

Fortinet-1001

US008261344B2

(12) United States Patent (10) Patent No.: US 8,261,344 B2
Godwood et a1. (45) Date of Patent: Sep. 4, 2012

(54) METHOD AND SYSTEM FOR 7,080,355 B2 * 7/2006 Carlson et al. 717/120
7,398,553 B1 7/2008 Li

CLASSIFICATION OF SOFTWARE USING 7,496,963 B2 * 2/2009 Shipp “““““““““““““““““ “ 726/24
CHARACTERISTICS AND COMBINATIONS 7,519,997 B2 4 4/2009 Shipp “““““““““““ “

OF SUCH CHARACTERISTICS

(75) Inventors: Ben GodWood, Finstock (GB); William
James McCourt, Abingdon (GB)

(73) Assignee: Sophos PLC,Abingdon (GB)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1115 days.

(21) Appl.No.: 11/42s,203

(22) Filed: Jun. 30, 2006

(65) Prior Publication Data

US 2008/0005796 A1 Jan. 3, 2008

(51) Int. Cl.
G06F 11/00 (2006.01)
G06F 12/14 (2006.01)
G06F 12/16 (2006.01)
G08B 23/00 (2006.01)
G06F11/30 (2006.01)
G06F 9/44 (2006.01)

(52) US. Cl. 726/22; 726/24; 713/188; 717/126;
717/127; 717/131

(58) Field of Classi?cation Search 726/22i25;

713/188; 717/126,127,131
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,826,013 A * 10/1998 Nachenberg 726/22

6,301,699 B1* 10/2001 Hollander et al. 717/131
6,357,008 B1* 3/2002 Nachenberg 726/24
7,013,483 B2 * 3/2006 Cohen et a1. . 726/25
7,069,583 B2 * 6/2006 Yann et a1. 726/4

230

FLIX‘ChEI
analysis?

Yes

Extract

Properties

Unpack
240

Extract functional

blocks

Extract: 1 i511

of genes

7,636,856 B2 * 12/2009 Gheorghescu et a1.
7,636,945 B2* 12/2009 Chandnaniet a1. 726/24
7,640,587 B2* 12/2009 Fox et a1. 726/24
7,725,735 B2* 5/2010 Fox et a1. 713/188
7,814,544 B1* 10/2010 Wilhelm 726/22

8,069,435 B1 11/2011 Lai
8,108,315 B2 1/2012 KraWetZ
8,161,548 B1* 4/2012 Wan 726/22

(Continued)

FOREIGN PATENT DOCUMENTS

WO WO2006006144 1/2006

OTHER PUBLICATIONS

“Search Report Uncer Section 17(5)”, for Application No.
GB0711866.4, mailed Oct. 12, 2007.

(Continued)

Primary Examiner * Christian Laforgia
(74) Attorney, Agent, or Firm * Strategic Patents, PC.

(57) ABSTRACT

Certain embodiments of the present invention provide meth
ods and systems for software classi?cation. Certain embodi
ments provide a method for identi?cation of malWare. Certain
embodiments provide a method for identi?cation of
unWanted software. The method includes identifying one or
more functional blocks and/or properties of softWare. The
method further includes identifying genes in the functional
blocks and/or properties. The method also includes matching
the resulting list of genes against one or more combinations of
classi?cations of groupings of genes. Additionally, the
method includes classifying the softWare. Certain embodi
ments provide a method for generating classi?cations. The
method includes identifying functional blocks and/ or proper
ties. Furthermore, the method includes combining a plurality
of genes to form a classi?cation.

21 Claims, 3 Drawing Sheets

No

27O/_/ Compare agalnst ———> Matched
Classification

library

Yes

classification”

Fortinet-1001

US 8,261,344 B2
Page 2

2003/0110385
2004/0181677
2005/0044197
2005/0172338
2005/0187740
2006/0015940
2006/0123244
2006/0123480
2007/0016953
2007/0033659
2007/0239993
2007/0240212
2008/0010538
2008/0040710

U.S. PATENT DOCUMENTS

6/2003
9/2004
2/2005
8/2005
8/2005
1/2006
6/2006
6/2006
1/2007
2/2007
10/2007
10/2007
1/2008
2/2008

Golobrodsky et al. 713/188

Hong et a1.
Lai
Sandu et al.
Marinescu 703/1

Zamir et al. 726/22

Gheorghescu et a1. . 713/188

Oh et a1. 726/23

Morris et al. 726/24

Hoche et a1.
Sokolsky et al. 713/188

Matalytski 726/22
Satish et al. 714/38

Chiriac 717/136

2009/0019426 A1 1/2009 Baeumer et a1.
2009/0187992 A1* 7/2009 Poston 726/24

2009/0328011 A1 12/2009 Li?iand et al.
OTHER PUBLICATIONS

“Intellectual Property Of?ce-PGB Search Report”, Sep. 27, 2010 ,
all.
Skormin, et al., ““In the Search of the “Gene of Replication” in
Malicious Codes””, Proceedings from the Sixth Annual IEEE Sys
tems, Man and Cybernetics Information Assurance Workshop 2005 ,
193-200.
Dig, Danny et al., “Automated Detection of Refactorings in Evolving
Components”, Springer-Verlag Berlin. Heidelberg. 2006 , 404-428.
“US. Appl. No. 12/413,823, Non-Final Of?ce Action mailed Mar.
19, 2012”, , 19.

* cited by examiner

US. Patent Sep. 4, 2012 Sheet 1 of3 US 8,261,344 B2

Figure 1
100

Memory

Malware
Detection
Engine

Library

US. Patent Sep. 4, 2012 Sheet 2 of3 US 8,261,344 B2

owm

OZ

> wm?mm mo umHH pomguxm

20mm

kw

gmm

‘r >

0mm. W 332

N Eswi

US. Patent Sep. 4, 2012 Sheet 3 of3 US 8,261,344 B2

Figure 3
360

310 —@ Identify functionality.

i
320 "*9 De?ne a characteristic based on the

identi?ed functionality.

330 ""® Combine a plurality of characteristics to
form a classi?cation.

US 8,261,344 B2
1

METHOD AND SYSTEM FOR
CLASSIFICATION OF SOFTWARE USING
CHARACTERISTICS AND COMBINATIONS

OF SUCH CHARACTERISTICS

BACKGROUND OF THE INVENTION

The present invention generally relates to classi?cation of
software, including malWare and unwanted softWare. More
particularly, the present invention relates to identi?cation of
softWare based on identi?cation of certain characteristics
(hereinafter called “genes”) and matching such genes against
certain created classi?cations de?ned as groupings of genes.

MalWare is a general categorization of a computer con
taminant including computer viruses, Worms, Trojan horses,
spyWare and/or adWare, for example. Unlike defective soft
Ware Which has a legitimate purpose but contains errors,
malWare is Written to in?ltrate or damage a computer system
and/ or other softWare. MalWare may also steal sensitive infor
mation, such as passWords. Some malWare programs install a
key logger, Which copies doWn the user’s keystrokes When
entering a pas sWord, credit card number, or other useful infor
mation.

MalWare includes viruses and Worms, Which spread to
infect other executable softWare and/ or computers locally
and/or over a netWork, for example. By inserting a copy of
itself into the machine code instructions in these executables,
a virus causes itself to be run Whenever the program is run or
the disk is booted.

Additionally, Microsoft Word® and similar programs
include ?exible macro systems receptive to macro viruses
that infect documents and templates, rather than applications,
through executable macro code.

Worms, unlike viruses, typically do not insert themselves
into other programs but, rather, exploit security holes in net
Work server programs and start themselves running as a sepa
rate process. Worms typically scan a netWork for computers
With vulnerable netWork services, break in to those comput
ers, and replicate themselves.

Another type of malWare is a Trojan horse or Trojan. Gen
erally, a Trojan horse is an executable program that conceals
a harmful or malicious payload. The payload may take effect
immediately and can lead to many undesirable effects, such as
deleting all the user’ s ?les, or the payload may install further
harmful softWare into the user’ s system. Trojan horses knoWn
as droppers are used to start off a Worm outbreak by injecting
the Worm into users’ local netWorks.

SpyWare programs are produced for the purpose of gath
ering information about computer users.

Additionally, systems may become infected With
unWanted softWare. UnWanted softWare is de?ned as being
softWare that is installed or used Without the system oWner’ s
permission. Although unWanted softWare is not malicious, it
can either affect performance of client machines or poten
tially introduce security risks and related legal risks into an
organization. Such unWanted softWare may include adWare,
dialers, remote administration tools and hacking tools.

Traditional malWare protection techniques are based
around anti-virus vendors creating signatures for knoWn mal
Ware and products that scan systems searching for those spe
ci?c signatures.

With this approach, an identi?cation or de?nition of mal
Ware and/ or unWanted softWare is released once a lab has seen

and analyzed a sample of such softWare. This can mean that
some users may be infected before the de?nitions have been
released. Thus, systems and methods providing detection of

20

25

30

35

40

45

50

55

60

65

2
unknoWn malWare and/ or unWanted softWare to help prevent
users from being infected before a de?nition is released
Would be highly desirable.
The volume of malWare has increased dramatically

(around 140+ Brazilian Banking Trojans per day for
example). Multiple variants of the same malWare threat are
relentlessly created and rapidly distributed, With the aim of
defeating traditional signature-based virus protection.
Some anti-virus softWare uses heuristics to attempt to iden

tify unknoWn viruses. Heuristics techniques look at various
properties of a ?le and not necessarily the functionality of the
program. This leads to high false positive rates.

Other behavior based technologies rely on running mal
Ware and attempting to stop execution if malicious behavior is
observer to happen. By alloWing malWare to execute, the
malWare may already have caused damage before it is
blocked. Additionally, behavior-based technology often
requires extensive user interaction to authorize false posi
tives.
The netWork security threats faced by enterprises today are

much more complex than 20 years ago. The exponential
groWth in malWare is compounded by its speed of propaga
tion and the complexity of blended threats, changing the
nature of the risks. The behavior of netWork users is also
changing rapidly. There is a need for systems and methods for
proactively classifying softWare before malWare or unWanted
softWare causes damage.

BRIEF SUMMARY OF THE INVENTION

Certain embodiments of the present invention provide
methods and systems for softWare classi?cation.

Certain embodiments provide a method for classifying
softWare including identifying at least one of a functional
block and a property of the softWare. The method further
includes identifying one or more genes in the at least one of a
functional block and a property of the softWare. Additionally,
the method includes matching the one or more genes against
one or more classi?cations de?ned from groupings of genes.
Furthermore, the method includes classifying the softWare
based on the one or more classi?cations.

Certain embodiments provide a method for generating
classi?cations de?ned for groupings of genes, for use in clas
sifying softWare. The method includes identifying one or
more genes that appear in softWare. The method further
includes combining a plurality of genes to classify or form a
set of genes. Additionally, the method includes testing the set
of genes for false-positives against one or more reference
?les. The method also includes de?ning a software classi?
cation based on the set of genes.

Certain embodiments provide a computer-readable
medium having a set of instructions for execution on a com
puter. The set of instructions includes an identi?cation routine
con?gured to identify one or more functional blocks and/or
properties of softWare. The set of instructions also includes a
routine con?gured to identify genes in the one or more func
tional blocks and/or properties. Furthermore, the set of
instructions includes a matching routine con?gured to match
genes against a list of knoWn classi?cations de?ned as group
ings of genes. Additionally, the set of instructions includes a
classi?cation routine con?gured to classify the softWare.

BRIEF DESCRIPTION OF SEVERAL VIEWS OF
THE DRAWINGS

FIG. 1 illustrates a malWare detection system in accor
dance With an embodiment of the present invention.

US 8,261,344 B2
3

FIG. 2 depicts a ?ow diagram for a method for software
classi?cation in accordance with an embodiment of the
present invention.

FIG. 3 illustrates a ?ow diagram for a method for generat
ing genes and groupings of genes for software classi?cation
in accordance with an embodiment of the present invention.

The foregoing summary, as well as the following detailed
description of certain embodiments of the present invention,
will be better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the inven
tion, certain embodiments are shown in the drawings. It
should be understood, however, that the present invention is
not limited to the arrangements and instrumentality shown in
the attached drawings.

DETAILED DESCRIPTION OF THE INVENTION

FIG. 1 illustrates a malware detection system 100 in accor
dance with an embodiment of the present invention. System
100 includes a memory 110 storing one or more ?les, a
malware detection engine 120, and a library 130. System 100
may also include an interface (not shown) to allow a user to
interact with malware detection engine 120 to trigger a mal
ware scan, view status, view results, take action, etc.
Memory 110 may include a hard disk, a ?oppy disk, an

optical disk, a magnetic disk, a tape, a random access memory
(RAM), a read-only memory (ROM), a programmable ROM
(PROM, EPROM, EEPROM), CD, DVD, ?ash memory,
cache, buffer, register, and/or other temporary or persistent
data storage. File(s) to be scanned may be temporarily and/or
persistently stored in memory 110. Memory 110 may be
normal computer system memory and/or special purpose
memory for use in malware detection.

Library 130 includes one or more of saved checksums,
malware patterns, virus and/or other malware de?nitions,
gene information, information as classi?cations based on
groupings of genes, etc. Library 130 is accessed by malware
engine 120 to detect/classify malware in a ?le.

Components of system 100 may be implemented in soft
ware, hardware and/or ?rmware, for example. The compo
nents of system 100 may be implemented separately and/or
implemented in a variety of combinations. For example,
library 130 may be incorporate in malware engine 120. Com
ponents of system 100 may be implemented on a single com
puter system for processing software and messages. Alterna
tively, components of system 100 may be implemented in a
distributed network where different processes occur on dif
ferent machines with a communication network to allow shar
ing of information. System 100 may be implemented using
one or more software programs.

In certain embodiments, system 100 provides both imme
diate and scheduled malware scanning and disinfection. Mal
ware may be detected in a variety of ways, such as by com
paring checksum of a ?le to a stored checksum value, pattern
matching to identify known malware patterns in ?les, elec
tronic mail and/or disk areas (e.g., boot sectors), emulating all
or part of a ?le’s code to try and detect malware, such as
polymorphic viruses, which may reveal themselves during
execution, and/ or extracting and analyZing functionality from
a ?le by matching genes and/or classi?cations de?ned from
groupings of genes, e.g., PHENOTYPETM classi?cations
(PHENOTYPETM is a trademark of the assignee of the present
patent application). After detection, a user and/ or system may
be noti?ed of detected malware, and system 100 may auto
matically and/ or upon request attempt to disinfect, quarantine
or remove detected malware or malware fragments from the
?le/email/ disk area.

5

20

25

30

35

40

45

50

55

60

65

4
Pattern matching and other forms of detection may be

performed using Virus Identity Files (IDEs) or other identity
?les that contain algorithms describing various characteris
tics of a virus and/or other malware for use in malware rec
ognition.
Malware engine 120 loads and searches data from the input

?le. Malware engine 120 may use pattern matching, for
example, to compare sequences of code in the ?le to known
virus code sequences identify a particular sequence of code
that is similar or identical to a virus code. Malware engine 120
may also combine pattern matching with heuristics to use
general, rather than speci?c, rules to detect several viruses in
the same family, for example. Malware engine 120 may also
include a code emulator for detecting polymorphic viruses
(self-modifying viruses) and/ or an on-line decompressor for
scanning inside archive ?les. Malware engine 120 may also
include an OLE2 (object linking and embedding) engine for
detecting and disinfecting macro viruses.

In certain embodiments, malware engine 120 receives an
input ?le and returns a result. Virus IDE and product updates
may be downloaded to account for new viruses and/or other
malware, for example.

In certain embodiments, malware engine 120 may be used
to scan ?les “on-demand.” A user may identify ?les or groups
of ?les to scan immediately.
On-demand scanning may also be scheduled by a user. For

example, the user speci?es a time at which to scan a selected
group of ?les. At the scheduled time, malware engine 120
scans the selected ?les that are already stored, for example, in
memory 110. A user or users may establish multiple sched
ules for malware scanning. Different con?gurations may be
set for each scheduled scan. Alternatively and/ or in addition,
certain embodiments provide on-access malware detection
using malware engine 120.

In certain embodiments, malware engine 120 intercepts
open ?le or ?le close or ?le access requests, for example, by
a user, an operating system, an application, etc.

In certain embodiments, a user may specify which ?les to
check via a scheduled and/or on-access scan. That is, a user
can include and/or exclude certain types of ?les from mal
ware scanning. Additionally, the user may con?gure system
100 to check ?les on read, on write, and/or on rename, for
example. The user may also con?gure system 100 to block
access to the ?le, or to automatically initiate disinfection,
removal and/or quarantine of a ?le upon ?nding malware in
the ?le.

In certain embodiments, system 100 may be used to iden
tify malware by extracting functionality from a ?le and clas
sifying the functionality. In certain embodiments, malware
engine 120 may classify functionality and identify malware
without requiring a most up-to-date set of virus and/ or other
malware de?nitions. Malware engine 120 may classify a ?le
and/or functionality within a ?le as malicious, non-malicious,
suspicious, etc. based on functionality and/or relationships
between or combinations of functionality, for example. Alter
natively and/ or in addition, malware engine 120 may identify
a particular malware program represented by and/or included
in the ?le.

FIG. 2 depicts a ?ow diagram for a method 200 for soft
ware classi?cation in accordance with an embodiment of the
present invention. At step 210, analysis of a computer ?le or
other sample to be checked is commenced. At step 220, the
?le is ?ltered. This is a series of quick checks to determine
whether a ?le needs further analysis. For example, one or
more ?les may be screened for ef?ciency reasons. If a ?le is
packed, for example, a malware detection system may spend

US 8,261,344 B2
5

more time checking the ?le. If a ?le passes a checksum test,
for example, the software classi?cation system may not fur
ther examine the ?le.

In certain embodiments, at step 230, properties are
extracted from the ?le. For example the ?le siZe or name may
be extracted.

In certain embodiments, the ?le is unpacked if necessary
(step 240). For example, malWare may be obfuscated using
run-time packers, Which render static analysis of code di?i
cult. Packing is a process of transforming a program ?le,
using compression and/or encryption, so that its functionality
is obfuscated. Unpacking is a method of restoring a packed
program ?le to its unpacked state, so that the functionality is
no longer obfuscated. This is done using decompression and/
or decryption, for example.

At step 250, the function blocks are extracted from the ?le.
These functional blocks include sequences of application
program interface (API) calls, string references, etc., Which
illustrate the function and execution How of the program.
Functional blocks are extracted from a program ?le’s binary
code. While various instances of softWare may use common
code and similar techniques, the resulting compiled bytes can
be very different. The same source code can be compiled
using different compilers to produce different binary ?les.
The compiled bytes are different but the ?les are functionally
the same. Functional blocks provide a high level vieW of the
functionality of a ?le regardless of binary compilation.
At step 260, each functional block is searched for genes to

build a list of genes present in the ?le. Different types of
functionality (classi?ed as genes, for example) may be
extracted from the sequenced blocks. A gene is piece of
functionality or property of a program. Each piece of func
tionality is described using sequences of APIs and strings,
Which can be matched against functional blocks. A matching
functional block includes the APIs and strings in the correct
order. The gene and the functional block do not need to match
exactly. A functional block may contain more than one gene.
Genes are de?ned using a gene de?nition language, for
example. Each gene describes or identi?es a different behav
ior or characteristic of malWare or other ?le. For example,
malWare may copy itself to a % SYSTEM % directory. There
fore, a gene may be created to identify this functionality by
matching the sequence of API calls and the strings that are
referenced.

At step 270, the list of genes is compared against a library
of classi?cations of genes. A classi?cation of gene combina
tion has been detected if all the genes contained in that gene
combination are present in the list of genes identi?ed in the
?le.
A classi?cation of genes represents a certain class of soft

Ware. A classi?cation of genes is a combination of genes used
to describe or identify a class of softWare program. For
example, a classi?cation of genes to match an IRC Bot mal
Ware ?le (an independent program that connects to an Internet
Relay Chat (IRC) and performs automated functions) may
include the folloWing genes:

SockSend Socket based activity
RunKey Sets a run key
Exec Executes other programs
CopySys Copies itself to the system directory
AVList Contains a list of AV (anti-virus) products
IRC IRC references
Host References the hosts ?le

20

25

30

35

40

45

50

55

60

65

6
At step 280, an output is generated. For example, the most

signi?cant classi?cation may be reported. Alternatively and/
or in addition, all identi?ed classi?cations, genes and/or soft
Ware classi?cations may be reported. Reporting may include
generating and/ or editing a log ?le, printing an output, email
ing an output, generating an audible output, generating a
visual output, facsimile transmission of an output, electronic
storage of an output, etc. In addition to reporting, an output
may include disinfection, deletion, and/or quarantine of the
?le and/ or related ?les, for example.

For example, the folloWing functional block sequenced
from a softWare program matches three genes (“CopySys”,
“Runkey” and “Exec”):
GetSystemDirectoryA
GetModuleHandleA
GetModuleFileNameA
“tftpd.exe”
“Winhlpp32.exe”
strcat

strcat
“softWare\microsoft\WindoWs\currentversion\run”
RegCreateKeyExA
strlen
RegSetValueExA
RegCloseKey
CopyFileA
CreateProcessA
The gene “CopySys” copies itself to a system folder and
includes the folloWing functions, for example:
GetSystemDirectoryA
GetModuleHandleA
GetModuleFileNameA

CopyFileA
The gene “Runkey” sets a run key and includes, as an
example, the folloWing functions:
“softWare\microsoft\WindoWs\currentversion\run”
RegCreateKeyExA
RegSetValueExA
The gene “Exec” executes other programs and includes, as an
example, the folloWing functions:
CreateProcessA
The three genes in this example form a classi?cation de?ned
by a group of the three genes, and may be used to classify the
softWare as malicious, suspicious, unWanted, etc.

FIG. 3 illustrates a How diagram for a method 300 for
generating genes and classi?cations de?ned by groupings of
genes to be used for malWare and/or other softWare classi?
cation in accordance With an embodiment of the present
invention. At step 310, softWare functionality is identi?ed.
For example, the functionality for copying code to a system
directory is identi?ed. At step 320, a softWare characteristic is
de?ned based on the identi?ed functionality. For example, the
characteristic ‘CopySys’ from the above example is de?ned
based on the identi?ed copy functionality.
At step 330, a plurality of softWare characteristics are com

bined to form a softWare classi?cation. For example, the
characteristics listed in the examples above: ‘SockSend, Run
Key, Exec, CopySys, AVList, IRC, and Host’ are combined to
form a classi?cation for an ‘IRC Bot’ program.

In certain embodiments, functionality is common to both
malWare and normal programs. MalWare may be identi?ed
and/ or classi?ed based on combinations of such functionality.
In certain embodiments, both malWare and non-malWare pro
grams may be classi?ed according to a variety of genes and/or
groupings of genes. For example, unWanted softWare may be
classi?ed according to extracted functionality.

US 8,261,344 B2
7

Thus, certain embodiments provide systems and methods
to extract functionality of a ?le to identify malware and/or
other types of software programs. Certain embodiments may
be used to ?nd functionally similar ?les, such as by using a
“Query by Functionality” search. Certain embodiments
detect malware without requiring new patterns to be written
for pattern matching detection. Certain embodiments reduce
a false positive rate by matching on functionality, rather than
heuristics, to describe a type of malware. Certain embodi
ments allow computers and/ or software to be checked for
licensing compliance and software updates.

While the invention has been described with reference to
certain embodiments, it will be understood by those skilled in
the art that various changes may be made and equivalents may
be substituted without departing from the scope of the inven
tion. In addition, many modi?cations may be made to adapt a
particular situation or material to the teachings of the inven
tion without departing from its scope. Therefore, it is intended
that the invention not be limited to the particular embodiment
disclosed, but that the invention will include all embodiments
falling within the scope of the appended claims.

The techniques described herein may be implemented by
various means. For example, these techniques may be imple
mented in hardware, ?rmware, software, or a combination
thereof. For a hardware implementation, the processing units
at a transmitter may be implemented within one or more

application speci?c integrated circuits (ASICs), digital signal
processors (DSPs), digital signal processing devices
(DSPDs), programmable logic devices (PLDs), ?eld pro
grammable gate arrays (FPGAs), processors, controllers,
micro-controllers, microprocessors, electronic devices, other
electronic units designed to perform the functions described
herein, or a combination thereof. The processing units at a
receiver may also be implemented within one or more ASICs,
DSPs, processors, and so on.

For a software implementation, the techniques may be
implemented with instructions (e.g., procedures, functions,
and so on) that perform the functions described herein. The
instructions may be stored in a memory and executed by a
processor. The memory may be implemented within the pro
cessor or external to the processor.

The steps of a method or algorithm described in connection
with the embodiments disclosed herein may be embodied
directly in hardware, in a software module executed by a
processor, or in a combination of the two. A software module
may reside in RAM memory, ?ash memory, ROM memory,
EPROM memory, EEPROM memory, registers, hard disk, a
removable disk, a CD-ROM, or any other form of storage
medium known in the art. An exemplary storage medium is
coupled to the processor such that the processor can read
information from, and write information to, the storage
medium. In the alternative, the storage medium may be inte
gral to the processor. The processor and the storage medium
may reside in an ASIC. The ASIC may reside in a user
terminal. In the alternative, the processor and the storage
medium may reside as discrete components in a user terminal.

The invention claimed is:
1. A method for classifying software, said method com

prising;
providing a library of gene information including a number

of classi?cations based on groupings of genes;
identifying at least one functional block and at least one

property of the software;
identifying one or more genes each describing one or more

of the at least one functional block and the at least one
property of the software as a sequence of APIs and
strings;

20

25

30

35

40

45

50

55

60

65

8
matching the one or more genes against one or more of the
number of classi?cations using a processor;

classifying the software based on the matching to provide
a classi?cation for the software; and

notifying a user of the classi?cation of the software.
2. The method of claim 1, wherein the classi?cation for the

software includes malware.
3. The method of claim 1, wherein the classi?cation for the

software includes unwanted software.
4. The method of claim 1, further comprising unpacking

the software.
5. The method of claim 1, further comprising disassem

bling the software.
6. The method of claim 1, further comprising ?ltering the

software.
7. The method of claim 1, further comprising unencrypting

the software.
8. The method of claim 1, further comprising generating an

output based on the classifying of said software.
9. The method of claim 1, further comprising disinfecting

at least one of the software and a computer containing the
software when the software is classi?ed as malware.

10. The method of claim 1, further comprising removing
the software when the software is classi?ed as malware or
unwanted software.

11. The method of claim 1, further comprising quarantin
ing the software when the software is classi?ed as malware or
unwanted software.

12. The method of claim 1, further comprising generating
reports regarding the software.

13. The method of claims 1, further comprising blocking
access to the software when the software is classi?ed as
malware or unwanted software.

14. The method of claim 1, further comprising scanning a
computer for the software, wherein the scanning includes at
least one of a user initiated scanning, a scheduled scanning
and an on access scanning.

15. The method of claim 1, wherein the classi?cation is
based upon one or more groupings of genes.

16. A method for generating software classi?cations for
use in classifying software, said method comprising:

providing a library of gene information including a number
of classi?cations based on groupings of genes;

identifying one or more genes each describing a function
ality or a property of the software as a sequence of APIs
and strings;

combining a plurality of genes that describe the software,
thereby providing a set of genes;

testing the set of genes for false-positives against one or
more reference ?les using a processor;

de?ning the software classi?cation based on the set of
genes; and

storing the set of genes and the software classi?cation in
the library.

17. The method of claim 16, wherein the software classi
?cation includes malware.

18. The method of claim 16, wherein the software classi
?cation includes unwanted software.

19. The method of claim 16 further comprising returning a
result of the software classi?cation to a user.

20. The method of claim 16 further comprising unpacking
the software before identifying one or more genes.

21. The method of claim 16 further comprising ?ltering the
software before identifying one or more genes to determine
whether the software requires further analysis.

* * * * *

