampering—if we cannot guarantee integrity, attackers will be able to
create electronic money at will. Privacy, while perhaps less important
here, is a property that users expect for their bank balance and wallet
contents; similarly, electronic money account balances should also be
private.

There are several models that can be adopted for handling electronic
funds. The first is the cash analogy. Electronic funds can have similar
properties to cash: (1) exchanges of cash can be effectively anonymous;
(2) cash cannot be created or destroyed; and (3) cash exchanges require
no central authority. (Note that these properties are actually stronger than
that provided by currency—serial numbers can be recorded to trace
transactions, and national treasuries regularly print and destroy money.)

The second model is the credit cards/checks analogy. Electronic funds
are not transferred directly; rather, promises of payment—perhaps
cryptographically signed to prove authenticity—are transferred instead.
A straightforward implementation of the credit card model fails to
exhibit any of the three properties above. By applying cryptographic
techniques, anonymity can be achieved [10], but the latter two require-
ments remain insurmountable. Checks must be signed and validated at
central authorities (banks), and checks/credit payments en route “create”
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temporary money. Furthermore, the potential for reuse of cryptographic
signed checks requires that the payee must be able to validate the check
with the central authority prior to committing to a transaction.

The third model is analogous to a rendezvous at the bank. This model
uses a centralized authority to authenticate all transactions and so is even
worse for large distributed applications. The bank is the sole arbiter of
the account balance and can easily implement the access controls needed
to ensure privacy and integrity of the data. This is essentially the model
used in Electronic Funds Transfer (EFT) services provided by many
banks—there are no access restrictions on deposits into accounts, so only
the depositor for the source account needs to be authenticated.

Let us examine these models one by one. What sort of properties must
electronic cash have? We must be able to easily transfer money from one
account to another. Electronic money must not be created or destroyed by
any but a very few trusted users who regulate the electronic version of
the Treasury.

With electronic currency, integrity of the accounts data is crucial. We
can establish a secure communication channel between two secure
coprocessors by using a key exchange cryptographic protocol and thus
maintain privacy when transferring funds. To ensure that electronic
money is conserved (neither created nor destroyed), the transfer of funds
should be failure atomic, i.e., the transaction must terminate in such a
way as to either fail completely or fully succeed—transfer transactions
cannot terminate with the source balance decremented without having
incremented the destination balance or vice versa. By running a transac-
tion protocol such as two-phase commit [8, 12, 65] on top of the secure
channel, the secure coprocessors can transfer electronic funds from one
account to another in a safe manner, providing privacy as well as ensur-
ing that money is conserved throughout. With most transaction protocols,
some “‘stable storage” for transaction logging is needed to enable the
system to be restored to the state prior to the transaction when a transac-
tion aborts. On large transaction systems this typically has meant mir-
rored disks with uninterruptible power supplies. With the simple transfer
transactions here, the per-transaction log typically is not that large, and
the log can be truncated once transactions commit. Because each secure
coprocessor needs to handle only a handful of users, large amounts of
stable storage should not be needed—because we have non-volatile
memory in secure coprocessors, we only need to reserve some of this
memory for logging. The log, the accounts data, and the controlling code
are all protected from modification by the secure coprocessor, so account
data are safe from all but bugs and catastrophic failures. Of course, the
system should be designed so that users should have little or no incentive
to destroy secure coprocessors that they can access—which should be
natural when their own balances are stored on secure coprocessors, much
like cash in wallets.

Note that this type of decentralized electronic currency is not appro-
priate for smart cards unless they can be made physically secure from
attacks by their owners. Smart cards are only quasi-physically-secure in
that their privacy guarantees stem solely from their portability. Secrets
may be stored within smart cards because their users can provide the
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physical security necessary. Malicious users, however, can easily violate
smart card integrity and insert false data.

If there is insufficient memory within the secure coprocessor to hold
the account data for all its users, the code and the accounts database may
be cryptographically paged to host memory or disk by first obtaining a
cryptographic checksum. For the accounts data, encryption may also be
employed since privacy is typically desired as well. The same consider-
ations as those for checksums of system images apply here as well.

This electronic currency transfer is analogous to the transfer of rights
(not to be confused with the copying of rights) in a capability-based
protection system. Using the electronic money—e.g., expended when
running a pay-per-use program—is analogous to the revocation of a
capability.

What about the other models for handling electronic funds? With the
credit card/check analogy, the authenticity of the promise of payment
must be established. When the computer cannot keep secrets for users,
there can be no authentication because nothing uniquely identifies users.
Even when we assume that users can enter their passwords into a work-
station without having the secrecy of their password compromised, we
are still faced with the problem of providing privacy and integrity
guarantees for network communication. We have similar problems as in
host-to-host authentication in that cryptographic keys need to be ex-
changed somehow. If communication is in plaintext, attackers may
simply record a transferral of a promise of payment and replay it to
temporarily create cash. While security systems such as Kerberos [53], if
properly implemented, can help to authenticate entities and create session
keys, they revert to the use of a centralized server and have similar
problems to the bank rendezvous model.

With the bank rendezvous model, a “bank” server supervises the
transfer of funds. While it is easy to enforce the access controls on
account data, this suffers from problems with non-scalability, loss of
anonymity, and easy denial of service from excessive centralization.

Because every transaction must contact the bank server, access to the
bank service will be a performance bottleneck. The system does not scale
well to a large user base—when the bank system must move from
running on a single computer to several machines, distributed transaction
systems techniques must be brought to bear in any case, so this model
has no real advantage over the use of secure coprocessors in ease of
implementation. Furthermore, if the bank host becomes inaccessible,
either maliciously or as a result of normal hardware failures, no agent
can make use of any bank transfers. This model does not exhibit graceful
degradation with system failures.

The model of electronic currency managed on a secure COprocessor
not only can provide the properties of (1) anonymity, (2) conservation,
and (3) decentralization, but it also degrades gracefully when secure
coprocessors fail. Note that secure coprocessor data may be mirrored on
disk and backed up after being properly encrypted, and so even the
immediately affected users of a failed secure coprocessor should be able
to recover their balance. The security administrators who initialized the
secure coprocessor software will presumably have access to the
decryption keys for this purpose. Careful procedural security must be

134

Petitioner Apple Inc. - Exhibit 1057, p. 14



Volume 1 e Issue 1 IMA Intellectual Property Project Proceedings
e — e ———— e = = e S S s S e o e e

required here, both for the protection of the decryption key and for
auditing for double spending, since dishonest users might attempt to back
up their secure coprocessor data, spend electronic money, and then
intentionally destroy their coprocessor in the hopes of using their elec-
tronic currency twice. The amount of redundancy and the frequency of
backups depends on the reliability guarantees desired; in reliable systems
secure coprocessors may continually run self-checks when idle and warn
of impending failures.

Contract Model

Our electronic contract model is built on the following two secure
coprocessor-provided primitive objects: (1) unforgeable tokens and (2)
computer-enforced contracts.

Tokens are protected objects that are conserved by the secure
coprocessors; they are freely transferable, but they can be created and
destroyed only by the agent that issued them. Tokens are useful as
electronic currency and to represent the execute-only right to a piece of
software (much as in capability systems). In the case of rights such as
execute-only rights, the token provides access to cryptographic keys that
may be used (only) within the secure coprocessors to run code.

Contracts are another class of protected objects. They are created
when two parties agree on a contract draft. Contracts contain binding
clauses specifying actions that each of the parties must perform—or, in
reality, actions that the secure coprocessors will enforce—and “method”
clauses that may be invoked by certain parties (not necessarily restricted
to just the parties who agreed on the contract). Time-based clauses and
other event-based clauses may also exist. Contractual obligations may
force the transfer of tokens between parties.

Contract drafts are typically instantiated from a contract template. We
may think of a contract template as a standardized contract with blanks
which are filled in by the two parties involved, though certainly “cus-
tom” contracts are possible. Contract negotiation consists of an offerer
sending a contract template along with the bindings (values with which
to fill in blanks) to the offeree. The offeree either accepts or rejects the
contract. If it is accepted, a contract instance is created whereby the
contract bindings are permanent, and any immediate clauses are ex-
ecuted. If the draft is rejected, the offeree may take the contract template
and re-instantiate a new draft with different bindings to create a counter-
offer, whereupon the roles of offerer and offeree are reversed.

From the time that a contract is accepted until it terminates, the
contract is an active object running in one or more secure COprocessors.
Methods may be invoked by users or triggered by external events (mes-
sages from the host, timer expiration). The method clauses of a contract
are access controlled: they may be optionally invoked by only one party
involved in the contract—or even by a third party who is under no
contractual obligations. Contractual clauses may require one of the
parties to accept further contracts of contractual obligations. Contractual
clauses may require one of the parties to accept further contracts of
certain types. One example of this is a requirement for some action to be
performed prior to a certain time. Another is a contract between a dis-
tributor and a software house, where the software house requires the
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distributor to accept sales contracts from users for upgrading a piece of
software.

Network hosts, regardless of whether they use cryptography, have a de
facto security partitioning that arises because different system compo-
nents have different vulnerabilities to various attacks. Some of these
vulnerabilities diminish when cryptography is used; similarly, the use of
a secure coprocessor can be thought of as adding another layer with
fewer vulnerabilities to the partitioning. By bootstrapping our system
using a secure coprocessor and thus ensuring that the correct operating
system is running, we can provide privacy and integrity guarantees on
memory that were not possible before. In particular, public workstations
can use secure coprocessors and cryptography to guarantee the privacy of
disk storage and provide integrity checks. Let us see what kind of
privacy/integrity guarantees are already available in the system and what
new ones we can provide.

Subsystem Vulnerabilities
Integrity Privacy
Secure Coprocessor None None
Host RAM On-line Physical | On-line Physical
Access Access
Secondary Store Off-line Physical | Off-line Physical
Access Access
Network On-line Remote | On-line Remote
(communication) Access Access

Table 1: Subsystem Vulnerabilities Without Cryptographic Techniques

Table 1 shows the vulnerabilities of various types of memory when no
cryptographic techniques are used. That memory within a secure
coprocessor is protected against physical access is one of our axioms,
and correctly using that to provide privacy and integrity at the logical
level is a matter of using the appropriate software protection mecha-
nisms. With the proper protection mechanisms within a secure
coprocessor, data stored within a secure coprocessor can be neither read
nor tampered with. Since we assume that we have a working secure
coprocessor, we will also assume that the operating system was booted
correctly and thus host RAM is protected against unauthorized logical
access.” It is not, however, well protected against physical access—it is a
simple matter to connect logic analyzers to the memory bus to listen
passively to memory traffic. Furthermore, replacing the memory sub-
system with multi-ported memory in order to allow remote unauthorized
memory accesses is also a conceivable attack. While the effort required
to do this in a way that is invisible to users may make it impractical, this
line of attack can certainly not be entirely ruled out. Secondary storage
may be more easily attacked than RAM since the data can be modified
off-line; to do this, however, an attacker must gain physical access to the
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disk. Network communication is completely vulnerable to on-line
eavesdropping and off-line analysis, as well as on-line message tamper-
ing. Since networks are inherently used for remote communication, it is
clear that these may be remote attacks.

What protection guarantees can we provide when we use encryption?
By using encryption when appropriate, we can guarantee privacy.
Integrity of the data, however, is not guaranteed. The same vulnerabili-
ties which allowed data modifications still exist as before; tampering,
however, can be detected by using cryptographic checksums as long as
the checksum values are stored in tamper-proof memory. Note also that
the privacy that can be provided is relative to the data usage. If data in
host RAM is to be processed by the host CPU, encrypting it within the
secure coprocessor is useless—the data must remain vulnerable to on-
line physical attacks on the host since it must appear in plaintext form to
the host CPU. If the host RAM data is simply serving as backing store
for secure coprocessor data pages, however, encryption is appropriate.
Similarly, encrypting the secondary store via the host CPU protects that
data against off-line privacy loss but not on-line attacks, whereas en-
crypting that data within the secure coprocessor protects that data agains
on-line privacy attacks as well, as long as that data need not ever appear
in plaintext form in the host memory.

Subsystem Vulnerabilities
Integrity Privacy
Secure Coprocessor None None
Host RAM On-line Physical | Host Processor
Access Data
Secondary Store Off-line Physical None
Access (detectable)
Network On-line Remote None
(communication)  [Access (detectable)

Table 2: Subsystem Vulnerabilities With Cryptographic Techniques

For example, if we wish to send and read secure electronic mail, the
encryption and decryption can be performed in the host processor since
the data must reside within both hosts for the sender to compose it and
for the receiver to read it. The exchange of the encryption key used for
the message, however, requires secure coprocessor computation: the
encryption for the key exchange needs to use secrets that must remain
within the secure coprocessor, regardless of whether the key exchange
uses a shared secret key or a public key scheme.®

SYSTEM ARCHITECTURE  This section discusses one possible architecture for a secure coprocessor

- software system. We will start off with a discussion of the constraints
placed upon a secure coprocessor by the operational requirements of a
security system—during system initialization and during normal, steady-
state operation. We will next refine these constraints, examining various
security functions and what their assumptions imply about trade-offs in a
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secure coprocessor. Following this, we will discuss the structure of the
software in a secure coprocessor, ranging from a secure coprocessor
kernel and its interactions with the host system to user-level applications.

Operational Requirements

We will start by examining how a secure coprocessor must interact
with the host hardware and software during the bootstrap process and
then proceed with the kinds of system services that a secure coprocessor
should provide to the host operating system and user software. The first
issue to consider is how to fit a secure coprocessor into a system. This
will guide us in the specification of the secure coprocessor software.

To be sure that a system is bootstrapped securely, secure hardware
must be involved in the bootstrap process. Depending on the host hard-
ware—whether a secure coprocessor could halt the boot process if it
detects an anomaly—we may need to assume that the bootstrap ROM is
secure. To ensure this, the system’s address space either could be config-
ured such that the boot vector and the boot code are provided by a secure
coprocessor directly or we may simply assume that the boot ROM itself
is a piece of secure hardware. Regardless, a secure coprocessor verifies
the system software (operating system kernel, system related user-level
software) by checking the software’s signature against known values. We
need to convince ourselves that the version of the software present in
external, non-secure, non-volatile store (disk) is the same as that installed
by a trusted party. Note that this interaction has the same problems faced
by two hosts communicating via a non-secure network: if an attacker can
completely emulate the interaction that the secure coprocessor would
have had with a normal host system, it is impossible for the secure
coprocessor to detect this. With network communication, we can assume
that both hosts can keep secrets and build protocols based upon those
secrets. With secure coprocessor/host interaction, we can make very few
assumptions about the host—the best that we can do is to assume that the
cost of completely emulating the host at boot time is prohibitive.

At boot time, the primary duty of a secure coprocessor is to make sure
that the system boots up securely; after booting, a secure coprocessor’s
role is to aid the host operating system by providing security functions
not otherwise available. A secure coprocessor does not enforce the
system’s security policy—that is the job of the host operating system;
since we know from the secure boot procedure that the correct operating
system is running, we may rely on the host to enforce policy. When the
system is up and running, a secure coprocessor provides the following
security services to the host operating system: the host may use the
secure coprocessor to verify the integrity of any data in the same manner
that the secure coprocessor checks the integrity of system software; it
may use the secure coprocessor to encrypt data to boost the natural
security of storage media (see section above on security partitions); and
it may use the secure coprocessor to establish secure, encrypted connec-
tions with remote hosts (key exchange, authentication, private key
encryption, etc).’
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Secure Coprocessor Architecture

The bootstrapping procedure described above made assumptions about
the capability of a secure coprocessor. Let us refine what requirements
we have on the secure coprocessor software and hardware.

When a secure coprocessor verifies that the system software is the
correct version, we are assuming that a secure coprocessor has secure,
tamper-proof memory which remembers a description of the correct
version of the system software. If we assume that proposed functions
such as MD35 [44], multi-round Snefru [31], or IBM’s MDC [25] are one-
way hash functions, then the only requirement is that the memory is
protected from writing by unauthorized individuals. Otherwise, we must
use cryptographic checksums such as Karp and Rabin’s technique of
fingerprinting, which uses a family of hash functions with good error-
detection capabilities. This technique requires that the memory be
protected against read access as well, since both the hash value and the
index selecting the particular hash function must be secret. In a similar
manner, cryptographic operations such as authentication, key exchange,
and secret key encryption all require that secrets be kept. Thus a secure
coprocessor must have memory that is inaccessible by everybody except
the secure coprocessor—enough private NVM to store the secrets, plus
possibly volatile private memory for intermediate calculations in running
the protocols.

There are a number of architectural tradeoffs for a secure coprocessor,
the crucial dimensions being processor speed and memory size. They
together determine the class of cryptographic algorithms that are practi-
cal.

The speed of the secure coprocessor may be traded off for memory in
the implementation of the cryptographic algorithms. We observed in [54]
that Karp-Rabin fingerprinting may be sped up by about 25% with a 256-
fold table-size increase. Intermediate size tables may be used to yield
intermediate speedups at a slightly higher increase in code size. Similar
tradeoffs can be found for software implementations of the DES.

The amount of real memory required may be traded off for speed by
employing cryptographic techniques: we need only enough private
memory for an encryption key and a data cache, plus enough memory to
perform the encryption if no encryption hardware is present. Depending
on the throughput requirements, hardware assist for encryption may be
included—where software is used to implement encryption, private
memory must be provided for intermediate calculations. A secure
coprocessor can securely page its private memory to either the host’s
physical memory (and perhaps eventually to an external disk) by first
encrypting it to ensure privacy. Cryptographic checksums can provide
error detection, and any error correcting encoding should be done after
the encryption. This cryptographic paging is analogous to paging of
physical pages to virtual memory on disk, except for different cost
coefficients, and well-known analysis techniques can be used to tune
such a system. The variance in costs will likely lead to new tradeoffs:
cryptographic checksums are easier to calculate than encryption (and
therefore faster modulo hardware support), so providing integrity alone is
less expensive than providing privacy as well. On the other hand, if the
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computation can reside entirely on a secure coprocessor, both privacy
and integrity can be provided for free.

Secure Coprocessor Software

With partitioned applications that must have parts loaded into a secure
coprocessor to run and perhaps paging of secure coprocessor tasks, a
small, simple security kernel is needed for the secure coprocessor. What
makes this kernel different from other security kernels is the partitioned
system structure.

Like normal workstation (host) kernels, the secure coprocessor kernel
must provide separate address space if vendor and user code is to be
loaded into the secure coprocessor—even if we implicitly trust vendor
and user code, providing separate address spaces helps to isolate the
effects of programming errors. Unlike the host’s kernel, many services
are not required: terminal, network, disk, and other device drivers need
not be part of the secure coprocessor. Indeed, since both the network and
disk drives are susceptible to tampering, requiring their drivers to reside
in the secure coprocessor’s kernel is overkill—network and file-system
services from secure coprocessor tasks can simply be forwarded to the
host kernel for processing. Normal operating system services such as
printer service, electronic mail, etc. are entirely inappropriate in a secure
coprocessor—these system daemons can be eliminated entirely.

The only services that are crucial to the operation of the secure
coprocessor are (1) secure coprocessor resource management; (2)
communications; (3) key management; and (4) encryption services.
Within resource management we include task allocation and scheduling,
virtual memory allocation and paging, and allocation of communication
ports. Under communications we include both communication among
secure coprocessor tasks and communication to host tasks; it is by
communicating with host system tasks that proxy services are obtained.
Under key management we include the management of secrets for
authentication protocols, cryptographic keys for protecting data as well
as execute-only software, and system fingerprints for verifying the
integrity of system software. With the limited number of services needed,
we can easily envision using a microkernel such as Mach 3.0 [22]: we
need to add a communications server and include a key management
service to manage non-volatile key memory. The kernel must be small
for us to trust it; we have more confidence that it can be debugged and
verified.

Key Management

A core portion of the secure coprocessor software is code to manage
keys. Authentication, key management, fingerprints, and encryption
crucially protect the integrity of the secure coprocessor software and the
secrecy of private data, including the secure coprocessor kernel itself. A
permanent part of a bootstrap loader, in ROM or in NVM, controls the
bootstrap process of the secure coprocessor itself. Like bootstrapping the
host processor, this loader verifies the secure coprocessor kernel before
transferring control to it.

The system fingerprints needed for checking system integrity must
reside entirely in NVM or be protected by encryption while being stored
on an external storage device—the key for which must reside solely in
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the secure NVM., If the latter approach is chosen, new keys must be
selected® to prevent replay attacks where old, potentially buggy secure
coprocessor software is reintroduced into the system. Depending on the
cryptographic assumptions made in the algorithm, the storage of the
fingerprint information may require just integrity or both integrity and
secrecy. For the cases of MD4, MDC, and Snefru, integrity of the integ-
rity check information is sufficient; for the case of the Karp-Rabin
fingerprint, both integrity and secrecy are required.

Other protected data held within the secure coprocessor’s NVM
include administrative authentication information needed to update the
secure coprocessor software. We assume that a security administrator is
authorized to upgrade secure coprocessor software, and that only the
administrator may authenticate his identity properly to the secure
coprocessor. The authentication data for this operation can be updated
along with the rest of the secure coprocessor system software; in either
case, the upgrade must appear transactional, that is, it must have the
properties of permanence, where results of completed transactions are
never lost; serializability, where there is a sequential, non-overlapping
view of the transactions; and failure atomicity, where transactions either
complete or fail such that any partial results are undone. The non-
volatility of the memory gives us permanence automatically, if we
assume that only catastrophic failures (or intentional sabotage) can
destroy the NVM; serializability, while important for multi-threaded
applications, can be easily enforced if we permit only a single upgrade
operation to be in progress at a time (this is an infrequent operation and
does not require parallelism); and the failure atomicity guarantee can be
provided easily as long as the non-volatile memory subsystem provides
an atomic store operation. Update transactions need not be distributed
nor nested; this simplifies the implementation immensely.

With secure coprocessors, we can perform all the necessary security
functions to verify the integrity of the host system. The secure
coprocessor may believe that the host system is clean, but how is the user
to be convinced of this? After all, the secure coprocessor within the
computer may have been replaced with a Trojan horse unit.

Smart-Cards

One solution to this is the use of smart-cards. Users can use advanced
smart-cards to run an authentication procedure to verify the secure
coprocessor’s identity. Since secure coprocessors’ identity-proofs can be
based on a zero-knowledge protocol, no secret information needs to be
stored in smart-cards unless smart-cards are to also aid users in authenti-
cating themselves to systems, in which case the only secrets would be
those belonging to the users. By the virtue of their portability, users can
carry smart-cards at all times and thus provide the physical security
needed.

Remote Services

Another way to verify that a secure coprocessor is present is to ask a
third-party entity—such as a physically sealed third-party computer—to
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check for the user. Often, this service can also be provided by normal
network-servers machine such as file-servers. The remote services must
be difficult to emulate by attackers. Users may rely on noticing the
absence of these services to detect that something is amiss with the
secure coprocessor. This necessarily implies that these remote services
must be available before the users authenticate to the system.

Unlike authentication protocols reliant on accessing central authenti-
cation servers, this authentication happens once, at boot time. The
identity being proven is that of the secure coprocessor—users may be
confident that the workstation contains an authentic secure coprocessor if
access to gny normal remote service can be obtained. This is because in
order to successfully authenticate to obtain the service, attackers must
either break the authentication protocol, break the physical security in the
secure coprocessor, or bypass the physical security around the remote
server. As long as the remote service is sufficiently complex, attackers
will not be able to emulate it.

REeLATIONSHIP WITH  Partitioning security is not new. The method of embodying physical
Previous Work security in a secure coprocessor, however, is new, and it has been made
possible only recently due to advances in packaging technology [62].
Certainly, the need for physical security is widely described in standard
textbooks. For example, one book states that “physical security controls
(locked rooms, guards, and the like) are an integral part of the security
solution for a central computing facility.”[18]

We can trace several analogs to this approach of partitioning security
in previous work. The logical partitioning of security in the literature [58,
61] of dividing the system into a “Trusted Computing Base” (TCB) and
applications in some sense heralds this idea—the security partition was
firmly drawn between the user and the machine; it not only included the
logical security of the operating system part of the TCB, but also the
physical security of the TCB hardware installation (machine rooms, etc).

Systems such as Kerberos [53] move that security partition for distrib-
uted systems toward including just one trusted server behind locked
doors. This approach, however, still has serious security problems: client
machines are often physically exposed and users are provided with no
real assurances of their logical integrity, and the centralized server
approach offers attackers a central point of attack—the system cata-
strophically fails when the central server is compromised [5]. Certainly,
it does not offer much in terms of providing fault tolerance with distrib-
uted computing.

More recently, the partitioning in Strongbox [54] more clearly points
the way toward minimizing the number of assumptions about trusted
components in a secure system and clearly defining the security partition
boundaries and security assumptions. In that system, the base security
system was divided into trusted servers which, assuming protected
address spaces, allowed security to be bootstrapped to application servers
and clients. Unfortunately, while the system has better degradation
properties, it could deliver system integrity assurances only by assuming
trusted-operator-assisted bootstrapping. Table 3 shows the various types
of systems and their basic assumptions as well as typical cryptographic
assumptions.
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System Type Basic Assumptions Crytopgraphic
; Assumptions

Conventional Physical Security of DES cannot

Non-distributed Central Mainframe be inverted

e.g., Unix password

Conventional Physical Security of DES cannot

Distributed Authentication Server be inverted

e.g., Kerberos

Self-Securing Physical Security of a DES cannot

Distributed Quorum of White Pages | be inverted;

e.g., Strongbox Servers factoring is hard

Secure Coprocessors | Physics DES cannot

e.g., Dyad (Tampering destroys be inverted;
cryptographic data) factoring is hard

Table 3: Basic Assumptions of Security Systems

The secure coprocessor approach minimizes the basic assumptions
and can address all of the problems with the approaches cited above. By
implementing cryptographic protocols within a secure coprocessor, we
can be assured that they will execute correctly and that the secrets
required by the various protocols are indeed kept secret. By using the
secure coprocessor to verify the integrity of the rest of the system, we
can give users greater assurance that the system has not been compro-
mised and that the system has securely bootstrapped.

In addition to the work mentioned above, there are many other rel-
evant works on security related issues: [3, 56, 57, 63] discuss issues in
the design and implementation of physically secure system components,
Research on cryptosystems and cryptographic protocols which are
important tools for secure network communication can be found in [2, 5,
7,11, 15,16, 17, 19, 20, 21, 24, 29, 34, 35, 37, 42, 45, 47, 48, 49, 53].
More general information on some of the number theoretic tools behind
many of these protocols may be found in [33, 36, 40, 51]. The tools for
checking data integrity are described in [27, 28, 38, 41].

Research on protection systems and general distributed system secu-
rity may be found in [39, 43, 46]. )

[9] provides a logic for analyzing authentication protocols, and [23]
extends the formalism.

General security/cryptography information can be found in [14], the
new proposed federal criteria for computer security [61], and in older
standards such as the “Orange book” [58] and the “Red book™ [59].
General information on cryptography can be found in [13, 32].
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Grossary OF TERMS At the suggestion of the editors of this anthology, we include a small
glossary of technical terms which may be unfamiliar to readers who are
not computer scientists. Readers who are interested in operating systems
may wish to read [50]; those who are interested in cryptography may
wish to read [13, 32].

authentication The process by which identity (or other credentials) of a
user or computer are verified. Authentication protocols are series of
stylized exchanges which prove identity. The simplest example is that
of the password, which is a secret shared between the two parties
involved; password-based schemes are cryptographically weak
because any eavesdropper who overhears the password may subse-
quently impersonate one of the parties.

More sophisticated authentication protocols use techniques from-
cryptography to eliminate the problem with eavesdroppers. In these
systems, the password is used as a key to parameterize the crypfo-
graphic function. Some of these protocols depend on the strength of
the particular cryptographic function involved and may leak a little bit
of information about the keys used each time the protocol is run. A
more powerful class of authentication protocols known as zero knowl-
edge authentication probably do not leak any information. Zero
knowledge protocols are an important special case of zero knowledge
proofs, which have a number of important applications in computer
science.

authentication protocol See authentication.
bootstrap The process of initializing a computer.

checksum A small output value computed using some known checksum
function from input data. The checksum function is chosen so that
changes in the input will likely result in a different output checksum.
Checksums are intended to guard against the corruption of the original
data, typically due to noisy communication channels or bad storage
media.

checksum, cryptographic A checksum computed using a function
where it is infeasible (other than by exhaustively searching through all
possible input) to find another input which would have the same
output value. Cryptographic checksums may be used to guard against
malicious as well as unintentional modification of the data, since the
correct checksum may be delivered by a (more expensive) tamper-
proof means, and the recipient of the data may recompute the
checksum to verify that the data has not been corrupted.

Cryptographic checksums are generally computed by applying a
conjectured® one-way hash function to the input. One-way hash
functions have the property that they are computationally infeasible
(except by exhaustive search) to invert—that is, given only the output
value, one cannot easily find an input to the function that would give
that output.

Another approach to cryptographic checksums is based on parameter-
izing the checksum function by a secret key. The Karp-Rabin finger-
print system uses secret keys to checksum data, forcing attackers to
guess the secret key correctly; the secret key and resultant checksum
must be delivered via a secure communication channel which guaran-
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tees against both tampering and eavesdropping.
ciphertext See cryptography.

client-server model A mode] of distributed computing where client
software on one computer makes requests to server software on the
same or a different computer. Examples of the client-server model
include distributed file systems, electronic mail, and file transfer.

client See client-server model.

cryptography The enciphering and deciphering of messages in secret
codes. The enciphered messages are known as ciphertext; the original
(or decoded) messages are known as plaintext. Cryptographic func-
tions are used to transform between plaintext and ciphertext, and keys
are used to parameterize the cryptographic function used (or alterna-
tively, select the cryptographic function from a set of functions). The
security of cryptographic systems depends on the secrecy of the keys.
Generally cryptographic systems may be classified into two different
kinds: private key (or symmetric) systems; and public key (or asym-
metric) systems.
In private key systems, a single value or key is used to parametrically
encode and decode messages. Thus, both the sender and the receiver
of enciphered messages must know the same key. In contrast, public
key systems are parameterized by pairs of keys, one for encryption
and the other for decryption. Knowing one of the two keys in a pair
does not help in determining the other. Thus, the encryption key may
be widely published while the decryption key is kept secret; anyone
may send encrypted messages that can only be read by the owner of
the secret key.

Alternatively, the decryption key may be widely published while the
encryption key is kept secret; this is used in digital or cryptographic
signature schemes where the owner of the encryption key uses the
secret key to encrypt, or sign a digital document. The result is a digital
signature, which may be decrypted by anyone to verify that it corre-
sponds to the original digital document. Since the secret key is known
by the owner of that key, the cryptographic signature serves as evi-
dence that the data has been processed by that person.

Cryptographic systems are attacked in two main ways. The first is that
of exhaustive search, where the attacker tries all possible keys in an
attempt to decipher messages or derive the key used. The second class
is that of short cut attacks where properties of the cryptographic
system are used to speed up the search.

Cryptographic attacks may be further classified by the amount of
information available to the attacker. A ciphertext-only attack is one
where the only information available to the attacker is the ciphertext.
A known-plaintext attack is one where the attacker has available
corresponding pairs of plaintext and ciphertext. A chosen-plaintext
attack is one where the attacker may chose plaintext messages and
obtain the corresponding ciphertext in an attempt to decrypt other
messages or derive the key. A chosen-ciphertext attack is one where
the attacker may chose some ciphertext messages and obtain their
corresponding plaintext in an attempt to derive the key used.
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cryptographic checksum See checksum, cryptographic.
cryptographic signature See cryptography.
cryptography, private key See cryptography.
cryptography, public key See cryptography.
daemon a program which runs unattended, providing system services to

users and application programs; examples includes electronic mail
transport, printer spooling, and remote login service.

Data Encryption Standard A U.S. federal data encryption standard
adopted in 1976, The NSA recommended that the Federal Reserve
Board use DES for electronic funds transfer applications. [60]

digital signature See cryplography.

executable binary A file containing an executable program; typically
includes standardized headers.

fingerprint See checksum, cryptographic.

kernel The program which is the core of an operating system, providing
the lowest level services upon which all other programs are built.
There are two major schools of designing kernels. The traditional
method of monolithic kernels places all basic system services within
the kernel. In a more modular kernel design approach, microkernels
provide many of the system services in a set of separate system
servers rather than the kernel itself.

known-plaintext attack See cryptography.
microkernel See kernel.
monolithic kernel See kernel.

National Security Agency (NSA) The U.S. agency responsible for
military cryptography and signals intelligence; recently more active in
civilian cryptography.

nonvolatile memory (NVM) Memory that retains its contents even after
power is removed.

one-way hash function See cryprography.

operating system The collection of programs which provide the inter-
face between the hardware and the user and application programs.

paging See virtual memory.

plaintext See cryptography.

private key cryptography See cryptography.
public key cryptography See cryptography.
server See client-server model.

virtual memory A technique of providing the appearance of having
more primary memory than actually exists by moving primary
memory (RAM) contents to/from secondary storage (disk) as needed.
The transfer of sections of this virtual memory between physical
memory and secondary storage is called paging.

zero knowledge protocol See authentication.
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NOTES

1. Even greater security would be achieved if the terminals were also secure;
otherwise the users would have the right to wonder whether their every key-
stroke is being spied upon.

2. In recent work [55], we have also demonstrated the feasibility of crypto-
graphically protecting postage franking marks printed possibly by PC-based
electronic postage meters. Because such meters are located at customer sites,
secure coprocessors were crucial for the protection of cryptographic keys.

3. Sufficiently sophisticated hardware emulation can fool both users and any
integrity checks. If an attacker replaced a disk controller with one which would
provide the expected data during system integrity verification but would return
Trojan horse data (system programs) for execution, there would be no com-
pletely reliable way to detect this. Similarly, it would be very difficult to detect
if the CPU were substituted with one which fails to correctly run specific pieces
of code in the operating system protection system. One limited defense against
hardware modifications is to have the secure coprocessor do behavior and
timing checks at random intervals. There is no absolute defense against this form
of attack, however, and the best that we can do is to make such emulation
difficult and force the hardware hackers to build more perfect Trojan horse
hardware.

4. Allowing the encrypted form of the code to be copied means that we can
back up the workstation against disk failures. Even giving attackers access to the
backup tapes will not release any of the proprietary code. Note that our encryp-
tion function should be resistant to known-plaintext attacks, since executable
binaries typically have standardized formats.

5. We can assume that the operating system provides protected address
spaces. Paging is assumed to be performed on either a local disk which is
immune to all but physical attacks or a remote disk via encrypted network
communication (see section below on coprocessor architecture). If we wish to
protect against physical attacks for the former case, we may need to encrypt the
data anyway or ensure that we can erase the paging data from the disk prior to
shutting down.

6. The public key encryption requires no secrets and may be performed in the
host; signing the message, however, requires the use of secret values and thus
must be performed within the secure coprocessor.

7. Presumably the remote hosts will also contain a secure coprocessor,
though everything will work fine as long as the remote hosts follow the appro-
priate protcols. The final design must take into consideration the possibility of
remote hosts without secure coprocessors.

8. One way is to use a cryptographically secure random number generator,
the state of which resides entirely in NVM.

9. Theorists have not been able to prove any particular function to be one-
way. However, there are several functions that seem to work in practice.
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