

Fortinet-1003

US007913305B2

(12) Ulllted States Patent (10) Patent N0.: US 7,913,305 B2
i . . . , Bodor 11 et a] 45 Date of Patent‘ Mar 22 2011

(54) SYSTEM AND METHOD FOR DETECTING glhacllger M d
an er a e

MALWARE IN AN EXECUTABLE CODE 2003/0014550 A1 1/2003 Fischer et a1.
MODULE ACCORDING TO THE CODE 2003/0023865 A1 1/2003 Cowie et a1.
MODULE’S EXHIBITED BEHAVIOR 2003/0065926 A1 * 4/2003 SchultZ et al. 713/188

2003/0101381 A1* 5/2003 Mateev et a1. 714/38
. - - ' . 2003/0110391 A1 6/2003 Wolffet a1.

(75) Inventors‘ 231L161 11046105111’ Kl?gland’ WA.‘ ISUS)’ 2003/0115479 A1 6/2003 Edwards et a1.
WAHEL‘EIS) - annescu, ammamls ’ 2004/0015712 A1 * 1/2004 SZOI 713/200

2004/0054917 A1* 3/2004 Obrecht et a1. 713/200
2004/0199827 A1* 10/2004 Muttik et al. 714/38

(73) Assignee: Microsoft Corporation, Redmond, WA 2005/0132206 Al 6/2005 Palliyl et al.
(US) 2005/0172115 A1 8/2005 Bodorin

2005/0172337 A1 8/2005 Bod-Orin
(*) Notice: Subject to any disclaimer, the term of this 2006/0248582 A1 110006 Panjwam et 31'

patent is extended or adjusted under 35 OTHER PUBLICATIONS

' ' ' ' White et al., “Anatom of a commercial-Grade Immune S stem”, U S C 154(b) by 864 days y y

_ http://citeseer.ist.psu.edu/White99anatomyhtml, 1999, pp. 1-28.*
(21) Appl' NO" 10/769’038 C. Ko, “Execution Monitoring of Security-Critical Programs in Dis
(22) F1 d J 30 2004 tributed Systems: ASpeci?cation-basedApproach”, PhD Thesis, UC

1 e : an. , Davis, 1996.

(65) Prior Publication Data (Continued)

Us 2005/0188272 A1 Aug- 25, 2005 Primary Examiner * KambiZ Zand

(51) I t Cl Assistant Examineri HadiArmouche
n . . .

74) Attorney, Agent, or Firm * Workman Nydegger
G06F 11/00 (2006.01) (

(52) US. Cl. 726/24; 714/38; 713/152; 771133//117878; (57) ABSTRACT

(58) Field of Classi?cation Search 726/22, A malware daemon sYstem that detemnves Whether. an
72604 71468 713/152 177 188 executable code module 15 malWare accordmg to behavlors

See a lication ?le for C’Om lete gearch hist’o ’ exhibited While executing is presented. The malWare detec
pp p ry' tion system determines the type of code module and executes

(56) References Cited the code module in a behavior evaluation module for evalu

U.S. PATENT DOCUMENTS

5,485,575
5,842,002
5,983,348
6,192,512
6,357,008
6,594,686
6,907,396
6,968,461
7,203,681
7,620,990

A
A
A
B1
B1
B1
B1
B1
B1
B2

* 1/1996

11/1998
11/1999
2/2001

* 3/2002

7/2003
6/2005
11/2005
4/2007
11/2009

Schnurer et al.
Shuang
Chess

Edwards et al.
Muttik
Lucas et al.
Arnold et al.
Bodorin

Chess et al. 714/38

Nachenberg 726/ 24

ating code corresponding to the code module’s type. Some
behaviors exhibited by the code module, While executing in
the behavior evaluation module, are recorded as the code
module’ 5 behavior signature. After the code module has com
pleted its execution, the code module’s behavior signature is
compared against known malWare behavior signatures stored
in a malWare behavior signature store. A determination as to
Whether the code module is malWare is based on the results of
the comparison.

9 Claims, 6 Drawing Sheets

2 2

K}
MALWARE
BEHAVIOR
SI GNATIIRE

STORE

@
D YNAMIC
BEHA VIOR
E VALUA TION
MODULE

CODE MODULE
(POTENTIAL
MAL WARE)

M4NA GEMENT
MODULE

l l
BEHA VI 0R
SIGNA TURE
COMPARISON
MODULE

BEHAVIOR
SIGNATURE

)
(
206

if
Fortinet-1003

US 7,913,305 B2
Page 2

Of?ce Action

10/769,097.
Of?ce Action
10/769,097.
Of?ce Action
10/769,097.
Of?ce Action
10/769,097.
Of?ce Action
10/769,097.

OTHER PUBLICATIONS

mailed Mar.

mailed Sep.

mailed Jun.

mailed Jan.

mailed Sep.

23, 2007 cited

26, 2007

11, 2008

23, 2009

29, 2009

cited

cited

cited

cited

in

in

in

in

in

U.S.

U.S.

U.S.

U.S.

U.S.

Appl .

Appl .

Appl .

Appl .

Appl.

No.

No.

No.

No.

Of?ce Action mailed Oct. 30, 2007 cited in U.S. Appl. No.
10/769,103.
Of?ce Action mailed Jun. 17, 2008 cited in U.S. Appl. No.
10/769,103.
Of?ce Action mailed Dec. 26, 2008 cited in U.S. Appl. No.
10/769,103.
Notice of Allowance mailed Jul. 20, 2009 cited in U.S. Appl. No.
10/769,103.
Notice of Allowance mailed Mar. 8, 2010 cited in U.S. Appl. No.
10/769,097.

* cited by examiner

US. Patent Mar. 22, 2011 Sheet 1 of6 US 7,913,305 B2

H H Q
H

3%
g In
M i

< -x—'s_ E
“ F-u

g g o u)

1 2

Flg. 1A.
PRIOR
ART

12

KNOWN
MALWARE 114

USER
MODIFICATION

110

MODIFIED
MALWARE NETWORK AN TI- VIR US 5 OFTWARE @H1

10

Fig. 1B.
PRIOR
ART

US. Patent Mar. 22, 2011 Sheet 3 of6 US 7,913,305 B2

300

2%
OBTAIN CODE TO BE

EVALUATED

l
SELECT 1) YNAMIC BEHA VIOR

EVAL UA TION MODULE
ACCORDING TO CODE TYPE

(SEE FIGURE 4)

l
R UN CODE INSIDE OF SELECTED

D YNAMI C BEHA VI OR
EVAL UA TION MODULE

2.:

2.:

1% V
OBTAIN BEHA VI OR SI GNA T URE
OF CODE FROM SELECTED
D YNAMI C BEHA VI OR
EVALUA TIONMODULE

310

v N
COMPARE BEHA VI OR

SIGNA T URE AGAINST KNOWN
MAL WARE BEHA VI OR

SI GNA T URES

Fig. 3A.

US. Patent Mar. 22, 2011 Sheet 4 of6 US 7,913,305 B2

WAS THERE A
OMPLETE MATCH 7

316

REPORT THATEVALUA TED
CODE IS KNOPWV MAL WARE

318

WAS THERE A
PARTIAL MATCH?

320

REPORT THATEVALUA TED
CODE MA Y BE MAL WARE

322

REPORT THATEVALUATED
—> CODE DOESN’T MATCHKNOWN

MAL WARE

Fig. 3B.

US. Patent Mar. 22, 2011 Sheet 5 of6 US 7,913,305 B2

DETERMINE “TYPE” OF
CODE TO EVALUATE

1 m4
SELECT CORRESPONDING
D IWAMI C BEHA VI OR
EVAL UA TION MODULE

IS SELECTED
MODULE ALREADY

OADED?

LOAD SELECTED DYNAMIC
BEHA VI OR E VAL UA T I ON

MODULE

Fig.4.

US 7,913,305 B2
1

SYSTEM AND METHOD FOR DETECTING
MALWARE IN AN EXECUTABLE CODE
MODULE ACCORDING TO THE CODE
MODULE’S EXHIBITED BEHAVIOR

FIELD OF THE INVENTION

The present invention relates to a system and a method for
proactively securing a computer against malWare, and more
particularly, a system and method for detecting malWare in an
executable code module according to the code module’s
exhibited behavior.

BACKGROUND OF THE INVENTION

As more and more computers are interconnected through
various networks, such as the Internet, computer security also
becomes increasingly more important. In particular, com
puter security in regard to external attacks from malWare has
become, and continues to become, increasingly more impor
tant. MalWare, for purposes of the present discussion, are
de?ned as unWanted computer attacks. As such, those skilled
in the art Will appreciate that malWare includes, but is not
limited to, computer viruses, Trojan horses, Worms, denial of
service attacks, abuse/misuse of legitimate computer system
functions, and the like. The primary defense against malWare
is anti-virus softWare.

FIGS. 1A and 1B are pictorial diagrams illustrating hoW
anti-virus softWare currently operates. In particular, FIG. 1A
illustrates hoW anti-virus softWare detects knoWn malWare,
and prevents the knoWn malWare from reaching and infecting
a computer. Alternatively, FIG. 1B illustrates a common
Weakness of anti-virus softWare, particularly, hoW anti-virus
softWare is unable to detect and prevent modi?ed malWare
from reaching and infecting the computer. What is meant by
“reaching” the computer is getting past the anti-virus soft
Ware. Those skilled in the art Will readily recogniZe anti-virus
softWare almost alWays resides on the computer it is protect
ing, and operates on incoming data as it physically arrives at
the computer. Thus, While incoming data, including malWare,
may be located at the computer, for purposes of the present
invention, the incoming data does not actually “reach” the
computer until it gets past the anti-virus softWare.
As shoWn in FIG. 1A, a malWare 102 is directed over a

netWork 106 to the computer 110, as indicated by arroW 108.
It Will be appreciated that the malWare 102 may be directed to
the computer 110 as a result of a request initiated by the
computer, or directed to the computer from another netWork
device. HoWever, as mentioned above, before the knoWn mal
Ware 102 reaches the computer 110, anti-virus softWare 104
installed on the computer intercepts the malWare and exam
ines it. As is knoWn in the art, currently, anti-virus softWare
scans the incoming data as a ?le, searching for identi?able
patterns, also referred to as signatures, associated With
knoWn-malWare. If a malWare signature is located in the ?le,
the anti-virus softWare 104 takes appropriate action, such as
deleting the knoWn malWare/infected ?le, or removing the
malWare from an infected ?le, sometimes referred to as clean
ing the ?le. In this manner, anti-virus softWare 104 is able to
prevent the knoWn malWare 102 from infecting the computer
110, as indicated by the arroW 112.

Those skilled in the art Will appreciate that almost all
unknoWn malWare are actually reWrites or reorganiZations of
previously released malWare. Indeed, encountering an abso
lutely novel malWare is relatively rare, as most “neW” mal
Ware are actually reWrites or rehashes of existing malWare.
MalWare source code is readily available, and it is a simple

20

25

30

35

40

45

50

55

60

65

2
task for a malicious party to change variable names, reorder
lines of code, or somehoW super?cially modify the malWare.
The result of rehashing or reWriting an existing malWare is

that the static appearance of the malWare is altered, though the
functionality of the malWare remains the same. Unfortu
nately, current anti -virus softWare operates only on knoWn
malWare. Thus “new” malWare, While functionally identical
to its original/parent malWare, is not detectable or stopped by
the installed anti-virus softWare 104, due to its pattern match
ing system.

FIG. 1B is a pictorial diagram illustrating hoW current
anti-virus softWare is unable to prevent a modi?ed malWare
from reaching a computer. As shoWn in FIG. 1B, knoWn
malWare 102 undergoes a modi?cation process 114, such as a
rehash or reWrite, resulting in modi?ed malWare 116. As
mentioned above, the modi?ed malWare 116 Will most likely
have a different static appearance, though its functionality
may be identical. As mentioned above, because the static
appearance is modi?ed, the modi?ed malWare 116 is not
“knoWn” malWare recogniZed by the anti-virus softWare 104.
The modi?ed malWare 1 1 6 is directed through the netWork

106 to the computer 110, as indicated by arroW 118. As
described above, the anti-virus softWare 104 attempts to iden
tify the modi?ed malWare 116 to determine Whether it is
knoWn malWare and should be stopped. As the modi?ed mal
Ware 1 1 6 is, as yet, an unknoWn modi?cation, and because the
signature of the modi?ed malWare is not the same as the
original malWare 102, the anti-virus softWare 104 fails to
identify the modi?ed malWare as malWare, and permits it to
proceed to the computer 110, as indicated by arroW 120. Upon
reaching the computer 110, the modi?ed malWare 116 may be
able to perform its destructive purpose. It is only after an
anti-virus softWare provider identi?es a signature pattern for
the modi?ed malWare 116, and then updates the anti-virus
softWare 104, can the anti-virus softWare protect the com
puter 110 from the modi?ed malWare 116.

Constantly evaluating unknoWn malWare to determine a
static signature and then updating anti-virus softWare With
that signature is a costly process. It is also ine?icient, espe
cially When considering that most malWare are only super?
cially modi?ed from other, knoWn malWare. Thus, it Would be
bene?cial if malWare could be identi?ed, not just by its static
signature, but rather by its exhibited behaviors. HoWever, the
only Way to currently evaluate the exhibited behavior of mal
Ware is to somehoW permit it to execute on a computer 110. Of
course, this Would be entirely unacceptable as the malWare
Would perform its ill-intended effects on the computer 110
during its execution.

In light of the above-identi?ed problems, it Would be ben
e?cial to computer users, both in terms of computer security
and in terms of cost effectiveness, to have a malWare detection
system that operates in addition to, or separately from, current
anti-virus softWare that protects a computer against reWritten
or reorganiZed malWare. This system should be able to detect
malWare according to its dynamic, exhibited behaviors, and
not according to its static ?le organiZation. The present inven
tion addresses this and other issues found in the prior art.

SUMMARY OF THE INVENTION

In accordance With aspects of the present invention, a mal
Ware detection system for determining Whether an executable
code module is malWare according to the code module’s
exhibited behaviors is presented. The malWare detection sys
tem includes at least one dynamic behavior evaluation mod
ule. Each dynamic behavior evaluation module provides a
virtual environment in Which a code module of a particular

US 7,9l3,305 B2
3

type may be safely executed. Each dynamic behavior evalu
ation module records some behaviors as a behavior signature,
Which the code module may exhibit during execution. The
malWare detection system also includes a management mod
ule that obtains the executable code module to be evaluated,
determines the particular type of the code module, and selects
the corresponding dynamic behavior evaluation module to
execute the code module. The malWare detection system fur
ther includes a malWare behavior signature store that stores at
least one knoWn malWare behavior signature, and a behavior
signature comparison module that obtains the behavior sig
nature of the evaluated code module and compares it against
the knoWn malWare behavior signatures in the malWare
behavior signature store to determine if the code module is
malWare.

According to additional aspects of the present invention, a
method for determining Whether a code module is malWare
according to the code module’s exhibited behaviors is pre
sented. A dynamic behavior evaluation module for executing
the particular type of code module is selected. The selected
dynamic behavior evaluation module provides a virtual envi
ronment in Which the code module may be safely executed.
The code module is executed Within the dynamic behavior
evaluation module. During execution, some behaviors exhib
ited by the code module are recorded. The recorded behaviors
of the code module are compared against knoWn malWare
behaviors.According to the results of the comparison, a deter
mination as to Whether the code module is malWare is made.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing aspects and many of the attendant advan
tages of this invention Will become more readily appreciated
as the same become better understood by reference to the
folloWing detailed description, When taken in conjunction
With the accompanying draWings, Wherein:

FIG. 1A is a pictorial diagram illustrating hoW current
anti-virus softWare detects knoWn malWare, and prevents
knoWn malWare from reaching and infecting a computer;

FIG. 1B is a pictorial diagram illustrating hoW current
anti-virus softWare is unable to prevent modi?ed malWare
from reaching the computer;

FIG. 2 is a block diagram of a malWare detection system for
detecting malWare according to the exhibited, dynamic
behavior of a code module;

FIGS. 3A and 3B are How diagrams illustrating an exem
plary routine for determining Whether a code module is mal
Ware according to its exhibited behavior;

FIG. 4 is a How diagram for dynamically allocating a
dynamic behavior evaluation module for evaluating a code
module and recording the “interesting” behaviors exhibited
by the code module in a behavior signature; and

FIGS. 5A and 5B are block diagrams illustrating exem
plary behavior signatures of hypothetical code modules.

DETAILED DESCRIPTION

FIG. 2 is a block diagram of a malWare detection system for
detecting Whether a code module is malWare according to its
exhibited, dynamic behavior. It should be noted that the mal
Ware detection system described herein does not necessarily
replace anti-virus softWare that is currently available. As
mentioned above, current anti-virus softWare performs a
static analysis of potential malWare by scanning a code mod
ule’s static con?guration for knoWn malWare signatures. The
malWare detection system of the present invention performs a
dynamic evaluation, i.e., evaluates Whether a code module is

20

25

30

35

40

45

50

55

60

65

4
malWare based on the code module’s behaviors exhibited
during execution. Consequently, While the malWare detection
system may be used as a stand-alone product, it may also be
used in conjunction With current anti-virus softWare. In fact,
current anti-virus softWare may be more ef?cient in detecting
knoWn malWare using the static signature matching system
described above. Thus, When the present invention is used in
combination With current anti-virus softWare, it may be ben
e?cial to use the anti-virus softWare’s signature matching
techniques as a ?rst step in securing a computer from mal
Ware, before turning to the malWare detection system
described herein.

It should be further noted that the malWare detection sys
tem of the present invention need not be implemented on the
same machine as anti-virus softWare, or on the computer for
Which protection is sought. Instead, the malWare detection
system described herein may be implemented on a third com
puting device, such as a ?reWall computer. Additionally, the
malWare detection system need not be running on the same
type of computing device as the target computer.

With reference to FIG. 2, the malWare detection system 200
includes a management module 202, at least one dynamic
behavior evaluation module 204, a behavior signature com
parison module 206, and a malWare behavior signature store
208. Because code modules, such as code module 212, may
come in a variety of executable formats, in operation, the
management module 202 ?rst evaluates the code module 212
to determine the appropriate type of dynamic behavior evalu
ation module needed for evaluating the code module.

For example, the code module 212 may be a MICROSOFT
WINDOWS executable, a MICROSOFT .NET executable, a
JAVA applet/application, any type of executable or applica
tion, and the like. Once the management module 202 deter
mines the type of code module 212, the management module
launches and/or calls a corresponding dynamic behavior
evaluation module, such as dynamic behavior evaluation
module 204, and hands the code module to the dynamic
behavior evaluation module for execution.

Each dynamic behavior evaluation module, such as
dynamic behavior evaluation module 204, represents a virtual
environment, sometimes called a sandbox, in Which the code
module 212 may be “executed.” To the code module 212, the
dynamic behavior evaluation module 204 appears as a com
plete, functional computer system in Which the code module
may be executed. By using a virtual environment in Which the
code module 212 may operate, the code module may be
executed such that its dynamic behaviors may be evaluated
and recorded, While at the same time any destructive behav
iors exhibited by the code module are con?ned to the virtual
environment.
As the code module 212 executes Within the dynamic

behavior evaluation module 204, the dynamic behavior evalu
ation module records “interesting” behaviors exhibited by the
code module. Interesting behaviors are those Which a user or
implementer of the malWare detection system 200 has iden
ti?ed as interesting, potentially associated With malWare, and
are used to compare the behaviors of the code module 212
against knoWn malWare behaviors. Table A includes an exem
plary, representative list of “interesting” behaviors, including
parameters that are also considered interesting, that are
recorded by a dynamic behavior evaluation module 204. It
should be understood that these listed “interesting” behaviors
are exemplary only, and should not be construed as limiting
upon the present invention. Those skilled in the art Will rec
ogniZe that each individual type of code module may include
a unique set of interesting behaviors. Additionally, as neW
features are added to each environment, or as computer sys

US 7,913,305 B2
5

tems change, additional behaviors may be added as “interest
ing,” While others may be removed.

TABLE A

RegisterServiceProcess ()
Sleep ()
WinExec (applicationiname)

ExitProcess ()
GetCommandLine ()
CreateProcessA (procesiname,

paralnetersilist)
InternetOpenUrlA (URLfH?IH?) GlobalAlloc ()
InternetOpenA (URLfH?IH?) GetTickCount ()
IntenetClosetHandle () CopyFileA

(newiname, existinginarne)
CreateFileA (?leiname) GetWindoWsDirectoryA()
ReadFile () GetSystemDirectoryA ()
WriteFile () GetModuleFileNaIneA ()
Close Handle ()
RegOpenKeyA (keyinarne)
RegSetValueA (subkeyinalne)
RegSetValuExA (subkeyiname)
RegCloseKey ()
UrlDoWnloadToFileA (urlinalne,

?leinalne)

LoadLibraryA (libraryiname)
GetProcAddress (procedureiname)
FindFirstFileA (?leispeci?cator)
FindNextFileA ()
FindClose ()

The dynamic behavior evaluation module 204 records the
“interesting” behaviors exhibited by the executing code mod
ule 212 in a ?le, referred to as a behavior signature 210. Once
the code module 212 has completed its execution in the
dynamic behavior evaluation module 204, the behavior sig
nature 210 is stored for subsequent use.

Once the behavior signature 210 has been generated, the
behavior signature comparison module 206 takes the behav
ior signature and compares it against behavior signatures of
knoWn malWare that are stored in the malWare behavior sig
nature store 208. The malWare behavior signature store 208 is
a repository of behavior signatures of knoWn malWare. HoW
ever, unlike signature ?les of antivirus softWare 104, behavior
signatures stored in the malWare behavior signature store 208
are based on exhibited behaviors of malWare. As such, even
though all variable names and routine names Within source
code for malWare are modi?ed by a malicious party, the
exhibited behaviors of the malWare remain the same, and Will
be detected by the malWare detection system 200 When the
behavior signature comparison module 206 matches a code
module’s behavior signature 210 to a knoWn malWare’s
behavior signature in the malWare behavior signature store
208.

According to aspects of the present invention, if the behav
ior signature comparison module 206 is able to completely
match the behavior signature 210 against a knoWn malWare
behavior signature in the malWare behavior signature store
208, the malWare detection system 200 Will report that the
code module is malWare. HoWever, quite often, not all behav
iors of an original malWare are essential for a modi?ed mal
Ware to perform its destructive purpose. Thus, according to
further aspects of the present invention, if no complete match
exists, yet there is a partial match betWeen the behavior sig
nature 210 and any of the malWare behavior signatures in the
malWare behavior signature store 208, the malWare detection
system 200 may report that the code module 212 is possibly
malWare. According to yet further aspects, the malWare detec
tion system 200 may report the likelihood that the code mod
ule 212 is malWare according to the percentage of behaviors
that match a particular knoWn malWare signature. Alterna
tively, speci?c subsets of behaviors Within knoWn malWare
signatures may be specially identi?ed, such that if there is a
positive match betWeen behaviors in the behavior signature
210 and the subset of specially identi?ed behaviors of a
knoWn malWare behavior signature, the malWare detection
system 200 may report a more positive identi?cation of mal
Ware.

20

25

30

35

40

45

50

55

60

65

6
It is anticipated that the malWare behavior signature store

208 Will be periodically updated With behavior signatures of
knoWn malWare. The malWare behavior signature store 208
should be especially updated as the more rare, “neW” malWare
is discovered.

FIGS. 3A and 3B are How diagrams illustrating an exem
plary routine for determining Whether a code module is mal
Ware according to its exhibited behavior. Beginning at block
302, the malWare detection system 200 obtains the code mod
ule 212 to be evaluated. At block 304, a dynamic behavior
evaluation module 204 is selected according to the code mod
ule’s executable type. Selecting a dynamic behavior evalua
tion module 204 according to the code module’s type is
described beloW in regard to FIG. 4.

FIG. 4 is a How diagram for dynamically allocating a
dynamic behavior evaluation module 204 for evaluating a
code module 212 and recording the “interesting” behaviors
exhibited by the code module in a behavior signature 210.
Beginning at block 402, the code module 212 is examined to
determine its type. Examining a code module 212 and deter
mining the type of code module is knoWn in the art.
At block 404, a dynamic behavior evaluation module 204

corresponding to the code module’s type is selected. Accord
ing to one embodiment of the present invention, the dynamic
behavior evaluation module 204 may be implemented as a
loadable module. Accordingly, at decision block 406, a deter
mination is made as to Whether the dynamic behavior evalu
ation module 204 is already loaded. If it is not loaded, at block
408, the dynamic behavior evaluation module 204 is loaded.
The dynamic behavior evaluation module 204 is loaded, or
after having loaded the dynamic behavior evaluation module
the routine 400 terminates.

It should be understood that in an alternative embodiment,
each dynamic behavior evaluation module is implemented as
an integral element of the malWare detection system 200. As
such, checking to determine Whether a dynamic behavior
evaluation module 204 is loaded is unnecessary.

With reference again to FIG. 3A, after having selected the
dynamic behavior evaluation module 204, at block 306, the
code module 212 is launched, i.e., executed, Within the
selected dynamic behavior evaluation module. As described
above, as the code module 212 is executed Within the dynamic
behavior evaluation module 204, interesting behaviors are
recorded in a behavior signature 210. Upon completion of
execution of the code module 212, at block 308, the code
module’s behavior signature 210 is obtained from the
selected dynamic behavior evaluation module. At block 310,
the behavior signature 210 is compared against knoWn mal
Ware behavior signatures stored in the malWare behavior sig
nature store 208.

At decision block 314, a determination is made as to
Whether there Was a complete match betWeen the behavior
signature 210 and a behavior signature in the malWare behav
ior signature store 208. If there Was a complete match, at
block 316, the malWare detection system 200 reports that the
evaluated code module 212 is knoWn malWare. Thereafter, the
routine 300 terminates.

If there Was not a complete match betWeen the behavior
signature 210 and the behavior signatures in the malWare
behavior signature store 208, at decision block 318, a further
determination is made as to Whether there Was at least a partial
match. If there Was a partial match betWeen the behavior
signature 210 and a behavior signature in the malWare behav
ior signature store 208, at block 320, the malWare detection
system reports that the evaluated code module 212 may be
malWare. As previously discussed, the decision to report that
the evaluated code module 212 may be malWare may be made

US 7,913,305 B2
7

according to the percentage of matched behaviors, or accord
ing to Whether the behavior signature 210 matched a speci?c
subset of a knoWn malWare behavior signature. Other deter
minations based on partial matches may also be utiliZed. After
reporting that the evaluated code module 212 may be mal
Ware, the routine 300 terminates.

If the behavior signature 210 for the evaluated code module
212 does not match any behavior signatures stored Within the
malWare behavior signature store 208, at block 322, the mal
Ware detection system 200 reports that the evaluated code
module does not match any knoWn malWare. Of course, those
skilled in the art Will readily recogniZe that this does not mean
that the evaluated code module 212 is not malWare, just that it
is not recogniZable according to its dynamic behaviors.
Thereafter, the routine 300 terminates.

FIGS. 5A and 5B are block diagrams illustrating exem
plary behavior signatures of hypothetical code modules, such
as the behavior signature 210 described above. Each roW of
items in the exemplary behavior signatures, including behav
ior signature 500 and behavior signature 512, represents a
behavior that Was exhibited by a code module and recorded by
the dynamic behavior evaluation module 204.
As illustrated in both behavior signature 500 and behavior

signature 512, each behavior includes three elements: a
behavior token, such as behavior token 502; a ?rst parameter
value, such as parameter value 504; and a second parameter
value, such as parameter value 506. It should be understood
that the described embodiment of behavior signatures is for
illustration purposes only, and should not be construed as
limiting upon the present invention. The actual organiZation
of a behavior signature may vary substantially.
A behavior token, such as behavior token 502, is used to

identify the particular “interesting” behavior recorded by the
dynamic behavior evaluation module 204. Each interesting
behavior recorded by the dynamic behavior evaluation mod
ule 204 is associated With a unique token, such as behavior
token 502. In contrast, parameter values may include almost
any type of value. For example, a parameter value, such as
parameter 504, may represent a token to match anything.
Alternatively, a parameter value may not be necessary or
desirable. In such cases, a parameter value of “null,” such as
parameter value 506, may be added to indicate that there is no
parameter present. Further, a parameter value such as param
eter value 510, may be a numeric value, or, as in the case of
parameter value 508, may be a string passed to the interesting
behavior and Which is important for comparison purposes.

In regard to FIGS. 5A and 5B, behavior signature 500 of
FIG. 5A illustrates behaviors associated With a so-called
“Trojan horse” malWare, While behavior signature 512 of
FIG. 5B illustrates behaviors associated With a mass mailing
Worm.

Embodiments Within the scope of the present invention
also include computer-readable media for carrying or storing
computer-executable instructions and/ or data structures.
Computer-readable media is divided into tWo separate cat
egories: storage media and communication media. Storage
media is de?ned as all computer-readable media other than
signals. Communication media is de?ned as signals. Storage
media should not be construed as including signals.

While the preferred embodiment of the invention has been
illustrated and described, it Will be appreciated that various
changes can be made therein Without departing from the spirit
and scope of the invention.

The embodiments of the invention in Which an exclusive
property or privilege is claimed are de?ned as folloWs:

1. A malWare detection system for determining Whether a
code module is malWare according to the code module’s

20

25

30

35

40

45

50

55

60

65

8
exhibited behaviors, the system comprising memory storing
the folloWing computer executable components:

at least one dynamic behavior evaluation module, Wherein
each dynamic behavior evaluation module provides a
virtual environment for executing a code module of a
particular type, and Wherein each dynamic behavior
evaluation module records interesting API function calls
that the code module makes as it is executed, Wherein the
interesting API function calls are speci?ed by a user and
comprise a portion of all API function calls that the code
module makes, Wherein only the interesting API func
tion calls, but not all API function calls, that the code
module makes during execution in the dynamic behavior
evaluation module are recorded into a behavior signa
ture corresponding to the code module;

a management module, Wherein the management module
obtains the code module, and Wherein the management
module evaluates the code module to determine the code
module’s type, and Wherein the management module
selects a dynamic behavior evaluation module to execute
the code module according to the code module’s type;

a malWare behavior signature store storing at least one
knoWn malWare behavior signature of a knoWn malWare,
Wherein each of the at least one knoWn malWare behav
ior signature is comprised of only the interesting API
function calls as speci?ed by the user;

a behavior signature comparison module that obtains the
behavior signature of the code module and compares the
behavior signature of the code module to the knoWn
malWare behavior signatures in the malWare behavior
signature store to determine Whether the interesting API
function calls recorded in the behavior signature of the
code module match the interesting API function calls in
any of the knoWn malWare behavior signatures; and

Wherein the malWare detection system is con?gured to
report Whether the code module is a knoWn malWare
based at least in part on the degree that the interesting
API function calls recorded in the behavior signature of
the code module match the interesting API function calls
in a behavior signature of the knoWn malWare.

2. A malWare detection system for determining Whether a
code module is malWare according to the code module’s
exhibited behaviors, the system comprising memory storing
the folloWing computer executable components:

at least one behavior evaluation module, Wherein each
behavior evaluation module provides a virtual environ
ment for executing a code module of a particular type,
and Wherein each behavior evaluation module records
interesting API function calls that the code module
makes as it is executed, Wherein the interesting API
function calls are speci?ed by a user and comprise a
portion of all API function calls that the code module
makes, Wherein only the interesting API function calls,
but not all API function calls, that the code module
makes during execution in the dynamic behavior evalu
ation module are recorded into a behavior signature
corresponding to the code module;

a management module obtaining the code module and
determining the code module’s type for the purpose of
selecting a behavior evaluation module to execute the
code module according to the code module’s type;

a storage module for storing at least one knoWn malWare
behavior signature of a knoWn malWare, Wherein each of
the at least one knoWn malWare behavior signature is
comprised of only interesting function calls as speci?ed
by the user;

US 7,913,305 B2

a behavior comparison module for comparing the behavior
signature of the code module to the known malWare
behavior signatures in the storage module to determine
Whether the interesting API function calls recorded in
the behavior signature of the code module match the
interesting API function calls in any of the knoWn mal
Ware behavior signatures; and Wherein the malWare
detection system is con?gured to report Whether the
code module is a knoWn malWare based at least in part on
the degree that the interesting API function calls
recorded in the behavior signature of the code module
match the interesting API function calls in a behavior
signature of the knoWn malWare.

3. A method for determining Whether a code module is
malWare according to the code module’s exhibited behaviors,
the method comprising:

receiving input from a user that speci?es interesting API
functions calls, Wherein the interesting API function
calls are a portion of API function calls that can be made
by a code module;

receiving a code module to be evaluated to determine
Whether the code module includes malWare;

selecting a dynamic behavior evaluation module according
to the executable type of the code module as determined
by a management module;

executing the code module in the selected dynamic behav
ior evaluation module, Wherein the selected dynamic
behavior evaluation module provides a virtual environ
ment in Which the code module may be safely executed;

recording each interesting API function call that the code
module makes While being executed in the dynamic
behavior evaluation module to create a behavior signa
ture for the code module;

comparing the recorded interesting API function calls in
the behavior signature for the code module to the inter
esting API functions calls of a behavior signature of a
knoWn malWare;

according to the results of the previous comparison, deter
mining Whether the code module is the knoWn malWare;
and

reporting Whether the code module is the knoWn malWare
based at least in part on the degree that the interesting
API function calls recorded in the behavior signature of
the code module match the interesting API function calls
of the behavior signature of the knoWn malWare.

4. A storage medium storing computer-executable instruc
tions Which, When executed, carry out a method for determin

20

25

30

35

40

45

10
ing Whether an executable code module is malWare according
to the code module’s exhibited behaviors, the method com
prising:

receiving input from a user that speci?es interesting API
functions calls, Wherein the interesting API function
calls are a portion ofAPl function calls that can be made
by a code module;

receiving a code module to be evaluated to determine
Whether the code module includes malWare;

selecting a dynamic behavior evaluation module according
to the executable type of the code module as determined
by a management module;

executing the code module in the selected dynamic behav
ior evaluation module, Wherein the selected dynamic
behavior evaluation module provides a virtual environ
ment in Which the code module may be safely executed;

recording each interesting API function call that the code
module makes While being executed in the dynamic
behavior evaluation module to create a behavior signa
ture for the code module;

comparing the recorded interesting API function calls in
the behavior signature for the code module to the inter
esting API function calls of a behavior signature of a
knoWn malWare;

according to the results of the previous comparison, deter
mining Whether the code module is the knoWn malWare;
and

reporting Whether the code module is the knoWn malWare
based at least in part on the degree that the interesting
API function calls recorded in the behavior signature of
the code module match the interesting API function calls
of the behavior signature of the knoWn malware.

5. The malWare detection system of claim 1 or 2, Wherein
at least some of the interesting API function calls are system
calls.

6. The method of claim 3, Wherein at least some of the
interesting API function calls are system calls.

7. The storage medium of claim 4, Wherein at least some of
the interesting API function calls are system calls.

8. The malWare detection system of claim 1, Wherein the
malWare detection system is further con?gured to report a
positive identi?cation of a knoWn malWare.

9. The malWare detection system of claim 2, Wherein the
malWare detection system is further con?gured to report a
positive identi?cation of a knoWn malWare.

* * * * *

