

UNITED STATES PATENT AND TRADEMARK OFFICE

BEFORE THE PATENT TRIAL AND APPEAL BOARD

FORTINET INC.

Petitioner

v.

SOPHOS LLC

Patent Owner

INTER PARTES REVIEW OF U.S. PATENT NO. 8,261,344

Case IPR: _________

PETITION FOR INTER PARTES REVIEW OF

U.S. PATENT NO. 8,261,344

UNDER 35 U.S.C §§ 311-319 AND 37 C.F.R. §§ 42.1-.80 & 42.100-.123

Mail Stop: Patent Board

Patent Trial and Appeal Board

U.S. Patent and Trademark Office

P.O. Box 1450

Alexandria, VA 22313-1450

i

TABLE OF CONTENTS

EXHIBIT LIST ... iv

I. INTRODUCTION ... 1

II. MANDATORY NOTICES ... 5

A. Real Party-in-Interest (37 C.F.R. § 42.8(b)(1)). 5

B. Related Matters (37 C.F.R. § 42.8(b)(2)). ... 5

C. Lead and Backup Counsel and Service Information (37 C.F.R.

§42.8(b)(3)-(4)). .. 6

III. GROUNDS FOR STANDING .. 6

IV. IDENTIFICATION OF CHALLENGE AND RELIEF REQUESTED 7

1. How the Claims Are Unpatentable. .. 8

2. Supporting Evidence. .. 9

V. THE ‘344 PATENT AND PROSECUTION HISTORY 9

A. The ‘344 Patent. .. 9

B. Prosecution History. .. 11

VI. CONSTRUCTION OF THE CHALLENGED CLAIMS 13

VII. DETAILED EXPLANATION OF GROUNDS FOR INVALIDITY 18

A. Claims 1 and 2 Are Anticipated by Bodorin 19

B. Claims 10 and 13 Are Rendered Obvious in View of Bodorin

Itself ... 27

C. Claims 1, 2, 10, and 13 Are Anticipated by Kissel 29

1. Statement of Non-Redundancy ... 29

D. Claims 16 and 17 Are Rendered Obvious in Light of Kissel

Further in View of Apap ... 37

1. Apap .. 37

 ii

2. It Would Have Been Obvious to Combine Kissel and

Apap .. 37

E. Claims 16 and 17 Are Rendered Obvious in Light of Bodorin

Further in View of Kissel and Apap. .. 43

F. Claims 1, 2, 10, and 13 Are Anticipated by Chen 50

1. Statement of Non-Redundancy ... 50

VIII. CONCLUSION .. 59

 iii

TABLE OF CASES

Fortinet, Inc. v. Sophos, Inc., Case No. 3:13-cv-05831-EMC (N.D.

Cal.) ... 5, 14-15

In re Trans Texas Holdings Corp., 498 F.3d 1290 (Fed. Cir. 2007) 14

Phillips v. AWH Corp., 415 F.3d 1303 (Fed. Cir. 2005) ... 14

 iv

EXHIBIT LIST

No. Exhibit

Ex. 1001 U.S. Patent No. 8,261,344 to Godwood et al.

Ex. 1002 The prosecution history of U.S. Patent No. 8,261,344

Ex. 1003 U.S. Patent No. 7,913,305 to Bodorin et al. (“Bodorin”)

Ex. 1004 U.S. Patent No. 7,373,644 to Kissel (“Kissel”)

Ex. 1005 U.S. Patent No. 5,951,698 to Chen et al. (“Chen”)

Ex. 1006 U.S. Patent No. 7,448,084 to Apap et al. (“Apap”)

Ex. 1007 Expert Declaration of Seth Nielson

Ex. 1008 Joint Claim Construction and Prehearing Statement in Fortinet, Inc.

v. Sophos, Inc., Case No. 3:13-cv-05831-EMC (N.D. Cal.)

Ex. 1009 Exhibit E to Sophos Inc. and Sophos LTD’s Disclosure Of Asserted

Claims and Infringement Contentions and Document Production

Pursuant to Patent L.R. 3-1 And 3-2 in Fortinet, Inc. v. Sophos, Inc.,

Case No. 3:13-cv-05831-EMC (N.D. Cal.)

Ex. 1010 U.S. Patent No. 8,713,686 to Kane (“Kane”)

Ex. 1011 December 15, 2014 Transcript of Claim Construction Hearing in

Fortinet, Inc. v. Sophos, Inc., Case No. 3:13-cv-05831-EMC (N.D.

Cal.)

Ex. 1012 Fred Cohen, Computer Viruses, Theory and Experiments, Computers

& Security 6, at 22-35 (1986).

Ex. 1013 David M. Chess and Steve R. White, An Undetectable Computer

Virus, IBM Thomas J. Watson Research Center, 2000.

Ex. 1014 Virus Bulletin, March 1991.

Ex. 1015 Thomas M. Chen, The Evolution of Viruses and Worms, Dept. of

Electrical Engineering, SMU, 2004.

Ex. 1016 Virus Bulletin, November 1991.

Ex. 1017 Virus Bulletin, December 1991.

 v

Ex. 1018 Virus Bulletin, November 1993.

Ex. 1019 Dmitry O. Gryaznov, Scanners of the Year 2000: Heuristics, Virus

Bulletin Conference, at 225-234, Sept. 1995.

Ex. 1020 Virus Bulletin, September 1995.

Ex. 1021 Virus Bulletin, April 1990.

Ex. 1022 Virus Bulletin, February 2000.

1

I. INTRODUCTION

Fortinet Inc. (“Fortinet” or “Petitioner”) respectfully requests inter partes

review (“IPR”) of Claims 1, 2, 10, 13, 16, and 17 of U.S. Patent No. 8,261,344

(“the ‘344 Patent”), Exhibit (“Ex.”) 1001, under 35 U.S.C. §§ 311-319, 37 C.F.R.

§§ 42.1-.80 and 37 C.F.R. §§ 42.100-.123. Generally, the ‘344 Patent discloses

classifying and identifying malware and virus software by extracting certain

features or characteristics of the software referred to in the ‘344 Patent as “genes.”

Ex. 1001 at Abstract. The disclosed methods then compare these extracted genes

to a library of known genes. Ex. 1001 at 5:51-56. Once identified, the user may be

notified of the malware and virus software. Ex. 1001 at 6:1-8. In addition to

reporting, the malware may be blocked or removed. Ex. 1001 at 6:8-10.

As explained below, the Patent Owner obtained allowance of the claims by

principally relying on specific and narrow definitions of “genes,” library of

“genes,” as well as “functional blocks” as recited in the claims. More specifically,

during the prosecution of the ‘344 Patent, the Patent Owner made it clear that the

‘344 Patent was patentable over the cited prior art because the ‘344 Patent

disclosed that “[t]he genes are matched against functional blocks of code and the

functionality is determined by matching sequences of API calls and the strings that

are references.” Ex. 1002 at 128. The Examiner in turn made it clear that these

specific definitions of “genes” and “functional blocks” were critical in allowing the

 2

claims. In the Notice of Allowance, the Examiner was clear that the aspect of the

claimed invention that was not found in the prior art was “identifying one or more

genes each describing one or more of the at least one functional block and the at

least one property of the software as a sequence of APIs and strings.” Ex. 1002 at

14.

However, in the pending litigation in the Northern District of California, the

Patent Owner has broadly construed “gene” as “a piece of functionality or property

of a program” and “functional block” as “a segment of the program that illustrates

the function and execution flow of the program.” The Patent Owner contends that

its construction for “gene” is supported at 5:32-33 and 5:37-41 in the specification.

The Paten Owner also contends that its construction for “functional block” is

supported at 5:18-20, 5:27-28, and 5:32-41 in the specification. Under such broad

claim interpretations, many prior art references disclose analyzing certain

functionality or property of potential malware and identifying malware by

comparing the analyzed functionality or property with a library of known malware.

These prior art references render the claims of the ‘344 Patent invalid.

As set forth below, Claims 1, 2, 10, 13, 16, and 17 of the ‘344 Patent are

invalid in light of prior art not cited during the prosecution of the ‘344 Patent.

Elements of these claims were well known and widely used in the art well before

the ‘344 Patent’s purported priority date of June 30, 2006.

 3

Identifying “functional blocks”: Independent Claim 1 of the ‘344 patent

recites identifying at least one functional block and at least one property of the

software. However, as explained below, under the Patent Owner’s broad

construction of a “functional block” as “a segment of the program that illustrates

the function and execution flow of the program,” prior art not cited during

prosecution demonstrates that this was also well known in the art. For example,

U.S. Patent No. 7,913,305 to Bodorin et al. discloses identifying “behaviors,”

which are functionalities of the examined software. Ex. 1003 at 4:58-61. U.S.

Patent No. 7,373,664 to Kissel discloses identifying “features,” which include

tokenized representations of the parsed script software where individual tokens and

groups of tokens represent functions and execution flow of the program. Ex. 1004

at 3:43-61. As another example, U.S. Patent No. 5,951,698 to Chen et al. discloses

identifying “instructions,” which are segments of the macro that illustrate the

function and execution flow of the macro. Ex. 1005 at 5:16-37.

Identifying “genes”: Independent Claims 1 and 16 of the ‘344 patent recite

identifying genes that describe a functional block and a property of the software.

As Dr. Nielson explained, “genes” is not a term of art ordinarily used in computer

science. Ex. 1007 at ¶ 42. Again, during the prosecution of the ‘344 Patent, the

Examiner stated that this limitation was the reason for allowance. Ex. 1002 at 14.

However, as explained below, prior art not cited during prosecution demonstrates

 4

that this was also well known in the art. As Dr. Nielson explained, the concepts in

the ‘344 Patent that relate to the term “genes,” especially under this broad

construction, are not new. Ex. 1007 at ¶ 42. For example, U.S. Patent No.

7,913,305 to Bodorin et al. discloses identifying a subset of the “behaviors” that

are “interesting.” These “interesting behaviors” are pieces of functionality of the

software. Ex. 1003 at 4:51-5:20. The “features” disclosed in U.S. Patent No.

7,373,664 to Kissel may include keywords extracted from tokenized representation

of script software that are pieces of functionality or property of the software. Ex.

1004 at 5:20-25. As another example, U.S. Patent No. 5,951,698 to Chen et al.

discloses using instruction identifiers to identify functionality or one or more

properties of the software that may indicate malware. Ex. 1005 at Fig. 6.

Providing a library of genes: Independent Claims 1 and 16 of the ‘344

patent recite providing a library of gene information. As explained in detail below,

a library of software characteristics used to identify malware was well known in

the art. For example, U.S. Patent No. 7,913,305 to Bodorin et al. discloses a

“malware behavior signature store” that is a repository of behavior signatures of

known malware. Ex. 1003 at 5:31-32. U.S. Patent No. 7,373,664 to Kissel

discloses a “blocked feature instance library” that contains exemplars of feature

instances that are indicative of malicious code. Ex. 1004 at 3:27-30. Likewise,

U.S. Patent No. 5,591,698 to Chen et al. discloses a virus information module that

 5

provides comparison data for the detection of viruses in macros. Ex. 1005 at 6:1-3.

And as Dr. Nielson explained, scanning for malware by matching aspects of a

particular piece of software against a library of those of known malware was a

common way of detecting malware. Ex. 1007 at ¶¶ 28-30.

Reporting or blocking identified malware: Claims 1, 10, and 13 of the

‘344 Patent recite reporting to the user that malware has been found or blocking

the malware from executing once that malware has been identified. As discussed

above and explained by Dr. Nielson, anti-virus software was well known in the art

by the priority date of the ‘344 Patent and it was common for anti-virus software to

report or block identified malware. Ex. 1007 at ¶ 67-69.

Accordingly, the challenged claims of the ‘344 Patent should not have

issued.

II. MANDATORY NOTICES

A. Real Party-in-Interest (37 C.F.R. § 42.8(b)(1)).

Fortinet is the real party-in-interest. Fortinet is located at 1090 Kifer Road,

Sunnyvale, California 94086.

B. Related Matters (37 C.F.R. § 42.8(b)(2)).

The ‘344 Patent is asserted in the following case in the Northern District of

California: Fortinet, Inc. v. Sophos, Inc. et al., 3:13-cv-05831-LB. Fortinet was

first served with a counterclaim alleging infringement of the ‘344 patent on

 6

January 24, 2014, and therefore is not barred to petition for inter partes review

under 35 U.S.C. § 315(a)(3).

C. Lead and Backup Counsel and Service Information (37 C.F.R.

§42.8(b)(3)-(4)).

The designations of counsel and addresses for service are:

LEAD COUNSEL BACKUP COUNSEL

Jason Liu

Reg. No. 51,955

jasonliu@quinnemanuel.com

Postal and Hand Delivery Address:

Quinn Emanuel Urquhart & Sullivan

50 California St, 22
nd

 Floor

San Francisco, CA 94111

Phone: 415.875.6434

Fax: 415.875.6700

Robert Kang

Reg. No. 59,609

robertkang@quinnemanuel.com

Postal and Hand Delivery Address:

Quinn Emanuel Urquhart & Sullivan

50 California St, 22
nd

 Floor

San Francisco, CA 94111

Phone: 415.875.6318

Fax: 415.875.6700

John Neukom

(to be admitted pro hac vice)

johnneukom@quinnemanuel.com

Jordan R. Jaffe

(to be admitted pro hac vice)

jordanjaffe@quinnemanuel.com

Postal and Hand Delivery Address:

Quinn Emanuel Urquhart & Sullivan

50 California St, 22
nd

 Floor

San Francisco, CA 94111

Phone: 415.875.6300

Fax: 415.875.6700

III. GROUNDS FOR STANDING

Petitioner certifies that the ‘344 Patent is available for inter partes review,

and that Petitioner is not barred or estopped from requesting this review. Petitioner

is filing Power of Attorney and an Exhibit List concurrently with this petition, as

 7

well as all required fees. If any additional fees are due at any time through the

course of the IPR, the undersigned authorizes the U.S. Patent and Trademark

Office to charge such fees to Deposit Account No. 505708.

IV. IDENTIFICATION OF CHALLENGE AND RELIEF REQUESTED

Pursuant to 37 C.F.R. § 42.104(b)(2), inter partes review of the ‘344 patent

is requested in view of the following references, each of which qualifies as prior art

to the ‘344 patent under 35 U.S.C. § 102(a), (b), and/or (e):

a. U.S. Patent No. 7,913,305 to Bodorin et al. (“Bodorin”) was filed on

January 30, 2004, which is prior to the earliest filing date claimed by the ‘344

patent (June 30, 2006), and subsequently issued on March 22, 2011. Bodorin is

therefore available as prior art under pre-AIA 35 U.S.C. § 102(e). Bodorin was not

cited during the original prosecution of the ‘344 patent.

b. U.S. Patent No. 7,373,664 to Kissel (“Kissel”) was filed on December

16, 2002, which is prior to the earliest filing date claimed by the ‘344 patent (June

30, 2006), and subsequently issued on May 13, 2008. Kissel is therefore available

as prior art under pre-AIA 35 U.S.C. § 102(e). Kissel was not cited during the

original prosecution of the ‘344 patent.

c. U.S. Patent No. 5,951,698 to Chen et al. (“Chen”) issued on

September 1999, which is more than a year prior to the earliest filing date claimed

by the ‘344 patent (June 30, 2006). Chen is therefore available as prior art under

 8

pre-AIA 35 U.S.C. § 102(b). Chen was not cited during the original prosecution of

the ‘344 patent.

d. U.S. Patent No. 7,448,084 to Apap et al. (“Apap”) was filed on

January 27, 2003, which is prior to the earliest filing date claimed by the ‘344

patent (June 30, 2006), and subsequently issued on November 4, 2008. Apap is

therefore available as prior art under pre-AIA 35 U.S.C. § 102(e). Apap was not

cited during the original prosecution of the ‘344 patent.

Petitioner requests cancellation of challenged Claims 1, 2, 10, 13, 16 and 17

under the following statutory grounds:

A. Claims 1 and 2 are anticipated by Bodorin.

B. Claims 10 and 13 are rendered obvious by Bodorin.

C. Claims 1, 2, 10, and 13 are anticipated by Kissel.

D. Claims 16 and 17 are rendered obvious in light of Kissel further in

view of Apap.

E. Claims 16 and 17 are rendered obvious in light of Bodorin further in

view of Kissel and Apap.

F. Claims 1, 2, 10, and 13 are anticipated by Chen.

1. How the Claims Are Unpatentable.

Pursuant to 37 C.F.R. § 42.104(b)(4), an explanation of how the challenged

claims of the ‘344 Patent are unpatentable under the statutory grounds identified

 9

above, including the identification of where each element of the claim is found in

the prior art, is provided in Section VII, infra. There is a reasonable likelihood that

at least one claim of the ‘344 Patent is unpatentable under 35 U.S.C. §§ 102 and

103.

2. Supporting Evidence.

Pursuant to 37 C.F.R. § 42.104(b)(5), the exhibit numbers of the supporting

evidence relied upon and the relevance of the evidence to the challenges raised,

including identification of specific portions of the evidence that support the

challenge, are provided herein. An Exhibit List identifying the exhibits is

included. See supra at iv-v. In further support of the proposed grounds of

rejection, this Petition is accompanied by the declaration of Dr. Seth Nielson. See

Ex. 1007.

V. THE ‘344 PATENT AND PROSECUTION HISTORY

A. The ‘344 Patent.

The ‘344 Patent, titled “Method and System for Classification of Software

Using Characteristics and Combinations of Such Characteristics,” issued on

September 4, 2012. The ‘344 patent originally filed on June 30, 2006.

The ‘344 Patent is directed to classifying software (e.g., malicious software)

based in part on “identifying one or more genes that appear in software.” See, e.g.,

Ex. 1001 at 2:31-50, 6:43-45. The ‘344 Patent distinguishes its solution from other

malware detection techniques, including: “traditional malware protection

 10

techniques . . . based around anti-virus vendors creating signatures for known

malware and products that scan systems searching for those specific signatures,”

Ex. 1001 at 1:59-61; “[h]ueristic techniques [that] look at various properties of a

file and not necessarily the functionality of the program,” Ex. 1001 at 2:10-13; and

techniques that “run[] malware and attempt[] to stop execution if malicious

behavior is observer [sic] to happen,” Ex. 1001 at 2:13-15.

The ‘344 Patent purports to offer a different approach, using what it calls

“genes.” To classify software and detect potential malware, the ‘344 Patent

proposes the following basic steps: (1) extracting “functional blocks” from a

software file, see, e.g., Ex. 1001 at 5:17-28, 7:62-63; (2) searching the “functional

blocks” for one or more “genes,” Ex. 1001 at 5:29-45, 7:64-67; and (3) matching

the identified “genes” against a “library” which includes “a number of

classifications based on groupings of genes,” Ex. 1001 at 5:46-50, 7:60-61, 8:1-4.

Software is then classified based on this matching. Id. Fig. 2 of the ‘344 Patent

illustrates the process of detecting malware:

B. Prosecution History.

On June 30, 2006, Patent Owner

(“the ‘203 application”). Originally,

application. In a subsequent first Office Action dated May 17,201

rejected all pending claims under 35 U.S.C. § 101 and also under § 102(a) and (e)

as being anticipated by U.S. Patent Publication No. 2006/0123244 to Gheorghescu

et al. (“Gheorghescu”). Ex. 1002 at

In response, Patent Owner

Among other edits, Patent Owner

11

Ex. 1001 at Fig. 2.

Prosecution History.

Patent Owner filed Application Serial No. 11/428,203

203 application”). Originally, 33 claims were pending in the ‘203

application. In a subsequent first Office Action dated May 17,2010, the Examiner

rejected all pending claims under 35 U.S.C. § 101 and also under § 102(a) and (e)

as being anticipated by U.S. Patent Publication No. 2006/0123244 to Gheorghescu

et al. (“Gheorghescu”). Ex. 1002 at 163-173.

Patent Owner filed an Amendment on January 24, 2011.

Patent Owner amended Claims 1 and 16 to include the

on Serial No. 11/428,203

203

0, the Examiner

rejected all pending claims under 35 U.S.C. § 101 and also under § 102(a) and (e)

as being anticipated by U.S. Patent Publication No. 2006/0123244 to Gheorghescu

an Amendment on January 24, 2011.

amended Claims 1 and 16 to include the

 12

limitation “using a processor.” Patent Owner also added the limitation “notifying a

user of said one or more classifications” to Claim 1 and “returning a result of said

software classification based on said set of genes to a user” to Claim 16. Ex. 1002

at 120-21. Furthermore, Patent Owner argued Gheorghescu did not anticipate

because Gheorghescu only disclosed a “level of scrutiny [that] is limited to the

basic block [of program code], and individual elements of functionality are not

directly analyzed.” Ex. 1002 at 127-128. In contrast, the alleged invention of the

’203 application disclosed “a gene [that] is a piece of functionality or property of

the program” and “[t]he genes are matched against functional blocks of code and

the functionality is determined by matching sequences of API calls and the strings

that are references.” Id.

In a subsequent final Office Action dated March 16, 2011, the Examiner

maintained the § 102 rejection based on Gheorghescu. Patent Owner then filed a

Request for Continued Examination, and amended independent Claims 1 and 16 to

include the limitation “analyzing all functional elements of software,” and

“wherein a gene is a single piece of functionality or a property of software.” Ex.

1002 at 85. As a result of the amendments to the claims, the Examiner withdrew

the § 102 rejection based on Gheorghescu. Instead, in the Office Action dated

October 4, 2011, the Examiner set forth a new rejection under § 103 in light of

 13

U.S. Patent Application Publication No. 2008/0040710 to Chiriac and further in

view of Gheorghescu. Ex. 1002 at 67-76.

Patent Owner amended the claims once again on April 3, 2012. Among

other changes, Patent Owner amended independent Claims 1 and 16 to include

limitations “providing a library of gene information including a number of

classifications based on groupings of genes.” Patent Owner also amended

independent Claims 1 and 16 so that they recite that the genes extracted from the

software describe a functional block and a property of the software as a sequence

of APIs and strings. Ex. 1002 at 54.

The Examiner then allowed the claims. In the Notice of Allowance, the

Examiner was clear that the aspect of the claimed invention that was not found in

the prior art was “identifying one or more genes each describing one or more of the

at least one functional block and the at least one property of the software as a

sequence of APIs and strings.” Ex. 1002 at 14. However, as demonstrated below,

this limitation, as well as all other limitations of Claims 1, 2, 10, 13, 16, and 17 of

the ‘344 Patent, were well known in the art before June 2006. Accordingly, these

claims of the ‘344 Patent are invalid and should not have issued.

VI. CONSTRUCTION OF THE CHALLENGED CLAIMS

In an inter partes review, claim terms in an unexpired patent are interpreted

according to their broadest reasonable interpretation (“BRI”) in view of the

 14

specification in which they appear. 37 C.F.R. § 42.100(b); Office Patent Trial

Practice Guide, 77 Fed. Reg. 48,756, 48,766 (Aug. 14, 2012). The USPTO uses

BRI because, among other reasons, the patentee has the opportunity to amend its

claims in this proceeding. See, e.g., Office Patent Trial Practice Guide, 77 Fed.

Reg. 48,756, 48,764 (Aug. 14, 2012) (“Since patent owners have the opportunity to

amend their claims during IPR, PGR, and CBM trials, unlike in district court

proceedings, they are able to resolve ambiguities and overbreadth through this

interpretive approach, producing clear and defensible patents at the lowest cost

point in the system.”). As required by the applicable rules, this Petition uses the

BRI standard.

The BRI of claim terms here may be different from the construction that

those same terms may receive following claim construction proceedings in district

court. See, e.g., In re Trans Texas Holdings Corp., 498 F.3d 1290, 1297 (Fed. Cir.

2007). Thus the claim constructions presented in this Petition, including where

Petitioner does not propose an express construction, do not necessarily reflect the

claim constructions that Petitioner believes should be adopted by a district court

under Phillips v. AWH Corp., 415 F.3d 1303 (Fed. Cir. 2005).

In presenting this Petition, unless otherwise stated, the grounds set forth

herein are based on (1) the proposed claim construction offered by the Patent

Owner in Fortinet, Inc. v. Sophos, Inc., Case No. 3:13-cv-05831-EMC (N.D. Cal.),

 15

or (2) for terms where Patent Owner has not explicitly offered a claim

construction, on Petitioner’s understanding of Patent Owner’s claim construction

based upon Patent Owner’s infringement contentions submitted in Fortinet, Inc. v.

Sophos, Inc., Case No. 3:13-cv-05831-EMC (N.D. Cal.). A claim construction

order has not issued in this Northern District of California case. Petitioner does not

concede that any claim constructions impliedly or expressly proposed by Patent

Owner are appropriate for the district court litigation, where a different legal

standard applies to the construction of the asserted claim terms.

Instead, Petitioner presents these proposed constructions to the Board for

consideration in determining the BRI because, although Petitioner believes Patent

Owner’s constructions to be inconsistent with the intrinsic evidence, Patent Owner

considers these constructions correct under Phillips, and therefore necessarily also

considers them within the appropriate scope of the BRI. Petitioner further submits

these constructions under 35 U.S.C. § 301(a)(2), which encourages submission of

claim construction materials to prevent patentees from arguing broad constructions

under Phillips while simultaneously arguing narrow constructions as the BRI.

Petitioner accordingly respectfully requests that the Board adopt the

following constructions as the BRI of the limitations discussed below (reproduced

and highlighted in claim 1 for the Board’s reference):

1. A method for classifying software, said method comprising;

 16

[a] providing a library of gene information including a number of

classifications based on groupings of genes;

[b] identifying at least one functional block and at least one property

of the software;

[c] identifying one or more genes each describing one or more of the

at least one functional block and the at least one property of the

software as a sequence of APIs and strings;

[d] matching the one or more genes against one or more of the

number of classifications using a processor;

[e] classifying the software based on the matching to provide a

classification for the software; and

[f] notifying a user of the classification of the software.

“gene”— a piece of functionality or property of a program. In the pending

litigation in the Northern District of California, the Patent Owner proposes to

broadly construe “gene” as “a piece of functionality or property of a program.”

Ex. 1008 at 32. This construction is based on the portion of the specification that

reads “[a] gene is a piece of functionality or property of a program.” Ex. 1001 at

5:33-34. This is apparently motivated to support the Patent Owner’s infringement

contentions, where the Patent Owner has mapped any characteristic of a computer

program, “such as file size, name, [and] type,” as a “gene.” Ex. 1009 at 5. During

the claim construction hearing, counsel for the Patent Owner made it clear that the

Patent Owner understood that “gene” can be a piece of functionality or property of

 17

a program. Ex. 1011 at 116. Accordingly, the BRI applied herein for “gene” is “a

piece of functionality or property of a program.”

As explained in detail below, this limitation is disclosed by Bodorin, Kissel,

and Chen. The “interesting behaviors” disclosed in Bodorin are pieces of

functionality of the software. Ex. 1003 at 4:51-5:20. The “features” disclosed in

Kissel may include keywords extracted from tokenized representation of script

software that are pieces of functionality or property of the software. Ex. 1004 at

5:20-25. Additionally, Chen discloses using instruction identifiers to identify

functionality or one or more properties of the software that may indicate malware.

Ex. 1005 at Fig. 6.

“functional block”— a segment of the program that illustrates the function

and execution flow of the program. In the pending litigation in the Northern

District of California, the Patent Owner proposes to broadly construe “functional

block” as “a segment of the program that illustrates the function and execution

flow of the program.” Ex. 1008 at 32. This construction is based on the portion of

the specification that reads “[t]hese functional blocks include sequences of

application program interface (API) calls, string references, etc., which illustrate

the function and execution flow of the program.” Ex. 1001 at 5:18-20. The Patent

Owner’s broad construction is consistent with its infringement contentions, where

the Patent Owner has mapped attributes such as “virus signature, file type/pattern,

 18

grayware, and heuristics” as “at least one functional block and at least one property

of the software.” Ex. 1009 at 16. Accordingly, the BRI applied herein for

“functional block” is “a segment of the program that illustrates the function and

execution flow of the program.”

As explained in detail below, this limitation is disclosed by Bodorin, Kissel,

and Chen. Bodorin discloses identifying “behaviors,” which are functionalities of

the examined software. Ex. 1003 at 4:58-61. Kissel discloses identifying

“features,” which may be tokenized representations of the script software where

individual tokens and groups of tokens represent functions and execution flow of

the program. Ex. 1004 at 3:43-61. Finally, Chen discloses identifying

“instructions,” which are segments of the macro that illustrate the function and

execution flow of the macro. Ex. 1005 at 5:16-37.

VII. DETAILED EXPLANATION OF GROUNDS FOR INVALIDITY

As explained below pursuant to 37 C.F.R. § 42.104(b), the cited prior art

anticipates or renders obvious the challenged claims of the ‘344 Patent. All of the

references relied upon herein were not considered by the Patent Office in

examination of the ‘344 Patent. These references disclose the features the Patent

Owner argued were not in the prior art cited by the Examiner, including the “one

or more genes each describing one or more of the at least one functional block and

the at least one property of the software as a sequence of APIs and strings,” which

were disclosed by Bodorin, Kissel, and Chen.

A. Claims 1 and 2 Are Anticipated by Bodorin

Bodorin discloses a malware detection system that determines whether an

executable code module is malware according to behaviors exhibited by the code

module while executing. Ex. 10

detection system is shown in Fig. 2.

 The management module 202 first evaluates the code module 212, which

potentially may be malware, to determine the appropriate type of dynamic

behavior evaluation module needed. Ex. 1003 at 4:26

19

the at least one property of the software as a sequence of APIs and strings,” which

d by Bodorin, Kissel, and Chen.

Claims 1 and 2 Are Anticipated by Bodorin

Bodorin discloses a malware detection system that determines whether an

executable code module is malware according to behaviors exhibited by the code

module while executing. Ex. 1003 at Abstract. A block diagram of the malware

detection system is shown in Fig. 2.

Ex. 1003 at Fig. 2.

The management module 202 first evaluates the code module 212, which

potentially may be malware, to determine the appropriate type of dynamic

behavior evaluation module needed. Ex. 1003 at 4:26-29. Once determined, the

the at least one property of the software as a sequence of APIs and strings,” which

Bodorin discloses a malware detection system that determines whether an

executable code module is malware according to behaviors exhibited by the code

03 at Abstract. A block diagram of the malware

The management module 202 first evaluates the code module 212, which

potentially may be malware, to determine the appropriate type of dynamic

29. Once determined, the

 20

code module 212 is executed inside the dynamic behavior evaluation module 204

while the dynamic behavior evaluation module 204 records behaviors, including

interesting behaviors that are potentially associated with malware, exhibited by the

code module 212. Ex. 1003 at 4:39-58. Each dynamic behavior evaluation

module represents a virtual environment in which the code module 212 runs. If

code module 212 is malware, then the destructive behaviors of the code module

212 are confined to the virtual environment. Ex. 1003 at 4:39-50. Interesting

behaviors include those shown in Table A, reproduced below. As shown in the

table, the interesting behaviors include API calls such as RegisterServiceProcess()

and strings such as application_name. Notably, these behaviors monitored in

Bodorin include some of the very same API calls that are the bases for “genes” in

the ‘344 Patent. See, e.g., “CopyFileA” at Ex. 1003 at 5:10 and ‘344 Patent at

6:34.

Ex. 1003 at 5:2-20. Ex. 1001 at 6:28-44.

Bodorin collects recorded interesting behaviors

they are illustrated in Figs. 5A and 5B:

Ex. 1003 at Figs. 5A and 5B.

Once the behavior signature has been generated, the behavior signature

comparison module 206 takes the behavior signature and compares it against

behavior signatures of known malware that are stored in the malware behavior

signature store 208. Ex. 1003 at 5:27

store 208 is a repository of behavior signatures of known malware.

5:31-32. If the behavior signature

match the behavior signature 210 against a known malware behavior signature in

the malware behavior signature store 208, the malware detection system 200 will

report that the code module is malware. Ex. 1003 at

21

recorded interesting behaviors into behavior signatures and

they are illustrated in Figs. 5A and 5B:

Ex. 1003 at Figs. 5A and 5B.

Once the behavior signature has been generated, the behavior signature

comparison module 206 takes the behavior signature and compares it against

natures of known malware that are stored in the malware behavior

. Ex. 1003 at 5:27-31. The malware behavior signature

is a repository of behavior signatures of known malware. Ex. 1003 at

32. If the behavior signature comparison module 206 is able to completely

match the behavior signature 210 against a known malware behavior signature in

the malware behavior signature store 208, the malware detection system 200 will

report that the code module is malware. Ex. 1003 at 5:44-49.

behavior signatures and

Once the behavior signature has been generated, the behavior signature

comparison module 206 takes the behavior signature and compares it against

natures of known malware that are stored in the malware behavior

31. The malware behavior signature

Ex. 1003 at

comparison module 206 is able to completely

match the behavior signature 210 against a known malware behavior signature in

the malware behavior signature store 208, the malware detection system 200 will

 22

Each and every limitation of the Claims 1 and 2 of the ‘344 Patent are

disclosed by Bodorin, in the same arrangement as in the ‘344 Patent, and are

therefore anticipated.

Claim 1 Bodorin

A method for

classifying

software, said

method

comprising;

Ex. 1003 at Abstract: A malware detection system that

determines whether an executable code module is malware

according to behaviors exhibited while executing is

presented.

See also Ex. 1007 at ¶ 58.

[a] providing a

library of gene

information

including a number

of classifications

based on groupings

of genes;

Ex. 1003 at 5:27-43 (emphasis added): Once the behavior

signature 210 has been generated, the behavior signature

comparison module 206 takes the behavior signature and

compares it against behavior signatures of known malware

that are stored in the malware behavior signature store 208.

The malware behavior signature store 208 is a repository of

behavior signatures of known malware. However, unlike

signature files of antivirus software 104, behavior

signatures stored in the malware behavior signature
store 208 are based on exhibited behaviors of malware. As

such, even though all variable names and routine names

within source code for malware are modified by a malicious

party, the exhibited behaviors of the malware remain the

same, and will be detected by the malware detection

system 200 when the behavior signature comparison

module 206 matches a code module's behavior

signature 210 to a known malware's behavior signature in the

malware behavior signature store 208.

Ex. 1003 at 7:16

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary beh

signatures, including behavior signature 500 and behavior

signature 512, represents a behavior that was exhibited by a

code module and recorded by the dynamic behavior

evaluation module 204.

See also

[b] identifying at

least one functional

block and at least

one property of the

software;

Ex. 1003 at 4:51

within the dynamic behavior evaluation module 204, the

dynamic behavior evaluation module records “interesting”

behaviors exhibited by t

behaviors are those which a user or implementer of the

malware detection system 200 has identified as interesting,

potentially associated with malware, and are used to compare

the behaviors of the code module 212 against known

malware behaviors. Table A includes an exemplary,

representative list of “interesting” behaviors, including

parameters that are also considered interesting, that are

recorded by a dynamic behavior evaluation module 204. It

should be understood that these li

are exemplary only, and should not be construed as limiting

upon the present invention. Those skilled in the art will

23

Ex. 1003 at 7:16-22: FIGS. 5A and 5B are block diagrams

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary behavior

signatures, including behavior signature 500 and behavior

signature 512, represents a behavior that was exhibited by a

code module and recorded by the dynamic behavior

evaluation module 204.

See also Ex. 1007 at ¶¶ 59-61.

Ex. 1003 at 4:51-5:20: As the code module 212 executes

within the dynamic behavior evaluation module 204, the

dynamic behavior evaluation module records “interesting”

behaviors exhibited by the code module. Interesting

behaviors are those which a user or implementer of the

malware detection system 200 has identified as interesting,

potentially associated with malware, and are used to compare

the behaviors of the code module 212 against known

alware behaviors. Table A includes an exemplary,

representative list of “interesting” behaviors, including

parameters that are also considered interesting, that are

recorded by a dynamic behavior evaluation module 204. It

should be understood that these listed “interesting” behaviors

are exemplary only, and should not be construed as limiting

upon the present invention. Those skilled in the art will

: FIGS. 5A and 5B are block diagrams

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

avior

signatures, including behavior signature 500 and behavior

signature 512, represents a behavior that was exhibited by a

code module and recorded by the dynamic behavior

As the code module 212 executes

within the dynamic behavior evaluation module 204, the

dynamic behavior evaluation module records “interesting”

he code module. Interesting

behaviors are those which a user or implementer of the

malware detection system 200 has identified as interesting,

potentially associated with malware, and are used to compare

the behaviors of the code module 212 against known

alware behaviors. Table A includes an exemplary,

representative list of “interesting” behaviors, including

parameters that are also considered interesting, that are

recorded by a dynamic behavior evaluation module 204. It

sted “interesting” behaviors

are exemplary only, and should not be construed as limiting

upon the present invention. Those skilled in the art will

 24

recognize that each individual type of code module may

include a unique set of interesting behaviors. Additionally, as

new features are added to each environment, or as computer

systems change, additional behaviors may be added as

“interesting,” while others may be removed.

See also Ex. 1007 at ¶ 62.

[c] identifying one

or more genes each

describing one or

more of the at least

one functional

block and the at

least one property

of the software as a

sequence of APIs

and strings

Ex. 1003 at 7:16-22: FIGS. 5A and 5B are block diagrams

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary behavior

signatures, including behavior signature 500 and behavior

signature 512, represents a behavior that was exhibited by a

code module and recorded by the dynamic behavior

evaluation module 204.

Ex. 1003 at Claim 1 (emphasis added)

dynamic behavior evaluation module, wherein each dynamic

behavior evaluation module provides a virtual environment

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

interesti
as it is executed

are specified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

interesting API function ca

that the code module makes during execution in the dynamic

behavior evaluation module are recorded into a behavior

signature corresponding to the code module;

See also

[d] matching the

one or more genes

against one or

more of the

number of

classifications

using a processor;

Ex. 1003 at 5:27

signature

comparison module

compares it
that are stored in the malware behavior signature store

The malware behavior signature store

behavior signatures of known malware. However, unlike

signature files of antivirus softwar

stored in the malware behavior signature store

on exhibited behaviors of malware. As such, even though all

25

Ex. 1003 at Claim 1 (emphasis added): . . . at least one

dynamic behavior evaluation module, wherein each dynamic

behavior evaluation module provides a virtual environment

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

interesting API function calls that the code module makes
as it is executed, wherein the interesting API function calls

are specified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

interesting API function calls, but not all API function calls,

that the code module makes during execution in the dynamic

behavior evaluation module are recorded into a behavior

signature corresponding to the code module;

See also Ex. 1007 at ¶ 63.

Ex. 1003 at 5:27-43 (emphasis added): Once the behavior

signature 210 has been generated, the behavior signature

comparison module 206 takes the behavior signature and

compares it against behavior signatures of known malware
that are stored in the malware behavior signature store

The malware behavior signature store 208 is a repository of

behavior signatures of known malware. However, unlike

signature files of antivirus software 104, behavior signatures

stored in the malware behavior signature store 208

on exhibited behaviors of malware. As such, even though all

: . . . at least one

dynamic behavior evaluation module, wherein each dynamic

behavior evaluation module provides a virtual environment

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

ng API function calls that the code module makes
, wherein the interesting API function calls

are specified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

lls, but not all API function calls,

that the code module makes during execution in the dynamic

behavior evaluation module are recorded into a behavior

Once the behavior

has been generated, the behavior signature

takes the behavior signature and

against behavior signatures of known malware
that are stored in the malware behavior signature store 208.

is a repository of

behavior signatures of known malware. However, unlike

, behavior signatures

208 are based

on exhibited behaviors of malware. As such, even though all

 26

variable names and routine names within source code for

malware are modified by a malicious party, the exhibited

behaviors of the malware remain the same, and will be

detected by the malware detection system 200 when the

behavior signature comparison module 206 matches a code

module's behavior signature 210 to a known malware's

behavior signature in the malware behavior signature

store 208.

See also Ex. 1007 at ¶ 64.

[e] classifying the

software based on

the matching to

provide a

classification for

the software; and

Ex. 1003 at 5:44-49: According to aspects of the present

invention, if the behavior signature comparison module 206

is able to completely match the behavior signature 210

against a known malware behavior signature in the malware

behavior signature store 208, the malware detection system

200 will report that the code module is malware.

See also Ex. 1007 at ¶ 64.

[f] notifying a user

of the classification

of the software.

Ex. 1003 at 5:44-49 (emphasis added): According to aspects

of the present invention, if the behavior signature comparison

module 206 is able to completely match the behavior

signature 210 against a known malware behavior signature in

the malware behavior signature store 208, the malware

detection system 200 will report that the code module is
malware.

See also Ex. 1007 at ¶ 65.

Claim 2 Bodorin

The method

of claim 1, wherein

the classification

for the software

includes malware.

Ex. 1003 at 5:44-49: According to aspects of the present

invention, if the behavior signature comparison module 206

is able to completely match the behavior signature 210

against a known malware behavior signature in the malware

behavior signature store 208, the malware detection system

200 will report that the code module is malware.

 27

See also Ex. 1007 at ¶ 64.

B. Claims 10 and 13 Are Rendered Obvious in View of Bodorin Itself

Claims 10 and 13 of the ‘344 Patent recite limitations that relate to removing

and blocking access to identified malware. Although the malware detection

system disclosed in Bodorin does not include functionality that removes and blocks

access to identified malware, it would have been obvious to a person of ordinary

skill in the art at the time of the ‘344 priority date, in view of Bodorin itself, to add

such functionality. This is because there is explicit teaching, suggestion, and

motivation in Bodorin to combine. Bodorin explains that existing anti-virus

software known in the art includes functionality to remove or block access to

known malware. Ex. 1003 at 1:44-61. Bodorin then explicitly states that it would

be advantageous to combine the dynamic malware detection system it discloses

with prior art anti-virus software. Ex. 1003 at 3:58-4:12. Specifically, Bodorin

states “while the malware detection system may be used as a stand-alone product,

it may also be used in conjunction with current anti-virus software.” Ex. 1003 at

4:2-4. Bodorin further explains that “when the present invention is used in

combination with current anti-virus software, it may be beneficial to use the anti-

virus software’s signature matching techniques as a first step in securing a

computer from malware, before turning to the malware detection system described

herein.” Ex. 1003 at 4:8-12. Accordingly, one of ordinary skill reading Bodorin

 28

would be motivated to combine its malware detection system with prior art anti-

virus software, disclosed in Bodorin itself, that removes and blocks access to

identified malware. See Ex. 1007 at ¶¶ 66-69.

The following claim charts demonstrate, on a limitation-by-limitation basis,

how Claims 10 and 13 are rendered obvious by Bodorin alone.

Claim 10 Bodorin

The method

of claim 1, further

comprising

removing the

software when the

software is

classified as

malware or

unwanted software.

Ex. 1003 at 1:44-61 (emphasis added): As shown in FIG.

1A, a malware 102 is directed over a network 106 to the

computer 110, as indicated by arrow 108. It will be

appreciated that the malware 102 may be directed to the

computer 110 as a result of a request initiated by the

computer, or directed to the computer from another network

device. However, as mentioned above, before the known

malware 102 reaches the computer 110, anti-virus software

104 installed on the computer intercepts the malware and

examines it. As is known in the art, currently, anti-virus

software scans the incoming data as a file, searching for

identifiable patterns, also referred to as signatures, associated

with known-malware. If a malware signature is located in

the file, the anti-virus software 104 takes appropriate

action, such as deleting the known malware/infected file, or

removing the malware from an infected file, sometimes
referred to as cleaning the file. In this manner, anti-virus

software 104 is able to prevent the known malware 102 from

infecting the computer 110, as indicated by the arrow 112.

See also Ex. 1007 at ¶¶ 66-69.

Claim 13 Bodorin

The method

of claims 1, further

comprising

Ex. 1003 at 1:44-61 (emphasis added): As shown in FIG.

1A, a malware 102 is directed over a network 106 to the

computer 110, as indicated by arrow 108. It will be

 29

blocking access to

the software when

the software is

classified as

malware or

unwanted software.

appreciated that the malware 102 may be directed to the

computer 110 as a result of a request initiated by the

computer, or directed to the computer from another network

device. However, as mentioned above, before the known

malware 102 reaches the computer 110, anti-virus software

104 installed on the computer intercepts the malware and

examines it. As is known in the art, currently, anti-virus

software scans the incoming data as a file, searching for

identifiable patterns, also referred to as signatures, associated

with known-malware. If a malware signature is located in the

file, the anti-virus software 104 takes appropriate action, such

as deleting the known malware/infected file, or removing the

malware from an infected file, sometimes referred to as

cleaning the file. In this manner, anti-virus software 104 is

able to prevent the known malware 102 from infecting the
computer 110, as indicated by the arrow 112.

See also Ex. 1007 at ¶¶ 66-69.

C. Claims 1, 2, 10, and 13 Are Anticipated by Kissel

1. Statement of Non-Redundancy

The grounds raised in the below sections are meaningfully distinct from each

other and rely upon substantively different combinations of the cited prior art. The

grounds detailed in Sections VII.C-D rely upon Kissel as the primary reference.

The grounds detailed in Section VII.A-B, and E rely upon Bodorin as the primary

reference. Whereas Kissel discloses a system for detecting the presence of

malicious computer code in emails, Bodorin discloses a malware detection system

that determines whether an executable code module is malware according to

behaviors exhibited by the code module while executing. As Patent Owner may

attempt to distinguish the challenged claims by arguing the ‘344 taught away from

executing suspected malware software to observe behaviors,

included for trial. As Patent Owner may attempt to distinguish the challenged

claims based on whether a tokenized representation of a script program within an

email as disclosed in Kissel constitute APIs

should be included for trial.

Kissel discloses a system for detecting the presence of malicious computer

code in emails. Ex. 1004 at 1:44

illustrated by Figs. 3A and 3B:

Ex. 1004 at Figs. 3A and 3B.

30

executing suspected malware software to observe behaviors, Kissel should be

included for trial. As Patent Owner may attempt to distinguish the challenged

a tokenized representation of a script program within an

isclosed in Kissel constitute APIs as recited in the claims, Bodorin

Kissel discloses a system for detecting the presence of malicious computer

code in emails. Ex. 1004 at 1:44-46. The operation of the system is generally

lustrated by Figs. 3A and 3B:

Ex. 1004 at Figs. 3A and 3B.

Kissel should be

included for trial. As Patent Owner may attempt to distinguish the challenged

a tokenized representation of a script program within an

as recited in the claims, Bodorin

Kissel discloses a system for detecting the presence of malicious computer

46. The operation of the system is generally

 31

As shown in the figure, if the email is not deemed to be definitely harmless,

it is put into a delay queue for further processing. Ex. 1004 at 5:1-19. At step 35,

the system disclosed by Kissel extracts a feature vector from the email being

examined. Ex. 1004 at 5:20-24. Features that may be extracted include contents of

the subject line of the email, a hash of the email attachment, name of the email

attachment, etc. Ex. 1004 at 3:35-46. Notably, emails may contain software such

as JavaScript programs and the features extracted may also include functionality of

that software, such as a tokenized representation of a script program within an

email, which may include JavaScript API calls. Ex. 1004 at 3:45-4:4. Keywords,

for example “var” and “if,” are searched for within this set of APIs and strings.

Ex. 1004 at 3:45-4:4. The extract feature vector is shown in Fig. 4.

Ex. 1004 at Figs. 4.

This feature vector is then examined against the blocked feature instance

library in step 36. Exemplary content of the library is shown in Fig. 5.

 32

Ex. 1004 at Figs. 5.

If the extracted features match those in the library, then the email is blocked.

Ex. 1004 at 5:47-60. If however, the extracted features do not match those in the

library, then additional processing is done at steps 38-41 to determine if the feature

vector under examination crosses a certain threshold. Ex. 1004 at 6:7-8:62. If it

exceeds the threshold, then the email is deemed to be malicious and the library is

updated at step 42. Id. Notably, the threshold levels are calibrated by testing for

false-positives. Ex. 1004 at 8:58-62.

Each and every limitation of the Claims 1, 2, 10, and 13 of the ‘344 Patent

are disclosed by Kissel, in the same arrangement as in the ‘344 Patent, and are

therefore anticipated.

Claim 1 Kissel

A method for

classifying

software, said

method

comprising;

Ex. 1004 at Abstract: Methods, apparati, and computer-

readable media for detecting the presence of malicious

computer code in a plurality of e-mails.

See also Ex. 1007 at ¶ 77.

 33

[a] providing a

library of gene

information

including a number

of classifications

based on groupings

of genes;

Ex. 1004 at 3:23-30 (emphasis added): Coupled to

gateway 2 is a delay queue 5, a storage area for temporarily

holding e-mails while the method steps of the present

invention are executed. As used herein, “coupled” means any

type of direct or indirect coupling, or direct or indirect

connection. Blocked feature instance library 6, also coupled

to gateway 2, is a storage area containing exemplars of

feature instances (values) that have been deemed to be
indicative of malicious code.

Ex. 1004 at 5:32-47: At step 36, gateway 2 inquires whether

a feature entry 90 calculated in step 35 corresponds to a

blocked feature instance deemed to be indicative of malicious

code, as stored in library 6. In the example illustrated in FIG.

5, there are only two feature instances (90(3) and 90(4)) that

have been determined previously to be indicative of

malicious code. The only instance for feature 1 that has been

determined to be malicious is 789. This may represent, for

example, the hash of “with love from Pamela” in the subject

line of the e-mail. This does not match the instance 90(1) of

feature 1 extracted in step 35 and illustrated in FIG. 4.

Similarly, the only instance of feature 2 previously found to

have been associated with malicious code is 8133457, as

illustrated in FIG. 5. This could be the hash of an e-mail

attachment containing a worm. This does not match the

instance 90(2) of feature 2 illustrated in FIG. 4 either.

See also Ex. 1007 at ¶ 78.

[b] identifying at

least one functional

block and at least

one property of the

software;

Ex. 1004 at 3:34-64: Examples of e-mail features that may

be tracked by the present invention include: Contents of the

subject line of the e-mail. A hash of each e-mail attachment

(or, not as commonly due to the normally large size of an e-

mail attachment, the entire attachment itself). The name of

each e-mail attachment. The size of each e-mail attachment.

A hash of the e-mail body. Parsed script within the e-mail

body or within an e-mail attachment. A hash of parsed script

within the e-mail body or within an e-mail attachment. To

illustrate the concept of “parsed script”, let us examine the

following example of what could be included within an e-

 34

mail body:

We look only between the <SCRIPT> tags. What is there is

script (code), in this case script in the JavaScript language.

We then parse the script using a parser, much like an

interpreter would, to generate a tokenized representation of

the script.

See also Ex. 1007 at ¶ 79.

[c] identifying one

or more genes each

describing one or

more of the at least

one functional

block and the at

least one property

of the software as a

sequence of APIs

and strings

Ex. 1004 at 3:34-4:4: Examples of e-mail features that may

be tracked by the present invention include: Contents of the

subject line of the e-mail. A hash of each e-mail attachment

(or, not as commonly due to the normally large size of an e-

mail attachment, the entire attachment itself). The name of

each e-mail attachment. The size of each e-mail attachment.

A hash of the e-mail body. Parsed script within the e-mail

body or within an e-mail attachment. A hash of parsed script

within the e-mail body or within an e-mail attachment. To

illustrate the concept of “parsed script”, let us examine the

following example of what could be included within an e-

mail body:

We look only between the <SCRIPT> tags. What is there is

script (code), in this case script in the JavaScript language.

We then parse the script using a parser, much like an

interpreter would, to generate a tokenized representation of

 35

the script. We look for keywords. For example, after “var”

(variable), we don't care what the variable is, so the parsed

representation might be

var*

var*

if* where * denotes anything.

Ex. 1004 at 5:20-31: At step 35, gateway 2 calculates a

feature vector 80 for the e-mail, based upon the preselected

set of features. As an example, assume that there are two

features to be examined, the two features that were described

above in conjunction with FIG. 2. Then feature

vector 80 thus normally contains two entries 90, one for each

feature. FIG. 4 illustrates that as an example, feature 1 is

calculated to be 123; this corresponds to instance 1 of

feature 1 on FIG. 2. Feature 2 is calculated to be 12121,

which corresponds to instance 2 of feature Z on FIG. 2.

See also Ex. 1007 at ¶ 80.

[d] matching the

one or more genes

against one or

more of the

number of

classifications

using a processor;

Ex. 1004 at 5:32-35: At step 36, gateway 2 inquires whether

a feature entry 90 calculated in step 35 corresponds to a

blocked feature instance deemed to be indicative of malicious

code, as stored in library 6.

See also Ex. 1007 at ¶ 81.

[e] classifying the

software based on

the matching to

provide a

classification for

the software; and

Ex. 1004 at 5:48-52: If, however, one of the feature

instances had matched a blocked feature instance contained

in library 6, the method would have proceeded to step 37,

where the e-mail, now deemed to contain malicious code, is

blocked.

See also Ex. 1007 at ¶ 81.

[f] notifying a user

of the classification

of the software.

Ex. 1004 at 5:52-54: As used herein, “blocked” can mean at

least one of the following: The system administrator is

alerted to the problem.

See also Ex. 1007 at ¶ 82.

 36

Claim 2 Kissel

The method

of claim 1, wherein

the classification

for the software

includes malware.

Ex. 1004 at 5:48-52 (emphasis added): If, however, one of

the feature instances had matched a blocked feature instance

contained in library 6, the method would have proceeded to

step 37, where the e-mail, now deemed to contain malicious

code, is blocked.

Ex. 1004 at 1:13-25: As used herein, “malicious computer

code” is any computer code that enters a computer without an

authorized user's knowledge and/or without an authorized

user's consent. The malicious code typically performs

malicious actions after it arrives on the user's computer.

Malicious computer code that propagates from one computer

to another over a network, e.g., via e-mail, is often referred to

as a “worm” or “spam”. A worm is self-propagating, e.g.,

after it enters a user's computer, it may spread to other

computers by attaching itself to e-mails that are sent to

addresses found in the first computer's address book. Spam,

on the other hand, is unwanted e-mail received by a computer

that does not self-propagate.

See also Ex. 1007 at ¶ 82.

Claim 10 Kissel

The method

of claim 1, further

comprising

removing the

software when the

software is

classified as

malware or

unwanted software.

Ex. 1004 at 5:52-55 (emphasis added): As used herein,

“blocked” can mean at least one of the following: The

system administrator is alerted to the problem. The e-mail is

deleted from delay queue 5.

See also Ex. 1007 at ¶ 82.

 37

Claim 13 Kissel

The method

of claims 1, further

comprising

blocking access to

the software when

the software is

classified as

malware or

unwanted software.

Ex. 1004 at 5:52-58 (emphasis added): As used herein,

“blocked” can mean at least one of the following: The

system administrator is alerted to the problem. The e-mail is

deleted from delay queue 5. The e-mail is quarantined and

sent to an antivirus research center such as Symantec

Antivirus Research Center in Santa Monica, Calif.

See also Ex. 1007 at ¶ 82.

D. Claims 16 and 17 Are Rendered Obvious in Light of Kissel

Further in View of Apap

1. Apap

Apap discloses a method for detecting intrusions in the operation of a

computer system. Ex. 1006 at Abstract. The system disclosed by Apap first

generates a model for normal behavior by a computer system. Ex. 1006 at 5:10-20.

An algorithm for detecting anomalous behavior is then employed, and the

algorithm is trained and tested by comparing the detected anomalous behavior

against normal behavior to generate statistics related to detection and false

positives. Ex. 1006 at 15:44-16:20.

2. It Would Have Been Obvious to Combine Kissel and Apap

As explained above, Kissel discloses that when the extracted features do not

match those in the library, then additional processing is done at steps 38-41 to

determine if the feature vector under examination crosses a certain threshold. Ex.

1004 at 6:7-8:62. If it exceeds the threshold, then the email is deemed to be

 38

malicious and the library is updated at step 42. Id. The threshold levels are

calibrated by testing for false-positives. Ex. 1004 at 8:58-62. To the extent Kissel

does not disclose testing for false-positives against one or more reference files,

Apap discloses testing its algorithm for detecting anomalous behavior by

referencing the detected anomalies against recorded normal behavior.

Accordingly, Kissel combined with Apap discloses every limitation of the Claims

16 and 17 of the ‘344 patent.

It would have been obvious to a person of ordinary skill in the art to

combine Kissel and Apap so that suspected malware is tested for false-positives

against one or more reference files. As explained by Dr. Nielson, testing, for

example, suspected malware, for false-positives by using a reference that indicates

whether the suspected malware is indeed malware was a well understood method

known in the art to test for false-positives. Ex. 1007 at ¶¶ 86-88. The fact that this

method was well known is demonstrated not only by Apap itself, but also by U.S.

Patent No. 8,713,686 to Kane, filed on January 25, 2006, which discloses a system

for virus detection that reduces false-positives by testing the suspected viruses

against a database of known non-viruses. Ex. 1010 at 4:38-43. Thus, there was

explicit teaching, suggestion, and motivation in the art to combine Kissel and

Apap. Ex. 1007 at ¶¶ 86-88. Combining Kissel and Apap is also a combination

that unites old elements with no change in their respective functions, would not

 39

present technical challenges, and would not negatively impact the functionality of

Kissel’s malware detection system. Ex. 1007 at ¶ 89. As explained above, Kissel

already discloses checking suspected malware for false-positives. Kissel does not

explicitly disclose using one or more reference files to performing the operation of

testing for false-positives, but because using reference files was a commonly

understood way to perform such testing, a combination of Kissel and Apap would

unite old elements with no change in their respective functions. Ex. 1007 at ¶ 89.

The following claim charts demonstrate, on a limitation-by-limitation basis,

how Claims 16 and 17 are rendered obvious by Kissel in combination with Apap.

Claim 16 Kissel and Apap

A method for

generating

software

classifications for

use in classifying

software, said

method

comprising:

Kissel discloses a method to update its blocked feature

instance library for use the classifying malicious code. See

Ex. 1004 at 6:7-8:62.

See also Ex. 1007 at ¶ 83.

[a] providing a

library of gene

information

including a number

of classifications

based on groupings

of genes;

Ex. 1004 at 3:23-30 and 5:32-47.

See also Ex. 1007 at ¶ 78.

[b] identifying one

or more genes each

describing a

Ex. 1004 at 3:34-4:4: Examples of e-mail features that may

be tracked by the present invention include: Contents of the

subject line of the e-mail. A hash of each e-mail attachment

 40

functionality or a

property of the

software as a

sequence of APIs

and strings;

(or, not as commonly due to the normally large size of an e-

mail attachment, the entire attachment itself). The name of

each e-mail attachment. The size of each e-mail attachment.

A hash of the e-mail body. Parsed script within the e-mail

body or within an e-mail attachment. A hash of parsed script

within the e-mail body or within an e-mail attachment. To

illustrate the concept of “parsed script”, let us examine the

following example of what could be included within an e-

mail body:

We look only between the <SCRIPT> tags. What is there is

script (code), in this case script in the JavaScript language.

We then parse the script using a parser, much like an

interpreter would, to generate a tokenized representation of

the script. We look for keywords. For example, after “var”

(variable), we don't care what the variable is, so the parsed

representation might be

var*

var*

if* where * denotes anything.

Ex. 1004 at 5:20-31: At step 35, gateway 2 calculates a

feature vector 80 for the e-mail, based upon the preselected

set of features. As an example, assume that there are two

features to be examined, the two features that were described

above in conjunction with FIG. 2. Then feature

vector 80 thus normally contains two entries 90, one for each

feature. FIG. 4 illustrates that as an example, feature 1 is

calculated to be 123; this corresponds to instance 1 of

feature 1 on FIG. 2. Feature 2 is calculated to be 12121,

which corresponds to instance 2 of feature Z on FIG. 2.

See also Ex. 1007 at ¶ 80.

 41

[c] combining a

plurality of genes

that describe the

software, thereby

providing a set of

genes;

Ex. 1004 at 5:20-31 (emphasis added): At step 35,

gateway 2 calculates a feature vector 80 for the e-mail,

based upon the preselected set of features. As an example,

assume that there are two features to be examined, the two

features that were described above in conjunction with FIG.

2. Then feature vector 80 thus normally contains two

entries 90, one for each feature. FIG. 4 illustrates that as an

example, feature 1 is calculated to be 123; this corresponds to

instance 1 of feature 1 on FIG. 2. Feature 2 is calculated to be

12121, which corresponds to instance 2 of feature Z on FIG.

2.

See also Ex. 1007 at ¶ 80.

[d] testing the set

of genes for false-

positives against

one or more

reference files

using a processor;

Ex. 1004 at 6:7-28: If none of the feature instances extracted

in 35 correspond to an entry in library 6, step 38 is entered,

during which gateway 2 updates feature bin table 7 with one

entry for each feature that has been extracted. As stated

previously, an entry consists of a message ID and a time

index. At step 39, gateway 2 checks the timestamps of all of

the entries within feature bin table 7. If any entry has a

timestamp outside a preselected window of time Q (which is

the sample time used in calculating score S), that entry is

removed from feature bin table 7 and placed into recently

removed entry storage area 9, which stores those entries that

have been removed from table 7 since the last time the

method steps of FIG. 3 were executed. At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,

indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry

corresponding to the offending feature instance. Then, at step

43, all e-mails in queue 5 containing this feature instance are

deleted, and the method reverts to step 37.

Ex. 1004 at 8:47-62 (emphasis added): Then, an offline

analysis is performed on these logs to investigate an optimum

combination of values for wR, wP, hR, and hP, as well as the

time window size Q. Since this is a multi-parameter

 42

optimization problem that is further complicated by different

spreading characteristics of different (known and unknown)

e-mail worms, a multi-parameter non-linear best fit (in the

least mean squares sense) optimization algorithm (such as a

neural network) can advantageously be used. However,

visual investigation of the worm spreading characteristics,

along with manual “tweaking” of the scoring parameters,

may result in a satisfactory set of parameters. This manual

setting of the scoring parameters also gives system

administrators the option to customize the behavior of the

invention, in particular, the false positive threshold
appropriate for their computing environment.

Ex. 1006 at 15:44-51 (emphasis added): The first exemplary

anomaly detection algorithm discussed above in equations
(1)-(3) were trained over the normal data. Each record in the

testing set was evaluated against this training data. The

results were evaluated by computing two statistics: the
detection rate and the false positive rate. The performance

of the system was evaluated by measuring detection

performance over processes labeled as either normal or

malicious.

See also Ex. 1007 at ¶¶ 83-90.

[e] defining the

software

classification based

on the set of genes;

and

Ex. 1004 at 6:20-28 (emphasis added): At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,
indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry

corresponding to the offending feature instance. Then, at step

43, all e-mails in queue 5 containing this feature instance are

deleted, and the method reverts to step 37.

See also Ex. 1007 at ¶ 83.

[f] storing the set

of genes and the

software

classification in the

Ex. 1004 at 6:20-28 (emphasis added): At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,

 43

library. indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry
corresponding to the offending feature instance. Then, at

step 43, all e-mails in queue 5 containing this feature instance

are deleted, and the method reverts to step 37.

See also Ex. 1007 at ¶ 83.

Claim 17 Kissel and Apap

The method

of claim 16,

wherein the

software

classification

includes malware.

Ex. 1004 at 1:13-25 and 5:48-52.

See also Ex. 1007 at ¶ 82.

E. Claims 16 and 17 Are Rendered Obvious in Light of Bodorin

Further in View of Kissel and Apap.

As explained above, Bodorin discloses a malware detection system that

generates behavior signatures from programs, which corresponds to the groupings

or sets of genes in the claims of the ‘344 Patent, and compares it against behavior

signatures of known malware in the malware behavior signature store, which

corresponds to the “library” in the claims of the ‘344 Patent. Bodorin does not

disclose updating the malware behavior signature store by testing the generated

behavior signature for false positives and storing the tested behavior signature,

which is claimed in Claim 16. However, as explained in detail in Section VII.D,

Kissel combined with Apap disclose every limitation of Claim 16.

 44

It would have been obvious to a person of ordinary skill in the art to

combine Bodorin with Kissel and Apap. There was explicit teaching, suggestion,

and motivation in the prior art references themselves to combine. Claim 16

discloses a method for testing a generated set of genes for false-positives and

storing the set of genes. Kissel discloses this method as a way of updating the

library. Ex. 1004 at 6:7-8:62. Although not explicitly disclosed in Kissel, Apap

discloses testing for false-positives using one or more reference files. Ex. 1006 at

15:44-51. Although Bodorin does not explicitly disclose a method for updating its

malware behavior signature store, Bodorin nevertheless explicitly states that it is

desirable to update the store. Specifically, Bodorin states “[i]t is anticipated that

the malware behavior signature store 208 will be periodically updated with

behavior signatures of known malware. The malware behavior signature store 208

should be especially updated as the more rare, ‘new’ malware is discovered.” Ex.

1003 at 6:1-5. Accordingly, one of ordinary skill in the art reading this passage in

Bodorin would be motivated to combine the disclosures of Bodorin with a method

for updating the malware behavior signature store, which is exactly what is

disclosed in Kissel and Apap.

Furthermore, there was explicit teaching, suggestion, and motivation

generally in the art to combine. As explained by Dr. Nielson, new malware appear

regularly and frequently. Ex. 1007 at ¶ 93. A major challenge for makers of anti-

 45

virus software is to keep its anti-virus software up to date so that it can recognize

new malware before the new malware can infect users’ computers. Id. Thus, one

of ordinary skill in the art, in view of a system disclosed in Bodorin that generates

behavior signature from programs and compares it against behavior signatures of

known malware in the malware behavior signature store, would be motivated to

keep the stored updated so that the system can detect the latest malware.

Accordingly, one of ordinary skill in the art would be motivated to combine

Bodorin with Kissel and Apap. See Ex. 1007 at ¶¶ 91-94.

The following claim charts demonstrate, on a limitation-by-limitation basis,

how Claims 16 and 17 are rendered obvious by Bodorin further in view of Kissel

and Apap.

Claim 16 Bodorin further in view of Kissel and Apap

A method for

generating

software

classifications for

use in classifying

software, said

method

comprising:

Bodorin discloses that the malware behavior signature store

should be updated. Ex. 1003 at 6:1-5.

Kissel discloses a method to update its blocked feature

instance library for use the classifying malicious code. See

Ex. 1004 at 6:7-8:62.

See also Ex. 1007 at ¶ 83.

[a] providing a

library of gene

information

including a number

of classifications

based on groupings

Ex. 1003 at 5:27-43.

See also Ex. 1007 at ¶¶ 59-61.

 46

of genes;

[b] identifying one

or more genes each

describing a

functionality or a

property of the

software as a

sequence of APIs

and strings;

Ex. 1003 at 4:51-5:20: As the code module 212 executes

within the dynamic behavior evaluation module 204, the

dynamic behavior evaluation module records “interesting”

behaviors exhibited by the code module. Interesting

behaviors are those which a user or implementer of the

malware detection system 200 has identified as interesting,

potentially associated with malware, and are used to compare

the behaviors of the code module 212 against known

malware behaviors. Table A includes an exemplary,

representative list of “interesting” behaviors, including

parameters that are also considered interesting, that are

recorded by a dynamic behavior evaluation module 204. It

should be understood that these listed “interesting” behaviors

are exemplary only, and should not be construed as limiting

upon the present invention. Those skilled in the art will

recognize that each individual type of code module may

include a unique set of interesting behaviors. Additionally, as

new features are added to each environment, or as computer

systems change, additional behaviors may be added as

“interesting,” while others may be removed.

Ex. 1003 at Claim 1 (emphasis added): . . . at least one

dynamic behavior evaluation module, wherein each dynamic

behavior evaluation module provides a

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

interesting API function calls that the code module makes
as it is executed

are specified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

interesting API function calls, but not all API function calls,

that the code module makes during execution in the dynamic

behavior evaluation

signature corresponding to the code module;

See also

[c] combining a

plurality of genes

that describe the

software, thereby

providing a set of

genes;

Ex. 1003 at 7:16

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary behavior

signatures, including behavior signature 500 and behavior

signature 512, represen

code module and recorded by the dynamic behavior

evaluation module 204.

See also

[d] testing the set Ex. 1004 at

47

behavior evaluation module provides a virtual environment

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

interesting API function calls that the code module makes
as it is executed, wherein the interesting API function calls

pecified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

interesting API function calls, but not all API function calls,

that the code module makes during execution in the dynamic

behavior evaluation module are recorded into a behavior

signature corresponding to the code module;

See also Ex. 1007 at ¶ 62.

Ex. 1003 at 7:16-22: FIGS. 5A and 5B are block dia

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary behavior

signatures, including behavior signature 500 and behavior

signature 512, represents a behavior that was exhibited by a

code module and recorded by the dynamic behavior

evaluation module 204.

See also Ex. 1007 at ¶ 63.

Ex. 1004 at 6:7-28: If none of the feature instances extracted

virtual environment

for executing a code module of a particular type, and wherein

each dynamic behavior evaluation module records

interesting API function calls that the code module makes
, wherein the interesting API function calls

pecified by a user and comprise a portion of all API

function calls that the code module makes, wherein only the

interesting API function calls, but not all API function calls,

that the code module makes during execution in the dynamic

module are recorded into a behavior

: FIGS. 5A and 5B are block diagrams

illustrating exemplary behavior signatures of hypothetical

code modules, such as the behavior signature 210 described

above. Each row of items in the exemplary behavior

signatures, including behavior signature 500 and behavior

ts a behavior that was exhibited by a

code module and recorded by the dynamic behavior

: If none of the feature instances extracted

 48

of genes for false-

positives against

one or more

reference files

using a processor;

in 35 correspond to an entry in library 6, step 38 is entered,

during which gateway 2 updates feature bin table 7 with one

entry for each feature that has been extracted. As stated

previously, an entry consists of a message ID and a time

index. At step 39, gateway 2 checks the timestamps of all of

the entries within feature bin table 7. If any entry has a

timestamp outside a preselected window of time Q (which is

the sample time used in calculating score S), that entry is

removed from feature bin table 7 and placed into recently

removed entry storage area 9, which stores those entries that

have been removed from table 7 since the last time the

method steps of FIG. 3 were executed. At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,

indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry

corresponding to the offending feature instance. Then, at step

43, all e-mails in queue 5 containing this feature instance are

deleted, and the method reverts to step 37.

Ex. 1004 at 8:47-62 (emphasis added): Then, an offline

analysis is performed on these logs to investigate an optimum

combination of values for wR, wP, hR, and hP, as well as the

time window size Q. Since this is a multi-parameter

optimization problem that is further complicated by different

spreading characteristics of different (known and unknown)

e-mail worms, a multi-parameter non-linear best fit (in the

least mean squares sense) optimization algorithm (such as a

neural network) can advantageously be used. However,

visual investigation of the worm spreading characteristics,

along with manual “tweaking” of the scoring parameters,

may result in a satisfactory set of parameters. This manual

setting of the scoring parameters also gives system

administrators the option to customize the behavior of the

invention, in particular, the false positive threshold
appropriate for their computing environment.

Ex. 1006 at 15:44-51 (emphasis added): The first exemplary

anomaly detection algorithm discussed above in equations

 49

(1)-(3) were trained over the normal data. Each record in the

testing set was evaluated against this training data. The

results were evaluated by computing two statistics: the
detection rate and the false positive rate. The performance

of the system was evaluated by measuring detection

performance over processes labeled as either normal or

malicious.

See also Ex. 1007 at ¶¶ 83-89.

[e] defining the

software

classification based

on the set of genes;

and

Ex. 1004 at 6:20-28 (emphasis added): At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,
indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry

corresponding to the offending feature instance. Then, at step

43, all e-mails in queue 5 containing this feature instance are

deleted, and the method reverts to step 37.

See also Ex. 1007 at ¶ 83.

[f] storing the set

of genes and the

software

classification in the

library.

Ex. 1004 at 6:20-28 (emphasis added): At step 40, all scores

S in score table 8 are updated. At step 41, gateway 2

determines whether any of the recently updated scores

exceed a preselected malicious threshold for that score,

indicative of malicious code. If this malicious threshold has

been crossed, library 6 at step 42 is updated with an entry
corresponding to the offending feature instance. Then, at

step 43, all e-mails in queue 5 containing this feature instance

are deleted, and the method reverts to step 37.

See also Ex. 1007 at ¶ 83.

Claim 17 Bodorin further in view of Kissel and Apap

The method

of claim 16,

wherein the

software

Ex. 1003 at 5:44-49.

See also Ex. 1007 at ¶ 64.

 50

classification

includes malware.

F. Claims 1, 2, 10, and 13 Are Anticipated by Chen

1. Statement of Non-Redundancy

The grounds raised in the below sections are meaningfully distinct from each

other and rely upon substantively different combinations of the cited prior art. The

grounds detailed in Sections VII.C-D rely upon Kissel as the primary reference.

The grounds detailed in Section VII.F rely upon Chen as the primary reference.

Whereas Kissel discloses a system for detecting the presence of malicious

computer code in emails, Chen discloses a system to detect and remove viruses

present in macros by scanning the macros. As Patent Owner may attempt to

distinguish the challenged claims based on whether scanning macros meets the

claims, Kissel should be included for trial. As Patent Owner may attempt to

distinguish the challenged claims based on whether a tokenized representation of a

script program within an email as disclosed in Kissel constitute APIs as recited in

the claims, Chen should be included for trial.

The grounds detailed in Section VII.A-B and E rely upon Bodorin as the

primary reference. As Patent Owner may attempt to distinguish the challenged

claims based on whether scanning macros meets the claims, Bodorin should be

included for trial. As Patent Owner may attempt to distinguish the challenged

 51

claims by arguing the ‘344 taught away from executing suspected malware

software to observe behaviors, Chen should be included for trial.

Chen discloses a system to detect and remove viruses present in macros. Ex.

1005 at Abstract. Generally, macros are an executable series of instructions

including menu selections, keystrokes and/or commands that are recorded and

assigned a name or a key. Ex. 1005 at 1:39-41. The virus detection operation as

disclosed in Chen is illustrated by Fig. 6.

Ex. 1005 at Fig. 6.

 52

In the first step 605, a decoded macro is scanned for known viruses. If

known viruses are found, then the macro is flagged. Ex. 1005 at 13:7-19. If no

known viruses are found, then the system scans for unknown viruses. The virus

scanning module of the system obtains a set of instruction identifiers from the virus

information module. Ex. 1005 at 13:20-33. The virus information module is a

library that includes sets of instruction identifiers which are used to identify

combinations of suspect instructions in the macro. Ex. 1005 at 8:58-54. An

exemplary set of instruction identifiers is shown in Fig. 9. As shown in Fig. 9,

these sets of instruction identifiers include instructions or API calls such as

MacroCopy or FileSaveAs, and also strings in hexadecimal form, such as 73 CB

00 0C 6C 01 00. Ex. 1005 at 13:64-14:51. If a macro containing a virus is

identified, then the macro is treated by removing the virus. Ex. 1005 at 16:1-50.

Each and every limitation of the Claims 1, 2, 10, and 13 of the ‘344 Patent

are disclosed by Chen, in the same arrangement as in the ‘344 Patent, and are

therefore anticipated.

Claim 1 Chen

A method for

classifying

software, said

method

comprising;

Ex. 1005 at Abstract: The detection and removal of viruses

from macros is disclosed. A macro virus detection module

includes a macro locating and decoding module, a macro

virus scanning module, a macro treating module, a file

treating module, and a virus information module. The macro

locating and decoding module determines whether a targeted

file includes a macro, and, where a macro is found, locates

and decodes it to produce a decoded macro. The macro virus

 53

scanning module accesses the decoded macro and scans it to

determine whether it includes any viruses. Unknown macro

viruses are detected by the macro virus scanning module by

obtaining comparison data that includes sets of instruction

identifiers from the virus information module and

determining whether the decoded macro includes a

combination of suspect instructions which correspond to

instruction identifiers. The macro treating module locates

suspect instructions in the decoded macro using the

comparison data and removes the suspect instructions to

produce a treated macro. The file correcting module accesses

a targeted file with an infected macro and replaces the

infected macro with the treated macro produced by the macro

treating module.

See also Ex. 1007 at ¶ 99.

 54

[a] providing a

library of gene

information

including a number

of classifications

based on groupings

of genes;

Ex. 1005 at 8:58-9:4: To identify suspect instruction

combinations, the macro virus scanning module 304 accesses

comparison data from the virus information module 308. The

comparison data includes sets of instruction identifiers which

are used to identify combinations of suspect instructions in

the decoded macro. An exemplary set of instruction

identifiers includes first and second suspect instruction

identifiers. The instruction identifiers are binary strings and

the decoded macros are scanned to determine whether they

include the binary strings and, accordingly, the suspect

instructions. If it is determined that the macro includes the

combination of suspect instructions defined and identified by

the set of instruction identifiers, then it is determined that the

macro is infected by an unknown virus corresponding to that

set of data.

Ex. 1005 at 14:65-15:13: Referring now to FIG. 9, a data

table including exemplary sets of instruction identifiers

which are stored in the virus information module 308 is

shown. The exemplary data table 900 includes rows 902

which correspond to several different sets of instruction

identifiers. Columns identifying the sets of instruction

identifiers 903, their instruction identifier numbers 904 and

text and corresponding hexadecimal representations 905 of

the binary code for the instruction identifiers are included.

Preferably, two instruction identifiers are included in each set

of instruction identifiers, but additional instruction identifiers

can be included in a set. Additionally, a positive macro virus

determination can be made based upon detection of two out

of three instruction identifiers or some other subset of

identifiers. The data table 900 is exemplary only. The

comparison data may be variously stored in the virus

information module 308.

Ex. 1005 at Fig. 9.

See also Ex. 1007 at ¶ 100.

[b] identifying at

least one functional

block and at least

Ex. 1005 at 13:20-33: If in step 610 it is determined that

known viruses were not detected in the scanning step 605,

the macro virus scanning module 304 scans for unknown

 55

one property of the

software;

viruses in the decoded macros. In step 615, the macro virus

scanning module 304 obtains a set of instruction identifiers

for detecting unknown viruses. The macro scanning module

304 detects instructions which are likely to be used by macro

viruses. These instructions are also referred to as suspect

instructions. Certain combinations of suspect instructions are

very likely to be used macro viruses. By looking for

combinations of suspect instructions, false positive virus

detection is avoided since a macro with two (or more)

different suspect instructions is very likely to be infected.

See also Ex. 1007 at ¶ 101.

[c] identifying one

or more genes each

describing one or

more of the at least

one functional

block and the at

least one property

of the software as a

sequence of APIs

and strings

Ex. 1005 at 15:13-31: Referring again to the flow chart of

FIG. 6, once a set of instruction identifiers is obtained by the

macro virus scanning module 304 in step 615, the decoded

macro is scanned to determine whether it includes a

combination of suspect instructions as identified by the

instruction identifiers. In step 620, the decoded macro is

scanned using a first instruction identifier. For example, the

decoded macro may be scanned 620 to determine whether a

string 73 CB 00 0C 6C 01 00 which corresponds to the first

instruction identifier in the first set of exemplary instruction

identifiers 900 is present. The scanning in step 620 may be

undertaken by a state machine which scans the decoded

macro and determines whether the string is present. In step

625, it is determined whether the first suspect instruction

identifier is present in the decoded macro. If it is determined

625 that the no instruction corresponding to the first

instruction identifier is present, then in step 645 it is

determined that the macro is not infected according to the set

of instruction identifiers and the method of macro virus

scanning 600 ends.

See also Ex. 1007 at ¶ 102.

[d] matching the

one or more genes

against one or

more of the

number of

Ex. 1005 at 15:13-31: Referring again to the flow chart of

FIG. 6, once a set of instruction identifiers is obtained by the

macro virus scanning module 304 in step 615, the decoded

macro is scanned to determine whether it includes a

combination of suspect instructions as identified by the

 56

classifications

using a processor;

instruction identifiers. In step 620, the decoded macro is

scanned using a first instruction identifier. For example, the

decoded macro may be scanned 620 to determine whether a

string 73 CB 00 0C 6C 01 00 which corresponds to the first

instruction identifier in the first set of exemplary instruction

identifiers 900 is present. The scanning in step 620 may be

undertaken by a state machine which scans the decoded

macro and determines whether the string is present. In step

625, it is determined whether the first suspect instruction

identifier is present in the decoded macro. If it is determined

625 that the no instruction corresponding to the first

instruction identifier is present, then in step 645 it is

determined that the macro is not infected according to the set

of instruction identifiers and the method of macro virus

scanning 600 ends.

See also Ex. 1007 at ¶ 102.

[e] classifying the

software based on

the matching to

provide a

classification for

the software; and

Ex. 1005 at 15:43-54: If it is determined in step 625 that the

first instruction identifier is present, then the decoded macro

is scanned in step 630 to determine whether the second

instruction identifier is present. If in step 635 it is determined

that the macro includes the second suspect instruction

identifier, then in step 640 the decoded macro is flagged as

infected by an unknown virus corresponding to the set of

instruction identifiers. Information associating the decoded

macro to the set of instruction identifiers that resulted in a

positive unknown virus detection is stored in the data buffer

312 so that other modules such as the macro treating module

306 can treat the infected macro accordingly.

See also Ex. 1007 at ¶ 102.

[f] notifying a user

of the classification

of the software.

Ex. 1005 at 17:16-25 (emphasis added): Referring back to

step 810, if the treated macro which corresponds to the

targeted file is flagged as invalid, the treated macro is

preferably not used to replace the infected macro. Thus, in

step 835, alternative corrective action is taken by the file

correcting module dependent upon how it is configured by

the user. Various alternative corrective steps will be

recognized such as notifying the user that the targeted file

 57

includes a virus, removing the infected macro from the

targeted file without replacement, or deleting the targeted

file.

See also Ex. 1007 at ¶ 103.

Claim 2 Chen

The method

of claim 1, wherein

the classification

for the software

includes malware.

Ex. 1005 at 15:43-54 (emphasis added): If it is determined in

step 625 that the first instruction identifier is present, then the

decoded macro is scanned in step 630 to determine whether

the second instruction identifier is present. If in step 635 it is

determined that the macro includes the second suspect

instruction identifier, then in step 640 the decoded macro is
flagged as infected by an unknown virus corresponding to

the set of instruction identifiers. Information associating the

decoded macro to the set of instruction identifiers that

resulted in a positive unknown virus detection is stored in the

data buffer 312 so that other modules such as the macro

treating module 306 can treat the infected macro accordingly.

See also Ex. 1007 at ¶ 102.

Claim 10 Chen

The method

of claim 1, further

comprising

removing the

software when the

software is

classified as

malware or

unwanted software.

Ex. 1005 at 16:24-47 (emphasis added): Referring back to

step 710, if it is determined by the macro treating module 306

that a known virus is not present in the decoded macro, then

the macro is treated to selectively remove an unknown
virus. The set of instruction identifiers that was used to detect

an unknown virus in the decoded macro is available to the

macro treating module 306 in the data buffer 312. An

exemplary set includes first and second suspect instruction

identifiers. In step 720, the first suspect instruction identifier

is used to locate each suspect instruction which corresponds

to the identifier. The decoded macros can be scanned to

locate such instructions using the techniques described in

connection with detecting the instructions used by the macro

 58

virus scanning module 304. If the instruction identifiers

correspond to fragments of instructions rather than whole

instructions, then the macro treating module 306 correlates

each detected fragment to a whole instruction. The

correlation will depend upon the programming language used

by the macro. Conventional techniques can be used for the

correlation. In step 725, the additional suspect instruction

identifiers are used to locate corresponding additional suspect

instructions. The located suspect instructions are then

replaced in step 730. Similar to the replacement of known

virus strings, preferably the suspect instructions are replaced

with benign instructions.

See also Ex. 1007 at ¶ 103.

Claim 13 Chen

The method

of claims 1, further

comprising

blocking access to

the software when

the software is

classified as

malware or

unwanted software.

Ex. 1005 at 16:24-47 (emphasis added): Referring back to

step 710, if it is determined by the macro treating module 306

that a known virus is not present in the decoded macro, then

the macro is treated to selectively remove an unknown
virus. The set of instruction identifiers that was used to detect

an unknown virus in the decoded macro is available to the

macro treating module 306 in the data buffer 312. An

exemplary set includes first and second suspect instruction

identifiers. In step 720, the first suspect instruction identifier

is used to locate each suspect instruction which corresponds

to the identifier. The decoded macros can be scanned to

locate such instructions using the techniques described in

connection with detecting the instructions used by the macro

virus scanning module 304. If the instruction identifiers

correspond to fragments of instructions rather than whole

instructions, then the macro treating module 306 correlates

each detected fragment to a whole instruction. The

correlation will depend upon the programming language used

by the macro. Conventional techniques can be used for the

correlation. In step 725, the additional suspect instruction

identifiers are used to locate corresponding additional suspect

instructions. The located suspect instructions are then

 59

replaced in step 730. Similar to the replacement of known

virus strings, preferably the suspect instructions are replaced

with benign instructions.

See also Ex. 1007 at ¶ 103.

VIII. CONCLUSION

With this Petition, Petitioner has established a reasonable likelihood that the

challenged claims of the ‘344 Patent will be found unpatentable. Petitioner

therefore respectfully requests that inter partes review of the ‘344 Patent be

granted, and that claims 1, 2, 10, 13, 16 and 17 be held unpatentable.

 Respectfully submitted,

Date: January 23, 2015

 / Jason Liu /

Jason Liu

Reg. No. 51,955

jasonliu@quinnemanuel.com

Attorney for Petitioner Fortinet Inc.

CERTIFICATE OF SERVICE

(37 C.F.R. §§ 42.6(e) and 42.105(a))

The undersigned hereby certifies that the above-captioned “PETITION FOR

INTER PARTES REVIEW OF U.S. PATENT NO. 8,261,344,” Power of Attorney

and true copies of Exhibit Nos. 1001 to 1022 were served on January 23, 2015, at

the official correspondence address for the attorney of record for the ‘344 Patent as

shown in USPTO PAIR via EXPRESS MAIL:

STRATEGIC PATENTS P.C.

P.O. BOX 920629

NEEDHAM MA 02492

and

SEAN C. CUNNINGHAM

DLA PIPER LLP, US

401 B ST. STE. 1700

SAN DIEGO, CA 92101-4297

Date: January 23, 2015

 /Jason Liu/

Jason Liu

Reg. No. 51,955

Quinn Emanuel Urquhart & Sullivan

50 California St, 22
nd

 Floor

San Francisco, CA 94111

Telephone: (415) 875-6434
 Facsimile: (415) 875-6000

 Attorney for Petitioner Fortinet Inc.

